1
|
Singer-Berk M, Gudmundsson S, Baxter S, Seaby EG, England E, Wood JC, Son RG, Watts NA, Karczewski KJ, Harrison SM, MacArthur DG, Rehm HL, O'Donnell-Luria A. Advanced variant classification framework reduces the false positive rate of predicted loss-of-function variants in population sequencing data. Am J Hum Genet 2023; 110:1496-1508. [PMID: 37633279 PMCID: PMC10502856 DOI: 10.1016/j.ajhg.2023.08.005] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2023] [Revised: 08/09/2023] [Accepted: 08/09/2023] [Indexed: 08/28/2023] Open
Abstract
Predicted loss of function (pLoF) variants are often highly deleterious and play an important role in disease biology, but many pLoF variants may not result in loss of function (LoF). Here we present a framework that advances interpretation of pLoF variants in research and clinical settings by considering three categories of LoF evasion: (1) predicted rescue by secondary sequence properties, (2) uncertain biological relevance, and (3) potential technical artifacts. We also provide recommendations on adjustments to ACMG/AMP guidelines' PVS1 criterion. Applying this framework to all high-confidence pLoF variants in 22 genes associated with autosomal-recessive disease from the Genome Aggregation Database (gnomAD v.2.1.1) revealed predicted LoF evasion or potential artifacts in 27.3% (304/1,113) of variants. The major reasons were location in the last exon, in a homopolymer repeat, in a low proportion expressed across transcripts (pext) scored region, or the presence of cryptic in-frame splice rescues. Variants predicted to evade LoF or to be potential artifacts were enriched for ClinVar benign variants. PVS1 was downgraded in 99.4% (162/163) of pLoF variants predicted as likely not LoF/not LoF, with 17.2% (28/163) downgraded as a result of our framework, adding to previous guidelines. Variant pathogenicity was affected (mostly from likely pathogenic to VUS) in 20 (71.4%) of these 28 variants. This framework guides assessment of pLoF variants beyond standard annotation pipelines and substantially reduces false positive rates, which is key to ensure accurate LoF variant prediction in both a research and clinical setting.
Collapse
Affiliation(s)
- Moriel Singer-Berk
- Program in Medical and Population Genetics, Broad Institute of MIT and Harvard, Cambridge, MA, USA; Center for Genomic Medicine & Analytic and Translational Genetics Unit, Massachusetts General Hospital, Boston, MA, USA
| | - Sanna Gudmundsson
- Program in Medical and Population Genetics, Broad Institute of MIT and Harvard, Cambridge, MA, USA; Center for Genomic Medicine & Analytic and Translational Genetics Unit, Massachusetts General Hospital, Boston, MA, USA; Division of Genetics and Genomics, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA; Science for Life Laboratory, Department of Gene Technology, KTH Royal Institute of Technology, Stockholm, Sweden
| | - Samantha Baxter
- Program in Medical and Population Genetics, Broad Institute of MIT and Harvard, Cambridge, MA, USA; Center for Genomic Medicine & Analytic and Translational Genetics Unit, Massachusetts General Hospital, Boston, MA, USA
| | - Eleanor G Seaby
- Program in Medical and Population Genetics, Broad Institute of MIT and Harvard, Cambridge, MA, USA; Center for Genomic Medicine & Analytic and Translational Genetics Unit, Massachusetts General Hospital, Boston, MA, USA; Division of Genetics and Genomics, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA; Genomic Informatics Group, University Hospital Southampton, Southampton, UK
| | - Eleina England
- Program in Medical and Population Genetics, Broad Institute of MIT and Harvard, Cambridge, MA, USA; Center for Genomic Medicine & Analytic and Translational Genetics Unit, Massachusetts General Hospital, Boston, MA, USA; Division of Genetics and Genomics, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA
| | - Jordan C Wood
- Program in Medical and Population Genetics, Broad Institute of MIT and Harvard, Cambridge, MA, USA; Center for Genomic Medicine & Analytic and Translational Genetics Unit, Massachusetts General Hospital, Boston, MA, USA
| | - Rachel G Son
- Program in Medical and Population Genetics, Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Nicholas A Watts
- Program in Medical and Population Genetics, Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Konrad J Karczewski
- Program in Medical and Population Genetics, Broad Institute of MIT and Harvard, Cambridge, MA, USA; Center for Genomic Medicine & Analytic and Translational Genetics Unit, Massachusetts General Hospital, Boston, MA, USA
| | - Steven M Harrison
- Program in Medical and Population Genetics, Broad Institute of MIT and Harvard, Cambridge, MA, USA; Ambry Genetics, Aliso Viejo, CA, USA
| | - Daniel G MacArthur
- Program in Medical and Population Genetics, Broad Institute of MIT and Harvard, Cambridge, MA, USA; Centre for Population Genomics, Garvan Institute of Medical Research and UNSW Sydney, Sydney, NSW, Australia; Centre for Population Genomics, Murdoch Children's Research Institute, Melbourne, VIC, Australia
| | - Heidi L Rehm
- Program in Medical and Population Genetics, Broad Institute of MIT and Harvard, Cambridge, MA, USA; Center for Genomic Medicine & Analytic and Translational Genetics Unit, Massachusetts General Hospital, Boston, MA, USA
| | - Anne O'Donnell-Luria
- Program in Medical and Population Genetics, Broad Institute of MIT and Harvard, Cambridge, MA, USA; Center for Genomic Medicine & Analytic and Translational Genetics Unit, Massachusetts General Hospital, Boston, MA, USA; Division of Genetics and Genomics, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
2
|
Singer-Berk M, Gudmundsson S, Baxter S, Seaby EG, England E, Wood JC, Son RG, Watts NA, Karczewski KJ, Harrison SM, MacArthur DG, Rehm HL, O'Donnell-Luria A. Advanced variant classification framework reduces the false positive rate of predicted loss of function (pLoF) variants in population sequencing data. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2023:2023.03.08.23286955. [PMID: 36945502 PMCID: PMC10029069 DOI: 10.1101/2023.03.08.23286955] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/11/2023]
Abstract
Predicted loss of function (pLoF) variants are highly deleterious and play an important role in disease biology, but many of these variants may not actually result in loss-of-function. Here we present a framework that advances interpretation of pLoF variants in research and clinical settings by considering three categories of LoF evasion: (1) predicted rescue by secondary sequence properties, (2) uncertain biological relevance, and (3) potential technical artifacts. We also provide recommendations on adjustments to ACMG/AMP guidelines's PVS1 criterion. Applying this framework to all high-confidence pLoF variants in 22 autosomal recessive disease-genes from the Genome Aggregation Database (gnomAD, v2.1.1) revealed predicted LoF evasion or potential artifacts in 27.3% (304/1,113) of variants. The major reasons were location in the last exon, in a homopolymer repeat, in low per-base expression (pext) score regions, or the presence of cryptic splice rescues. Variants predicted to be potential artifacts or to evade LoF were enriched for ClinVar benign variants. PVS1 was downgraded in 99.4% (162/163) of LoF evading variants assessed, with 17.2% (28/163) downgraded as a result of our framework, adding to previous guidelines. Variant pathogenicity was affected (mostly from likely pathogenic to VUS) in 20 (71.4%) of these 28 variants. This framework guides assessment of pLoF variants beyond standard annotation pipelines, and substantially reduces false positive rates, which is key to ensure accurate LoF variant prediction in both a research and clinical setting.
Collapse
Affiliation(s)
- Moriel Singer-Berk
- Program in Medical and Population Genetics, Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Center for Genomic Medicine & Analytic and Translational Genetics Unit, Massachusetts General Hospital, Boston, MA, USA
| | - Sanna Gudmundsson
- Program in Medical and Population Genetics, Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Center for Genomic Medicine & Analytic and Translational Genetics Unit, Massachusetts General Hospital, Boston, MA, USA
- Division of Genetics and Genomics, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA
- Science for Life Laboratory, Department of Gene Technology, KTH Royal Institute of Technology, Stockholm, Sweden
| | - Samantha Baxter
- Program in Medical and Population Genetics, Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Center for Genomic Medicine & Analytic and Translational Genetics Unit, Massachusetts General Hospital, Boston, MA, USA
| | - Eleanor G Seaby
- Program in Medical and Population Genetics, Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Center for Genomic Medicine & Analytic and Translational Genetics Unit, Massachusetts General Hospital, Boston, MA, USA
- Division of Genetics and Genomics, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA
- Genomic Informatics Group, University Hospital Southampton, Southampton, United Kingdom
| | - Eleina England
- Program in Medical and Population Genetics, Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Center for Genomic Medicine & Analytic and Translational Genetics Unit, Massachusetts General Hospital, Boston, MA, USA
- Division of Genetics and Genomics, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA
| | - Jordan C Wood
- Program in Medical and Population Genetics, Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Center for Genomic Medicine & Analytic and Translational Genetics Unit, Massachusetts General Hospital, Boston, MA, USA
| | - Rachel G Son
- Program in Medical and Population Genetics, Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Nicholas A Watts
- Program in Medical and Population Genetics, Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Konrad J Karczewski
- Program in Medical and Population Genetics, Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Center for Genomic Medicine & Analytic and Translational Genetics Unit, Massachusetts General Hospital, Boston, MA, USA
| | - Steven M Harrison
- Program in Medical and Population Genetics, Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Ambry Genetics, Aliso Viejo, CA, USA
| | - Daniel G MacArthur
- Program in Medical and Population Genetics, Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Centre for Population Genomics, Garvan Institute of Medical Research and UNSW Sydney, Sydney, New South Wales, Australia
- Centre for Population Genomics, Murdoch Children's Research Institute, Melbourne, Australia
| | - Heidi L Rehm
- Program in Medical and Population Genetics, Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Center for Genomic Medicine & Analytic and Translational Genetics Unit, Massachusetts General Hospital, Boston, MA, USA
| | - Anne O'Donnell-Luria
- Program in Medical and Population Genetics, Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Center for Genomic Medicine & Analytic and Translational Genetics Unit, Massachusetts General Hospital, Boston, MA, USA
- Division of Genetics and Genomics, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA
| |
Collapse
|
3
|
[Hereditary hearing loss]. HNO 2023; 71:131-142. [PMID: 36526931 DOI: 10.1007/s00106-022-01254-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/02/2022] [Indexed: 12/23/2022]
Abstract
Understanding the genetic basis of hearing loss is becoming increasingly relevant, as 50-70% of congenital hearing loss is hereditary and postlingual hearing loss is also often of hereditary origin. To date, more than 220 genes for hearing loss have been identified and more than 600 syndromes with hearing loss described. This review article explains the classification of genetic hearing loss into syndromic versus non-syndromic forms and the modes of inheritance involved. Some of the most common syndromes (Usher, Pendred, Jervell-Lange-Nielsen, Waardenburg, branchiootorenal, and Alport syndrome) are introductorily described. New sequencing technologies have significantly expanded the diagnostic options for genetic hearing loss and made them more accessible. This text aims to encourage initiation of genetic diagnosis in hearing-impaired patients with suspected hereditary genesis in order to provide the best possible counseling for affected individuals and their families.
Collapse
|
4
|
Chen L, Wang L, Yin D, Tang F, Zeng Y, Zhu H, Wang J. Analysis of autosomal dominant genes impacted by copy number loss in 24,844 fetuses without structural abnormalities. BMC Genomics 2022; 23:94. [PMID: 35109792 PMCID: PMC8812209 DOI: 10.1186/s12864-022-08340-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2021] [Accepted: 01/28/2022] [Indexed: 12/03/2022] Open
Abstract
BACKGROUND The broad application of high-resolution chromosome detection technology in prenatal diagnosis has identified copy number loss (CNL) involving autosomal dominant (AD) genes in certain fetuses. Exon sequencing of fetuses exhibiting structural anomalies yields diagnostic information in up to 20% of cases. However, there is currently no relevant literature about the genetic origin and pregnancy outcome of CNL involving AD genes in fetuses without structural abnormalities. RESULTS This was a prospective study involving pregnant women who underwent amniocentesis for fetal copy number variation sequencing (CNVseq). Detection of parent-of-origin was suggested in cases of samples with CNL involving AD genes and the pregnancy outcome was monitored. Amniotic fluid samples from 24,844 fetuses without structural abnormalities were successfully tested via CNVseq. The results showed that 134 fetuses (0.5%) had small CNL (< 10 Mb) containing AD genes, after excluding microdeletion and microduplication syndrome and polymorphisms. By monitoring the pregnancy outcomes of the 134 fetuses, we found that 104 (77.6%) were good, 13 (9.7%) were adverse, and 17 (12.7%) pregnant women voluntarily chose to terminate pregnancy. Of the 13 fetuses with adverse pregnancy outcomes, only 2 fetuses had phenotypes consistent with those of diseases caused by AD genes involved in CNL. CONCLUSIONS The overall prognosis for fetuses without family history or structural abnormalities but with small CNL containing AD genes detected during pregnancy is good. The genetic origin, overlap status of established haploinsufficient gene and/or region, size of the CNL, and genetic mode may affect the pathogenicity of the CNL.
Collapse
Affiliation(s)
- Lin Chen
- Department of Obstetrics and Gynecology, West China Second University Hospital of Sichuan University, Chengdu, 610041, China
- Key Laboratory of Birth Defects and Related Diseases of Women and Children, Ministry of Education, Sichuan University, Chengdu, 610041, China
| | - Li Wang
- Department of Obstetrics and Gynecology, West China Second University Hospital of Sichuan University, Chengdu, 610041, China
- Key Laboratory of Birth Defects and Related Diseases of Women and Children, Ministry of Education, Sichuan University, Chengdu, 610041, China
| | - Daishu Yin
- Department of Obstetrics and Gynecology, West China Second University Hospital of Sichuan University, Chengdu, 610041, China
- Key Laboratory of Birth Defects and Related Diseases of Women and Children, Ministry of Education, Sichuan University, Chengdu, 610041, China
| | - Feng Tang
- Department of Obstetrics and Gynecology, West China Second University Hospital of Sichuan University, Chengdu, 610041, China
- Key Laboratory of Birth Defects and Related Diseases of Women and Children, Ministry of Education, Sichuan University, Chengdu, 610041, China
| | - Yang Zeng
- Department of Obstetrics and Gynecology, West China Second University Hospital of Sichuan University, Chengdu, 610041, China
- Key Laboratory of Birth Defects and Related Diseases of Women and Children, Ministry of Education, Sichuan University, Chengdu, 610041, China
| | - Hongmei Zhu
- Department of Obstetrics and Gynecology, West China Second University Hospital of Sichuan University, Chengdu, 610041, China
- Key Laboratory of Birth Defects and Related Diseases of Women and Children, Ministry of Education, Sichuan University, Chengdu, 610041, China
| | - Jing Wang
- Department of Obstetrics and Gynecology, West China Second University Hospital of Sichuan University, Chengdu, 610041, China.
- Key Laboratory of Birth Defects and Related Diseases of Women and Children, Ministry of Education, Sichuan University, Chengdu, 610041, China.
| |
Collapse
|
5
|
Moon IS, Grant AR, Sagi V, Rehm HL, Stankovic KM. TMPRSS3 Gene Variants With Implications for Auditory Treatment and Counseling. Front Genet 2021; 12:780874. [PMID: 34868270 PMCID: PMC8641783 DOI: 10.3389/fgene.2021.780874] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2021] [Accepted: 10/18/2021] [Indexed: 11/24/2022] Open
Abstract
Objective: To identify and report novel variants in the TMPRSS3 gene and their clinical manifestations related to hearing loss as well as intervention outcomes. This information will be helpful for genetic counseling and treatment planning for these patients. Methods: Literature review of previously reported TMPRSS3 variants was conducted. Reported variants and associated clinical information was compiled. Additionally, cohort data from 18 patients, and their families, with a positive result for TMPRSS3-associated hearing loss were analyzed. Genetic testing included sequencing and copy number variation (CNV) analysis of TMPRSS3 and the Laboratory for Molecular Medicine’s OtoGenome-v1, -v2, or -v3 panels. Clinical data regarding patient hearing rehabilitation was interpreted along with their genetic testing results and in the context of previously reported cochlear implant outcomes in individuals with TMPRSS3 variants. Results: There have been 87 previously reported TMPRSS3 variants associated with non-syndromic hearing loss in more than 20 ancestral groups worldwide. Here we report occurrences of known variants as well as one novel variant: deletion of Exons 1–5 and 13 identified from our cohort of 18 patients. The hearing impairment in many of these families was consistent with that of previously reported patients with TMPRSS3 variants (i.e., typical down-sloping audiogram). Four patients from our cohort underwent cochlear implantation. Conclusion: Bi-allelic variants of TMPRSS3 are associated with down-sloping hearing loss regardless of ancestry. The outcome following cochlear implantation in patients with variants of TMPRSS3 is excellent. Therefore, cochlear implantation is strongly recommended for hearing rehabilitation in these patients.
Collapse
Affiliation(s)
- In Seok Moon
- Department of Otolaryngology-Head and Neck Surgery, Massachusetts Eye and Ear and Harvard Medical School, Boston, MA, United States.,Department of Otorhinolaryngology, Yonsei University College of Medicine, Seoul, Korea
| | - Andrew R Grant
- Program in Medical and Population Genetics, Broad Institute of MIT and Harvard, Cambridge, MA, United States.,New York Medical College, Valhalla, NY, United States
| | - Varun Sagi
- Department of Otolaryngology-Head and Neck Surgery, Stanford University School of Medicine, Stanford, CA, United States.,University of Minnesota Medical School, Minneapolis, MN, United States
| | - Heidi L Rehm
- Program in Medical and Population Genetics, Broad Institute of MIT and Harvard, Cambridge, MA, United States.,Center for Genomic Medicine and Departments of Pathology and Medicine, Massachusetts General Hospital and Harvard Medical School, Boston, MA, United States
| | - Konstantina M Stankovic
- Department of Otolaryngology-Head and Neck Surgery, Massachusetts Eye and Ear and Harvard Medical School, Boston, MA, United States.,Department of Otolaryngology-Head and Neck Surgery, Stanford University School of Medicine, Stanford, CA, United States
| |
Collapse
|
6
|
Peng J, Xiang J, Jin X, Meng J, Song N, Chen L, Abou Tayoun A, Peng Z. VIP-HL: Semi-automated ACMG/AMP variant interpretation platform for genetic hearing loss. Hum Mutat 2021; 42:1567-1575. [PMID: 34428318 DOI: 10.1002/humu.24277] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Revised: 07/13/2021] [Accepted: 08/20/2021] [Indexed: 12/29/2022]
Abstract
The American College of Medical Genetics and Genomics, and the Association for Molecular Pathology (ACMG/AMP) have proposed a set of evidence-based guidelines to support sequence variant interpretation. The ClinGen hearing loss expert panel (HL-EP) introduced further specifications into the ACMG/AMP framework for genetic hearing loss. This study developed a tool named Variant Interpretation Platform for genetic Hearing Loss (VIP-HL), aiming to semi-automate the HL ACMG/AMP rules. VIP-HL aggregates information from external databases to automate 13 out of 24 ACMG/AMP rules specified by HL-EP, namely PVS1, PS1, PM1, PM2, PM4, PM5, PP3, BA1, BS1, BS2, BP3, BP4, and BP7. We benchmarked VIP-HL using 50 variants in which 82 rules were activated by the ClinGen HL-EP. VIP-HL concordantly activated 93% (76/82) rules, significantly higher than that of by InterVar (48%; 39/82). VIP-HL is an integrated online tool for reliable automated variant classification in hearing loss genes. It assists curators in variant interpretation and provides a platform for users to share classifications with each other. VIP-HL is available with a user-friendly web interface at http://hearing.genetics.bgi.com/.
Collapse
Affiliation(s)
| | - Jiale Xiang
- BGI Genomics, BGI-Shenzhen, Shenzhen, China.,College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China.,BGI Education Center, University of Chinese Academy of Sciences, Shenzhen, China
| | - Xiangqian Jin
- BGI Genomics, BGI-Shenzhen, Shenzhen, China.,Department of Biotechnology and Biomedicine, Technical University of Denmark, Kongens Lyngby, Denmark
| | | | - Nana Song
- BGI Genomics, BGI-Shenzhen, Shenzhen, China
| | - Lisha Chen
- BGI Genomics, BGI-Shenzhen, Shenzhen, China.,BGI Education Center, University of Chinese Academy of Sciences, Shenzhen, China
| | - Ahmad Abou Tayoun
- Al Jalila Genomics Center, Al Jalila Children's Specialty Hospital, Dubai, United Arab Emirates.,Center for Genomic Discovery, Mohammed Bin Rashid University of Medicine and Health Sciences, Dubai, United Arab Emirates
| | - Zhiyu Peng
- BGI Genomics, BGI-Shenzhen, Shenzhen, China.,College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
7
|
Park KJ, Park JH. Variations in Nomenclature of Clinical Variants between Annotation Tools. Lab Med 2021; 53:242-245. [PMID: 34612497 DOI: 10.1093/labmed/lmab074] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
BACKGROUND Accurate nomenclature of variants is an essential element for genetic diagnosis and patient care. OBJECTIVE To investigate annotation differences of clinical variants between annotation tools. METHODS We analyzed 218,156 clinical variants from the Human Gene Mutation Database. Multiple nomenclatures based on RefSeq transcripts were provided using ANNOVAR and snpEff. RESULTS The concordance rate between ANNOVAR and snpEff was approximately 85%. Based on the Human Genome Variation Society (HGVS) nomenclature, snpEff was more accurate than ANNOVAR (coding variants, 99.3% vs 84.9%; protein variants, 94.3% vs 79.8%). When annotating each variant with ANNOVAR and snpEff, the accuracy of nomenclature was 99.5%. CONCLUSIONS There were substantial differences between ANNOVAR and snpEff annotations. The findings of this study suggest that simultaneous use of multiple annotation tools could decrease nomenclature errors and contribute to providing standardized clinical reporting.
Collapse
Affiliation(s)
- Kyoung-Jin Park
- Department of Laboratory Medicine & Genetics, Samsung Changwon Hospital, Sungkyunkwan University School of Medicine, Changwon, South Korea
| | - Jong-Ho Park
- Department of Laboratory Medicine & Genetics, Samsung Medical Center, Seoul, South Korea
| |
Collapse
|
8
|
Ruhrman-Shahar N, Assia Batzir N, Lidzbarsky GA, Bazak L, Magal N, Basel-Salmon L. A nonsense variant in the second exon of the canonical transcript of NSD1 does not cause Sotos syndrome. Am J Med Genet A 2021; 188:369-372. [PMID: 34559457 DOI: 10.1002/ajmg.a.62519] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2021] [Revised: 08/26/2021] [Accepted: 09/04/2021] [Indexed: 11/08/2022]
Affiliation(s)
- Noa Ruhrman-Shahar
- Raphael Recanati Genetic Institute, Rabin Medical Center-Beilinson Hospital, Petach Tikva, Israel
| | - Nurit Assia Batzir
- Pediatric Genetics Clinic, Schneider Children's Medical Center of Israel, Petach Tikva, Israel
| | - Gabriel Arie Lidzbarsky
- Raphael Recanati Genetic Institute, Rabin Medical Center-Beilinson Hospital, Petach Tikva, Israel
| | - Lily Bazak
- Raphael Recanati Genetic Institute, Rabin Medical Center-Beilinson Hospital, Petach Tikva, Israel
| | - Nurit Magal
- Raphael Recanati Genetic Institute, Rabin Medical Center-Beilinson Hospital, Petach Tikva, Israel
| | - Lina Basel-Salmon
- Raphael Recanati Genetic Institute, Rabin Medical Center-Beilinson Hospital, Petach Tikva, Israel.,Pediatric Genetics Clinic, Schneider Children's Medical Center of Israel, Petach Tikva, Israel.,Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel.,Felsenstein Medical Research Center, Petach Tikva, Israel
| |
Collapse
|
9
|
Mehta N, He R, Viswanatha DS. Internal Standardization of the Interpretation and Reporting of Sequence Variants in Hematologic Neoplasms. Mol Diagn Ther 2021; 25:517-526. [PMID: 34125426 DOI: 10.1007/s40291-021-00540-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/27/2021] [Indexed: 10/21/2022]
Abstract
INTRODUCTION Accurate classification of somatic genetic alterations detected by next-generation sequencing (NGS) assays is of paramount importance to ensure the provision of high-quality clinical data. Clinical significance of variants can be assessed and tiered based on guidelines from the Association for Molecular Pathology (AMP), the American Society of Clinical Oncology, and the College of American Pathology for the interpretation of somatic sequence variants identified in cancer. METHODS We sought to develop a formal structured approach for the classification of somatic variants in hematologic neoplasms, to account for both a variant's clinical significance and its ability to drive tumorigenesis, by adapting elements from these existing guidelines. However, we additionally utilized key criteria from the American College of Medical Genetics/AMP standards for variant reporting to focus evaluation into specific categories of evidence and to gauge the effect of a given variant on tumorigenesis. RESULTS The combined approach was applied to the annotation of 87 variants identified by a targeted NGS panel for myeloid neoplasms. In the application of our variant evaluation, we classified 2/87 variants as benign, 6/87 as likely benign, 56/87 as variants of unknown significance (VUS), 13/87 variants as likely pathogenic, and 10/87 variants as pathogenic. CONCLUSION Well-established oncogenic alterations were accurately classified as pathogenic. Although there is no defined benchmark for the remaining variants, drawing from two existing guidelines enabled the creation of a modified curation process for variant interpretation that emphasizes systematic review of relevant evidence.
Collapse
Affiliation(s)
- Nikita Mehta
- Department of Laboratory Medicine and Pathology, Molecular Hematology Laboratory, Mayo Clinic, Rochester, MN, USA.
| | - Rong He
- Department of Laboratory Medicine and Pathology, Molecular Hematology Laboratory, Mayo Clinic, Rochester, MN, USA
| | - David S Viswanatha
- Department of Laboratory Medicine and Pathology, Molecular Hematology Laboratory, Mayo Clinic, Rochester, MN, USA.
| |
Collapse
|
10
|
de Bruijn SE, Fadaie Z, Cremers FPM, Kremer H, Roosing S. The Impact of Modern Technologies on Molecular Diagnostic Success Rates, with a Focus on Inherited Retinal Dystrophy and Hearing Loss. Int J Mol Sci 2021; 22:2943. [PMID: 33799353 PMCID: PMC7998853 DOI: 10.3390/ijms22062943] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2021] [Revised: 03/04/2021] [Accepted: 03/09/2021] [Indexed: 02/07/2023] Open
Abstract
The identification of pathogenic variants in monogenic diseases has been of interest to researchers and clinicians for several decades. However, for inherited diseases with extremely high genetic heterogeneity, such as hearing loss and retinal dystrophies, establishing a molecular diagnosis requires an enormous effort. In this review, we use these two genetic conditions as examples to describe the initial molecular genetic identification approaches, as performed since the early 90s, and subsequent improvements and refinements introduced over the years. Next, the history of DNA sequencing from conventional Sanger sequencing to high-throughput massive parallel sequencing, a.k.a. next-generation sequencing, is outlined, including their advantages and limitations and their impact on identifying the remaining genetic defects. Moreover, the development of recent technologies, also coined "third-generation" sequencing, is reviewed, which holds the promise to overcome these limitations. Furthermore, we outline the importance and complexity of variant interpretation in clinical diagnostic settings concerning the massive number of different variants identified by these methods. Finally, we briefly mention the development of novel approaches such as optical mapping and multiomics, which can help to further identify genetic defects in the near future.
Collapse
Affiliation(s)
- Suzanne E. de Bruijn
- Department of Human Genetics, Radboud University Medical Center, 6500 HB Nijmegen, The Netherlands; (S.E.d.B.); (Z.F.); (F.P.M.C.)
- Donders Institute for Brain, Cognition and Behaviour, Radboud University Medical Center, 6500 HB Nijmegen, The Netherlands;
| | - Zeinab Fadaie
- Department of Human Genetics, Radboud University Medical Center, 6500 HB Nijmegen, The Netherlands; (S.E.d.B.); (Z.F.); (F.P.M.C.)
- Donders Institute for Brain, Cognition and Behaviour, Radboud University Medical Center, 6500 HB Nijmegen, The Netherlands;
| | - Frans P. M. Cremers
- Department of Human Genetics, Radboud University Medical Center, 6500 HB Nijmegen, The Netherlands; (S.E.d.B.); (Z.F.); (F.P.M.C.)
- Donders Institute for Brain, Cognition and Behaviour, Radboud University Medical Center, 6500 HB Nijmegen, The Netherlands;
| | - Hannie Kremer
- Donders Institute for Brain, Cognition and Behaviour, Radboud University Medical Center, 6500 HB Nijmegen, The Netherlands;
- Department of Otorhinolaryngology, Radboud University Medical Center, 6500 HB Nijmegen, The Netherlands
| | - Susanne Roosing
- Department of Human Genetics, Radboud University Medical Center, 6500 HB Nijmegen, The Netherlands; (S.E.d.B.); (Z.F.); (F.P.M.C.)
- Donders Institute for Brain, Cognition and Behaviour, Radboud University Medical Center, 6500 HB Nijmegen, The Netherlands;
| |
Collapse
|
11
|
Thompson B, Davidson EA, Liu W, Nebert DW, Bruford EA, Zhao H, Dermitzakis ET, Thompson DC, Vasiliou V. Overview of PAX gene family: analysis of human tissue-specific variant expression and involvement in human disease. Hum Genet 2021; 140:381-400. [PMID: 32728807 PMCID: PMC7939107 DOI: 10.1007/s00439-020-02212-9] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2020] [Accepted: 07/25/2020] [Indexed: 12/18/2022]
Abstract
Paired-box (PAX) genes encode a family of highly conserved transcription factors found in vertebrates and invertebrates. PAX proteins are defined by the presence of a paired domain that is evolutionarily conserved across phylogenies. Inclusion of a homeodomain and/or an octapeptide linker subdivides PAX proteins into four groups. Often termed "master regulators", PAX proteins orchestrate tissue and organ development throughout cell differentiation and lineage determination, and are essential for tissue structure and function through maintenance of cell identity. Mutations in PAX genes are associated with myriad human diseases (e.g., microphthalmia, anophthalmia, coloboma, hypothyroidism, acute lymphoblastic leukemia). Transcriptional regulation by PAX proteins is, in part, modulated by expression of alternatively spliced transcripts. Herein, we provide a genomics update on the nine human PAX family members and PAX homologs in 16 additional species. We also present a comprehensive summary of human tissue-specific PAX transcript variant expression and describe potential functional significance of PAX isoforms. While the functional roles of PAX proteins in developmental diseases and cancer are well characterized, much remains to be understood regarding the functional roles of PAX isoforms in human health. We anticipate the analysis of tissue-specific PAX transcript variant expression presented herein can serve as a starting point for such research endeavors.
Collapse
Affiliation(s)
- Brian Thompson
- Department of Environmental Health Sciences, Yale School of Public Health, 60 College Street, New Haven, CT, 06510, USA
| | - Emily A Davidson
- Department of Environmental Health Sciences, Yale School of Public Health, 60 College Street, New Haven, CT, 06510, USA
| | - Wei Liu
- Program of Computational Biology and Bioinformatics, Yale University, New Haven, CT, 06510, USA
| | - Daniel W Nebert
- Department of Environmental Health and Center for Environmental Genetics, Cincinnati Children's Research Center, University of Cincinnati Medical Center, Cincinnati, OH, 45267, USA
- Department of Pediatrics and Molecular and Developmental Biology, Cincinnati Children's Research Center, University of Cincinnati Medical Center, Cincinnati, OH, 45267, USA
| | - Elspeth A Bruford
- HUGO Gene Nomenclature Committee, European Bioinformatics Institute, Wellcome Genome Campus, Hinxton, Cambridge, CB10 1SD, UK
- Department of Haematology, University of Cambridge School of Clinical Medicine, Cambridge Biomedical Campus, Cambridge, CB2 0AW, UK
| | - Hongyu Zhao
- Program of Computational Biology and Bioinformatics, Yale University, New Haven, CT, 06510, USA
- Department of Biostatistics, Yale School of Public Health, New Haven, CT, 06510, USA
- Department of Genetics, Yale School of Medicine, New Haven, CT, 06510, USA
| | - Emmanouil T Dermitzakis
- Department of Genetic Medicine and Development, University of Geneva Medical School, 1211, Geneva, Switzerland
- Institute for Genetics and Genomics in Geneva (iGE3), University of Geneva, 1211, Geneva, Switzerland
- Swiss Institute of Bioinformatics, Geneva, Switzerland
| | - David C Thompson
- Department of Clinical Pharmacy, Skaggs School of Pharmacy and Pharmaceutical Sciences, University of Colorado Denver, Aurora, CO, 80045, USA
| | - Vasilis Vasiliou
- Department of Environmental Health Sciences, Yale School of Public Health, 60 College Street, New Haven, CT, 06510, USA.
| |
Collapse
|
12
|
Kannan-Sundhari A, Yan D, Saeidi K, Sahebalzamani A, Blanton SH, Liu XZ. Screening Consanguineous Families for Hearing Loss Using the MiamiOtoGenes Panel. Genet Test Mol Biomarkers 2020; 24:674-680. [PMID: 32991204 DOI: 10.1089/gtmb.2020.0153] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
Background: Hearing loss (HL) is one of the most common and genetically heterogeneous sensory disorders in humans. Genetic causes underlie 50-60% of all HL and the majority of these cases exhibit an autosomal recessive model of inheritance. Methods: In our study, we used our targeted custom MiamiOtoGenes panel of 180 HL-associated genes to screen 23 unrelated consanguineous Iranian families with at least two affected children to identify potential causal variants for HL. Results: We identified pathogenic variants in seven genes (MYO7A, CDH23, GIPC3, USH1C, CAPB2, LOXHD1, and STRC) in nine unrelated families with varying HL profiles. These include five reported and four novel mutations. Conclusion: For small consanguineous families that were unsuitable for conventional linkage analysis the employment of the MiamiOtoGenes panel helped identify the genetic cause of HL in a cost-effective and timely manner. This rapid methodology provides for diagnoses of a significant fraction of HL patients, and identifies those who will need more extensive genetic analyses such as whole exome/genome sequencing.
Collapse
Affiliation(s)
- Abhiraami Kannan-Sundhari
- Department of Otolaryngology, University of Miami Miller School of Medicine, Miami, Florida, USA.,Dr. John T. Macdonald Foundation, Department of Human Genetics, University of Miami Miller School of Medicine, Miami, Florida, USA
| | - Denise Yan
- Department of Otolaryngology, University of Miami Miller School of Medicine, Miami, Florida, USA
| | - Kolsoum Saeidi
- Neuroscience Research Center, Institute of Neuropharmacology, Kerman University of Medical Sciences, Kerman, Iran.,Department of Medical Genetics, Kerman University of Medical Sciences, Kerman, Iran
| | | | - Susan H Blanton
- Department of Otolaryngology, University of Miami Miller School of Medicine, Miami, Florida, USA.,Dr. John T. Macdonald Foundation, Department of Human Genetics, University of Miami Miller School of Medicine, Miami, Florida, USA.,John P. Hussman Institute for Human Genomics, University of Miami Miller School of Medicine, Miami, Florida, USA
| | - Xue Zhong Liu
- Department of Otolaryngology, University of Miami Miller School of Medicine, Miami, Florida, USA.,Dr. John T. Macdonald Foundation, Department of Human Genetics, University of Miami Miller School of Medicine, Miami, Florida, USA.,John P. Hussman Institute for Human Genomics, University of Miami Miller School of Medicine, Miami, Florida, USA
| |
Collapse
|
13
|
Xiang J, Peng J, Baxter S, Peng Z. AutoPVS1: An automatic classification tool for PVS1 interpretation of null variants. Hum Mutat 2020; 41:1488-1498. [PMID: 32442321 DOI: 10.1002/humu.24051] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2019] [Revised: 03/19/2020] [Accepted: 05/14/2020] [Indexed: 11/12/2022]
Abstract
Null variants are prevalent within the human genome, and their accurate interpretation is critical for clinical management. In 2018, the ClinGen Sequence Variant Interpretation (SVI) Working Group refined the only criterion with a very strong pathogenicity rating (PVS1). To streamline PVS1 interpretation, we have developed an automatic classification tool with a graphical user interface called AutoPVS1. The performance of AutoPVS1 was assessed using 56 variants manually curated by the ClinGen's SVI Working Group; it achieved an interpretation concordance of 93% (52/56). A further analysis of 28,586 putative loss-of-function variants by AutoPVS1 demonstrated that at least 27.7% of them do not reach a very strong strength level, 17.5% because of variant-specific issues and 10.2% due to disease mechanism considerations. Notably, 41.0% (1,936/4,717) of splicing variants were assigned a decreased preliminary PVS1 strength level, a significantly greater fraction than in frameshift variants (13.2%) and nonsense variants (10.8%). Our results reinforce the necessity of considering variant-specific issues and disease mechanisms in variant interpretation and demonstrate that AutoPVS1 meets an urgent need by enabling biocurators to easily assign accurate, reliable and reproducible PVS1 strength levels in the process of variant interpretation. AutoPVS1 is publicly available at http://autopvs1.genetics.bgi.com/.
Collapse
Affiliation(s)
| | | | - Samantha Baxter
- Center for Mendelian Genomics, The Broad Institute of MIT and Harvard, Cambridge, Massachusetts
| | - Zhiyu Peng
- BGI Genomics, BGI-Shenzhen, Shenzhen, China
| |
Collapse
|
14
|
Zhang J, Yao Y, He H, Shen J. Clinical Interpretation of Sequence Variants. CURRENT PROTOCOLS IN HUMAN GENETICS 2020; 106:e98. [PMID: 32176464 PMCID: PMC7431429 DOI: 10.1002/cphg.98] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Clinical interpretation of DNA sequence variants is a critical step in reporting clinical genetic testing results. Application of next-generation sequencing technology in molecular genetic testing has facilitated diagnoses of genetic disorders in clinical practice. However, the large number of DNA sequence variants detected in clinical specimens, many of which have never been seen before, make clinical interpretation challenging. Recommendations by the American College of Medical Genetics and Genomics and the Association for Molecular Pathology (ACMG/AMP) have been widely adopted by clinical laboratories around the world to guide clinical interpretation of sequence variants. The ClinGen Sequence Variant Interpretation Working Group and various disease-specific variant curation expert panels have also developed specifications for the ACMG/AMP recommendations. Despite these efforts to standardize variant interpretation in clinical practice, different laboratories may subjectively use professional judgment to determine which criteria are applicable when classifying a variant. In addition, clinicians and researchers who are not familiar with the variant interpretation process may have difficulty understanding clinical genetic reports and communicating the clinical significance of genetic testing results. Here we provide a step-by-step protocol for clinical interpretation of sequence variants, including practical examples. By following this protocol, clinical laboratory geneticists can interpret the clinical significance of sequence variants according to the ACMG/AMP recommendations and ClinGen framework. Furthermore, this article will help clinicians and researchers to understand variant classification in clinical genetic testing reports and evaluate the quality of the reports. © 2020 by John Wiley & Sons, Inc. Basic Protocol: Interpreting the clinical significance of sequence variants Support Protocol: Reevaluating the clinical significance of sequence variants.
Collapse
Affiliation(s)
- Junyu Zhang
- Department of Reproductive Genetics, International Peace Maternity and Child Health Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
- Department of Pathology, Brigham and Women’s Hospital, Harvard Medical School, Boston, Massachusetts
| | - Yanyi Yao
- Department of Pathology, Brigham and Women’s Hospital, Harvard Medical School, Boston, Massachusetts
- Medical Genetics Center, Maternal and Child Health Hospital of Hubei Province, Wuhan, China
| | - Haixian He
- Department of Pathology, Brigham and Women’s Hospital, Harvard Medical School, Boston, Massachusetts
- Department of Otorhinolaryngology, Qilu Hospital of Shandong University, Jinan, China
- NHC Key Laboratory of Otorhinolaryngology, Shandong University, Jinan, China
| | - Jun Shen
- Department of Pathology, Brigham and Women’s Hospital, Harvard Medical School, Boston, Massachusetts
| |
Collapse
|
15
|
Schoch K, Tan QKG, Stong N, Deak KL, McConkie-Rosell A, McDonald MT, Goldstein DB, Jiang YH, Shashi V. Alternative transcripts in variant interpretation: the potential for missed diagnoses and misdiagnoses. Genet Med 2020; 22:1269-1275. [PMID: 32366967 PMCID: PMC7335342 DOI: 10.1038/s41436-020-0781-x] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2020] [Revised: 03/04/2020] [Accepted: 03/10/2020] [Indexed: 12/30/2022] Open
Abstract
PURPOSE Guidelines by professional organizations for assessing variant pathogenicity include the recommendation to utilize biologically relevant transcripts; however, there is variability in transcript selection by laboratories. METHODS We describe three patients whose genomic results were incorrect, because alternative transcripts and tissue expression patterns were not considered by the commercial laboratories. RESULTS In individual 1, a pathogenic coding variant in a brain-expressed isoform of CKDL5 was missed twice on sequencing, because the variant was intronic in the transcripts considered in analysis. In individual 2, a microdeletion affecting KMT2C was not reported on microarray, since deletions of proximal exons in this gene are seen in healthy individuals; however, this individual had a more distal deletion involving the brain-expressed KMT2C isoform, giving her a diagnosis of Kleefstra syndrome. Individual 3 was reported to have a pathogenic variant in exon 10 of OFD1 on exome, but had no typical features of the OFD1-related disorders. Since exon 10 is spliced from the more biologically relevant transcripts of OFD1, it was determined that he did not have an OFD1 disorder. CONCLUSION These examples illustrate the importance of considering alternative transcripts as a potential confounder when genetic results are negative or discordant with the phenotype.
Collapse
Affiliation(s)
- Kelly Schoch
- Division of Medical Genetics, Department of Pediatrics, Duke University Medical Center, Durham, NC, USA
| | - Queenie K-G Tan
- Division of Medical Genetics, Department of Pediatrics, Duke University Medical Center, Durham, NC, USA
| | - Nicholas Stong
- Institute of Genomic Medicine, Columbia University, New York, NY, USA
| | - Kristen L Deak
- Department of Pathology, Duke University Medical Center, Durham, NC, USA
| | - Allyn McConkie-Rosell
- Division of Medical Genetics, Department of Pediatrics, Duke University Medical Center, Durham, NC, USA
| | - Marie T McDonald
- Division of Medical Genetics, Department of Pediatrics, Duke University Medical Center, Durham, NC, USA
| | | | - David B Goldstein
- Institute of Genomic Medicine, Columbia University, New York, NY, USA
| | - Yong-Hui Jiang
- Division of Medical Genetics, Department of Pediatrics, Duke University Medical Center, Durham, NC, USA
| | - Vandana Shashi
- Division of Medical Genetics, Department of Pediatrics, Duke University Medical Center, Durham, NC, USA.
| |
Collapse
|
16
|
Oza AM, DiStefano MT, Hemphill SE, Cushman BJ, Grant AR, Siegert RK, Shen J, Chapin A, Boczek NJ, Schimmenti LA, Murry JB, Hasadsri L, Nara K, Kenna M, Booth KT, Azaiez H, Griffith A, Avraham KB, Kremer H, Rehm HL, Amr SS, Abou Tayoun AN. Expert specification of the ACMG/AMP variant interpretation guidelines for genetic hearing loss. Hum Mutat 2019; 39:1593-1613. [PMID: 30311386 DOI: 10.1002/humu.23630] [Citation(s) in RCA: 316] [Impact Index Per Article: 52.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2018] [Revised: 07/23/2018] [Accepted: 08/25/2018] [Indexed: 12/23/2022]
Abstract
Due to the high genetic heterogeneity of hearing loss (HL), current clinical testing includes sequencing large numbers of genes, which often yields a significant number of novel variants. Therefore, the standardization of variant interpretation is crucial to provide consistent and accurate diagnoses. The Hearing Loss Variant Curation Expert Panel was created within the Clinical Genome Resource to provide expert guidance for standardized genomic interpretation in the context of HL. As one of its major tasks, our Expert Panel has adapted the American College of Medical Genetics and Genomics/Association for Molecular Pathology (ACMG/AMP) guidelines for the interpretation of sequence variants in HL genes. Here, we provide a comprehensive illustration of the newly specified ACMG/AMP HL rules. Three rules remained unchanged, four rules were removed, and the remaining 21 rules were specified. These rules were further validated and refined using a pilot set of 51 variants assessed by curators and disease experts. Of the 51 variants evaluated in the pilot, 37% (19/51) changed category based upon application of the expert panel specified rules and/or aggregation of evidence across laboratories. These HL-specific ACMG/AMP rules will help standardize variant interpretation, ultimately leading to better care for individuals with HL.
Collapse
Affiliation(s)
- Andrea M Oza
- Laboratory for Molecular Medicine, Partners Healthcare Personalized Medicine, Cambridge, Massachusetts.,Department of Otolaryngology and Communication Enhancement, Boston Children's Hospital, Boston, Massachusetts
| | - Marina T DiStefano
- Laboratory for Molecular Medicine, Partners Healthcare Personalized Medicine, Cambridge, Massachusetts.,Harvard Medical School, Boston, Massachusetts
| | - Sarah E Hemphill
- Laboratory for Molecular Medicine, Partners Healthcare Personalized Medicine, Cambridge, Massachusetts
| | - Brandon J Cushman
- Laboratory for Molecular Medicine, Partners Healthcare Personalized Medicine, Cambridge, Massachusetts
| | - Andrew R Grant
- Laboratory for Molecular Medicine, Partners Healthcare Personalized Medicine, Cambridge, Massachusetts
| | - Rebecca K Siegert
- Laboratory for Molecular Medicine, Partners Healthcare Personalized Medicine, Cambridge, Massachusetts
| | - Jun Shen
- Laboratory for Molecular Medicine, Partners Healthcare Personalized Medicine, Cambridge, Massachusetts.,Harvard Medical School, Boston, Massachusetts.,Department of Pathology, Brigham & Women's Hospital, Boston, Massachusetts
| | | | - Nicole J Boczek
- Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, Minnesota
| | - Lisa A Schimmenti
- Department of Otorhinolaryngology, Clinical Genomics and Biochemistry and Molecular Biology, Mayo Clinic, Rochester, Minnesota
| | - Jaclyn B Murry
- Laboratory for Molecular Medicine, Partners Healthcare Personalized Medicine, Cambridge, Massachusetts
| | - Linda Hasadsri
- Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, Minnesota
| | - Kiyomitsu Nara
- Division of Hearing and Balance Research, National Institute of Sensory Organs, National Hospital Organization Tokyo Medical Center, Tokyo, Japan
| | - Margaret Kenna
- Department of Otolaryngology and Communication Enhancement, Boston Children's Hospital, Boston, Massachusetts.,Harvard Medical School, Boston, Massachusetts
| | - Kevin T Booth
- Molecular Otolaryngology and Renal Research Laboratories, Department of Otolaryngology, University of Iowa Hospital and Clinics, Iowa City, Iowa.,The Interdisciplinary Graduate Program in Molecular Medicine, Carver College of Medicine, University of Iowa, Iowa City, Iowa
| | - Hela Azaiez
- Molecular Otolaryngology and Renal Research Laboratories, Department of Otolaryngology, University of Iowa Hospital and Clinics, Iowa City, Iowa
| | - Andrew Griffith
- Audiology Unit, National Institute on Deafness and Other Communication Disorders (NIDCD), NIH, Bethesda, Maryland
| | - Karen B Avraham
- Department of Human Molecular Genetics and Biochemistry, Sackler Faculty of Medicine and Sagol School of Neuroscience, Tel Aviv University, Tel Aviv, Israel
| | - Hannie Kremer
- Department of Otorhinolaryngology and Department of Human Genetics, Donders Institute for Brain, Cognition and Behaviour, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Heidi L Rehm
- Laboratory for Molecular Medicine, Partners Healthcare Personalized Medicine, Cambridge, Massachusetts.,Harvard Medical School, Boston, Massachusetts.,Center for Genomic Medicine, Massachusetts General Hospital, Boston, Massachusetts.,The Broad Institute of MIT and Harvard, Cambridge, Massachusetts
| | - Sami S Amr
- Laboratory for Molecular Medicine, Partners Healthcare Personalized Medicine, Cambridge, Massachusetts.,Harvard Medical School, Boston, Massachusetts.,Department of Pathology, Brigham & Women's Hospital, Boston, Massachusetts
| | - Ahmad N Abou Tayoun
- The Children's Hospital of Philadelphia, Philadelphia, Pennsylvania.,The University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania
| | | |
Collapse
|
17
|
Sun Y, Xiang J, Liu Y, Chen S, Yu J, Peng J, Liu Z, Chen L, Sun J, Yang Y, Yang Y, Zhou Y, Peng Z. Increased diagnostic yield by reanalysis of data from a hearing loss gene panel. BMC Med Genomics 2019; 12:76. [PMID: 31138263 PMCID: PMC6540452 DOI: 10.1186/s12920-019-0531-6] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2019] [Accepted: 05/14/2019] [Indexed: 12/30/2022] Open
Abstract
Background Congenital hearing loss affects approximately 1–2 infants out of every 1000, with 50% of the cases resulting from genetic factors. Targeted gene panels have been widely used for genetic diagnosis of hearing loss. This study aims to reveal new diagnoses via reanalyzing historical data of a multigene panel, and exam the reasons for new diagnoses. Methods A total of 210 samples were enlisted, including clinical reports and sequencing data of patients with congenital/prelingual hearing loss who were referred to clinical genetic testing from October 2014 to June 2017. All variants listed on the original clinical reports were reinterpreted according to the standards and guidelines recommended by the American College of Medical Genetics and Genomics and the Association for Molecular Pathology (ACMG/AMP). Expanded analysis of raw data were performed in undiagnosed cases. Results Re-analysis resulted in nine new diagnoses, improving the overall diagnostic rate from 39 to 43%. New diagnoses were attributed to newly published clinical evidence in the literature, adoption of new interpretation guidelines and expanded analysis range. Conclusion This work demonstrates benefits of reanalysis of targeted gene panel data, indicating that periodical reanalysis should be performed in clinical practice. Electronic supplementary material The online version of this article (10.1186/s12920-019-0531-6) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Yu Sun
- Department of Otorhinolaryngology, Union Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Jiale Xiang
- BGI Genomics, BGI-Shenzhen, Shenzhen, 518083, China
| | - Yidong Liu
- BGI Genomics, BGI-Shenzhen, Shenzhen, 518083, China
| | - Sen Chen
- Department of Otorhinolaryngology, Union Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Jintao Yu
- Department of Otorhinolaryngology, Union Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Jiguang Peng
- BGI Genomics, BGI-Shenzhen, Shenzhen, 518083, China
| | - Zijing Liu
- BGI Genomics, BGI-Shenzhen, Shenzhen, 518083, China
| | - Lisha Chen
- BGI Genomics, BGI-Shenzhen, Shenzhen, 518083, China
| | - Jun Sun
- Tianjin Medical Laboratory, BGI-Tianjin, BGI-Shenzhen, Tianjin, 300308, China
| | - Yun Yang
- BGI Genomics, BGI-Shenzhen, Shenzhen, 518083, China
| | - Yaping Yang
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, USA.,AiLife Diagnostics, 1920 Country Place Pkwy, Pearland, TX, 77584, USA
| | - Yulin Zhou
- United Diagnostic and Research Center for Clinical Genetics, School of Public Health of Xiamen University, Xiamen, Fujian, 361003, China. .,Xiamen Maternal and Child Health Hospital, Xiamen, Fujian, 361003, China.
| | - Zhiyu Peng
- BGI Genomics, BGI-Shenzhen, Shenzhen, 518083, China.
| |
Collapse
|
18
|
Systematic evaluation of gene variants linked to hearing loss based on allele frequency threshold and filtering allele frequency. Sci Rep 2019; 9:4583. [PMID: 30872718 PMCID: PMC6418148 DOI: 10.1038/s41598-019-41068-6] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2018] [Accepted: 02/25/2019] [Indexed: 02/02/2023] Open
Abstract
As the number of genes identified for linkage to hearing loss has been increasing and more public databases have become available, we aimed to systematically evaluate all variants reported for nonsyndromic hearing loss (NSHL) based on their allele frequencies (AFs) in the general population. Among the 3,549 variants in 97 NSHL genes reported as pathogenic/likely pathogenic in ClinVar and HGMD, 1,618 were found in public databases (gnomAD, ExAC, EVS, and 1000G). To evaluate the pathogenicity of these variants, we employed AF thresholds and NSHL-optimized ACMG guidelines. AF thresholds were determined using a high-resolution variant frequency framework and Hardy-Weinberg equilibrium calculation: 0.6% and 0.1% for recessive and dominant genes, respectively. Filtering AFs of variants linked to NSHL were obtained based on AFs reported in gnomAD and ExAC. We found that 48 variants in 23 genes had filtering AFs above the suggested thresholds and assumed that these variants might be benign based on their filtering AFs. 47 variants, except for one notorious high-frequency GJB2 mutation (c.109G > A; p.Val37Ile), were confirmed to be benign/likely benign by the NSHL-optimized ACMG guidelines. The proposed systematic approach will aid in precise evaluation of NSHL variant pathogenicity in the context of filtering AFs, AF thresholds, and NSHL-specific ACMG guidelines, thus improving NSHL diagnostics.
Collapse
|
19
|
Bodian DL, Kothiyal P, Hauser NS. Pitfalls of clinical exome and gene panel testing: alternative transcripts. Genet Med 2018; 21:1240-1245. [DOI: 10.1038/s41436-018-0319-7] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2018] [Accepted: 09/14/2018] [Indexed: 11/09/2022] Open
|
20
|
Abou Tayoun AN, Pesaran T, DiStefano MT, Oza A, Rehm HL, Biesecker LG, Harrison SM. Recommendations for interpreting the loss of function PVS1 ACMG/AMP variant criterion. Hum Mutat 2018; 39:1517-1524. [PMID: 30192042 DOI: 10.1002/humu.23626] [Citation(s) in RCA: 503] [Impact Index Per Article: 71.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2018] [Revised: 07/15/2018] [Accepted: 08/23/2018] [Indexed: 12/24/2022]
Abstract
The 2015 ACMG/AMP sequence variant interpretation guideline provided a framework for classifying variants based on several benign and pathogenic evidence criteria, including a pathogenic criterion (PVS1) for predicted loss of function variants. However, the guideline did not elaborate on specific considerations for the different types of loss of function variants, nor did it provide decision-making pathways assimilating information about variant type, its location, or any additional evidence for the likelihood of a true null effect. Furthermore, this guideline did not take into account the relative strengths for each evidence type and the final outcome of their combinations with respect to PVS1 strength. Finally, criteria specifying the genes for which PVS1 can be applied are still missing. Here, as part of the ClinGen Sequence Variant Interpretation (SVI) Workgroup's goal of refining ACMG/AMP criteria, we provide recommendations for applying the PVS1 criterion using detailed guidance addressing the above-mentioned gaps. Evaluation of the refined criterion by seven disease-specific groups using heterogeneous types of loss of function variants (n = 56) showed 89% agreement with the new recommendation, while discrepancies in six variants (11%) were appropriately due to disease-specific refinements. Our recommendations will facilitate consistent and accurate interpretation of predicted loss of function variants.
Collapse
Affiliation(s)
- Ahmad N Abou Tayoun
- The Children's Hospital of Philadelphia, Philadelphia, Pennsylvania.,The University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania
| | | | - Marina T DiStefano
- Laboratory for Molecular Medicine, Partners Healthcare Personalized Medicine, Cambridge, Massachusetts
| | - Andrea Oza
- Laboratory for Molecular Medicine, Partners Healthcare Personalized Medicine, Cambridge, Massachusetts
| | - Heidi L Rehm
- Laboratory for Molecular Medicine, Partners Healthcare Personalized Medicine, Cambridge, Massachusetts.,Center for Genomic Medicine, Massachusetts General Hospital, Boston, Massachusetts.,The Broad Institute of MIT and Harvard, Cambridge, Massachusetts
| | - Leslie G Biesecker
- Medical Genomics and Metabolic Genetics Branch, National Human Genome Research Institute, National Institutes of Health, Bethesda, Maryland
| | - Steven M Harrison
- Laboratory for Molecular Medicine, Partners Healthcare Personalized Medicine, Cambridge, Massachusetts
| | | |
Collapse
|