1
|
Nishiyama Y, Hou G, Agarwal V, Su Y, Ramamoorthy A. Ultrafast Magic Angle Spinning Solid-State NMR Spectroscopy: Advances in Methodology and Applications. Chem Rev 2023; 123:918-988. [PMID: 36542732 PMCID: PMC10319395 DOI: 10.1021/acs.chemrev.2c00197] [Citation(s) in RCA: 42] [Impact Index Per Article: 42.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Solid-state NMR spectroscopy is one of the most commonly used techniques to study the atomic-resolution structure and dynamics of various chemical, biological, material, and pharmaceutical systems spanning multiple forms, including crystalline, liquid crystalline, fibrous, and amorphous states. Despite the unique advantages of solid-state NMR spectroscopy, its poor spectral resolution and sensitivity have severely limited the scope of this technique. Fortunately, the recent developments in probe technology that mechanically rotate the sample fast (100 kHz and above) to obtain "solution-like" NMR spectra of solids with higher resolution and sensitivity have opened numerous avenues for the development of novel NMR techniques and their applications to study a plethora of solids including globular and membrane-associated proteins, self-assembled protein aggregates such as amyloid fibers, RNA, viral assemblies, polymorphic pharmaceuticals, metal-organic framework, bone materials, and inorganic materials. While the ultrafast-MAS continues to be developed, the minute sample quantity and radio frequency requirements, shorter recycle delays enabling fast data acquisition, the feasibility of employing proton detection, enhancement in proton spectral resolution and polarization transfer efficiency, and high sensitivity per unit sample are some of the remarkable benefits of the ultrafast-MAS technology as demonstrated by the reported studies in the literature. Although the very low sample volume and very high RF power could be limitations for some of the systems, the advantages have spurred solid-state NMR investigation into increasingly complex biological and material systems. As ultrafast-MAS NMR techniques are increasingly used in multidisciplinary research areas, further development of instrumentation, probes, and advanced methods are pursued in parallel to overcome the limitations and challenges for widespread applications. This review article is focused on providing timely comprehensive coverage of the major developments on instrumentation, theory, techniques, applications, limitations, and future scope of ultrafast-MAS technology.
Collapse
Affiliation(s)
- Yusuke Nishiyama
- JEOL Ltd., Akishima, Tokyo196-8558, Japan
- RIKEN-JEOL Collaboration Center, Yokohama, Kanagawa230-0045, Japan
| | - Guangjin Hou
- State Key Laboratory of Catalysis, Dalian National Laboratory for Clean Energy, 2011-Collaborative Innovation Center of Chemistry for Energy Materials, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Zhongshan Road 457, Dalian116023, China
| | - Vipin Agarwal
- Tata Institute of Fundamental Research, Sy. No. 36/P, Gopanpally, Hyderabad500 046, India
| | - Yongchao Su
- Analytical Research and Development, Merck & Co., Inc., Rahway, New Jersey07065, United States
| | - Ayyalusamy Ramamoorthy
- Biophysics, Department of Chemistry, Biomedical Engineering, Macromolecular Science and Engineering, Michigan Neuroscience Institute, University of Michigan, Ann Arbor, Michigan41809-1055, United States
| |
Collapse
|
2
|
Tognetti J, Franks WT, Lewandowski JR, Brown SP. Optimisation of 1H PMLG homonuclear decoupling at 60 kHz MAS to enable 15N- 1H through-bond heteronuclear correlation solid-state NMR spectroscopy. Phys Chem Chem Phys 2022; 24:20258-20273. [PMID: 35975627 PMCID: PMC9429863 DOI: 10.1039/d2cp01041k] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2022] [Accepted: 07/15/2022] [Indexed: 11/21/2022]
Abstract
The Lee-Goldburg condition for homonuclear decoupling in 1H magic-angle spinning (MAS) solid-state NMR sets the angle θ, corresponding to arctan of the ratio of the rf nutation frequency, ν1, to the rf offset, to be the magic angle, θm, equal to tan-1(√2) = 54.7°. At 60 kHz MAS, we report enhanced decoupling compared to MAS alone in a 1H spectrum of 15N-glycine with at θ = 30° for a ν1 of ∼100 kHz at a 1H Larmor frequency, ν0, of 500 MHz and 1 GHz, corresponding to a high chemical shift scaling factor (λCS) of 0.82. At 1 GHz, we also demonstrate enhanced decoupling compared to 60 kHz MAS alone for a lower ν1 of 51 kHz, i.e., a case where the nutation frequency is less than the MAS frequency, with θ = 18°, λCS = 0.92. The ratio of the rotor period to the decoupling cycle time, Ψ = τr/τc, is in the range 0.53 to 0.61. Windowed decoupling using the optimised parameters for a ν1 of ∼100 kHz also gives good performance in a 1H spin-echo experiment, enabling implementation in a 1H-detected 15N-1H cross polarisation (CP)-refocused INEPT heteronuclear correlation NMR experiment. Specifically, initial 15N transverse magnetisation as generated by 1H-15N CP is transferred back to 1H using a refocused INEPT pulse sequence employing windowed 1H decoupling. Such an approach ensures the observation of through-bond N-H connectivities. For 15N-glycine, while the CP-refocused INEPT experiment has a lower sensitivity (∼50%) as compared to a double CP experiment (with a 200 μs 15N to 1H CP contact time), there is selectivity for the directly bonded NH3+ moiety, while intensity is observed for the CH21H resonances in the double CP experiment. Two-dimensional 15N-1H correlation MAS NMR spectra are presented for the dipeptide β-AspAla and the pharmaceutical cimetidine at 60 kHz MAS, both at natural isotopic abundance. For the dipeptide β-AspAla, different build-up dependence on the first spin-echo duration is observed for the NH and NH3+ moieties demonstrating that the experiment could be used to distinguish resonances for different NHx groups.
Collapse
Affiliation(s)
- Jacqueline Tognetti
- Department of Chemistry, University of Warwick, Coventry CV4 7AL, UK
- Department of Physics, University of Warwick, Coventry CV4 7AL, UK.
| | - W Trent Franks
- Department of Chemistry, University of Warwick, Coventry CV4 7AL, UK
- Department of Physics, University of Warwick, Coventry CV4 7AL, UK.
| | | | - Steven P Brown
- Department of Physics, University of Warwick, Coventry CV4 7AL, UK.
| |
Collapse
|
3
|
Jaroszewicz MJ, Novakovic M, Frydman L. On the potential of Fourier-encoded saturation transfers for sensitizing solid-state magic-angle spinning NMR experiments. J Chem Phys 2022; 156:054201. [DOI: 10.1063/5.0076946] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Affiliation(s)
- Michael J. Jaroszewicz
- Department of Chemical and Biological Physics, Weizmann Institute of Science, 7610001 Rehovot, Israel
| | - Mihajlo Novakovic
- Department of Chemical and Biological Physics, Weizmann Institute of Science, 7610001 Rehovot, Israel
| | - Lucio Frydman
- Department of Chemical and Biological Physics, Weizmann Institute of Science, 7610001 Rehovot, Israel
| |
Collapse
|
4
|
Buntkowsky G, Döller S, Haro-Mares N, Gutmann T, Hoffmann M. Solid-state NMR studies of non-ionic surfactants confined in mesoporous silica. Z PHYS CHEM 2021. [DOI: 10.1515/zpch-2021-3132] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
Abstract
This review gives an overview of current trends in the investigation of confined molecules such as higher alcohols, ethylene glycol and polyethylene glycol as guest molecules in neat and functionalized mesoporous silica materials. All these molecules have both hydrophobic and hydrophilic parts. They are characteristic role-models for the investigation of confined surfactants. Their properties are studied by a combination of solid-state NMR and relaxometry with other physicochemical techniques and molecular dynamics techniques. It is shown that this combination delivers unique insights into the structure, arrangement, dynamical properties and the guest-host interactions inside the confinement.
Collapse
Affiliation(s)
- Gerd Buntkowsky
- Eduard-Zintl-Institut für Anorganische und Physikalische Chemie , Technische Universität Darmstadt , Alarich-Weiss-Str. 8 , D-64287 Darmstadt , Germany
| | - Sonja Döller
- Eduard-Zintl-Institut für Anorganische und Physikalische Chemie , Technische Universität Darmstadt , Alarich-Weiss-Str. 8 , D-64287 Darmstadt , Germany
| | - Nadia Haro-Mares
- Eduard-Zintl-Institut für Anorganische und Physikalische Chemie , Technische Universität Darmstadt , Alarich-Weiss-Str. 8 , D-64287 Darmstadt , Germany
| | - Torsten Gutmann
- Eduard-Zintl-Institut für Anorganische und Physikalische Chemie , Technische Universität Darmstadt , Alarich-Weiss-Str. 8 , D-64287 Darmstadt , Germany
| | - Markus Hoffmann
- Department of Chemistry and Biochemistry , State University of New York College at Brockport , Brockport , NY , 14420 , USA
| |
Collapse
|
5
|
Paluch P, Kupče Ē, Trébosc J, Lafon O, Amoureux JP. Hadamard acquisition of 13 C- 13 C 2-D correlation NMR spectra. MAGNETIC RESONANCE IN CHEMISTRY : MRC 2021; 59:247-256. [PMID: 31714638 DOI: 10.1002/mrc.4969] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/23/2019] [Revised: 11/02/2019] [Accepted: 11/04/2019] [Indexed: 06/10/2023]
Abstract
We show that a multiselective excitation with Hadamard encoding is a powerful tool for 2-D acquisition of 13 C─13 C homonuclear correlations. This method is not designed to improve the sensitivity, but rather to reduce the experiment time, provided there is sufficient sensitivity. Therefore, it allows fast acquisition of such 2-D spectra in labeled molecules. The technique has been demonstrated using a U─13 C─15 N histidine hydrochloride monohydrate sample allowing each point of the build-up curves of the 13 C─13 C cross-peaks to be recorded within 4 min 35 s, which is very difficult with conventional methods. Using the U─13 C─15 N f-MLF sample, we have demonstrated that the method can be applied to molecules with 14 13 C resonances with a minimum frequency separation of 240 Hz.
Collapse
Affiliation(s)
- Piotr Paluch
- Centre of Molecular and Macromolecular Studies, Polish Academy of Sciences, Lodz, Poland
- CNRS-8181, Unit of Catalysis and Chemistry of Solids, University of Lille, Lille, France
| | | | - Julien Trébosc
- CNRS-8181, Unit of Catalysis and Chemistry of Solids, University of Lille, Lille, France
- CNRS-2638, Fédération Chevreul, University of Lille, Lille, France
| | - Olivier Lafon
- CNRS-8181, Unit of Catalysis and Chemistry of Solids, University of Lille, Lille, France
- Department of Chemistry, Institut Universitaire de France, Paris, France
| | - Jean-Paul Amoureux
- CNRS-8181, Unit of Catalysis and Chemistry of Solids, University of Lille, Lille, France
- Bruker Biospin, Wissembourg, France
- NMR Science and Development Division, RIKEN, Yokohama, Japan
| |
Collapse
|
6
|
Wang Z, Hanrahan MP, Kobayashi T, Perras FA, Chen Y, Engelke F, Reiter C, Purea A, Rossini AJ, Pruski M. Combining fast magic angle spinning dynamic nuclear polarization with indirect detection to further enhance the sensitivity of solid-state NMR spectroscopy. SOLID STATE NUCLEAR MAGNETIC RESONANCE 2020; 109:101685. [PMID: 32932182 DOI: 10.1016/j.ssnmr.2020.101685] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/16/2020] [Revised: 07/24/2020] [Accepted: 07/28/2020] [Indexed: 06/11/2023]
Abstract
Dynamic nuclear polarization (DNP) and indirect detection are two commonly applied approaches for enhancing the sensitivity of solid-state NMR spectroscopy. However, their use in tandem has not yet been investigated. With the advent of low-temperature fast magic angle spinning (MAS) probes with 1.3-mm diameter rotors capable of MAS at 40 kHz it becomes feasible to combine these two techniques. In this study, we performed DNP-enhanced 2D indirectly detected heteronuclear correlation (idHETCOR) experiments on 13C, 15N, 113Cd and 89Y nuclei in functionalized mesoporous silica, CdS nanoparticles, and Y2O3 nanoparticles. The sensitivity of the 2D idHETCOR experiments was compared with those of DNP-enhanced directly-detected 1D cross polarization (CP) and 2D HETCOR experiments performed with a standard 3.2-mm rotor. Due to low CP polarization transfer efficiencies and large proton linewidth, the sensitivity gains achieved by indirect detection alone were lower than in conventional (non-DNP) experiments. Nevertheless, despite the smaller sample volume the 2D idHETCOR experiments showed better absolute sensitivities than 2D HETCOR experiments for nuclei with the lowest gyromagnetic ratios. For 89Y, 2D idHETCOR provided 8.2 times better sensitivity than the 1 D89Y-detected CP experiment performed with a 3.2-mm rotor.
Collapse
Affiliation(s)
- Zhuoran Wang
- U.S. DOE Ames Laboratory, Iowa State University, Ames, IA, 50011-3020, United States; Department of Chemistry, Iowa State University, Ames, IA, 50011-3020, United States
| | - Michael P Hanrahan
- U.S. DOE Ames Laboratory, Iowa State University, Ames, IA, 50011-3020, United States; Department of Chemistry, Iowa State University, Ames, IA, 50011-3020, United States
| | - Takeshi Kobayashi
- U.S. DOE Ames Laboratory, Iowa State University, Ames, IA, 50011-3020, United States
| | - Frédéric A Perras
- U.S. DOE Ames Laboratory, Iowa State University, Ames, IA, 50011-3020, United States
| | - Yunhua Chen
- U.S. DOE Ames Laboratory, Iowa State University, Ames, IA, 50011-3020, United States; Department of Chemistry, Iowa State University, Ames, IA, 50011-3020, United States
| | | | | | - Armin Purea
- Bruker Biospin, 76287, Rheinstetten, Germany
| | - Aaron J Rossini
- U.S. DOE Ames Laboratory, Iowa State University, Ames, IA, 50011-3020, United States; Department of Chemistry, Iowa State University, Ames, IA, 50011-3020, United States.
| | - Marek Pruski
- U.S. DOE Ames Laboratory, Iowa State University, Ames, IA, 50011-3020, United States; Department of Chemistry, Iowa State University, Ames, IA, 50011-3020, United States.
| |
Collapse
|
7
|
Buntkowsky G, Vogel M. Small Molecules, Non-Covalent Interactions, and Confinement. Molecules 2020; 25:E3311. [PMID: 32708283 PMCID: PMC7397022 DOI: 10.3390/molecules25143311] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2020] [Revised: 07/07/2020] [Accepted: 07/15/2020] [Indexed: 11/27/2022] Open
Abstract
This review gives an overview of current trends in the investigation of small guest molecules, confined in neat and functionalized mesoporous silica materials by a combination of solid-state NMR and relaxometry with other physico-chemical techniques. The reported guest molecules are water, small alcohols, and carbonic acids, small aromatic and heteroaromatic molecules, ionic liquids, and surfactants. They are taken as characteristic role-models, which are representatives for the typical classes of organic molecules. It is shown that this combination delivers unique insights into the structure, arrangement, dynamics, guest-host interactions, and the binding sites in these confined systems, and is probably the most powerful analytical technique to probe these systems.
Collapse
Affiliation(s)
- Gerd Buntkowsky
- Institut für Physikalische Chemie, Technische Universität Darmstadt, 64287 Darmstadt, Germany
| | - Michael Vogel
- Institut für Festkörperphysik, Technische Universität Darmstadt, 64295 Darmstadt, Germany
| |
Collapse
|
8
|
Jayanthi S, Lupulescu A. Sensitivity enhancement in 2D Double Cross Polarization experiments under fast MAS by recycling unused protons. SOLID STATE NUCLEAR MAGNETIC RESONANCE 2020; 107:101652. [PMID: 32155567 DOI: 10.1016/j.ssnmr.2020.101652] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/18/2019] [Revised: 02/09/2020] [Accepted: 02/10/2020] [Indexed: 06/10/2023]
Abstract
We demonstrate sensitivity enhancement via recycling of proton magnetization in 2D Double Cross Polarization (Double CP) experiments performed on fully protonated and uniformly labeled (13C, 15N) samples at a magic angle spinning rate of 60 kHz. Unused proton magnetization is preserved during t1 evolution either by locking it with CW irradiation or by employing rotor-synchronized pi pulses. A flip-back pulse together with a modified second CP block preserves unused proton magnetization resulting in enhanced sensitivity. We have achieved sensitivity enhancements of 15-20% and 25-28% in 1H-13C and 1H-15N 2D Double CP experiments respectively. At shorter recycle delays (∼0.25T1), relative sensitivity enhancements of 40-45% and 55% were obtained in 1H-13C and 1H-15N 2D Double CP experiments respectively. An analysis of the sensitivity enhancements and theoretical estimation of lineshapes in indirect dimension in the presence of proton recycling is provided.
Collapse
Affiliation(s)
- Sundaresan Jayanthi
- Department of Physics, Indian Institute of Space Science and Technology, Valiamala, Thiruvananthapuram, 695 547, Kerala, India
| | | |
Collapse
|
9
|
Jędrzejewska H, Wielgus E, Kaźmierski S, Rogala H, Wierzbicki M, Wróblewska A, Pawlak T, Potrzebowski MJ, Szumna A. Porous Molecular Capsules as Non-Polymeric Transducers of Mechanical Forces to Mechanophores. Chemistry 2020; 26:1558-1566. [PMID: 31691377 DOI: 10.1002/chem.201904024] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2019] [Indexed: 11/05/2022]
Abstract
Mechanical grinding/milling can be regarded as historically the first technology for changing the properties of matter. Mechanically activated molecular units (mechanophores) can be present in various structures: polymers, macromolecules, or small molecules. However, only polymers have been reported to effectively transduce energy to mechanophores, which induces breakage of covalent bonds. In this paper, a second possibility is presented-molecular capsules as stress-sensitive units. Mechanochemical encapsulation of fullerenes in cystine-based covalent capsules indicates that complexation takes place in the solid state, despite the fact that the capsules do not possess large enough entrance portals. By using a set of solvent-free MALDI (sf-MALDI) and solid-state NMR (ss-NMR) experiments, it has been proven that encapsulation proceeds during milling and in this process hydrazones and disulfides get activated for breakage, exchange, and re-forming. The capsules are porous and therefore prone to collapse under solvent-free conditions and their conformational rigidity promotes the collapse by the breaking of covalent bonds.
Collapse
Affiliation(s)
- Hanna Jędrzejewska
- Institute of Organic Chemistry, Polish Academy of Sciences, M. Kasprzaka 44/52, 01-224, Warsaw, Poland
| | - Ewelina Wielgus
- Centre of Molecular and Macromolecular Studies, Polish Academy of Sciences, Sienkiewicza 112, 90-363, Łódź, Poland
| | - Sławomir Kaźmierski
- Centre of Molecular and Macromolecular Studies, Polish Academy of Sciences, Sienkiewicza 112, 90-363, Łódź, Poland
| | - Halina Rogala
- Institute of Organic Chemistry, Polish Academy of Sciences, M. Kasprzaka 44/52, 01-224, Warsaw, Poland
| | - Michał Wierzbicki
- Institute of Organic Chemistry, Polish Academy of Sciences, M. Kasprzaka 44/52, 01-224, Warsaw, Poland
| | - Aneta Wróblewska
- Centre of Molecular and Macromolecular Studies, Polish Academy of Sciences, Sienkiewicza 112, 90-363, Łódź, Poland
| | - Tomasz Pawlak
- Centre of Molecular and Macromolecular Studies, Polish Academy of Sciences, Sienkiewicza 112, 90-363, Łódź, Poland
| | - Marek J Potrzebowski
- Centre of Molecular and Macromolecular Studies, Polish Academy of Sciences, Sienkiewicza 112, 90-363, Łódź, Poland
| | - Agnieszka Szumna
- Institute of Organic Chemistry, Polish Academy of Sciences, M. Kasprzaka 44/52, 01-224, Warsaw, Poland
| |
Collapse
|
10
|
Zhang R, Nishiyama Y, Ramamoorthy A. Exploiting heterogeneous time scale of dynamics to enhance 2D HETCOR solid-state NMR sensitivity. JOURNAL OF MAGNETIC RESONANCE (SAN DIEGO, CALIF. : 1997) 2019; 309:106615. [PMID: 31669793 DOI: 10.1016/j.jmr.2019.106615] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/26/2019] [Revised: 09/11/2019] [Accepted: 10/03/2019] [Indexed: 06/10/2023]
Abstract
Multidimensional solid-state NMR spectroscopy plays a significant role in offering atomic-level insights into molecular systems. In particular, heteronuclear chemical shift correlation (HETCOR) experiments could provide local chemical and structural information in terms of spatial heteronuclear proximity and through-bond connectivity. In solid state, the transfer of magnetization between heteronuclei, a key step in HETCOR experiments, is usually achieved using cross-polarization (CP) or insensitive nuclei enhanced by polarization transfer (INEPT) depending on the sample characteristics and magic-angle-spinning (MAS) frequency. But, for a multiphase system constituting molecular components that differ in their time scales of mobilities, CP efficiency is pretty low for mobile components because of the averaging of heteronuclear dipolar couplings whereas INEPT is inefficient for immobile components due to the short T2 and can yield through-space connectivity due to strong proton spin diffusion for immobile components especially under moderate spinning speeds. Herein, in this study we present two 2D pulse sequences that enable the sequential acquisition of 13C/1H HETCOR NMR spectra for the rigid and mobile components by taking full advantage of the abundant proton magnetization in a single experiment with barely increasing the overall experimental time. In particular, the 13C-detected HETCOR experiment could be applied under slow MAS conditions, where a multiple-pulse sequence is typically employed to enhance 1H spectral resolution in the indirect dimension. In contrast, the 1H-detected HETCOR experiment should be applied under ultrafast MAS, where CP and heteronuclear nuclear Overhauser effect (NOE) polarization transfer are combined to enhance 13C signal intensities for mobile components. These pulse sequences are experimentally demonstrated on two model systems to obtain 2D 13C/1H chemical shift correlation spectra of rigid and mobile components independently and separately. These pulse sequences can be used for dynamics based spectral editing and resonance assignments. Therefore, we believe the proposed 2D HETCOR NMR pulse sequences will be beneficial for the structural studies of heterogeneous systems containing molecular components that differ in their time scale of motions for understanding the interplay of structures and properties.
Collapse
Affiliation(s)
- Rongchun Zhang
- Biophysics and Department of Chemistry, Biomedical Engineering, Maromolecular Science and Engineering, University of Michigan, Ann Arbor, MI 48109-1055, USA
| | - Yusuke Nishiyama
- NMR Science and Development Division, RIKEN SPring-8 Center, Nanocrystallography Unit, RIKEN-JEOL Collaboration Center, RIKEN, Yokohama, Kanagawa 230-0045, Japan; JEOL RESONANCE Inc., Musashino, Akishima, Tokyo 196-8558, Japan.
| | - Ayyalusamy Ramamoorthy
- Biophysics and Department of Chemistry, Biomedical Engineering, Maromolecular Science and Engineering, University of Michigan, Ann Arbor, MI 48109-1055, USA.
| |
Collapse
|
11
|
Paluch P, Rankin AGM, Trébosc J, Lafon O, Amoureux JP. Analysis of HMQC experiments applied to a spin ½ nucleus subject to very large CSA. SOLID STATE NUCLEAR MAGNETIC RESONANCE 2019; 100:11-25. [PMID: 30908976 DOI: 10.1016/j.ssnmr.2019.03.001] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/09/2018] [Revised: 02/28/2019] [Accepted: 03/01/2019] [Indexed: 06/09/2023]
Abstract
The acquisition of solid-state NMR spectra of "heavy" spin I = 1/2 nuclei, such as 119Sn, 195Pt, 199Hg or 207Pb can often prove challenging due to the presence of large chemical shift anisotropy (CSA), which can cause significant broadening of spectral lines. However, previous publications have shown that well-resolved spectra can be obtained via inverse 1H detection using HMQC experiments in combination with fast magic angle spinning. In this work, the efficiencies of different 195Pt excitation schemes are analyzed using SIMPSON numerical simulations and experiments performed on cis- and transplatin samples. These schemes include: hard pulses (HP), selective long pulses (SLP) and rotor-synchronized DANTE trains of pulses. The results show that for spectra of species with very large CSA, HP is little efficient, but that both DANTE and SLP provide efficient excitation profiles over a wide range of CSA values. In particular, it is revealed that the SLP scheme is highly robust to offset, pulse amplitude and length, and is simple to set up. These factors make SLP ideally suited to widespread use by "non-experts" for carrying out analyses of materials containing "heavy" spin I = 1/2 nuclei that are subject to very large CSAs. Finally, the existence of an "intermediate" excitation regime, with an rf-field strength in between those of HP and SLP, which is effective for large CSA, is demonstrated. It must be noted that in some samples, multiple sites may exist with very different CSAs. This is the case for 195Pt species with either square-planar or octahedral structures, with large or small CSA, respectively. These two types of CSAs can only be excited simultaneously with DANTE trains, which scale up the effective rf-field. Another way to obtain all the information is to perform two different experiments: one with SLP and the second with HP to excite the sites with moderate/large and small/moderate CSAs, respectively. These two complementary experiments, recorded with two different spinning speeds, can also be used to discriminate the center-band resonances from the spinning sidebands.
Collapse
Affiliation(s)
- Piotr Paluch
- Centre of Molecular and Macromolecular Studies, Polish Academy of Sciences, Sienkiewicza 112, PL-90 363 Lodz, Poland; Univ. Lille, CNRS 8181, UCCS: Unit of Catalysis and Chemistry of Solids, F-59000 Lille, France.
| | - Andrew G M Rankin
- Univ. Lille, CNRS 8181, UCCS: Unit of Catalysis and Chemistry of Solids, F-59000 Lille, France
| | - Julien Trébosc
- Univ. Lille, CNRS 8181, UCCS: Unit of Catalysis and Chemistry of Solids, F-59000 Lille, France
| | - Olivier Lafon
- Univ. Lille, CNRS 8181, UCCS: Unit of Catalysis and Chemistry of Solids, F-59000 Lille, France; Institut Universitaire de France, 1 Rue Descartes, F-75231 Paris Cedex 05, France
| | - Jean-Paul Amoureux
- Univ. Lille, CNRS 8181, UCCS: Unit of Catalysis and Chemistry of Solids, F-59000 Lille, France; Bruker Biospin, 34 Rue de L'Industrie, F-67166 Wissembourg, France.
| |
Collapse
|
12
|
Bielytskyi P, Gräsing D, Zahn S, Mote KR, Alia A, Madhu PK, Matysik J. Assignment of NMR resonances of protons covalently bound to photochemically active cofactors in photosynthetic reaction centers by 13C- 1H photo-CIDNP MAS-J-HMQC experiment. JOURNAL OF MAGNETIC RESONANCE (SAN DIEGO, CALIF. : 1997) 2019; 298:64-76. [PMID: 30529893 DOI: 10.1016/j.jmr.2018.11.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/02/2018] [Revised: 11/27/2018] [Accepted: 11/28/2018] [Indexed: 06/09/2023]
Abstract
Modified versions of through-bond heteronuclear correlation (HETCOR) experiments are presented to take advantage of the light-induced hyperpolarization that occurs on 13C nuclei due to the solid-state photochemically induced dynamic nuclear polarization (photo-CIDNP) effect. Such 13C-1H photo-CIDNP MAS-J-HMQC and photo-CIDNP MAS-J-HSQC experiments are applied to acquire the 2D 13C-1H correlation spectra of selectively 13C-labeled photochemically active cofactors in the frozen quinone-blocked photosynthetic reaction center (RC) of the purple bacterium Rhodobacter (R.) sphaeroides wild-type (WT). Resulting spectra contain no correlation peaks arising from the protein backbone, which greatly simplifies the assignment of aliphatic region. Based on the photo-CIDNP MAS-J-HMQC NMR experiment, we obtained assignment of selective 1H NMR resonances of the cofactors involved in the electron transfer process in the RC and compared them with values theoretically predicted by density functional theory (DFT) calculation as well as with the chemical shifts obtained from monomeric cofactors in the solution. We also compared proton chemical shifts obtained by photo-CIDNP MAS-J-HMQC experiment under continuous illumination with the ones obtained in dark by classical cross-polarization (CP) HETCOR. We expect that the proposed approach will become a method of choice for obtaining 1H chemical shift maps of the active cofactors in photosynthetic RCs and will aid the interpretation of heteronuclear spin-torch experiments.
Collapse
Affiliation(s)
- Pavlo Bielytskyi
- Institut für Analytische Chemie, Universität Leipzig, Linnéstraße 3, D-04103 Leipzig, Germany
| | - Daniel Gräsing
- Institut für Analytische Chemie, Universität Leipzig, Linnéstraße 3, D-04103 Leipzig, Germany
| | - Stefan Zahn
- Leibniz Institute of Surface Engineering (IOM), Permoserstraße 15, D-04318 Leipzig, Germany
| | - Kaustubh R Mote
- TIFR Centre for Interdisciplinary Sciences, Tata Institute of Fundamental Research, 36/P Gopanpally Village, Serilingampally Mandal, Ranga Reddy District, Hyderabad 500107, India
| | - A Alia
- Leiden Institute of Chemistry, Leiden University, Einsteinweg 55, 2301 RA Leiden, the Netherlands; Institut für Medizinische Physik und Biophysik, Universität Leipzig, Härtelstr. 16-18, D-04107 Leipzig, Germany
| | - P K Madhu
- TIFR Centre for Interdisciplinary Sciences, Tata Institute of Fundamental Research, 36/P Gopanpally Village, Serilingampally Mandal, Ranga Reddy District, Hyderabad 500107, India
| | - Jörg Matysik
- Institut für Analytische Chemie, Universität Leipzig, Linnéstraße 3, D-04103 Leipzig, Germany.
| |
Collapse
|
13
|
Pandey MK, Nishiyama Y. A one-dimensional solid-state NMR approach for 14NH/ 14NH overtone correlation through 1H/ 1H mixing under fast MAS. Phys Chem Chem Phys 2018; 20:25849-25853. [PMID: 30288509 DOI: 10.1039/c8cp05000g] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Homonuclear correlations are key to structural studies using solid-state NMR. In this contribution, using 14N overtone transition (OT) as a selective excitation approach, we propose a proton-detected one-dimensional (1D) 14NOT/14NOT/1H correlation solid-state NMR method mediated through 1H/1H mixing at fast magic angle spinning to achieve NH/NH proximities in naturally abundant samples. The proposed method is time efficient by a factor of ∼7.5 in comparison to the existing fundamental 14N frequency-based three-dimensional (3D) 14N/14N/1H correlation method.
Collapse
Affiliation(s)
- Manoj Kumar Pandey
- Indian Institute of Technology (IIT) Ropar, Nangal Road, Rupnagar 140001, Punjab, India.
| | | |
Collapse
|
14
|
Duong NT, Yarava JR, Trébosc J, Nishiyama Y, Amoureux JP. Forcing the 'lazy' protons to work. Phys Chem Chem Phys 2018; 20:25829-25840. [PMID: 30285019 DOI: 10.1039/c8cp03601b] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
The combination of cross-polarization (CP) with flip-back (FB) pulse has enabled in NMR the enhancement of 13C sensitivity and the decrease of the recycling delay at both moderate and fast magic-angle spinning (MAS) frequencies. However, only continuous-wave (CW) decoupling is presently compatible with FB-pulse (FB-CW), and depending on the CW radio-frequency (rf) field, either an insignificant sensitivity gain or an acquisition time-dependent gain and a low 13C resolution are obtained. In this study, we propose a new FB-pulse method in which radio frequency-driven recoupling (RFDR) is used as the 1H-13C decoupling scheme to overcome these drawbacks. The performances of FB-RFDR in terms of decoupling efficiency and sensitivity gain are tested on both natural abundance (NA) and uniformly 13C-15N labeled l-histidine·HCl·H2O (Hist) samples at a MAS frequency of νR = 70 kHz. The results show the superiority of RFDR over the CW decoupling with respect to these criteria. Importantly, they reveal that the sensitivity gain offered by FB-RFDR is nearly independent of the decoupling/acquisition duration. The application of FB-RFDR on NA-Hist and sucrose yields a sensitivity gain between 60 and 100% compared to conventional FB-CW and CPMAS-SPINAL experiments. Moreover, we compare the 13C sensitivities of NA-Hist obtained by our 1D FB-RFDR method and 2D 1H-{13C} double-CP acquisition. Both methods provide similar 13C sensitivity and are complementary. Indeed, the 2D method has the advantage of also providing the 1H-13C spatial proximities, but its sensitivity for quaternary carbons is limited; whereas our 1D FB-RFDR method is more independent of the type of carbon, and can provide a 13C 1D spectrum in a shorter experimental time. We also test the feasibility of FB-RFDR at a moderate frequency of νR = 20 kHz, but the experimental results demonstrate a poor resolution as well as a negligible sensitivity gain.
Collapse
Affiliation(s)
- Nghia Tuan Duong
- RIKEN-JEOL Collaboration Center, RIKEN, Yokohama, Kanagawa 230-0045, Japan
| | | | | | | | | |
Collapse
|
15
|
Kobayashi T, Singappuli-Arachchige D, Slowing II, Pruski M. Spatial distribution of organic functional groups supported on mesoporous silica nanoparticles (2): a study by 1H triple-quantum fast-MAS solid-state NMR. Phys Chem Chem Phys 2018; 20:22203-22209. [PMID: 30117516 DOI: 10.1039/c8cp04425b] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The distribution of organic functional groups attached to the surface of mesoporous silica nanoparticles (MSNs) via co-condensation was scrutinized using 1D and 2D 1H solid-state NMR, including the triple-quantum/single-quantum (TQ/SQ) homonuclear correlation technique. The excellent sensitivity of 1H NMR and high resolution provided by fast magic angle spinning (MAS) allowed us to study surfaces with very low concentrations of aminopropyl functional groups. The sequential process, in which the injection of tetraethyl orthosilicate (TEOS) into the aqueous mother liquor was followed by dropwise addition of the organosilane precursor, resulted in deployment of organic groups on the surface, which were highly clustered even in a sample with a very low loading of ∼0.1 mmol g-1. The underlying mechanism responsible for clustering could involve fast aggregation of the aminopropyltrimethoxysilane (APTMS) precursor within the liquid phase, and/or co-condensation of the silica-bound molecules. Understanding the deposition process and the resulting topology of surface functionalities with atomic-scale resolution, can help to develop novel approaches to the synthesis of complex inorganic-organic hybrid materials.
Collapse
Affiliation(s)
- Takeshi Kobayashi
- U.S. DOE Ames Laboratory, Iowa State University, 230 Spedding Hall, Ames, Iowa 50011, USA.
| | | | | | | |
Collapse
|
16
|
Plainchont B, Berruyer P, Dumez JN, Jannin S, Giraudeau P. Dynamic Nuclear Polarization Opens New Perspectives for NMR Spectroscopy in Analytical Chemistry. Anal Chem 2018; 90:3639-3650. [PMID: 29481058 DOI: 10.1021/acs.analchem.7b05236] [Citation(s) in RCA: 52] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
Dynamic nuclear polarization (DNP) can boost sensitivity in nuclear magnetic resonance (NMR) experiments by several orders of magnitude. This Feature illustrates how the coupling of DNP with both liquid- and solid-state NMR spectroscopy has the potential to considerably extend the range of applications of NMR in analytical chemistry.
Collapse
Affiliation(s)
- Bertrand Plainchont
- Université de Nantes , CNRS, CEISAM UMR 6230 , 44322 Nantes Cedex 03 , France
| | - Pierrick Berruyer
- Université Claude Bernard Lyon 1, CNRS, ENS de Lyon , Institut des Sciences Analytiques, UMR 5280 , 5 Rue de la Doua , 69100 Villeurbanne , France
| | - Jean-Nicolas Dumez
- Institut de Chimie des Substances Naturelles, CNRS UPR 2301 , Univ. Paris Sud, Université Paris-Saclay , 91190 Gif-sur Yvette , France
| | - Sami Jannin
- Université Claude Bernard Lyon 1, CNRS, ENS de Lyon , Institut des Sciences Analytiques, UMR 5280 , 5 Rue de la Doua , 69100 Villeurbanne , France
| | - Patrick Giraudeau
- Université de Nantes , CNRS, CEISAM UMR 6230 , 44322 Nantes Cedex 03 , France.,Institut Universitaire de France , 75005 Paris , France
| |
Collapse
|
17
|
Kupče Ē, Trébosc J, Perrone B, Lafon O, Amoureux JP. Recording 13C- 15N HMQC 2D sparse spectra in solids in 30 s. JOURNAL OF MAGNETIC RESONANCE (SAN DIEGO, CALIF. : 1997) 2018; 288:76-83. [PMID: 29438833 DOI: 10.1016/j.jmr.2018.01.018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/20/2017] [Revised: 01/24/2018] [Accepted: 01/27/2018] [Indexed: 06/08/2023]
Abstract
We propose a dipolar HMQC Hadamard-encoded (D-HMQC-Hn) experiment for fast 2D correlations of abundant nuclei in solids. The main limitation of the Hadamard methods resides in the length of the encoding pulses, which results from a compromise between the selectivity and the sensitivity due to losses. For this reason, these methods should mainly be used with sparse spectra, and they profit from the increased separation of the resonances at high magnetic fields. In the case of the D-HMQC-Hn experiments, we give a simple rule that allows directly setting the optimum length of the selective pulses, versus the minimum separation of the resonances in the indirect dimension. The demonstration has been performed on a fully 13C,15N labelled f-MLF sample, and it allowed recording the build-up curves of the 13C-15N cross-peaks within 10 min. However, the method could also be used in the case of less sensitive samples, but with more accumulations.
Collapse
Affiliation(s)
- Ēriks Kupče
- Bruker UK Limited, Banner Lane, Coventry CV4 9GH, UK
| | - Julien Trébosc
- Univ. Lille, CNRS-8181, UCCS, Unit of Catalysis and Chemistry of Solids, 59000 Lille, France
| | - Barbara Perrone
- Bruker BioSpin AG, Industriestrasse 26, CH-8117 Fällanden, Switzerland
| | - Olivier Lafon
- Univ. Lille, CNRS-8181, UCCS, Unit of Catalysis and Chemistry of Solids, 59000 Lille, France; Institut Universitaire de France, 1, rue Descartes, 75231 Paris Cedex 05, France
| | - Jean-Paul Amoureux
- Univ. Lille, CNRS-8181, UCCS, Unit of Catalysis and Chemistry of Solids, 59000 Lille, France; Bruker Biospin, 34, rue de l'industrie, 67166 Wissembourg, France.
| |
Collapse
|
18
|
Colaux H, Nishiyama Y. Resolution enhancement in proton double quantum magic-angle spinning spectra by constant-time acquisition. SOLID STATE NUCLEAR MAGNETIC RESONANCE 2017; 87:104-110. [PMID: 28655441 DOI: 10.1016/j.ssnmr.2017.06.004] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/29/2017] [Revised: 06/01/2017] [Accepted: 06/14/2017] [Indexed: 06/07/2023]
Abstract
Although very fast MAS rate (>60 kHz) paves a way to obtain a sufficient resolution in the 1H double-quantum magic-angle spinning (DQMAS) experiments to probe 1H proximities, the 1H resolution still limits wider applications below its potential use. Here, the combination of the DQMAS experiment with the constant-time (CT) acquisition approach is demonstrated, giving an increased peak-separation power in the DQ dimension. The advantages and disadvantages in terms of sensitivity and resolution of the conventional and CT approaches are discussed.
Collapse
Affiliation(s)
- Henri Colaux
- RIKEN CLST-JEOL Collaboration Center, RIKEN, Yokohama, Kanagawa 230-0045, Japan
| | - Yusuke Nishiyama
- RIKEN CLST-JEOL Collaboration Center, RIKEN, Yokohama, Kanagawa 230-0045, Japan; JEOL RESONANCE Inc., Musashino, Akishima, Tokyo 196-8558, Japan.
| |
Collapse
|
19
|
Shen M, Wegner S, Trébosc J, Hu B, Lafon O, Amoureux JP. Minimizing the t 1-noise when using an indirect 1H high-resolution detection of unlabeled samples. SOLID STATE NUCLEAR MAGNETIC RESONANCE 2017; 87:111-116. [PMID: 28688541 DOI: 10.1016/j.ssnmr.2017.06.008] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/13/2017] [Revised: 06/25/2017] [Accepted: 06/26/2017] [Indexed: 06/07/2023]
Abstract
The most utilized through-space correlation 1H-{X} methods with proton indirect detection use two consecutive transfers, 1H → X and then X → 1H, with the evolution time t1 in the middle. When the X isotope is not 100% naturally abundant (NA), only the signal of the protons close to these isotopes is modulated by the 1H-X dipolar interactions. This signal is theoretically disentangled with phase-cycling from the un-modulated one. However, this separation is never perfect and it may lead to t1-noise in case of isotopes with very small NA, such as 13C or even worse 15N. One way to reduce this t1-noise is to minimize, 'purge', during t1 the un-modulated 1H magnetization before trying to suppress it with phase-cycling. We analyze experimentally several sequences following the HORROR condition, which allow purging the 1H transverse magnetization. The comparison is made at three spinning speeds, including very fast ones for 1H resolution: 27.75, 55.5 and 111 kHz. We show (i) that the efficiency of this purging process increases with the spinning speed, and (ii) that the best recoupling sequences are the two simplest ones: XY and S1 = SR212. We then compare the S/N that can be achieved with the two most used 1H-{X} 2D methods, called D-HMQC and CP-CP. The only difference in between these two methods is that the transfers are done with either two π/2-pulses on X channel (D-HMQC), or two Cross-Polarization (CP) transfers (CP-CP). The first method, D-HMQC, is very robust and should be preferred when indirectly detecting nuclei with high NA. The second method, CP-CP, (i) requires experimental precautions to limit the t1-noise, and (ii) is difficult to use with quadrupolar nuclei because the two CP transfers are then not efficient nor robust. However, CP-CP is presently the best method to indirectly detect isotopes with small NA, such as 13C and 15N.
Collapse
Affiliation(s)
- M Shen
- Shanghai Key Laboratory of Magnetic Resonance, School of Physics and Materials Science, East China Normal University, Shanghai 200062, PR China
| | - S Wegner
- Bruker BioSpin GmbH, 4 Silberstreifen, 76287 Rheinstetten, Germany
| | - J Trébosc
- Univ. Lille, UMR 8181, UCCS: Unit of Catalysis and Chemistry of Solids, 59000 Lille, France
| | - B Hu
- Shanghai Key Laboratory of Magnetic Resonance, School of Physics and Materials Science, East China Normal University, Shanghai 200062, PR China
| | - O Lafon
- Univ. Lille, UMR 8181, UCCS: Unit of Catalysis and Chemistry of Solids, 59000 Lille, France; Institut Universitaire de France, 1 Rue Descartes, 75231 Paris, France
| | - J P Amoureux
- Univ. Lille, UMR 8181, UCCS: Unit of Catalysis and Chemistry of Solids, 59000 Lille, France; Bruker France, 34 Rue de l'Industrie, 67166 Wissembourg, France.
| |
Collapse
|
20
|
Malon M, Pandey MK, Nishiyama Y. Revealing the Local Proton Network through Three-Dimensional 13C/ 1H Double-Quantum/ 1H Single-Quantum and 1H Double-Quantum/ 13C/ 1H Single-Quantum Correlation Fast Magic-Angle Spinning Solid-State NMR Spectroscopy at Natural Abundance. J Phys Chem B 2017; 121:8123-8131. [PMID: 28782953 DOI: 10.1021/acs.jpcb.7b06203] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
1H double quantum (DQ)/1H single quantum (SQ) correlation solid-state NMR spectroscopy is widely used to obtain internuclear 1H-1H proximities, especially at fast magic-angle spinning (MAS) rate (>60 kHz). However, to date, 1H signals are not well-resolved because of intense 1H-1H homonuclear dipolar interactions even at the attainable maximum MAS frequencies of ∼100 kHz and/or under 1H-1H homonuclear dipolar decoupling irradiations. Here we introduce novel three-dimensional (3D) experiments to resolve the 1H DQ/1H SQ correlation peaks using the additional 13C dimension. Although the low natural abundance of 13C (1.1%) significantly reduces the sensitivities, the 1H indirect measurements alleviate this issue and make this experiment possible even in naturally abundant samples. The two different implementations of 13C/1H DQ/1H SQ correlations and 1H DQ/13C/1H SQ correlations are discussed and demonstrated using l-histidine·HCl·H2O at natural abundance to reveal the local 1H-1H networks near each 13C. In addition, the complete 1H resonance assignments are achieved from a single 3D 13C/1H DQ/1H SQ experiment. We have also demonstrated the applicability of our proposed method on a biologically relevant molecule, capsaicin.
Collapse
Affiliation(s)
- Michal Malon
- RIKEN CLST-JEOL Collaboration Center, Yokohama, Kanagawa 230-0045, Japan.,JEOL RESONANCE Inc., Akishima, Tokyo 196-8558, Japan
| | - Manoj Kumar Pandey
- Department of Chemistry, Indian Institute of Technology Ropar , Rupnagar, Punjab 140001, India
| | - Yusuke Nishiyama
- RIKEN CLST-JEOL Collaboration Center, Yokohama, Kanagawa 230-0045, Japan.,JEOL RESONANCE Inc., Akishima, Tokyo 196-8558, Japan
| |
Collapse
|
21
|
Mao J, Cao X, Olk DC, Chu W, Schmidt-Rohr K. Advanced solid-state NMR spectroscopy of natural organic matter. PROGRESS IN NUCLEAR MAGNETIC RESONANCE SPECTROSCOPY 2017; 100:17-51. [PMID: 28552171 DOI: 10.1016/j.pnmrs.2016.11.003] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/27/2016] [Revised: 11/15/2016] [Accepted: 11/28/2016] [Indexed: 06/07/2023]
Abstract
Solid-state NMR is essential for the characterization of natural organic matter (NOM) and is gaining importance in geosciences and environmental sciences. This review is intended to highlight advanced solid-state NMR techniques, especially a systematic approach to NOM characterization, and their applications to the study of NOM. We discuss some basics of how to acquire high-quality and quantitative solid-state 13C NMR spectra, and address some common technical mistakes that lead to unreliable spectra of NOM. The identification of specific functional groups in NOM, primarily based on 13C spectral-editing techniques, is described and the theoretical background of some recently-developed spectral-editing techniques is provided. Applications of solid-state NMR to investigating nitrogen (N) in NOM are described, focusing on limitations of the widely used 15N CP/MAS experiment and the potential of improved advanced NMR techniques for characterizing N forms in NOM. Then techniques used for identifying proximities, heterogeneities and domains are reviewed, and some examples provided. In addition, NMR techniques for studying segmental dynamics in NOM are reviewed. We also briefly discuss applications of solid-state NMR to NOM from various sources, including soil organic matter, aquatic organic matter, organic matter in atmospheric particulate matter, carbonaceous meteoritic organic matter, and fossil fuels. Finally, examples of NMR-based structural models and an outlook are provided.
Collapse
Affiliation(s)
- Jingdong Mao
- Department of Chemistry and Biochemistry, Old Dominion University, 4541 Hampton Blvd., Norfolk, VA 23529, United States.
| | - Xiaoyan Cao
- Department of Chemistry, Brandeis University, 415 South Street, Waltham, MA 02453, United States.
| | - Dan C Olk
- National Laboratory for Agriculture and the Environment, 1015 N. University Blvd., Ames, IA 50011, United States.
| | - Wenying Chu
- Department of Chemistry and Biochemistry, Old Dominion University, 4541 Hampton Blvd., Norfolk, VA 23529, United States.
| | - Klaus Schmidt-Rohr
- Department of Chemistry, Brandeis University, 415 South Street, Waltham, MA 02453, United States.
| |
Collapse
|
22
|
Mote KR, Agarwal V, Madhu PK. Five decades of homonuclear dipolar decoupling in solid-state NMR: Status and outlook. PROGRESS IN NUCLEAR MAGNETIC RESONANCE SPECTROSCOPY 2016; 97:1-39. [PMID: 27888838 DOI: 10.1016/j.pnmrs.2016.08.001] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/25/2016] [Revised: 07/11/2016] [Accepted: 08/02/2016] [Indexed: 06/06/2023]
Abstract
It has been slightly more than fifty years since the first homonuclear spin decoupling scheme, Lee-Goldburg decoupling, was proposed for removing homonuclear dipolar interactions in solid-state nuclear magnetic resonance. A family of such schemes has made observation of high-resolution NMR spectra of abundant spins possible in various applications in solid state. This review outlines the strategies used in this field and the future prospects of homonuclear spin decoupling in solid-state NMR.
Collapse
Affiliation(s)
- Kaustubh R Mote
- TIFR Centre for Interdisciplinary Sciences, Tata Institute of Fundamental Research, 21 Brundavan Colony, Narsingi, Hyderabad 500 075, India
| | - Vipin Agarwal
- TIFR Centre for Interdisciplinary Sciences, Tata Institute of Fundamental Research, 21 Brundavan Colony, Narsingi, Hyderabad 500 075, India
| | - P K Madhu
- TIFR Centre for Interdisciplinary Sciences, Tata Institute of Fundamental Research, 21 Brundavan Colony, Narsingi, Hyderabad 500 075, India; Department of Chemical Sciences, Tata Institute of Fundamental Research, Homi Bhabha Road, Colaba, Mumbai 400 005, India
| |
Collapse
|
23
|
Nishiyama Y. Fast magic-angle sample spinning solid-state NMR at 60-100kHz for natural abundance samples. SOLID STATE NUCLEAR MAGNETIC RESONANCE 2016; 78:24-36. [PMID: 27400153 DOI: 10.1016/j.ssnmr.2016.06.002] [Citation(s) in RCA: 93] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/05/2016] [Revised: 06/07/2016] [Accepted: 06/08/2016] [Indexed: 06/06/2023]
Abstract
In spite of tremendous progress made in pulse sequence designs and sophisticated hardware developments, methods to improve sensitivity and resolution in solid-state NMR (ssNMR) are still emerging. The rate at which sample is spun at magic angle determines the extent to which sensitivity and resolution of NMR spectra are improved. To this end, the prime objective of this article is to give a comprehensive theoretical and experimental framework of fast magic angle spinning (MAS) technique. The engineering design of fast MAS rotors based on spinning rate, sample volume, and sensitivity is presented in detail. Besides, the benefits of fast MAS citing the recent progress in methodology, especially for natural abundance samples are also highlighted. The effect of the MAS rate on (1)H resolution, which is a key to the success of the (1)H inverse detection methods, is described by a simple mathematical factor named as the homogeneity factor k. A comparison between various (1)H inverse detection methods is also presented. Moreover, methods to reduce the number of spinning sidebands (SSBs) for the systems with huge anisotropies in combination with (1)H inverse detection at fast MAS are discussed.
Collapse
Affiliation(s)
- Yusuke Nishiyama
- RIKEN CLST-JEOL Collaboration Center, RIKEN, Yokohama, Kanagawa 230-0045, Japan; JEOL RESONANCE Inc., Musashino, Akishima, Tokyo 186-8558, Japan.
| |
Collapse
|
24
|
Brauckmann JO, Janssen JWGH, Kentgens APM. High resolution triple resonance micro magic angle spinning NMR spectroscopy of nanoliter sample volumes. Phys Chem Chem Phys 2016; 18:4902-10. [PMID: 26806199 DOI: 10.1039/c5cp07857a] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
To be able to study mass-limited samples and small single crystals, a triple resonance micro-magic angle spinning (μMAS) probehead for the application of high-resolution solid-state NMR of nanoliter samples was developed. Due to its excellent rf performance this allows us to explore the limits of proton NMR resolution in strongly coupled solids. Using homonuclear decoupling we obtain unprecedented (1)H linewidths for a single crystal of glycine (Δν(CH2) = 0.14 ppm) at high field (20 T) in a directly detected spectrum. The triple channel design allowed the recording of high-resolution μMAS (13)C-(15)N correlations of [U-(13)C-(15)N] arginine HCl and shows that the superior (1)H resolution opens the way for high-sensitivity inverse detection of heteronuclei even at moderate spinning speeds and rf-fields. Efficient decoupling leads to long coherence times which can be exploited in many correlation experiments.
Collapse
Affiliation(s)
- J Ole Brauckmann
- Institute of Molecules and Materials, Radboud University, 6500 GL Nijmegen, Netherlands. and TI-COAST, Science Park 904, 1098 XH Amsterdam, Netherlands
| | - J W G Hans Janssen
- Institute of Molecules and Materials, Radboud University, 6500 GL Nijmegen, Netherlands.
| | - Arno P M Kentgens
- Institute of Molecules and Materials, Radboud University, 6500 GL Nijmegen, Netherlands.
| |
Collapse
|
25
|
Kaźmierski S, Pawlak T, Jeziorna A, Potrzebowski MJ. Modern solid state NMR techniques and concepts in structural studies of synthetic polymers. POLYM ADVAN TECHNOL 2016. [DOI: 10.1002/pat.3780] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- S. Kaźmierski
- The Centre of Molecular and Macromolecular Studies; Polish Academy of Science; Łódź Poland
| | - T. Pawlak
- The Centre of Molecular and Macromolecular Studies; Polish Academy of Science; Łódź Poland
| | - A. Jeziorna
- The Centre of Molecular and Macromolecular Studies; Polish Academy of Science; Łódź Poland
| | - M. J. Potrzebowski
- The Centre of Molecular and Macromolecular Studies; Polish Academy of Science; Łódź Poland
| |
Collapse
|
26
|
Zhang R, Ramamoorthy A. Constant-time 2D and 3D through-bond correlation NMR spectroscopy of solids under 60 kHz MAS. J Chem Phys 2016; 144:034202. [PMID: 26801026 PMCID: PMC4723396 DOI: 10.1063/1.4940029] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2015] [Accepted: 01/04/2016] [Indexed: 12/13/2022] Open
Abstract
Establishing connectivity and proximity of nuclei is an important step in elucidating the structure and dynamics of molecules in solids using magic angle spinning (MAS) NMR spectroscopy. Although recent studies have successfully demonstrated the feasibility of proton-detected multidimensional solid-state NMR experiments under ultrafast-MAS frequencies and obtaining high-resolution spectral lines of protons, assignment of proton resonances is a major challenge. In this study, we first re-visit and demonstrate the feasibility of 2D constant-time uniform-sign cross-peak correlation (CTUC-COSY) NMR experiment on rigid solids under ultrafast-MAS conditions, where the sensitivity of the experiment is enhanced by the reduced spin-spin relaxation rate and the use of low radio-frequency power for heteronuclear decoupling during the evolution intervals of the pulse sequence. In addition, we experimentally demonstrate the performance of a proton-detected pulse sequence to obtain a 3D (1)H/(13)C/(1)H chemical shift correlation spectrum by incorporating an additional cross-polarization period in the CTUC-COSY pulse sequence to enable proton chemical shift evolution and proton detection in the incrementable t1 and t3 periods, respectively. In addition to through-space and through-bond (13)C/(1)H and (13)C/(13)C chemical shift correlations, the 3D (1)H/(13)C/(1)H experiment also provides a COSY-type (1)H/(1)H chemical shift correlation spectrum, where only the chemical shifts of those protons, which are bonded to two neighboring carbons, are correlated. By extracting 2D F1/F3 slices ((1)H/(1)H chemical shift correlation spectrum) at different (13)C chemical shift frequencies from the 3D (1)H/(13)C/(1)H spectrum, resonances of proton atoms located close to a specific carbon atom can be identified. Overall, the through-bond and through-space homonuclear/heteronuclear proximities determined from the 3D (1)H/(13)C/(1)H experiment would be useful to study the structure and dynamics of a variety of chemical and biological solids.
Collapse
Affiliation(s)
- Rongchun Zhang
- Biophysics and Department of Chemistry, The University of Michigan, Ann Arbor, Michigan 48109-1055, USA
| | - Ayyalusamy Ramamoorthy
- Biophysics and Department of Chemistry, The University of Michigan, Ann Arbor, Michigan 48109-1055, USA
| |
Collapse
|
27
|
Veinberg SL, Johnston KE, Jaroszewicz MJ, Kispal BM, Mireault CR, Kobayashi T, Pruski M, Schurko RW. Natural abundance 14N and 15N solid-state NMR of pharmaceuticals and their polymorphs. Phys Chem Chem Phys 2016; 18:17713-30. [DOI: 10.1039/c6cp02855a] [Citation(s) in RCA: 50] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
14N and 15N solid-state NMR at natural abundance are used in tandem for the investigation of pharmaceuticals and their polymorphs.
Collapse
Affiliation(s)
| | | | | | - Brianna M. Kispal
- Department of Chemistry and Biochemistry
- University of Windsor
- Windsor
- Canada
| | | | | | - Marek Pruski
- U.S. DOE Ames Laboratory
- Iowa State University
- Ames
- USA
- Department of Chemistry
| | - Robert W. Schurko
- Department of Chemistry and Biochemistry
- University of Windsor
- Windsor
- Canada
| |
Collapse
|
28
|
Zhang R, Nishiyama Y, Ramamoorthy A. Proton-detected 3D (1)H/(13)C/(1)H correlation experiment for structural analysis in rigid solids under ultrafast-MAS above 60 kHz. J Chem Phys 2015; 143:164201. [PMID: 26520504 PMCID: PMC4617735 DOI: 10.1063/1.4933373] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2015] [Accepted: 10/06/2015] [Indexed: 02/06/2023] Open
Abstract
A proton-detected 3D (1)H/(13)C/(1)H chemical shift correlation experiment is proposed for the assignment of chemical shift resonances, identification of (13)C-(1)H connectivities, and proximities of (13)C-(1)H and (1)H-(1)H nuclei under ultrafast magic-angle-spinning (ultrafast-MAS) conditions. Ultrafast-MAS is used to suppress all anisotropic interactions including (1)H-(1)H dipolar couplings, while the finite-pulse radio frequency driven dipolar recoupling (fp-RFDR) pulse sequence is used to recouple dipolar couplings among protons and the insensitive nuclei enhanced by polarization transfer technique is used to transfer magnetization between heteronuclear spins. The 3D experiment eliminates signals from non-carbon-bonded protons and non-proton-bonded carbons to enhance spectral resolution. The 2D (F1/F3) (1)H/(1)H and 2D (13)C/(1)H (F2/F3) chemical shift correlation spectra extracted from the 3D spectrum enable the identification of (1)H-(1)H proximity and (13)C-(1)H connectivity. In addition, the 2D (F1/F2) (1)H/(13)C chemical shift correlation spectrum, incorporated with proton magnetization exchange via the fp-RFDR recoupling of (1)H-(1)H dipolar couplings, enables the measurement of proximities between (13)C and even the remote non-carbon-bonded protons. The 3D experiment also gives three-spin proximities of (1)H-(1)H-(13)C chains. Experimental results obtained from powder samples of L-alanine and L-histidine ⋅ H2O ⋅ HCl demonstrate the efficiency of the 3D experiment.
Collapse
Affiliation(s)
- Rongchun Zhang
- Biophysics and Department of Chemistry, The University of Michigan, Ann Arbor, Michigan 48109-1055, USA
| | | | - Ayyalusamy Ramamoorthy
- Biophysics and Department of Chemistry, The University of Michigan, Ann Arbor, Michigan 48109-1055, USA
| |
Collapse
|
29
|
Pandey MK, Nishiyama Y. Proton-detected 3D (14)N/(14)N/(1)H isotropic shift correlation experiment mediated through (1)H-(1)H RFDR mixing on a natural abundant sample under ultrafast MAS. JOURNAL OF MAGNETIC RESONANCE (SAN DIEGO, CALIF. : 1997) 2015; 258:96-101. [PMID: 26232769 DOI: 10.1016/j.jmr.2015.06.012] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/14/2015] [Revised: 06/22/2015] [Accepted: 06/29/2015] [Indexed: 06/04/2023]
Abstract
In this contribution, we have demonstrated a proton detection-based approach on a natural abundant powdered l-Histidine HCl-H2O sample at ultrafast magic angle spinning (MAS) to accomplish (14)N/(14)N correlation from a 3D (14)N/(14)N/(1)H isotropic shift correlation experiment mediated through (1)H finite-pulse radio frequency-driven recoupling (fp-RFDR). Herein the heteronuclear magnetization transfer between (14)N and (1)H has been achieved by HMQC experiment, whereas (14)N/(14)N correlation is attained through enhanced (1)H-(1)H spin diffusion process due to (1)H-(1)H dipolar recoupling during the RFDR mixing. While the use of ultrafast MAS (90kHz) provides sensitivity enhancement through increased (1)H transverse relaxation time (T2), the use of micro-coil probe which can withstand strong (14)N radio frequency (RF) fields further improves the sensitivity per unit sample volume.
Collapse
Affiliation(s)
- Manoj Kumar Pandey
- RIKEN CLST-JEOL Collaboration Center, RIKEN, Yokohama, Kanagawa 230-0045, Japan
| | - Yusuke Nishiyama
- RIKEN CLST-JEOL Collaboration Center, RIKEN, Yokohama, Kanagawa 230-0045, Japan; JEOL RESONANCE Inc., Musashino, Akishima, Tokyo 196-8558, Japan.
| |
Collapse
|
30
|
Buntkowsky G, Gutmann T. Eine Mausefalle für Carbenium-Ionen: NMR-Detektive bei der Arbeit. Angew Chem Int Ed Engl 2015. [DOI: 10.1002/ange.201504899] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
31
|
Buntkowsky G, Gutmann T. A Mousetrap for Carbenium Ions: NMR Detectives at Work. Angew Chem Int Ed Engl 2015; 54:9450-1. [DOI: 10.1002/anie.201504899] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2015] [Indexed: 11/10/2022]
|
32
|
Komatsu T, Kobayashi T, Hatanaka M, Kikuchi J. Profiling planktonic biomass using element-specific, multicomponent nuclear magnetic resonance spectroscopy. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2015; 49:7056-62. [PMID: 25973714 DOI: 10.1021/acs.est.5b00837] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/10/2023]
Abstract
Planktonic metabolism plays crucial roles in Earth's elemental cycles. Chemical speciation as well as elemental stoichiometry is important for advancing our understanding of planktonic roles in biogeochemical cycles. In this study, a multicomponent solid-state nuclear magnetic resonance (NMR) approach is proposed for chemical speciation of cellular components, using several advanced NMR techniques. Measurements by ssNMR were performed on (13)C and (15)N-labeled Euglena gracilis, a flagellated protist. 3D dipolar-assisted rotational resonance, double-cross-polarization (1)H-(13)C correlation spectroscopy, and (1)H-(13)C solid-state heteronuclear single quantum correlation spectroscopy successively allowed characterization of cellular components. These techniques were then applied to E. gracilis cultured in high and low ammonium media to demonstrate the power of this method for profiling and comparing cellular components. Cellular NMR spectra indicated that ammonium induced both paramylon degradation and amination. Arginine was stored as a nitrogen reserve and ammonium replaced by arginine catabolism via the arginine dihydrolase pathway. (15)N and (31)P cellular ssNMR indicated arginine and polyphosphate accumulation in E. gracilis, respectively. This chemical speciation technique will contribute to environmental research by providing detailed information on environmental chemical properties.
Collapse
Affiliation(s)
- Takanori Komatsu
- †RIKEN Center for Sustainable Resource Science, 1-7-22 Suehiro-cho, Tsurumi-ku, Yokohama 230-0045, Japan
- ‡Graduate School of Medical Life Science, Yokohama City University, 1-7-29 Suehiro-cho, Tsurumi-ku, Yokohama 230-0045, Japan
| | - Toshiya Kobayashi
- ‡Graduate School of Medical Life Science, Yokohama City University, 1-7-29 Suehiro-cho, Tsurumi-ku, Yokohama 230-0045, Japan
| | - Minoru Hatanaka
- §Bruker Biospin K. K., 3-9, Moriya-cho, Kanagawa-ku, Yokohama, 221-0022, Japan
| | - Jun Kikuchi
- †RIKEN Center for Sustainable Resource Science, 1-7-22 Suehiro-cho, Tsurumi-ku, Yokohama 230-0045, Japan
- ‡Graduate School of Medical Life Science, Yokohama City University, 1-7-29 Suehiro-cho, Tsurumi-ku, Yokohama 230-0045, Japan
- ∥Graduate School of Bioagricultural Sciences and School of Agricultural Sciences, Nagoya University, 1 Furo-cho, Chikusa-ku, Nagoya 464-8601, Japan
| |
Collapse
|
33
|
Nishiyama Y, Kobayashi T, Malon M, Singappuli-Arachchige D, Slowing II, Pruski M. Studies of minute quantities of natural abundance molecules using 2D heteronuclear correlation spectroscopy under 100 kHz MAS. SOLID STATE NUCLEAR MAGNETIC RESONANCE 2015; 66-67:56-61. [PMID: 25773137 DOI: 10.1016/j.ssnmr.2015.02.001] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/03/2015] [Revised: 02/05/2015] [Accepted: 02/07/2015] [Indexed: 06/04/2023]
Abstract
Two-dimensional (1)H{(13)C} heteronuclear correlation solid-state NMR spectra of naturally abundant solid materials are presented, acquired using the 0.75-mm magic angle spinning (MAS) probe at spinning rates up to 100 kHz. In spite of the miniscule sample volume (290 nL), high-quality HSQC-type spectra of bulk samples as well as surface-bound molecules can be obtained within hours of experimental time. The experiments are compared with those carried out at 40 kHz MAS using a 1.6-mm probe, which offered higher overall sensitivity due to a larger rotor volume. The benefits of ultrafast MAS in such experiments include superior resolution in (1)H dimension without resorting to (1)H-(1)H homonuclear RF decoupling, easy optimization, and applicability to mass-limited samples. The HMQC spectra of surface-bound species can be also acquired under 100 kHz MAS, although the dephasing of transverse magnetization has significant effect on the efficiency transfer under MAS alone.
Collapse
Affiliation(s)
- Y Nishiyama
- JEOL Resonance Inc., 3-1-2 Musashino, Akishima, Tokyo 196-8558, Japan; RIKEN CLST-JEOL Collaboration Center, Yokohama, Kanagawa 230-0045, Japan.
| | - T Kobayashi
- U.S. DOE Ames Laboratory, Ames, IA 50011-3020, USA
| | - M Malon
- JEOL Resonance Inc., 3-1-2 Musashino, Akishima, Tokyo 196-8558, Japan; RIKEN CLST-JEOL Collaboration Center, Yokohama, Kanagawa 230-0045, Japan
| | - D Singappuli-Arachchige
- U.S. DOE Ames Laboratory, Ames, IA 50011-3020, USA; Department of Chemistry, Iowa State University, Ames, IA 50011-3020, USA
| | - I I Slowing
- U.S. DOE Ames Laboratory, Ames, IA 50011-3020, USA; Department of Chemistry, Iowa State University, Ames, IA 50011-3020, USA
| | - M Pruski
- U.S. DOE Ames Laboratory, Ames, IA 50011-3020, USA; Department of Chemistry, Iowa State University, Ames, IA 50011-3020, USA.
| |
Collapse
|
34
|
Zhang R, Nishiyama Y, Sun P, Ramamoorthy A. Phase cycling schemes for finite-pulse-RFDR MAS solid state NMR experiments. JOURNAL OF MAGNETIC RESONANCE (SAN DIEGO, CALIF. : 1997) 2015; 252:55-66. [PMID: 25655451 PMCID: PMC4380770 DOI: 10.1016/j.jmr.2014.12.010] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/13/2014] [Revised: 12/07/2014] [Accepted: 12/17/2014] [Indexed: 05/04/2023]
Abstract
The finite-pulse radio frequency driven dipolar recoupling (fp-RFDR) pulse sequence is used in 2D homonuclear chemical shift correlation experiments under magic angle spinning (MAS). A recent study demonstrated the advantages of using a short phase cycle, XY4, and its super-cycle, XY4(1)4, for the fp-RFDR pulse sequence employed in 2D (1)H/(1)H single-quantum/single-quantum correlation experiments under ultrafast MAS conditions. In this study, we report a comprehensive analysis on the dipolar recoupling efficiencies of XY4, XY4(1)2, XY4(1)3, XY4(1)4, and XY8(1)4 phase cycles under different spinning speeds ranging from 10 to 100 kHz. The theoretical calculations reveal the presence of second-order terms (T(10)T(2,±2), T(1,±1)T(2,±1), etc.) in the recoupled homonuclear dipolar coupling Hamiltonian only when the basic XY4 phase cycle is utilized, making it advantageous for proton-proton magnetization transfer under ultrafast MAS conditions. It is also found that the recoupling efficiency of fp-RFDR is quite dependent on the duty factor (τ180/τR) as well as on the strength of homonuclear dipolar couplings. The rate of longitudinal magnetization transfer increases linearly with the duty factor of fp-RFDR for all the XY-based phase cycles investigated in this study. Examination of the performances of different phase cycles against chemical shift offset and RF field inhomogeneity effects revealed that XY4(1)4 is the most tolerant phase cycle, while the shortest phase cycle XY4 suppressed the RF field inhomogeneity effects most efficiently under slow spinning speeds. Our results suggest that the difference in the fp-RFDR recoupling efficiencies decreases with the increasing MAS speed, while ultrafast (>60 kHz) spinning speed is advantageous as it recouples a large amount of homonuclear dipolar couplings and therefore enable fast magnetization exchange. The effects of higher-order terms and cross terms between various interactions in the effective Hamiltonian of fp-RFDR are also analyzed using numerical simulations for various phase cycles. Results obtained via numerical simulations are in excellent agreement with ultrafast MAS experimental results from the powder samples of glycine and l-alanine.
Collapse
Affiliation(s)
- Rongchun Zhang
- Biophysics and Department of Chemistry, University of Michigan, Ann Arbor, MI 48109-1055, USA
| | - Yusuke Nishiyama
- JEOL RESONANCE Inc., Musashino, Akishima, Tokyo 196-8558, Japan; RIKEN CLST-JEOL Collaboration Center, RIKEN, Yokohama, Kanagawa 230-0045, Japan
| | - Pingchuan Sun
- Key Laboratory of Functional Polymer Materials of Ministry of Education and College of Chemistry, Nankai University, Tianjin 300071, PR China
| | - Ayyalusamy Ramamoorthy
- Biophysics and Department of Chemistry, University of Michigan, Ann Arbor, MI 48109-1055, USA.
| |
Collapse
|
35
|
Paluch P, Pawlak T, Oszajca M, Lasocha W, Potrzebowski MJ. Fine refinement of solid state structure of racemic form of phospho-tyrosine employing NMR Crystallography approach. SOLID STATE NUCLEAR MAGNETIC RESONANCE 2015; 65:2-11. [PMID: 25240460 DOI: 10.1016/j.ssnmr.2014.08.002] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/02/2014] [Accepted: 08/29/2014] [Indexed: 05/25/2023]
Abstract
We present step by step facets important in NMR Crystallography strategy employing O-phospho-dl-tyrosine as model sample. The significance of three major techniques being components of this approach: solid state NMR (SS NMR), X-ray diffraction of powdered sample (PXRD) and theoretical calculations (Gauge Invariant Projector Augmented Wave; GIPAW) is discussed. Each experimental technique provides different set of structural constraints. From the PXRD measurement the size of the unit cell, space group and roughly refined molecular structure are established. SS NMR provides information about content of crystallographic asymmetric unit, local geometry, molecular motion in the crystal lattice and hydrogen bonding pattern. GIPAW calculations are employed for validation of quality of elucidation and fine refinement of structure. Crystal and molecular structure of O-phospho-dl-tyrosine solved by NMR Crystallography is deposited at Cambridge Crystallographic Data Center under number CCDC 1005924.
Collapse
Affiliation(s)
- Piotr Paluch
- Polish Academy of Sciences, Centre of Molecular and Macromolecular Studies, Sienkiewicza 112, PL-90-363 Lodz, Poland
| | - Tomasz Pawlak
- Polish Academy of Sciences, Centre of Molecular and Macromolecular Studies, Sienkiewicza 112, PL-90-363 Lodz, Poland
| | - Marcin Oszajca
- Jerzy Haber Institute of Catalysis and Surface Chemistry, PAS, Niezapominajek 8, 30-239 Krakow, Poland
| | - Wieslaw Lasocha
- Jerzy Haber Institute of Catalysis and Surface Chemistry, PAS, Niezapominajek 8, 30-239 Krakow, Poland; Faculty of Chemistry, Jagiellonian University, Ingardena 3, 30-060 Krakow, Poland
| | - Marek J Potrzebowski
- Polish Academy of Sciences, Centre of Molecular and Macromolecular Studies, Sienkiewicza 112, PL-90-363 Lodz, Poland.
| |
Collapse
|
36
|
Shen M, Trébosc J, Lafon O, Pourpoint F, Hu B, Chen Q, Amoureux JP. Improving the resolution in proton-detected through-space heteronuclear multiple quantum correlation NMR spectroscopy. JOURNAL OF MAGNETIC RESONANCE (SAN DIEGO, CALIF. : 1997) 2014; 245:38-49. [PMID: 24929867 DOI: 10.1016/j.jmr.2014.05.006] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/21/2014] [Revised: 05/02/2014] [Accepted: 05/05/2014] [Indexed: 06/03/2023]
Abstract
Connectivities and proximities between protons and low-gamma nuclei can be probed in solid-state NMR spectroscopy using two-dimensional (2D) proton-detected heteronuclear correlation, through Heteronuclear Multiple Quantum Correlation (HMQC) pulse sequence. The indirect detection via protons dramatically enhances the sensitivity. However, the spectra are often broadened along the indirect F1 dimension by the decay of heteronuclear multiple-quantum coherences under the strong (1)H-(1)H dipolar couplings. This work presents a systematic comparison of the performances of various decoupling schemes during the indirect t1 evolution period of dipolar-mediated HMQC (D-HMQC) experiment. We demonstrate that (1)H-(1)H dipolar decoupling sequences during t1, such as symmetry-based schemes, phase-modulated Lee-Goldburg (PMLG) and Decoupling Using Mind-Boggling Optimization (DUMBO), provide better resolution than continuous wave (1)H irradiation. We also report that high resolution requires the preservation of (1)H isotropic chemical shifts during the decoupling sequences. When observing indirectly broad spectra presenting numerous spinning sidebands, the D-HMQC sequence must be fully rotor-synchronized owing to the rotor-synchronized indirect sampling and dipolar recoupling sequence employed. In this case, we propose a solution to reduce artefact sidebands caused by the modulation of window delays before and after the decoupling application during the t1 period. Moreover, we show that (1)H-(1)H dipolar decoupling sequence using Smooth Amplitude Modulation (SAM) minimizes the t1-noise. The performances of the various decoupling schemes are assessed via numerical simulations and compared to 2D (1)H-{(13)C} D-HMQC experiments on [U-(13)C]-L-histidine⋅HCl⋅H2O at various magnetic fields and Magic Angle spinning (MAS) frequencies. Great resolution and sensitivity enhancements resulting from decoupling during t1 period enable the detection of heteronuclear correlation between aliphatic protons and ammonium (14)N sites in L-histidine⋅HCl⋅H2O.
Collapse
Affiliation(s)
- Ming Shen
- Physics Department & Shanghai Key Laboratory of Magnetic Resonance, East China Normal University, Shanghai 200062, China; UCCS, University Lille North of France, Villeneuve d'Ascq 59652, France
| | - J Trébosc
- UCCS, University Lille North of France, Villeneuve d'Ascq 59652, France
| | - O Lafon
- UCCS, University Lille North of France, Villeneuve d'Ascq 59652, France
| | - F Pourpoint
- UCCS, University Lille North of France, Villeneuve d'Ascq 59652, France
| | - Bingwen Hu
- Physics Department & Shanghai Key Laboratory of Magnetic Resonance, East China Normal University, Shanghai 200062, China
| | - Qun Chen
- Physics Department & Shanghai Key Laboratory of Magnetic Resonance, East China Normal University, Shanghai 200062, China
| | - J-P Amoureux
- Physics Department & Shanghai Key Laboratory of Magnetic Resonance, East China Normal University, Shanghai 200062, China; UCCS, University Lille North of France, Villeneuve d'Ascq 59652, France.
| |
Collapse
|
37
|
Zhang R, Ramamoorthy A. Performance of RINEPT is amplified by dipolar couplings under ultrafast MAS conditions. JOURNAL OF MAGNETIC RESONANCE (SAN DIEGO, CALIF. : 1997) 2014; 243:85-92. [PMID: 24792960 PMCID: PMC4057659 DOI: 10.1016/j.jmr.2014.03.012] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/29/2014] [Revised: 03/27/2014] [Accepted: 03/31/2014] [Indexed: 05/04/2023]
Abstract
The refocused insensitive nuclei enhanced by polarization transfer (RINEPT) technique is commonly used for heteronuclear polarization transfer in solution and solid-state NMR spectroscopy. Suppression of dipolar couplings, either by fast molecular motions in solution or by a combination of MAS and multiple pulse sequences in solids, enables the polarization transfer via scalar couplings. However, the presence of unsuppressed dipolar couplings could alter the functioning of RINEPT, particularly under fast/ultrafast MAS conditions. In this study, we demonstrate, through experiments on rigid solids complemented by numerical simulations, that the polarization transfer efficiency of RINEPT is dependent on the MAS frequency. In addition, we show that heteronuclear dipolar coupling is the dominant factor in the polarization transfer, which is strengthened by the presence of (1)H-(1)H dipolar couplings. In fact, the simultaneous presence of homonuclear and heteronuclear dipolar couplings is the premise for the polarization transfer by RINEPT, whereas the scalar coupling plays an insignificant role under ultrafast MAS conditions on rigid solids. Our results additionally reveal that the polarization transfer efficiency decreases with the increasing duration of RF pulses used in the RINEPT sequence.
Collapse
Affiliation(s)
- Rongchun Zhang
- Biophysics and Department of Chemistry, The University of Michigan, Ann Arbor, MI 48109-1055, USA; School of Physics, Nankai University, Tianjin 300071, PR China
| | - Ayyalusamy Ramamoorthy
- Biophysics and Department of Chemistry, The University of Michigan, Ann Arbor, MI 48109-1055, USA.
| |
Collapse
|
38
|
Pawlak T, Potrzebowski MJ. Fine refinement of solid-state molecular structures of Leu- and Met-enkephalins by NMR crystallography. J Phys Chem B 2014; 118:3298-309. [PMID: 24605867 DOI: 10.1021/jp500379e] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
This paper presents a methodology that allows the fine refinement of the crystal and molecular structure for compounds for which the data deposited in the crystallographic bases are of poor quality. Such species belong to the group of samples with molecular disorder. In the Cambridge Crystallographic Data Center (CCDC), there are approximately 22,000 deposited structures with an R-factor over 10. The powerful methodology we present employs crystal data for Leu-enkephalin (two crystallographic forms) with R-factor values of 14.0 and 8.9 and for Met-enkephalin (one form) with an R-factor of 10.5. NMR crystallography was employed in testing the X-ray data and the quality of the structure refinement. The GIPAW (gauge invariant projector augmented wave) method was used to optimize the coordinates of the enkephalins and to compute NMR parameters. As we reveal, this complementary approach makes it possible to generate a reasonable set of new coordinates that better correlate to real samples. This methodology is general and can be employed in the study of each compound possessing magnetically active nuclei.
Collapse
Affiliation(s)
- Tomasz Pawlak
- Centre of Molecular and Macromolecular Studies, Polish Academy of Sciences , Sienkiewicza 112, 90-363 Lodz, Poland
| | | |
Collapse
|
39
|
Althaus SM, Mao K, Stringer JA, Kobayashi T, Pruski M. Indirectly detected heteronuclear correlation solid-state NMR spectroscopy of naturally abundant 15N nuclei. SOLID STATE NUCLEAR MAGNETIC RESONANCE 2014; 57-58:17-21. [PMID: 24287060 DOI: 10.1016/j.ssnmr.2013.11.001] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/05/2013] [Revised: 10/22/2013] [Accepted: 11/01/2013] [Indexed: 06/02/2023]
Abstract
Two-dimensional indirectly detected through-space and through-bond (1)H{(15)N} solid-state NMR experiments utilizing fast magic angle spinning (MAS) and homonuclear multipulse (1)H decoupling are evaluated. Remarkable efficiency of polarization transfer can be achieved at a MAS rate of 40 kHz by both cross-polarization and INEPT, which makes these methods applicable for routine characterizations of natural abundance solids. The first measurement of 2D (1)H{(15)N} HETCOR spectrum of natural abundance surface species is also reported.
Collapse
Affiliation(s)
- Stacey M Althaus
- U.S. DOE Ames Laboratory, Ames, IA 50011-3020, USA; Department of Chemistry, Iowa State University, Ames, IA 50011-3020, USA
| | - Kanmi Mao
- U.S. DOE Ames Laboratory, Ames, IA 50011-3020, USA; Department of Chemistry, Iowa State University, Ames, IA 50011-3020, USA
| | - John A Stringer
- Agilent Technologies, 900 South Taft, Loveland, CO 80537, USA
| | - Takeshi Kobayashi
- Department of Chemistry, Iowa State University, Ames, IA 50011-3020, USA
| | - Marek Pruski
- U.S. DOE Ames Laboratory, Ames, IA 50011-3020, USA; Department of Chemistry, Iowa State University, Ames, IA 50011-3020, USA.
| |
Collapse
|
40
|
Werner M, Rothermel N, Breitzke H, Gutmann T, Buntkowsky G. Recent Advances in Solid State NMR of Small Molecules in Confinement. Isr J Chem 2014. [DOI: 10.1002/ijch.201300095] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
41
|
Kobayashi T, Mao K, Paluch P, Nowak-Król A, Sniechowska J, Nishiyama Y, Gryko DT, Potrzebowski MJ, Pruski M. Study of Intermolecular Interactions in the Corrole Matrix by Solid-State NMR under 100 kHz MAS and Theoretical Calculations. Angew Chem Int Ed Engl 2013. [DOI: 10.1002/ange.201305475] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
42
|
Kobayashi T, Mao K, Paluch P, Nowak-Król A, Sniechowska J, Nishiyama Y, Gryko DT, Potrzebowski MJ, Pruski M. Study of Intermolecular Interactions in the Corrole Matrix by Solid-State NMR under 100 kHz MAS and Theoretical Calculations. Angew Chem Int Ed Engl 2013; 52:14108-11. [DOI: 10.1002/anie.201305475] [Citation(s) in RCA: 74] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2013] [Revised: 10/04/2013] [Indexed: 11/08/2022]
|
43
|
Gutmann T, Grünberg A, Rothermel N, Werner M, Srour M, Abdulhussain S, Tan S, Xu Y, Breitzke H, Buntkowsky G. Solid-state NMR concepts for the investigation of supported transition metal catalysts and nanoparticles. SOLID STATE NUCLEAR MAGNETIC RESONANCE 2013; 55-56:1-11. [PMID: 23972428 DOI: 10.1016/j.ssnmr.2013.06.004] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/23/2013] [Revised: 06/20/2013] [Accepted: 06/21/2013] [Indexed: 05/24/2023]
Abstract
In recent years, solid-state NMR spectroscopy has evolved into an important characterization tool for the study of solid catalysts and chemical processes on their surface. This interest is mainly triggered by the need of environmentally benign organic transformations ("green chemistry"), which has resulted in a large number of new catalytically active hybrid materials, which are organized on the meso- and nanoscale. Typical examples of these catalysts are supported homogeneous transition metal catalysts or transition metal nanoparticles (MNPs). Solid-state NMR spectroscopy is able to characterize both the structures of these materials and the chemical processes on the catalytic surface. This article presents recent trends both on the characterization of immobilized homogeneous transition metal catalysts and on the characterization of surface species on transition metal surfaces.
Collapse
Affiliation(s)
- Torsten Gutmann
- Institute of Physical Chemistry, Technical University Darmstadt, Petersenstrasse 22, D-64287 Darmstadt, Germany
| | | | | | | | | | | | | | | | | | | |
Collapse
|
44
|
Pawlak T, Paluch P, Trzeciak-Karlikowska K, Jeziorna A, Potrzebowski MJ. Study of the thermal processes in molecular crystals of peptides by means of NMR crystallography. CrystEngComm 2013. [DOI: 10.1039/c3ce40090e] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
45
|
Mao K, Kennedy GJ, Althaus SM, Pruski M. Spectral editing in 13C solid-state NMR at high magnetic field using fast MAS and spin-echo dephasing. SOLID STATE NUCLEAR MAGNETIC RESONANCE 2012; 47-48:19-22. [PMID: 22951436 DOI: 10.1016/j.ssnmr.2012.07.003] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/21/2012] [Revised: 07/27/2012] [Accepted: 07/30/2012] [Indexed: 06/01/2023]
Abstract
A simple method is proposed for separating NMR resonances from protonated and non-protonated aromatic carbons in solids under fast magic angle spinning (MAS). The approach uses a MAS-synchronized spin-echo to exploit the differences in rotational recoupling of the dipolar interactions while fully refocusing the isotropic chemical shifts. This strategy extends the relevant time scale of spin evolution to milliseconds and circumvents the limitation of the traditional dipolar dephasing method, which in fast rotating solids is disrupted by rotational refocusing. The proposed approach can be used for quantitative measurement of carbon aromaticities in complex solids with poorly resolved spectra, as demonstrated for model compounds.
Collapse
Affiliation(s)
- Kanmi Mao
- ExxonMobil Research and Engineering Co., 1545 Route 22E, Annandale, NJ 08801, USA.
| | | | | | | |
Collapse
|
46
|
Freitas J, Cunha A, Emmerich F. Solid-State Nuclear Magnetic Resonance (NMR) Methods Applied to the Study of Carbon Materials. ACTA ACUST UNITED AC 2012. [DOI: 10.1201/b12960-3] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/08/2023]
|
47
|
Nishiyama Y, Lu X, Trébosc J, Lafon O, Gan Z, Madhu PK, Amoureux JP. Practical choice of ¹H-¹H decoupling schemes in through-bond ¹H-{X} HMQC experiments at ultra-fast MAS. JOURNAL OF MAGNETIC RESONANCE (SAN DIEGO, CALIF. : 1997) 2012; 214:151-158. [PMID: 22130518 DOI: 10.1016/j.jmr.2011.10.014] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/09/2011] [Revised: 10/05/2011] [Accepted: 10/28/2011] [Indexed: 05/31/2023]
Abstract
Three (1)H-(1)H homonuclear dipolar decoupling schemes for (1)H indirect detection measurements at very fast MAS are compared. The sequences require the following conditions: (i) being operable at very fast MAS, (ii) a long T(2)(') value, (iii) a large scaling factor, (iv) a small number of adjustable parameters, (v) an acquisition window, (vi) a low rf-power requirement, and (vii) a z-rotation feature. To satisfy these conditions a modified sequence named TIlted Magic-Echo Sandwich with zero degree sandwich pulse (TIMES(0)) is introduced. The basic elements of TIMES(0) consist of one sampling window and two phase-ramped irradiations, which realize alternating positive and negative 360° rotations of (1)H magnetization around an effective field tilted with an angle θ from the B(0) axis. The TIMES(0) sequence benefits from very large chemical shift scaling factors at ultra-fast MAS that reach κ(cs)=0.90 for θ=25° at ν(r)=80kHz MAS and only four adjustable parameters, resulting in easy setup. Long κ(cs)T(2)(') values, where T(2)(') is a irreversible proton transverse relaxation time, greatly enhance the sensitivity in (1)H-{(13)C} through-bond J-HMQC (Heteronuclear Multiple-Quantum Coherence) measurements with (1)H-(1)H decoupling during magnetization transfer periods. Although similar sensitivity can be obtained with through-space D-HMQC sequences, in which (13)C-(1)H dipolar interactions are recoupled, J-HMQC experiments incorporating (1)H-(1)H decoupling benefit from lower t(1)-noise, more uniform excitation of both CH, CH(2) and CH(3) moieties, and easier identification of through-bond connectivities.
Collapse
Affiliation(s)
- Yusuke Nishiyama
- JEOL RESONANCE Inc., 3-1-2 Musashino, Akishima, Tokyo 196-8558, Japan.
| | | | | | | | | | | | | |
Collapse
|
48
|
Kobayashi T, Mao K, Wang SG, Lin VSY, Pruski M. Molecular ordering of mixed surfactants in mesoporous silicas: a solid-state NMR study. SOLID STATE NUCLEAR MAGNETIC RESONANCE 2011; 39:65-71. [PMID: 21392947 DOI: 10.1016/j.ssnmr.2011.02.001] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/02/2010] [Revised: 01/03/2011] [Accepted: 02/05/2011] [Indexed: 05/30/2023]
Abstract
The use of mixed surfactants in the synthesis of mesoporous silica nanoparticles (MSNs) is of importance in the context of adjusting pore structures, sizes and morphologies. In the present study, the arrangement of molecules in micelles produced from a mixture of two surfactants, cetyltrimethylammonium bromide (CTAB) and cetylpyridinium bromide (CPB) was detailed by solid-state NMR spectroscopy. Proximities of methyl protons in the trimethylammonium headgroup of CTAB and protons in the pyridinium headgroup of CPB were observed under fast magic angle spinning (MAS) by (1)H-(1)H double quantum (DQ) MAS NMR and NOESY. This result suggested that CTAB and CPB co-exist in the pores without forming significant monocomponent domain structures. (1)H-(29)Si heteronuclear correlation (HETCOR) NMR showed that protons in the headgroups of CTAB are in closer proximity to the silica surface than those in the CPB headgroups. The structural information obtained in this investigation leads to better understanding of the mechanisms of self-assembly and their role in determining the structure and morphology of mesoporous materials.
Collapse
|
49
|
Paasch S, Brunner E. Trends in solid-state NMR spectroscopy and their relevance for bioanalytics. Anal Bioanal Chem 2010; 398:2351-62. [DOI: 10.1007/s00216-010-4037-5] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2010] [Revised: 06/14/2010] [Accepted: 07/14/2010] [Indexed: 01/25/2023]
|
50
|
Affiliation(s)
- Shi Bai
- Department of Chemistry and Biochemistry, University of Delaware, Newark, Delaware 19716, USA
| | | | | |
Collapse
|