1
|
Krafčíková MD, Beriashvili D, Bahri S, Bergmeijer M, Howes SC, Gurinov A, Förster FG, Folkers GE, Baldus M. A DNP-Supported Solid-State NMR Approach to Study Nucleic Acids In Situ Reveals Berberine-Stabilized Hoogsteen Structures in Mitochondria. Angew Chem Int Ed Engl 2025:e202424131. [PMID: 40052409 DOI: 10.1002/anie.202424131] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2024] [Revised: 03/04/2025] [Accepted: 03/06/2025] [Indexed: 03/19/2025]
Abstract
Mitochondria are central to cellular bioenergetics, with the unique ability to translate and transcribe a subset of their own proteome. Given the critical importance of energy production, mitochondria seem to utilize higher-order nucleic acid structures to regulate gene expression, much like nuclei. Herein, we introduce a tailored approach to probe the formation of such structures, specifically G-quadruplexes, within intact mitochondria by using sensitivity-enhanced dynamic nuclear polarization-supported solid-state NMR (DNP-ssNMR). We acquired NMR spectra on isolated intact isotopically labeled mitochondria treated with berberine, a known high-affinity G-quadruplex stabilizer. The DNP-ssNMR data revealed spectral changes in nucleic acid sugar correlations, increased signal intensity for guanosine carbons, and enhanced Hoogsteen hydrogen bond formation, providing evidence of in vivo G-quadruplex formation in mitochondria. Together, our workflow enables the study of mitochondrial nucleic acid-ligand interactions at endogenous concentrations within biologically relevant environments by DNP-ssNMR, thus paving the way for future research into mitochondrial diseases and their potential treatments.
Collapse
Affiliation(s)
- Michaela Dzurov Krafčíková
- NMR Spectroscopy, Bijvoet Center for Biomolecular Research, Utrecht University, Padualaan 8, Utrecht, 3584CH, The Netherlands
| | - David Beriashvili
- NMR Spectroscopy, Bijvoet Center for Biomolecular Research, Utrecht University, Padualaan 8, Utrecht, 3584CH, The Netherlands
| | - Salima Bahri
- NMR Spectroscopy, Bijvoet Center for Biomolecular Research, Utrecht University, Padualaan 8, Utrecht, 3584CH, The Netherlands
| | - Menno Bergmeijer
- Structural Biochemistry, Bijvoet Center for Biomolecular Research, Utrecht University, Universiteitsweg 99, Utrecht, 3584CG, The Netherlands
| | - Stuart C Howes
- Structural Biochemistry, Bijvoet Center for Biomolecular Research, Utrecht University, Universiteitsweg 99, Utrecht, 3584CG, The Netherlands
| | - Andrei Gurinov
- NMR Spectroscopy, Bijvoet Center for Biomolecular Research, Utrecht University, Padualaan 8, Utrecht, 3584CH, The Netherlands
| | - Friedrich G Förster
- Structural Biochemistry, Bijvoet Center for Biomolecular Research, Utrecht University, Universiteitsweg 99, Utrecht, 3584CG, The Netherlands
| | - Gert E Folkers
- NMR Spectroscopy, Bijvoet Center for Biomolecular Research, Utrecht University, Padualaan 8, Utrecht, 3584CH, The Netherlands
| | - Marc Baldus
- NMR Spectroscopy, Bijvoet Center for Biomolecular Research, Utrecht University, Padualaan 8, Utrecht, 3584CH, The Netherlands
| |
Collapse
|
2
|
Porat-Dahlerbruch G, Sergeyev IV, Quinn CM, Struppe J, Banks D, Dahlheim C, Johnson D, Murphy D, Ilott A, Abraham A, Polenova T. Spatial Organization of Lipid Nanoparticle siRNA Delivery Systems Revealed by an Integrated Magnetic Resonance Approach. SMALL METHODS 2025; 9:e2400622. [PMID: 39021326 DOI: 10.1002/smtd.202400622] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/02/2024] [Indexed: 07/20/2024]
Abstract
Lipid nanoparticles (LNPs) are increasingly finding applications in targeted drug delivery, including for subcutaneous, intravenous, inhalation, and vaccine administration. While a variety of microscopy techniques are widely used for LNP characterization, their resolution does not allow for characterization of the spatial organization of different components, such as the excipients, targeting agents, or even the active ingredient. Herein, an approach is presented to probe the spatial organization of individual constituent groups of LNPs used for siRNA-based drug delivery, currently in clinical trials, by multinuclear solid-state magic-angle-spinning nuclear magnetic resonance (MAS NMR) spectroscopy. Dynamic nuclear polarization is exploited (DNP) for sensitivity enhancement, together with judicious 2H labeing, to detect functionally important LNP constituents, the siRNA and the targeting agent (<1-2 w/v%), respectively, and achieve a structural model of the LNP locating the siRNA in the core, the targeting agent below the surface, and the sugars above the lipid bilayer at the surface. The integrated approach presented here is applicable for structural analysis of LNPs and can be extended more generally to other multi-component biological formulations.
Collapse
Affiliation(s)
- Gal Porat-Dahlerbruch
- Department of Chemistry and Biochemistry, University of Delaware, Newark, DE, 19716, USA
| | - Ivan V Sergeyev
- Bristol Myers Squibb, Drug Product Development, New Brunswick, NJ, 08901, USA
| | - Caitlin M Quinn
- Department of Chemistry and Biochemistry, University of Delaware, Newark, DE, 19716, USA
| | - Jochem Struppe
- Bruker Biospin Corporation, 15 Fortune Drive, Billerica, MA, 01821, USA
| | - Daniel Banks
- Bruker Biospin Corporation, 15 Fortune Drive, Billerica, MA, 01821, USA
| | - Charles Dahlheim
- Bristol Myers Squibb, Drug Product Development, New Brunswick, NJ, 08901, USA
| | - Donald Johnson
- Bristol Myers Squibb, Drug Product Development, New Brunswick, NJ, 08901, USA
| | - Denette Murphy
- Bristol Myers Squibb, Drug Product Development, New Brunswick, NJ, 08901, USA
| | - Andrew Ilott
- Bristol Myers Squibb, Drug Product Development, New Brunswick, NJ, 08901, USA
| | - Anuji Abraham
- Bristol Myers Squibb, Drug Product Development, New Brunswick, NJ, 08901, USA
| | - Tatyana Polenova
- Department of Chemistry and Biochemistry, University of Delaware, Newark, DE, 19716, USA
| |
Collapse
|
3
|
Banks D, Kempf JG, Du Y, Reichert P, Narasimhan C, Fang R, Kwon S, Ling J, Lay-Fortenbery A, Zhang Y, Ni QZ, Cote A, Su Y. Investigation of Protein Therapeutics in Frozen Conditions Using DNP MAS NMR: A Study on Pembrolizumab. Mol Pharm 2024. [PMID: 39555969 DOI: 10.1021/acs.molpharmaceut.4c00929] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2024]
Abstract
The success of modern biopharmaceutical products depends on enhancing the stability of protein therapeutics. Freezing and thawing, which are common thermal stresses encountered throughout the lifecycle of drug substances, spanning protein production, formulation design, manufacturing, storage, and shipping, can impact this stability. Understanding the physicochemical and molecular behaviors of components in biological drug products at temperatures relevant to manufacturing and shipping is essential for assessing stability risks and determining appropriate storage conditions. This study focuses on the stability of high-concentration monoclonal antibody (mAb) pembrolizumab, the drug substance of Keytruda (Merck & Co., Inc., Rahway, NJ, United States), and its excipients in a frozen solution. By leveraging dynamic nuclear polarization (DNP), we achieve more than 100-fold signal enhancements in solid-state NMR (ssNMR), enabling efficient low-temperature (LT) analysis of pembrolizumab without isotopic enrichment. Through both ex situ and in situ ssNMR experiments conducted across a temperature range of 297 to 77 K, we provide insights into the stability of crystalline pembrolizumab under frozen conditions. Importantly, utilizing LT magic-angle spinning (MAS) probes allows us to study molecular dynamics in pembrolizumab from room temperature down to liquid nitrogen temperatures (<100 K). Our results demonstrate that valuable insights into protein conformation and dynamics, crystallinity, and the phase transformations of excipients during the freezing of the formulation matrix can be readily obtained for biological drug products. This study underscores the potential of LT-MAS ssNMR and DNP techniques for analyzing protein therapeutics and vaccines in frozen solutions.
Collapse
Affiliation(s)
- Daniel Banks
- Bruker Biospin Corporation, Billerica, Massachusetts 01821, United States
| | - James G Kempf
- Bruker Biospin Corporation, Billerica, Massachusetts 01821, United States
| | - Yong Du
- Analytical Research and Development, Merck & Co., Inc., Rahway, New Jersey 07065, United States
| | - Paul Reichert
- Discovery Chemistry, Merck & Co., Inc., Rahway, New Jersey 07065, United States
| | - Chakravarthy Narasimhan
- Pharmaceutical Sciences and Clinical Supply, Merck & Co., Inc., Rahway, New Jersey 07065, United States
| | - Rui Fang
- Pharmaceutical Sciences and Clinical Supply, Merck & Co., Inc., Rahway, New Jersey 07065, United States
| | - Soonbum Kwon
- Pharmaceutical Sciences and Clinical Supply, Merck & Co., Inc., Rahway, New Jersey 07065, United States
| | - Jing Ling
- Pharmaceutical Sciences and Clinical Supply, Merck & Co., Inc., Rahway, New Jersey 07065, United States
| | - Ashley Lay-Fortenbery
- Pharmaceutical Sciences and Clinical Supply, Merck & Co., Inc., Rahway, New Jersey 07065, United States
| | - Yongqian Zhang
- Analytical Research and Development, Merck & Co., Inc., Rahway, New Jersey 07065, United States
| | - Qing Zhe Ni
- Analytical Research and Development, Merck & Co., Inc., Rahway, New Jersey 07065, United States
| | - Aaron Cote
- Process Research and Development, Merck & Co., Inc., Rahway, New Jersey 07065, United States
| | - Yongchao Su
- Analytical Research and Development, Merck & Co., Inc., Rahway, New Jersey 07065, United States
- Pharmaceutical Sciences and Clinical Supply, Merck & Co., Inc., Rahway, New Jersey 07065, United States
| |
Collapse
|
4
|
Millen M, Alaniva N, Saliba EP, Overall SA, Däpp A, Pagonakis IG, Sigurdsson ST, Björgvinsdóttir S, Barnes AB. Frequency-Chirped Magic Angle Spinning Dynamic Nuclear Polarization Combined with Electron Decoupling. J Phys Chem Lett 2024; 15:7228-7235. [PMID: 38975905 PMCID: PMC11261599 DOI: 10.1021/acs.jpclett.4c01075] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2024] [Revised: 06/27/2024] [Accepted: 06/28/2024] [Indexed: 07/09/2024]
Abstract
Magic angle spinning (MAS) dynamic nuclear polarization (DNP) increases the signal intensity of solid-state nuclear magnetic resonance. DNP typically uses continuous wave (CW) microwave irradiation close to the resonance frequency of unpaired electron spins. In this study, we demonstrate that frequency-chirped microwaves improve DNP performance under MAS. By modulating the gyrotron anode potential, we generate a train of microwave chirps with a maximum bandwidth of 310 MHz and a maximum incident power on the spinning sample of 18 W. We characterize the efficiency of chirped DNP using the following polarizing agents: TEMTriPol-1, AsymPolPOK, AMUPol, and Finland trityl. The effects of different chirp widths and periods are analyzed at different MAS frequencies and microwave powers. Furthermore, we show that chirped DNP can be combined with electron decoupling to improve signal intensity by 59%, compared to CW DNP without electron decoupling, using Finland trityl as a polarizing agent.
Collapse
Affiliation(s)
- Marthe Millen
- Institute
of Molecular Physical Science, ETH Zurich, Vladimir-Prelog-Weg 2, 8093 Zurich, Switzerland
| | - Nicholas Alaniva
- Institute
of Molecular Physical Science, ETH Zurich, Vladimir-Prelog-Weg 2, 8093 Zurich, Switzerland
| | - Edward P. Saliba
- Institute
of Molecular Physical Science, ETH Zurich, Vladimir-Prelog-Weg 2, 8093 Zurich, Switzerland
| | - Sarah A. Overall
- Institute
of Molecular Physical Science, ETH Zurich, Vladimir-Prelog-Weg 2, 8093 Zurich, Switzerland
| | - Alexander Däpp
- Institute
of Molecular Physical Science, ETH Zurich, Vladimir-Prelog-Weg 2, 8093 Zurich, Switzerland
| | - Ioannis Gr. Pagonakis
- Institute
of Molecular Physical Science, ETH Zurich, Vladimir-Prelog-Weg 2, 8093 Zurich, Switzerland
| | | | - Snædís Björgvinsdóttir
- Institute
of Molecular Physical Science, ETH Zurich, Vladimir-Prelog-Weg 2, 8093 Zurich, Switzerland
| | - Alexander B. Barnes
- Institute
of Molecular Physical Science, ETH Zurich, Vladimir-Prelog-Weg 2, 8093 Zurich, Switzerland
| |
Collapse
|
5
|
Sergeyev IV, Fritzsching K, Rogawski R, McDermott A. Resolution in cryogenic solid state NMR: Challenges and solutions. Protein Sci 2024; 33:e4803. [PMID: 37847566 PMCID: PMC11184935 DOI: 10.1002/pro.4803] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2023] [Revised: 09/30/2023] [Accepted: 10/03/2023] [Indexed: 10/18/2023]
Abstract
NMR at cryogenic temperatures has the potential to provide rich site-specific details regarding biopolymer structure, function, and mechanistic intermediates. Broad spectral lines compared with room temperature NMR can sometimes present practical challenges. A number of hypotheses regarding the origins of line broadening are explored. One frequently considered explanation is the presence of inhomogeneous conformational distributions. Possibly these arise when the facile characteristic motions that occur near room temperature become dramatically slower or "frozen out" at temperatures below the solvent phase change. Recent studies of low temperature spectra harness the distributions in properties in these low temperature spectra to uncover information regarding the conformational ensembles that drive biological function.
Collapse
Affiliation(s)
| | | | - Rivkah Rogawski
- Columbia University, Department of ChemistryNew YorkNew YorkUSA
| | - Ann McDermott
- Columbia University, Department of ChemistryNew YorkNew YorkUSA
| |
Collapse
|
6
|
Chaklashiya RK, Equbal A, Shernyukov A, Li Y, Tsay K, Stern Q, Tormyshev V, Bagryanskaya E, Han S. Dynamic Nuclear Polarization Using Electron Spin Cluster. J Phys Chem Lett 2024; 15:5366-5375. [PMID: 38735065 DOI: 10.1021/acs.jpclett.4c00182] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/14/2024]
Abstract
Dynamic nuclear polarization (DNP) utilizing narrow-line electron spin clusters (ESCs) to achieve nuclear spin resonance matching (ESC-DNP) by microwave irradiation is a promising way to achieve NMR signal enhancements with a wide design scope requiring low microwave power at high magnetic field. Here we present the design for a trityl-based tetra-radical (TetraTrityl) to achieve DNP for 1H NMR at 7 T, supported by experimental data and quantum mechanical simulations. A slow-relaxing (T1e ≈ 1 ms) 4-ESC is found to require at least two electron spin pairs at <8 Å e-e spin distance to yield 1H ESC-DNP enhancement, while squeezing the rest of the e-e spin distances to <12 Å results in optimal 1H ESC-DNP enhancements. Fast-relaxing ESCs (T1e ≈ 10 μs) are found to require a weakly coupled narrow-line radical (sensitizer) to extract polarization from the ESC. These results provide design principles for achieving a power-efficient DNP at high field via ESC-DNP.
Collapse
Affiliation(s)
- Raj K Chaklashiya
- Materials Department, University of California, Santa Barbara, Santa Barbara, California 93106, United States
| | - Asif Equbal
- Division of Chemistry, New York University Abu Dhabi, Abu Dhabi, United Arab Emirates
- Center for Quantum and Topological Systems, NYUAD Research Institute, New York University Abu Dhabi, PO Box 129188, Abu Dhabi, United Arab Emirates
| | - Andrey Shernyukov
- N.N. Vorozhtsov Novosibirsk Institute of Organic Chemistry SB RAS, Novosibirsk 630090, Russia
| | - Yuanxin Li
- Department of Chemistry & Biochemistry, University of California, Santa Barbara, Santa Barbara, California 93106, United States
| | - Karen Tsay
- Department of Chemistry & Biochemistry, University of California, Santa Barbara, Santa Barbara, California 93106, United States
| | - Quentin Stern
- Department of Chemistry, Northwestern University, Wilmette, Illinois 60208, United States
| | - Victor Tormyshev
- N.N. Vorozhtsov Novosibirsk Institute of Organic Chemistry SB RAS, Novosibirsk 630090, Russia
| | - Elena Bagryanskaya
- N.N. Vorozhtsov Novosibirsk Institute of Organic Chemistry SB RAS, Novosibirsk 630090, Russia
| | - Songi Han
- Department of Chemistry, Northwestern University, Wilmette, Illinois 60208, United States
- Department of Chemical Engineering, University of California, Santa Barbara, Santa Barbara, California 93106, United States
| |
Collapse
|
7
|
Badoni S, Berruyer P, Emsley L. Optimal sensitivity for 1H detected relayed DNP of organic solids at fast MAS. JOURNAL OF MAGNETIC RESONANCE (SAN DIEGO, CALIF. : 1997) 2024; 360:107645. [PMID: 38401477 DOI: 10.1016/j.jmr.2024.107645] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/03/2023] [Revised: 01/30/2024] [Accepted: 02/09/2024] [Indexed: 02/26/2024]
Abstract
Dynamic nuclear polarization (DNP) combined with high magnetic fields and fast magic angle spinning (MAS) has opened up a new avenue for the application of exceptionally sensitive 1H NMR detection schemes to study protonated solids. Recently, it has been shown that DNP experiments at fast MAS rates lead to slower spin diffusion and hence reduced DNP enhancements for impregnated materials. However, DNP enhancements alone do not determine the overall sensitivity of a NMR experiment. Here we measure the overall sensitivity of one-dimensional 1H detected relayed DNP experiments as a function of the MAS rate in the 20-60 kHz regime using 0.7 mm diameter rotors at 21.2 T. Although faster MAS rates are detrimental for the DNP enhancement on the target material, due to slower spin diffusion, we find that with increasing spinning rates the gain in sensitivity due to 1H line-narrowing and the folding-in of sideband intensity compensates a large part of the loss of overall hyperpolarization. We find that sensitivity depends on the atomic site in the molecule, and is maximised at between 40 and 50 kHz MAS for the sample of L-histidine.HCl·H2O studied here. There is a 10-20 % difference in sensitivity between the optimum MAS rate and the fastest rate currently accessible (60 kHz).
Collapse
Affiliation(s)
- Saumya Badoni
- Institut des Sciences et Ingénierie Chimiques, Ecole Polytechnique Fédérale de Lausanne (EPFL), CH-1015 Lausanne, Switzerland
| | - Pierrick Berruyer
- Institut des Sciences et Ingénierie Chimiques, Ecole Polytechnique Fédérale de Lausanne (EPFL), CH-1015 Lausanne, Switzerland
| | - Lyndon Emsley
- Institut des Sciences et Ingénierie Chimiques, Ecole Polytechnique Fédérale de Lausanne (EPFL), CH-1015 Lausanne, Switzerland.
| |
Collapse
|
8
|
Harrabi R, Halbritter T, Alarab S, Chatterjee S, Wolska-Pietkiewicz M, Damodaran KK, van Tol J, Lee D, Paul S, Hediger S, Sigurdsson ST, Mentink-Vigier F, De Paëpe G. AsymPol-TEKs as efficient polarizing agents for MAS-DNP in glass matrices of non-aqueous solvents. Phys Chem Chem Phys 2024; 26:5669-5682. [PMID: 38288878 PMCID: PMC10849081 DOI: 10.1039/d3cp04271e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2023] [Accepted: 01/22/2024] [Indexed: 02/03/2024]
Abstract
Two polarizing agents from the AsymPol family, AsymPol-TEK and cAsymPol-TEK (methyl-free version) are introduced for MAS-DNP applications in non-aqueous solvents. The performance of these new biradicals is rationalized in detail using a combination of electron paramagnetic resonance spectroscopy, density functional theory, molecular dynamics and quantitative MAS-DNP spin dynamics simulations. By slightly modifying the experimental protocol to keep the sample temperature low at insertion, we are able to obtain reproducable DNP-NMR data with 1,1,2,2-tetrachloroethane (TCE) at 100 K, which facilitates optimization and comparison of different polarizing agents. At intermediate magnetic fields, AsymPol-TEK and cAsymPol-TEK provide 1.5 to 3-fold improvement in sensitivity compared to TEKPol, one of the most widely used polarizing agents for organic solvents, with significantly shorter DNP build-up times of ∼1 s and ∼2 s at 9.4 and 14.1 T respectively. In the course of the work, we also isolated and characterized two diastereoisomers that can form during the synthesis of AsymPol-TEK; their difference in performance is described and discussed. Finally, the advantages of the AsymPol-TEKs are demonstrated by recording 2D 13C-13C correlation experiments at natural 13C-abundance of proton-dense microcrystals and by polarizing the surface of ZnO nanocrystals (NCs) coated with diphenyl phosphate ligands. For those experiments, cAsymPol-TEK yielded a three-fold increase in sensitivity compared to TEKPol, corresponding to a nine-fold time saving.
Collapse
Affiliation(s)
- Rania Harrabi
- Univ. Grenoble Alpes, CEA, CNRS, IRIG, MEM, 38000 Grenoble, France.
| | - Thomas Halbritter
- University of Iceland, Department of Chemistry, Science Institute, Dunhaga 3, 107 Reykjavik, Iceland.
| | - Shadi Alarab
- Univ. Grenoble Alpes, CEA, CNRS, IRIG, MEM, 38000 Grenoble, France.
| | - Satyaki Chatterjee
- University of Iceland, Department of Chemistry, Science Institute, Dunhaga 3, 107 Reykjavik, Iceland.
| | | | - Krishna K Damodaran
- University of Iceland, Department of Chemistry, Science Institute, Dunhaga 3, 107 Reykjavik, Iceland.
| | - Johan van Tol
- National High Magnetic Field Laboratory, Florida State University, Tallahassee, FL 32301, USA.
| | - Daniel Lee
- Univ. Grenoble Alpes, CEA, CNRS, IRIG, MEM, 38000 Grenoble, France.
| | - Subhradip Paul
- Univ. Grenoble Alpes, CEA, CNRS, IRIG, MEM, 38000 Grenoble, France.
| | - Sabine Hediger
- Univ. Grenoble Alpes, CEA, CNRS, IRIG, MEM, 38000 Grenoble, France.
| | - Snorri Th Sigurdsson
- University of Iceland, Department of Chemistry, Science Institute, Dunhaga 3, 107 Reykjavik, Iceland.
| | - Frederic Mentink-Vigier
- National High Magnetic Field Laboratory, Florida State University, Tallahassee, FL 32301, USA.
| | - Gaël De Paëpe
- Univ. Grenoble Alpes, CEA, CNRS, IRIG, MEM, 38000 Grenoble, France.
| |
Collapse
|
9
|
Beriashvili D, Yao R, D'Amico F, Krafčíková M, Gurinov A, Safeer A, Cai X, Mulder MPC, Liu Y, Folkers GE, Baldus M. A high-field cellular DNP-supported solid-state NMR approach to study proteins with sub-cellular specificity. Chem Sci 2023; 14:9892-9899. [PMID: 37736634 PMCID: PMC10510770 DOI: 10.1039/d3sc02117c] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2023] [Accepted: 08/24/2023] [Indexed: 09/23/2023] Open
Abstract
Studying the structural aspects of proteins within sub-cellular compartments is of growing interest. Dynamic nuclear polarization supported solid-state NMR (DNP-ssNMR) is uniquely suited to provide such information, but critically lacks the desired sensitivity and resolution. Here we utilize SNAPol-1, a novel biradical, to conduct DNP-ssNMR at high-magnetic fields (800 MHz/527 GHz) inside HeLa cells and isolated cell nuclei electroporated with [13C,15N] labeled ubiquitin. We report that SNAPol-1 passively diffuses and homogenously distributes within whole cells and cell nuclei providing ubiquitin spectra of high sensitivity and remarkably improved spectral resolution. For cell nuclei, physical enrichment facilitates a further 4-fold decrease in measurement time and provides an exclusive structural view of the nuclear ubiquitin pool. Taken together, these advancements enable atomic interrogation of protein conformational plasticity at atomic resolution and with sub-cellular specificity.
Collapse
Affiliation(s)
- David Beriashvili
- NMR Spectroscopy, Bijvoet Center for Biomolecular Research, Utrecht University Padualaan 8 3584 CH Utrecht The Netherlands
| | - Ru Yao
- Tianjin Key Laboratory on Technologies Enabling Development of Clinical Therapeutics and Diagnostics, School of Pharmacy, Tianjin Medical University Tianjin 300070 P. R. China
| | - Francesca D'Amico
- Department of Cell and Chemical Biology, Leiden University Medical Center (LUMC) Einthovenweg 20 2333 ZC Leiden The Netherlands
| | - Michaela Krafčíková
- NMR Spectroscopy, Bijvoet Center for Biomolecular Research, Utrecht University Padualaan 8 3584 CH Utrecht The Netherlands
| | - Andrei Gurinov
- NMR Spectroscopy, Bijvoet Center for Biomolecular Research, Utrecht University Padualaan 8 3584 CH Utrecht The Netherlands
| | - Adil Safeer
- NMR Spectroscopy, Bijvoet Center for Biomolecular Research, Utrecht University Padualaan 8 3584 CH Utrecht The Netherlands
| | - Xinyi Cai
- Tianjin Key Laboratory on Technologies Enabling Development of Clinical Therapeutics and Diagnostics, School of Pharmacy, Tianjin Medical University Tianjin 300070 P. R. China
| | - Monique P C Mulder
- Department of Cell and Chemical Biology, Leiden University Medical Center (LUMC) Einthovenweg 20 2333 ZC Leiden The Netherlands
| | - Yangping Liu
- Tianjin Key Laboratory on Technologies Enabling Development of Clinical Therapeutics and Diagnostics, School of Pharmacy, Tianjin Medical University Tianjin 300070 P. R. China
| | - Gert E Folkers
- NMR Spectroscopy, Bijvoet Center for Biomolecular Research, Utrecht University Padualaan 8 3584 CH Utrecht The Netherlands
| | - Marc Baldus
- NMR Spectroscopy, Bijvoet Center for Biomolecular Research, Utrecht University Padualaan 8 3584 CH Utrecht The Netherlands
| |
Collapse
|
10
|
Zhao Y, El Mkami H, Hunter RI, Casano G, Ouari O, Smith GM. Large cross-effect dynamic nuclear polarisation enhancements with kilowatt inverting chirped pulses at 94 GHz. Commun Chem 2023; 6:171. [PMID: 37607991 PMCID: PMC10444895 DOI: 10.1038/s42004-023-00963-w] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2023] [Accepted: 07/25/2023] [Indexed: 08/24/2023] Open
Abstract
Dynamic nuclear polarisation (DNP) is a process that transfers electron spin polarisation to nuclei by applying resonant microwave radiation, and has been widely used to improve the sensitivity of nuclear magnetic resonance (NMR). Here we demonstrate new levels of performance for static cross-effect proton DNP using high peak power chirped inversion pulses at 94 GHz to create a strong polarisation gradient across the inhomogeneously broadened line of the mono-radical 4-amino TEMPO. Enhancements of up to 340 are achieved at an average power of a few hundred mW, with fast build-up times (3 s). Experiments are performed using a home-built wideband kW pulsed electron paramagnetic resonance (EPR) spectrometer operating at 94 GHz, integrated with an NMR detection system. Simultaneous DNP and EPR characterisation of other mono-radicals and biradicals, as a function of temperature, leads to additional insights into limiting relaxation mechanisms and give further motivation for the development of wideband pulsed amplifiers for DNP at higher frequencies.
Collapse
Affiliation(s)
- Yujie Zhao
- School of Physics and Astronomy, University of St Andrews, KY16 9SS, Fife, Scotland
| | - Hassane El Mkami
- School of Physics and Astronomy, University of St Andrews, KY16 9SS, Fife, Scotland
| | - Robert I Hunter
- School of Physics and Astronomy, University of St Andrews, KY16 9SS, Fife, Scotland
| | - Gilles Casano
- Aix Marseille University, CNRS, ICR, UMR 7273, F-13013, Marseille, France
| | - Olivier Ouari
- Aix Marseille University, CNRS, ICR, UMR 7273, F-13013, Marseille, France
| | - Graham M Smith
- School of Physics and Astronomy, University of St Andrews, KY16 9SS, Fife, Scotland.
| |
Collapse
|
11
|
De Biasi F, Hope MA, Avalos CE, Karthikeyan G, Casano G, Mishra A, Badoni S, Stevanato G, Kubicki DJ, Milani J, Ansermet JP, Rossini AJ, Lelli M, Ouari O, Emsley L. Optically Enhanced Solid-State 1H NMR Spectroscopy. J Am Chem Soc 2023. [PMID: 37366803 DOI: 10.1021/jacs.3c03937] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/28/2023]
Abstract
Low sensitivity is the primary limitation to extending nuclear magnetic resonance (NMR) techniques to more advanced chemical and structural studies. Photochemically induced dynamic nuclear polarization (photo-CIDNP) is an NMR hyperpolarization technique where light is used to excite a suitable donor-acceptor system, creating a spin-correlated radical pair whose evolution drives nuclear hyperpolarization. Systems that exhibit photo-CIDNP in solids are not common, and this effect has, up to now, only been observed for 13C and 15N nuclei. However, the low gyromagnetic ratio and natural abundance of these nuclei trap the local hyperpolarization in the vicinity of the chromophore and limit the utility for bulk hyperpolarization. Here, we report the first example of optically enhanced solid-state 1H NMR spectroscopy in the high-field regime. This is achieved via photo-CIDNP of a donor-chromophore-acceptor molecule in a frozen solution at 0.3 T and 85 K, where spontaneous spin diffusion among the abundant strongly coupled 1H nuclei relays polarization through the whole sample, yielding a 16-fold bulk 1H signal enhancement under continuous laser irradiation at 450 nm. These findings enable a new strategy for hyperpolarized NMR beyond the current limits of conventional microwave-driven DNP.
Collapse
Affiliation(s)
- Federico De Biasi
- Institut des Sciences et Ingenierie Chimiques, École Polytechnique Fedérale de Lausanne (EPFL), CH-1015 Lausanne, Switzerland
| | - Michael A Hope
- Institut des Sciences et Ingenierie Chimiques, École Polytechnique Fedérale de Lausanne (EPFL), CH-1015 Lausanne, Switzerland
| | - Claudia E Avalos
- Institut des Sciences et Ingenierie Chimiques, École Polytechnique Fedérale de Lausanne (EPFL), CH-1015 Lausanne, Switzerland
| | - Ganesan Karthikeyan
- Institute of Radical Chemistry, Aix-Marseille University, CNRS, ICR, 13013 Marseille, France
| | - Gilles Casano
- Institute of Radical Chemistry, Aix-Marseille University, CNRS, ICR, 13013 Marseille, France
| | - Aditya Mishra
- Institut des Sciences et Ingenierie Chimiques, École Polytechnique Fedérale de Lausanne (EPFL), CH-1015 Lausanne, Switzerland
| | - Saumya Badoni
- Institut des Sciences et Ingenierie Chimiques, École Polytechnique Fedérale de Lausanne (EPFL), CH-1015 Lausanne, Switzerland
| | - Gabriele Stevanato
- Institut des Sciences et Ingenierie Chimiques, École Polytechnique Fedérale de Lausanne (EPFL), CH-1015 Lausanne, Switzerland
| | - Dominik J Kubicki
- Institut des Sciences et Ingenierie Chimiques, École Polytechnique Fedérale de Lausanne (EPFL), CH-1015 Lausanne, Switzerland
| | - Jonas Milani
- Institut de Physique, École Polytechnique Fedérale de Lausanne (EPFL), CH-1015 Lausanne, Switzerland
| | - Jean-Philippe Ansermet
- Institut de Physique, École Polytechnique Fedérale de Lausanne (EPFL), CH-1015 Lausanne, Switzerland
| | - Aaron J Rossini
- U.S. Department of Energy, Ames Laboratory, Ames, Iowa 50011, United States
- Department of Chemistry, Iowa State University, Ames, Iowa 50011, United States
| | - Moreno Lelli
- Magnetic Resonance Center (CERM) and Department of Chemistry "Ugo Schiff", University of Florence, 50019 Sesto Fiorentino, Italy
- Consorzio Interuniversitario Risonanze Magnetiche delle Metalloproteine Paramagnetiche (CIRMMP), 50019 Sesto Fiorentino, Italy
| | - Olivier Ouari
- Institute of Radical Chemistry, Aix-Marseille University, CNRS, ICR, 13013 Marseille, France
| | - Lyndon Emsley
- Institut des Sciences et Ingenierie Chimiques, École Polytechnique Fedérale de Lausanne (EPFL), CH-1015 Lausanne, Switzerland
| |
Collapse
|
12
|
Menzildjian G, Schlagnitweit J, Casano G, Ouari O, Gajan D, Lesage A. Polarizing agents for efficient high field DNP solid-state NMR spectroscopy under magic-angle spinning: from design principles to formulation strategies. Chem Sci 2023; 14:6120-6148. [PMID: 37325158 PMCID: PMC10266460 DOI: 10.1039/d3sc01079a] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Accepted: 05/09/2023] [Indexed: 06/17/2023] Open
Abstract
Dynamic Nuclear Polarization (DNP) has recently emerged as a cornerstone approach to enhance the sensitivity of solid-state NMR spectroscopy under Magic Angle Spinning (MAS), opening unprecedented analytical opportunities in chemistry and biology. DNP relies on a polarization transfer from unpaired electrons (present in endogenous or exogenous polarizing agents) to nearby nuclei. Developing and designing new polarizing sources for DNP solid-state NMR spectroscopy is currently an extremely active research field per se, that has recently led to significant breakthroughs and key achievements, in particular at high magnetic fields. This review describes recent developments in this area, highlighting key design principles that have been established over time and led to the introduction of increasingly more efficient polarizing sources. After a short introduction, Section 2 presents a brief history of solid-state DNP, highlighting the main polarization transfer schemes. The third section is devoted to the development of dinitroxide radicals, discussing the guidelines that were progressively established to design the fine-tuned molecular structures in use today. In Section 4, we describe recent efforts in developing hybrid radicals composed of a narrow EPR line radical covalently linked to a nitroxide, highlighting the parameters that modulate the DNP efficiency of these mixed structures. Section 5 reviews recent advances in the design of metal complexes suitable for DNP MAS NMR as exogenous electron sources. In parallel, current strategies that exploit metal ions as endogenous polarization sources are discussed. Section 6 briefly describes the recent introduction of mixed-valence radicals. In the last part, experimental aspects regarding sample formulation are reviewed to make best use of these polarizing agents in a broad panel of application fields.
Collapse
Affiliation(s)
- Georges Menzildjian
- Centre de RMN à, Très Hauts Champs, Université de Lyon (CNRS/ENS Lyon/UCB Lyon 1) 5 Rue de la doua 69100 Villeurbanne France
| | - Judith Schlagnitweit
- Centre de RMN à, Très Hauts Champs, Université de Lyon (CNRS/ENS Lyon/UCB Lyon 1) 5 Rue de la doua 69100 Villeurbanne France
| | - Gilles Casano
- Aix Marseille Univ., CNRS, Institut de Chimie Radicalaire, UMR 7273 Marseille France
| | - Olivier Ouari
- Aix Marseille Univ., CNRS, Institut de Chimie Radicalaire, UMR 7273 Marseille France
| | - David Gajan
- Centre de RMN à, Très Hauts Champs, Université de Lyon (CNRS/ENS Lyon/UCB Lyon 1) 5 Rue de la doua 69100 Villeurbanne France
| | - Anne Lesage
- Centre de RMN à, Très Hauts Champs, Université de Lyon (CNRS/ENS Lyon/UCB Lyon 1) 5 Rue de la doua 69100 Villeurbanne France
| |
Collapse
|
13
|
Lends A, Birlirakis N, Cai X, Daskalov A, Shenoy J, Abdul-Shukkoor MB, Berbon M, Ferrage F, Liu Y, Loquet A, Tan KO. Efficient 18.8 T MAS-DNP NMR reveals hidden side chains in amyloid fibrils. JOURNAL OF BIOMOLECULAR NMR 2023:10.1007/s10858-023-00416-5. [PMID: 37289306 DOI: 10.1007/s10858-023-00416-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Subscribe] [Scholar Register] [Received: 01/04/2023] [Accepted: 05/02/2023] [Indexed: 06/09/2023]
Abstract
Amyloid fibrils are large and insoluble protein assemblies composed of a rigid core associated with a cross-β arrangement rich in β-sheet structural elements. It has been widely observed in solid-state NMR experiments that semi-rigid protein segments or side chains do not yield easily observable NMR signals at room temperature. The reasons for the missing peaks may be due to the presence of unfavorable dynamics that interfere with NMR experiments, which result in very weak or unobservable NMR signals. Therefore, for amyloid fibrils, semi-rigid and dynamically disordered segments flanking the amyloid core are very challenging to study. Here, we show that high-field dynamic nuclear polarization (DNP), an NMR hyperpolarization technique typically performed at low temperatures, can circumvent this issue because (i) the low-temperature environment (~ 100 K) slows down the protein dynamics to escape unfavorable detection regime, (ii) DNP improves the overall NMR sensitivity including those of flexible side chains, and (iii) efficient cross-effect DNP biradicals (SNAPol-1) optimized for high-field DNP (≥ 18.8 T) are employed to offer high sensitivity and resolution suitable for biomolecular NMR applications. By combining these factors, we have successfully established an impressive enhancement factor of ε ~ 50 on amyloid fibrils using an 18.8 T/ 800 MHz magnet. We have compared the DNP efficiencies of M-TinyPol, NATriPol-3, and SNAPol-1 biradicals on amyloid fibrils. We found that SNAPol-1 (with ε ~ 50) outperformed the other two radicals. The MAS DNP experiments revealed signals of flexible side chains previously inaccessible at conventional room-temperature experiments. These results demonstrate the potential of MAS-DNP NMR as a valuable tool for structural investigations of amyloid fibrils, particularly for side chains and dynamically disordered segments otherwise hidden at room temperature.
Collapse
Affiliation(s)
- Alons Lends
- CNRS, Chemistry and Biology of Membranes and Nanoobjects (CBMN), UMR 5348, Institut Europeen de Chimie et Biologie (IECB), University of Bordeaux, 33600, Pessac, France
| | - Nicolas Birlirakis
- Laboratoire des Biomolécules, LBM, Département de Chimie, École Normale Supérieure, PSL University, Sorbonne Université, CNRS, 75005, Paris, France
| | - Xinyi Cai
- Tianjin Key Laboratory on Technologies Enabling Development of Clinical Therapeutics and Diagnostics, School of Pharmacy, Tianjin Medical University, Tianjin, 300070, China
| | - Asen Daskalov
- CNRS, Chemistry and Biology of Membranes and Nanoobjects (CBMN), UMR 5348, Institut Europeen de Chimie et Biologie (IECB), University of Bordeaux, 33600, Pessac, France
| | - Jayakrishna Shenoy
- CNRS, Chemistry and Biology of Membranes and Nanoobjects (CBMN), UMR 5348, Institut Europeen de Chimie et Biologie (IECB), University of Bordeaux, 33600, Pessac, France
| | - Muhammed Bilal Abdul-Shukkoor
- CNRS, Chemistry and Biology of Membranes and Nanoobjects (CBMN), UMR 5348, Institut Europeen de Chimie et Biologie (IECB), University of Bordeaux, 33600, Pessac, France
| | - Mélanie Berbon
- CNRS, Chemistry and Biology of Membranes and Nanoobjects (CBMN), UMR 5348, Institut Europeen de Chimie et Biologie (IECB), University of Bordeaux, 33600, Pessac, France
| | - Fabien Ferrage
- Laboratoire des Biomolécules, LBM, Département de Chimie, École Normale Supérieure, PSL University, Sorbonne Université, CNRS, 75005, Paris, France
| | - Yangping Liu
- Tianjin Key Laboratory on Technologies Enabling Development of Clinical Therapeutics and Diagnostics, School of Pharmacy, Tianjin Medical University, Tianjin, 300070, China
| | - Antoine Loquet
- CNRS, Chemistry and Biology of Membranes and Nanoobjects (CBMN), UMR 5348, Institut Europeen de Chimie et Biologie (IECB), University of Bordeaux, 33600, Pessac, France.
| | - Kong Ooi Tan
- Laboratoire des Biomolécules, LBM, Département de Chimie, École Normale Supérieure, PSL University, Sorbonne Université, CNRS, 75005, Paris, France.
| |
Collapse
|
14
|
Dervişoğlu R, Antonschmidt L, Nimerovsky E, Sant V, Kim M, Ryazanov S, Leonov A, Carlos Fuentes-Monteverde J, Wegstroth M, Giller K, Mathies G, Giese A, Becker S, Griesinger C, Andreas LB. Anle138b interaction in α-synuclein aggregates by dynamic nuclear polarization NMR. Methods 2023; 214:18-27. [PMID: 37037308 DOI: 10.1016/j.ymeth.2023.04.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Revised: 03/22/2023] [Accepted: 04/06/2023] [Indexed: 04/12/2023] Open
Abstract
Small molecules that bind to oligomeric protein species such as membrane proteins and fibrils are of clinical interest for development of therapeutics and diagnostics. Definition of the binding site at atomic resolution via NMR is often challenging due to low binding stoichiometry of the small molecule. For fibrils and aggregation intermediates grown in the presence of lipids, we report atomic-resolution contacts to the small molecule at sub nm distance via solid-state NMR using dynamic nuclear polarization (DNP) and orthogonally labelled samples of the protein and the small molecule. We apply this approach to α-synuclein (αS) aggregates in complex with the small molecule anle138b, which is a clinical drug candidate for disease modifying therapy. The small central pyrazole moiety of anle138b is detected in close proximity to the protein backbone and differences in the contacts between fibrils and early intermediates are observed. For intermediate species, the 100 K condition for DNP helps to preserve the aggregation state, while for both fibrils and oligomers, the DNP enhancement is essential to obtain sufficient sensitivity.
Collapse
Affiliation(s)
- Rıza Dervişoğlu
- Department of NMR based structural Biology, Max Planck Institute for Multidisciplinary Sciences, Göttingen, Germany
| | - Leif Antonschmidt
- Department of NMR based structural Biology, Max Planck Institute for Multidisciplinary Sciences, Göttingen, Germany
| | - Evgeny Nimerovsky
- Department of NMR based structural Biology, Max Planck Institute for Multidisciplinary Sciences, Göttingen, Germany
| | - Vrinda Sant
- Department of NMR based structural Biology, Max Planck Institute for Multidisciplinary Sciences, Göttingen, Germany
| | - Myeongkyu Kim
- Department of NMR based structural Biology, Max Planck Institute for Multidisciplinary Sciences, Göttingen, Germany
| | - Sergey Ryazanov
- Department of NMR based structural Biology, Max Planck Institute for Multidisciplinary Sciences, Göttingen, Germany; Center for Neuropathology and Prion Research, Ludwig-Maximilians University, Munich, Germany
| | - Andrei Leonov
- Department of NMR based structural Biology, Max Planck Institute for Multidisciplinary Sciences, Göttingen, Germany; Center for Neuropathology and Prion Research, Ludwig-Maximilians University, Munich, Germany
| | | | - Melanie Wegstroth
- Department of NMR based structural Biology, Max Planck Institute for Multidisciplinary Sciences, Göttingen, Germany
| | - Karin Giller
- Department of NMR based structural Biology, Max Planck Institute for Multidisciplinary Sciences, Göttingen, Germany
| | | | - Armin Giese
- Center for Neuropathology and Prion Research, Ludwig-Maximilians University, Munich, Germany
| | - Stefan Becker
- Department of NMR based structural Biology, Max Planck Institute for Multidisciplinary Sciences, Göttingen, Germany
| | - Christian Griesinger
- Department of NMR based structural Biology, Max Planck Institute for Multidisciplinary Sciences, Göttingen, Germany; Cluster of Excellence "Multiscale Bioimaging: From Molecular Machines to Networks of Excitable Cells" (MBExC), University of Göttingen, Göttingen, Germany
| | - Loren B Andreas
- Department of NMR based structural Biology, Max Planck Institute for Multidisciplinary Sciences, Göttingen, Germany.
| |
Collapse
|
15
|
Eills J, Budker D, Cavagnero S, Chekmenev EY, Elliott SJ, Jannin S, Lesage A, Matysik J, Meersmann T, Prisner T, Reimer JA, Yang H, Koptyug IV. Spin Hyperpolarization in Modern Magnetic Resonance. Chem Rev 2023; 123:1417-1551. [PMID: 36701528 PMCID: PMC9951229 DOI: 10.1021/acs.chemrev.2c00534] [Citation(s) in RCA: 93] [Impact Index Per Article: 46.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2022] [Indexed: 01/27/2023]
Abstract
Magnetic resonance techniques are successfully utilized in a broad range of scientific disciplines and in various practical applications, with medical magnetic resonance imaging being the most widely known example. Currently, both fundamental and applied magnetic resonance are enjoying a major boost owing to the rapidly developing field of spin hyperpolarization. Hyperpolarization techniques are able to enhance signal intensities in magnetic resonance by several orders of magnitude, and thus to largely overcome its major disadvantage of relatively low sensitivity. This provides new impetus for existing applications of magnetic resonance and opens the gates to exciting new possibilities. In this review, we provide a unified picture of the many methods and techniques that fall under the umbrella term "hyperpolarization" but are currently seldom perceived as integral parts of the same field. Specifically, before delving into the individual techniques, we provide a detailed analysis of the underlying principles of spin hyperpolarization. We attempt to uncover and classify the origins of hyperpolarization, to establish its sources and the specific mechanisms that enable the flow of polarization from a source to the target spins. We then give a more detailed analysis of individual hyperpolarization techniques: the mechanisms by which they work, fundamental and technical requirements, characteristic applications, unresolved issues, and possible future directions. We are seeing a continuous growth of activity in the field of spin hyperpolarization, and we expect the field to flourish as new and improved hyperpolarization techniques are implemented. Some key areas for development are in prolonging polarization lifetimes, making hyperpolarization techniques more generally applicable to chemical/biological systems, reducing the technical and equipment requirements, and creating more efficient excitation and detection schemes. We hope this review will facilitate the sharing of knowledge between subfields within the broad topic of hyperpolarization, to help overcome existing challenges in magnetic resonance and enable novel applications.
Collapse
Affiliation(s)
- James Eills
- Institute
for Bioengineering of Catalonia, Barcelona
Institute of Science and Technology, 08028Barcelona, Spain
| | - Dmitry Budker
- Johannes
Gutenberg-Universität Mainz, 55128Mainz, Germany
- Helmholtz-Institut,
GSI Helmholtzzentrum für Schwerionenforschung, 55128Mainz, Germany
- Department
of Physics, UC Berkeley, Berkeley, California94720, United States
| | - Silvia Cavagnero
- Department
of Chemistry, University of Wisconsin, Madison, Madison, Wisconsin53706, United States
| | - Eduard Y. Chekmenev
- Department
of Chemistry, Integrative Biosciences (IBio), Karmanos Cancer Institute
(KCI), Wayne State University, Detroit, Michigan48202, United States
- Russian
Academy of Sciences, Moscow119991, Russia
| | - Stuart J. Elliott
- Molecular
Sciences Research Hub, Imperial College
London, LondonW12 0BZ, United Kingdom
| | - Sami Jannin
- Centre
de RMN à Hauts Champs de Lyon, Université
de Lyon, CNRS, ENS Lyon, Université Lyon 1, 69100Villeurbanne, France
| | - Anne Lesage
- Centre
de RMN à Hauts Champs de Lyon, Université
de Lyon, CNRS, ENS Lyon, Université Lyon 1, 69100Villeurbanne, France
| | - Jörg Matysik
- Institut
für Analytische Chemie, Universität
Leipzig, Linnéstr. 3, 04103Leipzig, Germany
| | - Thomas Meersmann
- Sir
Peter Mansfield Imaging Centre, University Park, School of Medicine, University of Nottingham, NottinghamNG7 2RD, United Kingdom
| | - Thomas Prisner
- Institute
of Physical and Theoretical Chemistry and Center of Biomolecular Magnetic
Resonance, Goethe University Frankfurt, , 60438Frankfurt
am Main, Germany
| | - Jeffrey A. Reimer
- Department
of Chemical and Biomolecular Engineering, UC Berkeley, and Materials Science Division, Lawrence Berkeley National
Laboratory, Berkeley, California94720, United States
| | - Hanming Yang
- Department
of Chemistry, University of Wisconsin, Madison, Madison, Wisconsin53706, United States
| | - Igor V. Koptyug
- International Tomography Center, Siberian
Branch of the Russian Academy
of Sciences, 630090Novosibirsk, Russia
| |
Collapse
|
16
|
Takamuku M, Sugishita T, Tamaki H, Dong L, So M, Fujiwara T, Matsuki Y. Evolution of α-synuclein conformation ensemble toward amyloid fibril via liquid-liquid phase separation (LLPS) as investigated by dynamic nuclear polarization-enhanced solid-state MAS NMR. Neurochem Int 2022; 157:105345. [DOI: 10.1016/j.neuint.2022.105345] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2022] [Revised: 03/11/2022] [Accepted: 04/21/2022] [Indexed: 10/18/2022]
|
17
|
Harrabi R, Halbritter T, Aussenac F, Dakhlaoui O, van Tol J, Damodaran KK, Lee D, Paul S, Hediger S, Mentink-Vigier F, Sigurdsson ST, De Paëpe G. Highly Efficient Polarizing Agents for MAS-DNP of Proton-Dense Molecular Solids. Angew Chem Int Ed Engl 2022; 61:e202114103. [PMID: 35019217 PMCID: PMC8901535 DOI: 10.1002/anie.202114103] [Citation(s) in RCA: 36] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2021] [Indexed: 12/14/2022]
Abstract
Efficiently hyperpolarizing proton-dense molecular solids through dynamic nuclear polarization (DNP) solid-state NMR is still an unmet challenge. Polarizing agents (PAs) developed so far do not perform well on proton-rich systems, such as organic microcrystals and biomolecular assemblies. Herein we introduce a new PA, cAsymPol-POK, and report outstanding hyperpolarization efficiency on 12.76 kDa U-13 C,15 N-labeled LecA protein and pharmaceutical drugs at high magnetic fields (up to 18.8 T) and fast magic angle spinning (MAS) frequencies (up to 40 kHz). The performance of cAsymPol-POK is rationalized by MAS-DNP simulations combined with electron paramagnetic resonance (EPR), density functional theory (DFT) and molecular dynamics (MD). This work shows that this new biradical is compatible with challenging biomolecular applications and unlocks the rapid acquisition of 13 C-13 C and 15 N-13 C correlations of pharmaceutical drugs at natural isotopic abundance, which are key experiments for structure determination.
Collapse
Affiliation(s)
- Rania Harrabi
- Univ. Grenoble Alpes, CEA, CNRS, IRIG, MEM, 38000, Grenoble, France
| | - Thomas Halbritter
- University of Iceland, Department of chemistry, Science Institute, Dunhaga 3, 107, Reykjavik, Iceland
| | | | - Ons Dakhlaoui
- Univ. Grenoble Alpes, CEA, CNRS, IRIG, MEM, 38000, Grenoble, France.,Univ. Grenoble Alpes, CNRS, CERMAV, 38000, Grenoble, France
| | - Johan van Tol
- National High Magnetic Field Laboratory, Florida State University, Tallahassee, FL 32301, USA
| | - Krishna K Damodaran
- University of Iceland, Department of chemistry, Science Institute, Dunhaga 3, 107, Reykjavik, Iceland
| | - Daniel Lee
- Univ. Grenoble Alpes, CEA, CNRS, IRIG, MEM, 38000, Grenoble, France
| | - Subhradip Paul
- Univ. Grenoble Alpes, CEA, CNRS, IRIG, MEM, 38000, Grenoble, France
| | - Sabine Hediger
- Univ. Grenoble Alpes, CEA, CNRS, IRIG, MEM, 38000, Grenoble, France
| | - Frederic Mentink-Vigier
- National High Magnetic Field Laboratory, Florida State University, Tallahassee, FL 32301, USA
| | - Snorri Th Sigurdsson
- University of Iceland, Department of chemistry, Science Institute, Dunhaga 3, 107, Reykjavik, Iceland
| | - Gaël De Paëpe
- Univ. Grenoble Alpes, CEA, CNRS, IRIG, MEM, 38000, Grenoble, France
| |
Collapse
|
18
|
Jardón-Álvarez D, Malka T, van Tol J, Feldman Y, Carmieli R, Leskes M. Monitoring electron spin fluctuations with paramagnetic relaxation enhancement. JOURNAL OF MAGNETIC RESONANCE (SAN DIEGO, CALIF. : 1997) 2022; 336:107143. [PMID: 35085928 DOI: 10.1016/j.jmr.2022.107143] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/25/2021] [Revised: 12/30/2021] [Accepted: 01/03/2022] [Indexed: 06/14/2023]
Abstract
The magnetic interactions between the spin of an unpaired electron and the surrounding nuclear spins can be exploited to gain structural information, to reduce nuclear relaxation times as well as to create nuclear hyperpolarization via dynamic nuclear polarization (DNP). A central aspect that determines how these interactions manifest from the point of view of NMR is the timescale of the fluctuations of the magnetic moment of the electron spins. These fluctuations, however, are elusive, particularly when electron relaxation times are short or interactions among electronic spins are strong. Here we map the fluctuations by analyzing the ratio between longitudinal and transverse nuclear relaxation times T1/T2, a quantity which depends uniquely on the rate of the electron fluctuations and the Larmor frequency of the involved nuclei. This analysis enables rationalizing the evolution of NMR lineshapes, signal quenching as well as DNP enhancements as a function of the concentration of the paramagnetic species and the temperature, demonstrated here for LiMg1-xMnxPO4 and Fe(III) doped Li4Ti5O12, respectively. For the latter, we observe a linear dependence of the DNP enhancement and the electron relaxation time within a temperature range between 100 and 300 K.
Collapse
Affiliation(s)
- Daniel Jardón-Álvarez
- Department of Molecular Chemistry and Materials Science, Weizmann Institute of Science, Rehovot 76100, Israel
| | - Tahel Malka
- Department of Molecular Chemistry and Materials Science, Weizmann Institute of Science, Rehovot 76100, Israel
| | - Johan van Tol
- National High Magnetic Field Laboratory, Florida State University, 1800 E. Paul Dirac Dr, Tallahassee, FL 32310, United States
| | - Yishay Feldman
- Department of Chemical Research Support, Weizmann Institute of Science, Rehovot 76100, Israel
| | - Raanan Carmieli
- Department of Chemical Research Support, Weizmann Institute of Science, Rehovot 76100, Israel
| | - Michal Leskes
- Department of Molecular Chemistry and Materials Science, Weizmann Institute of Science, Rehovot 76100, Israel.
| |
Collapse
|
19
|
Biedenbänder T, Aladin V, Saeidpour S, Corzilius B. Dynamic Nuclear Polarization for Sensitivity Enhancement in Biomolecular Solid-State NMR. Chem Rev 2022; 122:9738-9794. [PMID: 35099939 DOI: 10.1021/acs.chemrev.1c00776] [Citation(s) in RCA: 47] [Impact Index Per Article: 15.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Solid-state NMR with magic-angle spinning (MAS) is an important method in structural biology. While NMR can provide invaluable information about local geometry on an atomic scale even for large biomolecular assemblies lacking long-range order, it is often limited by low sensitivity due to small nuclear spin polarization in thermal equilibrium. Dynamic nuclear polarization (DNP) has evolved during the last decades to become a powerful method capable of increasing this sensitivity by two to three orders of magnitude, thereby reducing the valuable experimental time from weeks or months to just hours or days; in many cases, this allows experiments that would be otherwise completely unfeasible. In this review, we give an overview of the developments that have opened the field for DNP-enhanced biomolecular solid-state NMR including state-of-the-art applications at fast MAS and high magnetic field. We present DNP mechanisms, polarizing agents, and sample constitution methods suitable for biomolecules. A wide field of biomolecular NMR applications is covered including membrane proteins, amyloid fibrils, large biomolecular assemblies, and biomaterials. Finally, we present perspectives and recent developments that may shape the field of biomolecular DNP in the future.
Collapse
Affiliation(s)
- Thomas Biedenbänder
- Institute of Chemistry, University of Rostock, Albert-Einstein-Straße 3a, 18059 Rostock, Germany.,Department Life, Light & Matter, University of Rostock, Albert-Einstein-Straße 25, 18059 Rostock, Germany
| | - Victoria Aladin
- Institute of Chemistry, University of Rostock, Albert-Einstein-Straße 3a, 18059 Rostock, Germany.,Department Life, Light & Matter, University of Rostock, Albert-Einstein-Straße 25, 18059 Rostock, Germany
| | - Siavash Saeidpour
- Institute of Chemistry, University of Rostock, Albert-Einstein-Straße 3a, 18059 Rostock, Germany.,Department Life, Light & Matter, University of Rostock, Albert-Einstein-Straße 25, 18059 Rostock, Germany
| | - Björn Corzilius
- Institute of Chemistry, University of Rostock, Albert-Einstein-Straße 3a, 18059 Rostock, Germany.,Department Life, Light & Matter, University of Rostock, Albert-Einstein-Straße 25, 18059 Rostock, Germany
| |
Collapse
|
20
|
Harrabi R, Halbritter T, Aussenac F, Dakhlaoui O, van Tol J, Damodaran K, Lee D, PAUL S, Hediger S, Mentink-Vigier F, Sigurdsson S, De Paepe G. Highly Efficient Polarizing Agents for MAS‐DNP of Proton‐dense Molecular Solids. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202114103] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Rania Harrabi
- CEA lRlG: Commissariat a l'energie atomique et aux energies alternatives lnstitut de Recherche Interdisciplinaire de Grenoble IRIG FRANCE
| | | | | | - Ons Dakhlaoui
- CEA lRlG: Commissariat a l'energie atomique et aux energies alternatives lnstitut de Recherche Interdisciplinaire de Grenoble IRIG FRANCE
| | - Johan van Tol
- National High Magnetic Field Laboratory Florida State University UNITED STATES
| | | | - Daniel Lee
- CEA lRlG: Commissariat a l'energie atomique et aux energies alternatives lnstitut de Recherche Interdisciplinaire de Grenoble IRIG FRANCE
| | - Subhradip PAUL
- CEA lRlG: Commissariat a l'energie atomique et aux energies alternatives lnstitut de Recherche Interdisciplinaire de Grenoble IRIG FRANCE
| | - Sabine Hediger
- CEA lRlG: Commissariat a l'energie atomique et aux energies alternatives lnstitut de Recherche Interdisciplinaire de Grenoble IRIG FRANCE
| | | | | | - Gael De Paepe
- Commissariat a l'energie atomique et aux energies alternatives lnstitut de Recherche Interdisciplinaire de Grenoble IRIG 17 rue des martyrs 38054 Grenoble FRANCE
| |
Collapse
|
21
|
Li Y, Chaklashiya R, Takahashi H, Kawahara Y, Tagami K, Tobar C, Han S. Solid-state MAS NMR at ultra low temperature of hydrated alanine doped with DNP radicals. JOURNAL OF MAGNETIC RESONANCE (SAN DIEGO, CALIF. : 1997) 2021; 333:107090. [PMID: 34717278 DOI: 10.1016/j.jmr.2021.107090] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/25/2021] [Revised: 10/04/2021] [Accepted: 10/12/2021] [Indexed: 06/13/2023]
Abstract
Magic angle spinning (MAS) nuclear magnetic resonance (NMR) experiments at ultra low temperature (ULT) (≪ 100 K) have demonstrated clear benefits for obtaining large signal sensitivity gain and probing spin dynamics phenomena at ULT. ULT NMR is furthermore a highly promising platform for solid-state dynamic nuclear polarization (DNP). However, ULT NMR is not widely used, given limited availability of such instrumentation from commercial sources. In this paper, we present a comprehensive study of hydrated [U-13C]alanine, a standard bio-solid sample, from the first commercial 14.1 Tesla NMR spectrometer equipped with a closed-cycle helium ULT-MAS system. The closed-cycle helium MAS system provides precise temperature control from 25 K to 100 K and stable MAS from 1.5 kHz to 12 kHz. The 13C CP-MAS NMR of [U-13C]alanine showed 400% signal gain at 28 K compared with at 100 K. The large sensitivity gain results from the Boltzmann factor, radio frequency circuitry quality factor improvement, and the suppression of its methyl group rotation at ULT. We further observed that the addition of organic biradicals widely used for solid-state DNP significantly shortens the 1H T1 spin lattice relaxation time at ULT, without further broadening the 13C spectral linewidth compared to at 90 K. The mechanism of 1H T1 shortening is dominated by the two-electron-one-nucleus triple flip transition underlying the Cross Effect mechanism, widely relied upon to drive solid-state DNP. Our experimental observations suggest that the prospects of MAS NMR and DNP under ULT conditions established with a closed-cycle helium MAS system are bright.
Collapse
Affiliation(s)
- Yuanxin Li
- Department of Chemistry and Biochemistry, University of California, Santa Barbara, Santa Barbara, CA 93106, United States
| | - Raj Chaklashiya
- Materials Department, University of California, Santa Barbara, Santa Barbara, CA 93106, United States
| | | | | | - Kan Tagami
- Department of Chemistry and Biochemistry, University of California, Santa Barbara, Santa Barbara, CA 93106, United States
| | - Celeste Tobar
- Department of Chemistry and Biochemistry, University of California, Santa Barbara, Santa Barbara, CA 93106, United States
| | - Songi Han
- Department of Chemistry and Biochemistry, University of California, Santa Barbara, Santa Barbara, CA 93106, United States; Department of Chemical Engineering, University of California, Santa Barbara, Santa Barbara, CA 93106, United States.
| |
Collapse
|
22
|
Overall SA, Barnes AB. Biomolecular Perturbations in In-Cell Dynamic Nuclear Polarization Experiments. Front Mol Biosci 2021; 8:743829. [PMID: 34751246 PMCID: PMC8572051 DOI: 10.3389/fmolb.2021.743829] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2021] [Accepted: 10/06/2021] [Indexed: 11/13/2022] Open
Abstract
In-cell DNP is a growing application of NMR to the study of biomolecular structure and function within intact cells. An important unresolved question for in-cell DNP spectroscopy is the integrity of cellular samples under the cryogenic conditions of DNP. Despite the rich literature around cryopreservation of cells in the fields of stem cell/embryonic cell therapeutics, cell line preservation and in cryo-EM applications, the effect of cryopreservation procedures on DNP parameters is unclear. In this report we investigate cell survival and apoptosis in the presence of cryopreserving agents and DNP radicals. We also assess the effects of these reagents on cellular enhancements. We show that the DNP radical AMUPol has no effect on membrane permeability and does not induce apoptosis. Furthermore, the standard aqueous glass forming reagent, comprised of 60/30/10 d8-glycerol/D2O/H2O (DNP juice), rapidly dehydrates cells and induces apoptosis prior to freezing, reducing structural integrity of the sample prior to DNP analysis. Preservation with d6-DMSO at 10% v/v provided similar DNP enhancements per √unit time compared to glycerol preservation with superior maintenance of cell size and membrane integrity prior to freezing. DMSO preservation also greatly enhanced post-thaw survival of cells slow-frozen at 1°C/min. We therefore demonstrate that in-cell DNP-NMR studies should be done with d6-DMSO as cryoprotectant and raise important considerations for the progression of in-cell DNP-NMR towards the goal of high quality structural studies.
Collapse
Affiliation(s)
- Sarah A Overall
- Laboratory of Physical Chemistry, ETH Zürich, Zürich, Switzerland
| | | |
Collapse
|
23
|
Cai X, Lucini Paioni A, Adler A, Yao R, Zhang W, Beriashvili D, Safeer A, Gurinov A, Rockenbauer A, Song Y, Baldus M, Liu Y. Highly Efficient Trityl-Nitroxide Biradicals for Biomolecular High-Field Dynamic Nuclear Polarization. Chemistry 2021; 27:12758-12762. [PMID: 34181286 DOI: 10.1002/chem.202102253] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2021] [Indexed: 12/22/2022]
Abstract
Dynamic nuclear polarization (DNP) is a powerful method to enhance the sensitivity of solid-state magnetic nuclear resonance (ssNMR) spectroscopy. However, its biomolecular applications at high magnetic fields (preferably>14 T) have so far been limited by the intrinsically low efficiency of polarizing agents and sample preparation aspects. Herein, we report a new class of trityl-nitroxide biradicals, dubbed SNAPols that combine high DNP efficiency with greatly enhanced hydrophilicity. SNAPol-1, the best compound in the series, shows DNP enhancement factors at 18.8 T of more than 100 in small molecules and globular proteins and also exhibits strong DNP enhancements in membrane proteins and cellular preparations. By integrating optimal sensitivity and high resolution, we expect widespread applications of this new polarizing agent in high-field DNP/ssNMR spectroscopy, especially for complex biomolecules.
Collapse
Affiliation(s)
- Xinyi Cai
- The province and ministry co-sponsored collaborative innovation center for medical epigenetics Tianjin Key Laboratory on Technologies Enabling Development of Clinical Therapeutics and Diagnostics School of Pharmacy, Tianjin Medical University, Tianjin, 300070, P. R. China
| | - Alessandra Lucini Paioni
- NMR Spectroscopy group Bijvoet Center for Biomolecular Research, Utrecht University, Padualaan 8, 3584 CH Utrecht, The Netherlands
| | - Agnes Adler
- NMR Spectroscopy group Bijvoet Center for Biomolecular Research, Utrecht University, Padualaan 8, 3584 CH Utrecht, The Netherlands
| | - Ru Yao
- The province and ministry co-sponsored collaborative innovation center for medical epigenetics Tianjin Key Laboratory on Technologies Enabling Development of Clinical Therapeutics and Diagnostics School of Pharmacy, Tianjin Medical University, Tianjin, 300070, P. R. China
| | - Wenxiao Zhang
- The province and ministry co-sponsored collaborative innovation center for medical epigenetics Tianjin Key Laboratory on Technologies Enabling Development of Clinical Therapeutics and Diagnostics School of Pharmacy, Tianjin Medical University, Tianjin, 300070, P. R. China
| | - David Beriashvili
- NMR Spectroscopy group Bijvoet Center for Biomolecular Research, Utrecht University, Padualaan 8, 3584 CH Utrecht, The Netherlands
| | - Adil Safeer
- NMR Spectroscopy group Bijvoet Center for Biomolecular Research, Utrecht University, Padualaan 8, 3584 CH Utrecht, The Netherlands
| | - Andrei Gurinov
- NMR Spectroscopy group Bijvoet Center for Biomolecular Research, Utrecht University, Padualaan 8, 3584 CH Utrecht, The Netherlands
| | - Antal Rockenbauer
- Institute of Materials and Environmental Chemistry Hungarian Academy of Sciences and Department of Physics, Budapest University of Technology and Economics Budafoki ut 8, 1111, Budapest, Hungary
| | - Yuguang Song
- The province and ministry co-sponsored collaborative innovation center for medical epigenetics Tianjin Key Laboratory on Technologies Enabling Development of Clinical Therapeutics and Diagnostics School of Pharmacy, Tianjin Medical University, Tianjin, 300070, P. R. China
| | - Marc Baldus
- NMR Spectroscopy group Bijvoet Center for Biomolecular Research, Utrecht University, Padualaan 8, 3584 CH Utrecht, The Netherlands
| | - Yangping Liu
- The province and ministry co-sponsored collaborative innovation center for medical epigenetics Tianjin Key Laboratory on Technologies Enabling Development of Clinical Therapeutics and Diagnostics School of Pharmacy, Tianjin Medical University, Tianjin, 300070, P. R. China
| |
Collapse
|
24
|
Herr K, Fleckenstein M, Brodrecht M, Höfler MV, Heise H, Aussenac F, Gutmann T, Reggelin M, Buntkowsky G. A novel strategy for site selective spin-labeling to investigate bioactive entities by DNP and EPR spectroscopy. Sci Rep 2021; 11:13714. [PMID: 34211027 PMCID: PMC8249612 DOI: 10.1038/s41598-021-92975-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2021] [Accepted: 06/18/2021] [Indexed: 11/09/2022] Open
Abstract
A novel specific spin-labeling strategy for bioactive molecules is presented for eptifibatide (integrilin) an antiplatelet aggregation inhibitor, which derives from the venom of certain rattlesnakes. By specifically labeling the disulfide bridge this molecule becomes accessible for analytical techniques such as Electron Paramagnetic Resonance (EPR) and solid state Dynamic Nuclear Polarization (DNP). The necessary spin-label was synthesized and inserted into the disulfide bridge of eptifibatide via reductive followed by insertion by a double Michael addition under physiological conditions. This procedure is universally applicable for disulfide containing biomolecules and is expected to preserve their tertiary structure with minimal change due to the small size of the label and restoring of the previous disulfide connection. HPLC and MS analysis show the successful introduction of the spin label and EPR spectroscopy confirms its activity. DNP-enhanced solid state NMR experiments show signal enhancement factors of up to 19 in 13C CP MAS experiments which corresponds to time saving factors of up to 361. This clearly shows the high potential of our new spin labeling strategy for the introduction of site selective radical spin labels into biomolecules and biosolids without compromising its conformational integrity for structural investigations employing solid-state DNP or advanced EPR techniques.
Collapse
Affiliation(s)
- Kevin Herr
- Institute of Physical Chemistry, Technical University Darmstadt, Alarich-Weiss-Straße 8, 64287, Darmstadt, Germany
| | - Max Fleckenstein
- Institute of Organic Chemistry, Technical University Darmstadt, Alarich-Weiss-Straße 4, 64287, Darmstadt, Germany
| | - Martin Brodrecht
- Institute of Physical Chemistry, Technical University Darmstadt, Alarich-Weiss-Straße 8, 64287, Darmstadt, Germany
| | - Mark V Höfler
- Institute of Physical Chemistry, Technical University Darmstadt, Alarich-Weiss-Straße 8, 64287, Darmstadt, Germany
| | - Henrike Heise
- Structural Biochemistry (ICS-6), Institute of Complex Systems, Forschungszentrum Jülich, 52425, Jülich, Germany.,Institut für Physikalische Biologie, Heinrich-Heine-Universität Düsseldorf, 40225, Düsseldorf, Germany
| | - Fabien Aussenac
- Bruker France SAS, 34 rue de l'industrie, 67160, Wissembourg, France
| | - Torsten Gutmann
- Institute of Physical Chemistry, Technical University Darmstadt, Alarich-Weiss-Straße 8, 64287, Darmstadt, Germany
| | - Michael Reggelin
- Institute of Organic Chemistry, Technical University Darmstadt, Alarich-Weiss-Straße 4, 64287, Darmstadt, Germany.
| | - Gerd Buntkowsky
- Institute of Physical Chemistry, Technical University Darmstadt, Alarich-Weiss-Straße 8, 64287, Darmstadt, Germany.
| |
Collapse
|
25
|
Gauto D, Dakhlaoui O, Marin-Montesinos I, Hediger S, De Paëpe G. Targeted DNP for biomolecular solid-state NMR. Chem Sci 2021; 12:6223-6237. [PMID: 34084422 PMCID: PMC8115112 DOI: 10.1039/d0sc06959k] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2020] [Accepted: 03/18/2021] [Indexed: 12/23/2022] Open
Abstract
High-field dynamic nuclear polarization is revolutionizing the scope of solid-state NMR with new applications in surface chemistry, materials science and structural biology. In this perspective article, we focus on a specific DNP approach, called targeted DNP, in which the paramagnets introduced to polarize are not uniformly distributed in the sample but site-specifically located on the biomolecular system. After reviewing the various targeting strategies reported to date, including a bio-orthogonal chemistry-based approach, we discuss the potential of targeted DNP to improve the overall NMR sensitivity while avoiding the use of glass-forming DNP matrix. This is especially relevant to the study of diluted biomolecular systems such as, for instance, membrane proteins within their lipidic environment. We also discuss routes towards extracting structural information from paramagnetic relaxation enhancement (PRE) induced by targeted DNP at cryogenic temperature, and the possibility to recover site-specific information in the vicinity of the paramagnetic moieties using high-resolution selective DNP spectra. Finally, we review the potential of targeted DNP for in-cell NMR studies and how it can be used to extract a given protein NMR signal from a complex cellular background.
Collapse
Affiliation(s)
- Diego Gauto
- Univ. Grenoble Alpes, CEA, CNRS, IRIG-MEM Grenoble France
| | - Ons Dakhlaoui
- Univ. Grenoble Alpes, CEA, CNRS, IRIG-MEM Grenoble France
- Univ. Grenoble Alpes, CNRS, CERMAV Grenoble France
| | - Ildefonso Marin-Montesinos
- Univ. Grenoble Alpes, CEA, CNRS, IRIG-MEM Grenoble France
- University of Aveiro, CICECO Chem. Dept. Aveiro Portugal
| | - Sabine Hediger
- Univ. Grenoble Alpes, CEA, CNRS, IRIG-MEM Grenoble France
| | - Gaël De Paëpe
- Univ. Grenoble Alpes, CEA, CNRS, IRIG-MEM Grenoble France
| |
Collapse
|
26
|
Matsuki Y, Kobayashi T, Fukazawa J, Perras FA, Pruski M, Fujiwara T. Efficiency analysis of helium-cooled MAS DNP: case studies of surface-modified nanoparticles and homogeneous small-molecule solutions. Phys Chem Chem Phys 2021; 23:4919-4926. [PMID: 33620367 DOI: 10.1039/d0cp05658h] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Despite the growing number of successful applications of dynamic nuclear polarization (DNP)-enhanced magic-angle spinning (MAS) NMR in structural biology and materials science, the nuclear polarizations achieved by current MAS DNP instrumentation are still considerably lower than the theoretical maximum. The method could be significantly strengthened if experiments were performed at temperatures much lower than those currently widely used (∼100 K). Recently, the prospects of helium (He)-cooled MAS DNP have been increased with the instrumental developments in MAS technology that uses cold helium gas for sample cooling. Despite the additional gains in sensitivity that have been observed with He-cooled MAS DNP, the performance of the technique has not been evaluated in the case of surfaces and interfaces that benefit the most from DNP. Herein, we studied the efficiency of DNP at temperatures between ∼30 K and ∼100 K for organically functionalized silica material and a homogeneous solution of small organic molecules at a magnetic field B0 = 16.4 T. We recorded the changes in signal enhancement, paramagnet-induced quenching and depolarization effects, DNP build-up rate, and Boltzmann polarization. For these samples, the increases in MAS-induced depolarization and DNP build-up times at around 30 K were not as severe as anticipated. In the case of the surface species, we determined that MAS DNP at 30 K provided ∼10 times higher sensitivity than MAS DNP at 90 K, which corresponds to the acceleration of experiments by multiplicative factors of up to 100.
Collapse
Affiliation(s)
- Yoh Matsuki
- Institute for Protein Research, Osaka University, Suita, Osaka 565-0871, Japan and Center for Quantum Information and Quantum Biology, Institute for Open and Transdisciplinary Research Initiatives, Osaka University, Toyonaka, Osaka 560-0043, Japan
| | - Takeshi Kobayashi
- Ames Laboratory, U.S. Department of Energy, Ames, Iowa 50011-3020, USA
| | - Jun Fukazawa
- Institute for Protein Research, Osaka University, Suita, Osaka 565-0871, Japan
| | - Frédéric A Perras
- Ames Laboratory, U.S. Department of Energy, Ames, Iowa 50011-3020, USA
| | - Marek Pruski
- Ames Laboratory, U.S. Department of Energy, Ames, Iowa 50011-3020, USA and Department of Chemistry, Iowa State University, Ames, Iowa 50011-3020, USA
| | - Toshimichi Fujiwara
- Institute for Protein Research, Osaka University, Suita, Osaka 565-0871, Japan and Center for Quantum Information and Quantum Biology, Institute for Open and Transdisciplinary Research Initiatives, Osaka University, Toyonaka, Osaka 560-0043, Japan
| |
Collapse
|
27
|
Narasimhan S, Pinto C, Lucini Paioni A, van der Zwan J, Folkers GE, Baldus M. Characterizing proteins in a native bacterial environment using solid-state NMR spectroscopy. Nat Protoc 2021; 16:893-918. [PMID: 33442051 DOI: 10.1038/s41596-020-00439-4] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2020] [Accepted: 10/09/2020] [Indexed: 01/29/2023]
Abstract
For a long time, solid-state nuclear magnetic resonance (ssNMR) has been employed to study complex biomolecular systems at the detailed chemical, structural, or dynamic level. Recent progress in high-resolution and high-sensitivity ssNMR, in combination with innovative sample preparation and labeling schemes, offers novel opportunities to study proteins in their native setting irrespective of the molecular tumbling rate. This protocol describes biochemical preparation schemes to obtain cellular samples of both soluble as well as insoluble or membrane-associated proteins in bacteria. To this end, the protocol is suitable for studying a protein of interest in both whole cells and in cell envelope or isolated membrane preparations. In the first stage of the procedure, an appropriate strain of Escherichia coli (DE3) is transformed with a plasmid of interest harboring the protein of interest under the control of an inducible T7 promoter. Next, the cells are adapted to grow in minimal (M9) medium. Before the growth enters stationary phase, protein expression is induced, and shortly thereafter, the native E. coli RNA polymerase is inhibited using rifampicin for targeted labeling of the protein of interest. The cells are harvested after expression and prepared for ssNMR rotor filling. In addition to conventional 13C/15N-detected ssNMR, we also outline how these preparations can be readily subjected to multidimensional ssNMR experiments using dynamic nuclear polarization (DNP) or proton (1H) detection schemes. We estimate that the entire preparative procedure until NMR experiments can be started takes 3-5 days.
Collapse
Affiliation(s)
- Siddarth Narasimhan
- NMR Spectroscopy, Bijvoet Center for Biomolecular Research, Utrecht University, Utrecht, the Netherlands.,Structural and Computational Biology Unit, European Molecular Biology Laboratory (EMBL), Heidelberg, Germany
| | - Cecilia Pinto
- NMR Spectroscopy, Bijvoet Center for Biomolecular Research, Utrecht University, Utrecht, the Netherlands.,Department of Bionanoscience, Kavli Institute of Nanoscience, Delft University of Technology, Delft, the Netherlands
| | - Alessandra Lucini Paioni
- NMR Spectroscopy, Bijvoet Center for Biomolecular Research, Utrecht University, Utrecht, the Netherlands
| | - Johan van der Zwan
- NMR Spectroscopy, Bijvoet Center for Biomolecular Research, Utrecht University, Utrecht, the Netherlands
| | - Gert E Folkers
- NMR Spectroscopy, Bijvoet Center for Biomolecular Research, Utrecht University, Utrecht, the Netherlands
| | - Marc Baldus
- NMR Spectroscopy, Bijvoet Center for Biomolecular Research, Utrecht University, Utrecht, the Netherlands.
| |
Collapse
|
28
|
Prisco NA, Pinon AC, Emsley L, Chmelka BF. Scaling analyses for hyperpolarization transfer across a spin-diffusion barrier and into bulk solid media. Phys Chem Chem Phys 2021; 23:1006-1020. [PMID: 33404028 DOI: 10.1039/d0cp03195j] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
By analogy to heat and mass transfer film theory, a general approach is introduced for determining hyperpolarization transfer rates between dilute electron spins and a surrounding nuclear ensemble. These analyses provide new quantitative relationships for understanding, predicting, and optimizing the effectiveness of hyperpolarization protocols, such as Dynamic Nuclear Polarization (DNP) under magic-angle spinning conditions. An empirical DNP polarization-transfer coefficient is measured as a function of the bulk matrix 1H spin density and indicates the presence of two distinct kinetic regimes associated with different rate-limiting polarization transfer phenomena. Dimensional property relationships are derived and used to evaluate the competitive rates of spin polarization generation, propagation, and dissipation that govern hyperpolarization transfer between large coupled spin ensembles. The quantitative analyses agree closely with experimental measurements for the accumulation, propagation, and dissipation of hyperpolarization in solids and provide evidence for kinetically-limited transfer associated with a spin-diffusion barrier. The results and classical approach yield general design criteria for analyzing and optimizing polarization transfer processes involving complex interfaces and composite media for applications in materials science, physical chemistry and nuclear spintronics.
Collapse
Affiliation(s)
- Nathan A Prisco
- Department of Chemical Engineering, University of California Santa Barbara, USA.
| | - Arthur C Pinon
- Institut des Sciences et Ingénierie Chimiques, Ecole Polytechnique Fédérale de Lausanne (EPFL), Switzerland
| | - Lyndon Emsley
- Institut des Sciences et Ingénierie Chimiques, Ecole Polytechnique Fédérale de Lausanne (EPFL), Switzerland
| | - Bradley F Chmelka
- Department of Chemical Engineering, University of California Santa Barbara, USA.
| |
Collapse
|
29
|
de Oliveira M, Herr K, Brodrecht M, Haro-Mares NB, Wissel T, Klimavicius V, Breitzke H, Gutmann T, Buntkowsky G. Solvent-free dynamic nuclear polarization enhancements in organically modified mesoporous silica. Phys Chem Chem Phys 2021; 23:12559-12568. [PMID: 34027938 DOI: 10.1039/d1cp00985k] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
High-field dynamic nuclear polarization is a powerful tool for the structural characterization of species on the surface of porous materials or nanoparticles. For these studies the main source of polarization are radical-containing solutions which are added by post-synthesis impregnation of the sample. Although this strategy is very efficient for a wide variety of materials, the presence of the solvent may influence the chemistry of functional species of interest. Here we address the development of a comprehensive strategy for solvent-free DNP enhanced NMR characterization of functional (target) species on the surface of mesoporous silica (SBA-15). The strategy includes the partial functionalization of the silica surface with Carboxy-Proxyl nitroxide radicals and target Fmoc-Glycine functional groups. As a proof of principle, we have observed for the first time DNP signal enhancements, using the solvent-free approach, for 13C{1H} CPMAS signals corresponding to organic functionalities on the silica surface. DNP enhancements of up to 3.4 were observed for 13C{1H} CPMAS, corresponding to an experimental time save of about 12 times. This observation opens the possibility for the DNP-NMR study of surface functional groups without the need of a solvent, allowing, for example, the characterization of catalytic reactions occurring on the surface of mesoporous systems of interest. For 29Si with direct polarization NMR, up to 8-fold DNP enhancements were obtained. This 29Si signal enhancement is considerably higher than the obtained with similar approaches reported in literature. Finally, from DNP enhancement profiles we conclude that cross-effect is probably the dominant polarization transfer mechanism.
Collapse
Affiliation(s)
- Marcos de Oliveira
- Institut für Physikalische Chemie, Technische Universität Darmstadt, 64287 Darmstadt, Germany. and São Carlos Institute of Physics, University of São Paulo, PO Box 369, 13560-970, São Carlos, SP, Brazil.
| | - Kevin Herr
- Institut für Physikalische Chemie, Technische Universität Darmstadt, 64287 Darmstadt, Germany.
| | - Martin Brodrecht
- Institut für Physikalische Chemie, Technische Universität Darmstadt, 64287 Darmstadt, Germany.
| | - Nadia B Haro-Mares
- Institut für Physikalische Chemie, Technische Universität Darmstadt, 64287 Darmstadt, Germany.
| | - Till Wissel
- Institut für Physikalische Chemie, Technische Universität Darmstadt, 64287 Darmstadt, Germany.
| | - Vytautas Klimavicius
- Institut für Physikalische Chemie, Technische Universität Darmstadt, 64287 Darmstadt, Germany. and Institute of Chemical Physics, Vilnius University, Sauletekio av. 3, LT-10257 Vilnius, Lithuania
| | - Hergen Breitzke
- Institut für Physikalische Chemie, Technische Universität Darmstadt, 64287 Darmstadt, Germany.
| | - Torsten Gutmann
- Institut für Physikalische Chemie, Technische Universität Darmstadt, 64287 Darmstadt, Germany.
| | - Gerd Buntkowsky
- Institut für Physikalische Chemie, Technische Universität Darmstadt, 64287 Darmstadt, Germany.
| |
Collapse
|
30
|
Heiliger J, Matzel T, Çetiner EC, Schwalbe H, Kuenze G, Corzilius B. Site-specific dynamic nuclear polarization in a Gd(III)-labeled protein. Phys Chem Chem Phys 2020; 22:25455-25466. [PMID: 33103678 DOI: 10.1039/d0cp05021k] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Dynamic nuclear polarization (DNP) of a biomolecule tagged with a polarizing agent has the potential to not only increase NMR sensitivity but also to provide specificity towards the tagging site. Although the general concept has been often discussed, the observation of true site-specific DNP and its dependence on the electron-nuclear distance has been elusive. Here, we demonstrate site-specific DNP in a uniformly isotope-labeled ubiquitin. By recombinant expression of three different ubiquitin point mutants (F4C, A28C, and G75C) post-translationally modified with a Gd3+-chelator tag, localized metal-ion DNP of 13C and 15N is investigated. Effects counteracting the site-specificity of DNP such as nuclear spin-lattice relaxation and proton-driven spin diffusion have been attenuated by perdeuteration of the protein. Particularly for 15N, large DNP enhancement factors on the order of 100 and above as well as localized effects within side-chain resonances differently distributed over the protein are observed. By analyzing the experimental DNP built-up dynamics combined with structural modeling of Gd3+-tags in ubiquitin supported by paramagnetic relaxation enhancement (PRE) in solution, we provide, for the first time, quantitative information on the distance dependence of the initial DNP transfer. We show that the direct 15N DNP transfer rate indeed linearly depends on the square of the hyperfine interaction between the electron and the nucleus following Fermi's golden rule, however, below a certain distance cutoff paramagnetic signal bleaching may dramatically skew the correlation.
Collapse
Affiliation(s)
- Jörg Heiliger
- Institute of Physical and Theoretical Chemistry, Goethe University Frankfurt, Max-von-Laue-Str. 7, 60438 Frankfurt am Main, Germany
| | | | | | | | | | | |
Collapse
|
31
|
Zhai W, Lucini Paioni A, Cai X, Narasimhan S, Medeiros-Silva J, Zhang W, Rockenbauer A, Weingarth M, Song Y, Baldus M, Liu Y. Postmodification via Thiol-Click Chemistry Yields Hydrophilic Trityl-Nitroxide Biradicals for Biomolecular High-Field Dynamic Nuclear Polarization. J Phys Chem B 2020; 124:9047-9060. [PMID: 32961049 DOI: 10.1021/acs.jpcb.0c08321] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Dynamic nuclear polarization (DNP) is a powerful method to enhance nuclear magnetic resonance (NMR) signal intensities, enabling unprecedented applications in life and material science. An ultimate goal is to expand the use of DNP-enhanced solid-state NMR to ultrahigh magnetic fields where optimal spectral resolution and sensitivity are integrated. Trityl-nitroxide (TN) biradicals have attracted significant interest in high-field DNP, but their application to complex (bio)molecules has so far been limited. Here we report a novel postmodification strategy for synthesis of hydrophilic TN biradicals in order to improve their use in biomolecular applications. Initially, three TN biradicals (referred to as NATriPols 1-3) with amino-acid linkers were synthesized. EPR studies showed that the α-position of the amino-acid linkers is an ideal modification site for these biradicals since their electron-electron magnetic interactions are marginally affected by the substituents at this position. On the basis of this finding, we synthesized NATriPol-4 with pyridine disulfide appended at the α-position. Postmodification of NATriPol-4 via thiol-click chemistry resulted in various TN biradicals including hydrophilic NATriPol-5 in a quantitative manner. Interestingly, DNP enhancements at 18.8 T of NATriPols for 13C,15N-proline in a glycerol/water matrix are inversely correlated with their hydrophobicity. Importantly, applications of hydrophilic NATriPol-5 and NATriPol-3 to biomolecules including a globular soluble protein and a membrane targeting peptide reveal significantly improved performance compared to TEMTriPol-1 and AMUPol. Our work provides an efficient approach for one-step synthesis of new polarizing agents with tunable physicochemical properties, thus expediting optimization of new biradicals for biomolecular applications at ultrahigh magnetic fields.
Collapse
Affiliation(s)
- Weixiang Zhai
- Tianjin Key Laboratory on Technologies Enabling Development of Clinical Therapeutics and Diagnostics, School of Pharmacy, Tianjin Medical University, Tianjin 300070, P. R. China
| | - Alessandra Lucini Paioni
- NMR Spectroscopy, Bijvoet Centre for Biomolecular Research, Utrecht University, 3584 CH Utrecht, The Netherlands
| | - Xinyi Cai
- Tianjin Key Laboratory on Technologies Enabling Development of Clinical Therapeutics and Diagnostics, School of Pharmacy, Tianjin Medical University, Tianjin 300070, P. R. China
| | - Siddarth Narasimhan
- NMR Spectroscopy, Bijvoet Centre for Biomolecular Research, Utrecht University, 3584 CH Utrecht, The Netherlands
| | - João Medeiros-Silva
- NMR Spectroscopy, Bijvoet Centre for Biomolecular Research, Utrecht University, 3584 CH Utrecht, The Netherlands
| | - Wenxiao Zhang
- Tianjin Key Laboratory on Technologies Enabling Development of Clinical Therapeutics and Diagnostics, School of Pharmacy, Tianjin Medical University, Tianjin 300070, P. R. China
| | - Antal Rockenbauer
- Institute of Materials and Environmental Chemistry, Hungarian Academy of Sciences, and Department of Physics, Budapest University of Technology and Economics, Budafokiut 8, 1111 Budapest, Hungary
| | - Markus Weingarth
- NMR Spectroscopy, Bijvoet Centre for Biomolecular Research, Utrecht University, 3584 CH Utrecht, The Netherlands
| | - Yuguang Song
- Tianjin Key Laboratory on Technologies Enabling Development of Clinical Therapeutics and Diagnostics, School of Pharmacy, Tianjin Medical University, Tianjin 300070, P. R. China
| | - Marc Baldus
- NMR Spectroscopy, Bijvoet Centre for Biomolecular Research, Utrecht University, 3584 CH Utrecht, The Netherlands
| | - Yangping Liu
- Tianjin Key Laboratory on Technologies Enabling Development of Clinical Therapeutics and Diagnostics, School of Pharmacy, Tianjin Medical University, Tianjin 300070, P. R. China
| |
Collapse
|
32
|
Chakraborty A, Deligey F, Quach J, Mentink-Vigier F, Wang P, Wang T. Biomolecular complex viewed by dynamic nuclear polarization solid-state NMR spectroscopy. Biochem Soc Trans 2020; 48:1089-1099. [PMID: 32379300 PMCID: PMC7565284 DOI: 10.1042/bst20191084] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2020] [Revised: 04/17/2020] [Accepted: 04/20/2020] [Indexed: 01/07/2023]
Abstract
Solid-state nuclear magnetic resonance (ssNMR) is an indispensable tool for elucidating the structure and dynamics of insoluble and non-crystalline biomolecules. The recent advances in the sensitivity-enhancing technique magic-angle spinning dynamic nuclear polarization (MAS-DNP) have substantially expanded the territory of ssNMR investigations and enabled the detection of polymer interfaces in a cellular environment. This article highlights the emerging MAS-DNP approaches and their applications to the analysis of biomolecular composites and intact cells to determine the folding pathway and ligand binding of proteins, the structural polymorphism of low-populated biopolymers, as well as the physical interactions between carbohydrates, proteins, and lignin. These structural features provide an atomic-level understanding of many cellular processes, promoting the development of better biomaterials and inhibitors. It is anticipated that the capabilities of MAS-DNP in biomolecular and biomaterial research will be further enlarged by the rapid development of instrumentation and methodology.
Collapse
Affiliation(s)
- Arnab Chakraborty
- Department of Chemistry, Louisiana State University, Baton Rouge, LA 70803, USA
| | - Fabien Deligey
- Department of Chemistry, Louisiana State University, Baton Rouge, LA 70803, USA
| | - Jenny Quach
- Department of Chemistry, Louisiana State University, Baton Rouge, LA 70803, USA
| | | | - Ping Wang
- Department of Microbiology, Immunology, and Parasitology, Louisiana State University Health Sciences Center, New Orleans, LA 70112, USA
| | - Tuo Wang
- Department of Chemistry, Louisiana State University, Baton Rouge, LA 70803, USA
| |
Collapse
|
33
|
Casabianca LB. Solid-state nuclear magnetic resonance studies of nanoparticles. SOLID STATE NUCLEAR MAGNETIC RESONANCE 2020; 107:101664. [PMID: 32361159 DOI: 10.1016/j.ssnmr.2020.101664] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/15/2020] [Revised: 03/06/2020] [Accepted: 04/02/2020] [Indexed: 05/24/2023]
Abstract
In this trends article, we review seminal and recent studies using static and magic-angle spinning solid-state NMR to study the structure of nanoparticles and ligands attached to nanoparticles. Solid-state NMR techniques including one-dimensional multinuclear NMR, cross-polarization, techniques for measuring dipolar coupling and internuclear distances, and multidimensional NMR have provided insight into the core-shell structure of nanoparticles as well as the structure of ligands on the nanoparticle surface. Hyperpolarization techniques, in particular solid-state dynamic nuclear polarization (DNP), have enabled detailed studies of nanoparticle core-shell structure and surface chemistry, by allowing unprecedented levels of sensitivity to be achieved. The high signal-to-noise afforded by DNP has allowed homonuclear and heteronuclear correlation experiments involving nuclei with low natural abundance to be performed in reasonable experimental times, which previously would not have been possible. The use of DNP to study nanoparticles and their applications will be a fruitful area of study in the coming years as well.
Collapse
|
34
|
Abstract
The solid effect (SE) is a two spin dynamic nuclear polarization (DNP) mechanism that enhances the sensitivity in NMR experiments by irradiation of the electron-nuclear spin transitions with continuous wave (CW) microwaves at ω0S ± ω0I, where ω0S and ω0I are electron and nuclear Larmor frequencies, respectively. Using trityl (OX063), dispersed in a 60/40 glycerol/water mixture at 80 K, as a polarizing agent, we show here that application of a chirped microwave pulse, with a bandwidth comparable to the EPR line width applied at the SE matching condition, improves the enhancement by a factor of 2.4 over the CW method. Furthermore, the chirped pulse yields an enhancement that is ∼20% larger than obtained with the ramped-amplitude NOVEL (RA-NOVEL), which to date has achieved the largest enhancements in time domain DNP experiments. Numerical simulations suggest that the spins follow an adiabatic trajectory during the polarization transfer; hence, we denote this sequence as an adiabatic solid effect (ASE). We foresee that ASE will be a practical pulsed DNP experiment to be implemented at higher static magnetic fields due to the moderate power requirement. In particular, the ASE uses only 13% of the maximum microwave power required for RA-NOVEL.
Collapse
Affiliation(s)
- Kong Ooi Tan
- Francis Bitter Magnet Laboratory and Department of Chemistry, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| | - Ralph T Weber
- Bruker BioSpin Corporation, Billerica, Massachusetts 01821, United States
| | - Thach V Can
- Francis Bitter Magnet Laboratory and Department of Chemistry, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| | - Robert G Griffin
- Francis Bitter Magnet Laboratory and Department of Chemistry, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| |
Collapse
|
35
|
Lim BJ, Ackermann BE, Debelouchina GT. Targetable Tetrazine-Based Dynamic Nuclear Polarization Agents for Biological Systems. Chembiochem 2020; 21:1315-1319. [PMID: 31746101 PMCID: PMC7445144 DOI: 10.1002/cbic.201900609] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2019] [Indexed: 12/13/2022]
Abstract
Dynamic nuclear polarization (DNP) has shown great promise as a tool to enhance the nuclear magnetic resonance signals of proteins in the cellular environment. As sensitivity increases, the ability to select and efficiently polarize a specific macromolecule over the cellular background has become desirable. Herein, we address this need and present a tetrazine-based DNP agent that can be targeted selectively to proteins containing the unnatural amino acid (UAA) norbornene-lysine. This UAA can be introduced efficiently into the cellular milieu by genetic means. Our approach is bio-orthogonal and easily adaptable to any protein of interest. We illustrate the scope of our methodology and investigate the DNP transfer mechanisms in several biological systems. Our results shed light on the complex polarization-transfer pathways in targeted DNP and ultimately pave the way to selective DNP-enhanced NMR spectroscopy in both bacterial and mammalian cells.
Collapse
Affiliation(s)
- Byung Joon Lim
- Department of Chemistry and Biochemistry, University of California, San Diego, La Jolla, CA 92093, USA
| | - Bryce E. Ackermann
- Department of Chemistry and Biochemistry, University of California, San Diego, La Jolla, CA 92093, USA
| | - Galia T. Debelouchina
- Department of Chemistry and Biochemistry, University of California, San Diego, La Jolla, CA 92093, USA
| |
Collapse
|
36
|
Judge PT, Sesti EL, Price LE, Albert BJ, Alaniva N, Saliba EP, Halbritter T, Sigurdsson ST, Kyei GB, Barnes AB. Dynamic Nuclear Polarization with Electron Decoupling in Intact Human Cells and Cell Lysates. J Phys Chem B 2020; 124:2323-2330. [DOI: 10.1021/acs.jpcb.9b10494] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Patrick T. Judge
- Department of Chemistry, Washington University in St. Louis, St. Louis, Missouri 63130, United States
- Department of Biochemistry, Biophysics & Structural Biology, Washington University in St. Louis, St. Louis, Missouri 63110, United States
| | - Erika L. Sesti
- Department of Chemistry, Washington University in St. Louis, St. Louis, Missouri 63130, United States
| | - Lauren E. Price
- Department of Chemistry, Washington University in St. Louis, St. Louis, Missouri 63130, United States
| | - Brice J. Albert
- Department of Chemistry, Washington University in St. Louis, St. Louis, Missouri 63130, United States
| | - Nicholas Alaniva
- Department of Chemistry, Washington University in St. Louis, St. Louis, Missouri 63130, United States
| | - Edward P. Saliba
- Department of Chemistry, Washington University in St. Louis, St. Louis, Missouri 63130, United States
| | - Thomas Halbritter
- Department of Chemistry, Science Institute, University of Iceland, Dunhaga 3, 107 Reykjavik, Iceland
| | - Snorri Th. Sigurdsson
- Department of Chemistry, Science Institute, University of Iceland, Dunhaga 3, 107 Reykjavik, Iceland
| | - George B. Kyei
- Department of Medicine, Washington University School of Medicine, St. Louis, Missouri 63130, United States
- Noguchi Memorial Institute for Medical Research, College of Health Sciences, University of Ghana,
Legon, Accra 02233, Ghana
| | - Alexander B. Barnes
- Department of Chemistry, Washington University in St. Louis, St. Louis, Missouri 63130, United States
| |
Collapse
|
37
|
Abstract
Dynamic nuclear polarization (DNP) is one of the most prominent methods of sensitivity enhancement in nuclear magnetic resonance (NMR). Even though solid-state DNP under magic-angle spinning (MAS) has left the proof-of-concept phase and has become an important tool for structural investigations of biomolecules as well as materials, it is still far from mainstream applicability because of the potentially overwhelming combination of unique instrumentation, complex sample preparation, and a multitude of different mechanisms and methods available. In this review, I introduce the diverse field and history of DNP, combining aspects of NMR and electron paramagnetic resonance. I then explain the general concepts and detailed mechanisms relevant at high magnetic field, including solution-state methods based on Overhauser DNP but with a greater focus on the more established MAS DNP methods. Finally, I review practical considerations and fields of application and discuss future developments.
Collapse
Affiliation(s)
- Björn Corzilius
- Institute of Chemistry and Department of Life, Light and Matter, University of Rostock, 18059 Rostock, Germany;
| |
Collapse
|
38
|
Yau WM, Jeon J, Tycko R. Succinyl-DOTOPA: An effective triradical dopant for low-temperature dynamic nuclear polarization with high solubility in aqueous solvent mixtures at neutral pH. JOURNAL OF MAGNETIC RESONANCE (SAN DIEGO, CALIF. : 1997) 2020; 311:106672. [PMID: 31887554 PMCID: PMC6964257 DOI: 10.1016/j.jmr.2019.106672] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/03/2019] [Revised: 12/10/2019] [Accepted: 12/18/2019] [Indexed: 05/05/2023]
Abstract
We report the synthesis of the nitroxide-based triradical compound succinyl-DOTOPA and the characterization of its performance as a dopant for dynamic nuclear polarization (DNP) experiments in frozen solutions at low temperatures. Compared with previously described DOTOPA derivatives, succinyl-DOTOPA has substantially greater solubility in glycerol/water mixtures with pH > 4 and therefore has wider applicability. Solid state nuclear magnetic resonance (ssNMR) measurements at 9.39 T and 25 K, with magic-angle spinning at 7.00 kHz, show that build-up times of DNP-enhanced, cross-polarized 13C ssNMR signals are shorter and that signal amplitudes are larger for glycerol/water solutions of L-proline containing succinyl-DOTOPA than for solutions containing the biradical AMUPol, with electron spin concentrations of 15 mM or 30 mM, resulting in greater net sensitivity gains from DNP. In similar measurements at 90 K, AMUPol yields greater net sensitivity, apparently due to its longer electron spin-lattice and spin-spin relaxation times. One- and two-dimensional 13C ssNMR measurements at 25 K on the complex of the 27-residue peptide M13 with the calcium-sensing protein calmodulin, in glycerol/water with 10 mM succinyl-DOTOPA, demonstrate the utility of this compound in DNP-enhanced ssNMR studies of biomolecular systems.
Collapse
Affiliation(s)
- Wai-Ming Yau
- Laboratory of Chemical Physics, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD 20892-0520, USA
| | - Jaekyun Jeon
- Laboratory of Chemical Physics, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD 20892-0520, USA
| | - Robert Tycko
- Laboratory of Chemical Physics, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD 20892-0520, USA.
| |
Collapse
|
39
|
Li W, Smet PF, Martin LIDJ, Pritzel C, Schmedt Auf der Günne J. Doping homogeneity in co-doped materials investigated at different length scales. Phys Chem Chem Phys 2020; 22:818-825. [PMID: 31840726 DOI: 10.1039/c9cp05599a] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Doping homogeneity is important for the properties of co-doped phosphors, as it can affect the energy transfer between sensitizer and activator ions. In a case study we apply different methods, that is scanning electron microscopy (SEM) combined with energy dispersive X-ray spectroscopy (EDX) mapping, SEM combined with cathodoluminescence (CL) and solid-state nuclear magnetic resonance (NMR), to study the doping homogeneity of the host system monazite LaPO4 doped with two different lanthanide ions on different length scales. A new criterion for doping heterogeneity in co-doped systems is developed, which is based on the NMR visibility function, which for this purpose is extended to doping with two or more paramagnetic dopants. A deviation from this function is indicative of doping heterogeneity on the length-scale of the blind-spheres of the paramagnetic dopants. A discussion of the advantages and disadvantages of the different methods is presented. The combined approach allows to study doping homogeneity from the nm to the μm scale.
Collapse
Affiliation(s)
- Wenyu Li
- Inorganic Materials Chemistry, University of Siegen, Adolf-Reichwein-Str. 2, 57076 Siegen, Germany.
| | | | | | | | | |
Collapse
|
40
|
Kocman V, Di Mauro GM, Veglia G, Ramamoorthy A. Use of paramagnetic systems to speed-up NMR data acquisition and for structural and dynamic studies. SOLID STATE NUCLEAR MAGNETIC RESONANCE 2019; 102:36-46. [PMID: 31325686 PMCID: PMC6698407 DOI: 10.1016/j.ssnmr.2019.07.002] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/19/2019] [Revised: 07/10/2019] [Accepted: 07/11/2019] [Indexed: 05/05/2023]
Abstract
NMR spectroscopy is a powerful experimental technique to study biological systems at the atomic resolution. However, its intrinsic low sensitivity results in long acquisition times that in extreme cases lasts for days (or even weeks) often exceeding the lifetime of the sample under investigation. Different paramagnetic agents have been used in an effort to decrease the spin-lattice (T1) relaxation times of the studied nuclei, which are the main cause for long acquisition times necessary for signal averaging to enhance the signal-to-noise ratio of NMR spectra. Consequently, most of the experimental time is "wasted" in waiting for the magnetization to recover between successive scans. In this review, we discuss how to set up an optimal paramagnetic relaxation enhancement (PRE) system to effectively reduce the T1 relaxation times avoiding significant broadening of NMR signals. Additionally, we describe how PRE-agents can be used to provide structural and dynamic information and can even be used to follow the intermediates of chemical reactions and to speed-up data acquisition. We also describe the unique challenges and benefits associated with the application of PRE to solid-state NMR spectroscopy, explaining how the use of PREs is more complex for membrane mimetic systems as PREs can also be exploited to change the alignment of oriented membrane systems. Functionalization of membrane mimetics, such as bicelles, can provide a controlled region of paramagnetic effect that has the potential, together with the desired alignment, to provide crucial biologically relevant structural information. And finally, we discuss how paramagnetic metals can be utilized to further increase the dynamic nuclear polarization (DNP) effects and how to preserve the enhancements when dissolution DNP is implemented.
Collapse
Affiliation(s)
- Vojč Kocman
- Department of Chemistry, University of Michigan, Ann Arbor, MI, USA; Biophysics, Biomedical Engineering, Macromolecular Science and Engineering, University of Michigan, Ann Arbor, MI, USA
| | | | - Gianluigi Veglia
- Department of Biochemistry, Molecular Biology and Biophysics, University of Minnesota, Minneapolis, MN, USA
| | - Ayyalusamy Ramamoorthy
- Department of Chemistry, University of Michigan, Ann Arbor, MI, USA; Biophysics, Biomedical Engineering, Macromolecular Science and Engineering, University of Michigan, Ann Arbor, MI, USA.
| |
Collapse
|
41
|
Daube D, Vogel M, Suess B, Corzilius B. Dynamic nuclear polarization on a hybridized hammerhead ribozyme: An explorative study of RNA folding and direct DNP with a paramagnetic metal ion cofactor. SOLID STATE NUCLEAR MAGNETIC RESONANCE 2019; 101:21-30. [PMID: 31078101 DOI: 10.1016/j.ssnmr.2019.04.005] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/15/2019] [Revised: 04/16/2019] [Accepted: 04/16/2019] [Indexed: 06/09/2023]
Abstract
While uniform isotope labeling of ribonucleic acids (RNA) can simply and efficiently be achieved by in-vitro transcription, the specific introduction of nucleotides in larger constructs is non-trivial and often ineffective. Here, we demonstrate how a medium-sized (67-mer), biocatalytically relevant RNA (hammerhead ribozyme, HHRz) can be formed by spontaneous hybridization of two differently isotope-labeled strands, each individually synthesized by in-vitro transcription. This allows on the one hand for a significant reduction in the number of isotope-labeled nucleotides and thus spectral overlap particularly under magic-angle spinning (MAS) dynamic nuclear polarization (DNP) NMR conditions, on the other hand for orthogonal 13C/15N-labeling of complementary strands and thus for specific investigation of structurally or functionally relevant inter-strand and/or inter-stem contacts. By this method, we are able to confirm a non-canonical interaction due to single-site resolution and unique spectral assignments by two-dimensional 13C-13C (PDSD) as well as 15N-13C (TEDOR) correlation spectroscopy under "conventional" DNP enhancement. This contact is indicative of the ribozyme's functional conformation, and is present in frozen solution irrespective of the presence or absence of a Mg2+ co-factor. Finally, we use different isotope-labeling schemes in order to investigate the distance dependence of paramagnetic interactions and direct metal-ion DNP if the diamagnetic Mg2+ is substituted by paramagnetic Mn2+.
Collapse
Affiliation(s)
- Diane Daube
- Institute of Physical and Theoretical Chemistry, Institute of Biophysical Chemistry, and Center for Biomolecular Magnetic Resonance (BMRZ), Goethe University Frankfurt, Max-von-Laue-Str. 7-9, 60438 Frankfurt am Main, Germany
| | - Marc Vogel
- Fachbereich Biologie, Technische Universität Darmstadt, Schnittspahnstraße 10, 64287 Darmstadt, Germany
| | - Beatrix Suess
- Fachbereich Biologie, Technische Universität Darmstadt, Schnittspahnstraße 10, 64287 Darmstadt, Germany
| | - Björn Corzilius
- Institute of Physical and Theoretical Chemistry, Institute of Biophysical Chemistry, and Center for Biomolecular Magnetic Resonance (BMRZ), Goethe University Frankfurt, Max-von-Laue-Str. 7-9, 60438 Frankfurt am Main, Germany; Institut für Chemie, Universität Rostock, Albert-Einstein-Str. 3a, 18059 Rostock, Germany; Department LL&M, Universität Rostock, Albert-Einstein-Str. 25, 18059 Rostock, Germany.
| |
Collapse
|
42
|
Good DB, Voinov MA, Bolton D, Ward ME, Sergeyev IV, Caporini M, Scheffer P, Lo A, Rosay M, Marek A, Brown LS, I Smirnov A, Ladizhansky V. A biradical-tagged phospholipid as a polarizing agent for solid-state MAS Dynamic Nuclear Polarization NMR of membrane proteins. SOLID STATE NUCLEAR MAGNETIC RESONANCE 2019; 100:92-101. [PMID: 31029957 PMCID: PMC6709687 DOI: 10.1016/j.ssnmr.2019.04.003] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/26/2018] [Revised: 03/29/2019] [Accepted: 04/12/2019] [Indexed: 06/01/2023]
Abstract
A novel Dynamic Nuclear Polarization (DNP) NMR polarizing agent ToSMTSL-PTE representing a phospholipid with a biradical TOTAPOL tethered to the polar head group has been synthesized, characterized, and employed to enhance solid-state Nuclear Magnetic Resonance (SSNMR) signal of a lipid-reconstituted integral membrane protein proteorhodopsin (PR). A matrix-free PR formulation for DNP improved the absolute sensitivity of NMR signal by a factor of ca. 4 compared to a conventional preparation with TOTAPOL dispersed in a glassy glycerol/water matrix. DNP enhancements measured at 400 MHz/263 GHz and 600 MHz/395 GHz showed a strong field dependence but remained moderate at both fields, and comparable to those obtained for PR covalently modified with ToSMTSL. Additional continuous wave (CW) X-band electron paramagnetic resonance (EPR) experiments with ToSMTSL-PTE in solutions and in lipid bilayers revealed that an unfavorable conformational change of the linker connecting mononitroxides could be one of the reasons for moderate DNP enhancements. Further, differential scanning calorimetry (DSC) and CW EPR experiments indicated an inhomogeneous distribution and/or a possibility of a partial aggregation of ToSMTSL-PTE in DMPC:DMPA bilayers when the concentration of the polarizing agent was increased to 20 mol% to maximize the DNP enhancement. Thus, conformational changes and an inhomogeneous distribution of the lipid-based biradicals in lipid bilayers emerged as important factors to consider for further development of this matrix-free approach for DNP of membrane proteins.
Collapse
Affiliation(s)
- Daryl B Good
- Department of Physics and Biophysics Interdepartmental Group, University of Guelph, Guelph, Ontario, Canada
| | - Maxim A Voinov
- Department of Chemistry, North Carolina State University, Raleigh, NC, USA
| | - David Bolton
- Department of Physics and Biophysics Interdepartmental Group, University of Guelph, Guelph, Ontario, Canada
| | - Meaghan E Ward
- Department of Physics and Biophysics Interdepartmental Group, University of Guelph, Guelph, Ontario, Canada
| | | | | | - Peter Scheffer
- Department of Physics and Biophysics Interdepartmental Group, University of Guelph, Guelph, Ontario, Canada
| | - Andy Lo
- Department of Physics and Biophysics Interdepartmental Group, University of Guelph, Guelph, Ontario, Canada
| | | | - Antonin Marek
- Department of Chemistry, North Carolina State University, Raleigh, NC, USA
| | - Leonid S Brown
- Department of Physics and Biophysics Interdepartmental Group, University of Guelph, Guelph, Ontario, Canada
| | - Alex I Smirnov
- Department of Chemistry, North Carolina State University, Raleigh, NC, USA; Bruker Biospin, Billerica, MA, USA.
| | - Vlad Ladizhansky
- Department of Physics and Biophysics Interdepartmental Group, University of Guelph, Guelph, Ontario, Canada; Bruker Biospin, Billerica, MA, USA.
| |
Collapse
|
43
|
Salnikov ES, Aussenac F, Abel S, Purea A, Tordo P, Ouari O, Bechinger B. Dynamic Nuclear Polarization / solid-state NMR of membranes. Thermal effects and sample geometry. SOLID STATE NUCLEAR MAGNETIC RESONANCE 2019; 100:70-76. [PMID: 30995597 DOI: 10.1016/j.ssnmr.2019.03.004] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/27/2018] [Revised: 03/18/2019] [Accepted: 03/18/2019] [Indexed: 06/09/2023]
Abstract
Whereas specially designed dinitroxide biradicals, reconstitution protocols, oriented sample geometries and NMR probes have helped to much increase the DNP enhancement factors of membrane samples they still lag considerably behind those obtained from glasses made of protein solutions. Here we show that not only the MAS rotor material but also the distribution of the membrane samples within the NMR rotor have a pronounced effect on the DNP enhancement. These observations are rationalized with the cooling efficiency and the internal properties of the sample, monitored by their T1 relaxation, microwave ON versus OFF signal intensities and DNP effect. The data are suggestive that for membranes the speed of cooling has a pronounced effect on the membrane properties and concomitantly the distribution of biradicals within the sample.
Collapse
Affiliation(s)
| | | | - Sebastian Abel
- Aix-Marseille University, CNRS, UMR 7273, Institut de Chimie Radicalaire, 13013, Marseille, France
| | | | - Paul Tordo
- Aix-Marseille University, CNRS, UMR 7273, Institut de Chimie Radicalaire, 13013, Marseille, France
| | - Olivier Ouari
- Aix-Marseille University, CNRS, UMR 7273, Institut de Chimie Radicalaire, 13013, Marseille, France
| | - Burkhard Bechinger
- Institute of Chemistry, University of Strasbourg / CNRS, UMR7177, 67070, Strasbourg, France.
| |
Collapse
|
44
|
Sergeyev IV, Aussenac F, Purea A, Reiter C, Bryerton E, Retzloff S, Hesler J, Tometich L, Rosay M. Efficient 263 GHz magic angle spinning DNP at 100 K using solid-state diode sources. SOLID STATE NUCLEAR MAGNETIC RESONANCE 2019; 100:63-69. [PMID: 30965254 DOI: 10.1016/j.ssnmr.2019.03.008] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/12/2019] [Revised: 03/22/2019] [Accepted: 03/26/2019] [Indexed: 05/03/2023]
Abstract
The development of new, high-frequency solid-state diode sources capable of operating at 263 GHz, together with an optimized stator design for improved millimeter-wave coupling to the NMR sample, have enabled low-power DNP experiments at 263 GHz/400 MHz. With 250 mW output power, signal enhancements as high as 120 are achieved on standard samples - approximately 1/3 of the maximal enhancement available with high-power gyrotrons under similar conditions. Diode-based sources have a number of advantages over vacuum tube devices: they emit a pure mode, can be rapidly frequency-swept over a wide range of frequencies, have reproducible output power over this range, and have excellent output stability. By virtue of their small size, low thermal footprint, and lack of facility requirements, solid-state diodes are also considerably cheaper to operate and maintain than high-power vacuum tube devices. In light of these features, and anticipating further improvements in terms of available output power, solid-state diodes are likely to find widespread use in DNP and contribute to further advances in the field.
Collapse
Affiliation(s)
- Ivan V Sergeyev
- Bruker BioSpin Corp., 15 Fortune Drive, Billerica, MA, 01821, USA.
| | - Fabien Aussenac
- Bruker France S.A.S., 34 Rue de l'Industrie, 67160, Wissembourg, France
| | - Armin Purea
- Bruker BioSpin GmbH, Silberstreifen 4, 76287, Rheinstetten, Germany
| | - Christian Reiter
- Bruker BioSpin GmbH, Silberstreifen 4, 76287, Rheinstetten, Germany
| | - Eric Bryerton
- Virginia Diodes Inc., 979 2(nd) St. SE, Charlottesville, VA, 22902, USA
| | - Steven Retzloff
- Virginia Diodes Inc., 979 2(nd) St. SE, Charlottesville, VA, 22902, USA
| | - Jeffrey Hesler
- Virginia Diodes Inc., 979 2(nd) St. SE, Charlottesville, VA, 22902, USA
| | - Leo Tometich
- Bruker BioSpin Corp., 15 Fortune Drive, Billerica, MA, 01821, USA
| | - Melanie Rosay
- Bruker BioSpin Corp., 15 Fortune Drive, Billerica, MA, 01821, USA
| |
Collapse
|
45
|
Sugishita T, Matsuki Y, Fujiwara T. Absolute 1H polarization measurement with a spin-correlated component of magnetization by hyperpolarized MAS-DNP solid-state NMR. SOLID STATE NUCLEAR MAGNETIC RESONANCE 2019; 99:20-26. [PMID: 30849736 DOI: 10.1016/j.ssnmr.2019.02.001] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/28/2018] [Revised: 02/14/2019] [Accepted: 02/14/2019] [Indexed: 06/09/2023]
Abstract
Sensitivity of magic-angle spinning (MAS) NMR spectroscopy has been dramatically improved by the advent of high-field dynamic nuclear polarization (DNP) technique and its rapid advances over the past decades. In this course, discussions on ways to improve the DNP enhancement factor or the overall sensitivity gain have been numerous, and led to a number of methodological and instrumental breakthroughs. Beyond the sensitivity gain, however, discussions on accurate quantification of the 1H polarization amplitude achievable in a sample with DNP have been relatively rare. Here, we propose a new method for quantifying the local 1H hyperpolarization amplitude, which is applicable to un-oriented/powdered solid samples under MAS NMR conditions. The method is based on the ability to observe the high-order spin-correlated term (2IzSz) intrinsic to a hyperpolarized IS two-spin state, separately from the lowest-order Zeeman term (Sz) in quasi-equilibrium magnetization. The quantification procedure does not require evaluation of signal amplitudes for a "microwave-off" condition and for an un-doped reference sample, and thus enables quick and accurate quantification unaffected by the effects of the paramagnetic quenching and the MAS-induced depolarization. The method is also shown to elucidate spatial polarization distribution through the 2IzSz term prepared domain-selectively. As a potential application, we also demonstrate 2D DQ-SQ spectroscopy utilizing the 2IzSz term that is generated in a spatially selective manner without using IS dipolar or J coupling. These salient features may be evolved into a way for characterizing mesoscopic molecular assemblies of medical/biological importance.
Collapse
Affiliation(s)
| | - Yoh Matsuki
- Institute for Protein Research, Osaka University, Japan; Quantum Information and Quantum Biology Division, Institute for Open and Transdisciplinary Research Initiatives, Osaka University, Japan
| | - Toshimichi Fujiwara
- Institute for Protein Research, Osaka University, Japan; Quantum Information and Quantum Biology Division, Institute for Open and Transdisciplinary Research Initiatives, Osaka University, Japan.
| |
Collapse
|
46
|
Li W, Zhang Q, Joos JJ, Smet PF, Schmedt Auf der Günne J. Blind spheres of paramagnetic dopants in solid state NMR. Phys Chem Chem Phys 2019; 21:10185-10194. [PMID: 31063169 DOI: 10.1039/c9cp00953a] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Solid-state NMR on paramagnetically doped crystal structures gives information about the spatial distribution of dopants in the host. Paramagnetic dopants may render NMR active nuclei virtually invisible by relaxation, paramagnetic broadening or shielding. In this contribution blind sphere radii r0 have been reported, which could be extracted through fitting the NMR signal visibility function f(x) = exp(-ar03x) to experimental data obtained on several model compound series: La1-xLnxPO4 (Ln = Nd, Sm, Gd, Dy, Ho, Er, Tm, Yb), Sr1-xEuxGa2S4 and (Zn1-xMnx)3(PO4)2·4H2O. Radii were extracted for 1H, 31P and 71Ga, and dopants like Nd3+, Gd3+, Dy3+, Ho3+, Er3+, Tm3+, Yb3+ and Mn2+. The observed radii determined differed in all cases and covered a range from 5.5 to 13.5 Å. While these radii were obtained from the amount of invisible NMR signal, we also show how to link the visibility function to lineshape parameters. We show under which conditions empirical correlations of linewidth and doping concentration can be used to extract blind sphere radii from second moment or linewidth parameter data. From the second moment analysis of La1-xSmxPO431P MAS NMR spectra for example, a blind sphere size of Sm3+ can be determined, even though the visibility function remains close to 100% over the entire doping range. Dependence of the blind sphere radius r0 on the NMR isotope and on the paramagnetic dopant could be suggested and verified: for different nuclei, r0 shows a -dependence, γ being the gyromagnetic ratio. The blind sphere radii r0 for different paramagnetic dopants in a lanthanide series could be predicted from the pseudo-contact term.
Collapse
Affiliation(s)
- Wenyu Li
- Inorganic Materials Chemistry, University of Siegen, Adolf-Reichwein-Str. 2, 57076 Siegen, Germany.
| | | | | | | | | |
Collapse
|
47
|
Chen HY, Tycko R. Temperature-Dependent Nuclear Spin Relaxation Due to Paramagnetic Dopants Below 30 K: Relevance to DNP-Enhanced Magnetic Resonance Imaging. J Phys Chem B 2018; 122:11731-11742. [PMID: 30277390 PMCID: PMC6465147 DOI: 10.1021/acs.jpcb.8b07958] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Dynamic nuclear polarization (DNP) can increase nuclear magnetic resonance (NMR) signal strengths by factors of 100 or more at low temperatures. In magnetic resonance imaging (MRI), signal enhancements from DNP potentially lead to enhancements in image resolution. However, the paramagnetic dopants required for DNP also reduce nuclear spin relaxation times, producing signal losses that may cancel the signal enhancements from DNP. Here we investigate the dependence of 1H NMR relaxation times, including T1ρ and T2, under conditions of Lee-Goldburg 1H-1H decoupling and pulsed spin locking, on temperature and dopant concentration in frozen solutions that contain the trinitroxide compound DOTOPA. We find that relaxation times become longer at temperatures below 10 K, where DOTOPA electron spins become strongly polarized at equilibrium in a 9.39 T magnetic field. We show that the dependences of relaxation times on temperature and DOTOPA concentration can be reproduced qualitatively (although not quantitatively) by detailed simulations of magnetic field fluctuations due to flip-flop transitions in a system of dipole-coupled electron spin magnetic moments. These results have implications for ongoing attempts to reach submicron resolution in inductively detected MRI at very low temperatures.
Collapse
Affiliation(s)
- Hsueh-Ying Chen
- Laboratory of Chemical Physics National Institute of Diabetes and Digestive and Kidney Diseases , National Institutes of Health , Bethesda , Maryland 20892-0520 , United States
| | - Robert Tycko
- Laboratory of Chemical Physics National Institute of Diabetes and Digestive and Kidney Diseases , National Institutes of Health , Bethesda , Maryland 20892-0520 , United States
| |
Collapse
|
48
|
Wolf T, Kumar S, Singh H, Chakrabarty T, Aussenac F, Frenkel AI, Major DT, Leskes M. Endogenous Dynamic Nuclear Polarization for Natural Abundance 17O and Lithium NMR in the Bulk of Inorganic Solids. J Am Chem Soc 2018; 141:451-462. [DOI: 10.1021/jacs.8b11015] [Citation(s) in RCA: 50] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Tamar Wolf
- Department of Materials and Interfaces, Weizmann Institute of Science, Rehovot 76100, Israel
| | - Sandeep Kumar
- Department of Chemistry, Bar-Ilan University, Ramat Gan 52900, Israel
| | - Harishchandra Singh
- Department of Materials Science and Chemical Engineering, Stony Brook University, Stony Brook, New York 11794, United States
| | - Tanmoy Chakrabarty
- Department of Materials and Interfaces, Weizmann Institute of Science, Rehovot 76100, Israel
| | - Fabien Aussenac
- Bruker BioSpin, 34 rue de l’Industrie BP 10002, 67166 Wissembourg Cedex, France
| | - Anatoly I. Frenkel
- Department of Materials Science and Chemical Engineering, Stony Brook University, Stony Brook, New York 11794, United States
- Division of Chemistry, Brookhaven National Laboratory, Upton, New York 11973, United States
| | - Dan Thomas Major
- Department of Chemistry, Bar-Ilan University, Ramat Gan 52900, Israel
| | - Michal Leskes
- Department of Materials and Interfaces, Weizmann Institute of Science, Rehovot 76100, Israel
| |
Collapse
|
49
|
Lund A, Equbal A, Han S. Tuning nuclear depolarization under MAS by electron T 1e. Phys Chem Chem Phys 2018; 20:23976-23987. [PMID: 30211922 DOI: 10.1039/c8cp04167a] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
The Cross-Effect (CE) Dynamic Nuclear Polarization (DNP) mechanism under Magic Angle Spinning (MAS) induces depletion or "depolarization" of the NMR signal, in the absence of microwave irradiation. In this study, the role of T1e on nuclear depolarization under MAS was tested experimentally by systematically varying the local and global electron spin concentration using mono-, bi- and tri-radicals. These spin systems show different depolarization effects that systematically tracked with their different T1e rates, consistent with theoretical predictions. In order to test whether the effect of T1e is directly or indirectly convoluted with other spin parameters, the tri-radical system was doped with different concentrations of GdCl3, only tuning the T1e rates, while keeping other parameters unchanged. Gratifyingly, the changes in the depolarization factor tracked the changes in the T1e rates. The experimental results are corroborated by quantum mechanics based numerical simulations which recapitulated the critical role of T1e. Simulations showed that the relative orientation of the two g-tensors and e-e dipolar interaction tensors of the CE fulfilling spin pair also plays a major role in determining the extent of depolarization, besides the enhancement. This is expected as orientations influence the efficiency of the various level anti-crossings or the "rotor events" under MAS. However, experimental evaluation of the empirical spectral diffusion parameter at static condition showed that the local vs. global e-e dipolar interaction network is not a significant variable in the commonly used nitroxide radical system studied here, leaving T1e rates as the major modulator of depolarization.
Collapse
Affiliation(s)
- Alicia Lund
- Department of Chemistry and Biochemistry, University of California Santa Barbara, Santa Barbara, CA 93106-9510, USA.
| | | | | |
Collapse
|
50
|
Sesti EL, Saliba EP, Alaniva N, Barnes AB. Electron decoupling with cross polarization and dynamic nuclear polarization below 6 K. JOURNAL OF MAGNETIC RESONANCE (SAN DIEGO, CALIF. : 1997) 2018; 295:1-5. [PMID: 30077145 PMCID: PMC7015119 DOI: 10.1016/j.jmr.2018.07.016] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/30/2018] [Revised: 07/17/2018] [Accepted: 07/21/2018] [Indexed: 05/05/2023]
Abstract
Dynamic nuclear polarization (DNP) can improve nuclear magnetic resonance (NMR) sensitivity by orders of magnitude. Polarizing agents containing unpaired electrons required for DNP can broaden nuclear resonances in the presence of appreciable hyperfine couplings. Here we present the first cross polarization experiments implemented with electron decoupling, which attenuates detrimental hyperfine couplings. We also demonstrate magic angle spinning (MAS) DNP experiments below 6 K, producing unprecedented nuclear spin polarization in rotating solids. 13C correlation spectra were collected with MAS DNP below 6 K for the first time. Polarization build-up times with MAS DNP (T1DNP, 1H) of urea in a frozen glassy matrix below 6 K were measured for both the solid effect and the cross effect. Trityl radicals exhibit a T1DNP (1H) of 18.7 s and the T1DNP (1H) of samples doped with 20 mM AMUPol is only 1.3 s. MAS below 6 K with DNP and electron decoupling is an effective strategy to increase NMR signal-to-noise ratios per transient while retaining short polarization periods.
Collapse
Affiliation(s)
- Erika L Sesti
- Department of Chemistry, Washington University in St. Louis, One Brookings Drive, St. Louis, MO 63130, USA
| | - Edward P Saliba
- Department of Chemistry, Washington University in St. Louis, One Brookings Drive, St. Louis, MO 63130, USA
| | - Nicholas Alaniva
- Department of Chemistry, Washington University in St. Louis, One Brookings Drive, St. Louis, MO 63130, USA
| | - Alexander B Barnes
- Department of Chemistry, Washington University in St. Louis, One Brookings Drive, St. Louis, MO 63130, USA.
| |
Collapse
|