1
|
Li R, Ma M, Wang C, Hong J, Zhang Z, Lu J, Li P. Dual-exposure temporal laser speckle imaging for simultaneously accessing microvascular blood perfusion and angiography. OPTICS EXPRESS 2024; 32:6887-6902. [PMID: 38439384 DOI: 10.1364/oe.510874] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Accepted: 01/31/2024] [Indexed: 03/06/2024]
Abstract
Laser speckle contrast imaging (LSCI) has gained significant attention in the biomedical field for its ability to map the spatio-temporal dynamics of blood perfusion in vivo. However, LSCI faces difficulties in accurately resolving blood perfusion in microvessels. Although the transmissive detecting geometry can improve the spatial resolution of tissue imaging, ballistic photons directly transmitting forward through tissue without scattering will cause misestimating in the flow speed by LSCI because of the lack of a quantitative theoretical model of transmissvie LSCI. Here, we develop a model of temporal LSCI which accounts for the effect of nonscattered light on estimating decorrelation time. Based on this model, we further propose a dual-exposure temporal laser speckle imaging method (dEtLSCI) to correct the overestimation of background speed when performing traditional transmissive LSCI, and reconstruct microvascular angiography using the scattered component extracted from total transmitted light. Experimental results demonstrated that our new method opens an opportunity for LSCI to simultaneously resolve the blood vessels morphology and blood flow speed at microvascular level in various contexts, ranging from the drug-induced vascular response to angiogenesis and the blood perfusion monitoring during tumor growth.
Collapse
|
2
|
Powell K, Lin K, Tambo W, Saavedra AP, Sciubba D, Al Abed Y, Li C. Trigeminal nerve stimulation: a current state-of-the-art review. Bioelectron Med 2023; 9:30. [PMID: 38087375 PMCID: PMC10717521 DOI: 10.1186/s42234-023-00128-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Accepted: 10/04/2023] [Indexed: 09/26/2024] Open
Abstract
Nearly 5 decades ago, the effect of trigeminal nerve stimulation (TNS) on cerebral blood flow was observed for the first time. This implication directly led to further investigations and TNS' success as a therapeutic intervention. Possessing unique connections with key brain and brainstem regions, TNS has been observed to modulate cerebral vasodilation, brain metabolism, cerebral autoregulation, cerebral and systemic inflammation, and the autonomic nervous system. The unique range of effects make it a prime therapeutic modality and have led to its clinical usage in chronic conditions such as migraine, prolonged disorders of consciousness, and depression. This review aims to present a comprehensive overview of TNS research and its broader therapeutic potentialities. For the purpose of this review, PubMed and Google Scholar were searched from inception to August 28, 2023 to identify a total of 89 relevant studies, both clinical and pre-clinical. TNS harnesses the release of vasoactive neuropeptides, modulation of neurotransmission, and direct action upon the autonomic nervous system to generate a suite of powerful multitarget therapeutic effects. While TNS has been applied clinically to chronic pathological conditions, these powerful effects have recently shown great potential in a number of acute/traumatic pathologies. However, there are still key mechanistic and methodologic knowledge gaps to be solved to make TNS a viable therapeutic option in wider clinical settings. These include bimodal or paradoxical effects and mechanisms, questions regarding its safety in acute/traumatic conditions, the development of more selective stimulation methods to avoid potential maladaptive effects, and its connection to the diving reflex, a trigeminally-mediated protective endogenous reflex. The address of these questions could overcome the current limitations and allow TNS to be applied therapeutically to an innumerable number of pathologies, such that it now stands at the precipice of becoming a ground-breaking therapeutic modality.
Collapse
Affiliation(s)
- Keren Powell
- Translational Brain Research Laboratory, The Feinstein Institutes for Medical Research, 350 Community Dr, Manhasset, NY, 11030, USA
- Institute for Bioelectronic Medicine, The Feinstein Institutes for Medical Research, Manhasset, NY, USA
| | - Kanheng Lin
- Translational Brain Research Laboratory, The Feinstein Institutes for Medical Research, 350 Community Dr, Manhasset, NY, 11030, USA
- Institute for Bioelectronic Medicine, The Feinstein Institutes for Medical Research, Manhasset, NY, USA
- Emory University, Atlanta, GA, USA
| | - Willians Tambo
- Translational Brain Research Laboratory, The Feinstein Institutes for Medical Research, 350 Community Dr, Manhasset, NY, 11030, USA
- Institute for Bioelectronic Medicine, The Feinstein Institutes for Medical Research, Manhasset, NY, USA
- Elmezzi Graduate School of Molecular Medicine, The Feinstein Institutes for Medical Research, Manhasset, NY, USA
| | | | - Daniel Sciubba
- Department of Neurosurgery, Zucker School of Medicine at Hofstra/Northwell, Hempstead, NY, USA
| | - Yousef Al Abed
- Institute for Bioelectronic Medicine, The Feinstein Institutes for Medical Research, Manhasset, NY, USA
| | - Chunyan Li
- Translational Brain Research Laboratory, The Feinstein Institutes for Medical Research, 350 Community Dr, Manhasset, NY, 11030, USA.
- Institute for Bioelectronic Medicine, The Feinstein Institutes for Medical Research, Manhasset, NY, USA.
- Elmezzi Graduate School of Molecular Medicine, The Feinstein Institutes for Medical Research, Manhasset, NY, USA.
- Department of Neurosurgery, Zucker School of Medicine at Hofstra/Northwell, Hempstead, NY, USA.
| |
Collapse
|
3
|
Mecawi AS, Varanda WA, da Silva MP. Osmoregulation and the Hypothalamic Supraoptic Nucleus: From Genes to Functions. Front Physiol 2022; 13:887779. [PMID: 35685279 PMCID: PMC9171026 DOI: 10.3389/fphys.2022.887779] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2022] [Accepted: 04/18/2022] [Indexed: 11/13/2022] Open
Abstract
Due to the relatively high permeability to water of the plasma membrane, water tends to equilibrate its chemical potential gradient between the intra and extracellular compartments. Because of this, changes in osmolality of the extracellular fluid are accompanied by changes in the cell volume. Therefore, osmoregulatory mechanisms have evolved to keep the tonicity of the extracellular compartment within strict limits. This review focuses on the following aspects of osmoregulation: 1) the general problems in adjusting the "milieu interieur" to challenges imposed by water imbalance, with emphasis on conceptual aspects of osmosis and cell volume regulation; 2) osmosensation and the hypothalamic supraoptic nucleus (SON), starting with analysis of the electrophysiological responses of the magnocellular neurosecretory cells (MNCs) involved in the osmoreception phenomenon; 3) transcriptomic plasticity of SON during sustained hyperosmolality, to pinpoint the genes coding membrane channels and transporters already shown to participate in the osmosensation and new candidates that may have their role further investigated in this process, with emphasis on those expressed in the MNCs, discussing the relationships of hydration state, gene expression, and MNCs electrical activity; and 4) somatodendritic release of neuropeptides in relation to osmoregulation. Finally, we expect that by stressing the relationship between gene expression and the electrical activity of MNCs, studies about the newly discovered plastic-regulated genes that code channels and transporters in the SON may emerge.
Collapse
Affiliation(s)
- André Souza Mecawi
- Laboratory of Molecular Neuroendocrinology, Department of Biophysics, Paulista School of Medicine, Federal University of São Paulo, São Paulo, Brazil
| | - Wamberto Antonio Varanda
- Department of Physiology, Faculty of Medicine of Ribeirão Preto, University of São Paulo, Ribeirão Preto, Brazil
| | - Melina Pires da Silva
- Laboratory of Cellular Neuroendocrinology, Department of Biophysics, Paulista School of Medicine, Federal University of São Paulo, São Paulo, Brazil
| |
Collapse
|
4
|
Roy RK, Althammer F, Seymour AJ, Du W, Biancardi VC, Hamm JP, Filosa JA, Brown CH, Stern JE. Inverse neurovascular coupling contributes to positive feedback excitation of vasopressin neurons during a systemic homeostatic challenge. Cell Rep 2021; 37:109925. [PMID: 34731601 PMCID: PMC9488983 DOI: 10.1016/j.celrep.2021.109925] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2021] [Revised: 08/09/2021] [Accepted: 10/12/2021] [Indexed: 01/03/2023] Open
Abstract
Neurovascular coupling (NVC), the process that links neuronal activity to cerebral blood flow changes, has been mainly studied in superficial brain areas, namely the neocortex. Whether the conventional, rapid, and spatially restricted NVC response can be generalized to deeper and functionally diverse brain regions remains unknown. Implementing an approach for in vivo two-photon imaging from the ventral surface of the brain, we show that a systemic homeostatic challenge, acute salt loading, progressively increases hypothalamic vasopressin (VP) neuronal firing and evokes a vasoconstriction that reduces local blood flow. Vasoconstrictions are blocked by topical application of a VP receptor antagonist or tetrodotoxin, supporting mediation by activity-dependent, dendritically released VP. Salt-induced inverse NVC results in a local hypoxic microenvironment, which evokes positive feedback excitation of VP neurons. Our results reveal a physiological mechanism by which inverse NVC responses regulate systemic homeostasis, further supporting the notion of brain heterogeneity in NVC responses.
Collapse
Affiliation(s)
- Ranjan K Roy
- Neuroscience Institute, Georgia State University, Atlanta, GA, USA
| | | | | | - Wenting Du
- Department of Physiology, Augusta University, Augusta, GA, USA
| | - Vinicia C Biancardi
- Department of Anatomy, Physiology and Pharmacology, Auburn University, Auburn, AL, USA
| | - Jordan P Hamm
- Neuroscience Institute, Georgia State University, Atlanta, GA, USA
| | | | - Colin H Brown
- Department of Physiology, University of Otago, Dunedin, New Zealand
| | - Javier E Stern
- Neuroscience Institute, Georgia State University, Atlanta, GA, USA.
| |
Collapse
|
5
|
Qin W, Gan Q, Yang L, Wang Y, Qi W, Ke B, Xi L. High-resolution in vivo imaging of rhesus cerebral cortex with ultrafast portable photoacoustic microscopy. Neuroimage 2021; 238:118260. [PMID: 34118393 DOI: 10.1016/j.neuroimage.2021.118260] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2021] [Revised: 06/05/2021] [Accepted: 06/08/2021] [Indexed: 02/05/2023] Open
Abstract
Revealing the structural and functional change of microvasculature is essential to match vascular response with neuronal activities in the investigation of neurovascular coupling. The increasing use of rhesus models in fundamental and clinical studies of neurovascular coupling presents an emerging need for a new imaging modality. Here we report a structural and functional cerebral vascular study of rhesus monkeys using an ultrafast, portable, and high resolution photoacoustic microscopic system with a long working distance and a special scanning mechanism to eliminate the relative displacement between the imaging interface and samples. We derived the structural and functional response of the cerebral vasculature to the alternating normoxic and hypoxic conditions by calculating the vascular diameter and functional connectivity. Both vasodilatation and vasoconstriction were observed in hypoxia. In addition to the change of vascular diameter, the decrease of functional connectivity is also an important phenomenon induced by the reduction of oxygen ventilatory. These results suggest that photoacoustic microscopy is a promising method to study the neurovascular coupling and cerebral vascular diseases due to the advanced features of high spatiotemporal resolution, excellent sensitivity to hemoglobin, and label-free imaging capability of observing hemodynamics.
Collapse
Affiliation(s)
- Wei Qin
- Department of Biomedical Engineering, Southern University of Science and Technology, Shenzhen 518055, Guangdong, China
| | - Qi Gan
- Department of Neurosurgery, West China Hospital Sichuan University, Chengdu 610040, Sichuan, China
| | - Lei Yang
- Department of Anesthesiology and Critical Care Medicine, West China Hospital Sichuan University, Chengdu 610040, Sichuan, China
| | - Yongchao Wang
- Department of Biomedical Engineering, Southern University of Science and Technology, Shenzhen 518055, Guangdong, China
| | - Weizhi Qi
- Department of Biomedical Engineering, Southern University of Science and Technology, Shenzhen 518055, Guangdong, China
| | - Bowen Ke
- Department of Anesthesiology and Critical Care Medicine, West China Hospital Sichuan University, Chengdu 610040, Sichuan, China.
| | - Lei Xi
- Department of Biomedical Engineering, Southern University of Science and Technology, Shenzhen 518055, Guangdong, China.
| |
Collapse
|
6
|
Halaney DL, Jonak CR, Liu J, Davoodzadeh N, Cano-Velázquez MS, Ehtiyatkar P, Park H, Binder DK, Aguilar G. Chronic Brain Imaging Across a Transparent Nanocrystalline Yttria-Stabilized-Zirconia Cranial Implant. Front Bioeng Biotechnol 2020; 8:659. [PMID: 32695757 PMCID: PMC7339873 DOI: 10.3389/fbioe.2020.00659] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2020] [Accepted: 05/28/2020] [Indexed: 12/28/2022] Open
Abstract
Repeated non-diffuse optical imaging of the brain is difficult. This is due to the fact that the cranial bone is highly scattering and thus a strong optical barrier. Repeated craniotomies increase the risk of complications and may disrupt the biological systems being imaged. We previously introduced a potential solution in the form of a transparent ceramic cranial implant called the Window to the Brain (WttB) implant. This implant is made of nanocrystalline Yttria-Stabilized Zirconia (nc-YSZ), which possesses the requisite mechanical strength to serve as a permanent optical access window in human patients. In this present study, we demonstrate repeated brain imaging of n = 5 mice using both OCT and LSI across the WttB implant over 4 weeks. The main objectives are to determine if the WttB implant allows for chronic OCT imaging, and to shed further light on the question of whether optical access provided by the WttB implant remains stable over this duration in the body. The Window to the Brain implant allowed for stable repeated imaging of the mouse brain with Optical Coherence Tomography over 28 days, without loss of signal intensity. Repeated Laser Speckle Imaging was also possible over this timeframe, but signal to noise ratio and the sharpness of vessels in the images decreased with time. This can be partially explained by elevated blood flow during the first imaging session in response to trauma from the surgery, which was also detected by OCT flow imaging. These results are promising for long-term optical access through the WttB implant, making feasible chronic in vivo studies in multiple neurological models of brain disease.
Collapse
Affiliation(s)
- David L Halaney
- Laboratory of Guillermo Aguilar, Department of Mechanical Engineering, University of California, Riverside, Riverside, CA, United States
| | - Carrie R Jonak
- Laboratory of Devin Binder, Division of Biomedical Sciences, University of California, Riverside, Riverside, CA, United States
| | - Junze Liu
- Laboratory of Hyle Park, Department of Bioengineering, University of California, Riverside, Riverside, CA, United States
| | - Nami Davoodzadeh
- Laboratory of Guillermo Aguilar, Department of Mechanical Engineering, University of California, Riverside, Riverside, CA, United States
| | - Mildred S Cano-Velázquez
- Laboratory of Juan Hernandez-Cordero, Instituto de Investigaciones en Materiales, Universidad Nacional Autónoma de México, Mexico City, Mexico
| | - Pasha Ehtiyatkar
- Laboratory of Guillermo Aguilar, Department of Mechanical Engineering, University of California, Riverside, Riverside, CA, United States.,Department of Neuroscience, University of California, Riverside, Riverside, CA, United States
| | - Hyle Park
- Laboratory of Hyle Park, Department of Bioengineering, University of California, Riverside, Riverside, CA, United States
| | - Devin K Binder
- Laboratory of Devin Binder, Division of Biomedical Sciences, University of California, Riverside, Riverside, CA, United States
| | - Guillermo Aguilar
- Laboratory of Guillermo Aguilar, Department of Mechanical Engineering, University of California, Riverside, Riverside, CA, United States
| |
Collapse
|
7
|
Patel DD, Lipinski DM. Validating a low-cost laser speckle contrast imaging system as a quantitative tool for assessing retinal vascular function. Sci Rep 2020; 10:7177. [PMID: 32346043 PMCID: PMC7188677 DOI: 10.1038/s41598-020-64204-z] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2019] [Accepted: 04/10/2020] [Indexed: 11/18/2022] Open
Abstract
The ability to monitor progression of retinal vascular diseases like diabetic retinopathy in small animal models is often complicated by their failure to develop the end-stage complications which characterize the human phenotypes in disease. Interestingly, as micro-vascular dysfunction typically precedes the onset of retinal vascular and even some neurodegenerative diseases, the ability to visualize and quantify hemodynamic changes (e.g. decreased flow or occlusion) in retinal vessels may serve as a useful diagnostic indicator of disease progression and as a therapeutic outcome measure in response to treatment. Nevertheless, the ability to precisely and accurately quantify retinal hemodynamics remains an unmet challenge in ophthalmic research. Herein we demonstrate the ability to modify a commercial fundus camera into a low-cost laser speckle contrast imaging (LSCI) system for contrast-free and non-invasive quantification of relative changes to retinal hemodynamics over a wide field-of-view in a rodent model.
Collapse
Affiliation(s)
- Dwani D Patel
- Department of Cell Biology, Neurobiology and Anatomy, Medical College of Wisconsin, Milwaukee, Wisconsin, USA
- Department of Ophthalmology and Visual Sciences, Medical College of Wisconsin, Milwaukee, Wisconsin, USA
| | - Daniel M Lipinski
- Department of Cell Biology, Neurobiology and Anatomy, Medical College of Wisconsin, Milwaukee, Wisconsin, USA.
- Department of Ophthalmology and Visual Sciences, Medical College of Wisconsin, Milwaukee, Wisconsin, USA.
- Nuffield Laboratory of Ophthalmology, University of Oxford, Oxford, UK.
| |
Collapse
|
8
|
Yuan Y, Wang Z, Liu M, Shoham S. Cortical hemodynamic responses induced by low-intensity transcranial ultrasound stimulation of mouse cortex. Neuroimage 2020; 211:116597. [PMID: 32018004 DOI: 10.1016/j.neuroimage.2020.116597] [Citation(s) in RCA: 49] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2019] [Revised: 12/28/2019] [Accepted: 01/31/2020] [Indexed: 10/25/2022] Open
Abstract
Ultrasound-mediated neuromodulation is emerging as a key technology for targeted noninvasive brain stimulation, but key insights into its effects and dose-response characteristics are still missing. The purpose of this study is to systematically evaluate the effect of low-intensity transcranial ultrasound stimulation (TUS) on complementary aspects of cerebral hemodynamic. We simultaneously record the EMG signal, local field potential (LFP) and cortical blood flow (CBF) using electrophysiological recording and laser speckle contrast imaging under ultrasound stimulation to simultaneously monitor motor responses, neural activities and hemodynamic changes during the application of low-intensity TUS in mouse motor cortex, using excitation pulses which caused whisker and tail movement. Our experimental results demonstrate interdependent TUS-induced motor, neural activity and hemodynamic responses that peak approximately 0.55s, 1.05s and 2.5s after TUS onset, respectively, and show a linear coupling relationship between their respective varying response amplitudes to repeated stimuli. We also found monotonic dose-response parametric relations of the CBF peak value increase as a function of stimulation intensity and duration, while stimulus duty-cycle had only a weak effect on peak responses. These findings demonstrate that TUS induces a change in cortical hemodynamics and LSCI provide a high temporal resolution view of these changes.
Collapse
Affiliation(s)
- Yi Yuan
- Institute of Electrical Engineering, Yanshan University, Qinhuangdao, 066004, China; Departments of Ophthalmology, Departments of Neuroscience and Physiology, NYU Langone Health, New York, 10016, USA.
| | - Zhijie Wang
- Institute of Electrical Engineering, Yanshan University, Qinhuangdao, 066004, China
| | - Mengyang Liu
- Center for Medical Physics and Biomedical Engineering, Medical University of Vienna, Vienna, 1090, Austria
| | - Shy Shoham
- Departments of Ophthalmology, Departments of Neuroscience and Physiology, NYU Langone Health, New York, 10016, USA.
| |
Collapse
|
9
|
Su X, Zheng H, Li Q, Sun P, Zhou M, Li H, Guo J, Chai X, Zhou C. Retinal neurovascular responses to transcorneal electrical stimulation measured with optical coherence tomography. Exp Biol Med (Maywood) 2020; 245:289-300. [PMID: 31958987 DOI: 10.1177/1535370219900495] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Noninvasive transcorneal electrical stimulation (TES) has emerged as a potential strategy to facilitate visual restoration and promote retinal cell survival for certain retinal and optic nerve diseases owing to its neuroprotective effects. However, the neurovascular responses of retinal neurons evoked by TES have not been completely determined. To investigate this issue, we utilized a custom-designed spectral-domain optical coherence tomography (SD-OCT) to record the retinal neural and vascular responses under TES in vivo simultaneously. Significant increases of both positive and negative intrinsic optical signal (IOS) changes were recorded in all three segmented retinal layers, which mainly related to neural activities. However, the changes of TES-induced retinal vascular responses, including blood velocity, cross-sectional area of vessel, and blood flow, were not significant. It suggests that TES mainly elicited neural responses in retina, while no significant vascular responses were evoked. Our results provide experimental evidence to the mechanism of retinal neurovascular coupling under TES. Additionally, the present study also suggests that SD-OCT could be utilized as a promoting method to explore neurovascular responses under retinal stimulation in clinical treatment and technology. Impact statement Noninvasive transcorneal electrical stimulation (TES) has emerged as an effective treatment for certain retinal and optic nerve diseases owing to its neuroprotective effects. However, the retinal neurovascular responses evoked by TES have not been completely determined. To investigate this issue, we utilized a custom-designed spectral-domain optical coherence tomography (SD-OCT) to record the retinal neural and vascular responses evoked by TES in vivo simultaneously. The present study suggested that TES mainly elicited neural responses in retina, while no significant vascular responses were evoked. Our results provide experimental evidence to the mechanism of retinal neurovascular coupling evoked by TES. Additionally, the present study also suggests that SD-OCT could be utilized as a promoting method to explore neurovascular responses under retinal electrical stimulation.
Collapse
Affiliation(s)
- Xiaofan Su
- School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Hao Zheng
- School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Qian Li
- School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai 200240, China.,Center for Medical Physics and Biomedical Engineering, Medical University of Vienna, Vienna 1090, Austria
| | - Pengcheng Sun
- School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Meixuan Zhou
- School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Heng Li
- School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Jiahui Guo
- School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Xinyu Chai
- School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Chuanqing Zhou
- School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai 200240, China.,Institute of Biomedical Engineering, Shenzhen Bay Laboratory, Shenzhen 518055, China
| |
Collapse
|
10
|
Davoodzadeh N, Cano-Velázquez MS, Halaney DL, Jonak CR, Binder DK, Aguilar G. Optical Access to Arteriovenous Cerebral Microcirculation Through a Transparent Cranial Implant. Lasers Surg Med 2019; 51:920-932. [PMID: 31236997 DOI: 10.1002/lsm.23127] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/01/2019] [Indexed: 01/20/2023]
Abstract
BACKGROUND AND OBJECTIVE Microcirculation plays a critical role in physiologic processes and several disease states. Laser speckle imaging (LSI) is a full-field, real-time imaging technique capable of mapping microvessel networks and providing relative flow velocity within the vessels. In this study, we demonstrate that LSI combine with multispectral reflectance imaging (MSRI), which allows for distinction between veins and arteries in the vascular flow maps produced by LSI. We apply this combined technique to mouse cerebral vascular network in vivo, comparing imaging through the skull, to the dura mater and brain directly through a craniectomy, and through a transparent cranial "Window to the Brain" (WttB) implant. STUDY DESIGN/MATERIALS AND METHODS The WttB implant used in this study is made of a nanocrystalline Yttria-Stabilized-Zirconia ceramic. MSRI was conducted using white-light illumination and filtering the reflected light for 560, 570, 580, 590, 600, and 610 nm. LSI was conducted using an 810 nm continuous wave near-infrared laser with incident power of 100 mW, and the reflected speckle pattern was captured by a complementary metal-oxide-semiconductor (CMOS) camera. RESULTS Seven vessel branches were analyzed and comparison was made between imaging through the skull, craniectomy, and WttB implant. Through the skull, MSRI did not detect any vessels, and LSI could not image microvessels. Imaging through the WttB implant, MSRI was able to identify veins versus arteries, and LSI was able to image microvessels with only slightly higher signal-to-noise ratio and lower sharpness than imaging the brain through a craniectomy. CONCLUSIONS This study demonstrates the ability to perform MSRI-LSI across a transparent cranial implant, to allow for cerebral vascular networks to be mapped, including microvessels. These images contain additional information such as vein-artery separation and relative blood flow velocities, information which is of value scientifically and medically. The WttB implant provides substantial improvements over imaging through the murine cranial bone, where microvessels are not visible and MSRI cannot be performed. Lasers Surg. Med. © 2019 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Nami Davoodzadeh
- Department of Mechanical Engineering, University of California, Bourns Hall A342 900 University Ave., Riverside, California, 92521
| | - Mildred S Cano-Velázquez
- Instituto de Investigaciones en Materiales, Universidad Nacional Autónoma de México, Circuito Exterior S/N, Ciudad Universitaria, Coyoacán, Mexico City, 04510, Mexico
| | - David L Halaney
- Department of Mechanical Engineering, University of California, Bourns Hall A342 900 University Ave., Riverside, California, 92521
| | - Carrie R Jonak
- Division of Biomedical Sciences, School of Medicine, University of California, 1126 Webber Hall 900 University Ave., Riverside, California, 92521
| | - Devin K Binder
- Division of Biomedical Sciences, School of Medicine, University of California, 1126 Webber Hall 900 University Ave., Riverside, California, 92521
| | - Guillermo Aguilar
- Department of Mechanical Engineering, University of California, Bourns Hall A342 900 University Ave., Riverside, California, 92521
| |
Collapse
|
11
|
Gandhi R, Tsoumpas C. Preclinical Imaging Biomarkers for Postischaemic Neurovascular Remodelling. CONTRAST MEDIA & MOLECULAR IMAGING 2019; 2019:3128529. [PMID: 30863220 PMCID: PMC6378027 DOI: 10.1155/2019/3128529] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/22/2018] [Revised: 11/22/2018] [Accepted: 12/04/2018] [Indexed: 11/30/2022]
Abstract
In the pursuit of understanding the pathological alterations that underlie ischaemic injuries, such as vascular remodelling and reorganisation, there is a need for recognising the capabilities and limitations of in vivo imaging techniques. Thus, this review presents contemporary published research of imaging modalities that have been implemented to study postischaemic neurovascular changes in small animals. A comparison of the technical aspects of the various imaging tools is included to set the framework for identifying the most appropriate methods to observe postischaemic neurovascular remodelling. A systematic search of the PubMed® and Elsevier's Scopus databases identified studies that were conducted between 2008 and 2018 to explore postischaemic neurovascular remodelling in small animal models. Thirty-five relevant in vivo imaging studies are included, of which most made use of magnetic resonance imaging or positron emission tomography, whilst various optical modalities were also utilised. Notably, there is an increasing trend of using multimodal imaging to exploit the most beneficial properties of each imaging technique to elucidate different aspects of neurovascular remodelling. Nevertheless, there is still scope for further utilising noninvasive imaging tools such as contrast agents or radiotracers, which will have the ability to monitor neurovascular changes particularly during restorative therapy. This will facilitate more successful utility of the clinical imaging techniques in the interpretation of neurovascular reorganisation over time.
Collapse
Affiliation(s)
- Richa Gandhi
- Department of Biomedical Imaging Science, Leeds Institute of Cardiovascular and Metabolic Medicine, University of Leeds, Leeds LS2 9NL, West Yorkshire, UK
| | - Charalampos Tsoumpas
- Department of Biomedical Imaging Science, Leeds Institute of Cardiovascular and Metabolic Medicine, University of Leeds, Leeds LS2 9NL, West Yorkshire, UK
| |
Collapse
|
12
|
Soleimanzad H, Smekens F, Peyronnet J, Juchaux M, Lefebvre O, Bouville D, Magnan C, Gurden H, Pain F. Multiple speckle exposure imaging for the study of blood flow changes induced by functional activation of barrel cortex and olfactory bulb in mice. NEUROPHOTONICS 2019; 6:015008. [PMID: 30854406 PMCID: PMC6400140 DOI: 10.1117/1.nph.6.1.015008] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/05/2018] [Accepted: 02/13/2019] [Indexed: 06/09/2023]
Abstract
Speckle contrast imaging allows in vivo imaging of relative blood flow changes. Multiple exposure speckle imaging (MESI) is more accurate than the standard single-exposure method since it allows separating the contribution of the static and moving scatters of the recorded speckle patterns. MESI requires experimental validation on phantoms prior to in vivo experiments to ensure the proper calibration of the system and the robustness of the model. The data analysis relies on the calculation of the speckle contrast for each exposure and a subsequent nonlinear fit to the MESI model to extract the scatterers correlation time and the relative contribution of moving scatters. We have designed two multichannel polydimethylsiloxane chips to study the influence of multiple and static scattering on the accuracy of MESI quantitation. We also propose a method based on standard C++ libraries to implement a computationally efficient analysis of the MESI data. Finally, the system was used to obtain in vivo hemodynamic data on two distinct sensory areas of the mice brain: the barrel cortex and the olfactory bulb.
Collapse
Affiliation(s)
- Haleh Soleimanzad
- IMNC, CNRS, Université Paris-Sud, Université Paris-Saclay, Orsay, France
- BFA, CNRS, Université Paris Diderot, Paris, France
| | - François Smekens
- IMNC, CNRS, Université Paris-Sud, Université Paris-Saclay, Orsay, France
| | - Juliette Peyronnet
- IMNC, CNRS, Université Paris-Sud, Université Paris-Saclay, Orsay, France
| | - Marjorie Juchaux
- IMNC, CNRS, Université Paris-Sud, Université Paris-Saclay, Orsay, France
- C2N, CNRS, Université Paris-Sud, Université Paris-Saclay, Palaiseau, France
| | - Olivier Lefebvre
- IMNC, CNRS, Université Paris-Sud, Université Paris-Saclay, Orsay, France
| | - David Bouville
- C2N, CNRS, Université Paris-Sud, Université Paris-Saclay, Palaiseau, France
| | | | - Hirac Gurden
- BFA, CNRS, Université Paris Diderot, Paris, France
| | - Frederic Pain
- IMNC, CNRS, Université Paris-Sud, Université Paris-Saclay, Orsay, France
| |
Collapse
|
13
|
Davoodzadeh N, Cano-Velázquez MS, Halaney DL, Jonak CR, Binder DK, Aguilar G. Evaluation of a transparent cranial implant as a permanent window for cerebral blood flow imaging. BIOMEDICAL OPTICS EXPRESS 2018; 9:4879-4892. [PMID: 30319909 PMCID: PMC6179387 DOI: 10.1364/boe.9.004879] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/18/2018] [Revised: 08/27/2018] [Accepted: 09/12/2018] [Indexed: 05/11/2023]
Abstract
Laser speckle imaging (LSI) of mouse cerebral blood flow was compared through a transparent nanocrystalline yttria-stabilized zirconia (nc-YSZ) cranial implant over time (at days 0, 14, and 28, n = 3 mice), and vs. LSI through native skull (at day 60, n = 1 mouse). The average sharpness of imaged vessels was found to remain stable, with relative change in sharpness under 7.69% ± 1.2% over 28 days. Through-implant images of vessels at day 60 appeared sharper and smaller on average, with microvessels clearly visible, compared to through-skull images where vessels appeared blurred and distorted. These results suggest that long-term imaging through this implant is feasible.
Collapse
Affiliation(s)
- Nami Davoodzadeh
- Department of Mechanical Engineering, University of California, Riverside, CA, USA
| | | | - David L Halaney
- Department of Mechanical Engineering, University of California, Riverside, CA, USA
| | - Carrie R Jonak
- Division of Biomedical Sciences, School of Medicine, University of California, Riverside, CA, USA
| | - Devin K Binder
- Division of Biomedical Sciences, School of Medicine, University of California, Riverside, CA, USA
| | - Guillermo Aguilar
- Department of Mechanical Engineering, University of California, Riverside, CA, USA
| |
Collapse
|
14
|
Hu S, Zheng T, Dong Y, Du J, Liu L. Effect of Anodal Direct-Current Stimulation on Cortical Hemodynamic Responses With Laser-Speckle Contrast Imaging. Front Neurosci 2018; 12:503. [PMID: 30140201 PMCID: PMC6094971 DOI: 10.3389/fnins.2018.00503] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2018] [Accepted: 07/04/2018] [Indexed: 11/26/2022] Open
Abstract
Transcranial direct-current stimulation (DCS) offers a method for noninvasive neuromodulation usable in basic and clinical human neuroscience. Laser-speckle contrast imaging (LSCI), a powerful, low-cost method for obtaining images of dynamic systems, can detect regional blood-flow distributions with high spatial and temporal resolutions. Here, we used LSCI for measuring DCS-induced cerebral blood flow in real-time. Results showed that the change-rate of cerebral blood flow could reach approximately 10.1 ± 5.1% by DCS, indicating that DCS can increase cerebral blood flow and alter cortical hemodynamic responses. Thus, DCS shows potential for the clinical treatment and rehabilitation of ischemic strokes.
Collapse
Affiliation(s)
- Shuo Hu
- Institute of Electrical Engineering, Yanshan University, Qinhuangdao, China
| | - Tao Zheng
- Department of Magnetic Resonance Imaging, Qinhuangdao Municipal No. 1 Hospital, Qinhuangdao, China
| | - Yanchao Dong
- Department of Magnetic Resonance Imaging, Qinhuangdao Municipal No. 1 Hospital, Qinhuangdao, China
| | - Juan Du
- Department of Magnetic Resonance Imaging, Qinhuangdao Municipal No. 1 Hospital, Qinhuangdao, China
| | - Lanxiang Liu
- Department of Magnetic Resonance Imaging, Qinhuangdao Municipal No. 1 Hospital, Qinhuangdao, China
| |
Collapse
|
15
|
Yuan Y, Zhao Y, Jia H, Liu M, Hu S, Li Y, Li X. Cortical Hemodynamic Responses Under Focused Ultrasound Stimulation Using Real-Time Laser Speckle Contrast Imaging. Front Neurosci 2018; 12:269. [PMID: 29740276 PMCID: PMC5925215 DOI: 10.3389/fnins.2018.00269] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2017] [Accepted: 04/09/2018] [Indexed: 12/03/2022] Open
Abstract
Although there is increasing use of focused ultrasound stimulation (FUS) in brain studies, the real-time changes of the cerebral blood flow (CBF) due to FUS remain unclear. In this study, we developed a novel scheme combining FUS and laser speckle contrast imaging, which can be used to measure the CBF caused by FUS in real time. The results showed that the change of CBF increased from 0 to 30 s and reached up to the maximum of 115.1 ± 6.5% at 30 s and then decreased gradually from 30 to 60 s. This study demonstrates that FUS was able to increase CBF and alter cortical hemodynamic responses, which indicates that FUS is a potential non-invasive method to study ischemic stroke rehabilitation.
Collapse
Affiliation(s)
- Yi Yuan
- Institute of Electrical Engineering, Yanshan University, Qinhuangdao, China
| | - Yanchao Zhao
- Institute of Electrical Engineering, Yanshan University, Qinhuangdao, China
| | - Hongshuai Jia
- School of Clinical Medicine, North China University of Science and Technology, Tangshan, China
| | - Mengyang Liu
- Center for Medical Physics and Biomedical Engineering, Medical University of Vienna, Vienna, Austria
| | - Shuo Hu
- Institute of Electrical Engineering, Yanshan University, Qinhuangdao, China
| | - Yingwei Li
- Institute of Information Engineering, Yanshan University, Qinhuangdao, China
| | - Xiaoli Li
- State Key Laboratory of Cognitive Neuroscience and Learning and IDG, McGovern Institute for Brain Research, Beijing Normal University, Beijing, China
| |
Collapse
|
16
|
Wang Y, Wen D, Chen X, Huang Q, Chen M, Lu J, Li P. Improving the estimation of flow speed for laser speckle imaging with single exposure time. OPTICS LETTERS 2017; 42:57-60. [PMID: 28059177 DOI: 10.1364/ol.42.000057] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/26/2023]
Abstract
Laser speckle contrast imaging is a full-field imaging technique for measuring blood flow by mapping the speckle contrast with high spatial and temporal resolution. However, the statically scattered light from stationary tissues seriously degrades the accuracy of flow speed estimation. In this Letter, we present a simple calibration approach to calculate the proportions of dynamically scattered light and correct the effect of static scattering with single exposure time. Both the phantom and animal experimental results suggest that this calibration approach has the ability to improve the estimation of the relative blood flow in the presence of static scattering.
Collapse
|
17
|
Jones S, Schwartzbauer G, Jia X. Brain Monitoring in Critically Neurologically Impaired Patients. Int J Mol Sci 2016; 18:E43. [PMID: 28035993 PMCID: PMC5297678 DOI: 10.3390/ijms18010043] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2016] [Revised: 12/10/2016] [Accepted: 12/21/2016] [Indexed: 02/07/2023] Open
Abstract
Assessment of neurologic injury and the evolution of severe neurologic injury is limited in comatose or critically ill patients that lack a reliable neurologic examination. For common yet severe pathologies such as the comatose state after cardiac arrest, aneurysmal subarachnoid hemorrhage (aSAH), and severe traumatic brain injury (TBI), critical medical decisions are made on the basis of the neurologic injury. Decisions regarding active intensive care management, need for neurosurgical intervention, and withdrawal of care, depend on a reliable, high-quality assessment of the true state of neurologic injury, and have traditionally relied on limited assessments such as intracranial pressure monitoring and electroencephalogram. However, even within TBI there exists a spectrum of disease that is likely not captured by such limited monitoring and thus a more directed effort towards obtaining a more robust biophysical signature of the individual patient must be undertaken. In this review, multimodal monitoring including the most promising serum markers of neuronal injury, cerebral microdialysis, brain tissue oxygenation, and pressure reactivity index to access brain microenvironment will be discussed with their utility among specific pathologies that may help determine a more complete picture of the neurologic injury state for active intensive care management and long-term outcomes. Goal-directed therapy guided by a multi-modality approach appears to be superior to standard intracranial pressure (ICP) guided therapy and should be explored further across multiple pathologies. Future directions including the application of optogenetics to evaluate brain injury and recovery and even as an adjunct monitoring modality will also be discussed.
Collapse
Affiliation(s)
- Salazar Jones
- Department of Neurosurgery, University of Maryland School of Medicine, Baltimore, MD 21201, USA.
| | - Gary Schwartzbauer
- Department of Neurosurgery, University of Maryland School of Medicine, Baltimore, MD 21201, USA.
- R Adams Cowley Shock Trauma Center, University of Maryland School of Medicine, Baltimore, MD 21201, USA.
- Institute for Global Health, University of Maryland School of Medicine, Baltimore, MD 21201, USA.
| | - Xiaofeng Jia
- Department of Neurosurgery, University of Maryland School of Medicine, Baltimore, MD 21201, USA.
- Department of Orthopaedics, University of Maryland School of Medicine, Baltimore, MD 21201, USA.
- Department of Anatomy and Neurobiology, University of Maryland School of Medicine, Baltimore, MD 21201, USA.
- Department of Biomedical Engineering, The Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA.
- Department of Anesthesiology and Critical Care Medicine, The Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA.
| |
Collapse
|
18
|
Young L. Real-time monitoring of cerebral blood flow by laser speckle contrast imaging after cardiac arrest in rat. ANNUAL INTERNATIONAL CONFERENCE OF THE IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. ANNUAL INTERNATIONAL CONFERENCE 2016; 2015:6971-4. [PMID: 26737896 DOI: 10.1109/embc.2015.7319996] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Cardiac arrest (CA) results in global brain ischemia. To explore the role of cerebral blood flow (CBF) during ischemia, laser speckle contrast imaging (LSCI), a full-field high-resolution optical imaging technique, was used for real-time monitoring of the fluctuations of CBF in a rat model of asphyxial-CA. The temporal changes of CBF were characterized and the relationship between CBF and mean arterial pressure (MAP) was evaluated. Asphyxial-CA led to transient CBF dysregulation, manifested by changes in CBF velocity were significantly impacted by MAP. Hyperemia is aligned with a bolus injection of vecuronium, the first two minutes of asphyxia, the time of epinephrine injection and cardiopulmonary resuscitation, and then lasted for 13 min after the return of spontaneous respiratory (ROSC), followed by hypoperfusion about 55-70% of baseline level no later than 40 min after ROSC. Interestingly, we found that the velocity of venule blood flow increased more than that of the arteriole blood flow during the hyperemia (176% vs 120%). Our study, for the first time, shows real-time CBF changes during and immediately after asphyxial-CA, with high spatial and temporal resolution images. The quantified cerebro-vascular response during the different phases of recovery after CA may underlie the mechanism of injury and recovery after brain ischemia. The study provides a new technique to study the neurovascular coupling and metabolic regulation of CBF after CA.
Collapse
|
19
|
Effects of Voluntary Locomotion and Calcitonin Gene-Related Peptide on the Dynamics of Single Dural Vessels in Awake Mice. J Neurosci 2016; 36:2503-16. [PMID: 26911696 DOI: 10.1523/jneurosci.3665-15.2016] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
The dura mater is a vascularized membrane surrounding the brain and is heavily innervated by sensory nerves. Our knowledge of the dural vasculature has been limited to pathological conditions, such as headaches, but little is known about the dural blood flow regulation during behavior. To better understand the dynamics of dural vessels during behavior, we used two-photon laser scanning microscopy (2PLSM) to measure the diameter changes of single dural and pial vessels in the awake mouse during voluntary locomotion. Surprisingly, we found that voluntary locomotion drove the constriction of dural vessels, and the dynamics of these constrictions could be captured with a linear convolution model. Dural vessel constrictions did not mirror the large increases in intracranial pressure (ICP) during locomotion, indicating that dural vessel constriction was not caused passively by compression. To study how behaviorally driven dynamics of dural vessels might be altered in pathological states, we injected the vasodilator calcitonin gene-related peptide (CGRP), which induces headache in humans. CGRP dilated dural, but not pial, vessels and significantly reduced spontaneous locomotion but did not block locomotion-induced constrictions in dural vessels. Sumatriptan, a drug commonly used to treat headaches, blocked the vascular and behavioral the effects of CGRP. These findings suggest that, in the awake animal, the diameters of dural vessels are regulated dynamically during behavior and during drug-induced pathological states.
Collapse
|
20
|
Vaz PG, Humeau-Heurtier A, Figueiras E, Correia C, Cardoso J. Laser Speckle Imaging to Monitor Microvascular Blood Flow: A Review. IEEE Rev Biomed Eng 2016; 9:106-20. [DOI: 10.1109/rbme.2016.2532598] [Citation(s) in RCA: 67] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
21
|
Liao LD, Li ML, Lai HY, Chen YY, Thakor NV. Study of neurovascular coupling functions for transient focal cerebral ischemia in rats using electrocorticography functional photoacoustic microscopy (ECoG-fPAM). ANNUAL INTERNATIONAL CONFERENCE OF THE IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. ANNUAL INTERNATIONAL CONFERENCE 2015; 2013:1799-802. [PMID: 24110058 DOI: 10.1109/embc.2013.6609871] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
Recently, the functional photoacoustic microscopy (fPAM) system has been proven to be a reliable imaging technique for measuring the total hemoglobin concentration (HbT), cerebral blood volume (CBV) and hemoglobin oxygen saturation (SO2) in single cerebral blood vessels of rats. In this study, we report for the first time the combination of electrocorticography (ECoG) recordings and fPAM (ECoG-fPAM) to investigate functional hemodynamic changes and neuro-vascular coupling in single cortical arterioles of rats with electrical forepaw stimulation after photothrombotic stroke. Because of the optical focusing nature of our fPAM system, photo-induced ischemic stroke targeting on single cortical arterioles can be easily conducted with simple adaptation. Functional cerebral HbT, CBV and SO2 changes associated with the induced stroke in selected arterioles from the anterior cerebral artery system were imaged with a 36 × 65-µm spatial resolution. The ECoG-fPAM system complements existing imaging techniques and has the potential to offer a favorable tool for explicitly studying cerebral hemodynamics and neuro-vascular coupling in small animal models of photo-induced ischemic stroke.
Collapse
|
22
|
Erdener SE, Dalkara T. Modelling headache and migraine and its pharmacological manipulation. Br J Pharmacol 2014; 171:4575-94. [PMID: 24611635 DOI: 10.1111/bph.12651] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2013] [Revised: 01/13/2014] [Accepted: 02/14/2014] [Indexed: 12/22/2022] Open
Abstract
Similarities between laboratory animals and humans in anatomy and physiology of the cephalic nociceptive pathways have allowed scientists to create successful models that have significantly contributed to our understanding of headache. They have also been instrumental in the development of novel anti-migraine drugs different from classical pain killers. Nevertheless, modelling the mechanisms underlying primary headache disorders like migraine has been challenging due to limitations in testing the postulated hypotheses in humans. Recent developments in imaging techniques have begun to fill this translational gap. The unambiguous demonstration of cortical spreading depolarization (CSD) during migraine aura in patients has reawakened interest in studying CSD in animals as a noxious brain event that can activate the trigeminovascular system. CSD-based models, including transgenics and optogenetics, may more realistically simulate pain generation in migraine, which is thought to originate within the brain. The realization that behavioural correlates of headache and migrainous symptoms like photophobia can be assessed quantitatively in laboratory animals, has created an opportunity to directly study the headache in intact animals without the confounding effects of anaesthetics. Headache and migraine-like episodes induced by administration of glyceryltrinitrate and CGRP to humans and parallel behavioural and biological changes observed in rodents create interesting possibilities for translational research. Not unexpectedly, species differences and model-specific observations have also led to controversies as well as disappointments in clinical trials, which, in return, has helped us improve the models and advance our understanding of headache. Here, we review commonly used headache and migraine models with an emphasis on recent developments.
Collapse
Affiliation(s)
- S E Erdener
- Department of Neurology, Faculty of Medicine, Institute of Neurological Sciences and Psychiatry, Hacettepe University, Ankara, Turkey
| | | |
Collapse
|
23
|
Li N, van Zijl P, Thakor N, Pelled G. Study of the spatial correlation between neuronal activity and BOLD fMRI responses evoked by sensory and channelrhodopsin-2 stimulation in the rat somatosensory cortex. J Mol Neurosci 2014; 53:553-61. [PMID: 24443233 DOI: 10.1007/s12031-013-0221-3] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2013] [Accepted: 12/22/2013] [Indexed: 12/11/2022]
Abstract
In this work, we combined optogenetic tools with high-resolution blood oxygenation level-dependent functional MRI (BOLD fMRI), electrophysiology, and optical imaging of cerebral blood flow (CBF), to study the spatial correlation between the hemodynamic responses and neuronal activity. We first investigated the spatial and temporal characteristics of BOLD fMRI and the underlying neuronal responses evoked by sensory stimulations at different frequencies. The results demonstrated that under dexmedetomidine anesthesia, BOLD fMRI and neuronal activity in the rat primary somatosensory cortex (S1) have different frequency-dependency and distinct laminar activation profiles. We then found that localized activation of channelrhodopsin-2 (ChR2) expressed in neurons throughout the cortex induced neuronal responses that were confined to the light stimulation S1 region (<500 μm) with distinct laminar activation profile. However, the spatial extent of the hemodynamic responses measured by CBF and BOLD fMRI induced by both ChR2 and sensory stimulation was greater than 3 mm. These results suggest that due to the complex neurovascular coupling, it is challenging to determine specific characteristics of the underlying neuronal activity exclusively from the BOLD fMRI signals.
Collapse
Affiliation(s)
- Nan Li
- F. M. Kirby Center for Functional Brain Imaging, Kennedy Krieger Institute, Baltimore, MD, USA
| | | | | | | |
Collapse
|
24
|
Humeau-Heurtier A, Abraham P, Mahe G. Linguistic Analysis of Laser Speckle Contrast Images Recorded at Rest and During Biological Zero: Comparison With Laser Doppler Flowmetry Data. IEEE TRANSACTIONS ON MEDICAL IMAGING 2013; 32:2311-2321. [PMID: 24058017 DOI: 10.1109/tmi.2013.2281620] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/02/2023]
Abstract
Laser speckle contrast imaging (LSCI) is a newly commercialized imaging modality to monitor microvascular blood flow. Contrary to the well-known laser Doppler flowmetry (LDF), LSCI has the advantage of giving a full-field image of surface blood flow using simple instrumentation. However, laser speckle contrast images are not fully understood yet and their link with LDF signals still has to be studied. To quantify the similarity between LSCI and LDF symbolic sequences, we propose to use, for the first time, the index adapted from linguistic analysis and information theory proposed by Yang For this purpose, LSCI and LDF data were recorded simultaneously on the forearm of healthy subjects, at rest and during a vascular occlusion (biological zero). We show that there are different dynamical patterns for LSCI and LDF data, and the distances between these patterns differ through the space scales explored. Moreover, our results suggest that these different dynamical patterns could be linked to blood flow. The quantitative metric used herein therefore provides new information on LSCI and brings knowledge on links between LSCI and LDF.
Collapse
|
25
|
Liao LD, Orellana J, Liu YH, Lin YR, Vipin A, Thakor NV, Shen K, Wilder-Smith E. Imaging of temperature dependent hemodynamics in the rat sciatic nerve by functional photoacoustic microscopy. Biomed Eng Online 2013; 12:120. [PMID: 24245952 PMCID: PMC4225521 DOI: 10.1186/1475-925x-12-120] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2013] [Accepted: 10/09/2013] [Indexed: 02/08/2023] Open
Abstract
Background Vascular hemodynamics is central to the regulation of neuro-metabolism and plays important roles in peripheral nerves diseases and their prevention. However, at present there are only a few techniques capable of directly measuring peripheral nerve vascular hemodynamics. Method Here, we investigate the use of dark-field functional photoacoustic microscopy (fPAM) for intrinsic visualizing of the relative hemodynamics of the rat sciatic nerve in response to localized temperature modulation (i.e., cooling and rewarming). Results and conclusion Our main results show that the relative functional total hemoglobin concentration (HbT) is more significantly correlated with localized temperature changes than the hemoglobin oxygen saturation (SO2) changes in the sciatic nerve. Our study also indicates that the relative HbT changes are better markers of neuronal activation than SO2 during nerve temperature changes. Our results show that fPAM is a promising candidate for in vivo imaging of peripheral nerve hemodynamics without the use of contrast agents. Additionally, this technique may shed light on the neuroprotective effect of hypothermia on peripheral nerves by visualizing their intrinsic hemodynamics.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Kaiquan Shen
- Singapore Institute for Neurotechnology (SINAPSE), National University of Singapore, 28 Medical Drive, #05-COR, Singapore 117456, Singapore.
| | | |
Collapse
|
26
|
Liao LD, Tsytsarev V, Delgado-Martínez I, Li ML, Erzurumlu R, Vipin A, Orellana J, Lin YR, Lai HY, Chen YY, Thakor NV. Neurovascular coupling: in vivo optical techniques for functional brain imaging. Biomed Eng Online 2013; 12:38. [PMID: 23631798 PMCID: PMC3655834 DOI: 10.1186/1475-925x-12-38] [Citation(s) in RCA: 75] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2013] [Accepted: 03/25/2013] [Indexed: 01/21/2023] Open
Abstract
Optical imaging techniques reflect different biochemical processes in the brain, which is closely related with neural activity. Scientists and clinicians employ a variety of optical imaging technologies to visualize and study the relationship between neurons, glial cells and blood vessels. In this paper, we present an overview of the current optical approaches used for the in vivo imaging of neurovascular coupling events in small animal models. These techniques include 2-photon microscopy, laser speckle contrast imaging (LSCI), voltage-sensitive dye imaging (VSDi), functional photoacoustic microscopy (fPAM), functional near-infrared spectroscopy imaging (fNIRS) and multimodal imaging techniques. The basic principles of each technique are described in detail, followed by examples of current applications from cutting-edge studies of cerebral neurovascular coupling functions and metabolic. Moreover, we provide a glimpse of the possible ways in which these techniques might be translated to human studies for clinical investigations of pathophysiology and disease. In vivo optical imaging techniques continue to expand and evolve, allowing us to discover fundamental basis of neurovascular coupling roles in cerebral physiology and pathophysiology.
Collapse
Affiliation(s)
- Lun-De Liao
- Singapore Institute for Neurotechnology (SINAPSE), National University of Singapore, 28 Medical Drive, #05-COR, Singapore 117456, Singapore
| | - Vassiliy Tsytsarev
- Department of Anatomy and Neurobiology, University of Maryland School of Medicine, 20 Penn street, HSF-2, Baltimore, MD 21201, USA
| | - Ignacio Delgado-Martínez
- Singapore Institute for Neurotechnology (SINAPSE), National University of Singapore, 28 Medical Drive, #05-COR, Singapore 117456, Singapore
| | - Meng-Lin Li
- Department of Electrical Engineering, National Tsing Hua University, No. 101, Sec. 2, Kuang-Fu Rd, Hsinchu 300, R.O.C, Taiwan
| | - Reha Erzurumlu
- Department of Anatomy and Neurobiology, University of Maryland School of Medicine, 20 Penn street, HSF-2, Baltimore, MD 21201, USA
| | - Ashwati Vipin
- Singapore Institute for Neurotechnology (SINAPSE), National University of Singapore, 28 Medical Drive, #05-COR, Singapore 117456, Singapore
| | - Josue Orellana
- Singapore Institute for Neurotechnology (SINAPSE), National University of Singapore, 28 Medical Drive, #05-COR, Singapore 117456, Singapore
| | - Yan-Ren Lin
- Department of Emergency Medicine, Changhua Christian Hospital, 135 Nanshsiao Street, Changhua 500, R.O.C, Taiwan
| | - Hsin-Yi Lai
- Department of Physical Medicine and Rehabilitation, Chang Gung Memorial Hospital and Chang Gung University, Taoyuan 333, R.O.C, Taiwan
| | - You-Yin Chen
- Department of Biomedical Engineering, National Yang Ming University, No.155, Sec.2, Linong St, Taipei 112, R.O.C, Taiwan
| | - Nitish V Thakor
- Singapore Institute for Neurotechnology (SINAPSE), National University of Singapore, 28 Medical Drive, #05-COR, Singapore 117456, Singapore
- Department of Biomedical Engineering, Johns Hopkins University, Traylor 701/720 Rutland Ave, Baltimore, MD 21205, USA
| |
Collapse
|
27
|
Senarathna J, Rege A, Li N, Thakor NV. Laser Speckle Contrast Imaging: theory, instrumentation and applications. IEEE Rev Biomed Eng 2013; 6:99-110. [PMID: 23372086 DOI: 10.1109/rbme.2013.2243140] [Citation(s) in RCA: 112] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
Laser Speckle Contrast Imaging (LSCI) is a wide field of view, non scanning optical technique for observing blood flow. Speckles are produced when coherent light scattered back from biological tissue is diffracted through the limiting aperture of focusing optics. Mobile scatterers cause the speckle pattern to blur; a model can be constructed by inversely relating the degree of blur, termed speckle contrast to the scatterer speed. In tissue, red blood cells are the main source of moving scatterers. Therefore, blood flow acts as a virtual contrast agent, outlining blood vessels. The spatial resolution (~10 μm) and temporal resolution (10 ms to 10 s) of LSCI can be tailored to the application. Restricted by the penetration depth of light, LSCI can only visualize superficial blood flow. Additionally, due to its non scanning nature, LSCI is unable to provide depth resolved images. The simple setup and non-dependence on exogenous contrast agents have made LSCI a popular tool for studying vascular structure and blood flow dynamics. We discuss the theory and practice of LSCI and critically analyze its merit in major areas of application such as retinal imaging, imaging of skin perfusion as well as imaging of neurophysiology.
Collapse
Affiliation(s)
- Janaka Senarathna
- Department of Biomedical Engineering, the Johns Hopkins University, Baltimore, MD 21205, USA.
| | | | | | | |
Collapse
|
28
|
Song L, Elson DS. Effect of signal intensity and camera quantization on laser speckle contrast analysis. BIOMEDICAL OPTICS EXPRESS 2013; 4:89-104. [PMID: 23304650 PMCID: PMC3539185 DOI: 10.1364/boe.4.000089] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/17/2012] [Revised: 11/05/2012] [Accepted: 11/28/2012] [Indexed: 05/23/2023]
Abstract
Laser speckle contrast analysis (LASCA) is limited to being a qualitative method for the measurement of blood flow and tissue perfusion as it is sensitive to the measurement configuration. The signal intensity is one of the parameters that can affect the contrast values due to the quantization of the signals by the camera and analog-to-digital converter (ADC). In this paper we deduce the theoretical relationship between signal intensity and contrast values based on the probability density function (PDF) of the speckle pattern and simplify it to a rational function. A simple method to correct this contrast error is suggested. The experimental results demonstrate that this relationship can effectively compensate the bias in contrast values induced by the quantized signal intensity and correct for bias induced by signal intensity variations across the field of view.
Collapse
|
29
|
Rege A, Seifert AC, Schlattman D, Ouyang Y, Li KW, Basaldella L, Brem H, Tyler BM, Thakor NV. Longitudinal in vivo monitoring of rodent glioma models through thinned skull using laser speckle contrast imaging. JOURNAL OF BIOMEDICAL OPTICS 2012; 17:126017. [PMID: 23235836 PMCID: PMC3519490 DOI: 10.1117/1.jbo.17.12.126017] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/07/2012] [Revised: 11/08/2012] [Accepted: 11/09/2012] [Indexed: 06/01/2023]
Abstract
Laser speckle contrast imaging (LSCI) is a contrast agent free imaging technique suited for longitudinal assessment of vascular remodeling that accompanies brain tumor growth. We report the use of LSCI to monitor vascular changes in a rodent glioma model. Ten rats are inoculated with 9L gliosarcoma cells, and the angiogenic response is monitored five times over two weeks through a thinned skull imaging window. We are able to visualize neovascularization and measure the number of vessels per unit area to assess quantitatively the microvessel density (MVD). Spatial spread of MVD reveals regions of high MVD that may correspond to tumor location. Whole-field average MVD values increase with time in the tumor group but are fairly stable in the control groups. Statistical analysis shows significant differences in MVD values between the tumor group and both saline-receiving and unperturbed control groups over the two-week period (p<0.05). In conclusion, LSCI is suitable for investigation of tumor angiogenesis in rodent models. In addition, the statistical difference (p<0.02) between MVD values of the tumor (24.40 ± 1.41) and control groups (15.40 ± 1.60) on the 14th day after inoculation suggests a potential use of LSCI in the clinic in distinguishing tumor environments from normal vasculature.
Collapse
Affiliation(s)
- Abhishek Rege
- Johns Hopkins University, Department of Biomedical Engineering, Baltimore, Maryland
| | | | - Dan Schlattman
- Infinite Biomedical Technologies LLC, Baltimore, Maryland
| | - Yu Ouyang
- Infinite Biomedical Technologies LLC, Baltimore, Maryland
| | - Khan W. Li
- Johns Hopkins University, Department of Neurosurgery, Baltimore, Maryland
| | - Luca Basaldella
- Johns Hopkins University, Department of Neurosurgery, Baltimore, Maryland
| | - Henry Brem
- Johns Hopkins University, Department of Biomedical Engineering, Baltimore, Maryland
- Johns Hopkins University, Department of Neurosurgery, Baltimore, Maryland
- Johns Hopkins University, Departments of Oncology and Ophthalmology, Baltimore, Maryland
| | - Betty M. Tyler
- Johns Hopkins University, Department of Neurosurgery, Baltimore, Maryland
| | - Nitish V. Thakor
- Johns Hopkins University, Department of Biomedical Engineering, Baltimore, Maryland
- Infinite Biomedical Technologies LLC, Baltimore, Maryland
| |
Collapse
|
30
|
Senarathna J, Murari K, Etienne-Cummings R, Thakor NV. A miniaturized platform for laser speckle contrast imaging. IEEE TRANSACTIONS ON BIOMEDICAL CIRCUITS AND SYSTEMS 2012; 6:437-45. [PMID: 23853230 DOI: 10.1109/tbcas.2012.2218106] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/10/2023]
Abstract
Imaging the brain in animal models enables scientists to unravel new biological insights. Despite critical advancements in recent years, most laboratory imaging techniques comprise of bulky bench top apparatus that require the imaged animals to be anesthetized and immobilized. Thus, animals are imaged in their non-native state severely restricting the scope of behavioral experiments. To address this gap, we report a miniaturized microscope that can be mounted on a rat's head for imaging in awake and unrestrained conditions. The microscope uses laser speckle contrast imaging (LSCI), a high resolution yet wide field imaging modality for imaging blood vessels and perfusion. Design details of both the image formation and acquisition modules are presented. A Monte Carlo simulation was used to estimate the depth of tissue penetration achievable by the imaging system while the produced speckle Airy disc patterns were simulated using Fresnel's diffraction theory. The microscope system weighs only 7 g and occupies less than 5 cm³ and was successfully used to generate proof of concept LSCI images of rat brain vasculature. We validated the utility of the head-mountable system in an awake rat brain model by confirming no impairment to the rat's native behavior.
Collapse
Affiliation(s)
- Janaka Senarathna
- Department of Biomedical Engineering, Johns Hopkins University, Baltimore, MD 21205, USA.
| | | | | | | |
Collapse
|
31
|
Li N, Thakor NV, Jia X. Laser speckle imaging reveals multiple aspects of cerebral vascular responses to whole body mild hypothermia in rats. ANNUAL INTERNATIONAL CONFERENCE OF THE IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. ANNUAL INTERNATIONAL CONFERENCE 2012; 2011:2049-52. [PMID: 22254739 DOI: 10.1109/iembs.2011.6090378] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
In this paper, we present a novel method to study the effect of induced mild hypothermia on cerebral vascular responses. To measure cerebral vascular responses, a minimally invasive imaging method, temporal laser speckle imaging, was developed and adapted for induced-hypothermia rat model. Experiments were carried out in rats under anesthesia. Laser speckle images were acquired at different temperature points, normothermia (37 °Q and mild therapeutic hypothermia (34 °Q. We extracted multiple hemodynamic responses simultaneously from the images, including blood flow, vessel size and deoxy-hemoglobin saturation. A wide-field view of the cerebral vascular response distribution was studied, which showed an inhomogeneous response map across the region of interest. A comparison between responses in arterioles and venules was carried out (blood flow decreased by 58 ± 9 % vs. 27 ± 8 %). The global decrease of blood flow, dilatation in arterioles and decrease of deoxy-hemoglobin saturation in veins at mild hypothermia suggests a beneficial role of circulatory and oxygenation changes in therapeutic hypothermia. The results reported provide a circulatory explanation for the hypothermia therapeutic effects and mechanism.
Collapse
Affiliation(s)
- Nan Li
- Biomedical Engineering Department, Johns Hopkins University, School of Medicine, Baltimore, MD 21205, USA.
| | | | | |
Collapse
|
32
|
Liao LD, Lin CT, Shih YYI, Lai HY, Zhao WT, Duong TQ, Chang JY, Chen YY, Li ML. Investigation of the cerebral hemodynamic response function in single blood vessels by functional photoacoustic microscopy. JOURNAL OF BIOMEDICAL OPTICS 2012; 17:061210. [PMID: 22734740 PMCID: PMC4023648 DOI: 10.1117/1.jbo.17.6.061210] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/14/2011] [Revised: 12/22/2011] [Accepted: 01/16/2012] [Indexed: 05/29/2023]
Abstract
The specificity of the hemodynamic response function (HRF) is determined spatially by the vascular architecture and temporally by the evolution of hemodynamic changes. Here, we used functional photoacoustic microscopy (fPAM) to investigate single cerebral blood vessels of rats after left forepaw stimulation. In this system, we analyzed the spatiotemporal evolution of the HRFs of the total hemoglobin concentration (HbT), cerebral blood volume (CBV), and hemoglobin oxygen saturation (SO(2)). Changes in specific cerebral vessels corresponding to various electrical stimulation intensities and durations were bilaterally imaged with 36 × 65-μm(2) spatial resolution. Stimulation intensities of 1, 2, 6, and 10 mA were applied for periods of 5 or 15 s. Our results show that the relative functional changes in HbT, CBV, and SO(2) are highly dependent not only on the intensity of the stimulation, but also on its duration. Additionally, the duration of the stimulation has a strong influence on the spatiotemporal characteristics of the HRF as shorter stimuli elicit responses only in the local vasculature (smaller arterioles), whereas longer stimuli lead to greater vascular supply and drainage. This study suggests that the current fPAM system is reliable for studying relative cerebral hemodynamic changes, as well as for offering new insights into the dynamics of functional cerebral hemodynamic changes in small animals.
Collapse
Affiliation(s)
- Lun-De Liao
- National Chiao Tung University, Department of Electrical Engineering, Hsinchu, Taiwan
- National Chiao Tung University, Brain Research Center, Hsinchu, Taiwan
| | - Chin-Teng Lin
- National Chiao Tung University, Department of Electrical Engineering, Hsinchu, Taiwan
- National Chiao Tung University, Brain Research Center, Hsinchu, Taiwan
| | - Yen-Yu I. Shih
- University of Texas Health Science Center at San Antonio, Research Imaging Institute, San Antonio, Texas
| | - Hsin-Yi Lai
- National Chiao Tung University, Department of Electrical Engineering, Hsinchu, Taiwan
| | - Wan-Ting Zhao
- National Taiwan University, Institute of Zoology, Taipei, Taiwan
| | - Timothy Q. Duong
- University of Texas Health Science Center at San Antonio, Research Imaging Institute, San Antonio, Texas
| | - Jyh-Yeong Chang
- National Chiao Tung University, Department of Electrical Engineering, Hsinchu, Taiwan
| | - You-Yin Chen
- National Chiao Tung University, Department of Electrical Engineering, Hsinchu, Taiwan
- National Yang Ming University, Department of Biomedical Engineering, Taipei, Taiwan
| | - Meng-Lin Li
- National Tsing Hua University, Department of Electrical Engineering, Hsinchu, Taiwan
| |
Collapse
|
33
|
Liao LD, Lin CT, Shih YYI, Duong TQ, Lai HY, Wang PH, Wu R, Tsang S, Chang JY, Li ML, Chen YY. Transcranial imaging of functional cerebral hemodynamic changes in single blood vessels using in vivo photoacoustic microscopy. J Cereb Blood Flow Metab 2012; 32:938-51. [PMID: 22472612 PMCID: PMC3367230 DOI: 10.1038/jcbfm.2012.42] [Citation(s) in RCA: 63] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Optical imaging of changes in total hemoglobin concentration (HbT), cerebral blood volume (CBV), and hemoglobin oxygen saturation (SO(2)) provides a means to investigate brain hemodynamic regulation. However, high-resolution transcranial imaging remains challenging. In this study, we applied a novel functional photoacoustic microscopy technique to probe the responses of single cortical vessels to left forepaw electrical stimulation in mice with intact skulls. Functional changes in HbT, CBV, and SO(2) in the superior sagittal sinus and different-sized arterioles from the anterior cerebral artery system were bilaterally imaged with unambiguous 36 × 65-μm(2) spatial resolution. In addition, an early decrease of SO(2) in single blood vessels during activation (i.e., 'the initial dip') was observed. Our results indicate that the initial dip occurred specifically in small arterioles of activated regions but not in large veins. This technique complements other existing imaging approaches for the investigation of the hemodynamic responses in single cerebral blood vessels.
Collapse
Affiliation(s)
- Lun-De Liao
- Department of Electrical Engineering, National Chiao Tung University, Hsinchu, Taiwan
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
34
|
Liu X, Zhang K, Huang Y, Kang JU. Spectroscopic-speckle variance OCT for microvasculature detection and analysis. BIOMEDICAL OPTICS EXPRESS 2011; 2:2995-3009. [PMID: 22076262 PMCID: PMC3207370 DOI: 10.1364/boe.2.002995] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/24/2011] [Revised: 09/29/2011] [Accepted: 10/02/2011] [Indexed: 05/20/2023]
Abstract
We propose and studied optical coherence tomography (OCT) combining spectroscopic (SOCT) and speckle variance (svOCT) functions to effectively detect locations of microvasculatures and assess blood oxygen saturation level. Chorioallantoic membrane of a chick embryo was imaged in vivo to perform the analysis of the system. We also studied the effect of speckle in spectral domain using experimental data and performed time-averaging to reduce speckle noise locally. We combined SOCT and svOCT images using hue, saturation and value (HSV) color map to show the localized spectroscopic property of blood. Results show distinct spectroscopic properties between arterial blood and capillary blood.
Collapse
|
35
|
Murari K, Etienne-Cummings R, Thakor N, Cauwenberghs G. A CMOS In-Pixel CTIA High Sensitivity Fluorescence Imager. IEEE TRANSACTIONS ON BIOMEDICAL CIRCUITS AND SYSTEMS 2011; 5:449-458. [PMID: 23136624 PMCID: PMC3488880 DOI: 10.1109/tbcas.2011.2114660] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/14/2023]
Abstract
Traditionally, charge coupled device (CCD) based image sensors have held sway over the field of biomedical imaging. Complementary metal oxide semiconductor (CMOS) based imagers so far lack sensitivity leading to poor low-light imaging. Certain applications including our work on animal-mountable systems for imaging in awake and unrestrained rodents require the high sensitivity and image quality of CCDs and the low power consumption, flexibility and compactness of CMOS imagers. We present a 132×124 high sensitivity imager array with a 20.1 μm pixel pitch fabricated in a standard 0.5 μ CMOS process. The chip incorporates n-well/p-sub photodiodes, capacitive transimpedance amplifier (CTIA) based in-pixel amplification, pixel scanners and delta differencing circuits. The 5-transistor all-nMOS pixel interfaces with peripheral pMOS transistors for column-parallel CTIA. At 70 fps, the array has a minimum detectable signal of 4 nW/cm(2) at a wavelength of 450 nm while consuming 718 μA from a 3.3 V supply. Peak signal to noise ratio (SNR) was 44 dB at an incident intensity of 1 μW/cm(2). Implementing 4×4 binning allowed the frame rate to be increased to 675 fps. Alternately, sensitivity could be increased to detect about 0.8 nW/cm(2) while maintaining 70 fps. The chip was used to image single cell fluorescence at 28 fps with an average SNR of 32 dB. For comparison, a cooled CCD camera imaged the same cell at 20 fps with an average SNR of 33.2 dB under the same illumination while consuming over a watt.
Collapse
Affiliation(s)
- Kartikeya Murari
- Dept. of Biomedical Engineering, Johns Hopkins University School of Medicine
| | | | - Nitish Thakor
- Dept. of Biomedical Engineering, Johns Hopkins University School of Medicine
| | | |
Collapse
|
36
|
Li N, Downey JE, Bar-Shir A, Gilad AA, Walczak P, Kim H, Joel SE, Pekar JJ, Thakor NV, Pelled G. Optogenetic-guided cortical plasticity after nerve injury. Proc Natl Acad Sci U S A 2011; 108:8838-43. [PMID: 21555573 PMCID: PMC3102379 DOI: 10.1073/pnas.1100815108] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
Abstract
Peripheral nerve injury causes sensory dysfunctions that are thought to be attributable to changes in neuronal activity occurring in somatosensory cortices both contralateral and ipsilateral to the injury. Recent studies suggest that distorted functional response observed in deprived primary somatosensory cortex (S1) may be the result of an increase in inhibitory interneuron activity and is mediated by the transcallosal pathway. The goal of this study was to develop a strategy to manipulate and control the transcallosal activity to facilitate appropriate plasticity by guiding the cortical reorganization in a rat model of sensory deprivation. Since transcallosal fibers originate mainly from excitatory pyramidal neurons somata situated in laminae III and V, the excitatory neurons in rat S1 were engineered to express halorhodopsin, a light-sensitive chloride pump that triggers neuronal hyperpolarization. Results from electrophysiology, optical imaging, and functional MRI measurements are concordant with that within the deprived S1, activity in response to intact forepaw electrical stimulation was significantly increased by concurrent illumination of halorhodopsin over the healthy S1. Optogenetic manipulations effectively decreased the adverse inhibition of deprived cortex and revealed the major contribution of the transcallosal projections, showing interhemispheric neuroplasticity and thus, setting a foundation to develop improved rehabilitation strategies to restore cortical functions.
Collapse
Affiliation(s)
- Nan Li
- F. M. Kirby Research Center for Functional Brain Imaging, Kennedy Krieger Institute, Baltimore, MD 21205
- Department of Biomedical Engineering and
| | - John E. Downey
- F. M. Kirby Research Center for Functional Brain Imaging, Kennedy Krieger Institute, Baltimore, MD 21205
| | - Amnon Bar-Shir
- Cellular Imaging Section, Vascular Biology Program, Institute for Cell Engineering, Johns Hopkins University School of Medicine, Baltimore, MD 21205; and
- The Russell H. Morgan Department of Radiology and Radiological Science, Johns Hopkins University School of Medicine, Baltimore, MD 21287
| | - Assaf A. Gilad
- F. M. Kirby Research Center for Functional Brain Imaging, Kennedy Krieger Institute, Baltimore, MD 21205
- Cellular Imaging Section, Vascular Biology Program, Institute for Cell Engineering, Johns Hopkins University School of Medicine, Baltimore, MD 21205; and
- The Russell H. Morgan Department of Radiology and Radiological Science, Johns Hopkins University School of Medicine, Baltimore, MD 21287
| | - Piotr Walczak
- Cellular Imaging Section, Vascular Biology Program, Institute for Cell Engineering, Johns Hopkins University School of Medicine, Baltimore, MD 21205; and
- The Russell H. Morgan Department of Radiology and Radiological Science, Johns Hopkins University School of Medicine, Baltimore, MD 21287
| | - Heechul Kim
- Cellular Imaging Section, Vascular Biology Program, Institute for Cell Engineering, Johns Hopkins University School of Medicine, Baltimore, MD 21205; and
- The Russell H. Morgan Department of Radiology and Radiological Science, Johns Hopkins University School of Medicine, Baltimore, MD 21287
| | - Suresh E. Joel
- F. M. Kirby Research Center for Functional Brain Imaging, Kennedy Krieger Institute, Baltimore, MD 21205
- The Russell H. Morgan Department of Radiology and Radiological Science, Johns Hopkins University School of Medicine, Baltimore, MD 21287
| | - James J. Pekar
- F. M. Kirby Research Center for Functional Brain Imaging, Kennedy Krieger Institute, Baltimore, MD 21205
- The Russell H. Morgan Department of Radiology and Radiological Science, Johns Hopkins University School of Medicine, Baltimore, MD 21287
| | | | - Galit Pelled
- F. M. Kirby Research Center for Functional Brain Imaging, Kennedy Krieger Institute, Baltimore, MD 21205
- The Russell H. Morgan Department of Radiology and Radiological Science, Johns Hopkins University School of Medicine, Baltimore, MD 21287
| |
Collapse
|
37
|
Sun X, Wang Y, Chen S, Luo W, Li P, Luo Q. Simultaneous monitoring of intracellular pH changes and hemodynamic response during cortical spreading depression by fluorescence-corrected multimodal optical imaging. Neuroimage 2011; 57:873-84. [PMID: 21624475 DOI: 10.1016/j.neuroimage.2011.05.040] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2011] [Revised: 05/09/2011] [Accepted: 05/14/2011] [Indexed: 11/30/2022] Open
Abstract
Cortical spreading depression (CSD) plays an important role in trauma, migraine and ischemia. CSD could induce pronounced hemodynamic changes and the disturbance of pH homeostasis which has been postulated to contribute to cell death following ischemia. In this study, we described a fluorescence-corrected multimodal optical imaging system to simultaneously monitor CSD associated intracellular pH (pH(i)) changes and hemodynamic response including hemoglobin concentrations and cerebral blood flow (CBF). CSD was elicited by application of KCl on rat cortex and direct current (DC) potential was recorded as a typical characteristic of CSD. The pH(i) shift was mapped by neutral red (NR) fluorescence which was excited at 516-556 nm and emitted at 625 nm. The changes in hemoglobin concentrations were determined by dual-wavelength optical intrinsic signal imaging (OISI) at 550 nm and 625 nm. Integration of fluorescence imaging and dual-wavelength OISI was achieved by a time-sharing camera equipped with a liquid crystal tunable filter (LCTF). CBF was visualized by laser speckle contrast imaging (LSCI) through a separate camera. Besides, based on the dual-wavelength optical intrinsic signals (OISs) obtained from our system, NR fluorescence was corrected according to our method of fluorescence correction. We found that a transient intracellular acidification followed by a small alkalization occurred during CSD. After CSD, there was a prolonged intracellular acidification and the recovery of pH(i) from CSD took much longer time than those of hemodynamic response. Our results suggested that the new multimodal optical imaging system had the potential to advance our knowledge of CSD and might work as a useful tool to exploit neurovascular coupling under physiological and pathological conditions.
Collapse
Affiliation(s)
- Xiaoli Sun
- Britton Chance Center for Biomedical Photonics, Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan 430074, China
| | | | | | | | | | | |
Collapse
|
38
|
Rege A, Murari K, Seifert A, Pathak AP, Thakor NV. Multiexposure laser speckle contrast imaging of the angiogenic microenvironment. JOURNAL OF BIOMEDICAL OPTICS 2011; 16:056006. [PMID: 21639574 PMCID: PMC3124539 DOI: 10.1117/1.3582334] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/21/2010] [Revised: 03/22/2011] [Accepted: 03/24/2011] [Indexed: 05/20/2023]
Abstract
We report the novel use of laser speckle contrast imaging (LSCI) at multiple exposure times (meLSCI) for enhanced in vivo imaging of the microvascular changes that accompany angiogenesis. LSCI is an optical imaging technique that can monitor blood vessels and the flow therein at a high spatial resolution without requiring the administration of an exogenous contrast agent. LSCI images are obtained under red (632 nm) laser illumination at seven exposure times (1-7 ms) and combined using a curve-fitting approach to obtain high-resolution meLSCI images of the rat brain vasculature. To evaluate enhancement in in vivo imaging performance, meLSCI images are statistically compared to individual LSCI images obtained at a single exposure time. We find that meLSCI reduced the observed variability in the LSCI-based blood-flow estimates by 30% and improved the contrast-to-noise ratio in regions with high microvessel density by 41%. The ability to better distinguish microvessels, makes meLSCI uniquely suited to longitudinal imaging of changes in the vascular microenvironment induced by pathological angiogenesis. We demonstrate this utility of meLSCI by sequentially monitoring, over days, the microvascular changes that accompany wound healing in a mouse ear model.
Collapse
Affiliation(s)
- Abhishek Rege
- Department of Biomedical Engineering, Johns Hopkins University School of Medicine, 720 Rutland Avenue, Baltimore, Maryland 21205, USA
| | | | | | | | | |
Collapse
|
39
|
Li N, Pelled G, Thakor NV. Probabilistic independent component analysis for laser speckle contrast images reveals in vivo multi - component vascular responses to forepaw stimulation. ANNUAL INTERNATIONAL CONFERENCE OF THE IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. ANNUAL INTERNATIONAL CONFERENCE 2010; 2010:1982-5. [PMID: 21096788 DOI: 10.1109/iembs.2010.5627526] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
Brain's functional response can be studied by observing the spatiotemporal dynamics of functional and structural changes in cerebral vasculature. However, very few studies explore detailed changes at the level of individual microvessels while revealing the simultaneous wide field view of microcirculation responses to functional stimulation. Here we use a high spatiotemporal resolution laser speckle contrast imaging method, in combination with probabilistic independent component analysis to reveal the changes of cerebral blood flow pattern in response to electrical forepaw stimulation in an anesthetized rat model. The proposed method is able to pick up the response of a single vessel down to approximately 20 microm diameter in a 4mm × 4mm field of view, and automatically extract response from multiple vascular components. Two main vascular components, arteriolar and capillary responses respectively, show significantly different temporal dynamics. Overall, the experimental results from five rats reveal that the specific arteriole branch proximal to the activation sites dilate prior consistently to the increase of blood flow in the capillaries with a latency time 0.91 ± 0.05s. The presented results provide novel microscopic scale evidence of the contribution of different vascular compartments in the hemodynamic response to neuronal activation.
Collapse
Affiliation(s)
- Nan Li
- Biomedical Engineering Department, Johns Hopkins University, School of Medicine, Baltimore, MD 21205, USA.
| | | | | |
Collapse
|
40
|
Sun X, Li P, Luo W, Chen S, Feng N, Wang J, Luo Q. Investigating the effects of dimethylsulfoxide on hemodynamics during cortical spreading depression by combining laser speckle imaging with optical intrinsic signal imaging. Lasers Surg Med 2010; 42:649-55. [DOI: 10.1002/lsm.20975] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
41
|
Naramore WJ, Chou NY. Next wave of optical imaging-clinical applications of laser speckle. Biomed Instrum Technol 2010; 44:54-7. [PMID: 20374126 DOI: 10.2345/0899-8205-44.1.54] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
|
42
|
Niioka T, Ishii H, Izumi H. Regional differences in blood flow variation in rat masseter muscle. Arch Oral Biol 2009; 54:1022-8. [DOI: 10.1016/j.archoralbio.2009.08.006] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2009] [Revised: 08/20/2009] [Accepted: 08/25/2009] [Indexed: 11/24/2022]
|