1
|
Chen J, Yu K, Bi Y, Ji X, Zhang D. Strategic Integration: A Cross-Disciplinary Review of the fNIRS-EEG Dual-Modality Imaging System for Delivering Multimodal Neuroimaging to Applications. Brain Sci 2024; 14:1022. [PMID: 39452034 PMCID: PMC11506513 DOI: 10.3390/brainsci14101022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2024] [Revised: 10/14/2024] [Accepted: 10/14/2024] [Indexed: 10/26/2024] Open
Abstract
Background: Recent years have seen a surge of interest in dual-modality imaging systems that integrate functional near-infrared spectroscopy (fNIRS) and electroencephalography (EEG) to probe brain function. This review aims to explore the advancements and clinical applications of this technology, emphasizing the synergistic integration of fNIRS and EEG. Methods: The review begins with a detailed examination of the fundamental principles and distinctive features of fNIRS and EEG techniques. It includes critical technical specifications, data-processing methodologies, and analysis techniques, alongside an exhaustive evaluation of 30 seminal studies that highlight the strengths and weaknesses of the fNIRS-EEG bimodal system. Results: The paper presents multiple case studies across various clinical domains-such as attention-deficit hyperactivity disorder, infantile spasms, depth of anesthesia, intelligence quotient estimation, and epilepsy-demonstrating the fNIRS-EEG system's potential in uncovering disease mechanisms, evaluating treatment efficacy, and providing precise diagnostic options. Noteworthy research findings and pivotal breakthroughs further reinforce the developmental trajectory of this interdisciplinary field. Conclusions: The review addresses challenges and anticipates future directions for the fNIRS-EEG dual-modal imaging system, including improvements in hardware and software, enhanced system performance, cost reduction, real-time monitoring capabilities, and broader clinical applications. It offers researchers a comprehensive understanding of the field, highlighting the potential applications of fNIRS-EEG systems in neuroscience and clinical medicine.
Collapse
Affiliation(s)
| | | | | | | | - Dawei Zhang
- Research Center of Optical Instrument and System, Ministry of Education and Shanghai Key Lab of Modern Optical System, University of Shanghai for Science and Technology, Shanghai 200093, China; (J.C.); (K.Y.); (Y.B.); (X.J.)
| |
Collapse
|
2
|
Gallagher A, Wallois F, Obrig H. Functional near-infrared spectroscopy in pediatric clinical research: Different pathophysiologies and promising clinical applications. NEUROPHOTONICS 2023; 10:023517. [PMID: 36873247 PMCID: PMC9982436 DOI: 10.1117/1.nph.10.2.023517] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/08/2022] [Accepted: 02/07/2023] [Indexed: 06/18/2023]
Abstract
Over its 30 years of existence, functional near-infrared spectroscopy (fNIRS) has matured into a highly versatile tool to study brain function in infants and young children. Its advantages, amongst others, include its ease of application and portability, the option to combine it with electrophysiology, and its relatively good tolerance to movement. As shown by the impressive body of fNIRS literature in the field of cognitive developmental neuroscience, the method's strengths become even more relevant for (very) young individuals who suffer from neurological, behavioral, and/or cognitive impairment. Although a number of studies have been conducted with a clinical perspective, fNIRS cannot yet be considered as a truly clinical tool. The first step has been taken in this direction by studies exploring options in populations with well-defined clinical profiles. To foster further progress, here, we review several of these clinical approaches to identify the challenges and perspectives of fNIRS in the field of developmental disorders. We first outline the contributions of fNIRS in selected areas of pediatric clinical research: epilepsy, communicative and language disorders, and attention-deficit/hyperactivity disorder. We provide a scoping review as a framework to allow the highlighting of specific and general challenges of using fNIRS in pediatric research. We also discuss potential solutions and perspectives on the broader use of fNIRS in the clinical setting. This may be of use to future research, targeting clinical applications of fNIRS in children and adolescents.
Collapse
Affiliation(s)
- Anne Gallagher
- CHU Sainte-Justine University Hospital, Université de Montréal, LIONLab, Cerebrum, Department of Psychology, Montréal, Quebec, Canada
| | - Fabrice Wallois
- Université de Picardie Jules Verne, Inserm U1105, GRAMFC, Amiens, France
| | - Hellmuth Obrig
- University Hospital and Faculty of Medicine Leipzig/Max Planck Institute for Human Cognitive and Brain Sciences, Department of Neurology, Clinic for Cognitive Neurology, Leipzig, Germany
| |
Collapse
|
3
|
Vera DA, García HA, Waks-Serra MV, Carbone NA, Iriarte DI, Pomarico JA. Reconstruction of light absorption changes in the human head using analytically computed photon partial pathlengths in layered media. JOURNAL OF THE OPTICAL SOCIETY OF AMERICA. A, OPTICS, IMAGE SCIENCE, AND VISION 2023; 40:C126-C137. [PMID: 37132982 DOI: 10.1364/josaa.482288] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
Functional near infrared spectroscopy has been used in recent decades to sense and quantify changes in hemoglobin concentrations in the human brain. This noninvasive technique can deliver useful information concerning brain cortex activation associated with different motor/cognitive tasks or external stimuli. This is usually accomplished by considering the human head as a homogeneous medium; however, this approach does not explicitly take into account the detailed layered structure of the head, and thus, extracerebral signals can mask those arising at the cortex level. This work improves this situation by considering layered models of the human head during reconstruction of the absorption changes in layered media. To this end, analytically calculated mean partial pathlengths of photons are used, which guarantees fast and simple implementation in real-time applications. Results obtained from synthetic data generated by Monte Carlo simulations in two- and four-layered turbid media suggest that a layered description of the human head greatly outperforms typical homogeneous reconstructions, with errors, in the first case, bounded up to ∼20% maximum, while in the second case, the error is usually larger than 75%. Experimental measurements on dynamic phantoms support this conclusion.
Collapse
|
4
|
Khaksari K, Chen WL, Gropman AL. Review of Applications of Near-Infrared Spectroscopy in Two Rare Disorders with Executive and Neurological Dysfunction: UCD and PKU. Genes (Basel) 2022; 13:genes13101690. [PMID: 36292574 PMCID: PMC9602148 DOI: 10.3390/genes13101690] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2022] [Revised: 09/12/2022] [Accepted: 09/16/2022] [Indexed: 11/16/2022] Open
Abstract
Studying rare diseases, particularly those with neurological dysfunction, is a challenge to researchers and healthcare professionals due to their complexity and small population with geographical dispersion. Universal and standardized biomarkers generated by tools such as functional neuroimaging have been forged to collect baseline data as well as treatment effects. However, the cost and heavily infrastructural requirement of those technologies have substantially limited their availability. Thus, developing non-invasive, portable, and inexpensive modalities has become a major focus for both researchers and clinicians. When considering neurological disorders and diseases with executive dysfunction, EEG is the most convenient tool to obtain biomarkers which can correlate the objective severity and clinical observation of these conditions. However, studies have also shown that EEG biomarkers and clinical observations alone are not sensitive enough since not all the patients present classical phenotypical features or EEG evidence of dysfunction. This article reviews disorders, including two rare disorders with neurological dysfunction and the usefulness of functional near-infrared spectroscopy (fNIRS) as a non-invasive optical modality to obtain hemodynamic biomarkers of diseases and for screening and monitoring the disease.
Collapse
Affiliation(s)
- Kosar Khaksari
- Division of Neurogenetics and Developmental Pediatrics, Children’s National Health System, Washington, DC 20010, USA
- Correspondence:
| | - Wei-Liang Chen
- School of Medicine, University of Washington, Seattle, WA 98195, USA
| | - Andrea L. Gropman
- Division of Neurogenetics and Developmental Pediatrics, Children’s National Health System, Washington, DC 20010, USA
- Department of Neurology, George Washington University, Washington, DC 20052, USA
| |
Collapse
|
5
|
Shoeibi A, Moridian P, Khodatars M, Ghassemi N, Jafari M, Alizadehsani R, Kong Y, Gorriz JM, Ramírez J, Khosravi A, Nahavandi S, Acharya UR. An overview of deep learning techniques for epileptic seizures detection and prediction based on neuroimaging modalities: Methods, challenges, and future works. Comput Biol Med 2022; 149:106053. [DOI: 10.1016/j.compbiomed.2022.106053] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2022] [Revised: 08/17/2022] [Accepted: 08/17/2022] [Indexed: 02/01/2023]
|
6
|
Xie S, Gong C, Lu J, Li H, Wu D, Chi X, Chang C. Enhancing Chinese preschoolers' executive function via mindfulness training: An fNIRS study. Front Behav Neurosci 2022; 16:961797. [PMID: 36090651 PMCID: PMC9452775 DOI: 10.3389/fnbeh.2022.961797] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2022] [Accepted: 08/01/2022] [Indexed: 11/13/2022] Open
Abstract
Mindfulness training has been found to enable cognitive and emotional awareness and diminish emotional distraction and cognitive rigidity. However, the existing intervention studies have largely focused on school children, adolescents, and adults, leaving young children unexplored. This study examined the influence of mindfulness training on young children using the one-group pretest-posttest design. Altogether 31 Chinese preschoolers (M age = 67.03 months, SD = 4.25) enrolled in a 5-week, twice-per-week mindfulness training. Their cognitive shifting, inhibitory control, and working memory were examined using a battery of executive function tasks. And their brain activations in the region of interest during the tasks were measured using fNIRS before and after the intervention. Results showed that their cognitive shifting and working memory tasks performance significantly improved, and their activation in the DLPFC significantly changed. Implications for this study were also included.
Collapse
Affiliation(s)
- Sha Xie
- Department of Early Childhood Education, Faculty of Education, Shenzhen University, Shenzhen, China
| | - Chaohui Gong
- School of Biomedical Engineering, Health Science Center, Shenzhen University, Shenzhen, China
| | - Jiahao Lu
- School of Biomedical Engineering, Health Science Center, Shenzhen University, Shenzhen, China
| | - Hui Li
- Shanghai Institute of Early Childhood Education, Shanghai Normal University, Shanghai, China
- Macquarie School of Education, Macquarie University, Sydney, NSW, Australia
| | - Dandan Wu
- Department of Early Childhood Education, The Education University of Hong Kong, Hong Kong, Hong Kong SAR, China
| | - Xinli Chi
- School of Psychology, Shenzhen University, Shenzhen, China
| | - Chunqi Chang
- School of Biomedical Engineering, Health Science Center, Shenzhen University, Shenzhen, China
- Peng Cheng Laboratory, Shenzhen, China
| |
Collapse
|
7
|
Ali AH, Zidan AS. Detection of Antibodies in Patients with COVID-19 by Rapid Chromatographic Immunoassay. TURKISH JOURNAL OF IMMUNOLOGY 2022. [DOI: 10.4274/tji.galenos.2022.26349] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
|
8
|
Kassab A, Hinnoutondji Toffa D, Robert M, Lesage F, Peng K, Khoa Nguyen D. Hemodynamic changes associated with common EEG patterns in critically ill patients: Pilot results from continuous EEG-fNIRS study. Neuroimage Clin 2021; 32:102880. [PMID: 34773798 PMCID: PMC8594770 DOI: 10.1016/j.nicl.2021.102880] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2021] [Revised: 11/04/2021] [Accepted: 11/05/2021] [Indexed: 11/21/2022]
Abstract
Functional near-infrared spectroscopy (fNIRS) is currently the only non-invasive method allowing for continuous long-term assessment of cerebral hemodynamic. We evaluate the feasibility of using continueous electroencephalgraphy (cEEG)-fNIRS to study the cortical hemodynamic associated with status epilepticus (SE), burst suppression (BS) and periodic discharges (PDs). Eleven adult comatose patients admitted to the neuroICU for SE were recruited, and cEEG-fNIRS monitoring was performed to measure concentration changes in oxygenated (HbO) and deoxygenated hemoglobin (HbR). Seizures were associated with a large increase HbO and a decrease in HbR whose durations were positively correlated with the seizures' length. Similar observations were made for hemodynamic changes associated with bursts, showing overall increases in HbO and decreases in HbR relative to the suppression periods. PDs were seen to induce widespread HbO increases and HbR decreases. These results suggest that normal neurovascular coupling is partially retained with the hemodynamic response to the detected EEG patterns in these patients. However, the shape and distribution of the response were highly variable. This work highlighted the feasibility of conducting long-term cEEG-fNIRS to monitor hemodynamic changes over a large cortical area in critically ill patients, opening new routes for better understanding and management of abnormal EEG patterns in neuroICU.
Collapse
Affiliation(s)
- Ali Kassab
- Department of Neurological Sciences, Université de Montréal, C.P. 6128, succ. Centre-ville, Montreal, Quebec H3C 3J7, Canada; Centre de Recherche du Centre Hospitalier de l'Université de Montréal, Université de Montréal, 900 Saint Denis St., Montreal, Quebec H2X 0A9, Canada.
| | - Dènahin Hinnoutondji Toffa
- Centre de Recherche du Centre Hospitalier de l'Université de Montréal, Université de Montréal, 900 Saint Denis St., Montreal, Quebec H2X 0A9, Canada.
| | - Manon Robert
- Centre de Recherche du Centre Hospitalier de l'Université de Montréal, Université de Montréal, 900 Saint Denis St., Montreal, Quebec H2X 0A9, Canada.
| | - Frédéric Lesage
- Biomedical Engineering Institute, École Polytechnique de Montréal, 2500 Chemin de Polytechnique, Montréal, Quebec H3T 1J4, Canada; Research Center, Montreal Heart Institute, 5000 Rue Bélanger, Montreal, Quebec H1T 1C8, Canada.
| | - Ke Peng
- Department of Neurological Sciences, Université de Montréal, C.P. 6128, succ. Centre-ville, Montreal, Quebec H3C 3J7, Canada; Centre de Recherche du Centre Hospitalier de l'Université de Montréal, Université de Montréal, 900 Saint Denis St., Montreal, Quebec H2X 0A9, Canada.
| | - Dang Khoa Nguyen
- Department of Neurological Sciences, Université de Montréal, C.P. 6128, succ. Centre-ville, Montreal, Quebec H3C 3J7, Canada; Centre de Recherche du Centre Hospitalier de l'Université de Montréal, Université de Montréal, 900 Saint Denis St., Montreal, Quebec H2X 0A9, Canada; Division of Neurology, Centre Hospitalier de l'Université de Montréal, Université de Montréal, 1000 Saint Denis St, Montreal, Quebec (H2X OC1), Canada.
| |
Collapse
|
9
|
Sadjadi SM, Ebrahimzadeh E, Shams M, Seraji M, Soltanian-Zadeh H. Localization of Epileptic Foci Based on Simultaneous EEG-fMRI Data. Front Neurol 2021; 12:645594. [PMID: 33986718 PMCID: PMC8110922 DOI: 10.3389/fneur.2021.645594] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2020] [Accepted: 03/11/2021] [Indexed: 02/01/2023] Open
Abstract
Combining functional magnetic resonance imaging (fMRI) and electroencephalography (EEG) enables a non-invasive investigation of the human brain function and evaluation of the correlation of these two important modalities of brain activity. This paper explores recent reports on using advanced simultaneous EEG–fMRI methods proposed to map the regions and networks involved in focal epileptic seizure generation. One of the applications of EEG and fMRI combination as a valuable clinical approach is the pre-surgical evaluation of patients with epilepsy to map and localize the precise brain regions associated with epileptiform activity. In the process of conventional analysis using EEG–fMRI data, the interictal epileptiform discharges (IEDs) are visually extracted from the EEG data to be convolved as binary events with a predefined hemodynamic response function (HRF) to provide a model of epileptiform BOLD activity and use as a regressor for general linear model (GLM) analysis of the fMRI data. This review examines the methodologies involved in performing such studies, including techniques used for the recording of EEG inside the scanner, artifact removal, and statistical analysis of the fMRI signal. It then discusses the results reported for patients with primary generalized epilepsy and patients with different types of focal epileptic disorders. An important matter that these results have brought to light is that the brain regions affected by interictal epileptic discharges might not be limited to the ones where they have been generated. The developed methods can help reveal the regions involved in or affected by a seizure onset zone (SOZ). As confirmed by the reviewed literature, EEG–fMRI provides information that comes particularly useful when evaluating patients with refractory epilepsy for surgery.
Collapse
Affiliation(s)
- Seyyed Mostafa Sadjadi
- Control and Intelligent Processing Center of Excellence (CIPCE), School of Electrical and Computer Engineering, College of Engineering, University of Tehran, Tehran, Iran
| | - Elias Ebrahimzadeh
- Control and Intelligent Processing Center of Excellence (CIPCE), School of Electrical and Computer Engineering, College of Engineering, University of Tehran, Tehran, Iran.,Neuroimage Signal and Image Analysis Group, School of Cognitive Sciences, Institute for Research in Fundamental Sciences (IPM), Tehran, Iran
| | - Mohammad Shams
- Neural Engineering Laboratory, Department of Electrical and Computer Engineering, George Mason University, Fairfax, VA, United States
| | - Masoud Seraji
- Center for Molecular and Behavioral Neuroscience, Rutgers University, Newark, NJ, United States.,Behavioral and Neural Sciences Graduate Program, Rutgers University, Newark, NJ, United States
| | - Hamid Soltanian-Zadeh
- Control and Intelligent Processing Center of Excellence (CIPCE), School of Electrical and Computer Engineering, College of Engineering, University of Tehran, Tehran, Iran.,Neuroimage Signal and Image Analysis Group, School of Cognitive Sciences, Institute for Research in Fundamental Sciences (IPM), Tehran, Iran.,Medical Image Analysis Laboratory, Departments of Radiology and Research Administration, Henry Ford Health System, Detroit, MI, United States
| |
Collapse
|
10
|
Duffy BA, Choy M, Lee JH. Predicting Successful Generation and Inhibition of Seizure-like Afterdischarges and Mapping Their Seizure Networks Using fMRI. Cell Rep 2021; 30:2540-2554.e4. [PMID: 32101734 DOI: 10.1016/j.celrep.2020.01.095] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2019] [Revised: 12/18/2019] [Accepted: 01/27/2020] [Indexed: 11/30/2022] Open
Abstract
To understand the conditions necessary to initiate and terminate seizures, we investigate optogenetically induced hippocampal seizures with LFP, fMRI, and optogenetic inhibition. During afterdischarge induction using optogenetics, LFP recordings show that stimulations with earlier ictal onset times are more likely to result in afterdischarges and are more difficult to curtail with optogenetic inhibition. These results are generalizable across two initiation sites, the dorsal and ventral hippocampus. fMRI shows that afterdischarges initiated from the dorsal or ventral hippocampus exhibit distinct networks. Short-duration seizures initiated in the dorsal and ventral hippocampus are unilateral and bilateral, respectively, while longer-duration afterdischarges recruit broader, bilateral networks. When optogenetic inhibition is ineffective at stopping seizures, the network activity spreads more extensively but largely overlaps with the network activity associated with seizures that could be curtailed. These results provide insights into how seizures can be inhibited, which has implications for targeted seizure interventions.
Collapse
Affiliation(s)
- Ben A Duffy
- Department of Neurology and Neurological Sciences, Stanford University, Stanford, CA 94305, USA
| | - ManKin Choy
- Department of Neurology and Neurological Sciences, Stanford University, Stanford, CA 94305, USA
| | - Jin Hyung Lee
- Department of Neurology and Neurological Sciences, Stanford University, Stanford, CA 94305, USA; Department of Bioengineering, Stanford University, Stanford, CA 94305, USA; Department of Neurosurgery, Stanford University, Stanford, CA 94305, USA; Department of Electrical Engineering, Stanford University, Stanford, CA 94305, USA.
| |
Collapse
|
11
|
Arnal-Real C, Mahmoudzadeh M, Manoochehri M, Nourhashemi M, Wallois F. What Triggers the Interictal Epileptic Spike? A Multimodal Multiscale Analysis of the Dynamic of Synaptic and Non-synaptic Neuronal and Vascular Compartments Using Electrical and Optical Measurements. Front Neurol 2021; 12:596926. [PMID: 33643187 PMCID: PMC7907164 DOI: 10.3389/fneur.2021.596926] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2020] [Accepted: 01/21/2021] [Indexed: 11/20/2022] Open
Abstract
Interictal spikes (IISs) may result from a disturbance of the intimate functional balance between various neuronal (synaptic and non-synaptic), vascular, and metabolic compartments. To better characterize the complex interactions within these compartments at different scales we developed a simultaneous multimodal-multiscale approach and measure their activity around the time of the IIS. We performed such measurements in an epileptic rat model (n = 43). We thus evaluated (1) synaptic dynamics by combining electrocorticography and multiunit activity recording in the time and time-frequency domain, (2) non-synaptic dynamics by recording modifications in light scattering induced by changes in the membrane configuration related to cell activity using the fast optical signal, and (3) vascular dynamics using functional near-infrared spectroscopy and, independently but simultaneously to the electrocorticography, the changes in cerebral blood flow using diffuse correlation spectroscopy. The first observed alterations in the measured signals occurred in the hemodynamic compartments a few seconds before the peak of the IIS. These hemodynamic changes were followed by changes in coherence and then synchronization between the deep and superficial neural networks in the 1 s preceding the IIS peaks. Finally, changes in light scattering before the epileptic spikes suggest a change in membrane configuration before the IIS. Our multimodal, multiscale approach highlights the complexity of (1) interactions between the various neuronal, vascular, and extracellular compartments, (2) neural interactions between various layers, (3) the synaptic mechanisms (coherence and synchronization), and (4) non-synaptic mechanisms that take place in the neuronal network around the time of the IISs in a very specific cerebral hemodynamic environment.
Collapse
Affiliation(s)
- Cristian Arnal-Real
- Inserm U1105, GRAMFC, CURS, Université de Picardie Jules Verne, Amiens, France
| | - Mahdi Mahmoudzadeh
- Inserm U1105, GRAMFC, CURS, Université de Picardie Jules Verne, Amiens, France
| | - Mana Manoochehri
- Inserm U1105, GRAMFC, CURS, Université de Picardie Jules Verne, Amiens, France
| | - Mina Nourhashemi
- Inserm U1105, GRAMFC, CURS, Université de Picardie Jules Verne, Amiens, France
| | - Fabrice Wallois
- Inserm U1105, GRAMFC, CURS, Université de Picardie Jules Verne, Amiens, France
| |
Collapse
|
12
|
Krishnan B, Tousseyn S, Nayak CS, Aung T, Kheder A, Wang ZI, Wu G, Gonzalez-Martinez J, Nair D, Burgess R, Iasemidis L, Najm I, Bulacio J, Alexopoulos AV. Neurovascular networks in epilepsy: Correlating ictal blood perfusion with intracranial electrophysiology. Neuroimage 2021; 231:117838. [PMID: 33577938 DOI: 10.1016/j.neuroimage.2021.117838] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2020] [Revised: 12/21/2020] [Accepted: 02/01/2021] [Indexed: 11/25/2022] Open
Abstract
Perfusion patterns observed in Subtraction Ictal SPECT Co-registered to MRI (SISCOM) assist in focus localization and surgical planning for patients with medically intractable focal epilepsy. While the localizing value of SISCOM has been widely investigated, its relationship to the underlying electrophysiology has not been extensively studied and is therefore not well understood. In the present study, we set to investigate this relationship in a cohort of 70 consecutive patients who underwent ictal and interictal SPECT studies and subsequent stereo-electroencephalography (SEEG) monitoring for localization of the epileptogenic focus and surgical intervention. Seizures recorded during SEEG evaluation (SEEG seizures) were matched to semiologically-similar seizures during the preoperative ictal SPECT evaluation (SPECT seizures) by comparing the semiological changes in the course of each seizure. The spectral changes of the ictal SEEG with respect to interictal ones over 7 traditional frequency bands (0.1 to 150Hz) were analyzed at each SEEG site. Neurovascular (SEEG/SPECT) relations were assessed by comparing the estimated spectral power density changes of the SEEG at each site with the perfusion changes (SISCOM z-scores) estimated from the acquired SISCOM map at that site. Across patients, a significant correlation (p<0.05) was observed between spectral changes during the SEEG seizure and SISCOM perfusion z-scores. Brain sites with high perfusion z-score exhibited higher increased SEEG power in theta to ripple frequency bands with concurrent suppression in delta and theta frequency bands compared to regions with lower perfusion z-score. The dynamics of the correlation of SISCOM perfusion and SEEG spectral power from ictal onset to seizure end and immediate postictal period were also derived. Forty-six (46) of the 70 patients underwent resective epilepsy surgery. SISCOM z-score and power increase in beta to ripple frequency bands were significantly higher in resected than non-resected sites in the patients who were seizure-free following surgery. This study provides for the first time concrete evidence that both hyper-perfusion and hypo-perfusion patterns observed in SISCOM maps have strong electrophysiological underpinnings, and that integration of the information from SISCOM and SEEG can shed light on the location and dynamics of the underlying epileptic brain networks, and thus advance our anatomo-electro-clinical understanding and approaches to targeted diagnostic and therapeutic interventions.
Collapse
Affiliation(s)
- Balu Krishnan
- Neurological Institute, Cleveland Clinic Foundation, 9500 Euclid Ave, S51, Cleveland, OH 44195, USA.
| | - Simon Tousseyn
- Academic Center for Epileptology, Kempenhaeghe and Maastricht UMC+, Heeze, The Netherlands
| | - Chetan Sateesh Nayak
- Neurological Institute, Cleveland Clinic Foundation, 9500 Euclid Ave, S51, Cleveland, OH 44195, USA
| | - Thandar Aung
- Neurological Institute, Cleveland Clinic Foundation, 9500 Euclid Ave, S51, Cleveland, OH 44195, USA
| | - Ammar Kheder
- Neurological Institute, Cleveland Clinic Foundation, 9500 Euclid Ave, S51, Cleveland, OH 44195, USA
| | - Z Irene Wang
- Neurological Institute, Cleveland Clinic Foundation, 9500 Euclid Ave, S51, Cleveland, OH 44195, USA
| | - Guiyun Wu
- Neurological Institute, Cleveland Clinic Foundation, 9500 Euclid Ave, S51, Cleveland, OH 44195, USA
| | - Jorge Gonzalez-Martinez
- Neurological Institute, Cleveland Clinic Foundation, 9500 Euclid Ave, S51, Cleveland, OH 44195, USA
| | - Dileep Nair
- Neurological Institute, Cleveland Clinic Foundation, 9500 Euclid Ave, S51, Cleveland, OH 44195, USA
| | - Richard Burgess
- Neurological Institute, Cleveland Clinic Foundation, 9500 Euclid Ave, S51, Cleveland, OH 44195, USA
| | - Leonidas Iasemidis
- Center for Biomedical Engineering and Rehabilitation Science, Louisiana Tech University, Ruston, LA, USA
| | - Imad Najm
- Neurological Institute, Cleveland Clinic Foundation, 9500 Euclid Ave, S51, Cleveland, OH 44195, USA
| | - Juan Bulacio
- Neurological Institute, Cleveland Clinic Foundation, 9500 Euclid Ave, S51, Cleveland, OH 44195, USA
| | - Andreas V Alexopoulos
- Neurological Institute, Cleveland Clinic Foundation, 9500 Euclid Ave, S51, Cleveland, OH 44195, USA
| |
Collapse
|
13
|
HU XINHUA, XIAO GANG, ZHU KEXIN, HU SHUYI, CHEN JIU, YU YUN. APPLICATION OF FUNCTIONAL NEAR-INFRARED SPECTROSCOPY IN NEUROLOGICAL DISEASES: EPILEPSY, STROKE AND PARKINSON. J MECH MED BIOL 2020. [DOI: 10.1142/s0219519420400230] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
The functional near-infrared spectroscopy (fNIRS) technology is an optical imaging technology that applies near-infrared light to measure the oxygenated and deoxygenated hemoglobin concentration alteration in cortical brain structures. It has the ability to directly measure changes in the blood oxygen level of the high temporal resolution associated with neural activation. Thus, it has been utilized in different neurological diseases, such as epilepsy, stroke, and Parkinson. The work of this paper will focus on the application of the fNIRS in the three neurological diseases and the principle of fNIRS. Moreover, the difficulties and challenges that the technology is currently experiencing have been discussed.
Collapse
Affiliation(s)
- XINHUA HU
- Department of Neurosurgery, the Affiliated Brain Hospital of Nanjing Medical University, Nanjing Medical University, Institute of Brain Functional Imaging, Nanjing Medical University, Nanjing, Jiangsu, 210029, P. R. China
| | - GANG XIAO
- The Key Laboratory of Metabolism and Molecular Medicine of the Ministry of Education, Department of Biochemistry and Molecular Biology of School of Basic Medical Sciences and Department of Endocrinology, Fudan University, Shanghai, 200032, P. R. China
| | - KEXIN ZHU
- The First Affiliated Hospital of Nanjing Medical University, Nanjing Medical University, Nanjing, Jiangsu, 210029, P. R. China
| | - SHUYI HU
- The First Affiliated Hospital of Nanjing Medical University, Nanjing Medical University, Nanjing, Jiangsu, 210029, P. R. China
| | - JIU CHEN
- Institute of Brain Functional Imaging, Nanjing Medical University, Nanjing, Jiangsu, 210029, P. R. China
| | - YUN YU
- Department of Medical Informatics, School of Biomedical Engineering and Informatics, Nanjing Medical University, Institute of Brain Functional Imaging, Nanjing Medical University, Nanjing, Jiangsu, 210029, P. R. China
| |
Collapse
|
14
|
In Vitro and In Vivo Study of the Short-Term Vasomotor Response during Epileptic Seizures. Brain Sci 2020; 10:brainsci10120942. [PMID: 33297329 PMCID: PMC7762235 DOI: 10.3390/brainsci10120942] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2020] [Revised: 11/29/2020] [Accepted: 11/30/2020] [Indexed: 02/07/2023] Open
Abstract
Epilepsy remains one of the most common brain disorders, and the different types of epilepsy encompass a wide variety of physiological manifestations. Clinical and preclinical findings indicate that cerebral blood flow is usually focally increased at seizure onset, shortly after the beginning of ictal events. Nevertheless, many questions remain about the relationship between vasomotor changes in the epileptic foci and the epileptic behavior of neurons and astrocytes. To study this relationship, we performed a series of in vitro and in vivo experiments using the 4-aminopyridine model of epileptic seizures. It was found that in vitro pathological synchronization of neurons and the depolarization of astrocytes is accompanied by rapid short-term vasoconstriction, while in vivo vasodilation during the seizure prevails. We suggest that vasomotor activity during epileptic seizures is a correlate of the complex, self-sustained response that includes neuronal and astrocytic oscillations, and that underlies the clinical presentation of epilepsy.
Collapse
|
15
|
Chang F, Li H, Zhang S, Chen C, Liu C, Cai W. Research progress of functional near-infrared spectroscopy in patients with psychiatric disorders. Forensic Sci Res 2020; 6:141-147. [PMID: 34377571 PMCID: PMC8330753 DOI: 10.1080/20961790.2020.1720901] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/03/2022] Open
Abstract
Functional near-infrared spectroscopy (fNIRS) is a technique of detecting cerebral cortical function by using near-infrared light, which is a multifunctional neuroimaging technique and provides a convenient and efficient detection method in neuroscience. In consideration of acceptability, safety, high spatial and temporal resolutions compared with electroencephalogram (EEG) and functional magnetic resonance imaging (fMRI), fNIRS is widely used to study different psychiatric disorders, most prominently affective disorders, schizophrenic illnesses, brain organic mental disorders and neurodevelopmental disorders, etc. The article focuses on the latest research progress and practical application of fNIRS in psychiatric disorders, especially traumatic brain, including studies on the characterization of phenomenology, treatment effects and descriptions of neuroimaging data.
Collapse
Affiliation(s)
- Fan Chang
- Shanghai Key Lab of Forensic Medicine, Key Lab of Forensic Science, Ministry of Justice, Shanghai Forensic Service Platform, Academy of Forensic Science, Shanghai, China.,School of Mental Health, Wenzhou Medical University, Wenzhou, China
| | - Haozhe Li
- Shanghai Key Lab of Forensic Medicine, Key Lab of Forensic Science, Ministry of Justice, Shanghai Forensic Service Platform, Academy of Forensic Science, Shanghai, China
| | - Shengyu Zhang
- Shanghai Key Lab of Forensic Medicine, Key Lab of Forensic Science, Ministry of Justice, Shanghai Forensic Service Platform, Academy of Forensic Science, Shanghai, China
| | - Chen Chen
- Shanghai Key Lab of Forensic Medicine, Key Lab of Forensic Science, Ministry of Justice, Shanghai Forensic Service Platform, Academy of Forensic Science, Shanghai, China
| | - Chao Liu
- Shanghai Key Lab of Forensic Medicine, Key Lab of Forensic Science, Ministry of Justice, Shanghai Forensic Service Platform, Academy of Forensic Science, Shanghai, China
| | - Weixiong Cai
- Shanghai Key Lab of Forensic Medicine, Key Lab of Forensic Science, Ministry of Justice, Shanghai Forensic Service Platform, Academy of Forensic Science, Shanghai, China.,School of Mental Health, Wenzhou Medical University, Wenzhou, China
| |
Collapse
|
16
|
Optics Based Label-Free Techniques and Applications in Brain Monitoring. APPLIED SCIENCES-BASEL 2020. [DOI: 10.3390/app10062196] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Functional near-infrared spectroscopy (fNIRS) has been utilized already around three decades for monitoring the brain, in particular, oxygenation changes in the cerebral cortex. In addition, other optical techniques are currently developed for in vivo imaging and in the near future can be potentially used more in human brain research. This paper reviews the most common label-free optical technologies exploited in brain monitoring and their current and potential clinical applications. Label-free tissue monitoring techniques do not require the addition of dyes or molecular contrast agents. The following optical techniques are considered: fNIRS, diffuse correlations spectroscopy (DCS), photoacoustic imaging (PAI) and optical coherence tomography (OCT). Furthermore, wearable optical brain monitoring with the most common applications is discussed.
Collapse
|
17
|
Bu L, Qi L, Yan W, Yan Q, Tang Z, Li F, Liu X, Diao C, Li K, Dong G. Acute kick-boxing exercise alters effective connectivity in the brain of females with methamphetamine dependencies. Neurosci Lett 2020; 720:134780. [PMID: 31978497 DOI: 10.1016/j.neulet.2020.134780] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2019] [Revised: 01/17/2020] [Accepted: 01/20/2020] [Indexed: 11/18/2022]
Abstract
OBJECTIVE Methamphetamine (METH) dependence, especially among women, is a serious global health problem. Kick-boxing exercise can be used to reduce cue-induced craving and develop a healthy lifestyle for female with METH dependencies. This study aimed to assess acute kick-boxing related changes in effective connectivity (EC) in the brain of females with METH dependencies by using functional near-infrared spectroscopy (fNIRS) signals. METHODS The fNIRS signals were continuously recorded from the left and right prefrontal cortices (LPFC/RPFC) and left and right motor cortices (LMC/RMC) of 30 female subjects with methamphetamine dependencies (METH group) and 30 age-matched controls (control group) during resting and kick-boxing exercise (training) periods. EC was calculated in the frequency range of 0.01-0.08 Hz. RESULTS In both resting and training state, the EC levels of METH group were significantly lower than the control group (p < 0.05). The EC levels of control group showed more significantly increased connection types than that of the METH group. CONCLUSION Acute kick-boxing exercise altered EC in the brain of females with METH dependencies. Furthermore, the efficiency of the information flow between different brain regions in the control group was significantly higher than that in the METH group. This study provides a novel and portable assessment technique for METH rehabilitation in females on the basis of fNIRS signals.
Collapse
Affiliation(s)
- Lingguo Bu
- School of Mechanical and Aerospace Engineering, Nanyang Technological University, 639798, Singapore; Key Laboratory of High Efficiency and Clean Mechanical Manufacture, School of Mechanical Engineering, Shandong University, Jinan, 250061, China
| | - Liping Qi
- School of Biomedical Engineering, Dalian University of Technology, Dalian, 116024, China
| | - Wu Yan
- Shandong Sport University, Jinan, 250102, China
| | - Qian Yan
- Shandong Sport University, Jinan, 250102, China
| | - Zekun Tang
- Shandong Sport University, Jinan, 250102, China
| | - Furong Li
- Female Compulsory Isolation Drug Rehabilitation Center of Shandong Province, Zibo, 255311, China
| | - Xin Liu
- Drug Rehabilitation Administration of Shandong Province, Jinan, 250014, China
| | - Chunfeng Diao
- Drug Rehabilitation Administration of Shandong Province, Jinan, 250014, China
| | - Kefeng Li
- Shandong Sport University, Jinan, 250102, China.
| | - Guijun Dong
- Shandong Sport University, Jinan, 250102, China.
| |
Collapse
|
18
|
Guevara E, Flores-Castro JA, Peng K, Nguyen DK, Lesage F, Pouliot P, Rosas-Romero R. Prediction of epileptic seizures using fNIRS and machine learning. JOURNAL OF INTELLIGENT & FUZZY SYSTEMS 2020. [DOI: 10.3233/jifs-190738] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Affiliation(s)
- Edgar Guevara
- CONACYT - Universidad Autónoma de San Luis Potosí, Sierra Leona, Lomas 2a. secc., San Luis Potosí, Mexico
- Terahertz Science and Technology Center (C2T2) and Science and Technology National Lab (LANCyTT), Universidad Autónoma de San Luis Potosí, Mexico
| | | | - Ke Peng
- École Polytechnique de Montréal, Department of Electrical Engineering, C.P. 6079 succ. Centre-ville, Montréal, Québec H3C 3A7, Canada
| | - Dang Khoa Nguyen
- Hôpital Notre-Dame du CHUM, Neurology Division, 1560 rue Sherbrooke est, Montréal, Québec H2L 4M1, Canada
| | - Frédéric Lesage
- École Polytechnique de Montréal, Department of Electrical Engineering, C.P. 6079 succ. Centre-ville, Montréal, Québec H3C 3A7, Canada
- Montreal Heart Institute, 5000 Bélanger Street, Montréal, Québec H1T 1C8, Canada
| | - Philippe Pouliot
- École Polytechnique de Montréal, Department of Electrical Engineering, C.P. 6079 succ. Centre-ville, Montréal, Québec H3C 3A7, Canada
- Montreal Heart Institute, 5000 Bélanger Street, Montréal, Québec H1T 1C8, Canada
| | - Roberto Rosas-Romero
- Universidad de las Américas - Puebla, Sta. Catarina Mártir. Cholula, Puebla. C.P. 72820, Mexico
| |
Collapse
|
19
|
Dravida S, Ono Y, Noah JA, Zhang X, Hirsch J. Co-localization of theta-band activity and hemodynamic responses during face perception: simultaneous electroencephalography and functional near-infrared spectroscopy recordings. NEUROPHOTONICS 2019; 6:045002. [PMID: 31646152 PMCID: PMC6803809 DOI: 10.1117/1.nph.6.4.045002] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/23/2019] [Accepted: 09/12/2019] [Indexed: 05/27/2023]
Abstract
Face-specific neural processes in the human brain have been localized to multiple anatomical structures and associated with diverse and dynamic social functions. The question of how various face-related systems and functions may be bound together remains an active area of investigation. We hypothesize that face processing may be associated with specific frequency band oscillations that serve to integrate distributed face processing systems. Using a multimodal imaging approach, including electroencephalography (EEG) and functional near-infrared spectroscopy (fNIRS), simultaneous signals were acquired during face and object picture viewing. As expected for face processing, hemodynamic activity in the right occipital face area (OFA) increased during face viewing compared to object viewing, and in a subset of participants, the expected N170 EEG response was observed for faces. Based on recently reported associations between the theta band and visual processing, we hypothesized that increased hemodynamic activity in a face processing area would also be associated with greater theta-band activity originating in the same area. Consistent with our hypothesis, theta-band oscillations were also localized to the right OFA for faces, whereas alpha- and beta-band oscillations were not. Together, these findings suggest that theta-band oscillations originating in the OFA may be part of the distributed face-specific processing mechanism.
Collapse
Affiliation(s)
- Swethasri Dravida
- Yale School of Medicine, Interdepartmental Neuroscience Program, New Haven, Connecticut, United States
| | - Yumie Ono
- Yale School of Medicine, Department of Psychiatry, New Haven, Connecticut, United States
| | - J. Adam Noah
- Yale School of Medicine, Department of Psychiatry, New Haven, Connecticut, United States
| | - Xian Zhang
- Yale School of Medicine, Department of Psychiatry, New Haven, Connecticut, United States
| | - Joy Hirsch
- Yale School of Medicine, Department of Psychiatry, New Haven, Connecticut, United States
- Yale School of Medicine, Department of Neuroscience, New Haven, Connecticut, United States
- Yale School of Medicine, Department of Comparative Medicine, New Haven, Connecticut, United States
- University College London, Department of Medical Physics and Biomedical Engineering, London, United Kingdom
| |
Collapse
|
20
|
Rosas-Romero R, Guevara E, Peng K, Nguyen DK, Lesage F, Pouliot P, Lima-Saad WE. Prediction of epileptic seizures with convolutional neural networks and functional near-infrared spectroscopy signals. Comput Biol Med 2019; 111:103355. [PMID: 31323603 DOI: 10.1016/j.compbiomed.2019.103355] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2019] [Revised: 07/08/2019] [Accepted: 07/08/2019] [Indexed: 11/28/2022]
Abstract
There have been different efforts to predict epileptic seizures and most of them are based on the analysis of electroencephalography (EEG) signals; however, recent publications have suggested that functional Near-Infrared Spectroscopy (fNIRS), a relatively new technique, could be used to predict seizures. The objectives of this research are to show that the application of fNIRS to epileptic seizure detection yields results that are superior to those based on EEG and to demonstrate that the application of deep learning to this problem is suitable given the nature of fNIRS recordings. A Convolutional Neural Network (CNN) is applied to the prediction of epileptic seizures from fNIRS signals, an optical modality for recording brain waves. The implementation of the proposed method is presented in this work. Application of CNN to fNIRS recordings showed an accuracy ranging between 96.9% and 100%, sensitivity between 95.24% and 100%, specificity between 98.57% and 100%, a positive predictive value between 98.52% and 100%, and a negative predictive value between 95.39% and 100%. The most important aspect of this research is the combination of fNIRS signals with the particular CNN algorithm. The fNIRS modality has not been used in epileptic seizure prediction. A CNN is suitable for this application because fNIRS recordings are high dimensional data and they can be modeled as three-dimensional tensors for classification.
Collapse
Affiliation(s)
| | - Edgar Guevara
- CONACYT - Universidad Autónoma de San Luis Potosí, Mexico
| | - Ke Peng
- École Polytechnique de Montréal, Canada
| | | | - Frédéric Lesage
- École Polytechnique de Montréal, Canada; Montreal Heart Institute, Canada
| | - Philippe Pouliot
- École Polytechnique de Montréal, Canada; Montreal Heart Institute, Canada
| | | |
Collapse
|
21
|
Spectral entropy indicates electrophysiological and hemodynamic changes in drug-resistant epilepsy - A multimodal MREG study. NEUROIMAGE-CLINICAL 2019; 22:101763. [PMID: 30927607 PMCID: PMC6444290 DOI: 10.1016/j.nicl.2019.101763] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/19/2018] [Revised: 02/01/2019] [Accepted: 03/10/2019] [Indexed: 12/20/2022]
Abstract
Objective Epilepsy causes measurable irregularity over a range of brain signal frequencies, as well as autonomic nervous system functions that modulate heart and respiratory rate variability. Imaging dynamic neuronal signals utilizing simultaneously acquired ultra-fast 10 Hz magnetic resonance encephalography (MREG), direct current electroencephalography (DC-EEG), and near-infrared spectroscopy (NIRS) can provide a more comprehensive picture of human brain function. Spectral entropy (SE) is a nonlinear method to summarize signal power irregularity over measured frequencies. SE was used as a joint measure to study whether spectral signal irregularity over a range of brain signal frequencies based on synchronous multimodal brain signals could provide new insights in the neural underpinnings of epileptiform activity. Methods Ten patients with focal drug-resistant epilepsy (DRE) and ten healthy controls (HC) were scanned with 10 Hz MREG sequence in combination with EEG, NIRS (measuring oxygenated, deoxygenated, and total hemoglobin: HbO, Hb, and HbT, respectively), and cardiorespiratory signals. After pre-processing, voxelwise SEMREG was estimated from MREG data. Different neurophysiological and physiological subfrequency band signals were further estimated from MREG, DC-EEG, and NIRS: fullband (0–5 Hz, FB), near FB (0.08–5 Hz, NFB), brain pulsations in very-low (0.009–0.08 Hz, VLFP), respiratory (0.12–0.4 Hz, RFP), and cardiac (0.7–1.6 Hz, CFP) frequency bands. Global dynamic fluctuations in MREG and NIRS were analyzed in windows of 2 min with 50% overlap. Results Right thalamus, cingulate gyrus, inferior frontal gyrus, and frontal pole showed significantly higher SEMREG in DRE patients compared to HC. In DRE patients, SE of cortical Hb was significantly reduced in FB (p = .045), NFB (p = .017), and CFP (p = .038), while both HbO and HbT were significantly reduced in RFP (p = .038, p = .045, respectively). Dynamic SE of HbT was reduced in DRE patients in RFP during minutes 2 to 6. Fitting to the frontal MREG and NIRS results, DRE patients showed a significant increase in SEEEG in FB in fronto-central and parieto-occipital regions, in VLFP in parieto-central region, accompanied with a significant decrease in RFP in frontal pole and parietal and occipital (O2, Oz) regions. Conclusion This is the first study to show altered spectral entropy from synchronous MREG, EEG, and NIRS in DRE patients. Higher SEMREG in DRE patients in anterior cingulate gyrus together with SEEEG and SENIRS results in 0.12–0.4 Hz can be linked to altered parasympathetic function and respiratory pulsations in the brain. Higher SEMREG in thalamus in DRE patients is connected to disturbances in anatomical and functional connections in epilepsy. Findings suggest that spectral irregularity of both electrophysiological and hemodynamic signals are altered in specific way depending on the physiological frequency range. Simultaneous imaging methods indicate spectral irregularity in neurovascular and electrophysiological brain pulsations in DRE. Altered spectral entropy in EEG, NIRS and BOLD indicate dysfunctional brain pulsations in respiratory frequency in epilepsy. Spectral irregularity (0-5 Hz) of BOLD in right thalamus supports previous structural and functional findings in epilepsy.
Collapse
|
22
|
Zhang C, Tabatabaei M, Bélanger S, Girouard H, Moeini M, Lu X, Lesage F. Astrocytic endfoot Ca 2+ correlates with parenchymal vessel responses during 4-AP induced epilepsy: An in vivo two-photon lifetime microscopy study. J Cereb Blood Flow Metab 2019; 39:260-271. [PMID: 28792278 PMCID: PMC6365602 DOI: 10.1177/0271678x17725417] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Neurovascular coupling (NVC) underlying the local increase in blood flow during neural activity forms the basis of functional brain imaging and is altered in epilepsy. Because astrocytic calcium (Ca2+) signaling is involved in NVC, this study investigates the role of this pathway in epilepsy. Here, we exploit 4-AP induced epileptic events to show that absolute Ca2+ concentration in cortical astrocyte endfeet in vivo correlates with the diameter of precapillary arterioles during neural activity. We simultaneously monitored free Ca2+ concentration in astrocytic endfeet with the Ca2+-sensitive indicator OGB-1 and diameter of adjacent arterioles in the somatosensory cortex of adult mice by two-photon fluorescence lifetime measurements following 4-AP injection. Our results reveal that, regardless of the mechanism by which astrocytic endfoot Ca2+ was elevated during epileptic events, increases in Ca2+ associated with vasodilation for each individual ictal event in the focus. In the remote area, increases in Ca2+ correlated with vasoconstriction at the onset of seizure and vasodilation during the later part of the seizure. Furthermore, a slow increase in absolute Ca2+ with time following multiple seizures was observed, which in turn, correlated with a trend of arteriolar constriction both at the epileptic focus and remote areas.
Collapse
Affiliation(s)
- Cong Zhang
- 1 Department of Electrical Engineering, École Polytechnique de Montréal, Montreal, Canada.,2 Montreal Heart Institute, Montreal, Quebec, Canada
| | - Maryam Tabatabaei
- 3 Department of Computer Engineering, École Polytechnique de Montréal, Montreal, Canada
| | - Samuel Bélanger
- 1 Department of Electrical Engineering, École Polytechnique de Montréal, Montreal, Canada
| | - Hélène Girouard
- 4 Department of Pharmacology, University of Montreal, Montreal, Canada
| | - Mohammad Moeini
- 1 Department of Electrical Engineering, École Polytechnique de Montréal, Montreal, Canada.,2 Montreal Heart Institute, Montreal, Quebec, Canada
| | - Xuecong Lu
- 1 Department of Electrical Engineering, École Polytechnique de Montréal, Montreal, Canada.,2 Montreal Heart Institute, Montreal, Quebec, Canada
| | - Frédéric Lesage
- 1 Department of Electrical Engineering, École Polytechnique de Montréal, Montreal, Canada.,2 Montreal Heart Institute, Montreal, Quebec, Canada
| |
Collapse
|
23
|
Liang Z, Minagawa Y, Yang HC, Tian H, Cheng L, Arimitsu T, Takahashi T, Tong Y. Symbolic time series analysis of fNIRS signals in brain development assessment. J Neural Eng 2018; 15:066013. [PMID: 30207540 DOI: 10.1088/1741-2552/aae0c9] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
OBJECTIVE Assessing an infant's brain development remains a challenge for neuroscientists and pediatricians despite great technological advances. As a non-invasive neuroimaging tool, functional near-infrared spectroscopy (fNIRS) has great advantages in monitoring an infant's brain activity. To explore the dynamic features of hemodynamic changes in infants, in-pattern exponent (IPE), anti-pattern exponent (APE), as well as permutation cross-mutual information (PCMI) based on symbolic dynamics are proposed to measure the phase differences and coupling strength in oxyhemoglobin (HbO) and deoxyhemoglobin (Hb) signals from fNIRS. APPROACH First, simulated sinusoidal oscillation signals and four coupled nonlinear systems were employed for performance assessments. Hilbert transform based measurements of hemoglobin phase oxygenation and deoxygenation (hPod) and phase-locking index of hPod (hPodL) were calculated for comparison. Then, the IPE, APE and PCMI indices from resting state fNIRS data of preterm, term infants and adults were calculated to estimate the phase difference and coupling of HbO and Hb. All indices' performance was assessed by the degree of monotonicity (DoM). The box plots and coefficients of variation (CV) were employed to assess the measurements and robustness in the results. MAIN RESULTS In the simulation analysis, IPE and APE can distinguish the phase difference of two sinusoidal oscillation signals. Both hPodL and PCMI can track the strength of two coupled nonlinear systems. Compared to hPodL, the PCMI had higher DoM indices in measuring the coupling of two nonlinear systems. In the fNIRS data analysis, similar to hPod, the IPE and APE can distinguish preterm, term infants, and adults in 0.01-0.05 Hz, 0.05-0.1 Hz, and 0.01-0.1 Hz frequency bands, respectively. PCMI more effectively distinguished the term and preterm infants than hPodL in the 0.05-0.1 Hz frequency band. As symbolic time series measures, the IPE and APE were able to detect the brain developmental changes in subjects of different ages. PCMI can assess the resting-state HbO and Hb coupling changes across different developmental ages, which may reflect the metabolic and neurovascular development. SIGNIFICANCE The symbolic-based methodologies are promising measures for fNIRS in estimating the brain development, especially in assessing newborns' brain developmental status.
Collapse
Affiliation(s)
- Zhenhu Liang
- Institute of Electrical Engineering, Yanshan University, Qinhuangdao 066004, People's Republic of China. Weldon School of Biomedical Engineering, Purdue University, West Lafayette, IN, United States of America
| | | | | | | | | | | | | | | |
Collapse
|
24
|
Abreu R, Leal A, Lopes da Silva F, Figueiredo P. EEG synchronization measures predict epilepsy-related BOLD-fMRI fluctuations better than commonly used univariate metrics. Clin Neurophysiol 2018; 129:618-635. [PMID: 29414405 DOI: 10.1016/j.clinph.2017.12.038] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2017] [Revised: 11/29/2017] [Accepted: 12/22/2017] [Indexed: 10/18/2022]
Abstract
OBJECTIVE We hypothesize that the hypersynchronization associated with epileptic activity is best described by EEG synchronization measures, and propose to use these as predictors of epilepsy-related BOLD fluctuations. METHODS We computed the phase synchronization index (PSI) and global field synchronization (GFS), within two frequency bands, a broadband (1-45 Hz) and a narrower band focused on the presence of epileptic activity (3-10 Hz). The associated epileptic networks were compared with those obtained using conventional unitary regressors and two power-weighted metrics (total power and root mean square frequency), on nine simultaneous EEG-fMRI datasets from four epilepsy patients, exhibiting inter-ictal epileptiform discharges (IEDs). RESULTS The average PSI within 3-10 Hz achieved the best performance across several measures reflecting reliability in all datasets. The results were cross-validated through electrical source imaging of the IEDs. The applicability of PSI when no IEDs are recorded on the EEG was evaluated on three additional patients, yielding partially plausible networks in all cases. CONCLUSIONS Epileptic networks can be mapped based on the EEG PSI metric within an IED-specific frequency band, performing better than commonly used EEG metrics. SIGNIFICANCE This is the first study to investigate EEG synchronization measures as potential predictors of epilepsy-related BOLD fluctuations.
Collapse
Affiliation(s)
- Rodolfo Abreu
- ISR-Lisboa/LARSyS and Department of Bioengineering, Instituto Superior Técnico - Universidade de Lisboa, Portugal.
| | - Alberto Leal
- Department of Neurophysiology, Centro Hospitalar Psiquiátrico de Lisboa, Lisbon, Portugal
| | | | - Patrícia Figueiredo
- ISR-Lisboa/LARSyS and Department of Bioengineering, Instituto Superior Técnico - Universidade de Lisboa, Portugal
| |
Collapse
|
25
|
Utilization of a combined EEG/NIRS system to predict driver drowsiness. Sci Rep 2017; 7:43933. [PMID: 28266633 PMCID: PMC5339693 DOI: 10.1038/srep43933] [Citation(s) in RCA: 53] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2016] [Accepted: 02/01/2017] [Indexed: 11/09/2022] Open
Abstract
The large number of automobile accidents due to driver drowsiness is a critical concern of many countries. To solve this problem, numerous methods of countermeasure have been proposed. However, the results were unsatisfactory due to inadequate accuracy of drowsiness detection. In this study, we introduce a new approach, a combination of EEG and NIRS, to detect driver drowsiness. EEG, EOG, ECG and NIRS signals have been measured during a simulated driving task, in which subjects underwent both awake and drowsy states. The blinking rate, eye closure, heart rate, alpha and beta band power were used to identify subject's condition. Statistical tests were performed on EEG and NIRS signals to find the most informative parameters. Fisher's linear discriminant analysis method was employed to classify awake and drowsy states. Time series analysis was used to predict drowsiness. The oxy-hemoglobin concentration change and the beta band power in the frontal lobe were found to differ the most between the two states. In addition, these two parameters correspond well to an awake to drowsy state transition. A sharp increase of the oxy-hemoglobin concentration change, together with a dramatic decrease of the beta band power, happened several seconds before the first eye closure.
Collapse
|
26
|
Gallagher A, Tremblay J, Vannasing P. Language mapping in children using resting-state functional connectivity: comparison with a task-based approach. JOURNAL OF BIOMEDICAL OPTICS 2016; 21:125006. [PMID: 27992629 DOI: 10.1117/1.jbo.21.12.125006] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/26/2016] [Accepted: 11/21/2016] [Indexed: 06/06/2023]
Abstract
Patients with brain tumor or refractory epilepsy may be candidates for neurosurgery. Presurgical evaluation often includes language investigation to prevent or reduce the risk of postsurgical language deficits. Current techniques involve significant limitations with pediatric populations. Recently, near-infrared spectroscopy (NIRS) has been shown to be a valuable neuroimaging technique for language localization in children. However, it typically requires the child to perform a task (task-based NIRS), which may constitute a significant limitation. Resting-state functional connectivity NIRS (fcNIRS) is an approach that can be used to identify language networks at rest. This study aims to assess the utility of fcNIRS in children by comparing fcNIRS to more conventional task-based NIRS for language mapping in 33 healthy participants: 25 children (ages 3 to 16) and 8 adults. Data were acquired at rest and during a language task. Results show very good concordance between both approaches for language localization (Dice similarity coefficient = 0.81 ± 0.13 ) and hemispheric language dominance ( kappa = 0.86 , p < 0.006 ). The fcNIRS technique may be a valuable tool for language mapping in clinical populations, including children and patients with cognitive and behavioral impairments.
Collapse
Affiliation(s)
- Anne Gallagher
- CHU Sainte-Justine Research Center, Laboratoire d'Imagerie Optique en Neurodéveloppement (LIONLab), 3175 Chemin de la Côte-Sainte-Catherine, Montréal, Québec H3T 1C5, CanadabUniversité de Montréal, Centre de Recherche en Neuropsychologie et Cognition, Department of Psychology, Marie-Victorin Building, P.O. Box 6128 Centre-ville Station, 2900 Boulevard Édouard-Montpetit, Montréal, Québec H3T 1J4, Canada
| | - Julie Tremblay
- CHU Sainte-Justine Research Center, Laboratoire d'Imagerie Optique en Neurodéveloppement (LIONLab), 3175 Chemin de la Côte-Sainte-Catherine, Montréal, Québec H3T 1C5, CanadabUniversité de Montréal, Centre de Recherche en Neuropsychologie et Cognition, Department of Psychology, Marie-Victorin Building, P.O. Box 6128 Centre-ville Station, 2900 Boulevard Édouard-Montpetit, Montréal, Québec H3T 1J4, Canada
| | - Phetsamone Vannasing
- CHU Sainte-Justine Research Center, Laboratoire d'Imagerie Optique en Neurodéveloppement (LIONLab), 3175 Chemin de la Côte-Sainte-Catherine, Montréal, Québec H3T 1C5, CanadabUniversité de Montréal, Centre de Recherche en Neuropsychologie et Cognition, Department of Psychology, Marie-Victorin Building, P.O. Box 6128 Centre-ville Station, 2900 Boulevard Édouard-Montpetit, Montréal, Québec H3T 1J4, Canada
| |
Collapse
|
27
|
Peng K, Pouliot P, Lesage F, Nguyen DK. Multichannel continuous electroencephalography-functional near-infrared spectroscopy recording of focal seizures and interictal epileptiform discharges in human epilepsy: a review. NEUROPHOTONICS 2016; 3:031402. [PMID: 26958576 PMCID: PMC4750425 DOI: 10.1117/1.nph.3.3.031402] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/26/2015] [Accepted: 12/08/2015] [Indexed: 05/11/2023]
Abstract
Functional near-infrared spectroscopy (fNIRS) has emerged as a promising neuroimaging technique as it allows noninvasive and long-term monitoring of cortical hemodynamics. Recent work by our group and others has revealed the potential of fNIRS, combined with electroencephalography (EEG), in the context of human epilepsy. Hemodynamic brain responses attributed to epileptic events, such as seizures and interictal epileptiform discharges (IEDs), are routinely observed with a good degree of statistical significance and in concordance with clinical presentation. Recording done with over 100 channels allows sufficiently large coverage of the epileptic focus and other areas. Three types of seizures have been documented: frontal lobe seizures, temporal lobe seizures, and posterior seizures. Increased oxygenation was observed in the epileptic focus in most cases, while rapid but similar hemodynamic variations were identified in the contralateral homologous region. While investigating IEDs, it was shown that their hemodynamic effect is observable with fNIRS, that their response is associated with significant (inhibitive) nonlinearities, and that the sensitivity and specificity of fNIRS to localize the epileptic focus can be estimated in a sample of 40 patients. This paper first reviews recent EEG-fNIRS developments in epilepsy research and then describes applications to the study of focal seizures and IEDs.
Collapse
Affiliation(s)
- Ke Peng
- École Polytechnique de Montréal, Département de génie électrique and Institut de génie biomédical, C.P. 6079, Succursale Centre-ville, Montréal, Quebec H3C3A7, Canada
| | - Philippe Pouliot
- École Polytechnique de Montréal, Département de génie électrique and Institut de génie biomédical, C.P. 6079, Succursale Centre-ville, Montréal, Quebec H3C3A7, Canada
- Institut de Cardiologie de Montréal, Centre de recherche, 5000 rue Bélanger est, Montréal, Quebec H1T1C8, Canada
| | - Frédéric Lesage
- École Polytechnique de Montréal, Département de génie électrique and Institut de génie biomédical, C.P. 6079, Succursale Centre-ville, Montréal, Quebec H3C3A7, Canada
- Institut de Cardiologie de Montréal, Centre de recherche, 5000 rue Bélanger est, Montréal, Quebec H1T1C8, Canada
| | - Dang Khoa Nguyen
- Centre Hospitalier de l’Université de Montréal, Hôpital Notre-Dame, Service de neurologie, 1560 rue Sherbrooke est, Montréal, Quebec H2L4M1, Canada
- Address all correspondence to: Dang Khoa Nguyen, E-mail:
| |
Collapse
|
28
|
Keles HO, Barbour RL, Omurtag A. Hemodynamic correlates of spontaneous neural activity measured by human whole-head resting state EEG+fNIRS. Neuroimage 2016; 138:76-87. [PMID: 27236081 DOI: 10.1016/j.neuroimage.2016.05.058] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2015] [Revised: 05/18/2016] [Accepted: 05/24/2016] [Indexed: 02/05/2023] Open
Abstract
The brains of awake, resting human subjects display spontaneously occurring neural activity patterns whose magnitude is typically many times greater than those triggered by cognitive or perceptual performance. Evoked and resting state activations affect local cerebral hemodynamic properties through processes collectively referred to as neurovascular coupling. Its investigation calls for an ability to track both the neural and vascular aspects of brain function. We used scalp electroencephalography (EEG), which provided a measure of the electrical potentials generated by cortical postsynaptic currents. Simultaneously we utilized functional near-infrared spectroscopy (NIRS) to continuously monitor hemoglobin concentration changes in superficial cortical layers. The multi-modal signal from 18 healthy adult subjects allowed us to investigate the association of neural activity in a range of frequencies over the whole-head to local changes in hemoglobin concentrations. Our results verified the delayed alpha (8-16Hz) modulation of hemodynamics in posterior areas known from the literature. They also indicated strong beta (16-32Hz) modulation of hemodynamics. Analysis revealed, however, that beta modulation was likely generated by the alpha-beta coupling in EEG. Signals from the inferior electrode sites were dominated by scalp muscle related activity. Our study aimed to characterize the phenomena related to neurovascular coupling observable by practical, cost-effective, and non-invasive multi-modal techniques.
Collapse
Affiliation(s)
- Hasan Onur Keles
- Department of Psychiatry, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, United States
| | - Randall L Barbour
- Department of Pathology, Optical Tomography Group, State University of New York, NY, 11203, United States
| | - Ahmet Omurtag
- Department of Biomedical Engineering, University of Houston, Houston, TX 77204, United States.
| |
Collapse
|
29
|
Safi D, Béland R, Nguyen DK, Pouliot P, Mohamed IS, Vannasing P, Tremblay J, Lassonde M, Gallagher A. Recruitment of the left precentral gyrus in reading epilepsy: A multimodal neuroimaging study. EPILEPSY & BEHAVIOR CASE REPORTS 2016; 5:19-22. [PMID: 26909333 PMCID: PMC4744333 DOI: 10.1016/j.ebcr.2016.01.003] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/01/2015] [Revised: 12/18/2015] [Accepted: 01/09/2016] [Indexed: 11/17/2022]
Abstract
Purpose In a previous study, we investigated a 42-year-old male patient with primary reading epilepsy using continuous video-electroencephalography (EEG). Reading tasks induced left parasagittal spikes with a higher spike frequency when the phonological reading pathway was recruited compared to the lexical one. Here, we seek to localize the epileptogenic focus in the same patient as a function of reading pathway using multimodal neuroimaging. Methods and results The participant read irregular words and nonwords presented in a block-design paradigm during magnetoencephalography (MEG), functional near-infrared spectroscopy (fNIRS), and functional magnetic resonance imaging (fMRI) recordings, all combined with EEG. Spike analyses from MEG, fNIRS, and fMRI–EEGs data revealed an epileptic focus in the left precentral gyrus, and spike localization did not differ in lexical and phonological reading. Conclusion This study is the first to investigate ictogenesis in reading epilepsy during both lexical and phonological reading while using three different multimodal neuroimaging techniques. The somatosensory and motor control functions of the left precentral gyrus that are congruently involved in lexical as well as phonological reading can explain the identical spike localization in both reading pathways. The concurrence between our findings in this study and those from our previous one supports the role of the left precentral gyrus in phonological output computation as well as seizure activity in a case of reading epilepsy.
Collapse
Affiliation(s)
- Dima Safi
- Centre de Recherche du CHU Sainte-Justine, Montréal, Canada
- Département d'orthophonie, Université du Québec A Trois-Rivières, Trois-Rivières, Canada
- Corresponding author at: Département d'orthophonie, Local 3836 Pavillon de la Santé, Université du Québec A Trois-Rivières, 3351 Boulevard des Forges, Trois-Rivières, Québec, G9A5H7, Canada. Tel.: + 1 819 376 5011x3259.Département d'orthophonieUniversité du Québec A Trois-RivièresLocal 3836 Pavillon de la Santé3351 Boulevard des ForgesTrois-RivièresQuébecG9A5H7Canada
| | - Renée Béland
- Ecole d'orthophonie et d'audiologie, Université de Montréal, Montréal, Canada
| | | | | | | | | | - Julie Tremblay
- Centre de Recherche du CHU Sainte-Justine, Montréal, Canada
| | | | - Anne Gallagher
- Centre de Recherche du CHU Sainte-Justine, Montréal, Canada
- Département de Psychologie, Université de Montréal, Montréal, Canada
| |
Collapse
|
30
|
Using patient-specific hemodynamic response function in epileptic spike analysis of human epilepsy: a study based on EEG-fNIRS. Neuroimage 2015; 126:239-55. [PMID: 26619785 DOI: 10.1016/j.neuroimage.2015.11.045] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2015] [Revised: 09/24/2015] [Accepted: 11/16/2015] [Indexed: 11/23/2022] Open
Abstract
Functional near-infrared spectroscopy (fNIRS) can be combined with electroencephalography (EEG) to continuously monitor the hemodynamic signal evoked by epileptic events such as seizures or interictal epileptiform discharges (IEDs, aka spikes). As estimation methods assuming a canonical shape of the hemodynamic response function (HRF) might not be optimal, we sought to model patient-specific HRF (sHRF) with a simple deconvolution approach for IED-related analysis with EEG-fNIRS data. Furthermore, a quadratic term was added to the model to account for the nonlinearity in the response when IEDs are frequent. Prior to analyzing clinical data, simulations were carried out to show that the HRF was estimable by the proposed deconvolution methods under proper conditions. EEG-fNIRS data of five patients with refractory focal epilepsy were selected due to the presence of frequent clear IEDs and their unambiguous focus localization. For each patient, both the linear sHRF and the nonlinear sHRF were estimated at each channel. Variability of the estimated sHRFs was seen across brain regions and different patients. Compared with the SPM8 canonical HRF (cHRF), including these sHRFs in the general linear model (GLM) analysis led to hemoglobin activations with higher statistical scores as well as larger spatial extents on all five patients. In particular, for patients with frequent IEDs, nonlinear sHRFs were seen to provide higher sensitivity in activation detection than linear sHRFs. These observations support using sHRFs in the analysis of IEDs with EEG-fNIRS data.
Collapse
|
31
|
Zhang C, Bélanger S, Pouliot P, Lesage F. Measurement of Local Partial Pressure of Oxygen in the Brain Tissue under Normoxia and Epilepsy with Phosphorescence Lifetime Microscopy. PLoS One 2015; 10:e0135536. [PMID: 26305777 PMCID: PMC4549327 DOI: 10.1371/journal.pone.0135536] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2015] [Accepted: 07/22/2015] [Indexed: 12/30/2022] Open
Abstract
In this work a method for measuring brain oxygen partial pressure with confocal phosphorescence lifetime microscopy system is reported. When used in conjunction with a dendritic phosphorescent probe, Oxyphor G4, this system enabled minimally invasive measurements of oxygen partial pressure (pO2) in cerebral tissue with high spatial and temporal resolution during 4-AP induced epileptic seizures. Investigating epileptic events, we characterized the spatio-temporal distribution of the "initial dip" in pO2 near the probe injection site and along nearby arterioles. Our results reveal a correlation between the percent change in the pO2 signal during the "initial dip" and the duration of seizure-like activity, which can help localize the epileptic focus and predict the length of seizure.
Collapse
Affiliation(s)
- Cong Zhang
- École Polytechnique de Montréal, Department of Electrical Engineering, C.P. 6079 succ.Centre-ville, Montreal, Quebec, Canada, H3C 3A7
| | - Samuel Bélanger
- École Polytechnique de Montréal, Department of Electrical Engineering, C.P. 6079 succ.Centre-ville, Montreal, Quebec, Canada, H3C 3A7
| | - Philippe Pouliot
- École Polytechnique de Montréal, Department of Electrical Engineering, C.P. 6079 succ.Centre-ville, Montreal, Quebec, Canada, H3C 3A7
- Montreal Heart Institute, 5000 Bélanger Est, Montreal, Quebec, Canada, H1T 1C8
| | - Frédéric Lesage
- École Polytechnique de Montréal, Department of Electrical Engineering, C.P. 6079 succ.Centre-ville, Montreal, Quebec, Canada, H3C 3A7
- Montreal Heart Institute, 5000 Bélanger Est, Montreal, Quebec, Canada, H1T 1C8
- * E-mail:
| |
Collapse
|
32
|
Rizki EE, Uga M, Dan I, Dan H, Tsuzuki D, Yokota H, Oguro K, Watanabe E. Determination of epileptic focus side in mesial temporal lobe epilepsy using long-term noninvasive fNIRS/EEG monitoring for presurgical evaluation. NEUROPHOTONICS 2015; 2:025003. [PMID: 26158007 PMCID: PMC4478938 DOI: 10.1117/1.nph.2.2.025003] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/25/2014] [Accepted: 04/10/2015] [Indexed: 05/16/2023]
Abstract
Noninvasive localization of an epileptogenic zone is a fundamental step for presurgical evaluation of epileptic patients. Here, we applied long-term simultaneous functional near-infrared spectroscopy (fNIRS)/electroencephalogram (EEG) monitoring for focus diagnosis in patients with mesial temporal lobe epilepsy (MTLE). Six MTLE patients underwent long-term (8-16 h per day for 4 days) fNIRS/EEG monitoring for the occurrence of spontaneous seizures. Four spontaneous seizures were successfully recorded out of the six patients. To determine oxy-Hb amplitude, the period-average values of oxy-Hb across 20 s from the EEG- or clinically defined epileptic onset were calculated for both hemispheres from the simultaneously recorded fNIRS data. The average oxy-Hb values for the temporal lobe at the earlier EEG- or clinically defined epileptic onsets were greater for the epileptic side than for the contralateral side after EEG activity suppression, spike train, and clinical seizure in all four cases. The true laterality was determined based on the relief of seizures by selective amygdalo-hippocampectomy. Thus, oxy-Hb amplitude could be a reliable measure for determining the epileptic focus side. Long-term simultaneous fNIRS/EEG measurement serves as an effective tool for recording spontaneous seizures. Cerebral hemodynamic measurement by fNIRS would serve as a valuable supplementary noninvasive measurement method for presurgical evaluation of MTLE.
Collapse
Affiliation(s)
- Edmi Edison Rizki
- Jichi Medical University, Department of Neurosurgery, 3311-1 Yakushiji, Shimotsuke, Tochigi 329-0498, Japan
| | - Minako Uga
- Jichi Medical University, Center for Development of Advanced Medical Technology, 3311-1 Yakushiji, Shimotsuke, Tochigi 329-0498, Japan
- Chuo University, Research and Development Initiatives/Faculty of Science and Engineering, 1-13-27 Kasuga, Bunkyo, Tokyo 112-8551, Japan
| | - Ippeita Dan
- Jichi Medical University, Center for Development of Advanced Medical Technology, 3311-1 Yakushiji, Shimotsuke, Tochigi 329-0498, Japan
- Chuo University, Research and Development Initiatives/Faculty of Science and Engineering, 1-13-27 Kasuga, Bunkyo, Tokyo 112-8551, Japan
| | - Haruka Dan
- Jichi Medical University, Department of Neurosurgery, 3311-1 Yakushiji, Shimotsuke, Tochigi 329-0498, Japan
- Chuo University, Research and Development Initiatives/Faculty of Science and Engineering, 1-13-27 Kasuga, Bunkyo, Tokyo 112-8551, Japan
| | - Daisuke Tsuzuki
- Jichi Medical University, Center for Development of Advanced Medical Technology, 3311-1 Yakushiji, Shimotsuke, Tochigi 329-0498, Japan
- Chuo University, Research and Development Initiatives/Faculty of Science and Engineering, 1-13-27 Kasuga, Bunkyo, Tokyo 112-8551, Japan
| | - Hidenori Yokota
- Jichi Medical University, Department of Neurosurgery, 3311-1 Yakushiji, Shimotsuke, Tochigi 329-0498, Japan
| | - Keiji Oguro
- Jichi Medical University, Department of Neurosurgery, 3311-1 Yakushiji, Shimotsuke, Tochigi 329-0498, Japan
| | - Eiju Watanabe
- Jichi Medical University, Department of Neurosurgery, 3311-1 Yakushiji, Shimotsuke, Tochigi 329-0498, Japan
- Jichi Medical University, Center for Development of Advanced Medical Technology, 3311-1 Yakushiji, Shimotsuke, Tochigi 329-0498, Japan
- Address all correspondence to: Eiju Watanabe, E-mail:
| |
Collapse
|
33
|
Dupuy O, Gauthier CJ, Fraser SA, Desjardins-Crèpeau L, Desjardins M, Mekary S, Lesage F, Hoge RD, Pouliot P, Bherer L. Higher levels of cardiovascular fitness are associated with better executive function and prefrontal oxygenation in younger and older women. Front Hum Neurosci 2015; 9:66. [PMID: 25741267 PMCID: PMC4332308 DOI: 10.3389/fnhum.2015.00066] [Citation(s) in RCA: 124] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2014] [Accepted: 01/27/2015] [Indexed: 01/10/2023] Open
Abstract
AIM Many studies have suggested that physical exercise training improves cognition and more selectively executive functions. There is a growing interest to clarify the neurophysiological mechanisms that underlie this effect. The aim of the current study was to evaluate the neurophysiological changes in cerebral oxygenation associated with physical fitness level and executive functions. METHOD In this study, 22 younger and 36 older women underwent a maximal graded continuous test (i.e., [Formula: see text]O2max ) in order to classify them into a fitness group (higher vs. lower fit). All participants completed neuropsychological paper and pencil testing and a computerized Stroop task (which contained executive and non-executive conditions) in which the change in prefrontal cortex oxygenation was evaluated with near infrared spectroscopy (NIRS). RESULTS Our findings revealed a Fitness × Condition interaction (p < 0.05) such that higher fit women scored better on measures of executive functions than lower fit women. In comparison to lower fit women, higher fit women had faster reaction times in the Executive condition of the computerized Stroop task. No significant effect was observed in the non-executive condition of the test and no interactions were found with age. In measures of cerebral oxygenation (ΔHbT and ΔHbO2), we found a main effect of fitness on cerebral oxygenation during the Stroop task such that only high fit women demonstrated a significant increase in the right inferior frontal gyrus. DISCUSSION/CONCLUSION Higher fit individuals who demonstrate better cardiorespiratory functions (as measured by [Formula: see text]O2max ) show faster reaction times and greater cerebral oxygenation in the right inferior frontal gyrus than women with lower fitness levels. The lack of interaction with age, suggests that good cardiorespiratory functions can have a positive impact on cognition, regardless of age.
Collapse
Affiliation(s)
- Olivier Dupuy
- Centre PERFORM, Université ConcordiaMontreal, QC, Canada
- Centre de Recherche de l'Institut de Gériatrie de MontréalMontreal, QC, Canada
- Laboratoire MOVE (EA6314), Faculté des Sciences du Sport de Poitiers, Université de PoitiersPoitiers, France
| | - Claudine J. Gauthier
- Centre de Recherche de l'Institut de Gériatrie de MontréalMontreal, QC, Canada
- Max Planck Institute for Human Cognitive and Brain SciencesLeipzig, Germany
| | - Sarah A. Fraser
- Centre de Recherche de l'Institut de Gériatrie de MontréalMontreal, QC, Canada
- Department of Social Work, McGill UniversityMontreal, QC, Canada
| | | | - Michèle Desjardins
- Centre de Recherche de l'Institut de Gériatrie de MontréalMontreal, QC, Canada
- Departement de Physiologie, Université de MontréalMontreal, QC, Canada
| | - Said Mekary
- Centre de Recherche de l'Institut de Gériatrie de MontréalMontreal, QC, Canada
| | | | - Rick D. Hoge
- Centre de Recherche de l'Institut de Gériatrie de MontréalMontreal, QC, Canada
- Departement de Physiologie, Université de MontréalMontreal, QC, Canada
| | | | - Louis Bherer
- Centre PERFORM, Université ConcordiaMontreal, QC, Canada
- Centre de Recherche de l'Institut de Gériatrie de MontréalMontreal, QC, Canada
| |
Collapse
|
34
|
Assecondi S, Ostwald D, Bagshaw AP. Reliability of information-based integration of EEG and fMRI data: a simulation study. Neural Comput 2014; 27:281-305. [PMID: 25514112 DOI: 10.1162/neco_a_00695] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Abstract
Most studies involving simultaneous electroencephalographic (EEG) and functional magnetic resonance imaging (fMRI) data rely on the first-order, affine-linear correlation of EEG and fMRI features within the framework of the general linear model. An alternative is the use of information-based measures such as mutual information and entropy, which can also detect higher-order correlations present in the data. The estimate of information-theoretic quantities might be influenced by several parameters, such as the numerosity of the sample, the amount of correlation between variables, and the discretization (or binning) strategy of choice. While these issues have been investigated for invasive neurophysiological data and a number of bias-correction estimates have been developed, there has been no attempt to systematically examine the accuracy of information estimates for the multivariate distributions arising in the context of EEG-fMRI recordings. This is especially important given the differences between electrophysiological and EEG-fMRI recordings. In this study, we drew random samples from simulated bivariate and trivariate distributions, mimicking the statistical properties of EEG-fMRI data. We compared the estimated information shared by simulated random variables with its numerical value and found that the interaction between the binning strategy and the estimation method influences the accuracy of the estimate. Conditional on the simulation assumptions, we found that the equipopulated binning strategy yields the best and most consistent results across distributions and bias correction methods. We also found that within bias correction techniques, the asymptotically debiased (TPMC), the jackknife debiased (JD), and the best upper bound (BUB) approach give similar results, and those are consistent across distributions.
Collapse
Affiliation(s)
- Sara Assecondi
- School of Psychology, University of Birmingham, Birmingham, B17 2TT, U.K.
| | | | | |
Collapse
|
35
|
Pouliot P, Tran TPY, Birca V, Vannasing P, Tremblay J, Lassonde M, Nguyen DK. Hemodynamic changes during posterior epilepsies: an EEG-fNIRS study. Epilepsy Res 2014; 108:883-90. [PMID: 24755234 DOI: 10.1016/j.eplepsyres.2014.03.007] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2013] [Revised: 02/19/2014] [Accepted: 03/16/2014] [Indexed: 11/30/2022]
Abstract
Posterior epilepsies are mainly characterized clinically by visual symptoms. Functional near-infrared spectroscopy (fNIRS) is an emerging non-invasive imaging technique that has the potential to monitor hemodynamic changes during epileptic activity. Combined with electroencephalography (EEG), 9 patients with posterior epilepsies were recorded using EEG-fNIRS with large sampling (19 EEG electrodes and over 100 fNIRS channels). Spikes and seizures were carefully marked on EEG traces, and convolved with a standard hemodynamic response function for general linear model (GLM) analysis. GLM results for seizures (in 3 patients) and spikes (7 patients) were broadly sensitive to the epileptic focus in 7/9 patients, and specific in 5/9 patients with fNIRS deoxyhemoglobin responses lateralized to the correct lobe, and to plausible locations within the occipital or parietal lobes. This work provides evidence that EEG-fNIRS is a sensitive technique for monitoring posterior epileptic activity.
Collapse
Affiliation(s)
- Philippe Pouliot
- Département de génie électrique, École Polytechnique de Montréal, C.P. 6079, Succ. Centre-ville, Montréal, QC, Canada H3C3A7; Institut de cardiologie de Montréal, Centre de recherche, 5000 Rue Bélanger Est, Montréal, QC, Canada H1T1C8.
| | - Thi Phuoc Yen Tran
- Service de neurologie, Hôpital Notre-Dame du CHUM, 1560 Rue Sherbrooke Est, Montréal, QC, Canada H3L4M1
| | - Véronica Birca
- Service de neurologie, Hôpital Notre-Dame du CHUM, 1560 Rue Sherbrooke Est, Montréal, QC, Canada H3L4M1
| | - Phetsamone Vannasing
- Centre de recherche, Hôpital Sainte-Justine, 3175 Chemin de la côte-Sainte-Catherine, Montréal, QC, Canada H3T1C5
| | - Julie Tremblay
- Centre de recherche, Hôpital Sainte-Justine, 3175 Chemin de la côte-Sainte-Catherine, Montréal, QC, Canada H3T1C5
| | - Maryse Lassonde
- Centre de recherche, Hôpital Sainte-Justine, 3175 Chemin de la côte-Sainte-Catherine, Montréal, QC, Canada H3T1C5; Centre de recherche en neuropsychologie et cognition, Département de psychologie, Université de Montréal, Montréal, QC, Canada H3C3J7
| | - Dang Khoa Nguyen
- Service de neurologie, Hôpital Notre-Dame du CHUM, 1560 Rue Sherbrooke Est, Montréal, QC, Canada H3L4M1
| |
Collapse
|
36
|
Machado A, Marcotte O, Lina JM, Kobayashi E, Grova C. Optimal optode montage on electroencephalography/functional near-infrared spectroscopy caps dedicated to study epileptic discharges. JOURNAL OF BIOMEDICAL OPTICS 2014; 19:026010. [PMID: 24525860 DOI: 10.1117/1.jbo.19.2.026010] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/05/2013] [Accepted: 01/13/2014] [Indexed: 05/23/2023]
Abstract
Functional near-infrared spectroscopy (fNIRS), acquired simultaneously with electroencephalography (EEG), allows the investigation of hemodynamic brain responses to epileptic activity. Because the presumed epileptogenic focus is patient-specific, an appropriate source/detector (SD) montage has to be reconfigured for each patient. The combination of EEG and fNIRS, however, entails several constraints on montages, and finding an optimal arrangement of optodes on the cap is an important issue. We present a method for computing an optimal SD montage on an EEG/fNIRS cap that focuses on one or several specific brain regions; the montage maximizes the spatial sensitivity. We formulate this optimization problem as a linear integer programming problem. The method was evaluated on two EEG/fNIRS caps. We simulated absorbers at different locations on a head model and generated realistic optical density maps on the scalp. We found that the maps of optimal SD montages had spatial resolution properties comparable to those of regular SD arrangements for the whole head with significantly fewer sensors than regular SD arrangements. In addition, we observed that optimal montages yielded improved spatial density of fNIRS measurements over the targeted regions together with an increase in signal-to-noise ratio.
Collapse
Affiliation(s)
- Alexis Machado
- McGill University, Multimodal Functional Imaging Laboratory, Biomedical Engineering Department, H3A 2B4, Québec, Canada
| | - Odile Marcotte
- GERAD, École des HEC, Montréal, H3T 2A7, Québec, CanadaeUniversité du Québec à Montréal, Département d'informatique, H3C 3P8 Québec Canada
| | - Jean Marc Lina
- École de Technologie Supérieure de l'Université du Québec, H3C 1K3, Québec, Canada
| | - Eliane Kobayashi
- McGill University, Montreal Neurological Institute, Department of Neurology and Neurosurgery, H3A 2B4, Québec, Canada
| | - Christophe Grova
- McGill University, Multimodal Functional Imaging Laboratory, Biomedical Engineering Department, H3A 2B4, Québec, CanadabMcGill University, Montreal Neurological Institute, Department of Neurology and Neurosurgery, H3A 2B4, Québec, Canada
| |
Collapse
|
37
|
Integrating functional near-infrared spectroscopy in the characterization, assessment, and monitoring of cancer and treatment-related neurocognitive dysfunction. Neuroimage 2014; 85 Pt 1:408-14. [DOI: 10.1016/j.neuroimage.2013.06.075] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2013] [Revised: 06/22/2013] [Accepted: 06/24/2013] [Indexed: 01/26/2023] Open
|
38
|
Peng K, Nguyen DK, Tayah T, Vannasing P, Tremblay J, Sawan M, Lassonde M, Lesage F, Pouliot P. fNIRS-EEG study of focal interictal epileptiform discharges. Epilepsy Res 2013; 108:491-505. [PMID: 24439212 DOI: 10.1016/j.eplepsyres.2013.12.011] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2013] [Revised: 10/22/2013] [Accepted: 12/05/2013] [Indexed: 10/25/2022]
Abstract
Functional near-infrared spectroscopy (fNIRS) acquired with electroencephalography (EEG) is a relatively new non-invasive neuroimaging technique with potential for long term monitoring of the epileptic brain. Simultaneous EEG-fNIRS recording allows the spatio-temporal reconstruction of the hemodynamic response in terms of the concentration changes in oxy-hemoglobin (HbO) and deoxy-hemoglobin (HbR) associated with recorded epileptic events such as interictal epileptic discharges (IEDs) or seizures. While most previous studies investigating fNIRS in epilepsy had limitations due to restricted spatial coverage and small sample sizes, this work includes a sufficiently large number of channels to provide an extensive bilateral coverage of the surface of the brain for a sample size of 40 patients with focal epilepsies. Topographic maps of significant activations due to each IED type were generated in four different views (dorsal, frontal, left and right) and were compared with the epileptic focus previously identified by an epileptologist. After excluding 5 patients due to the absence of IEDs and 6 more with mesial temporal foci too deep for fNIRS, we report that significant HbR (respectively HbO) concentration changes corresponding to IEDs were observed in 62% (resp. 38%) of patients with neocortical epilepsies. This HbR/HbO response was most significant in the epileptic focus region among all the activations in 28%/21% of patients.
Collapse
Affiliation(s)
- Ke Peng
- Département de génie électrique, École Polytechnique de Montréal, C.P. 6079, Succ. Centre-ville, Montréal, QC, Canada H3C3A7
| | - Dang Khoa Nguyen
- Service de neurologie, Hôpital Notre-Dame du CHUM, 1560 Rue Sherbrooke Est, Montréal, QC, Canada H3L4M1
| | - Tania Tayah
- Service de neurologie, Hôpital Notre-Dame du CHUM, 1560 Rue Sherbrooke Est, Montréal, QC, Canada H3L4M1
| | - Phetsamone Vannasing
- Centre de recherche, Hôpital Sainte-Justine, 3175 Chemin de la côte-Sainte-Catherine, Montréal, QC, Canada H3T1C5
| | - Julie Tremblay
- Centre de recherche, Hôpital Sainte-Justine, 3175 Chemin de la côte-Sainte-Catherine, Montréal, QC, Canada H3T1C5
| | - Mohamad Sawan
- Département de génie électrique, École Polytechnique de Montréal, C.P. 6079, Succ. Centre-ville, Montréal, QC, Canada H3C3A7
| | - Maryse Lassonde
- Centre de recherche, Hôpital Sainte-Justine, 3175 Chemin de la côte-Sainte-Catherine, Montréal, QC, Canada H3T1C5; Centre de recherche en neuropsychologie et cognition, Département de psychologie, Université de Montréal, Montréal, QC, Canada H3C3J7
| | - Frédéric Lesage
- Département de génie électrique, École Polytechnique de Montréal, C.P. 6079, Succ. Centre-ville, Montréal, QC, Canada H3C3A7; Institut de cardiologie de Montréal, Centre de recherche, 5000 Rue Bélanger Est, Montréal, QC, Canada H1T1C8
| | - Philippe Pouliot
- Département de génie électrique, École Polytechnique de Montréal, C.P. 6079, Succ. Centre-ville, Montréal, QC, Canada H3C3A7; Institut de cardiologie de Montréal, Centre de recherche, 5000 Rue Bélanger Est, Montréal, QC, Canada H1T1C8.
| |
Collapse
|
39
|
Altered resting state brain dynamics in temporal lobe epilepsy can be observed in spectral power, functional connectivity and graph theory metrics. PLoS One 2013; 8:e68609. [PMID: 23922658 PMCID: PMC3724835 DOI: 10.1371/journal.pone.0068609] [Citation(s) in RCA: 62] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2012] [Accepted: 05/30/2013] [Indexed: 02/04/2023] Open
Abstract
Despite a wealth of EEG epilepsy data that accumulated for over half a century, our ability to understand brain dynamics associated with epilepsy remains limited. Using EEG data from 15 controls and 9 left temporal lobe epilepsy (LTLE) patients, in this study we characterize how the dynamics of the healthy brain differ from the "dynamically balanced" state of the brain of epilepsy patients treated with anti-epileptic drugs in the context of resting state. We show that such differences can be observed in band power, synchronization and network measures, as well as deviations from the small world network (SWN) architecture of the healthy brain. The θ (4-7 Hz) and high α (10-13 Hz) bands showed the biggest deviations from healthy controls across various measures. In particular, patients demonstrated significantly higher power and synchronization than controls in the θ band, but lower synchronization and power in the high α band. Furthermore, differences between controls and patients in graph theory metrics revealed deviations from a SWN architecture. In the θ band epilepsy patients showed deviations toward an orderly network, while in the high α band they deviated toward a random network. These findings show that, despite the focal nature of LTLE, the epileptic brain differs in its global network characteristics from the healthy brain. To our knowledge, this is the only study to encompass power, connectivity and graph theory metrics to investigate the reorganization of resting state functional networks in LTLE patients.
Collapse
|
40
|
Obrig H. NIRS in clinical neurology - a 'promising' tool? Neuroimage 2013; 85 Pt 1:535-46. [PMID: 23558099 DOI: 10.1016/j.neuroimage.2013.03.045] [Citation(s) in RCA: 153] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2013] [Revised: 03/14/2013] [Accepted: 03/21/2013] [Indexed: 12/13/2022] Open
Abstract
Near-infrared spectroscopy (NIRS) has become a relevant research tool in neuroscience. In special populations such as infants and for special tasks such as walking, NIRS has asserted itself as a low resolution functional imaging technique which profits from its ease of application, portability and the option to co-register other neurophysiological and behavioral data in a 'near natural' environment. For clinical use in neurology this translates into the option to provide a bed-side oximeter for the brain, broadly available at comparatively low costs. However, while some potential for routine brain monitoring during cardiac and vascular surgery and in neonatology has been established, NIRS is largely unknown to clinical neurologists. The article discusses some of the reasons for this lack of use in clinical neurology. Research using NIRS in three major neurologic diseases (cerebrovascular disease, epilepsy and headache) is reviewed. Additionally the potential to exploit the established position of NIRS as a functional imaging tool with regard to clinical questions such as preoperative functional assessment and neurorehabilitation is discussed.
Collapse
Affiliation(s)
- Hellmuth Obrig
- Clinic for Cognitive Neurology, University Clinic Leipzig, Leipzig, Germany; Max-Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany; Dept. Neurology, Charité, University Medicine Berlin, Berlin, Germany.
| |
Collapse
|