1
|
Acerbo E, Missey F, Dickey AS, Trajlinek J, Studnička O, Lubrano C, de Araújo E Silva M, Brady E, Všianský V, Szabo J, Dolezalova I, Fabo D, Pail M, Gutekunst CA, Migliore R, Migliore M, Lagarde S, Carron R, Karimi F, Astorga RC, Cassara AM, Kuster N, Neufeld E, Bartolomei F, Pedersen NP, Gross RE, Jirsa V, Drane DL, Brázdil M, Williamson A. Non-invasive Temporal Interference Stimulation of the Hippocampus Suppresses Epileptic Biomarkers in Patients with Epilepsy: Biophysical Differences between Kilohertz and Amplitude Modulated Stimulation. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2024:2024.12.05.24303799. [PMID: 39711722 PMCID: PMC11661391 DOI: 10.1101/2024.12.05.24303799] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/24/2024]
Abstract
Medication-refractory focal epilepsy poses a significant challenge, with approximately 30% of patients ineligible for surgery due to the involvement of eloquent cortex in the epileptogenic network. For such patients with limited surgical options, electrical neuromodulation represents a promising alternative therapy. In this study, we investigate the potential of non-invasive temporal interference (TI) electrical stimulation to reduce epileptic biomarkers in patients with epilepsy by comparing intracerebral recordings obtained before, during, and after TI stimulation, and to those recorded during low and high kHz frequency (HF) sham stimulation. Thirteen patients with symptoms of mesiotemporal epilepsy (MTLE) and implanted with stereoelectroencephalography (sEEG) depth electrodes received TI stimulation with an amplitude modulation (AM) frequency of 130Hz (Δf), where the AM was delivered with lower frequency kHz carriers (1kHz + 1.13kHz), or higher frequency carriers (9kHz + 9.13kHz), targeting the hippocampus - a common epileptic focus and consequently stimulation target in MTLE. Our results show that TI stimulation yields a statistically significant decrease in interictal epileptiform discharges (IEDs) and pathological high-frequency oscillations (HFOs) - specifically Fast-ripples (FR) -, where the suppression is apparent in the hippocampal focus and propagation from the focus is reduced brain-wide. HF sham stimulation at 1kHz frequency also impacted the IED rate in the cortex, but without reaching the hippocampal focus. The HF sham effect diminished with increasing frequencies (2, 5, and 9kHz, respectively), specifically as a function of depth into the cortex. This depth dependence was not observed with the TI, independent of the employed carrier frequency (low or high kHz). Our findings underscore the possible application of TI in epilepsy, as an additional non-invasive brain stimulation tool, potentially offering opportunities to assess brain region responses to electrical neuromodulation before committing to a deep brain stimulation (DBS) or responsive neurostimulation (RNS) implant. Our results further demonstrate distinct biophysical differences between kHz and focal AM stimulation.
Collapse
|
2
|
Aykan S, Laguitton V, Villalon SM, Lagarde S, Makhalova J, Bartolomei F, Bénar CG. Working memory deficit in patients with focal epilepsy is associated with higher interictal theta connectivity. Clin Neurophysiol 2024; 170:49-57. [PMID: 39667168 DOI: 10.1016/j.clinph.2024.11.019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2024] [Revised: 11/23/2024] [Accepted: 11/29/2024] [Indexed: 12/14/2024]
Abstract
OBJECTIVE Interictal cognitive disturbances are frequent in patients with focal epilepsies and the links with alteration of resting state brain oscillations are not well known. Changes in theta oscillations, may contribute to cognitive impairment. This study aimed to investigate whether changes in theta activity are related to cognitive disturbances. METHODS Retrospective data of 23 patients with temporal/frontal lobe epilepsy were included. Theta connectivity, power and interictal spikes rate from five-minute interictal resting state stereoelectroencephalography datasets were computed. Cognitive performances were assessed by Wechsler Intelligence Scale (WAIS-IV) and Weschler Memory Scale (WMS-III). Linear regression was performed to evaluate effect of interictal activity and seizure related parameters on cognitive scores. RESULTS WAIS-IV working memory score in patients with epilepsy showed negative correlation with frontotemporal theta connectivity (F(1,17) = 5,239, p = 0,036, R2 = 0,200, β = -0,497). Moreover, theta connectivity was correlated with mesial temporal spike rate and theta power (F(2,17) = 10,967, p = 0,001, adj.R2 = 0,540). CONCLUSIONS Patients with focal epilepsy often encounter compromised cognitive functions, particularly notable in the domain of working memory. This impairment might be attributed to physiological mechanisms involving increased theta connectivity within the frontotemporal regions and interictal spiking. SIGNIFICANCE Our study highlights the relation between theta connectivity and working memory impairments in patients with focal epilepsy.
Collapse
Affiliation(s)
- Simge Aykan
- Ankara University Faculty of Medicine, Department of Physiology, Ankara, Turkiye; Aix Marseille Univ, INSERM, INS, Institut de Neurosciences des Systèmes, Marseille, France.
| | - Virginie Laguitton
- Aix Marseille Univ, INSERM, INS, Institut de Neurosciences des Systèmes, Marseille, France; APHM, Timone Hospital, Epileptology Department, Marseille, France
| | - Samuel Medina Villalon
- Aix Marseille Univ, INSERM, INS, Institut de Neurosciences des Systèmes, Marseille, France; APHM, Timone Hospital, Epileptology Department, Marseille, France
| | - Stanislas Lagarde
- Aix Marseille Univ, INSERM, INS, Institut de Neurosciences des Systèmes, Marseille, France; APHM, Timone Hospital, Epileptology Department, Marseille, France
| | - Julia Makhalova
- Aix Marseille Univ, INSERM, INS, Institut de Neurosciences des Systèmes, Marseille, France; APHM, Timone Hospital, Epileptology Department, Marseille, France
| | - Fabrice Bartolomei
- Aix Marseille Univ, INSERM, INS, Institut de Neurosciences des Systèmes, Marseille, France; APHM, Timone Hospital, Epileptology Department, Marseille, France
| | - Christian-George Bénar
- Aix Marseille Univ, INSERM, INS, Institut de Neurosciences des Systèmes, Marseille, France; APHM, Timone Hospital, Epileptology Department, Marseille, France
| |
Collapse
|
3
|
López-Madrona VJ, Trébuchon A, Bénar CG, Schön D, Morillon B. Different sustained and induced alpha oscillations emerge in the human auditory cortex during sound processing. Commun Biol 2024; 7:1570. [PMID: 39592826 PMCID: PMC11599602 DOI: 10.1038/s42003-024-07297-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2024] [Accepted: 11/19/2024] [Indexed: 11/28/2024] Open
Abstract
Alpha oscillations in the auditory cortex have been associated with attention and the suppression of irrelevant information. However, their anatomical organization and interaction with other neural processes remain unclear. Do alpha oscillations function as a local mechanism within most neural sources to regulate their internal excitation/inhibition balance, or do they belong to separated inhibitory sources gating information across the auditory network? To address this question, we acquired intracerebral electrophysiological recordings from epilepsy patients during rest and tones listening. Thanks to independent component analysis, we disentangled the different neural sources and labeled them as "oscillatory" if they presented strong alpha oscillations at rest, and/or "evoked" if they displayed a significant evoked response to the stimulation. Our results show that 1) sources are condition-specific and segregated in the auditory cortex, 2) both sources have a high-gamma response followed by an induced alpha suppression, 3) only oscillatory sources present a sustained alpha suppression during all the stimulation period. We hypothesize that there are two different alpha oscillations in the auditory cortex: an induced bottom-up response indicating a selective engagement of the primary cortex to process the stimuli, and a sustained suppression reflecting a general disinhibited state of the network to process sensory information.
Collapse
Affiliation(s)
- Víctor J López-Madrona
- Institute of Language, Communication, and the Brain, Aix-Marseille Univ, Marseille, France.
- Aix-Marseille Univ, INSERM, INS, Inst Neurosci Syst, Marseille, France.
| | - Agnès Trébuchon
- APHM, Timone Hospital, Epileptology and cerebral rhythmology, Marseille, 13005, France
- APHM, Timone Hospital, Functional and stereotactic neurosurgery, Marseille, 13005, France
| | - Christian G Bénar
- Aix-Marseille Univ, INSERM, INS, Inst Neurosci Syst, Marseille, France
| | - Daniele Schön
- Aix-Marseille Univ, INSERM, INS, Inst Neurosci Syst, Marseille, France
| | - Benjamin Morillon
- Aix-Marseille Univ, INSERM, INS, Inst Neurosci Syst, Marseille, France
| |
Collapse
|
4
|
Azilinon M, Wang HE, Makhalova J, Zaaraoui W, Ranjeva JP, Bartolomei F, Guye M, Jirsa V. Brain sodium MRI-derived priors support the estimation of epileptogenic zones using personalized model-based methods in epilepsy. Netw Neurosci 2024; 8:673-696. [PMID: 39355432 PMCID: PMC11340996 DOI: 10.1162/netn_a_00371] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2022] [Accepted: 03/06/2024] [Indexed: 10/03/2024] Open
Abstract
Patients presenting with drug-resistant epilepsy are eligible for surgery aiming to remove the regions involved in the production of seizure activities, the so-called epileptogenic zone network (EZN). Thus the accurate estimation of the EZN is crucial. Data-driven, personalized virtual brain models derived from patient-specific anatomical and functional data are used in Virtual Epileptic Patient (VEP) to estimate the EZN via optimization methods from Bayesian inference. The Bayesian inference approach used in previous VEP integrates priors, based on the features of stereotactic-electroencephalography (SEEG) seizures' recordings. Here, we propose new priors, based on quantitative 23Na-MRI. The 23Na-MRI data were acquired at 7T and provided several features characterizing the sodium signal decay. The hypothesis is that the sodium features are biomarkers of neuronal excitability related to the EZN and will add additional information to VEP estimation. In this paper, we first proposed the mapping from 23Na-MRI features to predict the EZN via a machine learning approach. Then, we exploited these predictions as priors in the VEP pipeline. The statistical results demonstrated that compared with the results from current VEP, the result from VEP based on 23Na-MRI prior has better balanced accuracy, and the similar weighted harmonic mean of the precision and recall.
Collapse
Affiliation(s)
- Mikhael Azilinon
- Aix Marseille Université, INSERM, Institut de Neurosciences des Systèmes (INS) UMR 1106, Marseille, France
- Aix Marseille University, CNRS, CRMBM, Marseille, France
- APHM, Timone University Hospital, CEMEREM, Marseille, France
| | - Huifang E Wang
- Aix Marseille Université, INSERM, Institut de Neurosciences des Systèmes (INS) UMR 1106, Marseille, France
| | - Julia Makhalova
- APHM, Timone University Hospital, CEMEREM, Marseille, France
- APHM, Epileptology and Clinical Neurophysiology Department, Timone Hospital, Marseille, France
| | - Wafaa Zaaraoui
- Aix Marseille University, CNRS, CRMBM, Marseille, France
- APHM, Timone University Hospital, CEMEREM, Marseille, France
| | - Jean-Philippe Ranjeva
- Aix Marseille University, CNRS, CRMBM, Marseille, France
- APHM, Timone University Hospital, CEMEREM, Marseille, France
| | - Fabrice Bartolomei
- Aix Marseille Université, INSERM, Institut de Neurosciences des Systèmes (INS) UMR 1106, Marseille, France
- APHM, Epileptology and Clinical Neurophysiology Department, Timone Hospital, Marseille, France
| | - Maxime Guye
- Aix Marseille University, CNRS, CRMBM, Marseille, France
- APHM, Timone University Hospital, CEMEREM, Marseille, France
| | - Viktor Jirsa
- Aix Marseille Université, INSERM, Institut de Neurosciences des Systèmes (INS) UMR 1106, Marseille, France
| |
Collapse
|
5
|
Evans JL, Bramlet MT, Davey C, Bethke E, Anderson AT, Huesmann G, Varatharajah Y, Maldonado A, Amos JR, Sutton BP. SEEG4D: a tool for 4D visualization of stereoelectroencephalography data. Front Neuroinform 2024; 18:1465231. [PMID: 39290351 PMCID: PMC11405301 DOI: 10.3389/fninf.2024.1465231] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2024] [Accepted: 08/21/2024] [Indexed: 09/19/2024] Open
Abstract
Epilepsy is a prevalent and serious neurological condition which impacts millions of people worldwide. Stereoelectroencephalography (sEEG) is used in cases of drug resistant epilepsy to aid in surgical resection planning due to its high spatial resolution and ability to visualize seizure onset zones. For accurate localization of the seizure focus, sEEG studies combine pre-implantation magnetic resonance imaging, post-implant computed tomography to visualize electrodes, and temporally recorded sEEG electrophysiological data. Many tools exist to assist in merging multimodal spatial information; however, few allow for an integrated spatiotemporal view of the electrical activity. In the current work, we present SEEG4D, an automated tool to merge spatial and temporal data into a complete, four-dimensional virtual reality (VR) object with temporal electrophysiology that enables the simultaneous viewing of anatomy and seizure activity for seizure localization and presurgical planning. We developed an automated, containerized pipeline to segment tissues and electrode contacts. Contacts are aligned with electrical activity and then animated based on relative power. SEEG4D generates models which can be loaded into VR platforms for viewing and planning with the surgical team. Automated contact segmentation locations are within 1 mm of trained raters and models generated show signal propagation along electrodes. Critically, spatial-temporal information communicated through our models in a VR space have potential to enhance sEEG pre-surgical planning.
Collapse
Affiliation(s)
- James L Evans
- Department of Bioengineering, University of Illinois Urbana-Champaign, Urbana, IL, United States
- Beckman Institute for Advanced Science and Technology, University of Illinois Urbana-Champaign, Urbana, IL, United States
| | - Matthew T Bramlet
- University of Illinois College of Medicine, Peoria, IL, United States
- Jump Trading Simulation and Education Center, Peoria, IL, United States
| | - Connor Davey
- Jump Trading Simulation and Education Center, Peoria, IL, United States
| | - Eliot Bethke
- Department of Bioengineering, University of Illinois Urbana-Champaign, Urbana, IL, United States
| | - Aaron T Anderson
- Beckman Institute for Advanced Science and Technology, University of Illinois Urbana-Champaign, Urbana, IL, United States
- Department of Neurology, Carle Foundation Hospital, Urbana, IL, United States
| | - Graham Huesmann
- Beckman Institute for Advanced Science and Technology, University of Illinois Urbana-Champaign, Urbana, IL, United States
- Department of Neurology, Carle Foundation Hospital, Urbana, IL, United States
- Department of Molecular and Integrative Physiology, University of Illinois Urbana-Champaign, Urbana, IL, United States
- Carle Illinois College of Medicine, University of Illinois Urbana-Champaign, Urbana, IL, United States
| | - Yogatheesan Varatharajah
- Department of Computer Science and Engineering, University of Minnesota, Minneapolis, MN, United States
| | - Andres Maldonado
- Department of Neurosurgery, OSF Healthcare, Peoria, IL, United States
| | - Jennifer R Amos
- Department of Bioengineering, University of Illinois Urbana-Champaign, Urbana, IL, United States
- Carle Illinois College of Medicine, University of Illinois Urbana-Champaign, Urbana, IL, United States
| | - Bradley P Sutton
- Department of Bioengineering, University of Illinois Urbana-Champaign, Urbana, IL, United States
- Beckman Institute for Advanced Science and Technology, University of Illinois Urbana-Champaign, Urbana, IL, United States
- Carle Illinois College of Medicine, University of Illinois Urbana-Champaign, Urbana, IL, United States
| |
Collapse
|
6
|
Lévi-Strauss J, Makhalova J, Medina Villalon S, Carron R, Bénar CG, Bartolomei F. Transient alteration of Awareness triggered by direct electrical stimulation of the brain. Brain Stimul 2024; 17:1024-1033. [PMID: 39218350 DOI: 10.1016/j.brs.2024.08.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2024] [Revised: 07/25/2024] [Accepted: 08/29/2024] [Indexed: 09/04/2024] Open
Abstract
BACKGROUND Awareness is a state of consciousness that enables a subject to interact with the environment. Transient alteration of awareness (AA) is a disabling sign of many types of epileptic seizures. The brain mechanisms of awareness and its alteration are not well known. OBJECTIVE/HYPOTHESIS Transient and isolated AA induced by electrical brain stimulation during a stereoelectroencephalography (SEEG) recording represents an ideal model for studying the associated modifications of functional connectivity and locating the hubs of awareness networks. METHODS We investigated the SEEG signals-based brain functional connectivity (FC) changes vs background occurring during AA triggered by three thalamic and two insular stimulations in three patients explored by SEEG in the frame of presurgical evaluation for focal drug-resistant epilepsy. The results were compared to the stimulations of the same sites that did not induce clinical changes (negative stimulations). RESULTS We observed decreased node strength in the pulvinar, insula, and parietal associative cortices during the thalamic and insular stimulations that induced AA. The link strengths characterizing functional coupling between the thalamus and the insular, prefrontal, temporal, or parietal associative cortices were also decreased. In contrast, there was an increased synchronization between the precuneus and the temporal lateral cortex. These FC changes were absent during the negative stimulations. CONCLUSION Our study highlights the role of the pulvinar, insular, and parietal hubs in maintaining the awareness networks and paves the way for invasive or non-invasive neuromodulation protocols to reduce AA manifestations during epileptic seizures.
Collapse
Affiliation(s)
- Julie Lévi-Strauss
- APHM, Timone Hospital, Epileptology and Cerebral Rhythmology, Marseille, France
| | - Julia Makhalova
- APHM, Timone Hospital, Epileptology and Cerebral Rhythmology, Marseille, France; Aix Marseille Univ, INSERM, INS, Inst Neurosci Syst, Marseille, France; Aix Marseille Univ, CNRS, CRMBM, Marseille, France
| | - Samuel Medina Villalon
- APHM, Timone Hospital, Epileptology and Cerebral Rhythmology, Marseille, France; Aix Marseille Univ, INSERM, INS, Inst Neurosci Syst, Marseille, France
| | - Romain Carron
- APHM, Timone Hospital, Functional, and Stereotactic Neurosurgery, Marseille, France
| | - Christian G Bénar
- Aix Marseille Univ, INSERM, INS, Inst Neurosci Syst, Marseille, France
| | - Fabrice Bartolomei
- APHM, Timone Hospital, Epileptology and Cerebral Rhythmology, Marseille, France; Aix Marseille Univ, INSERM, INS, Inst Neurosci Syst, Marseille, France.
| |
Collapse
|
7
|
Köksal-Ersöz E, Makhalova J, Yochum M, Bénar CG, Guye M, Bartolomei F, Wendling F, Merlet I. Whole-brain simulation of interictal epileptic discharges for patient-specific interpretation of interictal SEEG data. Neurophysiol Clin 2024; 54:103005. [PMID: 39029213 DOI: 10.1016/j.neucli.2024.103005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2024] [Revised: 07/08/2024] [Accepted: 07/09/2024] [Indexed: 07/21/2024] Open
Abstract
In patients with refractory epilepsy, the clinical interpretation of stereoelectroencephalographic (SEEG) signals is crucial to delineate the epileptogenic network that should be targeted by surgery. We propose a pipeline of patient-specific computational modeling of interictal epileptic activity to improve the definition of regions of interest. Comparison between the computationally defined regions of interest and the resected region confirmed the efficiency of the pipeline. This result suggests that computational modeling can be used to reconstruct signals and aid clinical interpretation.
Collapse
Affiliation(s)
| | - Julia Makhalova
- Assistance Publique-Hôpitaux de Marseille, Service d'Épileptologie et de Rythmologie Cérébrale, Hôpital La Timone, Marseille, France; Aix Marseille Univ, CNRS, CRMBM UMR 7339, Marseille, France
| | - Maxime Yochum
- Univ Rennes, INSERM, LTSI - UMR 1099, Rennes, France
| | - Christian-G Bénar
- Aix Marseille Univ, CNRS, CRMBM UMR 7339, Marseille, France; Institut de Neurosciences des Systèmes (INS, UMR 1106), Aix Marseille Université, INSERM, Marseille, France
| | - Maxime Guye
- APHM, Hôpital de la Timone, CEMEREM, Marseille, France
| | - Fabrice Bartolomei
- Assistance Publique-Hôpitaux de Marseille, Service d'Épileptologie et de Rythmologie Cérébrale, Hôpital La Timone, Marseille, France; Institut de Neurosciences des Systèmes (INS, UMR 1106), Aix Marseille Université, INSERM, Marseille, France
| | | | | |
Collapse
|
8
|
Pigorini A, Avanzini P, Barborica A, Bénar CG, David O, Farisco M, Keller CJ, Manfridi A, Mikulan E, Paulk AC, Roehri N, Subramanian A, Vulliémoz S, Zelmann R. Simultaneous invasive and non-invasive recordings in humans: A novel Rosetta stone for deciphering brain activity. J Neurosci Methods 2024; 408:110160. [PMID: 38734149 DOI: 10.1016/j.jneumeth.2024.110160] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Revised: 04/10/2024] [Accepted: 05/01/2024] [Indexed: 05/13/2024]
Abstract
Simultaneous noninvasive and invasive electrophysiological recordings provide a unique opportunity to achieve a comprehensive understanding of human brain activity, much like a Rosetta stone for human neuroscience. In this review we focus on the increasingly-used powerful combination of intracranial electroencephalography (iEEG) with scalp electroencephalography (EEG) or magnetoencephalography (MEG). We first provide practical insight on how to achieve these technically challenging recordings. We then provide examples from clinical research on how simultaneous recordings are advancing our understanding of epilepsy. This is followed by the illustration of how human neuroscience and methodological advances could benefit from these simultaneous recordings. We conclude with a call for open data sharing and collaboration, while ensuring neuroethical approaches and argue that only with a true collaborative approach the promises of simultaneous recordings will be fulfilled.
Collapse
Affiliation(s)
- Andrea Pigorini
- Department of Biomedical, Surgical and Dental Sciences, Università degli Studi di Milano, Milan, Italy; UOC Maxillo-facial Surgery and dentistry, Fondazione IRCCS Cà Granda, Ospedale Maggiore Policlinico, Milan, Italy.
| | - Pietro Avanzini
- Institute of Neuroscience, Consiglio Nazionale delle Ricerche, Parma, Italy
| | | | - Christian-G Bénar
- Aix Marseille Univ, Inserm, U1106, INS, Institut de Neurosciences des Systèmes, Marseille, France
| | - Olivier David
- Aix Marseille Univ, Inserm, U1106, INS, Institut de Neurosciences des Systèmes, Marseille, France
| | - Michele Farisco
- Centre for Research Ethics and Bioethics, Department of Public Health and Caring Sciences, Uppsala University, P.O. Box 256, Uppsala, SE 751 05, Sweden; Science and Society Unit Biogem, Biology and Molecular Genetics Institute, Via Camporeale snc, Ariano Irpino, AV 83031, Italy
| | - Corey J Keller
- Department of Psychiatry & Behavioral Sciences, Stanford University Medical Center, Stanford, CA 94305, USA; Wu Tsai Neurosciences Institute, Stanford University Medical Center, Stanford, CA 94305, USA; Veterans Affairs Palo Alto Healthcare System, and the Sierra Pacific Mental Illness, Research, Education, and Clinical Center (MIRECC), Palo Alto, CA 94394, USA
| | - Alfredo Manfridi
- Department of Pathophysiology and Transplantation, Università degli Studi di Milano, Milan, Italy
| | - Ezequiel Mikulan
- Department of Health Sciences, Università degli Studi di Milano, Milan, Italy
| | - Angelique C Paulk
- Department of Neurology and Center for Neurotechnology and Neurorecovery, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| | - Nicolas Roehri
- EEG and Epilepsy Unit, Dpt of Clinical Neurosciences, Geneva University Hospitals and University of Geneva, Switzerland
| | - Ajay Subramanian
- Department of Psychiatry & Behavioral Sciences, Stanford University Medical Center, Stanford, CA 94305, USA; Wu Tsai Neurosciences Institute, Stanford University Medical Center, Stanford, CA 94305, USA; Veterans Affairs Palo Alto Healthcare System, and the Sierra Pacific Mental Illness, Research, Education, and Clinical Center (MIRECC), Palo Alto, CA 94394, USA
| | - Serge Vulliémoz
- EEG and Epilepsy Unit, Dpt of Clinical Neurosciences, Geneva University Hospitals and University of Geneva, Switzerland
| | - Rina Zelmann
- Department of Neurology and Center for Neurotechnology and Neurorecovery, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
9
|
te Rietmolen N, Mercier MR, Trébuchon A, Morillon B, Schön D. Speech and music recruit frequency-specific distributed and overlapping cortical networks. eLife 2024; 13:RP94509. [PMID: 39038076 PMCID: PMC11262799 DOI: 10.7554/elife.94509] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/24/2024] Open
Abstract
To what extent does speech and music processing rely on domain-specific and domain-general neural networks? Using whole-brain intracranial EEG recordings in 18 epilepsy patients listening to natural, continuous speech or music, we investigated the presence of frequency-specific and network-level brain activity. We combined it with a statistical approach in which a clear operational distinction is made between shared, preferred, and domain-selective neural responses. We show that the majority of focal and network-level neural activity is shared between speech and music processing. Our data also reveal an absence of anatomical regional selectivity. Instead, domain-selective neural responses are restricted to distributed and frequency-specific coherent oscillations, typical of spectral fingerprints. Our work highlights the importance of considering natural stimuli and brain dynamics in their full complexity to map cognitive and brain functions.
Collapse
Affiliation(s)
- Noémie te Rietmolen
- Institute for Language, Communication, and the Brain, Aix-Marseille UniversityMarseilleFrance
- Aix Marseille Université, INSERM, INS, Institut de Neurosciences des SystèmesMarseilleFrance
| | - Manuel R Mercier
- Aix Marseille Université, INSERM, INS, Institut de Neurosciences des SystèmesMarseilleFrance
| | - Agnès Trébuchon
- Institute for Language, Communication, and the Brain, Aix-Marseille UniversityMarseilleFrance
- Aix Marseille Université, INSERM, INS, Institut de Neurosciences des SystèmesMarseilleFrance
- APHM, Hôpital de la Timone, Service de Neurophysiologie CliniqueMarseilleFrance
| | - Benjamin Morillon
- Institute for Language, Communication, and the Brain, Aix-Marseille UniversityMarseilleFrance
- Aix Marseille Université, INSERM, INS, Institut de Neurosciences des SystèmesMarseilleFrance
| | - Daniele Schön
- Institute for Language, Communication, and the Brain, Aix-Marseille UniversityMarseilleFrance
- Aix Marseille Université, INSERM, INS, Institut de Neurosciences des SystèmesMarseilleFrance
| |
Collapse
|
10
|
Bregianni M, Pizzo F, Lagarde S, Makhalova J, Trebuchon A, Carron R, Soncin L, Arthuis M, Bartolomei F. Psychiatric complications following SEEG-guided radiofrequency thermocoagulations in patients with drug-resistant epilepsy. Epilepsy Behav 2024; 156:109806. [PMID: 38677102 DOI: 10.1016/j.yebeh.2024.109806] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Revised: 04/20/2024] [Accepted: 04/21/2024] [Indexed: 04/29/2024]
Abstract
SEEG-guided radiofrequency thermocoagulation (RF-TC) in the epileptogenic regions is a therapeutic option for patients with drug-resistant focal epilepsy who may have or not indication for epilepsy surgery. The most common adverse events of RF-TC are seizures, headaches, somatic pain, and sensory-motor deficits. If RF-TC could lead to psychiatric complications is unknown. In the present study, seven out of 164 patients (4.2 %) experienced psychiatric decompensation with or without memory deterioration after RF-TC of bilateral or unilateral amygdala and hippocampus. The appearance of symptoms was either acute, subacute, or chronic and the symptoms were either transient or lasted for several months. Common features among these patients were female sex, mesial temporal epilepsy, and a pre-existing history of psychological distress and memory dysfunction. Our study highlights the possibility of neuropsychiatric deterioration in specific patients following SEEG-guided RF-TC, despite its rarity.
Collapse
Affiliation(s)
- Marianna Bregianni
- APHM, Timone Hospital, Epileptology and Cerebral Rhythmology Department, Marseille, France(1)
| | - Francesca Pizzo
- APHM, Timone Hospital, Epileptology and Cerebral Rhythmology Department, Marseille, France(1); Aix Marseille University, INSERM, INS, Systems Neuroscience Institute, Marseille, France
| | - Stanislas Lagarde
- APHM, Timone Hospital, Epileptology and Cerebral Rhythmology Department, Marseille, France(1); Aix Marseille University, INSERM, INS, Systems Neuroscience Institute, Marseille, France
| | - Julia Makhalova
- APHM, Timone Hospital, Epileptology and Cerebral Rhythmology Department, Marseille, France(1); Aix Marseille University, INSERM, INS, Systems Neuroscience Institute, Marseille, France
| | - Agnes Trebuchon
- APHM, Timone Hospital, Epileptology and Cerebral Rhythmology Department, Marseille, France(1); Aix Marseille University, INSERM, INS, Systems Neuroscience Institute, Marseille, France
| | - Romain Carron
- APHM, Timone Hospital, Epileptology and Cerebral Rhythmology Department, Marseille, France(1); Aix Marseille University, INSERM, INS, Systems Neuroscience Institute, Marseille, France
| | - Lisa Soncin
- Aix Marseille University, INSERM, INS, Systems Neuroscience Institute, Marseille, France
| | - Marie Arthuis
- APHM, Timone Hospital, Epileptology and Cerebral Rhythmology Department, Marseille, France(1)
| | - Fabrice Bartolomei
- APHM, Timone Hospital, Epileptology and Cerebral Rhythmology Department, Marseille, France(1); Aix Marseille University, INSERM, INS, Systems Neuroscience Institute, Marseille, France.
| |
Collapse
|
11
|
Lagarde S, Modolo J, Yochum M, Carvallo A, Ballabeni A, Scavarda D, Carron R, Villeneuve N, Bartolomei F, Wendling F. Modification of brain conductivity in human focal epilepsy: A model-based estimation from stereoelectroencephalography. Epilepsia 2024; 65:1744-1755. [PMID: 38491955 DOI: 10.1111/epi.17957] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Revised: 03/04/2024] [Accepted: 03/05/2024] [Indexed: 03/18/2024]
Abstract
OBJECTIVE We have developed a novel method for estimating brain tissue electrical conductivity using low-intensity pulse stereoelectroencephalography (SEEG) stimulation coupled with biophysical modeling. We evaluated the hypothesis that brain conductivity is correlated with the degree of epileptogenicity in patients with drug-resistant focal epilepsy. METHODS We used bipolar low-intensity biphasic pulse stimulation (.2 mA) followed by a postprocessing pipeline for estimating brain conductivity. This processing is based on biophysical modeling of the electrical potential induced in brain tissue between the stimulated contacts in response to pulse stimulation. We estimated the degree of epileptogenicity using a semi-automatic method quantifying the dynamic of fast discharge at seizure onset: the epileptogenicity index (EI). We also investigated how the location of stimulation within specific anatomical brain regions or within lesional tissue impacts brain conductivity. RESULTS We performed 1034 stimulations of 511 bipolar channels in 16 patients. We found that brain conductivity was lower in the epileptogenic zone (EZ; unpaired median difference = .064, p < .001) and inversely correlated with the epileptogenic index value (p < .001, Spearman rho = -.32). Conductivity values were also influenced by anatomical site, location within lesion, and delay between SEEG electrode implantation and stimulation, and had significant interpatient variability. Mixed model multivariate analysis showed that conductivity is significantly associated with EI (F = 13.45, p < .001), anatomical regions (F = 5.586, p < .001), delay since implantation (F = 14.71, p = .003), and age at SEEG (F = 6.591, p = .027), but not with the type of lesion (F = .372, p = .773) or the delay since last seizure (F = 1.592, p = .235). SIGNIFICANCE We provide a novel model-based method for estimating brain conductivity from SEEG low-intensity pulse stimulations. The brain tissue conductivity is lower in EZ as compared to non-EZ. Conductivity also varies significantly across anatomical brain regions. Involved pathophysiological processes may include changes in the extracellular space (especially volume or tortuosity) in epileptic tissue.
Collapse
Affiliation(s)
- Stanislas Lagarde
- Epileptology and Cerebral Rhythmology Department (member of the ERN EpiCARE Network), APHM, Timone Hospital, Marseille, France
- INS, Institut de Neurosciences des Systèmes, Aix Marseille University, INSERM, Marseille, France
- University Hospitals (HUG) and University of Geneva (UNIGE), Geneva, Switzerland
| | - Julien Modolo
- LTSI - U1099, University of Rennes, INSERM, Rennes, France
| | - Maxime Yochum
- LTSI - U1099, University of Rennes, INSERM, Rennes, France
| | | | - Alice Ballabeni
- Epileptology and Cerebral Rhythmology Department (member of the ERN EpiCARE Network), APHM, Timone Hospital, Marseille, France
- University of Modena and Reggio-Emilia, Modena, Italy
| | - Didier Scavarda
- INS, Institut de Neurosciences des Systèmes, Aix Marseille University, INSERM, Marseille, France
- Pediatric Neurosurgery Department, APHM, Timone Hospital, Marseille, France
| | - Romain Carron
- INS, Institut de Neurosciences des Systèmes, Aix Marseille University, INSERM, Marseille, France
- Stereotactic and Functional Neurosurgery Department, APHM, Timone Hospital, Marseille, France
| | | | - Fabrice Bartolomei
- Epileptology and Cerebral Rhythmology Department (member of the ERN EpiCARE Network), APHM, Timone Hospital, Marseille, France
- INS, Institut de Neurosciences des Systèmes, Aix Marseille University, INSERM, Marseille, France
| | | |
Collapse
|
12
|
Bolzan A, Benoit J, Pizzo F, Makhalova J, Villeneuve N, Carron R, Scavarda D, Bartolomei F, Lagarde S. Correspondence between scalp-EEG and stereoelectroencephalography seizure-onset patterns in patients with MRI-negative drug-resistant focal epilepsy. Epilepsia Open 2024; 9:568-581. [PMID: 38148028 PMCID: PMC10984298 DOI: 10.1002/epi4.12886] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Revised: 11/28/2023] [Accepted: 12/14/2023] [Indexed: 12/28/2023] Open
Abstract
OBJECTIVE Our objective was to evaluate the relationship between scalp-EEG and stereoelectroencephalography (SEEG) seizure-onset patterns (SOP) in patients with MRI-negative drug-resistant focal epilepsy. METHODS We analyzed retrospectively 41 patients without visible lesion on brain MRI who underwent video-EEG followed by SEEG. We defined five types of SOPs on scalp-EEG and eight types on SEEG. We examined how various clinical variables affected scalp-EEG SOPs. RESULTS The most prevalent scalp SOPs were rhythmic sinusoidal activity (56.8%), repetitive epileptiform discharges (22.7%), and paroxysmal fast activity (15.9%). The presence of paroxysmal fast activity on scalp-EEG was always seen without delay from clinical onset and correlated with the presence of low-voltage fast activity in SEEG (sensitivity = 22.6%, specificity = 100%). The main factor explaining the discrepancy between the scalp and SEEG SOPs was the delay between clinical and scalp-EEG onset. There was a correlation between the scalp and SEEG SOPs when the scalp onset was simultaneous with the clinical onset (p = 0.026). A significant delay between clinical and scalp discharge onset was observed in 25% of patients and featured always with a rhythmic sinusoidal activity on scalp, corresponding to similar morphology of the discharge on SEEG. The presence of repetitive epileptiform discharges on scalp was associated with an underlying focal cortical dysplasia (sensitivity = 30%, specificity = 90%). There was no significant association between the scalp SOP and the epileptogenic zone location (deep or superficial), or surgical outcome. SIGNIFICANCE In patients with MRI-negative focal epilepsy, scalp SOP could suggest the SEEG SOP and some etiology (focal cortical dysplasia) but has no correlation with surgical prognosis. Scalp SOP correlates with the SEEG SOP in cases of simultaneous EEG and clinical onset; otherwise, scalp SOP reflects the propagation of the SEEG discharge. PLAIN LANGUAGE SUMMARY We looked at the correspondence between the electrical activity recorded during the start of focal seizure using scalp and intracerebral electrodes in patients with no visible lesion on MRI. If there is a fast activity on scalp, it reflects similar activity inside the brain. We found a good correspondence between scalp and intracerebral electrical activity for cases without significant delay between clinical and scalp electrical onset (seen in 75% of the cases we studied). Visualizing repetitive epileptic activity on scalp could suggest a particular cause of the epilepsy: a subtype of brain malformation called focal cortical dysplasia.
Collapse
Affiliation(s)
- Anna Bolzan
- APHM, Timone Hospital, Epileptology and Cerebral RhythmologyMarseilleFrance
| | - Jeanne Benoit
- CHU de Nice, Epileptology DepartmentUniversité Côte d'Azur, UMR2CA (URRIS)NiceFrance
| | - Francesca Pizzo
- APHM, Timone Hospital, Epileptology and Cerebral RhythmologyMarseilleFrance
- Aix Marseille Univ, INSERM, INS, Inst Neurosci SystMarseilleFrance
| | - Julia Makhalova
- APHM, Timone Hospital, Epileptology and Cerebral RhythmologyMarseilleFrance
- Aix Marseille Univ, INSERM, INS, Inst Neurosci SystMarseilleFrance
- APHM, Timone Hospital, CEMEREMMarseilleFrance
| | | | - Romain Carron
- Aix Marseille Univ, INSERM, INS, Inst Neurosci SystMarseilleFrance
- APHM, Timone Hospital, Stereotactic and Functional Neurosurgery, Gamma UnitMarseilleFrance
| | - Didier Scavarda
- Aix Marseille Univ, INSERM, INS, Inst Neurosci SystMarseilleFrance
- APHM, Timone Hospital, Paediatric NeurosurgeryMarseilleFrance
| | - Fabrice Bartolomei
- APHM, Timone Hospital, Epileptology and Cerebral RhythmologyMarseilleFrance
- Aix Marseille Univ, INSERM, INS, Inst Neurosci SystMarseilleFrance
| | - Stanislas Lagarde
- APHM, Timone Hospital, Epileptology and Cerebral RhythmologyMarseilleFrance
- Aix Marseille Univ, INSERM, INS, Inst Neurosci SystMarseilleFrance
- University Hospitals of Geneva (HUG), University of Geneva (UNIGE)GenevaSwitzerland
| |
Collapse
|
13
|
Marx B, Medina-Villalon S, Bartolomei F, Lagarde S. How Can a Focal Seizure Lead to a Dacrystic Behavior? A Case Analyzed with Functional Connectivity in Stereoelectroencephalography. Clin EEG Neurosci 2024; 55:272-277. [PMID: 37340756 DOI: 10.1177/15500594231182808] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 06/22/2023]
Abstract
We present a case of a patient with focal non-motor emotional seizures with dacrystic expression in the context of drug-resistant magnetic resonance imaging negative epilepsy. The pre-surgical evaluation suggested a hypothesis of a right fronto-temporal epileptogenic zone. Stereoelectroencephalography recorded dacrystic seizures arising from the right anterior operculo-insular (pars orbitalis) area with secondary propagation to temporal and parietal cortices during the dacrystic behavior. We analyzed functional connectivity during the ictal dacrystic behavior and found an increase of the functional connectivity within a large right fronto-temporo-insular network, broadly similar to the "emotional excitatory" network. It suggests that focal seizure, potentially, from various origins but leading to disorganization of these physiological networks may generate dacrystic behavior.
Collapse
Affiliation(s)
- Barbara Marx
- APHM, Timone Hospital, Epileptology Department, Member of the ERN EpiCARE, Marseille, France
| | - Samuel Medina-Villalon
- APHM, Timone Hospital, Epileptology Department, Member of the ERN EpiCARE, Marseille, France
- Aix Marseille Univ, INSERM, INS, Inst Neurosci Syst, Marseille, France
| | - Fabrice Bartolomei
- APHM, Timone Hospital, Epileptology Department, Member of the ERN EpiCARE, Marseille, France
- Aix Marseille Univ, INSERM, INS, Inst Neurosci Syst, Marseille, France
| | - Stanislas Lagarde
- APHM, Timone Hospital, Epileptology Department, Member of the ERN EpiCARE, Marseille, France
- Aix Marseille Univ, INSERM, INS, Inst Neurosci Syst, Marseille, France
| |
Collapse
|
14
|
Medina Villalon S, Makhalova J, López-Madrona VJ, Garnier E, Badier JM, Bartolomei F, Bénar CG. Combining independent component analysis and source localization for improving spatial sampling of stereoelectroencephalography in epilepsy. Sci Rep 2024; 14:4071. [PMID: 38374380 PMCID: PMC10876572 DOI: 10.1038/s41598-024-54359-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2023] [Accepted: 02/12/2024] [Indexed: 02/21/2024] Open
Abstract
Stereoelectroencephalography is a powerful intracerebral EEG recording method for the presurgical evaluation of epilepsy. It consists in implanting depth electrodes in the patient's brain to record electrical activity and map the epileptogenic zone, which should be resected to render the patient seizure-free. Stereoelectroencephalography has high spatial accuracy and signal-to-noise ratio but remains limited in the coverage of the explored brain regions. Thus, the implantation might provide a suboptimal sampling of epileptogenic regions. We investigate the potential of improving a suboptimal stereoelectroencephalography recording by performing source localization on stereoelectroencephalography signals. We propose combining independent component analysis, connectivity measures to identify components of interest, and distributed source modelling. This approach was tested on two patients with two implantations each, the first failing to characterize the epileptogenic zone and the second giving a better diagnosis. We demonstrate that ictal and interictal source localization performed on the first stereoelectroencephalography recordings matches the findings of the second stereo-EEG exploration. Our findings suggest that independent component analysis followed by source localization on the topographies of interest is a promising method for retrieving the epileptogenic zone in case of suboptimal implantation.
Collapse
Affiliation(s)
- Samuel Medina Villalon
- APHM, Timone Hospital, Epileptology and Cerebral Rhythmology, Marseille, France
- Aix Marseille Univ, INSERM, INS, Inst Neurosci Syst, Marseille, France
| | - Julia Makhalova
- APHM, Timone Hospital, Epileptology and Cerebral Rhythmology, Marseille, France
- Aix Marseille Univ, INSERM, INS, Inst Neurosci Syst, Marseille, France
| | | | - Elodie Garnier
- Aix Marseille Univ, INSERM, INS, Inst Neurosci Syst, Marseille, France
| | | | - Fabrice Bartolomei
- APHM, Timone Hospital, Epileptology and Cerebral Rhythmology, Marseille, France
- Aix Marseille Univ, INSERM, INS, Inst Neurosci Syst, Marseille, France
| | - Christian G Bénar
- Aix Marseille Univ, INSERM, INS, Inst Neurosci Syst, Marseille, France.
| |
Collapse
|
15
|
Bratu IF, Makhalova J, Garnier E, Villalon SM, Jegou A, Bonini F, Lagarde S, Pizzo F, Trébuchon A, Scavarda D, Carron R, Bénar C, Bartolomei F. Permutation entropy-derived parameters to estimate the epileptogenic zone network. Epilepsia 2024; 65:389-401. [PMID: 38041564 DOI: 10.1111/epi.17849] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2023] [Revised: 11/30/2023] [Accepted: 11/30/2023] [Indexed: 12/03/2023]
Abstract
OBJECTIVE Quantification of the epileptogenic zone network (EZN) most frequently implies analysis of seizure onset. However, important information can also be obtained from the postictal period, characterized by prominent changes in the EZN. We used permutation entropy (PE), a measure of signal complexity, to analyze the peri-ictal stereoelectroencephalography (SEEG) signal changes with emphasis on the postictal state. We sought to determine the best PE-derived parameter (PEDP) for identifying the EZN. METHODS Several PEDPs were computed retrospectively on SEEG-recorded seizures of 86 patients operated on for drug-resistant epilepsy: mean baseline preictal entropy, minimum ictal entropy, maximum postictal entropy, the ratio between the maximum postictal and the minimum ictal entropy, and the ratio between the maximum postictal and the baseline preictal entropy. The performance of each biomarker was assessed by comparing the identified epileptogenic contacts or brain regions against the EZN defined by clinical analysis incorporating the Epileptogenicity Index and the connectivity epileptogenicity index methods (EZNc), using the receiver-operating characteristic and precision-recall. RESULTS The ratio between the maximum postictal and the minimum ictal entropy (defined as the Permutation Entropy Index [PEI]) proved to be the best-performing PEDP to identify the EZNC . It demonstrated the highest area under the curve (AUC) and F1 score at the contact level (AUC 0.72; F1 0.39) and at the region level (AUC 0.78; F1 0.47). PEI values gradually decreased between the EZN, the propagation network, and the non-involved regions. PEI showed higher performance in patients with slow seizure-onset patterns than in those with fast seizure-onset patterns. The percentage of resected epileptogenic regions defined by PEI was significantly correlated with surgical outcome. SIGNIFICANCE PEI is a promising tool to improve the delineation of the EZN. PEI combines ease and robustness in a routine clinical setting with high sensitivity for seizures without fast activity at seizure onset.
Collapse
Affiliation(s)
- Ionuț-Flavius Bratu
- APHM, Timone Hospital, Epileptology and Cerebral Rhythmology, Marseille, France
- Aix Marseille Univ, INSERM, INS, Inst Neurosci Syst, Marseille, France
| | - Julia Makhalova
- APHM, Timone Hospital, Epileptology and Cerebral Rhythmology, Marseille, France
- Aix Marseille Univ, INSERM, INS, Inst Neurosci Syst, Marseille, France
- APHM, Timone Hospital, CEMEREM, Marseille, France
| | - Elodie Garnier
- Aix Marseille Univ, INSERM, INS, Inst Neurosci Syst, Marseille, France
| | - Samuel Medina Villalon
- APHM, Timone Hospital, Epileptology and Cerebral Rhythmology, Marseille, France
- Aix Marseille Univ, INSERM, INS, Inst Neurosci Syst, Marseille, France
| | - Aude Jegou
- Aix Marseille Univ, INSERM, INS, Inst Neurosci Syst, Marseille, France
| | - Francesca Bonini
- APHM, Timone Hospital, Epileptology and Cerebral Rhythmology, Marseille, France
- Aix Marseille Univ, INSERM, INS, Inst Neurosci Syst, Marseille, France
| | - Stanislas Lagarde
- APHM, Timone Hospital, Epileptology and Cerebral Rhythmology, Marseille, France
- Aix Marseille Univ, INSERM, INS, Inst Neurosci Syst, Marseille, France
| | - Francesca Pizzo
- APHM, Timone Hospital, Epileptology and Cerebral Rhythmology, Marseille, France
- Aix Marseille Univ, INSERM, INS, Inst Neurosci Syst, Marseille, France
| | - Agnès Trébuchon
- APHM, Timone Hospital, Epileptology and Cerebral Rhythmology, Marseille, France
- Aix Marseille Univ, INSERM, INS, Inst Neurosci Syst, Marseille, France
| | - Didier Scavarda
- APHM, Timone Hospital, Epileptology and Cerebral Rhythmology, Marseille, France
- APHM Paediatric Neurosurgery Department, Marseille, France
| | - Romain Carron
- APHM, Timone Hospital, Epileptology and Cerebral Rhythmology, Marseille, France
- APHM Functional Neurosurgery Department, Marseille, France
| | - Christian Bénar
- Aix Marseille Univ, INSERM, INS, Inst Neurosci Syst, Marseille, France
| | - Fabrice Bartolomei
- APHM, Timone Hospital, Epileptology and Cerebral Rhythmology, Marseille, France
- Aix Marseille Univ, INSERM, INS, Inst Neurosci Syst, Marseille, France
| |
Collapse
|
16
|
Filipescu C, Landré E, Gavaret M, Zanello M, Pallud J. Bilateral periventricular nodular heterotopia: Can SEEG-guided radiofrequency thermocoagulations cure the epilepsy? Epileptic Disord 2024; 26:158-160. [PMID: 37877673 DOI: 10.1002/epd2.20171] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2023] [Revised: 10/06/2023] [Accepted: 10/10/2023] [Indexed: 10/26/2023]
Affiliation(s)
- Cristina Filipescu
- Neurophysiology and Epileptology Department, GHU Paris Psychiatry and Neurosciences, Sainte-Anne Hospital, Paris, France
| | - Elisabeth Landré
- Surgical Epileptology Unit, Neurosurgery Department, GHU Paris Psychiatry and Neurosciences, Sainte-Anne Hospital, Paris, France
| | - Martine Gavaret
- Neurophysiology and Epileptology Department, GHU Paris Psychiatry and Neurosciences, Sainte-Anne Hospital, Paris, France
- Paris-Cité University, Paris, France
| | - Marc Zanello
- Surgical Epileptology Unit, Neurosurgery Department, GHU Paris Psychiatry and Neurosciences, Sainte-Anne Hospital, Paris, France
- Paris-Cité University, Paris, France
| | - Johan Pallud
- Surgical Epileptology Unit, Neurosurgery Department, GHU Paris Psychiatry and Neurosciences, Sainte-Anne Hospital, Paris, France
- Paris-Cité University, Paris, France
| |
Collapse
|
17
|
Jose B, Gopinath S, Vijayanatha Kurup A, Nair M, Pillai A, Kumar A, Parasuram H. Improving the accuracy of epileptogenic zone localization in stereo EEG with machine learning algorithms. Brain Res 2023; 1820:148546. [PMID: 37633355 DOI: 10.1016/j.brainres.2023.148546] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2023] [Revised: 08/19/2023] [Accepted: 08/22/2023] [Indexed: 08/28/2023]
Abstract
The precise identification of the epileptogenic zone (EZ) is paramount in the presurgical evaluation of epilepsy patients to ensure successful surgical outcomes. The analysis of Stereo EEG, an instrumental tool for EZ localization, poses considerable challenges even for experienced epileptologists. Consequently, the development of machine learning (ML)-based computational tools for enhanced EZ localization is imperative. In this investigation, we developed ML models utilizing Stereo EEG from 15 patients, who remained seizure-free (Engel 1 a-d) following EZ resection, over an average follow-up period of 44.4 months. Utilizing Delphos and MNI detectors, spikes and High Frequency Oscillations (HFOs) were identified from Stereo EEG in Resected Zone (RZ) and non-Resected Zone (non-RZ). Linear and non-linear features were estimated from each modality using MATLAB. A total of 27,744 spikes, 7,790 ripples, and 7,632 fast ripples, along with their combinations, were employed to train the ML models. The Gradient Boosting classifier demonstrated the highest prediction accuracy of 98.5% for EZ localization in Mesial Temporal Lobe Epilepsy (MTLE) when trained with features derived from the spike-ripple combination. In the case of Neocortical Epilepsy (NE), the Extra Trees classifier achieved an accuracy of 87.6% when utilizing features from fast ripples. The Random Forest, Extra Trees, and Gradient Boosting algorithms were the most effective for predicting the RZ. Linear features outperformed non-linear features in predicting epileptogenic zones within the epileptic brain. Our study establishes the capability of ML methodologies in localizing epileptogenic zones with high accuracy. Future studies that focus on increasing the training sample size and incorporating more advanced machine learning (ML) algorithms have the potential to significantly improve the accuracy of these models in pinpointing epileptogenic networks. Additionally, implementing this ML approach across multiple research centers would contribute to the broader validation and generalizability of this technique.
Collapse
Affiliation(s)
- Bijoy Jose
- Amrita Advanced Centre for Epilepsy (AACE), Amrita Institute of Medical Sciences, Amrita Vishwa Vidyapeetham, Kochi, Kerala, India; Department of Neurology, Amrita Institute of Medical Sciences, Amrita Vishwa Vidyapeetham, Kochi, Kerala, India
| | - Siby Gopinath
- Amrita Advanced Centre for Epilepsy (AACE), Amrita Institute of Medical Sciences, Amrita Vishwa Vidyapeetham, Kochi, Kerala, India; Department of Neurology, Amrita Institute of Medical Sciences, Amrita Vishwa Vidyapeetham, Kochi, Kerala, India
| | - Arjun Vijayanatha Kurup
- Department of Computer Science and Applications, Amrita Vishwa Vidyapeetham, Amritapuri, India
| | - Manjusha Nair
- Department of Computer Science and Applications, Amrita Vishwa Vidyapeetham, Amritapuri, India
| | - Ashok Pillai
- Amrita Advanced Centre for Epilepsy (AACE), Amrita Institute of Medical Sciences, Amrita Vishwa Vidyapeetham, Kochi, Kerala, India; Department of Neurosurgery, Amrita Institute of Medical Sciences, Amrita Vishwa Vidyapeetham, Kochi, Kerala, India
| | - Anand Kumar
- Amrita Advanced Centre for Epilepsy (AACE), Amrita Institute of Medical Sciences, Amrita Vishwa Vidyapeetham, Kochi, Kerala, India; Department of Neurology, Amrita Institute of Medical Sciences, Amrita Vishwa Vidyapeetham, Kochi, Kerala, India
| | - Harilal Parasuram
- Amrita Advanced Centre for Epilepsy (AACE), Amrita Institute of Medical Sciences, Amrita Vishwa Vidyapeetham, Kochi, Kerala, India; Department of Neurology, Amrita Institute of Medical Sciences, Amrita Vishwa Vidyapeetham, Kochi, Kerala, India.
| |
Collapse
|
18
|
Makhalova J, Madec T, Medina Villalon S, Jegou A, Lagarde S, Carron R, Scavarda D, Garnier E, Bénar CG, Bartolomei F. The role of quantitative markers in surgical prognostication after stereoelectroencephalography. Ann Clin Transl Neurol 2023; 10:2114-2126. [PMID: 37735846 PMCID: PMC10646998 DOI: 10.1002/acn3.51900] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Revised: 08/26/2023] [Accepted: 09/08/2023] [Indexed: 09/23/2023] Open
Abstract
OBJECTIVE Stereoelectroencephalography (SEEG) is the reference method in the presurgical exploration of drug-resistant focal epilepsy. However, prognosticating surgery on an individual level is difficult. A quantified estimation of the most epileptogenic regions by searching for relevant biomarkers can be proposed for this purpose. We investigated the performances of ictal (Epileptogenicity Index, EI; Connectivity EI, cEI), interictal (spikes, high-frequency oscillations, HFO [80-300 Hz]; Spikes × HFO), and combined (Spikes × EI; Spikes × cEI) biomarkers in predicting surgical outcome and searched for prognostic factors based on SEEG-signal quantification. METHODS Fifty-three patients operated on following SEEG were included. We compared, using precision-recall, the epileptogenic zone quantified using different biomarkers (EZq ) against the visual analysis (EZC ). Correlations between the EZ resection rates or the EZ extent and surgical prognosis were analyzed. RESULTS EI and Spikes × EI showed the best precision against EZc (0.74; 0.70), followed by Spikes × cEI and cEI, whereas interictal markers showed lower precision. The EZ resection rates were greater in seizure-free than in non-seizure-free patients for the EZ defined by ictal biomarkers and were correlated with the outcome for EI and Spikes × EI. No such correlation was found for interictal markers. The extent of the quantified EZ did not correlate with the prognosis. INTERPRETATION Ictal or combined ictal-interictal markers overperformed the interictal markers both for detecting the EZ and predicting seizure freedom. Combining ictal and interictal epileptogenicity markers improves detection accuracy. Resection rates of the quantified EZ using ictal markers were the only statistically significant determinants for surgical prognosis.
Collapse
Affiliation(s)
- Julia Makhalova
- APHM, Timone Hospital, Epileptology and Cerebral RhythmologyMarseilleFrance
- Aix Marseille Univ, INSERM, INS, Inst Neurosci SystMarseilleFrance
- Aix Marseille Univ, CNRS, CRMBMMarseilleFrance
| | - Tanguy Madec
- APHM, Timone Hospital, Epileptology and Cerebral RhythmologyMarseilleFrance
| | - Samuel Medina Villalon
- APHM, Timone Hospital, Epileptology and Cerebral RhythmologyMarseilleFrance
- Aix Marseille Univ, INSERM, INS, Inst Neurosci SystMarseilleFrance
| | - Aude Jegou
- Aix Marseille Univ, INSERM, INS, Inst Neurosci SystMarseilleFrance
| | - Stanislas Lagarde
- APHM, Timone Hospital, Epileptology and Cerebral RhythmologyMarseilleFrance
- Aix Marseille Univ, INSERM, INS, Inst Neurosci SystMarseilleFrance
| | - Romain Carron
- APHM, Timone Hospital, Functional, and Stereotactic NeurosurgeryMarseilleFrance
| | | | - Elodie Garnier
- Aix Marseille Univ, INSERM, INS, Inst Neurosci SystMarseilleFrance
| | | | - Fabrice Bartolomei
- APHM, Timone Hospital, Epileptology and Cerebral RhythmologyMarseilleFrance
- Aix Marseille Univ, INSERM, INS, Inst Neurosci SystMarseilleFrance
| |
Collapse
|
19
|
Li Z, Zhang H, Niu S, Xing Y. Localizing epileptogenic zones with high-frequency oscillations and directed connectivity. Seizure 2023; 111:9-16. [PMID: 37487273 DOI: 10.1016/j.seizure.2023.07.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Revised: 07/19/2023] [Accepted: 07/20/2023] [Indexed: 07/26/2023] Open
Abstract
PURPOSE Precise localization of the epileptogenic zone (EZ) is essential for epilepsy surgery. Existing methods often fail to detect slow onset patterns or similar neural activities presented in the recorded signals. To address this issue, we propose a new measure to quantify epileptogenicity, i.e., the connectivity high-frequency epileptogenicity index (cHFEI). METHODS The cHFEI method combines directed connectivity and high-frequency oscillations (HFOs) to measure the epileptogenicity of regions involved in a brain network. By applying this method to stereoelectroencephalography (SEEG) recordings of 49 seizures in 20 patients, we calculated the accuracy, sensitivity, and precision with a visually identified epileptogenic zone as a reference. The performance was evaluated by the confusion matrix and the area under the receiver operating characteristic (ROC) curve. RESULTS Epileptic network estimation based on cHFEI successfully distinguished brain regions involved in seizure onset from the propagation network. Moreover, cHFEI outperformed other existing detection methods in the estimation of EZs in all patients, with an average area under the ROC curve of 0.88 and an accuracy of 0.85. CONCLUSIONS cHFEI can characterize EZ in a robust manner despite various seizure onset patterns and has potential application in epilepsy therapy.
Collapse
Affiliation(s)
- Zhaohui Li
- School of Information Science and Engineering, Yanshan University, Qinhuangdao 066004, China; Hebei Key Laboratory of information transmission and signal processing, Yanshan University, Qinhuangdao 066004, China.
| | - Hao Zhang
- School of Information Science and Engineering, Yanshan University, Qinhuangdao 066004, China
| | - Shipeng Niu
- School of Information Science and Engineering, Yanshan University, Qinhuangdao 066004, China
| | - Yanyu Xing
- School of Information Science and Engineering, Yanshan University, Qinhuangdao 066004, China
| |
Collapse
|
20
|
Wang Z, Magnotti JF, Zhang X, Beauchamp MS. YAEL: Your Advanced Electrode Localizer. eNeuro 2023; 10:ENEURO.0328-23.2023. [PMID: 37857509 PMCID: PMC10591275 DOI: 10.1523/eneuro.0328-23.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Revised: 09/27/2023] [Accepted: 10/02/2023] [Indexed: 10/21/2023] Open
Abstract
Intracranial electroencephalography (iEEG) provides a unique opportunity to record and stimulate neuronal populations in the human brain. A key step in neuroscience inference from iEEG is localizing the electrodes relative to individual subject anatomy and identified regions in brain atlases. We describe a new software tool, Your Advanced Electrode Localizer (YAEL), that provides an integrated solution for every step of the electrode localization process. YAEL is compatible with all common data formats to provide an easy-to-use, drop-in replacement for problematic existing workflows that require users to grapple with multiple programs and interfaces. YAEL's automatic extrapolation and interpolation functions speed localization, especially important in patients with many implanted stereotactic (sEEG) electrode shafts. The graphical user interface is presented in a web browser for broad compatibility and includes an interactive 3D viewer for easier localization of nearby sEEG contacts. After localization is complete, users may enter or import data into YAEL's 3D viewer to create publication-ready visualizations of electrodes and brain anatomy, including identified brain areas from atlases; the response to experimental tasks measured with iEEG; and clinical measures such as epileptiform activity or the results of electrical stimulation mapping. YAEL is free and open source and does not depend on any commercial software. Installation instructions for Mac, Windows, and Linux are available at https://yael.wiki.
Collapse
Affiliation(s)
- Zhengjia Wang
- Department of Neurosurgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104
| | - John F Magnotti
- Department of Neurosurgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104
| | - Xiang Zhang
- Department of Neurosurgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104
| | - Michael S Beauchamp
- Department of Neurosurgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104
| |
Collapse
|
21
|
Soper DJ, Reich D, Ross A, Salami P, Cash SS, Basu I, Peled N, Paulk AC. Modular pipeline for reconstruction and localization of implanted intracranial ECoG and sEEG electrodes. PLoS One 2023; 18:e0287921. [PMID: 37418486 PMCID: PMC10328232 DOI: 10.1371/journal.pone.0287921] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2022] [Accepted: 06/15/2023] [Indexed: 07/09/2023] Open
Abstract
Implantation of electrodes in the brain has been used as a clinical tool for decades to stimulate and record brain activity. As this method increasingly becomes the standard of care for several disorders and diseases, there is a growing need to quickly and accurately localize the electrodes once they are placed within the brain. We share here a protocol pipeline for localizing electrodes implanted in the brain, which we have applied to more than 260 patients, that is accessible to multiple skill levels and modular in execution. This pipeline uses multiple software packages to prioritize flexibility by permitting multiple different parallel outputs while minimizing the number of steps for each output. These outputs include co-registered imaging, electrode coordinates, 2D and 3D visualizations of the implants, automatic surface and volumetric localizations of the brain regions per electrode, and anonymization and data sharing tools. We demonstrate here some of the pipeline's visualizations and automatic localization algorithms which we have applied to determine appropriate stimulation targets, to conduct seizure dynamics analysis, and to localize neural activity from cognitive tasks in previous studies. Further, the output facilitates the extraction of information such as the probability of grey matter intersection or the nearest anatomic structure per electrode contact across all data sets that go through the pipeline. We expect that this pipeline will be a useful framework for researchers and clinicians alike to localize implanted electrodes in the human brain.
Collapse
Affiliation(s)
- Daniel J. Soper
- Department of Neurology, Center for Neurotechnology and Neurorecovery, Massachusetts General Hospital, Boston, MA, United States of America
- Department of Neurology, Harvard Medical School, Boston, MA, United States of America
| | - Dustine Reich
- Department of Neurology, Center for Neurotechnology and Neurorecovery, Massachusetts General Hospital, Boston, MA, United States of America
- Department of Neurology, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA, United States of America
| | - Alex Ross
- Department of Neurosurgery, University of Cincinnati College of Medicine, Cincinnati, OH, United States of America
| | - Pariya Salami
- Department of Neurology, Center for Neurotechnology and Neurorecovery, Massachusetts General Hospital, Boston, MA, United States of America
- Department of Neurology, Harvard Medical School, Boston, MA, United States of America
| | - Sydney S. Cash
- Department of Neurology, Center for Neurotechnology and Neurorecovery, Massachusetts General Hospital, Boston, MA, United States of America
- Department of Neurology, Harvard Medical School, Boston, MA, United States of America
| | - Ishita Basu
- Department of Neurosurgery, University of Cincinnati College of Medicine, Cincinnati, OH, United States of America
| | - Noam Peled
- Department of Radiology, Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Charlestown, MA, United States of America
- Harvard Medical School, Boston, MA, United States of America
| | - Angelique C. Paulk
- Department of Neurology, Center for Neurotechnology and Neurorecovery, Massachusetts General Hospital, Boston, MA, United States of America
- Department of Neurology, Harvard Medical School, Boston, MA, United States of America
| |
Collapse
|
22
|
Villard C, Dary Z, Léonard J, Medina Villalon S, Carron R, Makhalova J, Lagarde S, Lopez C, Bartolomei F. The origin of pleasant sensations: Insight from direct electrical brain stimulation. Cortex 2023; 164:1-10. [PMID: 37146544 DOI: 10.1016/j.cortex.2023.03.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Revised: 03/15/2023] [Accepted: 03/28/2023] [Indexed: 05/07/2023]
Abstract
Research into the neuroanatomical basis of emotions has resulted in a plethora of studies over the last twenty years. However, studies about positive emotions and pleasant sensations remain rare and their anatomical-functional bases are less understood than that of negative emotions. Pleasant sensations can be evoked by electrical brain stimulations (EBS) during stereotactic electroencephalography (SEEG) performed for pre-surgical exploration in patients with drug-resistant epilepsy. We conducted a retrospective analysis of 10 106 EBS performed in 329 patients implanted with SEEG in our epileptology department. We found that 13 EBS in 9 different patients evoked pleasant sensations (.60% of all responses). By contrast we collected 111 emotional responses of negative valence (i.e., 5.13% of all responses). EBS evoking pleasant sensations were applied at 50 Hz with an average intensity of 1.4 ± .55 mA (range .5-2 mA). Pleasant sensations were reported by nine patients of which three patients presented responses to several EBS. We found a male predominance among the patients reporting pleasant sensations and a prominent role of the right cerebral hemisphere. Results show the preponderant role of the dorsal anterior insula and amygdala in the occurrence of pleasant sensations.
Collapse
Affiliation(s)
- Cécile Villard
- APHM, Timone Hospital, Epileptology Department, Marseille, France.
| | - Zoé Dary
- Aix Marseille University, CNRS, LNC, FR3C, Marseille, France.
| | - Jacques Léonard
- Aix Marseille University, CNRS, LNC, FR3C, Marseille, France.
| | - Samuel Medina Villalon
- APHM, Timone Hospital, Epileptology Department, Marseille, France; Aix Marseille University, Inserm, INS, Inst Neurosci Syst, Marseille, France.
| | - Romain Carron
- APHM, Timone Hospital, Functional Neurosurgery Department, Marseille, France.
| | - Julia Makhalova
- APHM, Timone Hospital, Epileptology Department, Marseille, France; Aix Marseille University, Inserm, INS, Inst Neurosci Syst, Marseille, France.
| | - Stanislas Lagarde
- APHM, Timone Hospital, Epileptology Department, Marseille, France; Aix Marseille University, Inserm, INS, Inst Neurosci Syst, Marseille, France.
| | | | - Fabrice Bartolomei
- APHM, Timone Hospital, Epileptology Department, Marseille, France; Aix Marseille University, Inserm, INS, Inst Neurosci Syst, Marseille, France.
| |
Collapse
|
23
|
Janca R, Tomasek M, Kalina A, Marusic P, Krsek P, Lesko R. Automated Identification of Stereoelectroencephalography Contacts and Measurement of Factors Influencing Accuracy of Frame Stereotaxy. IEEE J Biomed Health Inform 2023; 27:3326-3336. [PMID: 37389996 DOI: 10.1109/jbhi.2023.3271857] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/02/2023]
Abstract
OBJECTIVE Stereoelectroencephalography (SEEG) is an established invasive diagnostic technique for use in patients with drug-resistant focal epilepsy evaluated before resective epilepsy surgery. The factors that influence the accuracy of electrode implantation are not fully understood. Adequate accuracy prevents the risk of major surgery complications. Precise knowledge of the anatomical positions of individual electrode contacts is crucial for the interpretation of SEEG recordings and subsequent surgery. METHODS We developed an image processing pipeline to localize implanted electrodes and detect individual contact positions using computed tomography (CT), as a substitute for time-consuming manual labeling. The algorithm automates measurement of parameters of the electrodes implanted in the skull (bone thickness, implantation angle and depth) for use in modeling of predictive factors that influence implantation accuracy. RESULTS Fifty-four patients evaluated by SEEG were analyzed. A total of 662 SEEG electrodes with 8,745 contacts were stereotactically inserted. The automated detector localized all contacts with better accuracy than manual labeling (p < 0.001). The retrospective implantation accuracy of the target point was 2.4 ± 1.1 mm. A multifactorial analysis determined that almost 58% of the total error was attributable to measurable factors. The remaining 42% was attributable to random error. CONCLUSION SEEG contacts can be reliably marked by our proposed method. The trajectory of electrodes can be parametrically analyzed to predict and validate implantation accuracy using a multifactorial model. SIGNIFICANCE This novel, automated image processing technique is a potentially clinically important, assistive tool for increasing the yield, efficiency, and safety of SEEG.
Collapse
|
24
|
Soulier H, Pizzo F, Jegou A, Lagarde S, Garnier E, Makhalova J, Medina Villalon S, Carron R, Bénar C, Bartolomei F. The anterior and pulvinar thalamic nuclei interactions in mesial temporal lobe seizure networks. Clin Neurophysiol 2023; 150:176-183. [PMID: 37075682 DOI: 10.1016/j.clinph.2023.03.016] [Citation(s) in RCA: 16] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2023] [Revised: 02/16/2023] [Accepted: 03/17/2023] [Indexed: 04/21/2023]
Abstract
OBJECTIVE To evaluate the respective roles of the anterior thalamic nucleus (ANT) and the medial pulvinar (PuM) during mesial temporal lobe seizures recorded by stereoelectroencephalography (SEEG). METHODS We assessed functional connectivity (FC) in 15 SEEG recorded seizures from 6 patients using a non-linear correlation method. Functional interactions were explored between the mesial temporal region, the temporal neocortex, ANT and PuM. The node total-strength (the summed connectivity of the node with all other nodes) as well as the directionality of the links (IN and OUT strengths) were calculated to estimate drivers and receivers during the cortico-thalamic interactions. RESULTS Significant increased thalamo-cortical FC during seizures was observed, with the node total-strength reaching a maximum at seizure end. There was no significant difference in global connectivity values between ANT and PuM. Regarding directionality, significantly higher thalamic IN strength values were observed. However, compared to ANT, PuM appeared to be the driver at the end of seizures with synchronous termination. CONCLUSIONS This work demonstrates that during temporal seizures, both thalamic nuclei are highly connected with the mesial temporal region and that PuM could play a role in seizure termination. SIGNIFICANCE Understanding functional connectivity between the mesial temporal and thalamic nuclei could contribute to the development of target-specific deep brain stimulation strategies for drug-resistant epilepsy.
Collapse
Affiliation(s)
- Hugo Soulier
- Aix Marseille Univ, INSERM, INS, Inst Neurosci Syst, Marseille 13005, France
| | - Francesca Pizzo
- Aix Marseille Univ, INSERM, INS, Inst Neurosci Syst, Marseille 13005, France; APHM, Timone Hospital, Epileptology and Cerebral Rhythmology, Marseille 13005, France
| | - Aude Jegou
- Aix Marseille Univ, INSERM, INS, Inst Neurosci Syst, Marseille 13005, France
| | - Stanislas Lagarde
- Aix Marseille Univ, INSERM, INS, Inst Neurosci Syst, Marseille 13005, France; APHM, Timone Hospital, Epileptology and Cerebral Rhythmology, Marseille 13005, France
| | - Elodie Garnier
- Aix Marseille Univ, INSERM, INS, Inst Neurosci Syst, Marseille 13005, France
| | - Julia Makhalova
- Aix Marseille Univ, INSERM, INS, Inst Neurosci Syst, Marseille 13005, France; APHM, Timone Hospital, Epileptology and Cerebral Rhythmology, Marseille 13005, France
| | - Samuel Medina Villalon
- Aix Marseille Univ, INSERM, INS, Inst Neurosci Syst, Marseille 13005, France; APHM, Timone Hospital, Epileptology and Cerebral Rhythmology, Marseille 13005, France
| | - Romain Carron
- Aix Marseille Univ, INSERM, INS, Inst Neurosci Syst, Marseille 13005, France; APHM, Timone Hospital, Stereotactic and Functional Neurosurgery, Marseille, France
| | - Christian Bénar
- Aix Marseille Univ, INSERM, INS, Inst Neurosci Syst, Marseille 13005, France
| | - Fabrice Bartolomei
- Aix Marseille Univ, INSERM, INS, Inst Neurosci Syst, Marseille 13005, France; APHM, Timone Hospital, Epileptology and Cerebral Rhythmology, Marseille 13005, France.
| |
Collapse
|
25
|
López-Madrona VJ, Villalon SM, Velmurugan J, Semeux-Bernier A, Garnier E, Badier JM, Schön D, Bénar CG. Reconstruction and localization of auditory sources from intracerebral SEEG using independent component analysis. Neuroimage 2023; 269:119905. [PMID: 36720438 DOI: 10.1016/j.neuroimage.2023.119905] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2022] [Revised: 01/11/2023] [Accepted: 01/26/2023] [Indexed: 01/30/2023] Open
Abstract
Stereo-electroencephalography (SEEG) is the surgical implantation of electrodes in the brain to better localize the epileptic network in pharmaco-resistant epileptic patients. This technique has exquisite spatial and temporal resolution. Still, the number and the position of the electrodes in the brain is limited and determined by the semiology and/or preliminary non-invasive examinations, leading to a large number of unexplored brain structures in each patient. Here, we propose a new approach to reconstruct the activity of non-sampled structures in SEEG, based on independent component analysis (ICA) and dipole source localization. We have tested this approach with an auditory stimulation dataset in ten patients. The activity directly recorded from the auditory cortex served as ground truth and was compared to the ICA applied on all non-auditory electrodes. Our results show that the activity from the auditory cortex can be reconstructed at the single trial level from contacts as far as ∼40 mm from the source. Importantly, this reconstructed activity is localized via dipole fitting in the proximity of the original source. In addition, we show that the size of the confidence interval of the dipole fitting is a good indicator of the reliability of the result, which depends on the geometry of the SEEG implantation. Overall, our approach allows reconstructing the activity of structures far from the electrode locations, partially overcoming the spatial sampling limitation of intracerebral recordings.
Collapse
Affiliation(s)
| | - Samuel Medina Villalon
- Aix Marseille Univ, INSERM, INS, Inst Neurosci Syst, Marseille 13005, France; APHM, Timone Hospital, Epileptology and cerebral rhythmology, Marseille 13005, France
| | - Jayabal Velmurugan
- Aix Marseille Univ, INSERM, INS, Inst Neurosci Syst, Marseille 13005, France
| | | | - Elodie Garnier
- Aix Marseille Univ, INSERM, INS, Inst Neurosci Syst, Marseille 13005, France
| | - Jean-Michel Badier
- Aix Marseille Univ, INSERM, INS, Inst Neurosci Syst, Marseille 13005, France
| | - Daniele Schön
- Aix Marseille Univ, INSERM, INS, Inst Neurosci Syst, Marseille 13005, France
| | - Christian-G Bénar
- Aix Marseille Univ, INSERM, INS, Inst Neurosci Syst, Marseille 13005, France.
| |
Collapse
|
26
|
Wang HE, Woodman M, Triebkorn P, Lemarechal JD, Jha J, Dollomaja B, Vattikonda AN, Sip V, Medina Villalon S, Hashemi M, Guye M, Makhalova J, Bartolomei F, Jirsa V. Delineating epileptogenic networks using brain imaging data and personalized modeling in drug-resistant epilepsy. Sci Transl Med 2023; 15:eabp8982. [PMID: 36696482 DOI: 10.1126/scitranslmed.abp8982] [Citation(s) in RCA: 25] [Impact Index Per Article: 25.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
Precise estimates of epileptogenic zone networks (EZNs) are crucial for planning intervention strategies to treat drug-resistant focal epilepsy. Here, we present the virtual epileptic patient (VEP), a workflow that uses personalized brain models and machine learning methods to estimate EZNs and to aid surgical strategies. The structural scaffold of the patient-specific whole-brain network model is constructed from anatomical T1 and diffusion-weighted magnetic resonance imaging. Each network node is equipped with a mathematical dynamical model to simulate seizure activity. Bayesian inference methods sample and optimize key parameters of the personalized model using functional stereoelectroencephalography recordings of patients' seizures. These key parameters together with their personalized model determine a given patient's EZN. Personalized models were further used to predict the outcome of surgical intervention using virtual surgeries. We evaluated the VEP workflow retrospectively using 53 patients with drug-resistant focal epilepsy. VEPs reproduced the clinically defined EZNs with a precision of 0.6, where the physical distance between epileptogenic regions identified by VEP and the clinically defined EZNs was small. Compared with the resected brain regions of 25 patients who underwent surgery, VEP showed lower false discovery rates in seizure-free patients (mean, 0.028) than in non-seizure-free patients (mean, 0.407). VEP is now being evaluated in an ongoing clinical trial (EPINOV) with an expected 356 prospective patients with epilepsy.
Collapse
Affiliation(s)
- Huifang E Wang
- Aix-Marseille Université, Institut National de la Santé et de la Recherche Médicale, Institut de Neurosciences des Systèmes (INS) UMR1106, Marseille 13005, France
| | - Marmaduke Woodman
- Aix-Marseille Université, Institut National de la Santé et de la Recherche Médicale, Institut de Neurosciences des Systèmes (INS) UMR1106, Marseille 13005, France
| | - Paul Triebkorn
- Aix-Marseille Université, Institut National de la Santé et de la Recherche Médicale, Institut de Neurosciences des Systèmes (INS) UMR1106, Marseille 13005, France
| | - Jean-Didier Lemarechal
- Aix-Marseille Université, Institut National de la Santé et de la Recherche Médicale, Institut de Neurosciences des Systèmes (INS) UMR1106, Marseille 13005, France.,Sorbonne Université, Institut du Cerveau - Paris Brain Institute - ICM, Inserm, CNRS, Centre MEG-EEG and Experimental Neurosurgery team, Paris F-75013, France
| | - Jayant Jha
- Aix-Marseille Université, Institut National de la Santé et de la Recherche Médicale, Institut de Neurosciences des Systèmes (INS) UMR1106, Marseille 13005, France
| | - Borana Dollomaja
- Aix-Marseille Université, Institut National de la Santé et de la Recherche Médicale, Institut de Neurosciences des Systèmes (INS) UMR1106, Marseille 13005, France
| | - Anirudh Nihalani Vattikonda
- Aix-Marseille Université, Institut National de la Santé et de la Recherche Médicale, Institut de Neurosciences des Systèmes (INS) UMR1106, Marseille 13005, France
| | - Viktor Sip
- Aix-Marseille Université, Institut National de la Santé et de la Recherche Médicale, Institut de Neurosciences des Systèmes (INS) UMR1106, Marseille 13005, France
| | - Samuel Medina Villalon
- Aix-Marseille Université, Institut National de la Santé et de la Recherche Médicale, Institut de Neurosciences des Systèmes (INS) UMR1106, Marseille 13005, France.,APHM, Epileptology and Clinical Neurophysiology Department, Timone Hospital, Marseille 13005, France
| | - Meysam Hashemi
- Aix-Marseille Université, Institut National de la Santé et de la Recherche Médicale, Institut de Neurosciences des Systèmes (INS) UMR1106, Marseille 13005, France
| | - Maxime Guye
- Aix-Marseille Université, CNRS, CRMBM, Marseille 13005, France.,APHM, Timone University Hospital, CEMEREM, Marseille 13005, France
| | - Julia Makhalova
- APHM, Epileptology and Clinical Neurophysiology Department, Timone Hospital, Marseille 13005, France.,Aix-Marseille Université, CNRS, CRMBM, Marseille 13005, France.,APHM, Timone University Hospital, CEMEREM, Marseille 13005, France
| | - Fabrice Bartolomei
- Aix-Marseille Université, Institut National de la Santé et de la Recherche Médicale, Institut de Neurosciences des Systèmes (INS) UMR1106, Marseille 13005, France.,APHM, Epileptology and Clinical Neurophysiology Department, Timone Hospital, Marseille 13005, France
| | - Viktor Jirsa
- Aix-Marseille Université, Institut National de la Santé et de la Recherche Médicale, Institut de Neurosciences des Systèmes (INS) UMR1106, Marseille 13005, France
| |
Collapse
|
27
|
Coelli S, Medina Villalon S, Bonini F, Velmurugan J, López-Madrona VJ, Carron R, Bartolomei F, Badier JM, Bénar CG. Comparison of beamformer and ICA for dynamic connectivity analysis: A simultaneous MEG-SEEG study. Neuroimage 2023; 265:119806. [PMID: 36513288 DOI: 10.1016/j.neuroimage.2022.119806] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2022] [Revised: 10/25/2022] [Accepted: 12/09/2022] [Indexed: 12/14/2022] Open
Abstract
Magnetoencephalography (MEG) is a powerful tool for estimating brain connectivity with both good spatial and temporal resolution. It is particularly helpful in epilepsy to characterize non-invasively the epileptic networks. However, using MEG to map brain networks requires solving a difficult inverse problem that introduces uncertainty in the activity localization and connectivity measures. Our goal here was to compare independent component analysis (ICA) followed by dipole source localization and the linearly constrained minimum-variance beamformer (LCMV-BF) for characterizing regions with interictal epileptic activity and their dynamic connectivity. After a simulation study, we compared ICA and LCMV-BF results with intracerebral EEG (stereotaxic EEG, SEEG) recorded simultaneously in 8 epileptic patients, which provide a unique 'ground truth' to which non-invasive results can be confronted. We compared the signal time courses extracted applying ICA and LCMV-BF on MEG data to that of SEEG, both for the actual signals and the dynamic connectivity computed using cross-correlation (evolution of links in time). With our simulations, we illustrated the different effect of the temporal and spatial correlation among sources on the two methods. While ICA was more affected by the temporal correlation but robust against spatial configurations, LCMV-BF showed opposite behavior. Moreover, ICA seems more suited to retrieve the simulated networks. In case of real patient data, good MEG/SEEG correlation and good localization were obtained in 6 out of 8 patients. In 4 of them ICA had the best performance (higher correlation, lower localization distance). In terms of dynamic connectivity, the evolution in time of the cross-correlation links could be retrieved in 5 patients out of 6, however, with more variable results in terms of correlation and distance. In two patients LCMV-BF had better results than ICA. In one patient the two methods showed equally good outcomes, and in the remaining two patients ICA performed best. In conclusion, our results obtained by exploiting simultaneous MEG/SEEG recordings suggest that ICA and LCMV-BF have complementary qualities for retrieving the dynamics of interictal sources and their network interactions.
Collapse
Affiliation(s)
- Stefania Coelli
- Department of Electronics, Information and Bioengineering, Politecnico di Milano, Milano, Italy
| | - Samuel Medina Villalon
- Aix Marseille University, INSERM, INS, Inst Neurosci Syst, Marseille, France; APHM, Timone Hospital, Epileptology and Cerebral Rythmology, Marseille, France
| | - Francesca Bonini
- Aix Marseille University, INSERM, INS, Inst Neurosci Syst, Marseille, France; APHM, Timone Hospital, Epileptology and Cerebral Rythmology, Marseille, France
| | - Jayabal Velmurugan
- Aix Marseille University, INSERM, INS, Inst Neurosci Syst, Marseille, France
| | | | - Romain Carron
- Aix Marseille University, INSERM, INS, Inst Neurosci Syst, Marseille, France; APHM, Timone Hospital, Functional and Stereotactic Neurosurgery, Marseille, France
| | - Fabrice Bartolomei
- Aix Marseille University, INSERM, INS, Inst Neurosci Syst, Marseille, France; APHM, Timone Hospital, Epileptology and Cerebral Rythmology, Marseille, France
| | - Jean-Michel Badier
- Aix Marseille University, INSERM, INS, Inst Neurosci Syst, Marseille, France
| | - Christian-G Bénar
- Aix Marseille University, INSERM, INS, Inst Neurosci Syst, Marseille, France.
| |
Collapse
|
28
|
El Youssef N, Jegou A, Makhalova J, Naccache L, Bénar C, Bartolomei F. Consciousness alteration in focal epilepsy is related to loss of signal complexity and information processing. Sci Rep 2022; 12:22276. [PMID: 36566285 PMCID: PMC9789957 DOI: 10.1038/s41598-022-25861-4] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2022] [Accepted: 12/06/2022] [Indexed: 12/25/2022] Open
Abstract
Alteration of awareness is a main feature of focal epileptic seizures. In this work, we studied how the information contained in EEG signals was modified during temporal lobe seizures with altered awareness by using permutation entropy (PE) as a measure of the complexity of the signal. PE estimation was performed in thirty-six seizures of sixteen patients with temporal lobe epilepsy who underwent SEEG recordings. We tested whether altered awareness (based on the Consciousness Seizure Score) was correlated with a loss of signal complexity. We estimated global changes in PE as well as regional changes to gain insight into the mechanisms associated with awareness impairment. Our results reveal a positive correlation between the decrease of entropy and the consciousness score as well as the existence of a threshold on entropy that could discriminate seizures with no alteration of awareness from seizures with profound alteration of awareness. The loss of signal complexity was diffuse, extending bilaterally and to the associative cortices, in patients with profound alteration of awareness and limited to the temporal mesial structures in patients with no alteration of awareness. Thus PE is a promising tool to discriminate between the different subgroups of awareness alteration in TLE.
Collapse
Affiliation(s)
- Nada El Youssef
- grid.411266.60000 0001 0404 1115APHM, Timone Hospital, Epileptology and Cerebral Rhythmology, Marseille, France
| | - Aude Jegou
- grid.5399.60000 0001 2176 4817Aix Marseille Univ, INSERM, INS, Inst Neurosci Syst, Marseille, France
| | - Julia Makhalova
- grid.411266.60000 0001 0404 1115APHM, Timone Hospital, Epileptology and Cerebral Rhythmology, Marseille, France ,grid.411266.60000 0001 0404 1115APHM, Timone Hospital, CEMEREM, Marseille, France
| | - Lionel Naccache
- grid.50550.350000 0001 2175 4109APHP, Departments of Neurology & Clinical Neurophysiology Pitié Salpêtrière Hospital, Paris, France
| | - Christian Bénar
- grid.5399.60000 0001 2176 4817Aix Marseille Univ, INSERM, INS, Inst Neurosci Syst, Marseille, France
| | - Fabrice Bartolomei
- grid.411266.60000 0001 0404 1115APHM, Timone Hospital, Epileptology and Cerebral Rhythmology, Marseille, France ,grid.5399.60000 0001 2176 4817Aix Marseille Univ, INSERM, INS, Inst Neurosci Syst, Marseille, France ,grid.411266.60000 0001 0404 1115Service d’Epileptologie et de Rythmologie Cérébrale, Hôpital Timone, 264 Rue Saint-Pierre, 13005 Marseille, France
| |
Collapse
|
29
|
Pantovic A, Ollivier I, Essert C. Hybrid U-Net for segmentation of SEEG electrodes on post-operative CT scans. COMPUTER METHODS IN BIOMECHANICS AND BIOMEDICAL ENGINEERING: IMAGING & VISUALIZATION 2022. [DOI: 10.1080/21681163.2022.2152376] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Anja Pantovic
- ICube, Université de Strasbourg, CNRS (UMR 7357), Strasbourg, France
| | - Irène Ollivier
- Department of Neurosurgery, Strasbourg University Hospital, Strasbourg, France
| | - Caroline Essert
- ICube, Université de Strasbourg, CNRS (UMR 7357), Strasbourg, France
| |
Collapse
|
30
|
Velmurugan J, Badier JM, Pizzo F, Medina Villalon S, Papageorgakis C, López-Madrona V, Jegou A, Carron R, Bartolomei F, Bénar CG. Virtual MEG sensors based on beamformer and independent component analysis can reconstruct epileptic activity as measured on simultaneous intracerebral recordings. Neuroimage 2022; 264:119681. [PMID: 36270623 DOI: 10.1016/j.neuroimage.2022.119681] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2022] [Revised: 09/30/2022] [Accepted: 10/10/2022] [Indexed: 11/09/2022] Open
Abstract
The prevailing gold standard for presurgical determination of epileptogenic brain networks is intracerebral EEG, a potent yet invasive approach. Magnetoencephalography (MEG) is a state-of-the art non-invasive method for investigating epileptiform discharges. However, it is not clear at what level the precision offered by MEG can reach that of SEEG. Here, we present a strategy for non-invasively retrieving the constituents of the interictal network, with high spatial and temporal precision. Our method is based on MEG and a combination of spatial filtering and independent component analysis (ICA). We validated this approach in twelve patients with drug-resistant focal epilepsy, thanks to the unprecedented ground truth provided by simultaneous recordings of MEG and SEEG. A minimum variance adaptive beamformer estimated the source time series and ICA was used to further decompose these time series into network constituents (MEG-ICs), each having a time series (virtual electrode) and a topography (spatial distribution of amplitudes in the brain). We show that MEG has a considerable sensitivity of 0.80 and 0.84 and a specificity of 0.93 and 0.91 for reconstructing deep and superficial sources, respectively, when compared to the ground truth (SEEG). For each epileptic MEG-IC (n = 131), we found at least one significantly correlating SEEG contact close to zero lag after correcting for multiple comparisons. All the patients except one had at least one epileptic component that was highly correlated (Spearman rho>0.3) with that of SEEG traces. MEG-ICs correlated well with SEEG traces. The strength of correlation coefficients did not depend on the depth of the SEEG contacts or the clinical outcome of the patient. A significant proportion of the MEG-ICs (n = 83/131) were localized in proximity with their maximally correlating SEEG, within a mean distance of 20±12.18mm. Our research is the first to validate the MEG-retrieved beamformer IC sources against SEEG-derived ground truth in a simultaneous MEG-SEEG framework. Observations from the present study suggest that non-invasive MEG source components may potentially provide additional information, comparable to SEEG in a number of instances.
Collapse
Affiliation(s)
- Jayabal Velmurugan
- Aix Marseille Univ, INSERM, INS, Inst Neurosci Syst, Marseille, F-13005, France
| | - Jean-Michel Badier
- Aix Marseille Univ, INSERM, INS, Inst Neurosci Syst, Marseille, F-13005, France
| | - Francesca Pizzo
- Aix Marseille Univ, INSERM, INS, Inst Neurosci Syst, Marseille, F-13005, France; APHM, Timone Hospital, Epileptology and Cerebral Rhythmology, Marseille, F-13005, France
| | - Samuel Medina Villalon
- Aix Marseille Univ, INSERM, INS, Inst Neurosci Syst, Marseille, F-13005, France; APHM, Timone Hospital, Epileptology and Cerebral Rhythmology, Marseille, F-13005, France
| | | | | | - Aude Jegou
- Aix Marseille Univ, INSERM, INS, Inst Neurosci Syst, Marseille, F-13005, France
| | - Romain Carron
- Aix Marseille Univ, INSERM, INS, Inst Neurosci Syst, Marseille, F-13005, France; APHM, Timone Hospital, Functional and Stereotactic Neurosurgery, Marseille, F-13005, France
| | - Fabrice Bartolomei
- Aix Marseille Univ, INSERM, INS, Inst Neurosci Syst, Marseille, F-13005, France; APHM, Timone Hospital, Epileptology and Cerebral Rhythmology, Marseille, F-13005, France
| | - Christian-G Bénar
- Aix Marseille Univ, INSERM, INS, Inst Neurosci Syst, Marseille, F-13005, France.
| |
Collapse
|
31
|
Devisetty R, MB A, Jyothirmai S, Ajai R, Pillai A, Kumar A, Gopinath S, Parasuram H. Localizing epileptogenic network from SEEG using non-linear correlation, mutual information and graph theory analysis. Proc Inst Mech Eng H 2022; 236:1783-1796. [DOI: 10.1177/09544119221134991] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
The key challenge in epilepsy surgery is precise localization and removal of the epileptogenic zone (EZ) from the brain. Localization of the epileptogenic network by visual analysis of intracranial EEG is extremely difficult. In this retrospective study, we used interictal connectivity and graph theory analysis on intracranial EEG to better delineate the epileptogenic zone. Patients who underwent surgery for drug-refractory mesial temporal and neocortical epilepsy were included. Computational measures, such as h2 nonlinear correlation and mutual information, were used to estimate the interdependency of intracranial EEGs. We observed that the Out-Degree, Out-Strength, and Betweenness centrality (graph properties) were the best predictors of EZ. From the results, we also found that graph properties with a normalized value above 0.75 were found to be a useful measure to localize the EZ with a sensitivity of 87.88 and a specificity of 87.13. Our results also validate that frequently occurring types of interictal fast discharges (IFD) with connectivity measures and graph properties can better localize the EZ. We foresee graph theory analysis of interictal intracranial EEG data can help precise localization of EZ for cortical resection as well as in minimally invasive radiofrequency ablation of epileptogenic hubs. Further, prospective validation is required for clinical use.
Collapse
Affiliation(s)
- Rohith Devisetty
- Department of Electronics and Communication Engineering, Amrita Vishwa Vidyapeetham, Amritapuri, India
| | - Amsitha MB
- Department of Electronics and Communication Engineering, Amrita Vishwa Vidyapeetham, Amritapuri, India
| | - Sasi Jyothirmai
- Department of Electronics and Communication Engineering, Amrita Vishwa Vidyapeetham, Amritapuri, India
| | - Remya Ajai
- Department of Electronics and Communication Engineering, Amrita Vishwa Vidyapeetham, Amritapuri, India
| | - Ashok Pillai
- Amrita Advanced Centre for Epilepsy (AACE), Amrita Institute of Medical Sciences, Kochi, Kerala, India
- Department of Neurosurgery, Amrita Institute of Medical Sciences, Kochi, Kerala, India
| | - Anand Kumar
- Department of Neurology, Amrita Institute of Medical Sciences, Kochi, Kerala, India
- Amrita Mind Brain Center, Amrita Vishwa Vidyapeetham, Amritapuri Campus, Kollam, Kerala, India
| | - Siby Gopinath
- Amrita Advanced Centre for Epilepsy (AACE), Amrita Institute of Medical Sciences, Kochi, Kerala, India
- Department of Neurology, Amrita Institute of Medical Sciences, Kochi, Kerala, India
- Amrita Mind Brain Center, Amrita Vishwa Vidyapeetham, Amritapuri Campus, Kollam, Kerala, India
| | - Harilal Parasuram
- Amrita Advanced Centre for Epilepsy (AACE), Amrita Institute of Medical Sciences, Kochi, Kerala, India
- Department of Neurology, Amrita Institute of Medical Sciences, Kochi, Kerala, India
- Amrita Mind Brain Center, Amrita Vishwa Vidyapeetham, Amritapuri Campus, Kollam, Kerala, India
| |
Collapse
|
32
|
Mercier MR, Dubarry AS, Tadel F, Avanzini P, Axmacher N, Cellier D, Vecchio MD, Hamilton LS, Hermes D, Kahana MJ, Knight RT, Llorens A, Megevand P, Melloni L, Miller KJ, Piai V, Puce A, Ramsey NF, Schwiedrzik CM, Smith SE, Stolk A, Swann NC, Vansteensel MJ, Voytek B, Wang L, Lachaux JP, Oostenveld R. Advances in human intracranial electroencephalography research, guidelines and good practices. Neuroimage 2022; 260:119438. [PMID: 35792291 PMCID: PMC10190110 DOI: 10.1016/j.neuroimage.2022.119438] [Citation(s) in RCA: 56] [Impact Index Per Article: 28.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2021] [Revised: 05/23/2022] [Accepted: 06/30/2022] [Indexed: 12/11/2022] Open
Abstract
Since the second-half of the twentieth century, intracranial electroencephalography (iEEG), including both electrocorticography (ECoG) and stereo-electroencephalography (sEEG), has provided an intimate view into the human brain. At the interface between fundamental research and the clinic, iEEG provides both high temporal resolution and high spatial specificity but comes with constraints, such as the individual's tailored sparsity of electrode sampling. Over the years, researchers in neuroscience developed their practices to make the most of the iEEG approach. Here we offer a critical review of iEEG research practices in a didactic framework for newcomers, as well addressing issues encountered by proficient researchers. The scope is threefold: (i) review common practices in iEEG research, (ii) suggest potential guidelines for working with iEEG data and answer frequently asked questions based on the most widespread practices, and (iii) based on current neurophysiological knowledge and methodologies, pave the way to good practice standards in iEEG research. The organization of this paper follows the steps of iEEG data processing. The first section contextualizes iEEG data collection. The second section focuses on localization of intracranial electrodes. The third section highlights the main pre-processing steps. The fourth section presents iEEG signal analysis methods. The fifth section discusses statistical approaches. The sixth section draws some unique perspectives on iEEG research. Finally, to ensure a consistent nomenclature throughout the manuscript and to align with other guidelines, e.g., Brain Imaging Data Structure (BIDS) and the OHBM Committee on Best Practices in Data Analysis and Sharing (COBIDAS), we provide a glossary to disambiguate terms related to iEEG research.
Collapse
Affiliation(s)
- Manuel R Mercier
- INSERM, INS, Institut de Neurosciences des Systèmes, Aix-Marseille University, Marseille, France.
| | | | - François Tadel
- Signal & Image Processing Institute, University of Southern California, Los Angeles, CA United States of America
| | - Pietro Avanzini
- Institute of Neuroscience, National Research Council of Italy, Parma, Italy
| | - Nikolai Axmacher
- Department of Neuropsychology, Faculty of Psychology, Institute of Cognitive Neuroscience, Ruhr University Bochum, Universitätsstraße 150, Bochum 44801, Germany; State Key Laboratory of Cognitive Neuroscience and Learning and IDG/McGovern Institute for Brain Research, Beijing Normal University, 19 Xinjiekou Outer St, Beijing 100875, China
| | - Dillan Cellier
- Department of Cognitive Science, University of California, La Jolla, San Diego, United States of America
| | - Maria Del Vecchio
- Institute of Neuroscience, National Research Council of Italy, Parma, Italy
| | - Liberty S Hamilton
- Department of Neurology, Dell Medical School, The University of Texas at Austin, Austin, TX, United States of America; Institute for Neuroscience, The University of Texas at Austin, Austin, TX, United States of America; Department of Speech, Language, and Hearing Sciences, Moody College of Communication, The University of Texas at Austin, Austin, TX, United States of America
| | - Dora Hermes
- Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, MN, United States of America
| | - Michael J Kahana
- Department of Psychology, University of Pennsylvania, Philadelphia, PA, United States of America
| | - Robert T Knight
- Department of Psychology and the Helen Wills Neuroscience Institute, University of California, Berkeley, CA 94720, United States of America
| | - Anais Llorens
- Helen Wills Neuroscience Institute, University of California, Berkeley, United States of America
| | - Pierre Megevand
- Department of Clinical neurosciences, Faculty of Medicine, University of Geneva, Geneva, Switzerland
| | - Lucia Melloni
- Department of Neuroscience, Max Planck Institute for Empirical Aesthetics, Grüneburgweg 14, Frankfurt am Main 60322, Germany; Department of Neurology, NYU Grossman School of Medicine, 145 East 32nd Street, Room 828, New York, NY 10016, United States of America
| | - Kai J Miller
- Department of Neurosurgery, Mayo Clinic, Rochester, MN 55905, USA
| | - Vitória Piai
- Donders Institute for Brain, Cognition, and Behaviour, Radboud University, Nijmegen, the Netherlands; Department of Medical Psychology, Radboudumc, Donders Centre for Medical Neuroscience, Nijmegen, the Netherlands
| | - Aina Puce
- Department of Psychological & Brain Sciences, Programs in Neuroscience, Cognitive Science, Indiana University, Bloomington, IN, United States of America
| | - Nick F Ramsey
- Department of Neurology and Neurosurgery, UMC Utrecht Brain Center, UMC Utrecht, the Netherlands
| | - Caspar M Schwiedrzik
- Neural Circuits and Cognition Lab, European Neuroscience Institute Göttingen - A Joint Initiative of the University Medical Center Göttingen and the Max Planck Society, Göttingen, Germany; Perception and Plasticity Group, German Primate Center, Leibniz Institute for Primate Research, Göttingen, Germany
| | - Sydney E Smith
- Neurosciences Graduate Program, University of California, La Jolla, San Diego, United States of America
| | - Arjen Stolk
- Donders Institute for Brain, Cognition, and Behaviour, Radboud University, Nijmegen, the Netherlands; Psychological and Brain Sciences, Dartmouth College, Hanover, NH, United States of America
| | - Nicole C Swann
- University of Oregon in the Department of Human Physiology, United States of America
| | - Mariska J Vansteensel
- Department of Neurology and Neurosurgery, UMC Utrecht Brain Center, UMC Utrecht, the Netherlands
| | - Bradley Voytek
- Department of Cognitive Science, University of California, La Jolla, San Diego, United States of America; Neurosciences Graduate Program, University of California, La Jolla, San Diego, United States of America; Halıcıoğlu Data Science Institute, University of California, La Jolla, San Diego, United States of America; Kavli Institute for Brain and Mind, University of California, La Jolla, San Diego, United States of America
| | - Liang Wang
- CAS Key Laboratory of Mental Health, Institute of Psychology, Beijing, China; Department of Psychology, University of Chinese Academy of Sciences, Beijing, China
| | - Jean-Philippe Lachaux
- Lyon Neuroscience Research Center, EDUWELL Team, INSERM UMRS 1028, CNRS UMR 5292, Université Claude Bernard Lyon 1, Université de Lyon, Lyon F-69000, France
| | - Robert Oostenveld
- Donders Institute for Brain, Cognition, and Behaviour, Radboud University, Nijmegen, the Netherlands; NatMEG, Karolinska Institutet, Stockholm, Sweden
| |
Collapse
|
33
|
Azilinon M, Makhalova J, Zaaraoui W, Medina Villalon S, Viout P, Roussel T, El Mendili MM, Ridley B, Ranjeva J, Bartolomei F, Jirsa V, Guye M. Combining sodium MRI, proton MR spectroscopic imaging, and intracerebral EEG in epilepsy. Hum Brain Mapp 2022; 44:825-840. [PMID: 36217746 PMCID: PMC9842896 DOI: 10.1002/hbm.26102] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2022] [Revised: 09/12/2022] [Accepted: 09/17/2022] [Indexed: 01/25/2023] Open
Abstract
Whole brain ionic and metabolic imaging has potential as a powerful tool for the characterization of brain diseases. We combined sodium MRI (23 Na MRI) and 1 H-MR Spectroscopic Imaging (1 H-MRSI), assessing changes within epileptogenic networks in comparison with electrophysiologically normal networks as defined by stereotactic EEG (SEEG) recordings analysis. We applied a multi-echo density adapted 3D projection reconstruction pulse sequence at 7 T (23 Na-MRI) and a 3D echo-planar spectroscopic imaging sequence at 3 T (1 H-MRSI) in 19 patients suffering from drug-resistant focal epilepsy who underwent presurgical SEEG. We investigated 23 Na MRI parameters including total sodium concentration (TSC) and the sodium signal fraction associated with the short component of T2 * decay (f), alongside the level of metabolites N-acetyl aspartate (NAA), choline compounds (Cho), and total creatine (tCr). All measures were extracted from spherical regions of interest (ROIs) centered between two adjacent SEEG electrode contacts and z-scored against the same ROI in controls. Group comparison showed a significant increase in f only in the epileptogenic zone (EZ) compared to controls and compared to patients' propagation zone (PZ) and non-involved zone (NIZ). TSC was significantly increased in all patients' regions compared to controls. Conversely, NAA levels were significantly lower in patients compared to controls, and lower in the EZ compared to PZ and NIZ. Multiple regression analyzing the relationship between sodium and metabolites levels revealed significant relations in PZ and in NIZ but not in EZ. Our results are in agreement with the energetic failure hypothesis in epileptic regions associated with widespread tissue reorganization.
Collapse
Affiliation(s)
- Mikhael Azilinon
- Aix Marseille Univ, CNRS, CRMBMMarseilleFrance,Aix Marseille Univ, INSERM, INS, Inst Neurosci SystMarseilleFrance,APHM, Timone Hospital, CEMEREMMarseilleFrance
| | - Julia Makhalova
- APHM, Timone Hospital, CEMEREMMarseilleFrance,Epileptology DepartmentAPHM, Timone HospitalMarseilleFrance
| | - Wafaa Zaaraoui
- Aix Marseille Univ, CNRS, CRMBMMarseilleFrance,APHM, Timone Hospital, CEMEREMMarseilleFrance
| | - Samuel Medina Villalon
- Aix Marseille Univ, INSERM, INS, Inst Neurosci SystMarseilleFrance,Epileptology DepartmentAPHM, Timone HospitalMarseilleFrance
| | - Patrick Viout
- Aix Marseille Univ, CNRS, CRMBMMarseilleFrance,APHM, Timone Hospital, CEMEREMMarseilleFrance
| | - Tangi Roussel
- Aix Marseille Univ, CNRS, CRMBMMarseilleFrance,APHM, Timone Hospital, CEMEREMMarseilleFrance
| | - Mohamed M. El Mendili
- Aix Marseille Univ, CNRS, CRMBMMarseilleFrance,APHM, Timone Hospital, CEMEREMMarseilleFrance
| | - Ben Ridley
- IRCCS Istituto delle Scienze Neurologiche di BolognaBolognaItaly
| | - Jean‐Philippe Ranjeva
- Aix Marseille Univ, CNRS, CRMBMMarseilleFrance,APHM, Timone Hospital, CEMEREMMarseilleFrance
| | - Fabrice Bartolomei
- Aix Marseille Univ, INSERM, INS, Inst Neurosci SystMarseilleFrance,Epileptology DepartmentAPHM, Timone HospitalMarseilleFrance
| | - Viktor Jirsa
- Aix Marseille Univ, INSERM, INS, Inst Neurosci SystMarseilleFrance
| | - Maxime Guye
- Aix Marseille Univ, CNRS, CRMBMMarseilleFrance,APHM, Timone Hospital, CEMEREMMarseilleFrance
| |
Collapse
|
34
|
Cortico-cortical and thalamo-cortical connectivity during non-REM and REM sleep: Insights from intracranial recordings in humans. Clin Neurophysiol 2022; 143:84-94. [PMID: 36166901 DOI: 10.1016/j.clinph.2022.08.026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2021] [Revised: 08/23/2022] [Accepted: 08/31/2022] [Indexed: 11/23/2022]
Abstract
OBJECTIVE To study changes of thalamo-cortical and cortico-cortical connectivity during wakefulness, non-Rapid Eye Movement (non-REM) sleep, including N2 and N3 stages, and REM sleep, using stereoelectroencephalography (SEEG) recording in humans. METHODS We studied SEEG recordings of ten patients during wakefulness, non-REM sleep and REM sleep, in seven brain regions of interest including the thalamus. We calculated directed and undirected functional connectivity using a measure of non-linear correlation coefficient h2. RESULTS The thalamus was more connected to other brain regions during N2 stage and REM sleep than during N3 stage during which cortex was more connected than the thalamus. We found two significant directed links: the first from the prefrontal region to the lateral parietal region in the delta band during N3 sleep and the second from the thalamus to the insula during REM sleep. CONCLUSIONS These results showed that cortico-cortical connectivity is more prominent in N3 stage than in N2 and REM sleep. During REM sleep we found significant thalamo-insular connectivity, with a driving role of the thalamus. SIGNIFICANCE We found a pattern of cortical connectivity during N3 sleep concordant with antero-posterior traveling slow waves. The thalamus seemed particularly involved as a hub of connectivity during REM sleep.
Collapse
|
35
|
Scholly J, Gras A, Guye M, Bilger M, Valenti Hirsch MP, Hirsch E, Timofeev A, Vidailhet P, Bénar CG, Bartolomei F. Connectivity Alterations in Emotional and Cognitive Networks During a Manic State Induced by Direct Electrical Stimulation. Brain Topogr 2022; 35:627-635. [PMID: 36071370 DOI: 10.1007/s10548-022-00913-0] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2021] [Accepted: 08/27/2022] [Indexed: 11/28/2022]
Abstract
Mania is characterized by affective and cognitive alterations, with heightened external and self-awareness that are opposite to the alteration of awareness during epileptic seizures. Electrical stimulations carried out routinely during stereotactic intracerebral EEG (SEEG) recordings for presurgical evaluation of epilepsy may represent a unique opportunity to study the pathophysiology of such complex emotional-behavioral phenomenon, particularly difficult to reproduce in experimental setting. We investigated SEEG signals-based functional connectivity between different brain regions involved in emotions and in consciousness processing during a manic state induced by electrical stimulation in a patient with drug-resistant focal epilepsy. The stimulation inducing manic state and an asymptomatic stimulation of the same site, as well as a seizure with alteration of awareness (AOA) were analyzed. Functional connectivity analysis was performed by measuring interdependencies (nonlinear regression analysis based on the h2 coefficient) between broadband SEEG signals and within typical sub-bands, before and after stimulation, or before and during the seizure with AOA, respectively. Stimulation of the right lateral prefrontal cortex induced a manic state lasting several hours. Its onset was associated with significant increase of broadband-signal functional coupling between the right hemispheric limbic nodes, the temporal pole and the claustrum, whereas significant decorrelation between the right lateral prefrontal and the anterior cingulate cortex was observed in theta-band. In contrast, ictal alteration of awareness was associated with increased broadband and sub-bands synchronization within and between the internal and external awareness networks, including the anterior and middle cingulate, the mesial and lateral prefrontal, the inferior parietal and the temporopolar cortex. Our data suggest the existence of network- and frequency-specific functional connectivity patterns during manic state. A transient desynchronization of theta activity between the external and internal awareness network hubs is likely to increase awareness, with potential therapeutic effect.
Collapse
Affiliation(s)
- Julia Scholly
- Service d'Epileptologie et de Rythmololgie Cérébrale, Hôpital Timone, AP-HM, Marseille, France. .,Aix Marseille Univ, CNRS, CRMBM, Marseille, France. .,Service d'Epileptologie et Rythmologie Cérébrale, Hôpital Timone, AP-HM, 264 Rue St Pierre, 13005, Marseille, France.
| | - Adrien Gras
- Consultation-Liaison Psychiatry Unit, University Hospital of Strasbourg, Strasbourg, France
| | - Maxime Guye
- Service d'Epileptologie et de Rythmololgie Cérébrale, Hôpital Timone, AP-HM, Marseille, France.,Aix Marseille Univ, CNRS, CRMBM, Marseille, France
| | - Mathias Bilger
- Medical and Surgical Epilepsy Unit, University Hospital of Strasbourg, Strasbourg, France
| | | | - Edouard Hirsch
- Medical and Surgical Epilepsy Unit, University Hospital of Strasbourg, Strasbourg, France
| | - Alexander Timofeev
- Medical and Surgical Epilepsy Unit, University Hospital of Strasbourg, Strasbourg, France
| | - Pierre Vidailhet
- Consultation-Liaison Psychiatry Unit, University Hospital of Strasbourg, Strasbourg, France
| | - Christian G Bénar
- Aix Marseille Univ, INSERM, INS, Inst Neurosci Syst, Marseille, France
| | - Fabrice Bartolomei
- Service d'Epileptologie et de Rythmololgie Cérébrale, Hôpital Timone, AP-HM, Marseille, France.,Aix Marseille Univ, INSERM, INS, Inst Neurosci Syst, Marseille, France
| |
Collapse
|
36
|
Acerbo E, Jegou A, Luff C, Dzialecka P, Botzanowski B, Missey F, Ngom I, Lagarde S, Bartolomei F, Cassara A, Neufeld E, Jirsa V, Carron R, Grossman N, Williamson A. Focal non-invasive deep-brain stimulation with temporal interference for the suppression of epileptic biomarkers. Front Neurosci 2022; 16:945221. [PMID: 36061593 PMCID: PMC9431367 DOI: 10.3389/fnins.2022.945221] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2022] [Accepted: 07/12/2022] [Indexed: 11/15/2022] Open
Abstract
Introduction Neurostimulation applied from deep brain stimulation (DBS) electrodes is an effective therapeutic intervention in patients suffering from intractable drug-resistant epilepsy when resective surgery is contraindicated or failed. Inhibitory DBS to suppress seizures and associated epileptogenic biomarkers could be performed with high-frequency stimulation (HFS), typically between 100 and 165 Hz, to various deep-seated targets, such as the Mesio-temporal lobe (MTL), which leads to changes in brain rhythms, specifically in the hippocampus. The most prominent alterations concern high-frequency oscillations (HFOs), namely an increase in ripples, a reduction in pathological Fast Ripples (FRs), and a decrease in pathological interictal epileptiform discharges (IEDs). Materials and methods In the current study, we use Temporal Interference (TI) stimulation to provide a non-invasive DBS (130 Hz) of the MTL, specifically the hippocampus, in both mouse models of epilepsy, and scale the method using human cadavers to demonstrate the potential efficacy in human patients. Simulations for both mice and human heads were performed to calculate the best coordinates to reach the hippocampus. Results This non-invasive DBS increases physiological ripples, and decreases the number of FRs and IEDs in a mouse model of epilepsy. Similarly, we show the inability of 130 Hz transcranial current stimulation (TCS) to achieve similar results. We therefore further demonstrate the translatability to human subjects via measurements of the TI stimulation vs. TCS in human cadavers. Results show a better penetration of TI fields into the human hippocampus as compared with TCS. Significance These results constitute the first proof of the feasibility and efficiency of TI to stimulate at depth an area without impacting the surrounding tissue. The data tend to show the sufficiently focal character of the induced effects and suggest promising therapeutic applications in epilepsy.
Collapse
Affiliation(s)
- Emma Acerbo
- Aix Marseille University:, INSERM, Institut de Neurosciences des Systèmes, Marseille, France
| | - Aude Jegou
- Aix Marseille University:, INSERM, Institut de Neurosciences des Systèmes, Marseille, France
| | - Charlotte Luff
- Department of Brain Sciences, Imperial College London, London, United Kingdom
| | - Patrycja Dzialecka
- Department of Brain Sciences, Imperial College London, London, United Kingdom
| | - Boris Botzanowski
- Aix Marseille University:, INSERM, Institut de Neurosciences des Systèmes, Marseille, France
| | - Florian Missey
- Aix Marseille University:, INSERM, Institut de Neurosciences des Systèmes, Marseille, France
| | - Ibrahima Ngom
- Aix Marseille University:, INSERM, Institut de Neurosciences des Systèmes, Marseille, France
| | - Stanislas Lagarde
- Aix Marseille University:, INSERM, Institut de Neurosciences des Systèmes, Marseille, France
- Department of Epileptology, APHM, Timone Hospital, Marseille, France
| | - Fabrice Bartolomei
- Aix Marseille University:, INSERM, Institut de Neurosciences des Systèmes, Marseille, France
- Department of Epileptology, APHM, Timone Hospital, Marseille, France
| | - Antonino Cassara
- Foundation for Research on Information Technologies in Society, Zurich, Switzerland
| | - Esra Neufeld
- Foundation for Research on Information Technologies in Society, Zurich, Switzerland
| | - Viktor Jirsa
- Aix Marseille University:, INSERM, Institut de Neurosciences des Systèmes, Marseille, France
| | - Romain Carron
- Aix Marseille University:, INSERM, Institut de Neurosciences des Systèmes, Marseille, France
- Department of Functional and Stereotactic Neurosurgery, Timone University Hospital, Marseille, France
| | - Nir Grossman
- Department of Brain Sciences, Imperial College London, London, United Kingdom
| | - Adam Williamson
- Aix Marseille University:, INSERM, Institut de Neurosciences des Systèmes, Marseille, France
- Department of Medicine, Center for Bioelectronic Medicine, Karolinska Institute, Stockholm, Sweden
- *Correspondence: Adam Williamson, ;
| |
Collapse
|
37
|
Zheng B, Hsieh B, Rex N, Lauro PM, Collins SA, Blum AS, Roth JL, Ayub N, Asaad WF. A hierarchical anatomical framework and workflow for organizing stereotactic encephalography in epilepsy. Hum Brain Mapp 2022; 43:4852-4863. [PMID: 35851977 PMCID: PMC9582372 DOI: 10.1002/hbm.26017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Revised: 06/20/2022] [Accepted: 06/24/2022] [Indexed: 11/17/2022] Open
Abstract
Stereotactic electroencephalography (SEEG) is an increasingly utilized method for invasive monitoring in patients with medically intractable epilepsy. Yet, the lack of standardization for labeling electrodes hinders communication among clinicians. A rational clustering of contacts based on anatomy rather than arbitrary physical leads may help clinical neurophysiologists interpret seizure networks. We identified SEEG electrodes on post‐implant CTs and registered them to preoperative MRIs segmented according to an anatomical atlas. Individual contacts were automatically assigned to anatomical areas independent of lead. These contacts were then organized using a hierarchical anatomical schema for display and interpretation. Bipolar‐referenced signal cross‐correlations were used to compare the similarity of grouped signals within a conventional montage versus this anatomical montage. As a result, we developed a hierarchical organization for SEEG contacts using well‐accepted, free software that is based solely on their post‐implant anatomical location. When applied to three example SEEG cases for epilepsy, clusters of contacts that were anatomically related collapsed into standardized groups. Qualitatively, seizure events organized using this framework were better visually clustered compared to conventional schemes. Quantitatively, signals grouped by anatomical region were more similar to each other than electrode‐based groups as measured by Pearson correlation. Further, we uploaded visualizations of SEEG reconstructions into the electronic medical record, rendering them durably useful given the interpretable electrode labels. In conclusion, we demonstrate a standardized, anatomically grounded approach to the organization of SEEG neuroimaging and electrophysiology data that may enable improved communication among and across surgical epilepsy teams and promote a clearer view of individual seizure networks.
Collapse
Affiliation(s)
- Bryan Zheng
- Department of Neurosurgery Warren Alpert Medical School, Brown University Providence Rhode Island USA
| | - Ben Hsieh
- Department of Diagnostic Imaging Warren Alpert Medical School, Brown University Providence Rhode Island USA
| | - Nathaniel Rex
- Department of Diagnostic Imaging Warren Alpert Medical School, Brown University Providence Rhode Island USA
| | - Peter M. Lauro
- Department of Neurosurgery Warren Alpert Medical School, Brown University Providence Rhode Island USA
| | - Scott A. Collins
- Department of Diagnostic Imaging Warren Alpert Medical School, Brown University Providence Rhode Island USA
| | - Andrew S. Blum
- Department of Neurology Warren Alpert Medical School, Brown University Providence Rhode Island USA
| | - Julie L. Roth
- Department of Neurology Warren Alpert Medical School, Brown University Providence Rhode Island USA
| | - Neishay Ayub
- Department of Neurology Warren Alpert Medical School, Brown University Providence Rhode Island USA
| | - Wael F. Asaad
- Department of Neurosurgery Warren Alpert Medical School, Brown University Providence Rhode Island USA
| |
Collapse
|
38
|
López-Madrona VJ, Medina Villalon S, Badier JM, Trébuchon A, Jayabal V, Bartolomei F, Carron R, Barborica A, Vulliémoz S, Alario FX, Bénar CG. Magnetoencephalography can reveal deep brain network activities linked to memory processes. Hum Brain Mapp 2022; 43:4733-4749. [PMID: 35766240 PMCID: PMC9491290 DOI: 10.1002/hbm.25987] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2022] [Revised: 05/04/2022] [Accepted: 05/18/2022] [Indexed: 11/14/2022] Open
Abstract
Recording from deep neural structures such as hippocampus noninvasively and yet with high temporal resolution remains a major challenge for human neuroscience. Although it has been proposed that deep neuronal activity might be recordable during cognitive tasks using magnetoencephalography (MEG), this remains to be demonstrated as the contribution of deep structures to MEG recordings may be too small to be detected or might be eclipsed by the activity of large‐scale neocortical networks. In the present study, we disentangled mesial activity and large‐scale networks from the MEG signals thanks to blind source separation (BSS). We then validated the MEG BSS components using intracerebral EEG signals recorded simultaneously in patients during their presurgical evaluation of epilepsy. In the MEG signals obtained during a memory task involving the recognition of old and new images, we identified with BSS a putative mesial component, which was present in all patients and all control subjects. The time course of the component selectively correlated with stereo‐electroencephalography signals recorded from hippocampus and rhinal cortex, thus confirming its mesial origin. This finding complements previous studies with epileptic activity and opens new possibilities for using MEG to study deep brain structures in cognition and in brain disorders.
Collapse
Affiliation(s)
| | - Samuel Medina Villalon
- Aix Marseille Univ, INSERM, INS, Inst Neurosci Syst, Marseille, France.,APHM, Timone Hospital, Epileptology and Cerebral Rhythmology, Marseille, France
| | | | - Agnès Trébuchon
- APHM, Timone Hospital, Epileptology and Cerebral Rhythmology, Marseille, France.,APHM, Timone Hospital, Functional and Stereotactic Neurosurgery, Marseille, France
| | | | - Fabrice Bartolomei
- Aix Marseille Univ, INSERM, INS, Inst Neurosci Syst, Marseille, France.,APHM, Timone Hospital, Epileptology and Cerebral Rhythmology, Marseille, France
| | - Romain Carron
- Aix Marseille Univ, INSERM, INS, Inst Neurosci Syst, Marseille, France.,APHM, Timone Hospital, Functional and Stereotactic Neurosurgery, Marseille, France
| | | | - Serge Vulliémoz
- EEG and Epilepsy Unit, University Hospitals and Faculty of Medicine Geneva, Geneva, Switzerland
| | | | - Christian G Bénar
- Aix Marseille Univ, INSERM, INS, Inst Neurosci Syst, Marseille, France
| |
Collapse
|
39
|
Dimakopoulos V, Gotman J, Stacey W, von Ellenrieder N, Jacobs J, Papadelis C, Cimbalnik J, Worrell G, Sperling MR, Zijlmans M, Imbach L, Frauscher B, Sarnthein J. Protocol for multicentre comparison of interictal high-frequency oscillations as a predictor of seizure freedom. Brain Commun 2022; 4:fcac151. [PMID: 35770134 PMCID: PMC9234061 DOI: 10.1093/braincomms/fcac151] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2021] [Revised: 04/29/2022] [Accepted: 06/07/2022] [Indexed: 11/17/2022] Open
Abstract
In drug-resistant focal epilepsy, interictal high-frequency oscillations (HFOs) recorded from intracranial EEG (iEEG) may provide clinical information for delineating epileptogenic brain tissue. The iEEG electrode contacts that contain HFO are hypothesized to delineate the epileptogenic zone; their resection should then lead to postsurgical seizure freedom. We test whether our prospective definition of clinically relevant HFO is in agreement with postsurgical seizure outcome. The algorithm is fully automated and is equally applied to all data sets. The aim is to assess the reliability of the proposed detector and analysis approach. We use an automated data-independent prospective definition of clinically relevant HFO that has been validated in data from two independent epilepsy centres. In this study, we combine retrospectively collected data sets from nine independent epilepsy centres. The analysis is blinded to clinical outcome. We use iEEG recordings during NREM sleep with a minimum of 12 epochs of 5 min of NREM sleep. We automatically detect HFO in the ripple (80-250 Hz) and in the fast ripple (250-500 Hz) band. There is no manual rejection of events in this fully automated algorithm. The type of HFO that we consider clinically relevant is defined as the simultaneous occurrence of a fast ripple and a ripple. We calculate the temporal consistency of each patient's HFO rates over several data epochs within and between nights. Patients with temporal consistency <50% are excluded from further analysis. We determine whether all electrode contacts with high HFO rate are included in the resection volume and whether seizure freedom (ILAE 1) was achieved at ≥2 years follow-up. Applying a previously validated algorithm to a large cohort from several independent epilepsy centres may advance the clinical relevance and the generalizability of HFO analysis as essential next step for use of HFO in clinical practice.
Collapse
Affiliation(s)
- Vasileios Dimakopoulos
- Klinik für Neurochirurgie, UniversitätsSpital Zürich, Universität Zürich, Zürich, Switzerland
| | - Jean Gotman
- Montreal Neurological Institute & Hospital, McGill University, Montreal, Quebec, Canada
| | - William Stacey
- Department of Neurology and Department of Biomedical Engineering, University of Michigan, Ann Arbor, Michigan, MI, USA
| | | | - Julia Jacobs
- Alberta Children’s Hospital, University of Calgary, Calgary, Canada
| | | | - Jan Cimbalnik
- St. Anne’s University Hospital, Brno, Czech Republic
| | | | - Michael R Sperling
- Department of Neurology, Jefferson University Hospitals, Philadelphia, PA, USA
| | - Maike Zijlmans
- University Medical Center, Utrecht, and Stichting Epilepsie Instellingen Nederland (SEIN), Utrecht, The Netherlands
| | - Lucas Imbach
- Schweizerisches Epilepsie Zentrum, Zurich, Switzerland
| | - Birgit Frauscher
- Montreal Neurological Institute & Hospital, McGill University, Montreal, Quebec, Canada
| | - Johannes Sarnthein
- Klinik für Neurochirurgie, UniversitätsSpital Zürich, Universität Zürich, Zürich, Switzerland
| |
Collapse
|
40
|
Makhalova J, Medina Villalon S, Wang H, Giusiano B, Woodman M, Bénar C, Guye M, Jirsa V, Bartolomei F. Virtual Epileptic Patient brain modeling: relationships with seizure onset and surgical outcome. Epilepsia 2022; 63:1942-1955. [PMID: 35604575 PMCID: PMC9543509 DOI: 10.1111/epi.17310] [Citation(s) in RCA: 28] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2022] [Revised: 05/20/2022] [Accepted: 05/20/2022] [Indexed: 11/29/2022]
Abstract
Objective The virtual epileptic patient (VEP) is a large‐scale brain modeling method based on virtual brain technology, using stereoelectroencephalography (SEEG), anatomical data (magnetic resonance imaging [MRI] and connectivity), and a computational neuronal model to provide computer simulations of a patient's seizures. VEP has potential interest in the presurgical evaluation of drug‐resistant epilepsy by identifying regions most likely to generate seizures. We aimed to assess the performance of the VEP approach in estimating the epileptogenic zone and in predicting surgical outcome. Methods VEP modeling was retrospectively applied in a cohort of 53 patients with pharmacoresistant epilepsy and available SEEG, T1‐weighted MRI, and diffusion‐weighted MRI. Precision recall was used to compare the regions identified as epileptogenic by VEP (EZVEP) to the epileptogenic zone defined by clinical analysis incorporating the Epileptogenicity Index (EI) method (EZC). In 28 operated patients, we compared the VEP results and clinical analysis with surgical outcome. Results VEP showed a precision of 64% and a recall of 44% for EZVEP detection compared to EZC. There was a better concordance of VEP predictions with clinical results, with higher precision (77%) in seizure‐free compared to non‐seizure‐free patients. Although the completeness of resection was significantly correlated with surgical outcome for both EZC and EZVEP, there was a significantly higher number of regions defined as epileptogenic exclusively by VEP that remained nonresected in non‐seizure‐free patients. Significance VEP is the first computational model that estimates the extent and organization of the epileptogenic zone network. It is characterized by good precision in detecting epileptogenic regions as defined by a combination of visual analysis and EI. The potential impact of VEP on improving surgical prognosis remains to be exploited. Analysis of factors limiting the performance of the actual model is crucial for its further development.
Collapse
Affiliation(s)
- Julia Makhalova
- APHM, Timone Hospital, Epileptology and Cerebral Rhythmology, Marseille, France.,Aix Marseille Univ, CNRS, CRMBM, Marseille, France.,APHM, Timone Hospital, CEMEREM, Marseille, France
| | - Samuel Medina Villalon
- APHM, Timone Hospital, Epileptology and Cerebral Rhythmology, Marseille, France.,Aix Marseille Univ, INSERM, INS, Inst Neurosci Syst, Marseille, France
| | - Huifang Wang
- Aix Marseille Univ, INSERM, INS, Inst Neurosci Syst, Marseille, France
| | - Bernard Giusiano
- Aix Marseille Univ, INSERM, INS, Inst Neurosci Syst, Marseille, France.,APHM, Public Health Department, Marseille, France
| | - Marmaduke Woodman
- Aix Marseille Univ, INSERM, INS, Inst Neurosci Syst, Marseille, France
| | - Christian Bénar
- Aix Marseille Univ, INSERM, INS, Inst Neurosci Syst, Marseille, France
| | - Maxime Guye
- APHM, Timone Hospital, Epileptology and Cerebral Rhythmology, Marseille, France.,Aix Marseille Univ, CNRS, CRMBM, Marseille, France.,APHM, Timone Hospital, CEMEREM, Marseille, France
| | - Viktor Jirsa
- Aix Marseille Univ, INSERM, INS, Inst Neurosci Syst, Marseille, France
| | - Fabrice Bartolomei
- APHM, Timone Hospital, Epileptology and Cerebral Rhythmology, Marseille, France.,Aix Marseille Univ, INSERM, INS, Inst Neurosci Syst, Marseille, France
| |
Collapse
|
41
|
Dubarry AS, Liégeois-Chauvel C, Trébuchon A, Bénar C, Alario FX. An open-source toolbox for Multi-patient Intracranial EEG Analysis (MIA). Neuroimage 2022; 257:119251. [PMID: 35568349 DOI: 10.1016/j.neuroimage.2022.119251] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2021] [Revised: 03/31/2022] [Accepted: 04/26/2022] [Indexed: 10/18/2022] Open
Abstract
Intracranial EEG (iEEG) performed during the pre-surgical evaluation of refractory epilepsy provides a great opportunity to investigate the neurophysiology of human cognitive functions with exceptional spatial and temporal precisions. A difficulty of the iEEG approach for cognitive neuroscience, however, is the potential variability across patients in the anatomical location of implantations and in the functional responses therein recorded. In this context, we designed, implemented, and tested a user-friendly and efficient open-source toolbox for Multi-Patient Intracranial data Analysis (MIA), which can be used as standalone program or as a Brainstorm plugin. MIA helps analyzing event related iEEG signals while following good scientific practice recommendations, such as building reproducible analysis pipelines and applying robust statistics. The signals can be analyzed in the temporal and time-frequency domains, and the similarity of time courses across patients or contacts can be assessed within anatomical regions. MIA allows visualizing all these results in a variety of formats at every step of the analysis. Here, we present the toolbox architecture and illustrate the different steps and features of the analysis pipeline using a group dataset collected during a language task.
Collapse
Affiliation(s)
- A-Sophie Dubarry
- Aix Marseille Univ, CNRS, LPL, Aix-en-Provence, France; Aix Marseille Univ, CNRS, LPC, Aix-en-Provence, France.
| | - Catherine Liégeois-Chauvel
- Cortical Systems Laboratory, University of Pittsburgh, Pennsylvania, USA; Aix Marseille Univ, INSERM, INS, Inst Neurosci Syst, Marseille, France
| | - Agnès Trébuchon
- Aix Marseille Univ, INSERM, INS, Inst Neurosci Syst, Marseille, France; APHM, Hôpital la Timone, Service Épileptologie et Rythmologie Cérébrale, Marseille, France
| | - Christian Bénar
- Aix Marseille Univ, INSERM, INS, Inst Neurosci Syst, Marseille, France
| | - F-Xavier Alario
- Aix Marseille Univ, CNRS, LPC, Aix-en-Provence, France; Cortical Systems Laboratory, University of Pittsburgh, Pennsylvania, USA
| |
Collapse
|
42
|
Hippocampal and auditory contributions to speech segmentation. Cortex 2022; 150:1-11. [DOI: 10.1016/j.cortex.2022.01.017] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2021] [Revised: 11/03/2021] [Accepted: 01/23/2022] [Indexed: 11/21/2022]
|
43
|
Boulogne S, Pizzo F, Chatard B, Roehri N, Catenoix H, Ostrowsky‐Coste K, Giusiano B, Guenot M, Carron R, Bartolomei F, Rheims S. Functional connectivity and epileptogenicity of nodular heterotopias: A single‐pulse stimulation study. Epilepsia 2022; 63:961-973. [DOI: 10.1111/epi.17168] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2021] [Revised: 01/06/2022] [Accepted: 01/06/2022] [Indexed: 11/28/2022]
Affiliation(s)
- Sébastien Boulogne
- Department of Functional Neurology and Epileptology Hospices Civils de Lyon and University of Lyon Lyon France
- Lyon's Neurosciences Research Center INSERM U1028 CNRS 5292 Lyon France
- Lyon 1 University Villeurbanne France
| | - Francesca Pizzo
- Inserm, INS Institut de Neurosciences des Systèmes Aix Marseille University Marseille France
- Epileptology and Cerebral Rythmology Department Assistance Publique – Hôpitaux de Marseille Marseille France
| | - Benoit Chatard
- Lyon's Neurosciences Research Center INSERM U1028 CNRS 5292 Lyon France
| | - Nicolas Roehri
- Inserm, INS Institut de Neurosciences des Systèmes Aix Marseille University Marseille France
| | - Hélène Catenoix
- Department of Functional Neurology and Epileptology Hospices Civils de Lyon and University of Lyon Lyon France
- Lyon's Neurosciences Research Center INSERM U1028 CNRS 5292 Lyon France
| | - Karine Ostrowsky‐Coste
- Lyon's Neurosciences Research Center INSERM U1028 CNRS 5292 Lyon France
- Epileptology, Sleep Disorders and Functional Pediatric Neurology Hospices Civils de Lyon and University of Lyon Lyon France
| | - Bernard Giusiano
- Inserm, INS Institut de Neurosciences des Systèmes Aix Marseille University Marseille France
- Epileptology and Cerebral Rythmology Department Assistance Publique – Hôpitaux de Marseille Marseille France
| | - Marc Guenot
- Lyon's Neurosciences Research Center INSERM U1028 CNRS 5292 Lyon France
- Department of Functional Neurosurgery Hospices Civils de Lyon and University of Lyon Lyon France
| | - Romain Carron
- Department of Functional Neurosurgery Assistance Publique –Hôpitaux de Marseille Marseille France
| | - Fabrice Bartolomei
- Inserm, INS Institut de Neurosciences des Systèmes Aix Marseille University Marseille France
- Epileptology and Cerebral Rythmology Department Assistance Publique – Hôpitaux de Marseille Marseille France
| | - Sylvain Rheims
- Department of Functional Neurology and Epileptology Hospices Civils de Lyon and University of Lyon Lyon France
- Lyon's Neurosciences Research Center INSERM U1028 CNRS 5292 Lyon France
- Lyon 1 University Villeurbanne France
| |
Collapse
|
44
|
Zweiphenning WJEM, von Ellenrieder N, Dubeau F, Martineau L, Minotti L, Hall JA, Chabardes S, Dudley R, Kahane P, Gotman J, Frauscher B. Correcting for physiological ripples improves epileptic focus identification and outcome prediction. Epilepsia 2021; 63:483-496. [PMID: 34919741 PMCID: PMC9300035 DOI: 10.1111/epi.17145] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2021] [Revised: 11/30/2021] [Accepted: 11/30/2021] [Indexed: 11/30/2022]
Abstract
Objective The integration of high‐frequency oscillations (HFOs; ripples [80–250 Hz], fast ripples [250–500 Hz]) in epilepsy evaluation is hampered by physiological HFOs, which cannot be reliably differentiated from pathological HFOs. We evaluated whether defining abnormal HFO rates by statistical comparison to region‐specific physiological HFO rates observed in the healthy brain improves identification of the epileptic focus and surgical outcome prediction. Methods We detected HFOs in 151 consecutive patients who underwent stereo‐electroencephalography and subsequent resective epilepsy surgery at two tertiary epilepsy centers. We compared how HFOs identified the resection cavity and predicted seizure‐free outcome using two thresholds from the literature (HFO rate > 1/min; 50% of the total number of a patient's HFOs) and three thresholds based on normative rates from the Montreal Neurological Institute Open iEEG Atlas (https://mni‐open‐ieegatlas.research.mcgill.ca/): global Atlas threshold, regional Atlas threshold, and regional + 10% threshold after regional Atlas correction. Results Using ripples, the regional + 10% threshold performed best for focus identification (77.3% accuracy, 27% sensitivity, 97.1% specificity, 80.6% positive predictive value [PPV], 78.2% negative predictive value [NPV]) and outcome prediction (69.5% accuracy, 58.6% sensitivity, 76.3% specificity, 60.7% PPV, 74.7% NPV). This was an improvement for focus identification (+1.1% accuracy, +17.0% PPV; p < .001) and outcome prediction (+12.0% sensitivity, +1.0% PPV; p = .05) compared to the 50% threshold. The improvement was particularly marked for foci in cortex, where physiological ripples are frequent (outcome: +35.3% sensitivity, +5.3% PPV; p = .014). In these cases, the regional + 10% threshold outperformed fast ripple rate > 1/min (+3.6% accuracy, +26.5% sensitivity, +21.6% PPV; p < .001) and seizure onset zone (+13.5% accuracy, +29.4% sensitivity, +17.0% PPV; p < .05–.01) for outcome prediction. Normalization did not improve the performance of fast ripples. Significance Defining abnormal HFO rates by statistical comparison to rates in healthy tissue overcomes an important weakness in the clinical use of ripples. It improves focus identification and outcome prediction compared to standard HFO measures, increasing their clinical applicability.
Collapse
Affiliation(s)
- Willemiek J E M Zweiphenning
- Montreal Neurological Institute and Hospital, McGill University, Montreal, Quebec, Canada.,University Medical Center Utrecht, Utrecht University, Utrecht, the Netherlands
| | | | - François Dubeau
- Montreal Neurological Institute and Hospital, McGill University, Montreal, Quebec, Canada
| | - Laurence Martineau
- Department of Neurology, Grenoble-Alpes University Hospital and Grenoble-Alpes University, Grenoble, France
| | - Lorella Minotti
- Department of Neurology, Grenoble-Alpes University Hospital and Grenoble-Alpes University, Grenoble, France
| | - Jeffery A Hall
- Montreal Neurological Institute and Hospital, McGill University, Montreal, Quebec, Canada
| | - Stephan Chabardes
- Department of Neurosurgery, Grenoble-Alpes University Hospital and Grenoble-Alpes University, Grenoble, France
| | - Roy Dudley
- Montreal Neurological Institute and Hospital, McGill University, Montreal, Quebec, Canada
| | - Philippe Kahane
- Department of Neurology, Grenoble-Alpes University Hospital and Grenoble-Alpes University, Grenoble, France
| | - Jean Gotman
- Montreal Neurological Institute and Hospital, McGill University, Montreal, Quebec, Canada
| | - Birgit Frauscher
- Montreal Neurological Institute and Hospital, McGill University, Montreal, Quebec, Canada
| |
Collapse
|
45
|
Makhalova J, Le Troter A, Aubert-Conil S, Giusiano B, McGonigal A, Trebuchon A, Carron R, Medina Villalon S, Bénar CG, Ranjeva JP, Guye M, Bartolomei F. Epileptogenic networks in drug-resistant epilepsy with amygdala enlargement: Assessment with stereo-EEG and 7 T MRI. Clin Neurophysiol 2021; 133:94-103. [PMID: 34826646 DOI: 10.1016/j.clinph.2021.10.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2021] [Revised: 09/02/2021] [Accepted: 10/04/2021] [Indexed: 11/03/2022]
Abstract
OBJECTIVE Amygdala enlargement is increasingly described in association with temporal lobe epilepsies. Its significance, however, remains uncertain both in terms of etiology and its link with psychiatric disorders and of its involvement in the epileptogenic zone. We assessed the epileptogenic networks underlying drug-resistant epilepsy with amygdala enlargement and investigated correlations between clinical features, epileptogenicity and morphovolumetric amygdala characteristics. METHODS We identified 12 consecutive patients suffering from drug-resistant epilepsy with visually suspected amygdala enlargement and available stereoelectroencephalographic recording. The epileptogenic zone was defined using the Connectivity Epileptogenicity Index. Morphovolumetric measurements were performed using automatic segmentation and co-registration on the 7TAMIbrain Amygdala atlas. RESULTS The epileptogenic zone involved the enlarged amygdala in all but three cases and corresponded to distributed, temporal-insular, temporal-insular-prefrontal or prefrontal-temporal networks in ten cases, while only two were temporo-mesial networks. Morphovolumetrically, amygdala enlargement was bilateral in 75% of patients. Most patients presented psychiatric comorbidities (anxiety, depression, posttraumatic stress disorder). The level of depression defined by screening questionnaire was positively correlated with the extent of amygdala enlargement. CONCLUSIONS Drug-resistant epilepsy with amygdala enlargement is heterogeneous; most cases implied "temporal plus" networks. SIGNIFICANCE The enlarged amygdala could reflect an interaction of stress-mediated limbic network alterations and mechanisms of epileptogenesis.
Collapse
Affiliation(s)
- Julia Makhalova
- APHM, Timone Hospital, Epileptology and Cerebral Rhythmology, Marseille, France; Aix Marseille Univ, CNRS, CRMBM, Marseille, France; APHM, Timone Hospital, CEMEREM, Marseille, France
| | - Arnaud Le Troter
- Aix Marseille Univ, CNRS, CRMBM, Marseille, France; APHM, Timone Hospital, CEMEREM, Marseille, France
| | | | - Bernard Giusiano
- APHM, Timone Hospital, Epileptology and Cerebral Rhythmology, Marseille, France; Aix Marseille Univ, INSERM, INS, Inst Neurosci Syst, Marseille, France
| | - Aileen McGonigal
- APHM, Timone Hospital, Epileptology and Cerebral Rhythmology, Marseille, France; Aix Marseille Univ, INSERM, INS, Inst Neurosci Syst, Marseille, France
| | - Agnès Trebuchon
- APHM, Timone Hospital, Epileptology and Cerebral Rhythmology, Marseille, France; Aix Marseille Univ, INSERM, INS, Inst Neurosci Syst, Marseille, France
| | - Romain Carron
- Aix Marseille Univ, INSERM, INS, Inst Neurosci Syst, Marseille, France; APHM, Timone Hospital, Functional and Stereotactic Neurosurgery, Marseille, France
| | - Samuel Medina Villalon
- APHM, Timone Hospital, Epileptology and Cerebral Rhythmology, Marseille, France; Aix Marseille Univ, INSERM, INS, Inst Neurosci Syst, Marseille, France
| | - Christian G Bénar
- Aix Marseille Univ, INSERM, INS, Inst Neurosci Syst, Marseille, France
| | - Jean-Philippe Ranjeva
- Aix Marseille Univ, CNRS, CRMBM, Marseille, France; APHM, Timone Hospital, CEMEREM, Marseille, France
| | - Maxime Guye
- APHM, Timone Hospital, Epileptology and Cerebral Rhythmology, Marseille, France; Aix Marseille Univ, CNRS, CRMBM, Marseille, France; APHM, Timone Hospital, CEMEREM, Marseille, France
| | - Fabrice Bartolomei
- APHM, Timone Hospital, Epileptology and Cerebral Rhythmology, Marseille, France; Aix Marseille Univ, INSERM, INS, Inst Neurosci Syst, Marseille, France.
| |
Collapse
|
46
|
Parasuram H, Gopinath S, Pillai A, Diwakar S, Kumar A. Quantification of Epileptogenic Network From Stereo EEG Recordings Using Epileptogenicity Ranking Method. Front Neurol 2021; 12:738111. [PMID: 34803883 PMCID: PMC8595106 DOI: 10.3389/fneur.2021.738111] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2021] [Accepted: 08/31/2021] [Indexed: 11/13/2022] Open
Abstract
Introduction: Precise localization of the epileptogenic zone is very essential for the success of epilepsy surgery. Epileptogenicity index (EI) computationally estimates epileptogenicity of brain structures based on the temporal domain parameters and magnitude of ictal discharges. This method works well in cases of mesial temporal lobe epilepsy but it showed reduced accuracy in neocortical epilepsy. To overcome this scenario, in this study, we propose Epileptogenicity Rank (ER), a modified method of EI for quantifying epileptogenicity, that is based on spatio-temporal properties of Stereo EEG (SEEG). Methods: Energy ratio during ictal discharges, the time of involvement and Euclidean distance between brain structures were used to compute the ER. Retrospectively, we localized the EZ for 33 patients (9 for mesial-temporal lobe epilepsy and 24 for neocortical epilepsy) using post op MRI and Engel 1 surgical outcome at a mean of 40.9 months and then optimized the ER in this group. Results: Epileptic network estimation based on ER successfully differentiated brain regions involved in the seizure onset from the propagation network. ER was calculated at multiple thresholds leading to an optimum value that differentiated the seizure onset from the propagation network. We observed that ER < 7.1 could localize the EZ in neocortical epilepsy with a sensitivity of 94.6% and specificity of 98.3% and ER < 7.3 in mesial temporal lobe epilepsy with a sensitivity of 95% and specificity of 98%. In non-seizure-free patients, the EZ localization based on ER pointed to brain area beyond the cortical resections. Significance: Methods like ER can improve the accuracy of EZ localization for brain resection and increase the precision of minimally invasive surgery techniques (radio-frequency or laser ablation) by identifying the epileptic hubs where the lesion is extensive or in nonlesional cases. For inclusivity with other clinical applications, this ER method has to be studied in more patients.
Collapse
Affiliation(s)
- Harilal Parasuram
- Amrita Advanced Centre for Epilepsy (AACE), Amrita Institute of Medical Sciences, Amrita Vishwa Vidyapeetham, Kochi, India.,Department of Neurology, Amrita Institute of Medical Sciences, Amrita Vishwa Vidyapeetham, Kochi, India.,Amrita Mind Brain Center, Amrita Vishwa Vidyapeetham, Kollam, India
| | - Siby Gopinath
- Amrita Advanced Centre for Epilepsy (AACE), Amrita Institute of Medical Sciences, Amrita Vishwa Vidyapeetham, Kochi, India.,Department of Neurology, Amrita Institute of Medical Sciences, Amrita Vishwa Vidyapeetham, Kochi, India.,Amrita Mind Brain Center, Amrita Vishwa Vidyapeetham, Kollam, India
| | - Ashok Pillai
- Amrita Advanced Centre for Epilepsy (AACE), Amrita Institute of Medical Sciences, Amrita Vishwa Vidyapeetham, Kochi, India.,Department of Neurosurgery, Amrita Institute of Medical Sciences, Amrita Vishwa Vidyapeetham, Kochi, India
| | - Shyam Diwakar
- Amrita Mind Brain Center, Amrita Vishwa Vidyapeetham, Kollam, India
| | - Anand Kumar
- Department of Neurology, Amrita Institute of Medical Sciences, Amrita Vishwa Vidyapeetham, Kochi, India.,Amrita Mind Brain Center, Amrita Vishwa Vidyapeetham, Kollam, India
| |
Collapse
|
47
|
Garcia-Cairasco N, Podolsky-Gondim G, Tejada J. Searching for a paradigm shift in the research on the epilepsies and associated neuropsychiatric comorbidities. From ancient historical knowledge to the challenge of contemporary systems complexity and emergent functions. Epilepsy Behav 2021; 121:107930. [PMID: 33836959 DOI: 10.1016/j.yebeh.2021.107930] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/05/2021] [Accepted: 03/06/2021] [Indexed: 10/21/2022]
Abstract
In this review, we will discuss in four scenarios our challenges to offer possible solutions for the puzzle associated with the epilepsies and neuropsychiatric comorbidities. We need to recognize that (1) since quite old times, human wisdom was linked to the plural (distinct global places/cultures) perception of the Universe we are in, with deep respect for earth and nature. Plural ancestral knowledge was added with the scientific methods; however, their joint efforts are the ideal scenario; (2) human behavior is not different than animal behavior, in essence the product of Darwinian natural selection; knowledge of animal and human behavior are complementary; (3) the expression of human behavior follows the same rules that complex systems with emergent properties, therefore, we can measure events in human, clinical, neurobiological situations with complexity systems' tools; (4) we can use the semiology of epilepsies and comorbidities, their neural substrates, and potential treatments (including experimental/computational modeling, neurosurgical interventions), as a source and collection of integrated big data to predict with them (e.g.: machine/deep learning) diagnosis/prognosis, individualized solutions (precision medicine), basic underlying mechanisms and molecular targets. Once the group of symptoms/signals (with a myriad of changing definitions and interpretations over time) and their specific sequences are determined, in epileptology research and clinical settings, the use of modern and contemporary techniques such as neuroanatomical maps, surface electroencephalogram and stereoelectroencephalography (SEEG) and imaging (MRI, BOLD, DTI, SPECT/PET), neuropsychological testing, among others, are auxiliary in the determination of the best electroclinical hypothesis, and help design a specific treatment, usually as the first attempt, with available pharmacological resources. On top of ancient knowledge, currently known and potentially new antiepileptic drugs, alternative treatments and mechanisms are usually produced as a consequence of the hard, multidisciplinary, and integrated studies of clinicians, surgeons, and basic scientists, all over the world. The existence of pharmacoresistant patients, calls for search of other solutions, being along the decades the surgeries the most common interventions, such as resective procedures (i.e., selective or standard lobectomy, lesionectomy), callosotomy, hemispherectomy and hemispherotomy, added by vagus nerve stimulation (VNS), deep brain stimulation (DBS), neuromodulation, and more recently focal minimal or noninvasive ablation. What is critical when we consider the pharmacoresistance aspect with the potential solution through surgery, is still the pursuit of localization-dependent regions (e.g.: epileptogenic zone (EZ)), in order to decide, no matter how sophisticated are the brain mapping tools (EEG and MRI), the size and location of the tissue to be removed. Mimicking the semiology and studying potential neural mechanisms and molecular targets - by means of experimental and computational modeling - are fundamental steps of the whole process. Concluding, with the conjunction of ancient knowledge, coupled to critical and creative contemporary, scientific (not dogmatic) clinical/surgical, and experimental/computational contributions, a better world and of improved quality of life can be offered to the people with epilepsy and neuropsychiatric comorbidities, who are still waiting (as well as the scientists) for a paradigm shift in epileptology, both in the Basic Science, Computational, Clinical, and Neurosurgical Arenas. This article is part of the Special Issue "NEWroscience 2018".
Collapse
Affiliation(s)
- Norberto Garcia-Cairasco
- Laboratório de Neurofisiologia e Neuroetologia Experimental, Departmento de Fisiologia, Faculdade de Medicina de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto. Brazil; Departamento de Neurociências e Ciências do Comportamento, Faculdade de Medicina de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, Brazil.
| | - Guilherme Podolsky-Gondim
- Departamento de Neurociências e Ciências do Comportamento, Faculdade de Medicina de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, Brazil.
| | - Julian Tejada
- Departamento de Psicologia, Universidade Federal de Sergipe, Brazil.
| |
Collapse
|
48
|
Contento M, Pizzo F, López-Madrona VJ, Lagarde S, Makhalova J, Trébuchon A, Medina Villalon S, Giusiano B, Scavarda D, Carron R, Roehri N, Bénar CG, Bartolomei F. Changes in epileptogenicity biomarkers after stereotactic thermocoagulation. Epilepsia 2021; 62:2048-2059. [PMID: 34272883 DOI: 10.1111/epi.16989] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2021] [Revised: 06/17/2021] [Accepted: 06/17/2021] [Indexed: 10/20/2022]
Abstract
OBJECTIVE Stereo-electroencephalography (SEEG)-guided radiofrequency thermocoagulation (RF-TC) aims at modifying epileptogenic networks to reduce seizure frequency. High-frequency oscillations (HFOs), spikes, and cross-rate are quantifiable epileptogenic biomarkers. In this study, we sought to evaluate, using SEEG signals recorded before and after thermocoagulation, whether a variation in these markers is related to the therapeutic effect of this procedure and to the outcome of surgery. METHODS Interictal segments of SEEG signals were analyzed in 38 patients during presurgical evaluation. We used an automatized method to quantify the rate of spikes, rate of HFOs, and cross-rate (a measure combining spikes and HFOs) before and after thermocoagulation. We analyzed the differences both at an individual level with a surrogate approach and at a group level with analysis of variance. We then evaluated the correlation between these variations and the clinical response to RF-TC and to subsequent resective surgery. RESULTS After thermocoagulation, 19 patients showed a clinical improvement. At the individual level, clinically improved patients more frequently had a reduction in spikes and cross-rate in the epileptogenic zone than patients without clinical improvement (p = .002, p = .02). At a group level, there was a greater decrease of HFOs in epileptogenic and thermocoagulated zones in patients with clinical improvement (p < .05) compared to those with no clinical benefit. Eventually, a significant decrease of all the markers after RF-TC was found in patients with a favorable outcome of resective surgery (spikes, p = .026; HFOs, p = .03; cross-rate, p = .03). SIGNIFICANCE Quantified changes in the rate of spikes, rate of HFOs, and cross-rate can be observed after thermocoagulation, and the reduction of these markers correlates with a favorable clinical outcome after RF-TC and with successful resective surgery. This may suggest that interictal biomarker modifications after RF-TC can be clinically used to predict the effectiveness of the thermocoagulation procedure and the outcome of resective surgery.
Collapse
Affiliation(s)
- Margherita Contento
- Department of Neurosciences, Drug Research, and Child's Health, University of Florence, Florence, Italy
| | - Francesca Pizzo
- Systems Neuroscience Institute, Aix-Marseille University, Marseille, France.,Epileptology and Cerebral Rhythmology, Timone Hospital, Public Assistance Hospitals of Marseille, Marseille, France
| | | | - Stanislas Lagarde
- Systems Neuroscience Institute, Aix-Marseille University, Marseille, France.,Epileptology and Cerebral Rhythmology, Timone Hospital, Public Assistance Hospitals of Marseille, Marseille, France
| | - Julia Makhalova
- Epileptology and Cerebral Rhythmology, Timone Hospital, Public Assistance Hospitals of Marseille, Marseille, France.,Center for Magnetic Resonance in Biology and Medicine, Mixed Unit of Research 7339, Timone Hospital, Aix-Marseille University, Marseille, France
| | - Agnes Trébuchon
- Systems Neuroscience Institute, Aix-Marseille University, Marseille, France.,Epileptology and Cerebral Rhythmology, Timone Hospital, Public Assistance Hospitals of Marseille, Marseille, France
| | - Samuel Medina Villalon
- Systems Neuroscience Institute, Aix-Marseille University, Marseille, France.,Epileptology and Cerebral Rhythmology, Timone Hospital, Public Assistance Hospitals of Marseille, Marseille, France
| | - Bernard Giusiano
- Systems Neuroscience Institute, Aix-Marseille University, Marseille, France.,Epileptology and Cerebral Rhythmology, Timone Hospital, Public Assistance Hospitals of Marseille, Marseille, France
| | - Didier Scavarda
- Pediatric Neurosurgery Department, Timone Hospital, Public Assistance Hospitals of Marseille, Marseille, France
| | - Romain Carron
- Stereotactic and Functional Neurosurgery, Timone Hospital, Public Assistance Hospitals of Marseille, Marseille, France
| | - Nicolas Roehri
- Systems Neuroscience Institute, Aix-Marseille University, Marseille, France
| | | | - Fabrice Bartolomei
- Systems Neuroscience Institute, Aix-Marseille University, Marseille, France.,Epileptology and Cerebral Rhythmology, Timone Hospital, Public Assistance Hospitals of Marseille, Marseille, France
| |
Collapse
|
49
|
Fonti D, Lagarde S, Pizzo F, Aboubakr W, Benar C, Giusiano B, Bartolomei F. Parieto-premotor functional connectivity changes during parietal lobe seizures are associated with motor semiology. Clin Neurophysiol 2021; 132:2046-2053. [PMID: 34284239 DOI: 10.1016/j.clinph.2021.06.003] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2020] [Revised: 06/06/2021] [Accepted: 06/09/2021] [Indexed: 10/21/2022]
Abstract
OBJECTIVES Parietal lobe seizures (PLS) are characterized by multiple clinical manifestations including motor signs. The mechanisms underlying the occurrence of motor signs are poorly understood. The main objective of this work was to estimate the functional coupling of brain regions associated with this clinical presentation. METHODS We retrospectively selected patients affected by drug-resistant epilepsy who underwent Stereoelectroencephalography (SEEG) for pre-surgical evaluation and in whom the seizure onset zone (SOZ) was located in the parietal cortex. The SOZ was defined visually and quantitatively by the epileptogenicity index (EI) method. Two groups of seizures were defined according to the presence ("motor seizures") or the absence ("non-motor seizures") of motor signs. Functional connectivity (FC) estimation was based on pairwise nonlinear regression analysis (h2 coefficient). To study FC changes between parietal, frontal and temporal regions, for each patient, z-score values of 16 cortico-cortical interactions were obtained comparing h2 coefficients of pre-ictal, seizure onset and seizure propagation periods. RESULTS We included 22 patients, 13 with "motor seizures" and 9 with "non-motor seizures". Resective surgery was performed in 14 patients, 8 patients had a positive surgical outcome (Engel's class I and II). During seizure onset period, a decrease of FC was observed and was significantly more important (in comparison with background period) in "motor" seizures. This was particularly observed between parietal operculum/post-central gyrus (OP/PoCg) and mesial temporal areas. During seizure propagation, a FC increase was significantly more important (in comparison with seizure onset) in "motor seizures", in particular between lateral pre-motor (pmL) area and precuneus, pmL and superior parietal lobule (SPL) and between inferior parietal lobule (IPL) and supplementary motor area (SMA). CONCLUSIONS Our study shows that motor semiology in PLS is accompanied by an increase of FC between parietal and premotor cortices, significantly different than what is observed in PLS without motor semiology. SIGNIFICANCE Our results indicate that preferential routes of coupling between parietal and premotor cortices are responsible for the prominent motor presentation during PLS.
Collapse
Affiliation(s)
- Davide Fonti
- APHM, Timone Hospital, Epileptology Department, Marseille, France; Department of Medical Sciences and Public Health, University of Cagliari, Cagliari, Italy
| | - Stanislas Lagarde
- Aix Marseille Univ, APHM, INSERM, INS, Inst Neurosci Syst, Timone Hospital, Epileptology Department, Marseille, France
| | - Francesca Pizzo
- Aix Marseille Univ, APHM, INSERM, INS, Inst Neurosci Syst, Timone Hospital, Epileptology Department, Marseille, France
| | - Wala Aboubakr
- Aix Marseille Univ, INSERM, INS, Inst Neurosci Syst, Marseille, France
| | - Christian Benar
- Aix Marseille Univ, INSERM, INS, Inst Neurosci Syst, Marseille, France
| | - Bernard Giusiano
- Aix Marseille Univ, INSERM, INS, Inst Neurosci Syst, Marseille, France
| | - Fabrice Bartolomei
- Aix Marseille Univ, APHM, INSERM, INS, Inst Neurosci Syst, Timone Hospital, Epileptology Department, Marseille, France.
| |
Collapse
|
50
|
Higueras-Esteban A, Delgado-Martínez I, Serrano L, Principe A, Pérez Enriquez C, González Ballester MÁ, Rocamora R, Conesa G, Serra L. SYLVIUS: A multimodal and multidisciplinary platform for epilepsy surgery. COMPUTER METHODS AND PROGRAMS IN BIOMEDICINE 2021; 203:106042. [PMID: 33743489 DOI: 10.1016/j.cmpb.2021.106042] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/11/2020] [Accepted: 03/03/2021] [Indexed: 06/12/2023]
Abstract
BACKGROUND AND OBJECTIVE We present SYLVIUS, a software platform intended to facilitate and improve the complex workflow required to diagnose and surgically treat drug-resistant epilepsies. In complex epilepsies, additional invasive information from exploration with stereoencephalography (SEEG) with deep electrodes may be needed, for which the input from different diagnostic methods and clinicians from several specialties is required to ensure diagnostic efficacy and surgical safety. We aim to provide a software platform with optimal data flow among the different stages of epilepsy surgery to provide smooth and integrated decision making. METHODS The SYLVIUS platform provides a clinical workflow designed to ensure seamless and safe patient data sharing across specialities. It integrates tools for stereo visualization, data registration, transfer of electrode plans referred to distinct datasets, automated postoperative contact segmentation, and novel DWI tractography analysis. Nineteen cases were retrospectively evaluated to track modifications from an initial plan to obtain a final surgical plan, using SYLVIUS. RESULTS The software was used to modify trajectories in all 19 consulted cases, which were then imported into the robotic system for the surgical intervention. When available, SYLVIUS provided extra multimodal information, which resulted in a greater number of trajectory modifications. CONCLUSIONS The architecture presented in this paper streamlines epilepsy surgery allowing clinicians to have a digital clinical tool that allows recording of the different stages of the procedure, in a common multimodal 2D/3D setting for participation of different clinicians in defining and validating surgical plans for SEEG cases.
Collapse
Affiliation(s)
- Alfredo Higueras-Esteban
- Galgo Medical SL, Neurosurgery Dept, Barcelona, Spain; Universitat Pompeu Fabra, BCN Medtech, Dept. of Information and Communication Technologies, Barcelona, Spain.
| | | | - Laura Serrano
- IMIM-Hospital del Mar, Neurosurgery, Barcelona, Spain
| | | | | | - Miguel Ángel González Ballester
- Universitat Pompeu Fabra, BCN Medtech, Dept. of Information and Communication Technologies, Barcelona, Spain; ICREA, Barcelona, Spain
| | | | | | - Luis Serra
- Galgo Medical SL, Neurosurgery Dept, Barcelona, Spain
| |
Collapse
|