1
|
Jourde HR, Coffey EBJ. Auditory processing up to cortex is maintained during sleep spindles. PNAS NEXUS 2024; 3:pgae479. [PMID: 39588317 PMCID: PMC11586671 DOI: 10.1093/pnasnexus/pgae479] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Accepted: 10/13/2024] [Indexed: 11/27/2024]
Abstract
Sleep spindles are transient 11-16 Hz brain oscillations generated by thalamocortical circuits. Their role in memory consolidation is well established, but how they play a role in sleep continuity and protection of memory consolidation against interference is unclear. One theory posits that spindles or a neural refractory period following their offset act as a gating mechanism, blocking sensory information en route to the cortex at the level of the thalamus. An alternative model posits that spindles do not participate in the suppression of neural responses to sound, although they can be produced in response to sound. We present evidence from three experiments using electroencephalography and magnetoencephalography in humans that examine different evoked responses in the presence of and following sleep spindles. The results provide convergent empirical evidence suggesting that auditory processing up to cortex is maintained during sleep spindles, and their refractory periods.
Collapse
Affiliation(s)
- Hugo R Jourde
- Department of Psychology, Concordia University, Montreal, Quebec, Canada
- International Laboratory for Brain, Music, and Sound Research (BRAMS), Montreal, Quebec, Canada
- Centre for Research on Brain, Language and Music (CRBLM), Montreal, Quebec, Canada
- Réseau de bio-imagerie du Québec (RBIQ), Sherbrooke, Quebec, Canada
| | - Emily B J Coffey
- Department of Psychology, Concordia University, Montreal, Quebec, Canada
- International Laboratory for Brain, Music, and Sound Research (BRAMS), Montreal, Quebec, Canada
- Centre for Research on Brain, Language and Music (CRBLM), Montreal, Quebec, Canada
- Réseau de bio-imagerie du Québec (RBIQ), Sherbrooke, Quebec, Canada
- Montreal Neurological Institute, McGill University, Montreal, Quebec, Canada
| |
Collapse
|
2
|
Marino M, Mantini D. Human brain imaging with high-density electroencephalography: Techniques and applications. J Physiol 2024. [PMID: 39173191 DOI: 10.1113/jp286639] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2024] [Accepted: 07/30/2024] [Indexed: 08/24/2024] Open
Abstract
Electroencephalography (EEG) is a technique for non-invasively measuring neuronal activity in the human brain using electrodes placed on the participant's scalp. With the advancement of digital technologies, EEG analysis has evolved over time from the qualitative analysis of amplitude and frequency modulations to a comprehensive analysis of the complex spatiotemporal characteristics of the recorded signals. EEG is now considered a powerful tool for measuring neural processes in the same time frame in which they happen (i.e. the subsecond range). However, it is commonly argued that EEG suffers from low spatial resolution, which makes it difficult to localize the generators of EEG activity accurately and reliably. Today, the availability of high-density EEG (hdEEG) systems, combined with methods for incorporating information on head anatomy and sophisticated source-localization algorithms, has transformed EEG into an important neuroimaging tool. hdEEG offers researchers and clinicians a rich and varied range of applications. It can be used not only for investigating neural correlates in motor and cognitive neuroscience experiments, but also for clinical diagnosis, particularly in the detection of epilepsy and the characterization of neural impairments in a wide range of neurological disorders. Notably, the integration of hdEEG systems with other physiological recordings, such as kinematic and/or electromyography data, might be especially beneficial to better understand the neuromuscular mechanisms associated with deconditioning in ageing and neuromotor disorders, by mapping the neurokinematic and neuromuscular connectivity patterns directly in the brain.
Collapse
Affiliation(s)
- Marco Marino
- Movement Control and Neuroplasticity Research Group, KU Leuven, Belgium
- Department of General Psychology, University of Padua, Padua, Italy
| | - Dante Mantini
- Movement Control and Neuroplasticity Research Group, KU Leuven, Belgium
- Leuven Brain Institute, KU Leuven, Belgium
| |
Collapse
|
3
|
Baxter BS, Mylonas D, Kwok KS, Talbot CE, Patel R, Zhu L, Vangel M, Stickgold R, Manoach DS. The effects of closed-loop auditory stimulation on sleep oscillatory dynamics in relation to motor procedural memory consolidation. Sleep 2023; 46:zsad206. [PMID: 37531587 PMCID: PMC11009689 DOI: 10.1093/sleep/zsad206] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2023] [Revised: 05/13/2023] [Indexed: 08/04/2023] Open
Abstract
STUDY OBJECTIVES Healthy aging and many disorders show reduced sleep-dependent memory consolidation and corresponding alterations in non-rapid eye movement sleep oscillations. Yet sleep physiology remains a relatively neglected target for improving memory. We evaluated the effects of closed-loop auditory stimulation during sleep (CLASS) on slow oscillations (SOs), sleep spindles, and their coupling, all in relation to motor procedural memory consolidation. METHODS Twenty healthy young adults had two afternoon naps: one with auditory stimulation during SO upstates and another with no stimulation. Twelve returned for a third nap with stimulation at variable times in relation to SO upstates. In all sessions, participants trained on the motor sequence task prior to napping and were tested afterward. RESULTS Relative to epochs with no stimulation, upstate stimuli disrupted sleep and evoked SOs, spindles, and SO-coupled spindles. Stimuli that successfully evoked oscillations were delivered closer to the peak of the SO upstate and when spindle power was lower than stimuli that failed to evoke oscillations. Across conditions, participants showed similar significant post-nap performance improvement that correlated with the density of SO-coupled spindles. CONCLUSIONS Despite its strong effects on sleep physiology, CLASS failed to enhance motor procedural memory. Our findings suggest methods to overcome this failure, including better sound calibration to preserve sleep continuity and the use of real-time predictive algorithms to more precisely target SO upstates and to avoid disrupting endogenous SO-coupled spindles and their mnemonic function. They motivate continued development of CLASS as an intervention to manipulate sleep oscillatory dynamics and improve memory.
Collapse
Affiliation(s)
- Bryan S Baxter
- Department of Psychiatry, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
- Athinoula A. Martinos Center for Biomedical Imaging, Charlestown, MA, USA
| | - Dimitrios Mylonas
- Department of Psychiatry, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
- Athinoula A. Martinos Center for Biomedical Imaging, Charlestown, MA, USA
| | - Kristi S Kwok
- Department of Psychiatry, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Christine E Talbot
- Department of Psychiatry, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Rudra Patel
- Department of Psychiatry, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Lin Zhu
- Department of Psychiatry, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Mark Vangel
- Department of Biostatistics, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Robert Stickgold
- Department of Psychiatry, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
| | - Dara S Manoach
- Department of Psychiatry, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
- Athinoula A. Martinos Center for Biomedical Imaging, Charlestown, MA, USA
| |
Collapse
|
4
|
Brodt S, Inostroza M, Niethard N, Born J. Sleep-A brain-state serving systems memory consolidation. Neuron 2023; 111:1050-1075. [PMID: 37023710 DOI: 10.1016/j.neuron.2023.03.005] [Citation(s) in RCA: 64] [Impact Index Per Article: 32.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2023] [Revised: 02/23/2023] [Accepted: 03/06/2023] [Indexed: 04/08/2023]
Abstract
Although long-term memory consolidation is supported by sleep, it is unclear how it differs from that during wakefulness. Our review, focusing on recent advances in the field, identifies the repeated replay of neuronal firing patterns as a basic mechanism triggering consolidation during sleep and wakefulness. During sleep, memory replay occurs during slow-wave sleep (SWS) in hippocampal assemblies together with ripples, thalamic spindles, neocortical slow oscillations, and noradrenergic activity. Here, hippocampal replay likely favors the transformation of hippocampus-dependent episodic memory into schema-like neocortical memory. REM sleep following SWS might balance local synaptic rescaling accompanying memory transformation with a sleep-dependent homeostatic process of global synaptic renormalization. Sleep-dependent memory transformation is intensified during early development despite the immaturity of the hippocampus. Overall, beyond its greater efficacy, sleep consolidation differs from wake consolidation mainly in that it is supported, rather than impaired, by spontaneous hippocampal replay activity possibly gating memory formation in neocortex.
Collapse
Affiliation(s)
- Svenja Brodt
- Institute of Medical Psychology and Behavioral Neurobiology, University of Tübingen, Tübingen, Germany; Max-Planck-Institute for Biological Cybernetics, Tübingen, Germany
| | - Marion Inostroza
- Institute of Medical Psychology and Behavioral Neurobiology, University of Tübingen, Tübingen, Germany
| | - Niels Niethard
- Institute of Medical Psychology and Behavioral Neurobiology, University of Tübingen, Tübingen, Germany
| | - Jan Born
- Institute of Medical Psychology and Behavioral Neurobiology, University of Tübingen, Tübingen, Germany; Werner Reichert Center for Integrative Neuroscience, University of Tübingen, Tübingen, Germany.
| |
Collapse
|
5
|
Hassan U, Feld GB, Bergmann TO. Automated real-time EEG sleep spindle detection for brain-state-dependent brain stimulation. J Sleep Res 2022; 31:e13733. [PMID: 36130730 DOI: 10.1111/jsr.13733] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2022] [Revised: 08/31/2022] [Accepted: 09/02/2022] [Indexed: 10/14/2022]
Abstract
Sleep spindles are a hallmark electroencephalographic feature of non-rapid eye movement sleep, and are believed to be instrumental for sleep-dependent memory reactivation and consolidation. However, direct proof of their causal relevance is hard to obtain, and our understanding of their immediate neurophysiological consequences is limited. To investigate their causal role, spindles need to be targeted in real-time with sensory or non-invasive brain-stimulation techniques. While fully automated offline detection algorithms are well established, spindle detection in real-time is highly challenging due to their spontaneous and transient nature. Here, we present the real-time spindle detector, a robust multi-channel electroencephalographic signal-processing algorithm that enables the automated triggering of stimulation during sleep spindles in a phase-specific manner. We validated the real-time spindle detection method by streaming pre-recorded sleep electroencephalographic datasets to a real-time computer system running a Simulink® Real-Time™ implementation of the algorithm. Sleep spindles were detected with high levels of Sensitivity (~83%), Precision (~78%) and a convincing F1-Score (~81%) in reference to state-of-the-art offline algorithms (which reached similar or lower levels when compared with each other), for both naps and full nights, and largely independent of sleep scoring information. Detected spindles were comparable in frequency, duration, amplitude and symmetry, and showed the typical time-frequency characteristics as well as a centroparietal topography. Spindles were detected close to their centre and reliably at the predefined target phase. The real-time spindle detection algorithm therefore empowers researchers to target spindles during human sleep, and apply the stimulation method and experimental paradigm of their choice.
Collapse
Affiliation(s)
- Umair Hassan
- Neuroimaging Center (NIC), Focus Program Translational Neuroscience (FTN), Johannes Gutenberg University Medical Center, Mainz, Germany.,Leibniz Institute for Resilience Research, Mainz, Germany
| | - Gordon B Feld
- Department of Clinical Psychology, Central Institute of Mental Health, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | - Til Ole Bergmann
- Neuroimaging Center (NIC), Focus Program Translational Neuroscience (FTN), Johannes Gutenberg University Medical Center, Mainz, Germany.,Leibniz Institute for Resilience Research, Mainz, Germany.,Department of Neurology & Stroke, Hertie Institute for Clinical Brain Research, Eberhard Karls University of Tübingen, Tübingen, Germany
| |
Collapse
|
6
|
The Portiloop: A deep learning-based open science tool for closed-loop brain stimulation. PLoS One 2022; 17:e0270696. [PMID: 35994482 PMCID: PMC9394839 DOI: 10.1371/journal.pone.0270696] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2021] [Accepted: 06/15/2022] [Indexed: 12/01/2022] Open
Abstract
Closed-loop brain stimulation refers to capturing neurophysiological measures such as electroencephalography (EEG), quickly identifying neural events of interest, and producing auditory, magnetic or electrical stimulation so as to interact with brain processes precisely. It is a promising new method for fundamental neuroscience and perhaps for clinical applications such as restoring degraded memory function; however, existing tools are expensive, cumbersome, and offer limited experimental flexibility. In this article, we propose the Portiloop, a deep learning-based, portable and low-cost closed-loop stimulation system able to target specific brain oscillations. We first document open-hardware implementations that can be constructed from commercially available components. We also provide a fast, lightweight neural network model and an exploration algorithm that automatically optimizes the model hyperparameters to the desired brain oscillation. Finally, we validate the technology on a challenging test case of real-time sleep spindle detection, with results comparable to off-line expert performance on the Massive Online Data Annotation spindle dataset (MODA; group consensus). Software and plans are available to the community as an open science initiative to encourage further development and advance closed-loop neuroscience research [https://github.com/Portiloop].
Collapse
|
7
|
Nicolas J, King BR, Levesque D, Lazzouni L, Coffey EBJ, Swinnen S, Doyon J, Carrier J, Albouy G. Sigma oscillations protect or reinstate motor memory depending on their temporal coordination with slow waves. eLife 2022; 11:73930. [PMID: 35726850 PMCID: PMC9259015 DOI: 10.7554/elife.73930] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2021] [Accepted: 06/07/2022] [Indexed: 11/18/2022] Open
Abstract
Targeted memory reactivation (TMR) during post-learning sleep is known to enhance motor memory consolidation but the underlying neurophysiological processes remain unclear. Here, we confirm the beneficial effect of auditory TMR on motor performance. At the neural level, TMR enhanced slow wave (SW) characteristics. Additionally, greater TMR-related phase-amplitude coupling between slow (0.5–2 Hz) and sigma (12–16 Hz) oscillations after the SW peak was related to higher TMR effect on performance. Importantly, sounds that were not associated to learning strengthened SW-sigma coupling at the SW trough. Moreover, the increase in sigma power nested in the trough of the potential evoked by the unassociated sounds was related to the TMR benefit. Altogether, our data suggest that, depending on their precise temporal coordination during post learning sleep, slow and sigma oscillations play a crucial role in either memory reinstatement or protection against irrelevant information; two processes that critically contribute to motor memory consolidation.
Collapse
Affiliation(s)
- Judith Nicolas
- Department of Movement Sciences, KU Leuven, Leuven, Belgium
| | - Bradley R King
- Department of Health and Kinesiology, Unversity of Utah, Salt Lake City, United States
| | - David Levesque
- Center for Advanced Research in Sleep Medicine, Universite de Montreal, Montreal, Canada
| | - Latifa Lazzouni
- Department of Neurology and Neurosurgery, McGill University, Montreal, Canada
| | | | | | - Julien Doyon
- Department of Neurology and Neurosurgery, McGill University, Montréal, Canada
| | - Julie Carrier
- Centre for Advanced Research in Sleep Medicine, Université de Montréal, Montreal, Canada
| | | |
Collapse
|
8
|
Sleep's role in updating aversive autobiographical memories. Transl Psychiatry 2022; 12:117. [PMID: 35332136 PMCID: PMC8948270 DOI: 10.1038/s41398-022-01878-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/22/2021] [Revised: 02/24/2022] [Accepted: 02/24/2022] [Indexed: 01/15/2023] Open
Abstract
Aversive autobiographical memories play a key role in the development and maintenance of many mental disorders. Imagery rescripting is a well-established psychotherapeutic intervention aiming to create a more adaptive version of an aversive memory by modifying its interpretation. Sleep has been shown to support reconsolidation of updated neutral memories. Here, we investigated in healthy participants whether a 90-min nap compared to wake supports the adaptive reconsolidation of autobiographical memories. Forty-four university students received a single 50-min imagery rescripting session. Thereafter, half of the participants took a 90-min nap, whereas the other half stayed awake. Subjective (arousal ratings, reports of emotions and dysfunctional cognitions) and heart rate (HR) responses to individual memory scripts were measured before the intervention (pre), after the 90-min retention interval (post 1) and 7 days later (post 2). Results demonstrate a significant decrease in distress of aversive memories pre to post imagery rescripting. The nap group showed less distressing dysfunctional cognitions along with a lower HR in response to the negative memory script as compared to the wake group at post 1. These differences were no longer evident 1 week later (post 2). Central sleep spindle density during the nap was correlated with the reduction in HR in response to the negative memory script from pre to post 1. Our results provide first evidence for sleep benefitting adaptive reconsolidation of aversive autobiographical memories. Future research should expand this approach to clinical populations and investigate precise conditions under which sleep may benefit psychotherapeutic interventions utilizing reconsolidation mechanisms.
Collapse
|
9
|
Covering the Gap Between Sleep and Cognition – Mechanisms and Clinical Examples. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2022; 1384:17-29. [PMID: 36217076 DOI: 10.1007/978-3-031-06413-5_2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
A growing number of studies have shown the strong relationship between sleep and different cognitive processes, especially those that involve memory consolidation. Traditionally, these processes were attributed to mechanisms related to the macroarchitecture of sleep, as sleep cycles or the duration of specific stages, such as the REM stage. More recently, the relationship between different cognitive traits and specific waves (sleep spindles or slow oscillations) has been studied. We here present the most important physiological processes induced by sleep, with particular focus on brain electrophysiology. In addition, recent and classical literature were reviewed to cover the gap between sleep and cognition, while illustrating this relationship by means of clinical examples. Finally, we propose that future studies may focus not only on analyzing specific waves, but also on the relationship between their characteristics as potential biomarkers for multiple diseases.
Collapse
|
10
|
Stanyer EC, Baniqued PDE, Awais M, Kouara L, Davies AG, Killan EC, Mushtaq F. The impact of acoustic stimulation during sleep on memory and sleep architecture: A meta-analysis. J Sleep Res 2021; 31:e13385. [PMID: 34850995 DOI: 10.1111/jsr.13385] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2020] [Revised: 04/12/2021] [Accepted: 04/19/2021] [Indexed: 11/28/2022]
Abstract
The relationship between sleep and cognition has long been recognized, with slow-wave sleep thought to play a critical role in long-term memory consolidation. Recent research has presented the possibility that non-invasive acoustic stimulation during sleep could enhance memory consolidation. Herein, we report a random-effects model meta-analysis examining the impact of this intervention on memory and sleep architecture in healthy adults. Sixteen studies were identified through a systematic search. We found a medium significant effect of acoustic stimulation on memory task performance (g = 0.68, p = .031) in young adults <35 years of age, but no statistically significant effect in adults >35 years of age (g = -0.83, p = .223). In young adults, there was a large statistically significant effect for declarative memory tasks (g = 0.87, p = .014) but no effect for non-declarative tasks (g = -0.25, p = .357). There were no statistically significant differences in polysomnography-derived sleep architecture values between sham and stimulation conditions in either young or older adults. Based on these results, it appears that acoustic stimulation during sleep may only be an effective intervention for declarative memory consolidation in young adults. However, the small number of studies in this area, their small sample sizes, the short-term nature of most investigations and the high between-studies heterogeneity highlight a need for high-powered and long-term experiments to better elucidate, and subsequently maximise, any potential benefits of this novel approach.
Collapse
Affiliation(s)
- Emily C Stanyer
- School of Psychology, Faculty of Medicine and Health, University of Leeds, Leeds, West Yorkshire, UK.,Basic and Clinical Neuroscience, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK
| | - Paul Dominick E Baniqued
- School of Psychology, Faculty of Medicine and Health, University of Leeds, Leeds, West Yorkshire, UK.,School of Mechanical Engineering, Faculty of Engineering and Physical Sciences, University of Leeds, Leeds, West Yorkshire, UK
| | - Muhammad Awais
- School of Psychology, Faculty of Medicine and Health, University of Leeds, Leeds, West Yorkshire, UK.,Department of Computer Science, Edgehill University, Ormskirk, Lancashire, UK
| | - Layla Kouara
- School of Psychology, Faculty of Medicine and Health, University of Leeds, Leeds, West Yorkshire, UK
| | - Andrew G Davies
- Leeds Institute of Cardiovascular and Metabolic Medicine, Faculty of Medicine and Health, University of Leeds, Leeds, West Yorkshire, UK
| | - Edward C Killan
- Leeds Institute of Cardiovascular and Metabolic Medicine, Faculty of Medicine and Health, University of Leeds, Leeds, West Yorkshire, UK
| | - Faisal Mushtaq
- School of Psychology, Faculty of Medicine and Health, University of Leeds, Leeds, West Yorkshire, UK
| |
Collapse
|
11
|
Klinzing JG, Tashiro L, Ruf S, Wolff M, Born J, Ngo HVV. Auditory stimulation during sleep suppresses spike activity in benign epilepsy with centrotemporal spikes. Cell Rep Med 2021; 2:100432. [PMID: 34841286 PMCID: PMC8606903 DOI: 10.1016/j.xcrm.2021.100432] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2020] [Revised: 06/12/2021] [Accepted: 09/27/2021] [Indexed: 11/25/2022]
Abstract
Benign epilepsy with centrotemporal spikes (BECTS) is a common form of childhood epilepsy linked to diverse cognitive abnormalities. The electroencephalogram of patients shows focal interictal epileptic spikes, particularly during non-rapid eye movement (NonREM) sleep. Spike formation involves thalamocortical networks, which also contribute to the generation of sleep slow oscillations (SOs) and spindles. Motivated by evidence that SO-spindle activity can be controlled through closed-loop auditory stimulation, here, we show in seven patients that auditory stimulation also reduces spike rates in BECTS. Stimulation during NonREM sleep decreases spike rates, with most robust reductions when tones are presented 1.5 to 3.5 s after spikes. Stimulation further reduces the amplitude of spikes closely following tones. Sleep spindles are negatively correlated with spike rates, suggesting that tone-evoked spindle activity mediates the spike suppression. We hypothesize spindle-related refractoriness in thalamocortical circuits as a potential mechanism. Our results open an avenue for the non-pharmacological treatment of BECTS. Spikes in BECTS epilepsy and sleep spindles may share thalamocortical generation Auditory stimulation during sleep evokes sleep spindles and suppresses spikes Stimulation may reduce spiking by inducing thalamocortical refractoriness
Collapse
Affiliation(s)
- Jens G Klinzing
- Institute of Medical Psychology and Behavioral Neurobiology, University of Tübingen, 72076 Tübingen, Germany.,Centre for Integrative Neuroscience, University of Tübingen, 72076 Tübingen, Germany.,Princeton Neuroscience Institute, Princeton University, Princeton, NJ 08540, USA
| | - Lilian Tashiro
- Institute of Medical Psychology and Behavioral Neurobiology, University of Tübingen, 72076 Tübingen, Germany
| | - Susanne Ruf
- University Children's Hospital Tübingen, 72076 Tübingen, Germany
| | - Markus Wolff
- Department of Pediatric Neurology, Vivantes Hospital Neukölln, 12351 Berlin, Germany
| | - Jan Born
- Institute of Medical Psychology and Behavioral Neurobiology, University of Tübingen, 72076 Tübingen, Germany.,Centre for Integrative Neuroscience, University of Tübingen, 72076 Tübingen, Germany
| | - Hong-Viet V Ngo
- Institute of Medical Psychology and Behavioral Neurobiology, University of Tübingen, 72076 Tübingen, Germany.,Department of Psychology, University of Lübeck, 23562 Lübeck, Germany
| |
Collapse
|
12
|
Moreira CG, Baumann CR, Scandella M, Nemirovsky SI, Leach S, Huber R, Noain D. Closed-loop auditory stimulation method to modulate sleep slow waves and motor learning performance in rats. eLife 2021; 10:e68043. [PMID: 34612204 PMCID: PMC8530509 DOI: 10.7554/elife.68043] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2021] [Accepted: 09/29/2021] [Indexed: 12/26/2022] Open
Abstract
Slow waves and cognitive output have been modulated in humans by phase-targeted auditory stimulation. However, to advance its technical development and further our understanding, implementation of the method in animal models is indispensable. Here, we report the successful employment of slow waves' phase-targeted closed-loop auditory stimulation (CLAS) in rats. To validate this new tool both conceptually and functionally, we tested the effects of up- and down-phase CLAS on proportions and spectral characteristics of sleep, and on learning performance in the single-pellet reaching task, respectively. Without affecting 24 hr sleep-wake behavior, CLAS specifically altered delta (slow waves) and sigma (sleep spindles) power persistently over chronic periods of stimulation. While up-phase CLAS does not elicit a significant change in behavioral performance, down-phase CLAS exerted a detrimental effect on overall engagement and success rate in the behavioral test. Overall CLAS-dependent spectral changes were positively correlated with learning performance. Altogether, our results provide proof-of-principle evidence that phase-targeted CLAS of slow waves in rodents is efficient, safe, and stable over chronic experimental periods, enabling the use of this high-specificity tool for basic and preclinical translational sleep research.
Collapse
Affiliation(s)
- Carlos G Moreira
- Department of Neurology, University Hospital Zurich, University of ZurichZurichSwitzerland
| | - Christian R Baumann
- Department of Neurology, University Hospital Zurich, University of ZurichZurichSwitzerland
- University Center of Competence Sleep & Health Zurich (CRPP), University of ZurichZurichSwitzerland
- Neuroscience Center Zurich (ZNZ)ZurichSwitzerland
| | - Maurizio Scandella
- Department of Neurology, University Hospital Zurich, University of ZurichZurichSwitzerland
| | - Sergio I Nemirovsky
- Institute of Biological Chemistry, School of Exact and Natural Sciences (IQUIBICEN). CONICET – University of Buenos AiresBuenos AiresArgentina
| | - Sven Leach
- Child Development Center, University Children’s Hospital Zurich, University of ZurichZurichSwitzerland
| | - Reto Huber
- University Center of Competence Sleep & Health Zurich (CRPP), University of ZurichZurichSwitzerland
- Neuroscience Center Zurich (ZNZ)ZurichSwitzerland
- Child Development Center, University Children’s Hospital Zurich, University of ZurichZurichSwitzerland
- Department of Child and Adolescent Psychiatry and Psychotherapy, Psychiatric Hospital, University of ZurichZurichSwitzerland
| | - Daniela Noain
- Department of Neurology, University Hospital Zurich, University of ZurichZurichSwitzerland
- University Center of Competence Sleep & Health Zurich (CRPP), University of ZurichZurichSwitzerland
- Neuroscience Center Zurich (ZNZ)ZurichSwitzerland
| |
Collapse
|
13
|
Harrington MO, Cairney SA. Sounding It Out: Auditory Stimulation and Overnight Memory Processing. CURRENT SLEEP MEDICINE REPORTS 2021; 7:112-119. [PMID: 34722123 PMCID: PMC8550047 DOI: 10.1007/s40675-021-00207-0] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/29/2021] [Indexed: 02/05/2023]
Abstract
Abstract
Purpose of Review
Auditory stimulation is a technique that can enhance neural oscillations linked to overnight memory consolidation. In this review, we evaluate the impacts of auditory stimulation on the neural oscillations of sleep and associated memory processes in a variety of populations.
Recent Findings
Cortical EEG recordings of slow-wave sleep (SWS) are characterised by two cardinal oscillations: slow oscillations (SOs) and sleep spindles. Auditory stimulation delivered in SWS enhances SOs and phase-coupled spindle activity in healthy children and adults, children with ADHD, adults with mild cognitive impairment and patients with major depression. Under certain conditions, auditory stimulation bolsters the benefits of SWS for memory consolidation, although further work is required to fully understand the factors affecting stimulation-related memory gains. Recent work has turned to rapid eye movement (REM) sleep, demonstrating that auditory stimulation can be used to manipulate REM sleep theta oscillations.
Summary
Auditory stimulation enhances oscillations linked to overnight memory processing and shows promise as a technique for enhancing the memory benefits of sleep.
Collapse
|
14
|
Torres FA, Orio P, Escobar MJ. Selection of stimulus parameters for enhancing slow wave sleep events with a neural-field theory thalamocortical model. PLoS Comput Biol 2021; 17:e1008758. [PMID: 34329289 PMCID: PMC8357165 DOI: 10.1371/journal.pcbi.1008758] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2021] [Revised: 08/11/2021] [Accepted: 05/28/2021] [Indexed: 11/30/2022] Open
Abstract
Slow-wave sleep cortical brain activity, conformed by slow-oscillations and sleep spindles, plays a key role in memory consolidation. The increase of the power of the slow-wave events, obtained by auditory sensory stimulation, positively correlates with memory consolidation performance. However, little is known about the experimental protocol maximizing this effect, which could be induced by the power of slow-oscillation, the number of sleep spindles, or the timing of both events' co-occurrence. Using a mean-field model of thalamocortical activity, we studied the effect of several stimulation protocols, varying the pulse shape, duration, amplitude, and frequency, as well as a target-phase using a closed-loop approach. We evaluated the effect of these parameters on slow-oscillations (SO) and sleep-spindles (SP), considering: (i) the power at the frequency bands of interest, (ii) the number of SO and SP, (iii) co-occurrences between SO and SP, and (iv) synchronization of SP with the up-peak of the SO. The first three targets are maximized using a decreasing ramp pulse with a pulse duration of 50 ms. Also, we observed a reduction in the number of SO when increasing the stimulus energy by rising its amplitude. To assess the target-phase parameter, we applied closed-loop stimulation at 0°, 45°, and 90° of the phase of the narrow-band filtered ongoing activity, at 0.85 Hz as central frequency. The 0° stimulation produces better results in the power and number of SO and SP than the rhythmic or random stimulation. On the other hand, stimulating at 45° or 90° change the timing distribution of spindles centers but with fewer co-occurrences than rhythmic and 0° phase. Finally, we propose the application of closed-loop stimulation at the rising zero-cross point using pulses with a decreasing ramp shape and 50 ms of duration for future experimental work.
Collapse
Affiliation(s)
- Felipe A. Torres
- Department of Electronic Engineering, Universidad Técnica Federico Santa María, Valparaíso, Chile
- Advanced Center for Electrical and Electronic Engineering (AC3E), Valparaíso, Chile
| | - Patricio Orio
- Centro Interdisciplinario de Neurociencia de Valparaíso, Universidad de Valparaíso, Valparaíso, Chile
- Advanced Center for Electrical and Electronic Engineering (AC3E), Valparaíso, Chile
| | - María-José Escobar
- Department of Electronic Engineering, Universidad Técnica Federico Santa María, Valparaíso, Chile
| |
Collapse
|
15
|
Harrington MO, Ashton JE, Ngo HVV, Cairney SA. Phase-locked auditory stimulation of theta oscillations during rapid eye movement sleep. Sleep 2021; 44:5960115. [PMID: 33159523 DOI: 10.1093/sleep/zsaa227] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2020] [Revised: 09/24/2020] [Indexed: 12/15/2022] Open
Abstract
Auditory closed-loop stimulation is a non-invasive technique that has been widely used to augment slow oscillations during non-rapid eye movement sleep. Based on the principles of closed-loop stimulation, we developed a novel protocol for manipulating theta activity (3-7 Hz) in rapid eye movement (REM) sleep. Sixteen healthy young adults were studied in two overnight conditions: Stimulation and Sham. In the Stimulation condition, 1 s of 5 Hz amplitude-modulated white noise was delivered upon detection of two supra-threshold theta cycles throughout REM sleep. In the Sham condition, corresponding time points were marked but no stimulation was delivered. Auditory stimulation entrained EEG activity to 5 Hz and evoked a brief (~0.5 s) increase in theta power. Interestingly, this initial theta surge was immediately followed by a prolonged (~3 s) period of theta suppression. Stimulation also induced a prolonged (~2 s) increase in beta power. Our results provide the first demonstration that the REM sleep theta rhythm can be manipulated in a targeted manner via auditory stimulation. Accordingly, auditory stimulation might offer a fruitful avenue for investigating REM sleep electrophysiology and its relationship to behavior.
Collapse
Affiliation(s)
| | | | - Hong-Viet V Ngo
- Donders Institute for Brain, Cognition and Behaviour, Radboudumc, The Netherlands.,Department of Psychology, University of Lübeck, Lübeck, Germany
| | - Scott A Cairney
- Department of Psychology, University of York, Heslington, York, UK.,York Biomedical Research Institute (YBRI), University of York, Heslington, York, UK
| |
Collapse
|
16
|
Navarrete M, Schneider J, Ngo HVV, Valderrama M, Casson AJ, Lewis PA. Examining the optimal timing for closed-loop auditory stimulation of slow-wave sleep in young and older adults. Sleep 2021; 43:5686285. [PMID: 31872860 PMCID: PMC7294407 DOI: 10.1093/sleep/zsz315] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2019] [Revised: 12/13/2019] [Indexed: 11/23/2022] Open
Abstract
Study Objectives Closed-loop auditory stimulation (CLAS) is a method for enhancing slow oscillations (SOs) through the presentation of auditory clicks during sleep. CLAS boosts SOs amplitude and sleep spindle power, but the optimal timing for click delivery remains unclear. Here, we determine the optimal time to present auditory clicks to maximize the enhancement of SO amplitude and spindle likelihood. Methods We examined the main factors predicting SO amplitude and sleep spindles in a dataset of 21 young and 17 older subjects. The participants received CLAS during slow-wave-sleep in two experimental conditions: sham and auditory stimulation. Post-stimulus SOs and spindles were evaluated according to the click phase on the SOs and compared between and within conditions. Results We revealed that auditory clicks applied anywhere on the positive portion of the SO increased SO amplitudes and spindle likelihood, although the interval of opportunity was shorter in the older group. For both groups, analyses showed that the optimal timing for click delivery is close to the SO peak phase. Click phase on the SO wave was the main factor determining the impact of auditory stimulation on spindle likelihood for young subjects, whereas for older participants, the temporal lag since the last spindle was a better predictor of spindle likelihood. Conclusions Our data suggest that CLAS can more effectively boost SOs during specific phase windows, and these differ between young and older participants. It is possible that this is due to the fluctuation of sensory inputs modulated by the thalamocortical networks during the SO.
Collapse
Affiliation(s)
- Miguel Navarrete
- Cardiff University Brain Research Imaging Centre (CUBRIC), School of Psychology, Cardiff University, Cardiff, UK
| | - Jules Schneider
- School of Biological Sciences, University of Manchester, Manchester, UK
| | - Hong-Viet V Ngo
- School of Psychology, University of Birmingham, Edgbaston, Birmingham, UK
| | - Mario Valderrama
- Department of Biomedical Engineering, University of Los Andes, Bogotá, Colombia
| | - Alexander J Casson
- School of Electrical and Electronic Engineering, University of Manchester, Manchester, UK
| | - Penelope A Lewis
- Cardiff University Brain Research Imaging Centre (CUBRIC), School of Psychology, Cardiff University, Cardiff, UK
| |
Collapse
|
17
|
Schneider J, Lewis PA, Koester D, Born J, Ngo HVV. Susceptibility to auditory closed-loop stimulation of sleep slow oscillations changes with age. Sleep 2021; 43:5850478. [PMID: 32562487 PMCID: PMC7734479 DOI: 10.1093/sleep/zsaa111] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2020] [Revised: 05/10/2020] [Indexed: 11/20/2022] Open
Abstract
Study Objectives Cortical slow oscillations (SOs) and thalamocortical sleep spindles hallmark slow wave sleep and facilitate memory consolidation, both of which are reduced with age. Experiments utilizing auditory closed-loop stimulation to enhance these oscillations showed great potential in young and older subjects. However, the magnitude of responses has yet to be compared between these age groups. We examined the possibility of enhancing SOs and performance on different memory tasks in a healthy middle-aged population using this stimulation and contrast effects to younger adults. Methods In a within-subject design, 17 subjects (55.7 ± 1.0 years) received auditory stimulation in synchrony with SO up-states, which was compared to a no-stimulation sham condition. Overnight memory consolidation was assessed for declarative word-pairs and procedural finger-tapping skill. Post-sleep encoding capabilities were tested with a picture recognition task. Electrophysiological effects of stimulation were compared to a previous younger cohort (n = 11, 24.2 ± 0.9 years). Results Overnight retention and post-sleep encoding performance of the older cohort revealed no beneficial effect of stimulation, which contrasts with the enhancing effect the same stimulation protocol had in our younger cohort. Auditory stimulation prolonged endogenous SO trains and induced sleep spindles phase-locked to SO up-states in the older population. However, responses were markedly reduced compared to younger subjects. Additionally, the temporal dynamics of stimulation effects on SOs and spindles differed between age groups. Conclusions Our findings suggest that the susceptibility to auditory stimulation during sleep drastically changes with age and reveal the difficulties of translating a functional protocol from younger to older populations.
Collapse
Affiliation(s)
- Jules Schneider
- School of Biological Sciences, University of Manchester, Manchester, UK
- School of Psychology, Cardiff University, Cardiff, UK
- Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, UK
| | - Penelope A Lewis
- School of Biological Sciences, University of Manchester, Manchester, UK
- School of Psychology, Cardiff University, Cardiff, UK
- Corresponding authors. Hong-Viet V. Ngo, Donders Institute for Brain, Cognition and Behaviour, Radboud University Medical Centre, Kapittelweg 29, 6525 EN Nijmegen, The Netherlands. ; Penelope A. Lewis, School of Psychology, Cardiff University, Cardiff, UK.
| | - Dominik Koester
- Institute for Medical Psychology and Behavioural Neurobiology, University of Tübingen, Tübingen, Germany
| | - Jan Born
- Institute for Medical Psychology and Behavioural Neurobiology, University of Tübingen, Tübingen, Germany
- Centre for Integrative Neuroscience, University of Tübingen, Tübingen, Germany
| | - Hong-Viet V Ngo
- Institute for Medical Psychology and Behavioural Neurobiology, University of Tübingen, Tübingen, Germany
- Donders Institute for Brain, Cognition and Behaviour, Radboud University Medical Centre, Nijmegen, The Netherlands
- Corresponding authors. Hong-Viet V. Ngo, Donders Institute for Brain, Cognition and Behaviour, Radboud University Medical Centre, Kapittelweg 29, 6525 EN Nijmegen, The Netherlands. ; Penelope A. Lewis, School of Psychology, Cardiff University, Cardiff, UK.
| |
Collapse
|
18
|
Gomez-Pilar J, Gutiérrez-Tobal GC, Poza J, Fogel S, Doyon J, Northoff G, Hornero R. Spectral and temporal characterization of sleep spindles-methodological implications. J Neural Eng 2021; 18. [PMID: 33618345 DOI: 10.1088/1741-2552/abe8ad] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2020] [Accepted: 02/22/2021] [Indexed: 11/12/2022]
Abstract
Objective. Nested into slow oscillations (SOs) and modulated by their up-states, spindles are electrophysiological hallmarks of N2 sleep stage that present a complex hierarchical architecture. However, most studies have only described spindles in basic statistical terms, which were limited to the spindle itself without analyzing the characteristics of the pre-spindle moments in which the SOs are originated. The aim of this study was twofold: (a) to apply spectral and temporal measures to the pre-spindle and spindle periods, as well as analyze the correlation between them, and (b) to evaluate the potential of these spectral and temporal measures in future automatic detection algorithms.Approach. An automatic spindle detection algorithm was applied to the overnight electroencephalographic recordings of 26 subjects. Ten complementary features (five spectral and five temporal parameters) were computed in the pre-spindle and spindle periods after their segmentation. These features were computed independently in each period and in a time-resolved way (sliding window). After the statistical comparison of both periods, a correlation analysis was used to assess their interrelationships. Finally, a receiver operating-characteristic (ROC) analysis along with a bootstrap procedure was conducted to further evaluate the degree of separability between the pre-spindle and spindle periods.Main results. The results show important time-varying changes in spectral and temporal parameters. The features calculated in pre-spindle and spindle periods are strongly and significantly correlated, demonstrating the association between the pre-spindle characteristics and the subsequent spindle. The ROC analysis exposes that the typical feature used in automatic spindle detectors, i.e. the power in the sigma band, is outperformed by other features, such as the spectral entropy in this frequency range.Significance. The novel features applied here demonstrate their utility as predictors of spindles that could be incorporated into novel algorithms of automatic spindle detectors, in which the analysis of the pre-spindle period becomes relevant for improving their performance. From the clinical point of view, these features may serve as novel precision therapeutic targets to enhance spindle production with the aim of improving memory, cognition, and sleep quality in healthy and clinical populations. The results evidence the need for characterizing spindles in terms beyond power and the spindle period itself to more dynamic measures and the pre-spindle period. Physiologically, these findings suggest that spindles are more than simple oscillations, but nonstable oscillatory bursts embedded in the complex pre-spindle dynamics.
Collapse
Affiliation(s)
- Javier Gomez-Pilar
- Biomedical Engineering Group, University of Valladolid, Paseo de Belén, 15, 47011 Valladolid, Spain.,Centro de Investigación Biomédica en Red en Bioingeniería, Biomateriales y Nanomedicina, (CIBER-BBN), Valladolid, Spain
| | - Gonzalo C Gutiérrez-Tobal
- Biomedical Engineering Group, University of Valladolid, Paseo de Belén, 15, 47011 Valladolid, Spain.,Centro de Investigación Biomédica en Red en Bioingeniería, Biomateriales y Nanomedicina, (CIBER-BBN), Valladolid, Spain
| | - Jesús Poza
- Biomedical Engineering Group, University of Valladolid, Paseo de Belén, 15, 47011 Valladolid, Spain.,Centro de Investigación Biomédica en Red en Bioingeniería, Biomateriales y Nanomedicina, (CIBER-BBN), Valladolid, Spain.,IMUVA, Mathematics Research Institute, University of Valladolid, Valladolid, Spain
| | - Stuart Fogel
- School of Psychology, University of Ottawa, Ottawa, Canada.,Mind, Brain Imaging and Neuroethics, Institute of Mental Health Research, University of Ottawa, Ottawa, Canada
| | - Julien Doyon
- Functional Neuroimaging Unit, Centre de Recherche de l'institut Universitaire de Gériatrie de 8 Montréal, Montreal, Canada.,McConnell Brain Imaging Centre and Department of Neurology and Neurosurgery, McGill University, Montreal, Canada
| | - Georg Northoff
- Mind, Brain Imaging and Neuroethics, Institute of Mental Health Research, University of Ottawa, Ottawa, Canada.,Mental Health Center, Zhejiang University School of Medicine, Hangzhou, Zhejiang, People's Republic of China
| | - Roberto Hornero
- Biomedical Engineering Group, University of Valladolid, Paseo de Belén, 15, 47011 Valladolid, Spain.,Centro de Investigación Biomédica en Red en Bioingeniería, Biomateriales y Nanomedicina, (CIBER-BBN), Valladolid, Spain.,IMUVA, Mathematics Research Institute, University of Valladolid, Valladolid, Spain
| |
Collapse
|
19
|
Fehér KD, Wunderlin M, Maier JG, Hertenstein E, Schneider CL, Mikutta C, Züst MA, Klöppel S, Nissen C. Shaping the slow waves of sleep: A systematic and integrative review of sleep slow wave modulation in humans using non-invasive brain stimulation. Sleep Med Rev 2021; 58:101438. [PMID: 33582581 DOI: 10.1016/j.smrv.2021.101438] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2020] [Revised: 10/14/2020] [Accepted: 11/10/2020] [Indexed: 01/19/2023]
Abstract
The experimental study of electroencephalographic slow wave sleep (SWS) stretches over more than half a century and has corroborated its importance for basic physiological processes, such as brain plasticity, metabolism and immune system functioning. Alterations of SWS in aging or pathological conditions suggest that modulating SWS might constitute a window for clinically relevant interventions. This work provides a systematic and integrative review of SWS modulation through non-invasive brain stimulation in humans. A literature search using PubMed, conducted in May 2020, identified 3220 studies, of which 82 fulfilled inclusion criteria. Three approaches have been adopted to modulate the macro- and microstructure of SWS, namely auditory, transcranial electrical and transcranial magnetic stimulation. Our current knowledge about the modulatory mechanisms, the space of stimulation parameters and the physiological and behavioral effects are reported and evaluated. The integration of findings suggests that sleep slow wave modulation bears the potential to promote our understanding of the functions of SWS and to develop new treatments for conditions of disrupted SWS.
Collapse
Affiliation(s)
- Kristoffer D Fehér
- University Hospital of Psychiatry and Psychotherapy, University of Bern, Switzerland
| | - Marina Wunderlin
- University Hospital of Old Age Psychiatry and Psychotherapy, University of Bern, Switzerland
| | - Jonathan G Maier
- University Hospital of Psychiatry and Psychotherapy, University of Bern, Switzerland
| | - Elisabeth Hertenstein
- University Hospital of Psychiatry and Psychotherapy, University of Bern, Switzerland
| | - Carlotta L Schneider
- University Hospital of Psychiatry and Psychotherapy, University of Bern, Switzerland
| | - Christian Mikutta
- University Hospital of Psychiatry and Psychotherapy, University of Bern, Switzerland; Privatklinik Meiringen, Meiringen, Switzerland
| | - Marc A Züst
- University Hospital of Old Age Psychiatry and Psychotherapy, University of Bern, Switzerland
| | - Stefan Klöppel
- University Hospital of Old Age Psychiatry and Psychotherapy, University of Bern, Switzerland
| | - Christoph Nissen
- University Hospital of Psychiatry and Psychotherapy, University of Bern, Switzerland.
| |
Collapse
|
20
|
Voysey ZJ, Barker RA, Lazar AS. The Treatment of Sleep Dysfunction in Neurodegenerative Disorders. Neurotherapeutics 2021; 18:202-216. [PMID: 33179197 PMCID: PMC8116411 DOI: 10.1007/s13311-020-00959-7] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/22/2020] [Indexed: 12/13/2022] Open
Abstract
Sleep dysfunction is highly prevalent across the spectrum of neurodegenerative conditions and is a key determinant of quality of life for both patients and their families. Mounting recent evidence also suggests that such dysfunction exacerbates cognitive and affective clinical features of neurodegeneration, as well as disease progression through acceleration of pathogenic processes. Effective assessment and treatment of sleep dysfunction in neurodegeneration is therefore of paramount importance; yet robust therapeutic guidelines are lacking, owing in part to a historical paucity of effective treatments and trials. Here, we review the common sleep abnormalities evident in neurodegenerative disease states and evaluate the latest evidence for traditional and emerging interventions, both pharmacological and nonpharmacological. Interventions considered include conservative measures, targeted treatments of specific clinical sleep pathologies, established sedating and alerting agents, melatonin, and orexin antagonists, as well as bright light therapy, behavioral measures, and slow-wave sleep augmentation techniques. We conclude by providing a suggested framework for treatment based on contemporary evidence and highlight areas that may emerge as major therapeutic advances in the near future.
Collapse
Affiliation(s)
- Zanna J Voysey
- Department of Clinical Neurosciences, John van Geest Centre for Brain Repair, University of Cambridge, Cambridge, CB2 0PY, UK
| | - Roger A Barker
- Department of Clinical Neurosciences, John van Geest Centre for Brain Repair and WT-MRC Cambridge Stem Cell Institute, University of Cambridge, Cambridge, CB2 0PY, UK
| | - Alpar S Lazar
- Faculty of Medicine and Health Sciences, University of East Anglia, Norwich, NR4 7TJ, UK.
| |
Collapse
|
21
|
Abstract
Abstract. Posttraumatic stress disorder (PTSD) is characterized by intrusive re-experiencing of emotional memories of a traumatic event. Such memories are formed after exposure to trauma in the context of a cascading stress response including high levels of emotional arousal and stress hormone release. Sleep could be a key modulator of early memory formation and re-consolidation processes. Initial studies have investigated this association in this early time period, that is, hours and days after trauma exposure, and its role in modulating trauma memories and PTSD. The time is thus ripe to integrate findings from these studies. The current review consolidated evidence from five experimental and seven naturalistic studies on the association between trauma, sleep, and the development of intrusive emotional memories and PTSD, respectively. Together, the studies point to a potential protective role of sleep after trauma for the development of intrusive memories and PTSD. Findings regarding key sleep architecture features are more mixed and require additional investigation. The findings are important for prevention and intervention science.
Collapse
Affiliation(s)
- Yasmine Azza
- Division of Experimental Psychopathology and Psychotherapy, Department of Psychology, University of Zurich, Switzerland
- Department of Psychiatry, Psychotherapy and Psychosomatics, Psychiatric Hospital, University of Zurich, Switzerland
- Sleep & Health Zurich, University of Zurich, Switzerland
| | - Ines Wilhelm
- Division of Experimental Psychopathology and Psychotherapy, Department of Psychology, University of Zurich, Switzerland
- Department of Psychiatry, Psychotherapy and Psychosomatics, Psychiatric Hospital, University of Zurich, Switzerland
- Department of Psychiatry and Psychotherapy, University of Lübeck, Germany
| | - Birgit Kleim
- Division of Experimental Psychopathology and Psychotherapy, Department of Psychology, University of Zurich, Switzerland
- Department of Psychiatry, Psychotherapy and Psychosomatics, Psychiatric Hospital, University of Zurich, Switzerland
- Sleep & Health Zurich, University of Zurich, Switzerland
| |
Collapse
|
22
|
Sawangjit A, Oyanedel CN, Niethard N, Born J, Inostroza M. Deepened sleep makes hippocampal spatial memory more persistent. Neurobiol Learn Mem 2020; 173:107245. [DOI: 10.1016/j.nlm.2020.107245] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2019] [Revised: 02/28/2020] [Accepted: 05/02/2020] [Indexed: 12/28/2022]
|
23
|
Schmid SR, Nissen C, Riemann D, Spiegelhalder K, Frase L. Auditorische Stimulation während des Schlafs. SOMNOLOGIE 2020. [DOI: 10.1007/s11818-020-00255-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
ZusammenfassungDie Insomnie, d. h. eine Ein- und/oder Durchschlafstörung, die sich negativ auf die Leistungsfähigkeit und Tagesbefindlichkeit auswirkt, ist eine der häufigsten Erkrankungen in der Allgemeinbevölkerung. Sie wird derzeit meistens pharmakologisch und/oder psychotherapeutisch behandelt, wobei die pharmakologische Behandlung mit Benzodiazepin-Rezeptor-Agonisten zu Abhängigkeit führen kann und die Verfügbarkeit von für die Insomnie-Therapie ausgebildeten Psychotherapeuten momentan nicht in ausreichendem Maße gegeben ist. Durch innovative Behandlungsmethoden könnte hier eine Versorgungslücke effektiv geschlossen werden. Hierzu zählt die auditorische Stimulation, welche vorhandene Sinneskanäle nutzt, um den Schlaf zu beeinflussen. Bisher wurde die auditorische Stimulation vor allem zur Untersuchung von Prozessen der Gedächtniskonsolidierung bei gesunden Probanden angewendet, wobei erfolgreich eine Erhöhung langsamer Oszillationen erreicht wurde, welche vor allem während des Tiefschlafs auftreten. Erste Befunde und sekundäre Outcome-Parameter liefern Hinweise, dass die Potenzierung langsamer Oszillationen durch auditorische Stimulation den Schlaf vertiefen kann, jedoch wurde hierzu bislang keine Studie mit Insomniepatienten durchgeführt. Weitere Forschung bezüglich des Einflusses der Potenzierung langsamer Oszillationen auf die Linderung von Ein- und Durchschlafproblemen bei vorliegender nichtorganischer Insomnie erscheint daher geboten zu sein, um der hohen Beschwerdelast dieser Patientengruppe entgegenzuwirken.
Collapse
|
24
|
Manoach DS, Mylonas D, Baxter B. Targeting sleep oscillations to improve memory in schizophrenia. Schizophr Res 2020; 221:63-70. [PMID: 32014359 PMCID: PMC7316628 DOI: 10.1016/j.schres.2020.01.010] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/23/2019] [Revised: 01/06/2020] [Accepted: 01/09/2020] [Indexed: 12/26/2022]
Abstract
Although schizophrenia is defined by waking phenomena, a growing literature documents a deficit in sleep spindles, a defining oscillation of stage 2 non-rapid eye movement sleep. Compelling evidence supports an important role for spindles in cognition, and particularly memory. In schizophrenia, although the spindle deficit correlates with impaired sleep-dependent memory consolidation, recent clinical trials find that increasing spindles does not improve memory. This may reflect that sleep-dependent memory consolidation relies not on spindles alone, but also on their precise temporal coordination with cortical slow oscillations and hippocampal sharp-wave ripples. Consequently, interventions to improve memory in schizophrenia must not only increase spindles, but also preserve or enhance slow oscillations, hippocampal ripples and their temporal relations. Because hippocampal ripples and the activity of the thalamic spindle generator are difficult to measure noninvasively, screening potential interventions requires complementary animal and human studies. In this review we (i) propose that sleep oscillations are novel pathophysiological targets for therapy to improve cognition in schizophrenia; (ii) summarize our understanding of how these oscillations interact to consolidate memory; (iii) suggest that a systems neuroscience strategy is essential to selecting and evaluating effective treatments, and illustrate this with findings from clinical trials; and (iv) selectively review the interventional literature relevant to sleep and cognition, covering both pharmacological and noninvasive brain stimulation approaches. We conclude that coordinated sleep oscillations are promising targets for improving cognition in schizophrenia and that effective therapies will need to preserve or enhance sleep oscillatory dynamics and restore function at the network level.
Collapse
Affiliation(s)
- Dara S Manoach
- Department of Psychiatry Massachusetts General Hospital, Harvard Medical School, Boston, MA 02215, USA; Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital and Harvard Medical School, Charlestown, MA 02129, USA.
| | - Dimitrios Mylonas
- Department of Psychiatry Massachusetts General Hospital, Harvard Medical School, Boston, MA 02215, USA; Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital and Harvard Medical School, Charlestown, MA 02129, USA
| | - Bryan Baxter
- Department of Psychiatry Massachusetts General Hospital, Harvard Medical School, Boston, MA 02215, USA; Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital and Harvard Medical School, Charlestown, MA 02129, USA
| |
Collapse
|
25
|
Fröhlich F, Lustenberger C. Neuromodulation of sleep rhythms in schizophrenia: Towards the rational design of non-invasive brain stimulation. Schizophr Res 2020; 221:71-80. [PMID: 32354662 PMCID: PMC7316586 DOI: 10.1016/j.schres.2020.04.003] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/26/2019] [Revised: 04/01/2020] [Accepted: 04/03/2020] [Indexed: 02/01/2023]
Abstract
Brain function critically depends on oscillatory synchronization of neuronal populations both during wake and sleep. Originally, neural oscillations have been discounted as an epiphenomenon. More recently, specific deficits in the structure of brain oscillations have been linked to psychiatric diseases. For example, schizophrenia is hallmarked by abnormalities in different brain oscillations. Key sleep rhythms during NEM sleep such as sleep spindles, which are implicated in memory consolidation and are related to cognitive functions, are strongly diminished in these patients compared to healthy controls. To date, it remains unclear whether these reductions in sleep oscillations are causal for the functional impairments observed in schizophrenia. The application of non-invasive brain stimulation permits the causal examination of brain network dynamics and will help to establish the causal association of sleep oscillations and symptoms of schizophrenia. To accomplish this, stimulation paradigms that selectively engage specific network targets such as sleep spindles or slow waves are needed. We propose that the successful development and application of these non-invasive brain stimulation approaches will require rational design that takes network dynamics and neuroanatomical information into account. The purpose of this article is to prepare the grounds for the next steps towards such rational design of non-invasive stimulation, with a special focus on electrical and auditory stimulation. First, we briefly summarize the deficits in network dynamics during sleep in schizophrenia. Then, we discuss today's and tomorrow's non-invasive brain stimulation modalities to engage these network targets.
Collapse
Affiliation(s)
- Flavio Fröhlich
- Department of Psychiatry, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA; Carolina Center for Neurostimulation, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA; Department of Cell Biology and Physiology, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA; Neuroscience Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA; Department of Neurology, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA; Department of Biomedical Engineering, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA.
| | - Caroline Lustenberger
- Neural Control of Movement Lab, Institute of Movement Sciences and Sport, Department of Health Sciences and Technology, ETH Zurich, 8092 Zurich, Switzerland.
| |
Collapse
|
26
|
Krempp C, Paulk AC, Truccolo W, Cash SS, Zelmann R. Effect of Closed-Loop Direct Electrical Stimulation during Sleep Spindles in Humans. ANNUAL INTERNATIONAL CONFERENCE OF THE IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. ANNUAL INTERNATIONAL CONFERENCE 2020; 2020:3586-3589. [PMID: 33018778 DOI: 10.1109/embc44109.2020.9175404] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Sleep spindles are transient oscillations in the brain related to sleep consolidation and memory. We investigated if brief, localized electrical pulses could perturb spindles on five human patients with intracerebral electrodes implanted for clinical purpose. We used a closed-loop setup to specifically detect spindles and stimulate in real-time during these events. Stimulation latency was 200-400 ms following spindle onset. Analyzing the intracranial electro-encephalographic (iEEG) data both locally and globally, we found, in two of the patients, that single pulse stimulation could stop the spindles locally. Spindles were shorter than those without stimulation and a decrease in power at the same frequency as spindles was observed following stimulation.Clinical Relevance- This study shows that brief and precise electrical stimulation may be used to modulate oscillatory behavior of the human brain. Applied to sleep spindles, further studies may establish that single pulses applied in a closed-loop manner could be used to modulate memory and could help understand effect of neuromodulation in sleep disruption.
Collapse
|
27
|
Salfi F, D'Atri A, Tempesta D, De Gennaro L, Ferrara M. Boosting Slow Oscillations during Sleep to Improve Memory Function in Elderly People: A Review of the Literature. Brain Sci 2020; 10:E300. [PMID: 32429181 PMCID: PMC7287854 DOI: 10.3390/brainsci10050300] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2020] [Revised: 05/11/2020] [Accepted: 05/13/2020] [Indexed: 02/05/2023] Open
Abstract
Sleep represents a crucial time window for the consolidation of memory traces. In this view, some brain rhythms play a pivotal role, first of all the sleep slow waves. In particular, the neocortical slow oscillations (SOs), in coordination with the hippocampal ripples and the thalamocortical spindles, support the long-term storage of the declarative memories. The aging brain is characterized by a disruption of this complex system with outcomes on the related cognitive functions. In recent years, the advancement of the comprehension of the sleep-dependent memory consolidation mechanisms has encouraged the development of techniques of SO enhancement during sleep to induce cognitive benefits. In this review, we focused on the studies reporting on the application of acoustic or electric stimulation procedures in order to improve sleep-dependent memory consolidation in older subjects. Although the current literature is limited and presents inconsistencies, there is promising evidence supporting the perspective to non-invasively manipulate the sleeping brain electrophysiology to improve cognition in the elderly, also shedding light on the mechanisms underlying the sleep-memory relations during healthy and pathological aging.
Collapse
Affiliation(s)
- Federico Salfi
- Department of Biotechnological and Applied Clinical Sciences, University of L'Aquila, 67100 L'Aquila, Italy
| | - Aurora D'Atri
- Department of Psychology, Sapienza University of Rome, 00185 Rome, Italy
| | - Daniela Tempesta
- Department of Biotechnological and Applied Clinical Sciences, University of L'Aquila, 67100 L'Aquila, Italy
| | - Luigi De Gennaro
- Department of Psychology, Sapienza University of Rome, 00185 Rome, Italy
| | - Michele Ferrara
- Department of Biotechnological and Applied Clinical Sciences, University of L'Aquila, 67100 L'Aquila, Italy
| |
Collapse
|
28
|
A Systematic Review of Closed-Loop Feedback Techniques in Sleep Studies-Related Issues and Future Directions. SENSORS 2020; 20:s20102770. [PMID: 32414060 PMCID: PMC7285770 DOI: 10.3390/s20102770] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/03/2020] [Revised: 04/13/2020] [Accepted: 05/10/2020] [Indexed: 01/09/2023]
Abstract
Advances in computer processing technology have enabled researchers to analyze real-time brain activity and build real-time closed-loop paradigms. In many fields, the effectiveness of these closed-loop protocols has proven to be better than that of the simple open-loop paradigms. Recently, sleep studies have attracted much attention as one possible application of closed-loop paradigms. To date, several studies that used closed-loop paradigms have been reported in the sleep-related literature and recommend a closed-loop feedback system to enhance specific brain activity during sleep, which leads to improvements in sleep's effects, such as memory consolidation. However, to the best of our knowledge, no report has reviewed and discussed the detailed technical issues that arise in designing sleep closed-loop paradigms. In this paper, we reviewed the most recent reports on sleep closed-loop paradigms and offered an in-depth discussion of some of their technical issues. We found 148 journal articles strongly related with 'sleep and stimulation' and reviewed 20 articles on closed-loop feedback sleep studies. We focused on human sleep studies conducting any modality of feedback stimulation. Then we introduced the main component of the closed-loop system and summarized several open-source libraries, which are widely used in closed-loop systems, with step-by-step guidelines for closed-loop system implementation for sleep. Further, we proposed future directions for sleep research with closed-loop feedback systems, which provide some insight into closed-loop feedback systems.
Collapse
|
29
|
Henao D, Navarrete M, Valderrama M, Le Van Quyen M. Entrainment and synchronization of brain oscillations to auditory stimulations. Neurosci Res 2020; 156:271-278. [PMID: 32201357 DOI: 10.1016/j.neures.2020.03.004] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2019] [Revised: 11/25/2019] [Accepted: 12/12/2019] [Indexed: 11/15/2022]
Abstract
Oscillations of neural excitability shape sensory, motor or cognitive processes. Furthermore, a large body of research demonstrates that intrinsic oscillations are entrained by external rhythms, allowing a simple and efficient way to enhance human brain functions. As an external stimulation source, repeating acoustic stimuli have been shown to provide a possible pacing signal for modulating the electrical activity recorded by the electroencephalogram (EEG). In this review, we discuss recent advances in understanding how rhythmic auditory stimulation can selectively modulate EEG oscillations. Despite growing evidence, recent evidence suggests that standard methods of data analysis are often insufficient for a definite proof of entrainment in some instances. In particular, we stressed that the complexity of the elicited modulations, often varying in phase and frequency on a short timescale, requires time-frequency measures that are better appropriate to analyze driven brain phenomena. Once entrainment is clearly established, one can assess the specificity of its expression, thus providing a better understanding of the physiology underlying brain modulation and a faster translation to treatment programs in various psychopathologic conditions.
Collapse
Affiliation(s)
- David Henao
- Department of Biomedical Engineering, Universidad de Los Andes, Bogotá D.C., Colombia.
| | - Miguel Navarrete
- Cardiff University Brain Research Imaging Centre (CUBRIC), School of Psychology, Cardiff University, Cardiff, UK
| | - Mario Valderrama
- Department of Biomedical Engineering, Universidad de Los Andes, Bogotá D.C., Colombia
| | - Michel Le Van Quyen
- Laboratoire d'Imagerie Biomédicale (LIB), U1146 INSERM- SU - CNRS 7371, Campus des Cordeliers, 15 rue de l'Ecole de Médecine, Paris, France
| |
Collapse
|
30
|
Karimi Abadchi J, Nazari-Ahangarkolaee M, Gattas S, Bermudez-Contreras E, Luczak A, McNaughton BL, Mohajerani MH. Spatiotemporal patterns of neocortical activity around hippocampal sharp-wave ripples. eLife 2020; 9:51972. [PMID: 32167467 PMCID: PMC7096182 DOI: 10.7554/elife.51972] [Citation(s) in RCA: 76] [Impact Index Per Article: 15.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2019] [Accepted: 03/11/2020] [Indexed: 01/06/2023] Open
Abstract
A prevalent model is that sharp-wave ripples (SWR) arise ‘spontaneously’ in CA3 and propagate recent memory traces outward to the neocortex to facilitate memory consolidation there. Using voltage and extracellular glutamate transient recording over widespread regions of mice dorsal neocortex in relation to CA1 multiunit activity (MUA) and SWR, we find that the largest SWR-related modulation occurs in retrosplenial cortex; however, contrary to the unidirectional hypothesis, neocortical activation exhibited a continuum of activation timings relative to SWRs, varying from leading to lagging. Thus, contrary to the model in which SWRs arise ‘spontaneously’ in the hippocampus, neocortical activation often precedes SWRs and may thus constitute a trigger event in which neocortical information seeds associative reactivation of hippocampal ‘indices’. This timing continuum is consistent with a dynamics in which older, more consolidated memories may in fact initiate the hippocampal-neocortical dialog, whereas reactivation of newer memories may be initiated predominantly in the hippocampus.
Collapse
Affiliation(s)
- J Karimi Abadchi
- Canadian Centre for Behavioral Neuroscience, University of Lethbridge, Lethbridge, Canada
| | | | - Sandra Gattas
- Department of Electrical Engineering and Computer Science, University of California, Irvine, United States.,Medical Scientist Training Program, University of California, Irvine, United States
| | | | - Artur Luczak
- Canadian Centre for Behavioral Neuroscience, University of Lethbridge, Lethbridge, Canada
| | - Bruce L McNaughton
- Canadian Centre for Behavioral Neuroscience, University of Lethbridge, Lethbridge, Canada.,Department of Neurobiology and Behavior, University of California, Irvine, United States
| | - Majid H Mohajerani
- Canadian Centre for Behavioral Neuroscience, University of Lethbridge, Lethbridge, Canada
| |
Collapse
|
31
|
Héricé C, Sakata S. Pathway-Dependent Regulation of Sleep Dynamics in a Network Model of the Sleep-Wake Cycle. Front Neurosci 2019; 13:1380. [PMID: 31920528 PMCID: PMC6933528 DOI: 10.3389/fnins.2019.01380] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2019] [Accepted: 12/05/2019] [Indexed: 11/13/2022] Open
Abstract
Sleep is a fundamental homeostatic process within the animal kingdom. Although various brain areas and cell types are involved in the regulation of the sleep-wake cycle, it is still unclear how different pathways between neural populations contribute to its regulation. Here we address this issue by investigating the behavior of a simplified network model upon synaptic weight manipulations. Our model consists of three neural populations connected by excitatory and inhibitory synapses. Activity in each population is described by a firing-rate model, which determines the state of the network. Namely wakefulness, rapid eye movement (REM) sleep or non-REM (NREM) sleep. By systematically manipulating the synaptic weight of every pathway, we show that even this simplified model exhibits non-trivial behaviors: for example, the wake-promoting population contributes not just to the induction and maintenance of wakefulness, but also to sleep induction. Although a recurrent excitatory connection of the REM-promoting population is essential for REM sleep genesis, this recurrent connection does not necessarily contribute to the maintenance of REM sleep. The duration of NREM sleep can be shortened or extended by changes in the synaptic strength of the pathways from the NREM-promoting population. In some cases, there is an optimal range of synaptic strengths that affect a particular state, implying that the amount of manipulations, not just direction (i.e., activation or inactivation), needs to be taken into account. These results demonstrate pathway-dependent regulation of sleep dynamics and highlight the importance of systems-level quantitative approaches for sleep-wake regulatory circuits.
Collapse
Affiliation(s)
| | - Shuzo Sakata
- Strathclyde Institute of Pharmacy and Biomedical Sciences, University of Strathclyde, Glasgow, United Kingdom
| |
Collapse
|
32
|
Closed-Loop Acoustic Stimulation Enhances Sleep Oscillations But Not Memory Performance. eNeuro 2019; 6:ENEURO.0306-19.2019. [PMID: 31604814 PMCID: PMC6831893 DOI: 10.1523/eneuro.0306-19.2019] [Citation(s) in RCA: 41] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2019] [Revised: 09/17/2019] [Accepted: 09/24/2019] [Indexed: 11/21/2022] Open
Abstract
Slow oscillations and spindle activity during non-rapid eye movement sleep have been implicated in memory consolidation. Closed-loop acoustic stimulation has previously been shown to enhance slow oscillations and spindle activity during sleep and improve verbal associative memory. We assessed the effect of closed-loop acoustic stimulation during a daytime nap on a virtual reality spatial navigation task in 12 healthy human subjects in a randomized within-subject crossover design. We show robust enhancement of slow oscillation and spindle activity during sleep. However, no effects on behavioral performance were observed when comparing real versus sham stimulation. To explore whether memory enhancement effects were task specific and dependent on nocturnal sleep, in a second experiment with 19 healthy subjects, we aimed to replicate a previous study that used closed-loop acoustic stimulation to enhance memory for word pairs. The methods used were as close as possible to those used in the original study, except that we used a double-blind protocol, in which both subject and experimenter were unaware of the test condition. Again, we successfully enhanced slow oscillation and spindle power, but again did not strengthen associative memory performance with stimulation. We conclude that enhancement of sleep oscillations may be insufficient to enhance memory performance in spatial navigation or verbal association tasks, and provide possible explanations for lack of behavioral replication.
Collapse
|
33
|
Hanslmayr S, Axmacher N, Inman CS. Modulating Human Memory via Entrainment of Brain Oscillations. Trends Neurosci 2019; 42:485-499. [PMID: 31178076 DOI: 10.1016/j.tins.2019.04.004] [Citation(s) in RCA: 129] [Impact Index Per Article: 21.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2018] [Revised: 04/01/2019] [Accepted: 04/25/2019] [Indexed: 12/30/2022]
Abstract
In the human brain, oscillations occur during neural processes that are relevant for memory. This has been demonstrated by a plethora of studies relating memory processes to specific oscillatory signatures. Several recent studies have gone beyond such correlative approaches and provided evidence supporting the idea that modulating oscillations via frequency-specific entrainment can alter memory functions. Such causal evidence is important because it allows distinguishing mechanisms directly related to memory from mere epiphenomenal oscillatory signatures of memory. This review provides an overview of stimulation studies using different approaches to entrain brain oscillations for modulating human memory. We argue that these studies demonstrate a causal link between brain oscillations and memory, speaking against an epiphenomenal perspective of brain oscillations.
Collapse
Affiliation(s)
- Simon Hanslmayr
- Centre for Human Brain Health, School of Psychology, University of Birmingham, Birmingham, UK.
| | - Nikolai Axmacher
- Department of Neuropsychology, Institute of Cognitive Neuroscience, Faculty of Psychology, Ruhr University Bochum, Bochum, Germany
| | - Cory S Inman
- Department of Neurosurgery, Emory University, 1365 Clifton Road North East, Atlanta, GA 30322, USA
| |
Collapse
|