1
|
Bällgren F, Bergfast T, Ginosyan A, Mahajan J, Lipcsey M, Hammarlund-Udenaes M, Syvänen S, Loryan I. Active CNS delivery of oxycodone in healthy and endotoxemic pigs. Fluids Barriers CNS 2024; 21:86. [PMID: 39443944 PMCID: PMC11515623 DOI: 10.1186/s12987-024-00583-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2024] [Accepted: 10/04/2024] [Indexed: 10/25/2024] Open
Abstract
BACKGROUND The primary objective of this study was to advance our understanding of active drug uptake at brain barriers in higher species than rodents, by examining oxycodone brain concentrations in pigs. METHODS This was investigated by a microdialysis study in healthy and endotoxemic conditions to increase the understanding of inter-species translation of putative proton-coupled organic cation (H+/OC) antiporter-mediated central nervous system (CNS) drug delivery in health and pathology, and facilitate the extrapolation to humans for improved CNS drug treatment in patients. Additionally, we sought to evaluate the efficacy of lumbar cerebrospinal fluid (CSF) exposure readout as a proxy for brain unbound interstitial fluid (ISF) concentrations. By simultaneously monitoring unbound concentrations in blood, the frontal cortical area, the lateral ventricle (LV), and the lumbar intrathecal space in healthy and lipopolysaccharide (LPS)-induced inflammation states within the same animal, we achieved exceptional spatiotemporal resolution in mapping oxycodone transport across CNS barriers. RESULTS Our findings provide novel evidence of higher unbound oxycodone concentrations in brain ISF compared to blood, yielding an unbound brain-to-plasma concentration ratio (Kp,uu,brain) of 2.5. This supports the hypothesis of the presence of the H+/OC antiporter system at the blood-brain barrier (BBB) in pigs. Despite significant physiological changes, reflected in pig Sequential Organ Failure Assessment, pSOFA scores, oxycodone blood concentrations and its active net uptake across the BBB remained nearly unchanged during three hours of i.v. infusion of 4 µg/kg/h LPS from Escherichia coli (O111:B4). Mean Kp,uu,LV values indicated active uptake also at the blood-CSF barrier in healthy and endotoxemic pigs. Lumbar CSF concentrations showed minimal inter-individual variability during the experiment, with a mean Kp,uu,lumbarCSF of 1.5. LPS challenge caused a slight decrease in Kp,uu,LV, while Kp,uu,lumbarCSF remained unaffected. CONCLUSIONS This study enhances our understanding of oxycodone pharmacokinetics and CNS drug delivery in both healthy and inflamed conditions, providing crucial insights for translating these findings to clinical settings.
Collapse
Affiliation(s)
- Frida Bällgren
- Translational Pharmacokinetics/Pharmacodynamics Group (tPKPD), Department of Pharmacy, Uppsala University, Husargatan 3, 752 37, Uppsala, Sweden.
| | - Tilda Bergfast
- Translational Pharmacokinetics/Pharmacodynamics Group (tPKPD), Department of Pharmacy, Uppsala University, Husargatan 3, 752 37, Uppsala, Sweden
| | - Aghavni Ginosyan
- Translational Pharmacokinetics/Pharmacodynamics Group (tPKPD), Department of Pharmacy, Uppsala University, Husargatan 3, 752 37, Uppsala, Sweden
| | - Jessica Mahajan
- Translational Pharmacokinetics/Pharmacodynamics Group (tPKPD), Department of Pharmacy, Uppsala University, Husargatan 3, 752 37, Uppsala, Sweden
- School of Applied Sciences, Abertay University, Bell Street, Dundee, DD1 1HG, Scotland, UK
| | - Miklós Lipcsey
- Hedenstierna Laboratory, Department of Surgical Sciences, Uppsala University, Akademiska Sjukhuset, 751 85, Uppsala, Sweden
| | - Margareta Hammarlund-Udenaes
- Translational Pharmacokinetics/Pharmacodynamics Group (tPKPD), Department of Pharmacy, Uppsala University, Husargatan 3, 752 37, Uppsala, Sweden
| | - Stina Syvänen
- Molecular Geriatrics, Department of Public Health and Caring Sciences, Uppsala University, Rudbecklaboratoriet, Dag Hammarskjölds Väg 20, 751 85, Uppsala, Sweden
| | - Irena Loryan
- Translational Pharmacokinetics/Pharmacodynamics Group (tPKPD), Department of Pharmacy, Uppsala University, Husargatan 3, 752 37, Uppsala, Sweden.
| |
Collapse
|
2
|
Xue Y, Zhang Y, Wu Y, Zhao T. Activation of GPER-1 Attenuates Traumatic Brain Injury-Induced Neurological Impairments in Mice. Mol Neurobiol 2024; 61:5614-5627. [PMID: 38217667 DOI: 10.1007/s12035-024-03919-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2022] [Accepted: 01/01/2024] [Indexed: 01/15/2024]
Abstract
This study aimed to investigate the effects of G1-activated G protein-coupled estrogen receptor 1 (GPER1) on neurological impairments and neuroinflammation in traumatic brain injury (TBI) mice. The controlled cortical impingement (CCI) method was used to establish the TBI model. The mice were subjected to ovariectomy (OVX) for two weeks prior to modeling. GPER1 agonist G1 was administered by intracerebroventricular injection. Brain tissue water content was detected by wet/dry method, and blood-brain barrier damage was detected by Evans blue extravasation. The neurological impairments in mice were evaluated by open field test, Y-maze test, nest-building test, object location memory test and novel object recognition test. Ionized calcium-binding adapter molecule 1 (Iba1) staining was used to indicate the activation of microglia. Expression of M1/M2-type microglia markers and inflammatory factors were evaluated by ELISA and qRT-PCR. The G1 administration significantly reduced cerebral edema and Evans blue extravasation at injury ipsilateral cortex and basal ganglia in TBI mice. Activation of GPER1 by G1 improved the anxiety behavior and the cognitive dysfunction of mice induced by TBI. G1 administration significantly decreased Iba1-positive staining cells and the mRNA levels of CD86, macrophage cationic peptide 1 (Mcp-1), nitric oxide synthase 2 (Nos2), interleukin 1 beta (IL-1β), and macrophage inflammatory protein-2 (MIP-2), while increased the mRNA levels of interleukin 10 (IL-10), arginase1 (Arg-1) and CD206. Activation of GPER1 through G1 administration has the potential to ameliorate cognitive dysfunction induced by TBI in mice. It may also inhibit the activation of M1 microglia in cortical tissue resulting from TBI, while promoting the activation of M2 microglia and contributing to the regulation of inflammatory responses.
Collapse
Affiliation(s)
- Yafei Xue
- Department of Neurosurgery, Tangdu Hospital, Fourth Military Medical University, No. 569 Xinsi Road, Baqiao District, Xi'an, 710038, Shaanxi, China
| | - Yunze Zhang
- Department of Neurosurgery, Tangdu Hospital, Fourth Military Medical University, No. 569 Xinsi Road, Baqiao District, Xi'an, 710038, Shaanxi, China
| | - Yingxi Wu
- Department of Neurosurgery, Tangdu Hospital, Fourth Military Medical University, No. 569 Xinsi Road, Baqiao District, Xi'an, 710038, Shaanxi, China.
| | - Tianzhi Zhao
- Department of Neurosurgery, Tangdu Hospital, Fourth Military Medical University, No. 569 Xinsi Road, Baqiao District, Xi'an, 710038, Shaanxi, China.
| |
Collapse
|
3
|
Zhang H, Ai Y, Zhang X, Deng F, Jiang S, Xie S, Peng M, Chen W, Hu J, Deng S, Zhang L. Visualization of Blood-Brain Barrier Disruption in Septic Mice with the New Method Based on in Vivo Imaging Technology. Neurocrit Care 2024:10.1007/s12028-024-02018-x. [PMID: 38982003 DOI: 10.1007/s12028-024-02018-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2024] [Accepted: 05/16/2024] [Indexed: 07/11/2024]
Abstract
BACKGROUND Dynamic monitoring of the blood-brain barrier (BBB) functional status in septic mice can help to explore the pathological mechanisms. Therefore, we proposed a new method for monitoring BBB permeability and applied it to the detection of sepsis models. METHODS The new method involves the construction of an optical cranial window and in vivo imaging. We performed dynamic monitoring of BBB permeability and cerebral blood flow (CBF) in cecal ligation puncture (CLP) and endotoxemia (lipopolysaccharide [LPS]) mice. RESULTS The sensitivity and accuracy of this method were higher than those of Evans blue evaluation. The increase of BBB permeability in the group of CLP mice was relatively mild and correlated with overall survival, and the damage was irreversible. Contrarily, BBB damage in the LPS group was more acute and severe, unrelated to overall survival, but recoverable. The CBF decreased significantly in both model mouse groups 24 h after modeling, but only the CBF proportion decrease in the LPS group was significantly correlated with an increase in BBB permeability. Within 24 h after both models were established, the decrease in blood flow in the digestive organs occurred earlier than in the brain and kidneys, and the decrease in small intestine blood flow in the LPS group progressed faster. CONCLUSIONS We have successfully demonstrated the feasibility of our novel method to detect BBB permeability in mice. Our results revealed a significant difference in the BBB permeability change trend between the CLP and LPS model mice when survival curves were consistent. Notably, the CLP-model mice demonstrated a closer resemblance to clinical patients. Our findings suggest that early-stage brain tissue hypoperfusion has a greater impact on BBB function damage in endotoxemia mice, which is related to the faster progression of blood flow redistribution.
Collapse
Affiliation(s)
- Haisong Zhang
- Department of Critical Care Medicine, Xiangya Hospital, Central South University, Changsha, 410008, China
| | - Yuhang Ai
- Department of Critical Care Medicine, Xiangya Hospital, Central South University, Changsha, 410008, China
| | - Xiaolei Zhang
- Department of Critical Care Medicine, Xiangya Hospital, Central South University, Changsha, 410008, China
| | - Fuxing Deng
- Department of Critical Care Medicine, Xiangya Hospital, Central South University, Changsha, 410008, China
| | - Shiwei Jiang
- Department of Critical Care Medicine, Xiangya Hospital, Central South University, Changsha, 410008, China
| | - Shucai Xie
- Department of Critical Care Medicine, Xiangya Hospital, Central South University, Changsha, 410008, China
| | - Milin Peng
- Department of Critical Care Medicine, Xiangya Hospital, Central South University, Changsha, 410008, China
| | - Wei Chen
- Department of Critical Care Medicine, Xiangya Hospital, Central South University, Changsha, 410008, China
| | - Jiyun Hu
- Department of Critical Care Medicine, Xiangya Hospital, Central South University, Changsha, 410008, China
| | - Songyun Deng
- Department of Critical Care Medicine, Xiangya Hospital, Central South University, Changsha, 410008, China
| | - Lina Zhang
- Department of Critical Care Medicine, Xiangya Hospital, Central South University, Changsha, 410008, China.
| |
Collapse
|
4
|
Gattegno R, Arbel L, Riess N, Shinar H, Katz S, Ilovitsh T. Enhanced capillary delivery with nanobubble-mediated blood-brain barrier opening and advanced high resolution vascular segmentation. J Control Release 2024; 369:506-516. [PMID: 38575074 DOI: 10.1016/j.jconrel.2024.04.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Revised: 03/28/2024] [Accepted: 04/01/2024] [Indexed: 04/06/2024]
Abstract
Overcoming the blood-brain barrier (BBB) is essential to enhance brain therapy. Here, we utilized nanobubbles with focused ultrasound for targeted and improved BBB opening in mice. A microscopy technique method assessed BBB opening at a single blood vessel resolution employing a dual-dye labeling technique using green fluorescent molecules to label blood vessels and Evans blue brain-impermeable dye for quantifying BBB extravasation. A deep learning architecture enabled blood vessels segmentation, delivering comparable accuracy to manual segmentation with a significant time reduction. Segmentation outcomes were applied to the Evans blue channel to quantify extravasation of each blood vessel. Results were compared to microbubble-mediated BBB opening, where reduced extravasation was observed in capillaries with a diameter of 2-6 μm. In comparison, nanobubbles yield an improved opening in these capillaries, and equivalent efficacy to that of microbubbles in larger vessels. These results indicate the potential of nanobubbles to serve as enhanced agents for BBB opening, amplifying bioeffects in capillaries while preserving comparable opening in larger vessels.
Collapse
Affiliation(s)
- Roni Gattegno
- Department of Biomedical Engineering, Tel Aviv University, Tel Aviv, Israel; The Sagol School of Neuroscience, Tel Aviv University, Tel Aviv, Israel
| | - Lilach Arbel
- Department of Biomedical Engineering, Tel Aviv University, Tel Aviv, Israel; The Sagol School of Neuroscience, Tel Aviv University, Tel Aviv, Israel
| | - Noa Riess
- Department of Biomedical Engineering, Tel Aviv University, Tel Aviv, Israel
| | - Hila Shinar
- Department of Biomedical Engineering, Tel Aviv University, Tel Aviv, Israel
| | - Sharon Katz
- Department of Biomedical Engineering, Tel Aviv University, Tel Aviv, Israel; The Sagol School of Neuroscience, Tel Aviv University, Tel Aviv, Israel
| | - Tali Ilovitsh
- Department of Biomedical Engineering, Tel Aviv University, Tel Aviv, Israel; The Sagol School of Neuroscience, Tel Aviv University, Tel Aviv, Israel.
| |
Collapse
|
5
|
Liu D, Jin Z, Wei H, Zhu C, Liu K, You P, Ju J, Xu J, Zhu W, Xu Q. Anti-SFT2D2 autoantibodies alter dendrite spine and cause psychotic behavior in mice. J Psychiatr Res 2024; 171:99-107. [PMID: 38262166 DOI: 10.1016/j.jpsychires.2024.01.015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/03/2023] [Revised: 12/06/2023] [Accepted: 01/09/2024] [Indexed: 01/25/2024]
Abstract
BACKGROUND Autoimmunity plays an important role in schizophrenia (SCZ). Autoantibodies against SFT2D2 have been reported in patients with SCZ; however, the specific mechanism remains unclear. This study aimed to describe an autoimmune model, namely, mice immunized against SFT2D2-peptides. METHODS ApoE-/- and WT mice (C57BL/6) were immunized four times (day 0, day 14, day 21, day 35) with SFT2D2 peptide or KLH via subcutaneous injection. Behavioral tests were conducted after the third immunization, and immunochemistry of brain tissue were performed after the sacrifice of the mice. RESULTS Active immunization with KLH-coupled SFT2D2-derived peptides in both WT and ApoE-/- (compromised blood-brain barrier) mice led to high circulating levels of anti-SFT2D2 IgG. While there was no detectable deficit in WT mice, impaired pre-pulse inhibition, motor impairments, and reduced cognition in ApoE-/- mice, without signs of anxiety and depression were observed. In addition, immunohistochemical assays demonstrated that activated microglia and astrocytes were increased but neuronal dendritic spine densities were decreased, accompanied by increased expression of complement molecule C4 across brain regions in ApoE-/- mice. CONCLUSIONS In model mice with compromised blood-brain barrier, endogenous anti-SFT2D2 IgG can activate glial cells and modulate synaptic plasticity, and induce a series of psychosis-like changes. These antibodies may reveal valuable therapeutic targets, which may improve the treatment strategies for a subgroup of SCZ patients.
Collapse
Affiliation(s)
- Duilin Liu
- Department of Clinical Laboratory, The Second Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China
| | - Zhongman Jin
- State Key Laboratory of Medical Molecular Biology, Institute of Basic Medical Sciences Chinese Academy of Medical Sciences, School of Basic Medicine Peking Union Medical College, Beijing, China
| | - Hui Wei
- State Key Laboratory of Medical Molecular Biology, Institute of Basic Medical Sciences Chinese Academy of Medical Sciences, School of Basic Medicine Peking Union Medical College, Beijing, China; Neuroscience Center, Chinese Academy of Medical Sciences, Beijing, China
| | - Caiyun Zhu
- State Key Laboratory of Medical Molecular Biology, Institute of Basic Medical Sciences Chinese Academy of Medical Sciences, School of Basic Medicine Peking Union Medical College, Beijing, China; Neuroscience Center, Chinese Academy of Medical Sciences, Beijing, China
| | - Kejiang Liu
- State Key Laboratory of Medical Molecular Biology, Institute of Basic Medical Sciences Chinese Academy of Medical Sciences, School of Basic Medicine Peking Union Medical College, Beijing, China
| | - Pengsheng You
- State Key Laboratory of Medical Molecular Biology, Institute of Basic Medical Sciences Chinese Academy of Medical Sciences, School of Basic Medicine Peking Union Medical College, Beijing, China
| | - Jiahang Ju
- State Key Laboratory of Medical Molecular Biology, Institute of Basic Medical Sciences Chinese Academy of Medical Sciences, School of Basic Medicine Peking Union Medical College, Beijing, China
| | - Jinming Xu
- State Key Laboratory of Medical Molecular Biology, Institute of Basic Medical Sciences Chinese Academy of Medical Sciences, School of Basic Medicine Peking Union Medical College, Beijing, China
| | - Wanwan Zhu
- State Key Laboratory of Medical Molecular Biology, Institute of Basic Medical Sciences Chinese Academy of Medical Sciences, School of Basic Medicine Peking Union Medical College, Beijing, China; Neuroscience Center, Chinese Academy of Medical Sciences, Beijing, China
| | - Qi Xu
- State Key Laboratory of Medical Molecular Biology, Institute of Basic Medical Sciences Chinese Academy of Medical Sciences, School of Basic Medicine Peking Union Medical College, Beijing, China; Neuroscience Center, Chinese Academy of Medical Sciences, Beijing, China.
| |
Collapse
|
6
|
Li Q, Tang Z, Zhang Y, Yuan T, Yuan B, Du L, Jin Y. Application of low-intensity ultrasound by opening blood-brain barrier for enhanced brain-targeted drug delivery. Int J Pharm 2023; 642:123191. [PMID: 37391108 DOI: 10.1016/j.ijpharm.2023.123191] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2023] [Revised: 06/21/2023] [Accepted: 06/28/2023] [Indexed: 07/02/2023]
Abstract
Brain-targeted drug delivery has been a research hotspot, and substantial amount of related studies were already translated into standard therapy and put into clinical use. However, low effective rate retains a huge challenge for brain disease. Because, the blood-brain barrier (BBB) protects brain from pathogenic molecules and tightly controls the process of molecular transportation, which gives rise to poor-liposoluble drugs or molecules with high molecular weight cannot permeate the barrier to exert treating effect. There is an ongoing process to dig out more methods for efficient brain-targeted drug delivery. Besides modified chemical methods such as prodrugs design and brain-targeted nanotechnology, physical methods as a novel initiative could enhance the treatment effect for brain disease. In our study, the influence of low-intensity ultrasound on transient opening BBB and the related applications were explored. A medical ultrasound therapeutic device (1 MHz) was used on heads of mice at different intensities and for different treating time. Evans blue was used as a model to exhibit the permeability of the BBB after subcutaneous injection. Three types of intensities (0.6, 0.8, and 1.0 W/cm2) and duration times (1, 3, and 5 min) of ultrasound were respectively investigated. It was found that the combinations of 0.6 W/cm2/1 min, 0.6 W/cm2/3 min, 0.6 W/cm2/5 min, 0.8 W/cm2/1 min, and 1.0 W/cm2/1 min could open the BBB sufficiently with significant Evans blue staining in the brain. Brain pathological analysis showed structural change on moderate degree was found on cerebral cortex after ultrasound and could recovered rapidly. There are no obvious changes in the behavior of mice after ultrasound processing. More importantly, the BBB recovered quickly at 12 h after ultrasound application with complete BBB structure and unbroken tight junction, suggesting that ultrasound was safe to apply for brain-targeted drug delivery. Proper use of local ultrasound on the brain is a promising technique to open the BBB and enhance brain-targeted delivery.
Collapse
Affiliation(s)
- Qian Li
- College of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan 250355, China; Department of Pharmaceutical Sciences, Beijing Institute of Radiation Medicine, Beijing 100850, China
| | - Ziyan Tang
- Department of Pharmaceutical Sciences, Beijing Institute of Radiation Medicine, Beijing 100850, China
| | - Yuanyuan Zhang
- College of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan 250355, China; Department of Pharmaceutical Sciences, Beijing Institute of Radiation Medicine, Beijing 100850, China
| | - Tianyu Yuan
- Department of Pharmaceutical Sciences, Beijing Institute of Radiation Medicine, Beijing 100850, China; College of Pharmacy, Henan University, Kaifeng 475004, China
| | - Bochuan Yuan
- Department of Pharmaceutical Sciences, Beijing Institute of Radiation Medicine, Beijing 100850, China
| | - Lina Du
- College of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan 250355, China; Department of Pharmaceutical Sciences, Beijing Institute of Radiation Medicine, Beijing 100850, China; College of Pharmacy, Henan University, Kaifeng 475004, China.
| | - Yiguang Jin
- Department of Pharmaceutical Sciences, Beijing Institute of Radiation Medicine, Beijing 100850, China; College of Pharmacy, Henan University, Kaifeng 475004, China.
| |
Collapse
|
7
|
Katz S, Gattegno R, Peko L, Zarik R, Hagani Y, Ilovitsh T. Diameter-dependent assessment of microvascular leakage following ultrasound-mediated blood-brain barrier opening. iScience 2023; 26:106965. [PMID: 37378309 PMCID: PMC10291464 DOI: 10.1016/j.isci.2023.106965] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Revised: 05/01/2023] [Accepted: 05/22/2023] [Indexed: 06/29/2023] Open
Abstract
Blood brain barrier disruption (BBBD) using focused ultrasound (FUS) and microbubbles (MB) is an effective tool for therapeutic delivery to the brain. BBBD depends to a great extent on MB oscillations. Because the brain vasculature is heterogenic in diameter, reduced MB oscillations in smaller blood vessels, together with a lower number of MBs in capillaries, can lead to variations in BBBD. Therefore, evaluating the impact of microvasculature diameter on BBBD is of great importance. We present a method to characterize molecules extravasation following FUS-mediated BBBD, at a single blood vessel resolution. Evans blue (EB) leakage was used as marker for BBBD, whereas blood vessels localization was done using FITC labeled Dextran. Automated image processing pipeline was developed to quantify the extent of extravasation as function of microvasculature diameter, including a wide range of vascular morphological parameters. Variations in MB vibrational response were observed in blood vessel mimicking fibers with varied diameters. Higher peak negative pressures (PNP) were required to initiate stable cavitation in fibers with smaller diameters. In vivo in the treated brains, EB extravasation increased as a function of blood vessel diameter. The percentage of strong BBBD blood vessels increased from 9.75% for 2-3 μm blood vessels to 91.67% for 9-10 μm. Using this method, it is possible to conduct a diameter-dependent analysis that measures vascular leakage resulting from FUS-mediated BBBD at a single blood vessel resolution.
Collapse
Affiliation(s)
- Sharon Katz
- Department of Biomedical Engineering, Tel Aviv University, Tel Aviv, Israel
- The Sagol School of Neuroscience, Tel Aviv University, Tel Aviv, Israel
| | - Roni Gattegno
- The Sagol School of Neuroscience, Tel Aviv University, Tel Aviv, Israel
| | - Lea Peko
- Department of Biomedical Engineering, Tel Aviv University, Tel Aviv, Israel
| | - Romario Zarik
- Department of Biomedical Engineering, Tel Aviv University, Tel Aviv, Israel
- The Sagol School of Neuroscience, Tel Aviv University, Tel Aviv, Israel
| | - Yulie Hagani
- Department of Biomedical Engineering, Tel Aviv University, Tel Aviv, Israel
- The Sagol School of Neuroscience, Tel Aviv University, Tel Aviv, Israel
| | - Tali Ilovitsh
- Department of Biomedical Engineering, Tel Aviv University, Tel Aviv, Israel
- The Sagol School of Neuroscience, Tel Aviv University, Tel Aviv, Israel
| |
Collapse
|
8
|
Berezin CT, Bergum N, Torres Lopez GM, Vigh J. Morphine pharmacokinetics and opioid transporter expression at the blood-retina barrier of male and female mice. Front Pharmacol 2023; 14:1206104. [PMID: 37388441 PMCID: PMC10301758 DOI: 10.3389/fphar.2023.1206104] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2023] [Accepted: 06/01/2023] [Indexed: 07/01/2023] Open
Abstract
Opioids are effective analgesics for treating moderate to severe pain, however, their use must be weighed against their dangerous side effects. Investigations into opioid pharmacokinetics provide crucial information regarding both on- and off-target drug effects. Our recent work showed that morphine deposits and accumulates in the mouse retina at higher concentrations than in the brain upon chronic systemic exposure. We also found reduced retinal expression of P-glycoprotein (P-gp), a major opioid extruder at the blood-brain barrier (BBB). Here, we systematically interrogated the expression of three putative opioid transporters at the blood-retina barrier (BRB): P-gp, breast cancer resistance protein (Bcrp) and multidrug resistance protein 2 (Mrp2). Using immunohistochemistry, we found robust expression of P-gp and Bcrp, but not Mrp2, at the inner BRB of the mouse retina. Previous studies have suggested that P-gp expression may be regulated by sex hormones. However, upon acute morphine treatment we found no sex differences in morphine deposition levels in the retina or brain, nor on transporter expression in the retinas of males and females with a high or low estrogen:progesterone ratio. Importantly, we found that P-gp, but not Bcrp, expression significantly correlated with morphine concentration in the retina, suggesting P-gp is the predominant opioid transporter at the BRB. In addition, fluorescence extravasation studies revealed that chronic morphine treatment did not alter the permeability of either the BBB or BRB. Together, these data suggest that reduced P-gp expression mediates retinal morphine accumulation upon systemic delivery, and in turn, potential effects on circadian photoentrainment.
Collapse
Affiliation(s)
- Casey-Tyler Berezin
- Cell and Molecular Biology Graduate Program, Colorado State University, Fort Collins, CO, United States
| | - Nikolas Bergum
- Department of Biomedical Sciences, Colorado State University, Fort Collins, CO, United States
| | - Glenda M. Torres Lopez
- Department of Biomedical Sciences, Colorado State University, Fort Collins, CO, United States
| | - Jozsef Vigh
- Cell and Molecular Biology Graduate Program, Colorado State University, Fort Collins, CO, United States
- Department of Biomedical Sciences, Colorado State University, Fort Collins, CO, United States
| |
Collapse
|
9
|
Johansen PM, Hansen PY, Mohamed AA, Girshfeld SJ, Feldmann M, Lucke-Wold B. Focused ultrasound for treatment of peripheral brain tumors. EXPLORATION OF DRUG SCIENCE 2023; 1:107-125. [PMID: 37171968 PMCID: PMC10168685 DOI: 10.37349/eds.2023.00009] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/11/2023] [Accepted: 04/13/2023] [Indexed: 05/14/2023]
Abstract
Malignant brain tumors are the leading cause of cancer-related death in children and remain a significant cause of morbidity and mortality throughout all demographics. Central nervous system (CNS) tumors are classically treated with surgical resection and radiotherapy in addition to adjuvant chemotherapy. However, the therapeutic efficacy of chemotherapeutic agents is limited due to the blood-brain barrier (BBB). Magnetic resonance guided focused ultrasound (MRgFUS) is a new and promising intervention for CNS tumors, which has shown success in preclinical trials. High-intensity focused ultrasound (HIFU) has the capacity to serve as a direct therapeutic agent in the form of thermoablation and mechanical destruction of the tumor. Low-intensity focused ultrasound (LIFU) has been shown to disrupt the BBB and enhance the uptake of therapeutic agents in the brain and CNS. The authors present a review of MRgFUS in the treatment of CNS tumors. This treatment method has shown promising results in preclinical trials including minimal adverse effects, increased infiltration of the therapeutic agents into the CNS, decreased tumor progression, and improved survival rates.
Collapse
Affiliation(s)
| | - Payton Yerke Hansen
- Charles E. Schmidt College of Medicine, Florida Atlantic University, Boca Raton, FL 33431, USA
| | - Ali A. Mohamed
- Charles E. Schmidt College of Medicine, Florida Atlantic University, Boca Raton, FL 33431, USA
| | - Sarah J. Girshfeld
- Charles E. Schmidt College of Medicine, Florida Atlantic University, Boca Raton, FL 33431, USA
| | - Marc Feldmann
- College of Medicine, University of Florida, Gainesville, FL 32611, USA
| | - Brandon Lucke-Wold
- Department of Neurosurgery, University of Florida, Gainesville, FL 32611, USA
| |
Collapse
|
10
|
Oriá RB, Freitas RS, Roque CR, Nascimento JCR, Silva AP, Malva JO, Guerrant RL, Vitek MP. ApoE Mimetic Peptides to Improve the Vicious Cycle of Malnutrition and Enteric Infections by Targeting the Intestinal and Blood-Brain Barriers. Pharmaceutics 2023; 15:pharmaceutics15041086. [PMID: 37111572 PMCID: PMC10141726 DOI: 10.3390/pharmaceutics15041086] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Revised: 03/21/2023] [Accepted: 03/24/2023] [Indexed: 03/30/2023] Open
Abstract
Apolipoprotein E (apoE) mimetic peptides are engineered fragments of the native apoE protein’s LDL-receptor binding site that improve the outcomes following a brain injury and intestinal inflammation in a variety of models. The vicious cycle of enteric infections and malnutrition is closely related to environmental-driven enteric dysfunction early in life, and such chronic inflammatory conditions may blunt the developmental trajectories of children with worrisome and often irreversible physical and cognitive faltering. This window of time for microbiota maturation and brain plasticity is key to protecting cognitive domains, brain health, and achieving optimal/full developmental potential. This review summarizes the potential role of promising apoE mimetic peptides to improve the function of the gut-brain axis, including targeting the blood-brain barrier in children afflicted with malnutrition and enteric infections.
Collapse
Affiliation(s)
- Reinaldo B. Oriá
- Laboratory of Tissue Healing, Ontogeny and Nutrition, Department of Morphology, School of Medicine, Institute of Biomedicine, Federal University of Ceara, Fortaleza 60430-270, Brazil
- Correspondence: ; Tel.: +55-85-3366-8239
| | - Raul S. Freitas
- Laboratory of Tissue Healing, Ontogeny and Nutrition, Department of Morphology, School of Medicine, Institute of Biomedicine, Federal University of Ceara, Fortaleza 60430-270, Brazil
| | - Cássia R. Roque
- Laboratory of Tissue Healing, Ontogeny and Nutrition, Department of Morphology, School of Medicine, Institute of Biomedicine, Federal University of Ceara, Fortaleza 60430-270, Brazil
| | - José Carlos R. Nascimento
- Laboratory of Tissue Healing, Ontogeny and Nutrition, Department of Morphology, School of Medicine, Institute of Biomedicine, Federal University of Ceara, Fortaleza 60430-270, Brazil
- Institute of Health Sciences, Medicine, University of International Integration of Afro-Brazilian Lusofonia, Redenção 62790-970, Brazil
| | - Ana Paula Silva
- Institute of Pharmacology and Experimental Therapeutics and Institute for Clinical and Biomedical Research (iCBR), Faculty of Medicine and Center for Innovative Biomedicine and Biotechnology (CIBB), University of Coimbra, 3000-548 Coimbra, Portugal
| | - João O. Malva
- Institute of Pharmacology and Experimental Therapeutics and Institute for Clinical and Biomedical Research (iCBR), Faculty of Medicine and Center for Innovative Biomedicine and Biotechnology (CIBB), University of Coimbra, 3000-548 Coimbra, Portugal
| | - Richard L. Guerrant
- Division of Infectious Diseases and International Health, Department of Medicine, School of Medicine, University of Virginia, Charlottesville, VA 22908, USA
| | - Michael P. Vitek
- Division of Neurology, Duke University Medical Center, Durham, NC 27710, USA
| |
Collapse
|
11
|
Smith NJ, Doody NE, Štěpánková K, Fuller M, Ichiyama RM, Kwok JCF, Egginton S. Spatiotemporal microvascular changes following contusive spinal cord injury. Front Neuroanat 2023; 17:1152131. [PMID: 37025098 PMCID: PMC10070689 DOI: 10.3389/fnana.2023.1152131] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2023] [Accepted: 02/27/2023] [Indexed: 04/08/2023] Open
Abstract
Microvascular integrity is disrupted following spinal cord injury (SCI) by both primary and secondary insults. Changes to neuronal structures are well documented, but little is known about how the capillaries change and recover following injury. Spatiotemporal morphological information is required to explore potential treatments targeting the microvasculature post-SCI to improve functional recovery. Sprague-Dawley rats were given a T10 moderate/severe (200 kDyn) contusion injury and were perfuse-fixed at days 2, 5, 15, and 45 post-injury. Unbiased stereology following immunohistochemistry in four areas (ventral and dorsal grey and white matter) across seven spinal segments (n = 4 for each group) was used to calculate microvessel density, surface area, and areal density. In intact sham spinal cords, average microvessel density across the thoracic spinal cord was: ventral grey matter: 571 ± 45 mm-2, dorsal grey matter: 484 ± 33 mm-2, ventral white matter: 90 ± 8 mm-2, dorsal white matter: 88 ± 7 mm-2. Post-SCI, acute microvascular disruption was evident, particularly at the injury epicentre, and spreading three spinal segments rostrally and caudally. Damage was most severe in grey matter at the injury epicentre (T10) and T11. Reductions in all morphological parameters (95-99% at day 2 post-SCI) implied vessel regression and/or collapse acutely. Transmission electron microscopy (TEM) revealed disturbed aspects of neurovascular unit fine structure at day 2 post-SCI (n = 2 per group) at T10 and T11. TEM demonstrated a more diffuse and disrupted basement membrane and wider intercellular clefts at day 2, suggesting a more permeable blood spinal cord barrier and microvessel remodelling. Some evidence of angiogenesis was seen during recovery from days 2 to 45, indicated by increased vessel density, surface area, and areal density at day 45. These novel results show that the spinal cord microvasculature is highly adaptive following SCI, even at chronic stages and up to three spinal segments from the injury epicentre. Multiple measures of gross and fine capillary structure from acute to chronic time points provide insight into microvascular remodelling post-SCI. We have identified key vascular treatment targets, namely stabilising damaged capillaries and replacing destroyed vessels, which may be used to improve functional outcomes following SCI in the future.
Collapse
Affiliation(s)
- Nicole J. Smith
- School of Biomedical Sciences, University of Leeds, Leeds, United Kingdom
| | - Natalie E. Doody
- School of Biomedical Sciences, University of Leeds, Leeds, United Kingdom
| | - Kateřina Štěpánková
- Centre for Reconstructive Neuroscience, Czech Academy of Sciences, Prague, Czechia
- Department of Neuroscience, Second Faculty of Medicine, Charles University, Prague, Czechia
| | - Martin Fuller
- School of Molecular and Cellular Biology, University of Leeds, Leeds, United Kingdom
| | | | - Jessica C. F. Kwok
- Centre for Reconstructive Neuroscience, Czech Academy of Sciences, Prague, Czechia
| | - Stuart Egginton
- School of Biomedical Sciences, University of Leeds, Leeds, United Kingdom
| |
Collapse
|
12
|
Abstract
The blood-brain barrier (BBB) is a dynamic interface responsible for maintaining central nervous system (CNS) homeostasis. An intact BBB protects the brain from undesired compounds and proteins from the blood; however, BBB impairment is involved in various pathological conditions including stroke. In vivo evaluation of BBB integrity in the post-stroke brain is important for investigating stroke-induced CNS pathogenesis and developing CNS-targeted therapeutic agents. In this chapter, we describe both quantitative and morphometric methods and tools to evaluate BBB integrity in vivo. These methods do not require expensive magnetic resonance imaging (MRI) and computed tomography (CT) imaging capabilities and can be conducted in research laboratories with access to a confocal microscope and fluorescence microplate reader.
Collapse
|
13
|
Liu J, Xie Y, Lu Y, Zhao Z, Zhuang Z, Yang L, Huang H, Li H, Mao Z, Pi S, Chen F, He Y. APP/PS1 Gene-Environmental Cadmium Interaction Aggravates the Progression of Alzheimer's Disease in Mice via the Blood-Brain Barrier, Amyloid-β, and Inflammation. J Alzheimers Dis 2023; 94:115-136. [PMID: 37248897 DOI: 10.3233/jad-221205] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/31/2023]
Abstract
BACKGROUND There is limited information about gene-environment interaction on the occurrence and the progression of Alzheimer's disease. OBJECTIVE To explore the effect of environmental low-dose cadmium (Cd) exposure on the progress of Alzheimer's disease and the underlining mechanism. METHODS We administered 1 mg/L, 10 mg/L cadmium chloride (treated groups), and water (control group) to C57BL/6J and APP/PS1 mice through drinking water, from one week before mating, until the offspring were sacrificed at 6 months of age. The behaviors, Cd level, blood-brain barrier (BBB) leakage, Aβ1-42 deposition, and inflammation expression were evaluated in these mice. RESULTS Mice of both genotypes had similar blood Cd levels after exposure to the same dose of Cd. The toxic effects of Cd on the two genotypes differed little in terms of neuronal histomorphology and BBB permeability. Cd caused a series of pathological morphological changes in the mouse brains and more fluorescent dye leakage at higher doses. Furthermore, the APP/PS1 mice had more severe damage than the C57BL/6J mice, based on the following five criteria. They were increasing anxiety-like behavior and chaos movement, spatial reference memory damage, Aβ plaque deposition in mouse brains, increasing microglia expression in the brain, and IL-6 higher expression in the cortex and in the serum. CONCLUSION Low-dose Cd exposure for 6 months increases Aβ plaque deposition and BBB permeability, exacerbates inflammatory responses, and activates microglia, in APP/PS1 mice. APP/PS1 gene-environmental Cd interaction aggravates the progression of Alzheimer's disease in mice.
Collapse
Affiliation(s)
- Jieyi Liu
- Department of Toxicology, School of Public Health, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Yirong Xie
- Department of Toxicology, School of Public Health, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Yao Lu
- Office of Academic Affairs, Southern Medical University, Guangzhou, Guangdong, China
| | - Zhiqiang Zhao
- Department of Toxicology, Guangdong Province Hospital for Occupational Disease Prevention and Treatment, Guangzhou, Guangdong, China
| | - Zhixiong Zhuang
- Shenzhen Center for Disease Control and Prevention, Shenzhen, China
| | - Linqing Yang
- Shenzhen Center for Disease Control and Prevention, Shenzhen, China
| | - Haiyan Huang
- Shenzhen Center for Disease Control and Prevention, Shenzhen, China
| | - Hongya Li
- Department of Toxicology, School of Public Health, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Zhiyi Mao
- Department of Toxicology, School of Public Health, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Shurong Pi
- Department of Toxicology, School of Public Health, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Fubin Chen
- Department of Toxicology, School of Public Health, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Yun He
- Department of Toxicology, School of Public Health, Sun Yat-sen University, Guangzhou, Guangdong, China
| |
Collapse
|
14
|
Xu J, Wei H, You P, Sui J, Xiu J, Zhu W, Xu Q. Non-neutralizing antibodies to SARS-Cov-2-related linear epitopes induce psychotic-like behavior in mice. Front Mol Neurosci 2023; 16:1177961. [PMID: 37138704 PMCID: PMC10149951 DOI: 10.3389/fnmol.2023.1177961] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2023] [Accepted: 03/29/2023] [Indexed: 05/05/2023] Open
Abstract
Objective An increasing number of studies have reported that numerous patients with coronavirus disease 2019 (COVID-19) and vaccinated individuals have developed central nervous system (CNS) symptoms, and that most of the antibodies in their sera have no virus-neutralizing ability. We tested the hypothesis that non-neutralizing anti-S1-111 IgG induced by the spike protein of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) could negatively affect the CNS. Methods After 14-day acclimation, the grouped ApoE-/- mice were immunized four times (day 0, day 7, day 14, day 28) with different spike-protein-derived peptides (coupled with KLH) or KLH via subcutaneous injection. Antibody level, state of glial cells, gene expression, prepulse inhibition, locomotor activity, and spatial working memory were assessed from day 21. Results An increased level of anti-S1-111 IgG was measured in their sera and brain homogenate after the immunization. Crucially, anti-S1-111 IgG increased the density of microglia, activated microglia, and astrocytes in the hippocampus, and we observed a psychomotor-like behavioral phenotype with defective sensorimotor gating and impaired spontaneity among S1-111-immunized mice. Transcriptome profiling showed that up-regulated genes in S1-111-immunized mice were mainly associated with synaptic plasticity and mental disorders. Discussion Our results show that the non-neutralizing antibody anti-S1-111 IgG induced by the spike protein caused a series of psychotic-like changes in model mice by activating glial cells and modulating synaptic plasticity. Preventing the production of anti-S1-111 IgG (or other non-neutralizing antibodies) may be a potential strategy to reduce CNS manifestations in COVID-19 patients and vaccinated individuals.
Collapse
Affiliation(s)
- Jinming Xu
- State Key Laboratory of Medical Molecular Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences, School of Basic Medicine Peking Union Medical College, Beijing, China
- Neuroscience Center, Chinese Academy of Medical Sciences, Beijing, China
| | - Hui Wei
- State Key Laboratory of Medical Molecular Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences, School of Basic Medicine Peking Union Medical College, Beijing, China
- Neuroscience Center, Chinese Academy of Medical Sciences, Beijing, China
| | - Pengsheng You
- State Key Laboratory of Medical Molecular Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences, School of Basic Medicine Peking Union Medical College, Beijing, China
- Neuroscience Center, Chinese Academy of Medical Sciences, Beijing, China
| | - Jiaping Sui
- State Key Laboratory of Medical Molecular Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences, School of Basic Medicine Peking Union Medical College, Beijing, China
- Neuroscience Center, Chinese Academy of Medical Sciences, Beijing, China
| | - Jianbo Xiu
- State Key Laboratory of Medical Molecular Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences, School of Basic Medicine Peking Union Medical College, Beijing, China
- Neuroscience Center, Chinese Academy of Medical Sciences, Beijing, China
| | - Wanwan Zhu
- State Key Laboratory of Medical Molecular Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences, School of Basic Medicine Peking Union Medical College, Beijing, China
- Neuroscience Center, Chinese Academy of Medical Sciences, Beijing, China
| | - Qi Xu
- State Key Laboratory of Medical Molecular Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences, School of Basic Medicine Peking Union Medical College, Beijing, China
- Neuroscience Center, Chinese Academy of Medical Sciences, Beijing, China
- *Correspondence: Qi Xu,
| |
Collapse
|
15
|
Thangameeran SIM, Pang CY, Lee CH, Tsai ST, Hu WF, Liew HK. Experimental animal models and evaluation techniques in intracerebral hemorrhage. Tzu Chi Med J 2022; 35:1-10. [PMID: 36866349 PMCID: PMC9972928 DOI: 10.4103/tcmj.tcmj_119_22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2022] [Revised: 05/15/2022] [Accepted: 06/10/2022] [Indexed: 11/04/2022] Open
Abstract
Intracerebral hemorrhage (ICH) is the most lethal type of cerebral stroke without effective therapy. Although clinical trials with various surgeries have been conducted, none have improved clinical outcomes compared to the current medical management for ICH. Several ICH animal models, including autologous blood injection, collagenase injection, thrombin injection, and microballoon inflation methods, have been developed to elucidate the underlying mechanisms of ICH-induced brain injury. These models could also be used for discovering new therapy for ICH preclinically. We summarize the existing ICH animal models and the evaluation parameters used to measure the disease outcomes. We conclude that these models, resembling the different aspects of ICH pathogenesis, have their advantages and disadvantages. None of the current models closely represent the severity of ICH seen in clinical settings. More appropriate models are needed to streamline ICH's clinical outcomes and be used for validating newly developed treatment protocols.
Collapse
Affiliation(s)
| | - Cheng-Yoong Pang
- Institute of Medical Sciences, Tzu Chi University, Hualien, Taiwan,Department of Medical Research, Hualien Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Hualien, Taiwan
| | - Chien-Hui Lee
- Neuro-Medical Scientific Center, Hualien Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Hualien, Taiwan,Department of Neurosurgery, Hualien Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Hualien, Taiwan
| | - Sheng-Tzung Tsai
- Neuro-Medical Scientific Center, Hualien Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Hualien, Taiwan,Department of Neurosurgery, Hualien Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Hualien, Taiwan
| | - Wei-Fen Hu
- Department of Medical Research, Hualien Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Hualien, Taiwan,PhD Program in Pharmacology and Toxicology, Tzu Chi University, Hualien, Taiwan
| | - Hock-Kean Liew
- Department of Medical Research, Hualien Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Hualien, Taiwan,Neuro-Medical Scientific Center, Hualien Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Hualien, Taiwan,PhD Program in Pharmacology and Toxicology, Tzu Chi University, Hualien, Taiwan,Address for correspondence: Dr. Hock-Kean Liew, Department of Medical Research, Hualien Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, 707, Section 3, Chung-Yang Road, Hualien, Taiwan. E-mail:
| |
Collapse
|
16
|
Mungur R, Zheng J, Wang B, Chen X, Zhan R, Tong Y. Low-Intensity Focused Ultrasound Technique in Glioblastoma Multiforme Treatment. Front Oncol 2022; 12:903059. [PMID: 35677164 PMCID: PMC9169875 DOI: 10.3389/fonc.2022.903059] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2022] [Accepted: 04/11/2022] [Indexed: 11/13/2022] Open
Abstract
Glioblastoma is one of the central nervous system most aggressive and lethal cancers with poor overall survival rate. Systemic treatment of glioblastoma remains the most challenging aspect due to the low permeability of the blood-brain barrier (BBB) and blood-tumor barrier (BTB), limiting therapeutics extravasation mainly in the core tumor as well as in its surrounding invading areas. It is now possible to overcome these barriers by using low-intensity focused ultrasound (LIFU) together with intravenously administered oscillating microbubbles (MBs). LIFU is a non-invasive technique using converging ultrasound waves which can alter the permeability of BBB/BTB to drug delivery in a specific brain/tumor region. This emerging technique has proven to be both safe and repeatable without causing injury to the brain parenchyma including neurons and other structures. Furthermore, LIFU is also approved by the FDA to treat essential tremors and Parkinson's disease. It is currently under clinical trial in patients suffering from glioblastoma as a drug delivery strategy and liquid biopsy for glioblastoma biomarkers. The use of LIFU+MBs is a step-up in the world of drug delivery, where onco-therapeutics of different molecular sizes and weights can be delivered directly into the brain/tumor parenchyma. Initially, several potent drugs targeting glioblastoma were limited to cross the BBB/BTB; however, using LIFU+MBs, diverse therapeutics showed significantly higher uptake, improved tumor control, and overall survival among different species. Here, we highlight the therapeutic approach of LIFU+MBs mediated drug-delivery in the treatment of glioblastoma.
Collapse
Affiliation(s)
- Rajneesh Mungur
- Department of Neurosurgery of the First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Jiesheng Zheng
- Department of Neurosurgery of the First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Ben Wang
- Key Laboratory of Cancer Prevention and Intervention, Key Laboratory of Molecular Biology in Medical Sciences, National Ministry of Education, Cancer Institute, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
- Institute of Translational Medicine, Zhejiang University, Hangzhou, China
| | - Xinhua Chen
- Key Laboratory of Pulsed Power Translational Medicine of Zhejiang Province, Hangzhou, China
- Department of Hepatobiliary and Pancreatic Surgery of the First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Renya Zhan
- Department of Neurosurgery of the First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Ying Tong
- Department of Neurosurgery of the First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| |
Collapse
|
17
|
Sun XY, Ju XC, Li Y, Zeng PM, Wu J, Zhou YY, Shen LB, Dong J, Chen Y, Luo ZG. Generation of vascularized brain organoids to study neurovascular interactions. eLife 2022; 11:76707. [PMID: 35506651 PMCID: PMC9246368 DOI: 10.7554/elife.76707] [Citation(s) in RCA: 110] [Impact Index Per Article: 55.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2021] [Accepted: 05/01/2022] [Indexed: 12/05/2022] Open
Abstract
Brain organoids have been used to recapitulate the processes of brain development and related diseases. However, the lack of vasculatures, which regulate neurogenesis and brain disorders, limits the utility of brain organoids. In this study, we induced vessel and brain organoids, respectively, and then fused two types of organoids together to obtain vascularized brain organoids. The fused brain organoids were engrafted with robust vascular network-like structures and exhibited increased number of neural progenitors, in line with the possibility that vessels regulate neural development. Fusion organoids also contained functional blood–brain barrier-like structures, as well as microglial cells, a specific population of immune cells in the brain. The incorporated microglia responded actively to immune stimuli to the fused brain organoids and showed ability of engulfing synapses. Thus, the fusion organoids established in this study allow modeling interactions between the neuronal and non-neuronal components in vitro, particularly the vasculature and microglia niche. Understanding how the organs form and how their cells behave is essential to finding the causes and treatment for developmental disorders, as well as understanding certain diseases. However, studying most organs in live animals or humans is technically difficult, expensive and invasive. To address this issue, scientists have developed models called ‘organoids’ that recapitulate the development of organs using stem cells in the lab. These models are easier to study and manipulate than the live organs. Brain organoids have been used to recapitulate brain formation as well as developmental, degenerative and psychiatric brain conditions such as microcephaly, autism and Alzheimer’s disease. However, these brain organoids lack the vasculature (the network of blood vessels) that supplies a live brain with nutrients and regulates its development, and which has important roles in brain disorders. Partly due to this lack of blood vessels, brain organoids also do not develop a blood brain barrier, the structure that prevents certain contents of the blood, including pathogens, toxins and even certain drugs from entering the brain. These characteristics limit the utility of existing brain organoids. To overcome these limitations, Sun, Ju et al. developed brain organoids and blood vessel organoids independently, and then fused them together to obtain vascularized brain organoids. These fusion organoids developed a robust network of blood vessels that was well integrated with the brain cells, and produced more neural cell precursors than brain organoids that had not been fused. This result is consistent with the idea that blood vessels can regulate brain development. Analyzing the fusion organoids revealed that they contain structures similar to the blood-brain barrier, as well as microglial cells (immune cells specific to the brain). When exposed to lipopolysaccharide – a component of the cell wall of certain bacteria – these cells responded by initiating an immune response in the fusion organoids. Notably, the microglial cells were also able to engulf connections between brain cells, a process necessary for the brain to develop the correct structures and work normally. Sun, Ju et al. have developed a new organoid system that will be of broad interest to researchers studying interactions between the brain and the circulatory system. The development of brain-blood-barrier-like structures in the fusion organoids could also facilitate the development of drugs that can cross this barrier, making it easier to treat certain conditions that affect the brain. Refining this model to allow the fusion organoids to grow for longer times in the lab, and adding blood flow to the system will be the next steps to establish this system.
Collapse
Affiliation(s)
- Xin-Yao Sun
- School of Life Science and Technology, ShanghaiTech University, Shanghai, China
| | - Xiang-Chun Ju
- Institute of Neuroscience, Chinese Academy of Sciences, Shanghai, China
| | - Yang Li
- School of Life Science and Technology, ShanghaiTech University, Shanghai, China
| | - Peng-Ming Zeng
- School of Life Science and Technology, ShanghaiTech University, Shanghai, China
| | - Jian Wu
- School of Life Science and Technology, ShanghaiTech University, Shanghai, China
| | - Ying-Ying Zhou
- Institute of Neuroscience, Chinese Academy of Sciences, Shanghai, China
| | - Li-Bing Shen
- Institute of Neuroscience, Chinese Academy of Sciences, Shanghai, China
| | - Jian Dong
- School of Life Science and Technology, ShanghaiTech University, Shanghai, China
| | - Yuejun Chen
- Institute of Neuroscience, Chinese Academy of Sciences, Shanghai, China
| | - Zhen-Ge Luo
- School of Life Science and Technology, ShanghaiTech University, Shanghai, China
| |
Collapse
|
18
|
Breaking through the barrier: Modelling and exploiting the physical microenvironment to enhance drug transport and efficacy. Adv Drug Deliv Rev 2022; 184:114183. [PMID: 35278523 DOI: 10.1016/j.addr.2022.114183] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2021] [Revised: 02/03/2022] [Accepted: 03/06/2022] [Indexed: 02/08/2023]
Abstract
Pharmaceutical compounds are the main pillar in the treatment of various illnesses. To administer these drugs in the therapeutic setting, multiple routes of administration have been defined, including ingestion, inhalation, and injection. After administration, drugs need to find their way to the intended target for high effectiveness, and this penetration is greatly dependent on obstacles the drugs encounter along their path. Key hurdles include the physical barriers that are present within the body and knowledge of those is indispensable for progress in the development of drugs with increased therapeutic efficacy. In this review, we examine several important physical barriers, such as the blood-brain barrier, the gut-mucosal barrier, and the extracellular matrix barrier, and evaluate their influence on drug transport and efficacy. We explore various in vitro model systems that aid in understanding how parameters within the barrier model affect drug transfer and therapeutic effect. We conclude that physical barriers in the body restrict the quantity of drugs that can pass through, mainly as a consequence of the barrier architecture. In addition, the specific physical properties of the tissue can trigger intracellular changes, altering cell behavior in response to drugs. Though the barriers negatively influence drug distribution, physical stimulation of the surrounding environment may also be exploited as a mechanism to control drug release. This drug delivery approach is explored in this review as a potential alternative to the conventional ways of delivering therapeutics.
Collapse
|
19
|
Liu S, Song G, Li F, Li R, Chen X, Guo Y, Zhou F, Wang Q, Yang L, Zhou B. Bis (2-ethylhexyl)-2,3,4,5-tetrabromophthalate showed poor penetrability but increased the permeability of blood brain barrier: Evidences from in vitro and in vivo studies. JOURNAL OF HAZARDOUS MATERIALS 2022; 424:127386. [PMID: 34879576 DOI: 10.1016/j.jhazmat.2021.127386] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/02/2021] [Revised: 09/27/2021] [Accepted: 09/27/2021] [Indexed: 06/13/2023]
Abstract
Bis(2ethylhexyl)-2,3,4,5-tetrabromophthalate (TBPH), a replacement for restricted flame retardants, has become ubiquitous in the environment. To reveal the neurotoxicity and underlying mechanism of TBPH, we first evaluated its penetrability through the blood-brain barrier (BBB) using hCMEC/D3 cells as in vitro model, and found TBPH had poor penetrability through BBB with a maximum Papp of 14.8 × 10-6 cms-1. Further study using transgenetic zebrafish (Tg flk1: EGFP) as in vivo model confirmed that TBPH could affect the BBB permeability, probably via affecting the transcription of genes encoding tight junction proteins. Finally, wild type zebrafish embryos/larvae were exposed to TBPH to evaluate the neurotoxicity. The neurodevelopment, neurotransmitters and locomotor activity of zebrafish larvae did not changed, which may be because TBPH can hardly cross the BBB to pose direct exposure to the central nervous system. However, the transcription of opsins genes and visual response to light stimulation in zebrafish larvae were inhibited, pointing to additional mechanism that may cause visual impairment indirectly. Above all, these results can help further understand the neurotoxicity and underlying mechanism by TBPH, and also pointed out potential risk of this chemical to aquatic organisms.
Collapse
Affiliation(s)
- Sitian Liu
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, PR China; University of Chinese Academy of Sciences, Beijing 100049, PR China
| | - Guili Song
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, PR China
| | - Fan Li
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, PR China; University of Chinese Academy of Sciences, Beijing 100049, PR China
| | - Ruiwen Li
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, PR China; Ecological Environment Monitoring and Scientific Research Center, Changjiang River Basin Ecological Environment Administration, Ministry of Ecology and Environment, Wuhan 430014, PR China
| | - Xiangping Chen
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, PR China
| | - Yongyong Guo
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, PR China
| | - Fang Zhou
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, PR China
| | - Qiangwei Wang
- Institute of Pesticide and Environmental Toxicology, Zhejiang University, Hangzhou 310058, PR China
| | - Lihua Yang
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, PR China.
| | - Bingsheng Zhou
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, PR China
| |
Collapse
|
20
|
Yu Y, Li JJ, He XQ, Lai ZY, Hao R, Qi Y, Cao DQ, Fu M, Ma H, Xie QC, Sun M, Huang ZL, Jin LJ, Sun HH, Lu N, Wang R, Yung WH, Huang Y. 5-HT3Rs Maintain Hippocampal LTP in a CB1R-GABA A -Dependent Manner for Spatial Memory. Br J Pharmacol 2022; 179:2969-2985. [PMID: 34997582 DOI: 10.1111/bph.15793] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2021] [Revised: 11/23/2021] [Accepted: 12/13/2021] [Indexed: 11/27/2022] Open
Abstract
BACKGROUND AND PURPOSE As the only ionotropic receptor in 5-HT receptor family, 5-HT3 receptor (5-HT3R) involves in psychiatric disorders and its modulators have potential therapeutic effects for cognitive impairment in these disorders. However, it remains unclear how 5-HT3Rs shape synaptic plasticity for memory function. EXPERIMENTAL APPROACH Extracellular as well as whole-cell recordings were used to monitor hippocampal long-term potentiation (LTP) and synaptic transmission in hippocampal slices from 5-HT3AR knock-out or 5-HT3AR-GFP mice. Immunocytochemistry, qRT-PCR and Western blot were used to measure receptor expression. We also assessed hippocampal dependent cognition and memory using the Morris water maze (MWM) and novel object recognition. KEY RESULTS We found that 5-HT3R dysfunction impaired hippocampal LTP in Schaffer collateral (SC)-CA1 pathway in hippocampal slices by facilitating GABAergic inputs in pyramidal cells. This effect was dependent on 5-HT3Rs on axon-terminals. It resulted from reduced expression and function of cannabinoid receptor 1 (CB1R) co-localized with 5-HT3Rs on axon terminals, which led to diminishment of tonic inhibition of GABA release by CB1Rs. Inhibition of CB1Rs mimicked the facilitation of GABAergic transmission by 5-HT3R disruption. Consequently, mice with hippocampal 5-HT3R disruption exhibited impaired spatial memory in Morris water maze tasks. CONCLUSION AND IMPLICATIONS These results suggest that 5-HT3Rs are crucial in enabling hippocampal synaptic plasticity via a novel CB1R-GABAA -dependent pathway to regulate spatial memory.
Collapse
Affiliation(s)
- Yan Yu
- Key Laboratory of Spine and Spinal Cord Injury Repair and Regeneration (Ministry of Education), Department of Physiology and Pharmacology, Tongji Hospital, School of Medicine, Tongji University, Shanghai, China.,Department of Pharmacy, The Fifth People's Hospital of Shanghai, Fudan University, Shanghai, China
| | - Jing-Jing Li
- Key Laboratory of Spine and Spinal Cord Injury Repair and Regeneration (Ministry of Education), Department of Physiology and Pharmacology, Tongji Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Xiao-Qian He
- Key Laboratory of Spine and Spinal Cord Injury Repair and Regeneration (Ministry of Education), Department of Physiology and Pharmacology, Tongji Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Zi-Ying Lai
- Key Laboratory of Spine and Spinal Cord Injury Repair and Regeneration (Ministry of Education), Department of Physiology and Pharmacology, Tongji Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Rui Hao
- Key Laboratory of Spine and Spinal Cord Injury Repair and Regeneration (Ministry of Education), Department of Physiology and Pharmacology, Tongji Hospital, School of Medicine, Tongji University, Shanghai, China.,Department of Physiology and Pathophysiology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Yu Qi
- Key Laboratory of Spine and Spinal Cord Injury Repair and Regeneration (Ministry of Education), Department of Physiology and Pharmacology, Tongji Hospital, School of Medicine, Tongji University, Shanghai, China.,Department of Physiology and Pathophysiology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Dong-Qing Cao
- Department of Physiology and Pathophysiology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Ming Fu
- Department of Biology, York University, Toronto, ON, Canada
| | - Hong Ma
- Department of Physiology and Pathophysiology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Qiu-Chen Xie
- Department of Physiology and Pathophysiology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Mu Sun
- GeneScience Pharmaceuticals Co., Ltd, Shanghai, China
| | - Zhi-Li Huang
- Department of Pharmacology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Ling-Jing Jin
- Key Laboratory of Spine and Spinal Cord Injury Repair and Regeneration (Ministry of Education), Department of Physiology and Pharmacology, Tongji Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Hui-Hui Sun
- Key Laboratory of Spine and Spinal Cord Injury Repair and Regeneration (Ministry of Education), Department of Physiology and Pharmacology, Tongji Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Ning Lu
- Department of Physiology and Pathophysiology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Rui Wang
- Department of Biology, York University, Toronto, ON, Canada
| | - Wing-Ho Yung
- School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Shatin, Hong Kong, China
| | - Ying Huang
- Key Laboratory of Spine and Spinal Cord Injury Repair and Regeneration (Ministry of Education), Department of Physiology and Pharmacology, Tongji Hospital, School of Medicine, Tongji University, Shanghai, China.,Department of Biology, York University, Toronto, ON, Canada
| |
Collapse
|
21
|
Zhou Y, Wen LL, Li YF, Wu KM, Duan RR, Yao YB, Jing LJ, Gong Z, Teng JF, Jia YJ. Exosomes derived from bone marrow mesenchymal stem cells protect the injured spinal cord by inhibiting pericyte pyroptosis. Neural Regen Res 2022; 17:194-202. [PMID: 34100456 PMCID: PMC8451579 DOI: 10.4103/1673-5374.314323] [Citation(s) in RCA: 61] [Impact Index Per Article: 30.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022] Open
Abstract
Mesenchymal stem cell (MSC) transplantation is a promising treatment strategy for spinal cord injury, but immunological rejection and possible tumor formation limit its application. The therapeutic effects of MSCs mainly depend on their release of soluble paracrine factors. Exosomes are essential for the secretion of these paracrine effectors. Bone marrow mesenchymal stem cell-derived exosomes (BMSC-EXOs) can be substituted for BMSCs in cell transplantation. However, the underlying mechanisms remain unclear. In this study, a rat model of T10 spinal cord injury was established using the impact method. Then, 30 minutes and 1 day after spinal cord injury, the rats were administered 200 μL exosomes via the tail vein (200 μg/mL; approximately 1 × 106 BMSCs). Treatment with BMSC-EXOs greatly reduced neuronal cell death, improved myelin arrangement and reduced myelin loss, increased pericyte/endothelial cell coverage on the vascular wall, decreased blood-spinal cord barrier leakage, reduced caspase 1 expression, inhibited interleukin-1β release, and accelerated locomotor functional recovery in rats with spinal cord injury. In the cell culture experiment, pericytes were treated with interferon-γ and tumor necrosis factor-α. Then, Lipofectamine 3000 was used to deliver lipopolysaccharide into the cells, and the cells were co-incubated with adenosine triphosphate to simulate injury in vitro. Pre-treatment with BMSC-EXOs for 8 hours greatly reduced pericyte pyroptosis and increased pericyte survival rate. These findings suggest that BMSC-EXOs may protect pericytes by inhibiting pyroptosis and by improving blood-spinal cord barrier integrity, thereby promoting the survival of neurons and the extension of nerve fibers, and ultimately improving motor function in rats with spinal cord injury. All protocols were conducted with the approval of the Animal Ethics Committee of Zhengzhou University on March 16, 2019.
Collapse
Affiliation(s)
- Yan Zhou
- Department of Radiology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan Province, China
| | - Lu-Lu Wen
- Department of Neurology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan Province, China
| | - Yan-Fei Li
- Department of Neurology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan Province, China
| | - Kai-Min Wu
- Department of Neurology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan Province, China
| | - Ran-Ran Duan
- Department of Neurology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan Province, China
| | - Yao-Bing Yao
- Department of Neurology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan Province, China
| | - Li-Jun Jing
- Department of Neurology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan Province, China
| | - Zhe Gong
- Department of Neurology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan Province, China
| | - Jun-Fang Teng
- Department of Neurology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan Province, China
| | - Yan-Jie Jia
- Department of Neurology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan Province, China
| |
Collapse
|
22
|
Fikatas A, Dehairs J, Noppen S, Doijen J, Vanderhoydonc F, Meyen E, Swinnen JV, Pannecouque C, Schols D. Deciphering the Role of Extracellular Vesicles Derived from ZIKV-Infected hcMEC/D3 Cells on the Blood-Brain Barrier System. Viruses 2021; 13:v13122363. [PMID: 34960632 PMCID: PMC8708812 DOI: 10.3390/v13122363] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2021] [Revised: 11/12/2021] [Accepted: 11/22/2021] [Indexed: 12/12/2022] Open
Abstract
To date, no vaccines or antivirals are available against Zika virus (ZIKV). In addition, the mechanisms underlying ZIKV-associated pathogenesis of the central nervous system (CNS) are largely unexplored. Getting more insight into the cellular pathways that ZIKV recruits to facilitate infection of susceptible cells will be crucial for establishing an effective treatment strategy. In general, cells secrete a number of vesicles, known as extracellular vesicles (EVs), in response to viral infections. These EVs serve as intercellular communicators. Here, we investigated the role of EVs derived from ZIKV-infected human brain microvascular endothelial cells on the blood–brain barrier (BBB) system. We demonstrated that ZIKV-infected EVs (IEVs) can incorporate viral components, including ZIKV RNA, NS1, and E-protein, and further transfer them to several types of CNS cells. Using label-free impedance-based biosensing, we observed that ZIKV and IEVs can temporally disturb the monolayer integrity of BBB-mimicking cells, possibly by inducing structural rearrangements of the adherent protein VE-cadherin (immunofluorescence staining). Finally, differences in the lipidomic profile between EVs and their parental cells possibly suggest a preferential sorting mechanism of specific lipid species into the vesicles. To conclude, these data suggest that IEVs could be postulated as vehicles (Trojan horse) for ZIKV transmission via the BBB.
Collapse
Affiliation(s)
- Antonios Fikatas
- Laboratory of Virology and Chemotherapy, Department of Microbiology, Immunology and Transplantation, Rega Institute for Medical Research, Faculty of Medicine, KU Leuven, 3000 Leuven, Belgium; (A.F.); (S.N.); (J.D.); (E.M.); (C.P.)
| | - Jonas Dehairs
- Laboratory of Lipid Metabolism and Cancer, Department of Oncology, Faculty of Medicine, KU Leuven, 3000 Leuven, Belgium; (J.D.); (F.V.); (J.V.S.)
| | - Sam Noppen
- Laboratory of Virology and Chemotherapy, Department of Microbiology, Immunology and Transplantation, Rega Institute for Medical Research, Faculty of Medicine, KU Leuven, 3000 Leuven, Belgium; (A.F.); (S.N.); (J.D.); (E.M.); (C.P.)
| | - Jordi Doijen
- Laboratory of Virology and Chemotherapy, Department of Microbiology, Immunology and Transplantation, Rega Institute for Medical Research, Faculty of Medicine, KU Leuven, 3000 Leuven, Belgium; (A.F.); (S.N.); (J.D.); (E.M.); (C.P.)
| | - Frank Vanderhoydonc
- Laboratory of Lipid Metabolism and Cancer, Department of Oncology, Faculty of Medicine, KU Leuven, 3000 Leuven, Belgium; (J.D.); (F.V.); (J.V.S.)
| | - Eef Meyen
- Laboratory of Virology and Chemotherapy, Department of Microbiology, Immunology and Transplantation, Rega Institute for Medical Research, Faculty of Medicine, KU Leuven, 3000 Leuven, Belgium; (A.F.); (S.N.); (J.D.); (E.M.); (C.P.)
| | - Johannes V. Swinnen
- Laboratory of Lipid Metabolism and Cancer, Department of Oncology, Faculty of Medicine, KU Leuven, 3000 Leuven, Belgium; (J.D.); (F.V.); (J.V.S.)
| | - Christophe Pannecouque
- Laboratory of Virology and Chemotherapy, Department of Microbiology, Immunology and Transplantation, Rega Institute for Medical Research, Faculty of Medicine, KU Leuven, 3000 Leuven, Belgium; (A.F.); (S.N.); (J.D.); (E.M.); (C.P.)
| | - Dominique Schols
- Laboratory of Virology and Chemotherapy, Department of Microbiology, Immunology and Transplantation, Rega Institute for Medical Research, Faculty of Medicine, KU Leuven, 3000 Leuven, Belgium; (A.F.); (S.N.); (J.D.); (E.M.); (C.P.)
- Correspondence: ; Tel.: +32-16-32-19-98
| |
Collapse
|
23
|
Zhang L, Wang L, Xiao H, Gan H, Chen H, Zheng S, Jian D, Zhai X, Jiang N, Jing Z, Liang P. Tyrosine kinase Fyn promotes apoptosis after intracerebral hemorrhage in rats by activating Drp1 signaling. J Mol Med (Berl) 2021; 99:359-371. [PMID: 33409551 DOI: 10.1007/s00109-020-02022-6] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2020] [Revised: 11/30/2020] [Accepted: 12/08/2020] [Indexed: 02/07/2023]
Abstract
Tyrosine kinase Fyn is a member of the Src kinase family, which is involved in neuroinflammation, apoptosis, and oxidative stress. Its role in intracerebral hemorrhage (ICH) is not fully understood. In this study, we found that Fyn was significantly elevated in human brain tissue after ICH. Accordingly, we investigated the role of Fyn in a rat ICH model, which was constructed by injecting blood into the right basal ganglia. In this model, Fyn expression was significantly upregulated in brain tissue adjacent to the hematoma. SiRNA-induced Fyn knockdown was neuroprotective for secondary cerebral damage, as demonstrated by reduced brain edema, suppression of the modified neurological severity score, and mitigation of blood-brain barrier permeability and neuronal damage. Fyn downregulation reduced apoptosis following ICH, as indicated by downregulation of apoptosis-related proteins AIF, Cyt.c, caspase 3, and Bax; upregulation of anti-apoptosis-related protein Bcl-2; and decreased tunnel staining. Mdivi-1, a Drp1 inhibitor, reversed Fyn overexpression induced pro-apoptosis. However, Fyn did not significantly affect inflammation-related proteins NF-κB, TNF-α, caspase 1, MPO, IL-1β, or IL-18 after ICH. Fyn activated Drp1 signaling by phosphorylating Drp1 at serine 616, which increased apoptosis after ICH in rats. This study clarifies the relationship between Fyn, apoptosis, and inflammation following ICH and provides a new strategy for exploring the prevention and treatment of ICH. KEY MESSAGES: ICH induced an increase in Fyn expression in human and rat cerebral tissues. Knockdown of Fyn prevented cerebral damage following ICH. Inhibition of Fyn had no significant effects on inflammatory responses. However, the downregulation of Fyn exerted neuroprotective effects on apoptosis. Fyn perturbed ICH-induced cell apoptosis by interacting with and phosphorylating (Ser616) Drp1 in a rat ICH model.
Collapse
Affiliation(s)
- Li Zhang
- Department of Neurosurgery, Chongqing Key Laboratory of Pediatrics, Children's Hospital of Chongqing Medical University, Chongqing, 400016, People's Republic of China.,Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing, People's Republic of China.,National Clinical Research Center for Child Health and Disorders, Chongqing, People's Republic of China.,China International Science and Technology Cooperation base of Child development and Critical Disorders, Chongqing, People's Republic of China
| | - Lu Wang
- Department of Neurosurgery, Chongqing Key Laboratory of Pediatrics, Children's Hospital of Chongqing Medical University, Chongqing, 400016, People's Republic of China.,Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing, People's Republic of China.,National Clinical Research Center for Child Health and Disorders, Chongqing, People's Republic of China.,China International Science and Technology Cooperation base of Child development and Critical Disorders, Chongqing, People's Republic of China
| | - Han Xiao
- Department of Neurosurgery, Chongqing Key Laboratory of Pediatrics, Children's Hospital of Chongqing Medical University, Chongqing, 400016, People's Republic of China.,Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing, People's Republic of China.,National Clinical Research Center for Child Health and Disorders, Chongqing, People's Republic of China.,China International Science and Technology Cooperation base of Child development and Critical Disorders, Chongqing, People's Republic of China
| | - Hui Gan
- Department of Neurosurgery, Chongqing Key Laboratory of Pediatrics, Children's Hospital of Chongqing Medical University, Chongqing, 400016, People's Republic of China.,Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing, People's Republic of China.,National Clinical Research Center for Child Health and Disorders, Chongqing, People's Republic of China.,China International Science and Technology Cooperation base of Child development and Critical Disorders, Chongqing, People's Republic of China
| | - Hui Chen
- Department of Neurosurgery, Chongqing Key Laboratory of Pediatrics, Children's Hospital of Chongqing Medical University, Chongqing, 400016, People's Republic of China.,Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing, People's Republic of China.,National Clinical Research Center for Child Health and Disorders, Chongqing, People's Republic of China.,China International Science and Technology Cooperation base of Child development and Critical Disorders, Chongqing, People's Republic of China
| | - Shuyue Zheng
- Department of Neurosurgery, Chongqing Key Laboratory of Pediatrics, Children's Hospital of Chongqing Medical University, Chongqing, 400016, People's Republic of China.,Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing, People's Republic of China.,National Clinical Research Center for Child Health and Disorders, Chongqing, People's Republic of China.,China International Science and Technology Cooperation base of Child development and Critical Disorders, Chongqing, People's Republic of China
| | - Dan Jian
- Department of Neurosurgery, Chongqing Key Laboratory of Pediatrics, Children's Hospital of Chongqing Medical University, Chongqing, 400016, People's Republic of China.,Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing, People's Republic of China.,National Clinical Research Center for Child Health and Disorders, Chongqing, People's Republic of China.,China International Science and Technology Cooperation base of Child development and Critical Disorders, Chongqing, People's Republic of China
| | - Xuan Zhai
- Department of Neurosurgery, Chongqing Key Laboratory of Pediatrics, Children's Hospital of Chongqing Medical University, Chongqing, 400016, People's Republic of China. .,Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing, People's Republic of China. .,National Clinical Research Center for Child Health and Disorders, Chongqing, People's Republic of China. .,China International Science and Technology Cooperation base of Child development and Critical Disorders, Chongqing, People's Republic of China.
| | - Ning Jiang
- Institute of Neuroscience, School of Basic Medicine, Chongqing Medical University, Chongqing, 400010, People's Republic of China
| | - Zhao Jing
- Institute of Neuroscience, School of Basic Medicine, Chongqing Medical University, Chongqing, 400010, People's Republic of China
| | - Ping Liang
- Department of Neurosurgery, Chongqing Key Laboratory of Pediatrics, Children's Hospital of Chongqing Medical University, Chongqing, 400016, People's Republic of China.,Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing, People's Republic of China.,National Clinical Research Center for Child Health and Disorders, Chongqing, People's Republic of China.,China International Science and Technology Cooperation base of Child development and Critical Disorders, Chongqing, People's Republic of China
| |
Collapse
|