1
|
Chowdari Gurram P, Satarker S, Nampoothiri M. Recent advances in the molecular signaling pathways of Substance P in Alzheimer's disease: Link to neuroinflammation associated with toll-like receptors. Biochem Biophys Res Commun 2024; 733:150597. [PMID: 39197195 DOI: 10.1016/j.bbrc.2024.150597] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2024] [Revised: 08/20/2024] [Accepted: 08/22/2024] [Indexed: 09/01/2024]
Abstract
A significant quantity of substance P (SP) and its receptor, the neurokinin 1 (NK1) receptors are found in the brain. SP is a neuropeptide distributed in the central nervous system and functions as a neurotransmitter, neuromodulator, and neurotrophic factor. The concentrations of SP in the brain and cerebrospinal fluid fluctuate in individuals with Alzheimer's disease (AD). SP is an endogenous ligand for NK1 receptor, enhancing the expression of toll-like receptors (TLR) and vice versa. So, both pathways are interconnected, where activation of one pathway activates the second pathway. Researchers have observed the interaction of TLR with SP in the pathophysiology of AD. Thus, this review discusses various TLRs involved in regulating amyloid processing and its interaction with SP in AD. Further, in AD pathology, SP can regulate the non-amyloidogenic pathway. Recent studies have also demonstrated the capacity of SP in regulating voltage-gated potassium channel currents, emphasizing SP's neuroprotective ability. Therefore, we corroborate the findings linking the SP, NK1R, and TLRs in AD.
Collapse
Affiliation(s)
- Prasada Chowdari Gurram
- Department of Pharmacology, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal, 576104, India; KL College of Pharmacy, Koneru Lakshmaiah Education Foundation, Green Fields, Vaddeswaram, A.P, 522302, India
| | - Sairaj Satarker
- Department of Pharmacology, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal, 576104, India
| | - Madhavan Nampoothiri
- Department of Pharmacology, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal, 576104, India.
| |
Collapse
|
2
|
Mehboob R, Oehme P, Anwar T, von Kries JP. Substance P - a regulatory peptide with defense and repair functions. Results and perspectives for the fight against COVID-19. Front Neurol 2024; 15:1370454. [PMID: 38872816 PMCID: PMC11169637 DOI: 10.3389/fneur.2024.1370454] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2024] [Accepted: 05/01/2024] [Indexed: 06/15/2024] Open
Abstract
Severe acute respiratory syndrome corona virus 2 (SARS CoV-2) is the cause of Corona virus disease 2019 (COVID-19), which turned into a pandemic in late 2019 and early 2020. SARS CoV-2 causes endothelial cell destruction and swelling, microthrombosis, constriction of capillaries, and malfunction of pericytes, all of which are detrimental to capillary integrity, angiogenesis, and healing processes. Cytokine storming has been connected to COVID-19 disease. Hypoxemia and tissue hypoxia may arise from impaired oxygen diffusion exchange in the lungs due to capillary damage and congestion. This personal view will look at how inflammation and capillary damage affect blood and tissue oxygenation, cognitive function, and the duration and intensity of COVID-19 disease. The general effects of microvascular injury, hypoxia, and capillary damage caused by COVID-19 in key organs are also covered in this point of view. Once initiated, this vicious cycle leads to diminished capillary function, which exacerbates inflammation and tissue damage, and increased inflammation due to hypoxia. Brain damage may result from low oxygen levels and high cytokines in brain tissue. In this paper we give a summary in this direction with focus on the role of the neuropeptide Substance P. On the basis of this, we discuss selected approaches to the question: "How Substance P is involved in the etiology of the COVID-19 and how results of our research could improve the prevention or therapy of corona? Thereby pointing out the role of Substance P in the post-corona syndrome and providing novel concepts for therapy and prevention.
Collapse
Affiliation(s)
- Riffat Mehboob
- Lahore Medical Research Center, Lahore, Pakistan
- National Heart Lung and Blood Institute, National Institute of Health, Bethesda, MD, United States
| | | | | | | |
Collapse
|
3
|
Pang H, Chen S, Klyne DM, Harrich D, Ding W, Yang S, Han FY. Low back pain and osteoarthritis pain: a perspective of estrogen. Bone Res 2023; 11:42. [PMID: 37542028 PMCID: PMC10403578 DOI: 10.1038/s41413-023-00280-x] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Revised: 06/28/2023] [Accepted: 07/10/2023] [Indexed: 08/06/2023] Open
Abstract
Low back pain (LBP) is the world's leading cause of disability and is increasing in prevalence more rapidly than any other pain condition. Intervertebral disc (IVD) degeneration and facet joint osteoarthritis (FJOA) are two common causes of LBP, and both occur more frequently in elderly women than in other populations. Moreover, osteoarthritis (OA) and OA pain, regardless of the joint, are experienced by up to twice as many women as men, and this difference is amplified during menopause. Changes in estrogen may be an important contributor to these pain states. Receptors for estrogen have been found within IVD tissue and nearby joints, highlighting the potential roles of estrogen within and surrounding the IVDs and joints. In addition, estrogen supplementation has been shown to be effective at ameliorating IVD degeneration and OA progression, indicating its potential use as a therapeutic agent for people with LBP and OA pain. This review comprehensively examines the relationship between estrogen and these pain conditions by summarizing recent preclinical and clinical findings. The potential molecular mechanisms by which estrogen may relieve LBP associated with IVD degeneration and FJOA and OA pain are discussed.
Collapse
Affiliation(s)
- Huiwen Pang
- Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, St. Lucia, Brisbane, QLD, 4072, Australia
| | - Shihui Chen
- Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, St. Lucia, Brisbane, QLD, 4072, Australia
| | - David M Klyne
- NHMRC Centre of Clinical Research Excellence in Spinal Pain, Injury and Health, The University of Queensland, St. Lucia, Brisbane, QLD, 4072, Australia
| | - David Harrich
- Department of Cell and Molecular Biology, QIMR Berghofer Medical Research Institute, Herston, QLD, 4006, Australia
| | - Wenyuan Ding
- Department of Spine Surgery, The Third Hospital of Hebei Medical University, 139 Ziqiang Road, Shijiazhuang, 050051, China
- Hebei Joint International Research Center for Spinal Diseases, 139 Ziqiang Road, Shijiazhuang, 050051, China
| | - Sidong Yang
- Department of Spine Surgery, The Third Hospital of Hebei Medical University, 139 Ziqiang Road, Shijiazhuang, 050051, China.
- Hebei Joint International Research Center for Spinal Diseases, 139 Ziqiang Road, Shijiazhuang, 050051, China.
| | - Felicity Y Han
- Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, St. Lucia, Brisbane, QLD, 4072, Australia.
| |
Collapse
|
4
|
Robinson P, Rodriguez E, Muñoz M. Substance P—Friend or Foe. J Clin Med 2022; 11:jcm11133609. [PMID: 35806893 PMCID: PMC9267209 DOI: 10.3390/jcm11133609] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2022] [Accepted: 06/21/2022] [Indexed: 12/10/2022] Open
Abstract
Substance P (SP), a neuropeptide and pain transmitter has multiple roles and is involved in various processes in the body [...]
Collapse
Affiliation(s)
- Prema Robinson
- Department of Infectious Diseases, Infection Control and Employee Health, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA;
- Correspondence: (P.R.); (M.M.); Tel.: +1-713-745-8346 (P.R.); +34-955012965 (M.M.); Fax: +1-713-745-8388 (P.R.); +34-955012921 (M.M.)
| | - Emma Rodriguez
- Department of Infectious Diseases, Infection Control and Employee Health, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA;
| | - Miguel Muñoz
- Research Laboratory on Neuropeptides (IBIS), Pediatric Intensive Care Unit, Virgen del Rocío University Hospital, Avda. Manuel Siurot s/n, 41012 Sevilla, Spain
- Correspondence: (P.R.); (M.M.); Tel.: +1-713-745-8346 (P.R.); +34-955012965 (M.M.); Fax: +1-713-745-8388 (P.R.); +34-955012921 (M.M.)
| |
Collapse
|
5
|
Erin N, Shurin GV, Baraldi JH, Shurin MR. Regulation of Carcinogenesis by Sensory Neurons and Neuromediators. Cancers (Basel) 2022; 14:2333. [PMID: 35565462 PMCID: PMC9102554 DOI: 10.3390/cancers14092333] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2022] [Revised: 04/26/2022] [Accepted: 05/05/2022] [Indexed: 12/12/2022] Open
Abstract
Interactions between the immune system and the nervous system are crucial in maintaining homeostasis, and disturbances of these neuro-immune interactions may participate in carcinogenesis and metastasis. Nerve endings have been identified within solid tumors in humans and experimental animals. Although the involvement of the efferent sympathetic and parasympathetic innervation in carcinogenesis has been extensively investigated, the role of the afferent sensory neurons and the neuropeptides in tumor development, growth, and progression is recently appreciated. Similarly, current findings point to the significant role of Schwann cells as part of neuro-immune interactions. Hence, in this review, we mainly focus on local and systemic effects of sensory nerve activity as well as Schwann cells in carcinogenesis and metastasis. Specific denervation of vagal sensory nerve fibers, or vagotomy, in animal models, has been reported to markedly increase lung metastases of breast carcinoma as well as pancreatic and gastric tumor growth, with the formation of liver metastases demonstrating the protective role of vagal sensory fibers against cancer. Clinical studies have revealed that patients with gastric ulcers who have undergone a vagotomy have a greater risk of stomach, colorectal, biliary tract, and lung cancers. Protective effects of vagal activity have also been documented by epidemiological studies demonstrating that high vagal activity predicts longer survival rates in patients with colon, non-small cell lung, prostate, and breast cancers. However, several studies have reported that inhibition of sensory neuronal activity reduces the development of solid tumors, including prostate, gastric, pancreatic, head and neck, cervical, ovarian, and skin cancers. These contradictory findings are likely to be due to the post-nerve injury-induced activation of systemic sensory fibers, the level of aggressiveness of the tumor model used, and the local heterogeneity of sensory fibers. As the aggressiveness of the tumor model and the level of the inflammatory response increase, the protective role of sensory nerve fibers is apparent and might be mostly due to systemic alterations in the neuro-immune response. Hence, more insights into inductive and permissive mechanisms, such as systemic, cellular neuro-immunological mechanisms of carcinogenesis and metastasis formation, are needed to understand the role of sensory neurons in tumor growth and spread.
Collapse
Affiliation(s)
- Nuray Erin
- Department of Medical Pharmacology, Immunopharmacology, and Immuno-Oncology Unit, School of Medicine, Akdeniz University, 07070 Antalya, Turkey
| | - Galina V. Shurin
- Department of Pathology, University of Pittsburgh Medical Center and University of Pittsburgh Cancer Institute, Pittsburgh, 15213 PA, USA; (G.V.S.); (M.R.S.)
| | - James H. Baraldi
- Department of Neuroscience, University of Pittsburgh Medical Center and University of Pittsburgh Cancer Institute, Pittsburgh, 15213 PA, USA;
| | - Michael R. Shurin
- Department of Pathology, University of Pittsburgh Medical Center and University of Pittsburgh Cancer Institute, Pittsburgh, 15213 PA, USA; (G.V.S.); (M.R.S.)
- Department of Immunology, University of Pittsburgh Medical Center and University of Pittsburgh Cancer Institute, Pittsburgh, 15213 PA, USA
| |
Collapse
|
6
|
Mehboob R, Kurdi M, Bamaga A, Aldardeir N, Nasief H, Moshref LH, Alsinani T, Rayes AO, Jabbad RH. Substance P/ Neurokinin-1 Receptor, Trigeminal Ganglion, Latency, and Coronavirus Infection-Is There Any Link? Front Med (Lausanne) 2021; 8:727593. [PMID: 34869423 PMCID: PMC8637107 DOI: 10.3389/fmed.2021.727593] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2021] [Accepted: 10/01/2021] [Indexed: 11/13/2022] Open
Abstract
Novel Severe Acute Respiratory Syndrome-Corona Virus-2 infection (SARS-CoV-2) is an acute respiratory and infectious disease. This perspective aims to provide a basic understanding of the inflammation caused by SARS-CoV-2 and its relation to the trigeminal ganglion (TG). The virus enters through the mucous membranes of the orofacial region and reaches the TG, where it resides and takes control of its peptides including Substance P (SP). SP is the main neuropeptide, neuromodulator, and neuro-hormone of TG, associated with nociception and inflammation under noxious stimulus. SP release is triggered and, consequently, affects the immune cells and blood vessels to release the mediators for inflammation. Hence, cytokine storm is initiated and causes respiratory distress, bronchoconstriction, and death in complicated cases. Neurokinin-1 Receptor (NK-1R) is the receptor for SP and its antagonists, along with glucocorticoids, may be used to alleviate the symptoms and treat this infection by blocking this nociceptive pathway. SP seems to be the main culprit involved in the triggering of inflammatory pathways in SARS-CoV-2 infection. It may have a direct association with cardio-respiratory rhythm, sleep-wake cycle, nociception, and ventilatory responses and regulates many important physiological and pathological functions. Its over-secretion should be blocked by NK-1R antagonist. However, experimental work leading to clinical trials are mandatory for further confirmation. Here, it is further proposed that there is a possibility of latency in SARS-CoV-2 virus infection if it is acting through TG, which is the main site for other viruses that become latent.
Collapse
Affiliation(s)
- Riffat Mehboob
- Faculty of Allied Health Sciences, The University of Lahore, Lahore, Pakistan.,Lahore Medical Research Center, LLP, Lahore, Pakistan
| | - Maher Kurdi
- Department of Pathology, Faculty of Medicine, King Abdulaziz University, Rabigh, Saudi Arabia
| | - Ahmed Bamaga
- Neurology Division, Department of Pediatrics, Faculty of Medicine, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Njoud Aldardeir
- Faculty of Education, University of Ottawa, Ottawa, ON, Canada
| | - Hisham Nasief
- Department of Obstetrics and Gynecology, Faculty of Medicine, Jeddah, Saudi Arabia
| | - Leena H Moshref
- Department of Surgery, Doctor Soliman Fakeeh Hospital, Jeddah, Saudi Arabia
| | - Taghreed Alsinani
- Division of Neurosurgery, King Fahad General Hospital, Jeddah, Saudi Arabia
| | - Almotasimbellah O Rayes
- Department of Obstetrics and Gynecology, Faculty of Medicine, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Reem H Jabbad
- Department of Medicine, King Fahad Armed Forces Hospital, Jeddah, Saudi Arabia
| |
Collapse
|
7
|
Mehboob R. Neurokinin-1 Receptor as a potential drug target for COVID-19 treatment. Biomed Pharmacother 2021; 143:112159. [PMID: 34536760 PMCID: PMC8435369 DOI: 10.1016/j.biopha.2021.112159] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2021] [Revised: 09/01/2021] [Accepted: 09/03/2021] [Indexed: 12/28/2022] Open
Abstract
Novel Coronavirus infection (COVID-19) has become a pandemic in these days. It is an acute respiratory and infectious disease with no known etiology and treatment. It is continuously causing losses of precious lives and economy at a global scale on daily basis. It is the need of the hour to find more treatment strategies by either developing a drug or to boost the immune system. This opinion article aims to provide Substance P (SP) as a possible cause of the initiation of cytokine storm developed in COVID-19 infection and to suggest Neurokinin-1 Receptor (NK-1R) antagonist, Aprepitant, as a drug to be used for its treatment. This perspective will provide directions to the Biomedical scientists to explore SP and NK-1R and prepare a drug to alleviate the symptoms and cure the disease. It is very important to work on this perspective at earliest to reach to some conclusion regarding the therapeutic intervention. Clinical studies may also be conducted if proven successful. SP is a neurotransmitter and neuromodulator, released from the trigeminal nerve of brainstem as a result of nociception. It is directly related to the respiratory illness as in COVID-19 infection. It is responsible for the increased inflammation and the signature symptoms associated with this disease. It is the main switch that needs to be switched off by administering Aprepitant along with glucocorticosteroid, dexamethasone.
Collapse
Affiliation(s)
- Riffat Mehboob
- Faculty of Allied Health Sciences, The University of Lahore, Lahore, Pakistan; Lahore Medical Research Center, LLP, Lahore, Pakistan.
| |
Collapse
|
8
|
Duarte LF, Reyes A, Farías MA, Riedel CA, Bueno SM, Kalergis AM, González PA. Crosstalk Between Epithelial Cells, Neurons and Immune Mediators in HSV-1 Skin Infection. Front Immunol 2021; 12:662234. [PMID: 34012447 PMCID: PMC8126613 DOI: 10.3389/fimmu.2021.662234] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2021] [Accepted: 04/06/2021] [Indexed: 12/12/2022] Open
Abstract
Herpes simplex virus type 1 (HSV-1) infection is highly prevalent in humans, with approximately two-thirds of the world population living with this virus. However, only a fraction of those carrying HSV-1, which elicits lifelong infections, are symptomatic. HSV-1 mainly causes lesions in the skin and mucosae but reaches the termini of sensory neurons innervating these tissues and travels in a retrograde manner to the neuron cell body where it establishes persistent infection and remains in a latent state until reactivated by different stimuli. When productive reactivations occur, the virus travels back along axons to the primary infection site, where new rounds of replication are initiated in the skin, in recurrent or secondary infections. During this process, new neuron infections occur. Noteworthy, the mechanisms underlying viral reactivations and the exit of latency are somewhat poorly understood and may be regulated by a crosstalk between the infected neurons and components of the immune system. Here, we review and discuss the immune responses that occur at the skin during primary and recurrent infections by HSV-1, as well as at the interphase of latently-infected neurons. Moreover, we discuss the implications of neuronal signals over the priming and migration of immune cells in the context of HSV-1 infection.
Collapse
Affiliation(s)
- Luisa F Duarte
- Millennium Institute on Immunology and Immunotherapy, Pontificia Universidad Católica de Chile, Santiago, Chile.,Departamento de Genética Molecular y Microbiología, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Antonia Reyes
- Millennium Institute on Immunology and Immunotherapy, Pontificia Universidad Católica de Chile, Santiago, Chile.,Departamento de Genética Molecular y Microbiología, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Mónica A Farías
- Millennium Institute on Immunology and Immunotherapy, Pontificia Universidad Católica de Chile, Santiago, Chile.,Departamento de Genética Molecular y Microbiología, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Claudia A Riedel
- Millennium Institute on Immunology and Immunotherapy, Pontificia Universidad Católica de Chile, Santiago, Chile.,Departamento de Ciencias Biológicas, Facultad de Ciencias de la Vida, Universidad Andrés Bello, Santiago, Chile
| | - Susan M Bueno
- Millennium Institute on Immunology and Immunotherapy, Pontificia Universidad Católica de Chile, Santiago, Chile.,Departamento de Genética Molecular y Microbiología, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Alexis M Kalergis
- Millennium Institute on Immunology and Immunotherapy, Pontificia Universidad Católica de Chile, Santiago, Chile.,Departamento de Genética Molecular y Microbiología, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile.,Departamento de Endocrinología, Facultad de Medicina, Escuela de Medicina, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Pablo A González
- Millennium Institute on Immunology and Immunotherapy, Pontificia Universidad Católica de Chile, Santiago, Chile.,Departamento de Genética Molecular y Microbiología, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile
| |
Collapse
|
9
|
Experimental Hypomagnesemia Induces Neurogenic Inflammation and Cardiac Dysfunction. HEARTS 2020. [DOI: 10.3390/hearts1020011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Hypomagnesemia occurs clinically as a result of restricted dietary intake, Mg-wasting drug therapies, chronic disease status and may be a risk factor in patients with cardiovascular disorders. Dietary restriction of magnesium (Mg deficiency) in animal models produced a pro-inflammatory/pro-oxidant condition, involving hematopoietic, neuronal, cardiovascular, renal and other systems. In Mg-deficient rodents, early elevations in circulating levels of the neuropeptide, substance P (SP) may trigger subsequent deleterious inflammatory/oxidative/nitrosative stress events. Evidence also suggests that activity of neutral endopeptidase (NEP, neprilysin), the major SP-degrading enzyme, may be impaired during later stages of Mg deficiency, and this may sustain the neurogenic inflammatory response. In this article, experimental findings using substance P receptor blockade, NEP inhibition, and N-methyl-D-aspartate (NMDA) receptor blockade demonstrated the connection between hypomagnesemia, neurogenic inflammation, oxidative stress and enhanced cardiac dysfunction. Proof of concept concerning neurogenic inflammation is provided using an isolated perfused rat heart model exposed to acute reductions in perfusate magnesium concentrations.
Collapse
|
10
|
Hodo TW, de Aquino MTP, Shimamoto A, Shanker A. Critical Neurotransmitters in the Neuroimmune Network. Front Immunol 2020; 11:1869. [PMID: 32973771 PMCID: PMC7472989 DOI: 10.3389/fimmu.2020.01869] [Citation(s) in RCA: 86] [Impact Index Per Article: 17.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2019] [Accepted: 07/13/2020] [Indexed: 12/12/2022] Open
Abstract
Immune cells rely on cell-cell communication to specify and fine-tune their responses. They express an extensive network of cell communication modes, including a vast repertoire of cell surface and transmembrane receptors and ligands, membrane vesicles, junctions, ligand and voltage-gated ion channels, and transporters. During a crosstalk between the nervous system and the immune system these modes of cellular communication and the downstream signal transduction events are influenced by neurotransmitters present in the local tissue environments in an autocrine or paracrine fashion. Neurotransmitters thus influence innate and adaptive immune responses. In addition, immune cells send signals to the brain through cytokines, and are present in the brain to influence neural responses. Altered communication between the nervous and immune systems is emerging as a common feature in neurodegenerative and immunopathological diseases. Here, we present the mechanistic frameworks of immunostimulatory and immunosuppressive effects critical neurotransmitters - dopamine (3,4-dihydroxyphenethylamine), serotonin (5-hydroxytryptamine), substance P (trifluoroacetate salt powder), and L-glutamate - exert on lymphocytes and non-lymphoid immune cells. Furthermore, we discuss the possible roles neurotransmitter-driven neuroimmune networks play in the pathogenesis of neurodegenerative disorders, autoimmune diseases, cancer, and outline potential clinical implications of balancing neuroimmune crosstalk by therapeutic modulation.
Collapse
Affiliation(s)
- Thomas Wesley Hodo
- Department of Biochemistry, Cancer Biology, Neuroscience and Pharmacology, Meharry Medical College School of Medicine, Nashville, TN, United States.,Department of Microbiology and Immunology, Meharry Medical College School of Medicine, Nashville, TN, United States.,School of Graduate Studies and Research, Meharry Medical College, Nashville, TN, United States
| | - Maria Teresa Prudente de Aquino
- Department of Biochemistry, Cancer Biology, Neuroscience and Pharmacology, Meharry Medical College School of Medicine, Nashville, TN, United States
| | - Akiko Shimamoto
- Department of Biochemistry, Cancer Biology, Neuroscience and Pharmacology, Meharry Medical College School of Medicine, Nashville, TN, United States
| | - Anil Shanker
- Department of Biochemistry, Cancer Biology, Neuroscience and Pharmacology, Meharry Medical College School of Medicine, Nashville, TN, United States.,School of Graduate Studies and Research, Meharry Medical College, Nashville, TN, United States.,Host-Tumor Interactions Research Program, Vanderbilt-Ingram Cancer Center, Vanderbilt University Medical Center, Nashville, TN, United States.,Vanderbilt Center for Immunobiology, Vanderbilt University Medical Center, Nashville, TN, United States.,Vanderbilt Institute for Infection, Immunology and Inflammation, Vanderbilt University Medical Center, Nashville, TN, United States
| |
Collapse
|
11
|
Majkowska-Pilip A, Halik PK, Gniazdowska E. The Significance of NK1 Receptor Ligands and Their Application in Targeted Radionuclide Tumour Therapy. Pharmaceutics 2019; 11:E443. [PMID: 31480582 PMCID: PMC6781293 DOI: 10.3390/pharmaceutics11090443] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2019] [Revised: 08/15/2019] [Accepted: 08/16/2019] [Indexed: 02/06/2023] Open
Abstract
To date, our understanding of the Substance P (SP) and neurokinin 1 receptor (NK1R) system shows intricate relations between human physiology and disease occurrence or progression. Within the oncological field, overexpression of NK1R and this SP/NK1R system have been implicated in cancer cell progression and poor overall prognosis. This review focuses on providing an update on the current state of knowledge around the wide spectrum of NK1R ligands and applications of radioligands as radiopharmaceuticals. In this review, data concerning both the chemical and biological aspects of peptide and nonpeptide ligands as agonists or antagonists in classical and nuclear medicine, are presented and discussed. However, the research presented here is primarily focused on NK1R nonpeptide antagonistic ligands and the potential application of SP/NK1R system in targeted radionuclide tumour therapy.
Collapse
Affiliation(s)
- Agnieszka Majkowska-Pilip
- Centre of Radiochemistry and Nuclear Chemistry, Institute of Nuclear Chemistry and Technology, Dorodna 16, 03-195 Warsaw, Poland.
| | - Paweł Krzysztof Halik
- Centre of Radiochemistry and Nuclear Chemistry, Institute of Nuclear Chemistry and Technology, Dorodna 16, 03-195 Warsaw, Poland
| | - Ewa Gniazdowska
- Centre of Radiochemistry and Nuclear Chemistry, Institute of Nuclear Chemistry and Technology, Dorodna 16, 03-195 Warsaw, Poland
| |
Collapse
|
12
|
Spitsin S, Tebas P, Barrett JS, Pappa V, Kim D, Taylor D, Evans DL, Douglas SD. Antiinflammatory effects of aprepitant coadministration with cART regimen containing ritonavir in HIV-infected adults. JCI Insight 2017; 2:95893. [PMID: 28978797 DOI: 10.1172/jci.insight.95893] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2017] [Accepted: 09/06/2017] [Indexed: 12/22/2022] Open
Abstract
BACKGROUND HIV-infected individuals, even well controlled with combined antiretroviral therapy (cART), have systemic inflammation and comorbidities. Substance P (SP) is an undecapeptide, which mediates neurotransmission and inflammation through its cognate neurokinin 1 receptor (NK1R). Plasma SP levels are elevated in HIV-infected individuals. The FDA-approved antiemetic aprepitant, an NK1R antagonist, has anti-HIV effects and antiinflammatory actions. We evaluated the safety, pharmacokinetics, and antiinflammatory properties of aprepitant in HIV-positive individuals receiving cART. METHODS We conducted a phase 1B study of 12 HIV-positive individuals on a ritonavir-containing regimen (HIV viral load less than 40 copies/ml and CD4 > 400 cells/μl). Participants received open-label aprepitant 375 mg per day for 28 days and were followed for an additional 30 days. Changes in plasma levels of proinflammatory markers were assessed using flow cytometry, ELISA, luminex, and SOMAscan assays. RESULTS The mean peak aprepitant plasma concentration was 30.7 ± 15.3 μg/ml at day 14 and 23.3 ± 12.3 μg/ml at day 28. Aprepitant treatment resulted in decreased plasma SP levels and affected 176 plasma proteins (56 after FDR) and several metabolic pathways, including inflammation and lipid metabolism. No change in soluble CD163 was observed. Aprepitant treatment was associated with a moderate increases in total and HDL cholesterol and affected select hematologic and metabolic markers, which returned to baseline levels 30 days after aprepitant treatment was stopped. There were 12 mild and 10 moderate adverse events (AE). CONCLUSIONS Aprepitant is safe and well tolerated. The antiinflammatory properties of aprepitant make it a possible adjunctive therapy for comorbid conditions associated with HIV infection. TRIAL REGISTRATION ClinicalTrials.gov (NCT02154360). FUNDING This research was funded by NIH UO1 MH090325, P30 MH097488, and PO1 MH105303.
Collapse
Affiliation(s)
- Sergei Spitsin
- Department of Pediatrics, Children's Hospital of Philadelphia Research Institute, Philadelphia, Pennsylvania, USA
| | - Pablo Tebas
- Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Jeffrey S Barrett
- Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Vasiliki Pappa
- Department of Pediatrics, Children's Hospital of Philadelphia Research Institute, Philadelphia, Pennsylvania, USA
| | - Deborah Kim
- Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Deanne Taylor
- Department of Biomedical and Health Informatics, Children's Hospital of Philadelphia Research Institute, Philadelphia, Pennsylvania, USA
| | - Dwight L Evans
- Department of Psychiatry, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Steven D Douglas
- Department of Pediatrics, Children's Hospital of Philadelphia Research Institute, Philadelphia, Pennsylvania, USA.,Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| |
Collapse
|
13
|
Suvas S. Role of Substance P Neuropeptide in Inflammation, Wound Healing, and Tissue Homeostasis. THE JOURNAL OF IMMUNOLOGY 2017; 199:1543-1552. [PMID: 28827386 DOI: 10.4049/jimmunol.1601751] [Citation(s) in RCA: 211] [Impact Index Per Article: 26.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/12/2016] [Accepted: 06/13/2017] [Indexed: 11/19/2022]
Abstract
Substance P (SP) is an undecapeptide present in the CNS and the peripheral nervous system. SP released from the peripheral nerves exerts its biological and immunological activity via high-affinity neurokinin 1 receptor (NK1R). SP is also produced by immune cells and acts as an autocrine or paracrine fashion to regulate the function of immune cells. In addition to its proinflammatory role, SP and its metabolites in combination with insulin-like growth factor-1 are shown to promote the corneal epithelial wound healing. Recently, we showed an altered ocular surface homeostasis in unmanipulated NK1R-/- mice, suggesting the role of SP-NK1R signaling in ocular surface homeostasis under steady-state. This review summarizes the immunobiology of SP and its effect on immune cells and immunity to microbial infection. In addition, the effect of SP in inflammation, wound healing, and corneal epithelial homeostasis in the eye is discussed.
Collapse
Affiliation(s)
- Susmit Suvas
- Department of Ophthalmology/Kresge Eye Institute, Wayne State University School of Medicine, Detroit, MI 48201; .,Department of Anatomy and Cell Biology, Wayne State University School of Medicine, Detroit, MI 48201; and .,Department of Immunology and Microbiology, Wayne State University School of Medicine, Detroit, MI 48201
| |
Collapse
|
14
|
Spitsin S, Meshki J, Winters A, Tuluc F, Benton TD, Douglas SD. Substance P-mediated chemokine production promotes monocyte migration. J Leukoc Biol 2016; 101:967-973. [PMID: 28366881 DOI: 10.1189/jlb.1ab0416-188rr] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2016] [Revised: 09/29/2016] [Accepted: 10/05/2016] [Indexed: 01/13/2023] Open
Abstract
The neuropeptide SP has physiologic and pathophysiologic roles in CNS and peripheral tissues and is involved in crosstalk between nervous and immune systems in various conditions, including HIV and SIV infection. Increased SP levels were demonstrated in plasma of HIV+ individuals as well as in the CNS of SIV-infected, nonhuman primates. SP increases HIV infection in macrophages through interaction with its receptor, NK1R. The SP effect on immune system is both pro- and anti-inflammatory and includes up-regulation of a number of cytokines and cell receptors. The main goal of this study was to determine whether there is interplay between monocyte exposure to SP and recruitment into sites of inflammation. We now demonstrate that exposure of either human macrophages or PBMCs to SP leads to increased production of chemokines, including MCP-1, for which expression is limited to cells of the myeloid lineage. This effect is inhibited by the NK1R antagonist, aprepitant. Exposure to conditioned medium derived from SP-treated PBMCs resulted in increased monocyte migration through semipermeable membranes and an in vitro human BBB model. Monocyte migration was blocked by anti-MCP-1 antibodies. Our results suggest that increased SP levels associated with HIV and other inflammatory conditions may contribute to increased monocyte migration into the CNS and other tissues through a MCP-1-dependent mechanism.
Collapse
Affiliation(s)
- Sergei Spitsin
- Division of Allergy and Immunology, Children's Hospital of Philadelphia Research Institute, Philadelphia, Pennsylvania, USA
| | - John Meshki
- Division of Allergy and Immunology, Children's Hospital of Philadelphia Research Institute, Philadelphia, Pennsylvania, USA
| | - Angela Winters
- Division of Allergy and Immunology, Children's Hospital of Philadelphia Research Institute, Philadelphia, Pennsylvania, USA
| | - Florin Tuluc
- Division of Allergy and Immunology, Children's Hospital of Philadelphia Research Institute, Philadelphia, Pennsylvania, USA
| | - Tami D Benton
- Department of Psychiatry, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA.,Department of Child and Adolescent Psychiatry and Behavioral Science, The Children's Hospital of Philadelphia, Philadelphia, Pennsylvania, USA; and
| | - Steven D Douglas
- Division of Allergy and Immunology, Children's Hospital of Philadelphia Research Institute, Philadelphia, Pennsylvania, USA; .,Department of Pediatrics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| |
Collapse
|
15
|
Barrett JS, Spitsin S, Moorthy G, Barrett K, Baker K, Lackner A, Tulic F, Winters A, Evans DL, Douglas SD. Pharmacologic rationale for the NK1R antagonist, aprepitant as adjunctive therapy in HIV. J Transl Med 2016; 14:148. [PMID: 27230663 PMCID: PMC4880976 DOI: 10.1186/s12967-016-0904-y] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2015] [Accepted: 05/13/2016] [Indexed: 12/18/2022] Open
Abstract
BACKGROUND Many HIV infected individuals with suppressed viral loads experience chronic immune activation frequently developing neurological impairment designated as HIV associated neurocognitive disorder (HAND). Adjunctive therapies may reduce HIV associated inflammation and therefore decrease the occurrence of HAND. METHODS We have conducted in vitro, animal and clinical studies of the neurokinin 1 receptor (NK1R) antagonist aprepitant in HIV/SIV infection. RESULTS Aprepitant inhibits HIV infection of human macrophages ex vivo with an ED50 ~ 5 µM. When administered at 125 mg once daily for 12 months to SIV-infected rhesus macaques, aprepitant reduced viral load by approximately tenfold and produced anti-anxiolytic effects. The anti-viral and anti-anxiolytic effects occur at approximately the third month of dosing; and the effects are sustained throughout the duration of drug administration. Protein binding experiments in culture media and animal and human plasma indicate that the free fraction of aprepitant is lower than previously reported supporting usage of higher doses in vivo. The analysis of blood samples from HIV positive individuals treated for 2 weeks with aprepitant at doses up to 375 mg demonstrated reduced levels of pro-inflammatory cytokines including G-CSF, IL-6, IL-8 and TNFα. Decreased pro-inflammatory cytokines may reduce HIV comorbidities associated with chronic inflammation. CONCLUSIONS Our results provide evidence for a unique combination of antiretroviral, anti-inflammatory and behavioral modulation properties of aprepitant in vitro and in vivo. These results provide robust support for a clinical exposure target above that recommended for chemotherapy-induced nausea and vomiting. Doses up to 375 mg once daily in HIV-infected patients still elicit sub-therapeutic exposure of aprepitant though effective plasma concentrations can be achievable by proper dose modulation.
Collapse
Affiliation(s)
- Jeffrey S Barrett
- Divisions of Clinical Pharmacology and Therapeutics, The Children's Hospital of Philadelphia Research Institute, Philadelphia, PA, 19104, USA. .,Translational Informatics, Sanofi Pharmaceuticals, Bridgewater, NJ, USA.
| | - Sergei Spitsin
- Division of Allergy and Immunology, The Children's Hospital of Philadelphia Research Institute, Philadelphia, PA, 19104, USA
| | - Ganesh Moorthy
- Divisions of Clinical Pharmacology and Therapeutics, The Children's Hospital of Philadelphia Research Institute, Philadelphia, PA, 19104, USA
| | - Kyle Barrett
- Divisions of Clinical Pharmacology and Therapeutics, The Children's Hospital of Philadelphia Research Institute, Philadelphia, PA, 19104, USA.,Drexel University (BS Expected 2019), Philadelphia, PA, 19104, USA
| | - Kate Baker
- Tulane National Primate Research Center, Covington, LA, 70433, USA
| | - Andrew Lackner
- Tulane National Primate Research Center, Covington, LA, 70433, USA
| | - Florin Tulic
- Division of Allergy and Immunology, The Children's Hospital of Philadelphia Research Institute, Philadelphia, PA, 19104, USA.,Department of Pediatrics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA.,Flow Cytometry Core Laboratory, The Children's Hospital of Philadelphia Research Institute, Philadelphia, PA, 19104, USA
| | - Angela Winters
- Division of Allergy and Immunology, The Children's Hospital of Philadelphia Research Institute, Philadelphia, PA, 19104, USA
| | - Dwight L Evans
- Department of Psychiatry, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Steven D Douglas
- Division of Allergy and Immunology, The Children's Hospital of Philadelphia Research Institute, Philadelphia, PA, 19104, USA.,Department of Pediatrics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
| |
Collapse
|
16
|
Reduction of soluble CD163, substance P, programmed death 1 and inflammatory markers: phase 1B trial of aprepitant in HIV-1-infected adults. AIDS 2015; 29:931-9. [PMID: 25915168 PMCID: PMC4472318 DOI: 10.1097/qad.0000000000000638] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
OBJECTIVE We evaluated safety, antiviral, immunomodulatory and anti-inflammatory properties of aprepitant - a neurokinin 1 receptor antagonist. DESIGN Phase IB randomized, placebo-controlled, double-blinded study. METHODS Eighteen patients were randomized (nine to aprepitant and nine to placebo). The patients received once-daily treatment (375 mg aprepitant or placebo by oral administration) for 2 weeks and were followed off drug for 4 weeks. RESULTS There were no significant changes in the plasma viremia or CD4(+) T cells during the dosing period. Aprepitant treatment was associated with significant decreases of median within patient change in percentages of CD4(+) T cells expressing programmed death 1 (-4.8%; P = 0.04), plasma substance P (-34.0 pg/ml; P = 0.05) and soluble CD163 (-563 ng/ml; P = 0.02), with no significant changes in the placebo arm. Mean peak aprepitant plasma concentration on day 14 was 7.6 ± 3.1 μg/ml. The use of aprepitant was associated with moderate increases in total cholesterol, low-density lipoprotein and high-density lipoprotein (median change = +31 mg/dl, P = 0.01; +26 mg/dl, P = 0.02; +3 mg/dl, P = 0.02, respectively). CONCLUSION Aprepitant was safe and well tolerated. At the dose used in this proof-of-concept phase IB study, aprepitant did not show a significant antiviral activity. Aprepitant-treated patients had decreased numbers of CD4(+) programmed death 1-positive cells and decreased plasma levels of substance P and soluble CD163, suggesting that blockade of the neurokinin 1 receptor pathway has a role in modulating monocyte activation in HIV infection. Prospective studies in virologically-suppressed individuals are warranted to evaluate the immunomodulatory properties of aprepitant. Exposures exceeding those attained in this trial are more likely to elicit clinical benefit.
Collapse
|
17
|
Huang B, Li Q, Xu S, Tian M, Zhen X, Bi Y, Xu F. Substance P protects against hyperoxic-induced lung injury in neonatal rats. Exp Lung Res 2014; 41:12-20. [DOI: 10.3109/01902148.2014.959140] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|
18
|
Tuluc F, Meshki J, Spitsin S, Douglas SD. HIV infection of macrophages is enhanced in the presence of increased expression of CD163 induced by substance P. J Leukoc Biol 2014; 96:143-50. [PMID: 24577568 DOI: 10.1189/jlb.4ab0813-434rr] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
Activation of NK1R by SP contributes to increased HIV-1 infection in macrophages. The scavenger receptor CD163 is expressed on cells of monocyte-macrophage origin. Our main goal was to determine if there is interplay among SP, CD163 expression, and HIV infection in macrophages. We showed that SP triggers intracellular calcium elevation and increased CD163 expression in human monocytes in a time- and concentration-dependent manner. The role of CD163 on HIV infection was examined by RT-PCR in sorted monocytes (CD163(low) and CD163(high)) and in macrophages having CD163 knocked down using siRNA. We found that the productivity of HIV infection was higher in CD163(high) cells. Additionally, in macrophages with CD163 expression knocked down, we found a significant decrease of HIV infection. Furthermore, Hb-Hp complexes, which function as an endogenous ligand for CD163, decreased HIV infection in macrophages in a dose-dependent manner. Thus, we demonstrate that SP induces higher levels of CD163 in monocytes and that high expression of CD163 is associated with increases HIV infection in macrophages. Thus, in addition to being a prognostic marker of HIV infection, the expression of CD163 on macrophages may be critical in HIV immunopathogenesis.
Collapse
Affiliation(s)
- Florin Tuluc
- Division of Allergy and Immunology and Flow Cytometry Core Laboratory, The Children's Hospital of Philadelphia Research Institute, Philadelphia, Pennsylvania, USA; and Department of Pediatrics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | | | | | - Steven D Douglas
- Division of Allergy and Immunology and Department of Pediatrics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| |
Collapse
|
19
|
Hao S. The Molecular and Pharmacological Mechanisms of HIV-Related Neuropathic Pain. Curr Neuropharmacol 2014; 11:499-512. [PMID: 24403874 PMCID: PMC3763758 DOI: 10.2174/1570159x11311050005] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2013] [Revised: 03/04/2013] [Accepted: 04/22/2013] [Indexed: 12/21/2022] Open
Abstract
Infection of the nervous system with the human immunodeficiency virus (HIV-1) can lead to cognitive, motor and sensory disorders. HIV-related sensory neuropathy (HIV-SN) mainly contains the HIV infection-related distal sensory polyneuropathy (DSP) and antiretroviral toxic neuropathies (ATN). The main pathological features that characterize DSP and ATN include retrograde ("dying back") axonal degeneration of long axons in distal regions of legs or arms, loss of unmyelinated fibers, and variable degree of macrophage infiltration in peripheral nerves and dorsal root ganglia (DRG). One of the most common complaints of HIV-DSP is pain. Unfortunately, many conventional agents utilized as pharmacologic therapy for neuropathic pain are not effective for providing satisfactory analgesia in painful HIV-related distal sensory polyneuropathy, because the molecular mechanisms of the painful HIV-SDP are not clear in detail. The HIV envelope glycoprotein, gp120, appears to contribute to this painful neuropathy. Recently, preclinical studies have shown that glia activation in the spinal cord and DRG has become an attractive target for attenuating chronic pain. Cytokines/chemokines have been implicated in a variety of painful neurological diseases and in animal models of HIV-related neuropathic pain. Mitochondria injured by ATN and/or gp120 may be also involved in the development of HIV-neuropathic pain. This review discusses the neurochemical and pharmacological mechanisms of HIV-related neuropathic pain based on the recent advance in the preclinical studies, providing insights into novel pharmacological targets for future therapy.
Collapse
Affiliation(s)
- Shuanglin Hao
- Department of Anesthesiology, University of Miami Miller School of Medicine, Miami, FL33136
| |
Collapse
|
20
|
Schwartz L, Spitsin SV, Meshki J, Tuluc F, Douglas SD, Wolfe JH. Substance P enhances HIV-1 infection in human fetal brain cell cultures expressing full-length neurokinin-1 receptor. J Neurovirol 2013; 19:219-27. [PMID: 23765222 PMCID: PMC3719168 DOI: 10.1007/s13365-013-0166-x] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2012] [Revised: 04/05/2013] [Accepted: 04/16/2013] [Indexed: 12/12/2022]
Abstract
The associations between the neurokinin-1 receptor (NK-1R), substance P (SP), and HIV-1 were investigated in neurosphere-derived cultures of microglial-depleted human fetal brain cells (HFBC). Full-length NK-1R was identified in HFBC cultures. SP treatment of the HFBC increased intracellular calcium mobilization and decreased electrical impedance, both of which were blocked by the NK-1R antagonist aprepitant. SP treatment of HIV-1-infected HFBC upregulated HIV-1 expression. These data show that human neural cells grown from neurospheres express functional full length NK-1R that is responsive to SP, and that SP enhanced HIV-1 infection in HBFC.
Collapse
Affiliation(s)
- Lynnae Schwartz
- Research Institute, Children's Hospital of Philadelphia, Suite 1208, 3615 Civic Center Boulevard, Philadelphia, PA 19104, USA.
| | | | | | | | | | | |
Collapse
|
21
|
Spitsin S, Tuluc F, Meshki J, Lai JP, Tustin R, Douglas SD. Analog of somatostatin vapreotide exhibits biological effects in vitro via interaction with neurokinin-1 receptor. Neuroimmunomodulation 2013; 20:247-55. [PMID: 23921645 PMCID: PMC3839635 DOI: 10.1159/000350468] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/30/2013] [Accepted: 03/04/2013] [Indexed: 11/19/2022] Open
Abstract
OBJECTIVES Vapreotide, a synthetic analog of somatostatin, has analgesic activity most likely mediated through the blockade of neurokinin-1 receptor (NK1R), the substance P (SP)-preferring receptor. The ability of vapreotide to interfere with other biological effects of SP has yet to be investigated. METHODS We studied the ability of vapreotide to antagonize NK1R in three different cell types: immortalized U373MG human astrocytoma cells, human monocyte-derived macrophages (MDM) and a human embryonic kidney cell line, HEK293. Both U373MG and MDM express endogenous NK1R while HEK293 cells, which normally do not express NK1R, are stably transformed to express human NK1R (HEK293-NK1R). RESULTS Vapreotide attenuates SP-triggered intracellular calcium increases and nuclear factor-κB activation in a dose-dependent manner. Vapreotide also inhibits SP-induced interleukin-8 and monocyte chemotactic protein-1 production in HEK293-NK1R and U373MG cell lines. Vapreotide inhibits HIV-1 infection of human MDM in vitro, an effect that is reversible by SP pretreatment. CONCLUSIONS Our findings indicate that vapreotide has NK1R antagonist activity and may have a potential application as a therapeutic intervention in HIV-1 infection.
Collapse
Affiliation(s)
- Sergei Spitsin
- Division of Allergy and Immunology at The Children’s Hospital of Philadelphia, The Children’s Hospital of Philadelphia Research Institute, Philadelphia, PA 19104
| | - Florin Tuluc
- Division of Allergy and Immunology at The Children’s Hospital of Philadelphia, The Children’s Hospital of Philadelphia Research Institute, Philadelphia, PA 19104
- Department of Pediatrics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104
| | - John Meshki
- Division of Allergy and Immunology at The Children’s Hospital of Philadelphia, The Children’s Hospital of Philadelphia Research Institute, Philadelphia, PA 19104
| | - Jian Ping Lai
- Division of Allergy and Immunology at The Children’s Hospital of Philadelphia, The Children’s Hospital of Philadelphia Research Institute, Philadelphia, PA 19104
| | - Richard Tustin
- Division of Allergy and Immunology at The Children’s Hospital of Philadelphia, The Children’s Hospital of Philadelphia Research Institute, Philadelphia, PA 19104
| | - Steven D. Douglas
- Division of Allergy and Immunology at The Children’s Hospital of Philadelphia, The Children’s Hospital of Philadelphia Research Institute, Philadelphia, PA 19104
- Department of Pediatrics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104
- Address correspondence and reprints to: Steven D. Douglas, MD, Professor of Pediatrics, Division of Allergy and Immunology, The Children’s Hospital of Philadelphia, 34th Street & Civic Center Blvd., Philadelphia, PA 19104, Telephone: 215-590-1978, Fax: 215-590-3044,
| |
Collapse
|
22
|
Prefrontal dopaminergic and enkephalinergic synaptic accommodation in HIV-associated neurocognitive disorders and encephalitis. J Neuroimmune Pharmacol 2012; 7:686-700. [PMID: 22391864 PMCID: PMC3419353 DOI: 10.1007/s11481-012-9345-4] [Citation(s) in RCA: 61] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2011] [Accepted: 02/06/2012] [Indexed: 12/15/2022]
Abstract
Changes in synapse structure occur in frontal neocortex with HIV encephalitis (HIVE) and may contribute to HIV-associated neurocognitive disorders (HAND). A postmortem survey was conducted to determine if mRNAs involved in synaptic transmission are perturbed in dorsolateral prefrontal cortex (DLPFC) in subjects with HIVE or HAND. Expression of the opioid neurotransmitter preproenkephalin mRNA (PENK) was significantly decreased in a sampling of 446 brain specimens from HIV-1 infected people compared to 67 HIV negative subjects. Decreased DLPFC PENK was most evident in subjects with HIVE and/or increased expression of interferon regulatory factor 1 mRNA (IRF1). Type 2 dopamine receptor mRNA (DRD2L) was decreased significantly, but not in the same set of subjects with PENK dysregulation. DRD2L downregulation occurred primarily in the subjects without HIVE or neurocognitive impairment. Subjects with neurocognitive impairment often failed to significantly downregulate DRD2L and had abnormally high IRF1 expression. Conclusion: Dysregulation of synaptic preproenkephalin and DRD2L in frontal neocortex can occur with and without neurocognitive impairment in HIV-infected people. Downregulation of DRD2L in the prefrontal cortex was associated with more favorable neuropsychological and neuropathological outcomes; the failure to downregulate DRD2L was significantly less favorable. PENK downregulation was related neuropathologically to HIVE, but was not related to neuropsychological outcome independently. Emulating endogenous synaptic plasticity pharmacodynamically could enhance synaptic accommodation and improve neuropsychological and neuropathological outcomes in HIV/AIDS.
Collapse
|
23
|
Louboutin JP, Strayer DS. Blood-brain barrier abnormalities caused by HIV-1 gp120: mechanistic and therapeutic implications. ScientificWorldJournal 2012; 2012:482575. [PMID: 22448134 PMCID: PMC3289936 DOI: 10.1100/2012/482575] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2011] [Accepted: 11/20/2011] [Indexed: 12/04/2022] Open
Abstract
The blood-brain barrier (BBB) is compromised in many systemic and CNS diseases, including HIV-1 infection of the brain. We studied BBB disruption caused by HIV-1 envelope glycoprotein 120 (gp120) as a model. Exposure to gp120, whether acute [by direct intra-caudate-putamen (CP) injection] or chronic [using SV(gp120), an experimental model of ongoing production of gp120] disrupted the BBB, and led to leakage of vascular contents. Gp120 was directly toxic to brain endothelial cells. Abnormalities of the BBB reflect the activity of matrix metalloproteinases (MMPs). These target laminin and attack the tight junctions between endothelial cells and BBB basal laminae. MMP-2 and MMP-9 were upregulated following gp120-injection. Gp120 reduced laminin and tight junction proteins. Reactive oxygen species (ROS) activate MMPs. Injecting gp120 induced lipid peroxidation. Gene transfer of antioxidant enzymes protected against gp120-induced BBB abnormalities. NMDA upregulates the proform of MMP-9. Using the NMDA receptor (NMDAR-1) inhibitor, memantine, we observed partial protection from gp120-induced BBB injury. Thus, (1) HIV-envelope gp120 disrupts the BBB; (2) this occurs via lesions in brain microvessels, MMP activation and degradation of vascular basement membrane and vascular tight junctions; (3) NMDAR-1 activation plays a role in this BBB injury; and (4) antioxidant gene delivery as well as NMDAR-1 antagonists may protect the BBB.
Collapse
Affiliation(s)
- Jean-Pierre Louboutin
- Department of Pathology, Anatomy and Cell Biology, Thomas Jefferson University, 1020 Locust Street Room 255 Philadelphia, PA 19107, USA.
| | | |
Collapse
|
24
|
Douglas SD, Leeman SE. Neurokinin-1 receptor: functional significance in the immune system in reference to selected infections and inflammation. Ann N Y Acad Sci 2010; 1217:83-95. [PMID: 21091716 DOI: 10.1111/j.1749-6632.2010.05826.x] [Citation(s) in RCA: 126] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
The G protein-coupled receptor (GPCR), neurokinin-1 receptor (NK1R), and its preferred ligand, substance P (SP), are reviewed in relationship to the immune system and selected infections. NK1R and SP are ubiquitous throughout the animal kingdom. This important pathway has unique functions in numerous cells and tissues. The interaction of SP with its preferred receptor, NK1R, leads to the activation of nuclear factor-kappa B (NF-κB) and proinflammatory cytokines. NK1R has two isoforms, both a full-length and a truncated form. These isoforms have different functional significances and differ in cell signaling capability. The proinflammatory signals modulated by SP are important in bacterial, viral, fungal, and parasitic diseases, as well as in immune system function. The SP-NK1R system is a major class 1, rhodopsin-like GPCR ligand-receptor interaction.
Collapse
Affiliation(s)
- Steven D Douglas
- Department of Pediatrics, Children's Hospital of Philadelphia Research Institute, University of Pennsylvania Medical School, Philadelphia, Pennsylvania, USA.
| | | |
Collapse
|
25
|
Vinet-Oliphant H, Alvarez X, Buza E, Borda JT, Mohan M, Aye PP, Tuluc F, Douglas SD, Lackner AA. Neurokinin-1 receptor (NK1-R) expression in the brains of SIV-infected rhesus macaques: implications for substance P in NK1-R immune cell trafficking into the CNS. THE AMERICAN JOURNAL OF PATHOLOGY 2010; 177:1286-97. [PMID: 20671267 DOI: 10.2353/ajpath.2010.091109] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Recent studies suggest a link between neuropsychiatric disorders and HIV/SIV infection. Most evidence indicates that monocytes/macrophages are the primary cell type infected within the CNS and that they contribute to CNS inflammation and neurological disease. Substance P (SP), a pleotropic neuropeptide implicated in inflammation, depression, and immune modulation via interaction with its cognate receptor, the neurokinin 1 receptor (NK1-R), is produced by monocyte/macrophages. While the presence of NK1-R on neurons is well known, its role on cells of the immune system such as monocyte/macrophages is just beginning to emerge. Therefore, we have examined the expression of SP and NK1-R and their relationship to SIV/HIV encephalitis (SIVE/HIVE) lesions and SIV-infected cells. These studies demonstrated intense expression of SP and NK1-R in SIVE lesions, with macrophages being the principal cell expressing NK1-R. Interestingly, all of the SIV-infected macrophages expressed NK1-R. Additionally, we examined the functional role of SP as a proinflammatory mediator of monocyte activation and chemotaxis. These studies demonstrated that treatment of monocytes with SP elicited changes in cell-surface expression for CCR5 and NK1-R in a dose-dependent manner. Moreover, pretreatment with SP enhanced both SP- and CCL5-mediated chemotaxis. All of these findings suggest that SP and NK1-R are important in SIV infection of macrophages and the development of SIVE lesions.
Collapse
Affiliation(s)
- Heather Vinet-Oliphant
- Tulane National Primate Research Center, Division of Comparative Pathology, Covington, LA 70433, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
26
|
Klassert TE, Patel SA, Rameshwar P. Tachykinins and Neurokinin Receptors in Bone Marrow Functions: Neural-Hematopoietic Link. ACTA ACUST UNITED AC 2010; 2010:51-61. [PMID: 20593004 DOI: 10.2147/jrlcr.s6509] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
After many decades of neuropeptide research, advances in the field of tachykinins have considerably increased and shown their implications in several physiological processes. In this review we focus on the role of the tachykinins in the regulation of hematopoietic functions. Evidence has shown that neural control of this process is emerging as a significant category in hematopoietic modulation. In the context of this regulation, we discuss the existence of a complex network involving the neurokinin receptors, tachykinins and cytokines. This network is tightly regulated by each of its components.
Collapse
Affiliation(s)
- Tilman E Klassert
- Department of Medicine - Division of Hematology/Oncology, New Jersey Medical School, University of Medicine and Dentistry of New Jersey, Newark, NJ, USA
| | | | | |
Collapse
|
27
|
Benton T, Blume J, Dubé B. Treatment considerations for psychiatric syndromes associated with HIV infection. ACTA ACUST UNITED AC 2010. [DOI: 10.2217/hiv.10.12] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Psychiatric syndromes associated with HIV disease were recognized early in the AIDS epidemic. Public education, new technologies and antiretroviral therapies have resulted in earlier recognition and therapautic interventions of HIV infection, improving the physical health for individuals living with HIV. While HIV-associated psychiatric symptoms have been recognized for more than 20 years, our understanding of the mechanisms underlying psychiatric symptoms among HIV-infected individuals and treatments for these symptoms have not kept pace with advances in HIV therapies. In this article, we discuss current knowledge of the psychiatric symptoms occurring with HIV disease, specifically mood, anxiety and psychotic disorders, evidence-based treatments and treatment considerations, new strategies for the treatments of psychiatric symptoms in HIV disease are also discussed.
Collapse
Affiliation(s)
- Tami Benton
- Child & Adolescent Psychiatry, The Children’s Hospital of Philadelphia Behavioral Health Center, 3440 Market Street, Suite 410, Philadelphia, PA 19104, USA
| | - Joshua Blume
- Department of Psychiatry, University of Pennsylvania, School of Medicine, Philadelphia, PA 19104, USA
| | - Benoit Dubé
- Department of Psychiatry, University of Pennsylvania, School of Medicine, Philadelphia, PA 19104, USA
| |
Collapse
|
28
|
Tuluc F, Lai JP, Kilpatrick LE, Evans DL, Douglas SD. Neurokinin 1 receptor isoforms and the control of innate immunity. Trends Immunol 2009; 30:271-6. [DOI: 10.1016/j.it.2009.03.006] [Citation(s) in RCA: 69] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2009] [Revised: 03/04/2009] [Accepted: 03/06/2009] [Indexed: 10/20/2022]
|
29
|
Novel method for determination of substance P levels in unextracted human plasma by using acidification. CLINICAL AND VACCINE IMMUNOLOGY : CVI 2009; 16:594-6. [PMID: 19193832 DOI: 10.1128/cvi.00406-08] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Substance P (SP) is a member of the tachykinin family and has an important role in immune responses. SP is detectable in plasma in a free and bound state. Simple modification of a commercially available SP enzyme-linked immunosorbent assay allows the dissociation and capture of plasma SP without solid-phase extraction.
Collapse
|
30
|
Lu TS, Avraham HK, Seng S, Tachado SD, Koziel H, Makriyannis A, Avraham S. Cannabinoids inhibit HIV-1 Gp120-mediated insults in brain microvascular endothelial cells. THE JOURNAL OF IMMUNOLOGY 2009; 181:6406-16. [PMID: 18941231 DOI: 10.4049/jimmunol.181.9.6406] [Citation(s) in RCA: 73] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
HIV-1 infection has significant effect on the immune system as well as on the nervous system. Breakdown of the blood-brain barrier (BBB) is frequently observed in patients with HIV-associated dementia (HAD) despite lack of productive infection of human brain microvascular endothelial cells (HBMEC). Cellular products and viral proteins secreted by HIV-1 infected cells, such as the HIV-1 Gp120 envelope glycoprotein, play important roles in BBB impairment and HIV-associated dementia development. HBMEC are a major component of the BBB. Using cocultures of HBMEC and human astrocytes as a model system for human BBB as well as in vivo model, we show for the first time that cannabinoid agonists inhibited HIV-1 Gp120-induced calcium influx mediated by substance P and significantly decreased the permeability of HBMEC as well as prevented tight junction protein down-regulation of ZO-1, claudin-5, and JAM-1 in HBMEC. Furthermore, cannabinoid agonists inhibited the transmigration of human monocytes across the BBB and blocked the BBB permeability in vivo. These results demonstrate that cannabinoid agonists are able to restore the integrity of HBMEC and the BBB following insults by HIV-1 Gp120. These studies may lead to better strategies for treatment modalities targeted to the BBB following HIV-1 infection of the brain based on cannabinoid pharmacotherapies.
Collapse
Affiliation(s)
- Tzong-Shi Lu
- Division of Experimental Medicine, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, MA 02115, USA
| | | | | | | | | | | | | |
Collapse
|
31
|
Wu D, Paul DJ, Zhao X, Douglas SD, Barrett JS. A sensitive and rapid liquid chromatography-tandem mass spectrometry method for the quantification of the novel neurokinin-1 receptor antagonist aprepitant in rhesus macaque plasma, and cerebral spinal fluid, and human plasma with application in translational NeuroAIDs research. J Pharm Biomed Anal 2008; 49:739-45. [PMID: 19167182 DOI: 10.1016/j.jpba.2008.12.005] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2008] [Revised: 11/24/2008] [Accepted: 12/05/2008] [Indexed: 10/21/2022]
Abstract
A sensitive and rapid liquid chromatography-tandem mass spectrometry method has been developed for to assess therapeutic exposures of aprepitant in HIV-infected patients and rhesus macaques. The method utilized a simple sample-preparation procedure of protein precipitation with methanol. Chromatographic separation was performed on a reversed phase C(8) column (Hypersil Gold, 50 mm x 2.1 mm, 3 microm) using a mobile phase composed of acetonitrile and water in 0.5% formic acid through gradient elution. Electro-spray ionization in positive mode was incorporated in the tandem mass spectrometric detection. The lower limit of quantitation of aprepitant in plasma of rhesus macaques and human and cerebral spinal fluid of rhesus macaques were 1, 1, and 0.1 ng/mL, respectively. The method has been successfully employed to measure aprepitant in preclinical and clinical samples collected from three SIV-infected rhesus macaques and ten patients with HIV infection. In conclusion, this liquid chromatography-tandem mass spectrometry method is suitable for preclinical-clinical translational research exploring exposure-response relationships with aprepitant as well as therapeutic drug monitoring of aprepitant.
Collapse
Affiliation(s)
- Di Wu
- Laboratory for Applied PK/PD, Division of Clinical Pharmacology and Therapeutics, The Children's Hospital of Philadelphia, Philadelphia, PA 19104, USA.
| | | | | | | | | |
Collapse
|
32
|
Chernova I, Lai JP, Li H, Schwartz L, Tuluc F, Korchak HM, Douglas SD, Kilpatrick LE. Substance P (SP) enhances CCL5-induced chemotaxis and intracellular signaling in human monocytes, which express the truncated neurokinin-1 receptor (NK1R). J Leukoc Biol 2008; 85:154-64. [PMID: 18835883 DOI: 10.1189/jlb.0408260] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
Substance P (SP) is a potent modulator of monocyte/macrophage function. The SP-preferring receptor neurokinin-1 receptor (NK1R) has two forms: a full-length NK1R (NK1R-F) isoform and a truncated NK1R (NK1R-T) isoform, which lacks the terminal cytoplasmic 96-aa residues. The distribution of these receptor isoforms in human monocytes is not known. We previously identified an interaction among SP, NK1R, and HIV viral strains that use the chemokine receptor CCR5 as a coreceptor, suggesting crosstalk between NK1R and CCR5. The purpose of this study was to determine which form(s) of NK1R are expressed in human peripheral blood monocytes and to determine whether SP affects proinflammatory cellular responses mediated through the CCR5 receptor. Human peripheral blood monocytes were found to express NK1R-T but not NK1R-F. SP interactions with NK1R-T did not mobilize calcium (Ca2+), but SP mobilized Ca2+ when the NK1R-F was transfected into monocytes. However, the NK1R-T was functional in monocytes, as SP enhanced the CCR5 ligand CCL5-elicited Ca2+ mobilization, a response inhibited by the NK1R antagonist aprepitant. SP interactions with the NK1R-T also enhanced CCL5-mediated chemotaxis, which was ERK1/2-dependent. NK1R-T selectively activated ERK2 but increased ERK1 and ERK2 activation by CCL5. Activation of NK1R-T elicited serine phosphorylation of CCR5, indicating that crosstalk between CCL5 and SP may occur at the level of the receptor. Thus, NK1R-T is functional in human monocytes and activates select signaling pathways, and the NK1R-T-mediated enhancement of CCL5 responses does not require the NK1R terminal cytoplasmic domain.
Collapse
Affiliation(s)
- Irene Chernova
- Department of Pediatrics, University of Pennsylvania School of Medicine and the Joseph Stokes Jr. Research Institute, Children's Hospital of Philadelphia, 3615 Civic Center Blvd., Philadelphia, PA 19104, USA
| | | | | | | | | | | | | | | |
Collapse
|
33
|
Abstract
This review surveys empirical research pertinent to the hypothesis that activity of the hypothalamus-pituitary-adrenal (HPA) axis and/or the sympathetic nervous system (SNS) might mediate biobehavioral influences on HIV-1 pathogenesis and disease progression. Data are considered based on causal effects of neuroeffector molecules on HIV-1 replication, prospective relationships between neural/endocrine parameters and HIV-relevant biological or clinical markers, and correlational data consistent with in vivo neural/endocrine mediation in human or animal studies. Results show that HPA and SNS effector molecules can enhance HIV-1 replication in cellular models via effects on viral infectivity, viral gene expression, and the innate immune response to infection. Animal models and human clinical studies both provide evidence consistent with SNS regulation of viral replication, but data on HPA mediation are less clear. Regulation of leukocyte biology by neuroeffector molecules provides a plausible biological mechanism by which psychosocial factors might influence HIV-1 pathogenesis, even in the era of effective antiretroviral therapy. As such, neural and endocrine parameters might provide useful biomarkers for gauging the promise of behavioral interventions and suggest novel adjunctive strategies for controlling HIV-1 disease progression.
Collapse
|
34
|
Evans DL, Lynch KG, Benton T, Dubé B, Gettes DR, Tustin NB, Lai JP, Metzger D, Douglas SD. Selective serotonin reuptake inhibitor and substance P antagonist enhancement of natural killer cell innate immunity in human immunodeficiency virus/acquired immunodeficiency syndrome. Biol Psychiatry 2008; 63:899-905. [PMID: 17945197 PMCID: PMC2845393 DOI: 10.1016/j.biopsych.2007.08.012] [Citation(s) in RCA: 53] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/26/2007] [Revised: 07/06/2007] [Accepted: 08/15/2007] [Indexed: 11/25/2022]
Abstract
BACKGROUND Natural killer (NK) cells play an important role in innate immunity and are involved in the host defense against human immunodeficiency virus (HIV) infection. This study examines the potential role of three underlying regulatory systems that have been under investigation in central nervous system research as well as immune and viral research: serotonin, neurokinin, and glucocorticoid systems. METHODS Fifty-one HIV-seropositive subjects were recruited to achieve a representative sample of depressed and nondepressed women. The effects of a selective serotonin reuptake inhibitor (SSRI), a substance P (SP) antagonist, and a glucocorticoid antagonist on NK cell function were assessed in a series of ex vivo experiments of peripheral blood mononuclear cells from each HIV-seropositive subject. RESULTS Natural killer cell cytolytic activity was significantly increased by the SSRI citalopram and by the substance P antagonist CP-96345 relative to control conditions; the glucocorticoid antagonist, RU486, showed no effect on NK cytotoxicity. Our results suggest that the effects of the three agents did not differ as a function of depression. CONCLUSIONS Our findings provide evidence that NK cell function in HIV infection may be enhanced by serotonin reuptake inhibition and by substance P antagonism. It remains to be determined if HIV-related impairment in not only NK cytolytic activity but also NK noncytolytic activity can be improved by an SSRI or an SP antagonist. Clinical studies are warranted to address these questions and the potential roles of serotonergic agents and SP antagonists in improving NK cell immunity, delaying HIV disease progression, and extending survival with HIV infection.
Collapse
|
35
|
Douglas SD, Cnaan A, Lynch KG, Benton T, Zhao H, Gettes DR, Evans DL. Elevated substance P levels in HIV-infected women in comparison to HIV-negative women. AIDS Res Hum Retroviruses 2008; 24:375-8. [PMID: 18327973 DOI: 10.1089/aid.2007.0207] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Substance P and its receptor (neurokinin-1R) are potent modulators of neuroimmunoregulation and HIV/AIDS infection. We previously demonstrated that HIV-seropositive men had significantly higher substance P levels compared to uninfected controls. We now demonstrate that substance P plasma levels are significantly higher in HIV-infected women in comparison to uninfected control women.
Collapse
Affiliation(s)
- Steven D. Douglas
- Division of Allergy and Immunology and Department of Pediatrics, Joseph Stokes Jr. Research Institute at the Children's Hospital of Philadelphia, Philadelphia, Pennsylvania 19104
| | - Avital Cnaan
- Division of Biostatistics and Epidemiology and Department of Pediatrics, Joseph Stokes Jr. Research Institute at the Children's Hospital of Philadelphia, Philadelphia, Pennsylvania 19104
| | - Kevin G. Lynch
- Department of Psychiatry, University of Pennsylvania School of Medicine, Philadelphia, Pennsylvania 19104
| | - Tami Benton
- Department of Psychiatry, University of Pennsylvania School of Medicine, Philadelphia, Pennsylvania 19104
| | - Huaqing Zhao
- Division of Biostatistics and Epidemiology and Department of Pediatrics, Joseph Stokes Jr. Research Institute at the Children's Hospital of Philadelphia, Philadelphia, Pennsylvania 19104
| | - David R. Gettes
- Department of Psychiatry, University of Pennsylvania School of Medicine, Philadelphia, Pennsylvania 19104
| | - Dwight L. Evans
- Departments of Psychiatry, Medicine, and Neuroscience, University of Pennsylvania School of Medicine, Philadelphia, Pennsylvania 19104
| |
Collapse
|
36
|
Elevated plasma substance P in sickle cell disease and vaso-occlusive crisis. Med Hypotheses 2008; 70:1229. [PMID: 18280053 DOI: 10.1016/j.mehy.2007.12.013] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2007] [Revised: 12/18/2007] [Accepted: 12/27/2007] [Indexed: 11/20/2022]
|
37
|
Lai JP, Cnaan A, Zhao H, Douglas SD. Detection of full-length and truncated neurokinin-1 receptor mRNA expression in human brain regions. J Neurosci Methods 2007; 168:127-33. [PMID: 18035424 DOI: 10.1016/j.jneumeth.2007.10.004] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2007] [Revised: 10/03/2007] [Accepted: 10/03/2007] [Indexed: 10/22/2022]
Abstract
We have applied a newly developed SYBR green-based real-time RT-PCR assay for quantification of full-length and truncated neurokinin-1 receptor (NK1R) mRNA expression in nine regions of human brain tissues obtained from 23 subjects who died with no evidence of neurological or neurodegenerative disease. The following brain regions were examined: cingulate cortex, cerebellum, nucleus accumbens, caudate nucleus, putamen, pons, hippocampus, locus coeruleus, and basal ganglia. The SYBR green-based real-time PCR was more sensitive than TaqMan probe-based real-time PCR in amplifying both full-length and truncated NK1R mRNA. The real-time RT-PCR assay had excellent specificity and sensitivity, with a dynamic range of detection between 100 and 1,000,000 copies of the NK1R cDNA per reaction. The truncated NK1R mRNA levels were more abundant than those of the full-length NK1R in most of the regions examined and there was no significant difference in the truncated NK1R mRNA levels among the nine regions studied. There was, however, a significant difference in the expression of full-length NK1R mRNA levels among the nine regions (P=0.0024), and the putamen region expressed the highest full-length NK1R mRNA. Further studies are needed in order to examine the differences between full-length and truncated NK1R in signal transduction and functional consequences in order to delineate the significance of the co-presence of the two forms of NK1R in the human brain.
Collapse
Affiliation(s)
- Jian-Ping Lai
- Division of Allergy and Immunology, Joseph Stokes Jr. Research Institute at the Children's Hospital of Philadelphia, Department of Pediatrics, University of Pennsylvania Medical School, Philadelphia, PA 19104, USA
| | | | | | | |
Collapse
|
38
|
Tansky MF, Pothoulakis C, Leeman SE. Functional consequences of alteration of N-linked glycosylation sites on the neurokinin 1 receptor. Proc Natl Acad Sci U S A 2007; 104:10691-6. [PMID: 17563389 PMCID: PMC1965574 DOI: 10.1073/pnas.0703394104] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The neurokinin 1 receptor (NK1R), a G protein-coupled receptor involved in diverse functions including pain and inflammation, has two putative N-linked glycosylation sites, Asn-14 and Asn-18. We studied the role of N-linked glycosylation in the functioning of the NK1R by constructing three receptor mutants: two single mutants (Asn --> Gln-14 and Asn --> Gln-18) and a double mutant, lacking both glycosylation sites. Using a lentiviral transfection system, the mutants were stably transfected into NCM 460 cells, a nontransformed human colonic epithelial cell line. We observed that the magnitude of glycosylation as estimated by changes in gel migration depends on the number of glycosylation sites available, with the wild-type receptor containing the greatest amount of glycosylation. All mutant receptors were able to bind to substance P and neurokinin A ligand with similar affinities; however, the double mutant, nonglycosylated NK1R showed only half the B(max) of the wild-type NK1R. In terms of receptor function, the ablation of both N-linked glycosylation sites did not have a profound effect on the receptors' abilities to activate the MAP kinase families (p42/p44, JNK, and p38), but did affect SP-induced IL-8 secretion. All mutants were able to internalize, but the kinetics of internalization of the double mutant receptor was more rapid, when compared with wild-type NK1R. Therefore, glycosylation of NK1R may stabilize the receptor in the plasma membrane. These results contribute to the ongoing elucidation of the role of glycosylation in G protein-coupled receptors and the study of the neurokinin receptors in particular.
Collapse
Affiliation(s)
- Morris F. Tansky
- *Department of Pharmacology, Boston University School of Medicine, Boston, MA 02118; and
| | - Charalabos Pothoulakis
- Beth Israel Deaconess Medical Center, Division of Gastroenterology, Gastrointestinal Neuropeptide Center, Harvard Medical School, Boston, MA 02215
| | - Susan E. Leeman
- *Department of Pharmacology, Boston University School of Medicine, Boston, MA 02118; and
- To whom correspondence should be addressed. E-mail:
| |
Collapse
|
39
|
Rieux L, Bischoff R, Verpoorte E, Niederländer HAG. Restricted-access material-based high-molecular-weight protein depletion coupled on-line with nano-liquid chromatography–mass spectrometry for proteomics applications. J Chromatogr A 2007; 1149:169-77. [PMID: 17418220 DOI: 10.1016/j.chroma.2007.02.118] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2006] [Revised: 01/22/2007] [Accepted: 02/23/2007] [Indexed: 11/18/2022]
Abstract
Proteomics samples often contain both abundant proteins and low-level proteins and peptides. Highly abundant proteins can mask and/or bind those of lower abundance and thereby hinder their analysis. In particular, we were concerned with samples containing large amounts of albumin (up to 4.0 microM). In this study, a novel set-up for multidimensional nano-liquid chromatography-mass spectrometry (nanoLC-MS) with three columns coupled on-line was developed and characterised. A 1-mm-I.D. restricted-access-material (RAM) cartridge and a 100-microm-I.D. reversed-phase trap column are coupled in forward-flush mode to remove albumin before on-line separation on a 50 microm I.D. reversed-phase capillary analytical column. Volumes up to 100 microL of a complex matrix (containing 0.4 or 4.0 microM albumin) could be injected onto this system, enabling a 5000-fold volume reduction. Up to 99.7% of the albumin present in samples could be efficiently removed over the RAM cartridge. The total analysis time was about 40 min. Using Substance P as a model peptide, separations were efficient, with a peak width of 10s at half height. Moreover, separations were highly reproducible (relative standard deviation (RSD) on retention time approximately 3% over 1 week). The set-up proved to be robust and was used for about 750 analyses without exchanging one of the columns. Flexibility with respect to the stationary phase material in the sample preparation cartridge allows for other separation modes to be applied as well.
Collapse
Affiliation(s)
- Laurent Rieux
- Pharmaceutical Analysis Group, University Centre for Pharmacy, University of Groningen, A. Deusinglaan 1, 9713 AV Groningen, The Netherlands
| | | | | | | |
Collapse
|
40
|
Wang X, Douglas SD, Peng JS, Zhou DJ, Wan Q, Ho WZ. An in vitro model of morphine withdrawal manifests the enhancing effect on human immunodeficiency virus infection of human T lymphocytes through the induction of substance P. THE AMERICAN JOURNAL OF PATHOLOGY 2006; 169:1663-70. [PMID: 17071590 PMCID: PMC1780221 DOI: 10.2353/ajpath.2006.060358] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 07/26/2006] [Indexed: 11/20/2022]
Abstract
Opioid withdrawal is a crucial and recurring event during the course of opioid abuse that has a negative impact on the immune system. In this study, we investigated whether abrupt withdrawal (AW) or precipitated withdrawal (PW) potentiates human immunodeficiency virus (HIV) infection of human T lymphocytes. AW and PW enhanced HIV infection of peripheral blood lymphocytes and T-cell lines (Jurkat and CEMX174). In addition, both AW and PW induced HIV replication in a latently HIV-infected human T-cell line (J1.1). The enhancing effect of AW and PW was associated with the induction of neuropeptide substance P in both peripheral blood lymphocytes and the T-cell lines. The substance P receptor antagonist, CP-96,345, not only blocked AW- or PW-induced endogenous substance P expression but also abrogated AW- or PW-induced HIV replication in T cells. These findings provide a cellular mechanism that supports the notion that opioids have a co-factor role in promoting HIV infection of the immune cells.
Collapse
Affiliation(s)
- Xu Wang
- Department of Pediatrics, Division of Allergy and Immunology, Joseph Stokes Jr. Research Institute at the Children's Hospital of Philadelphia, University of Pennsylvania School of Medicine, Philadelphia, PA 19104, USA
| | | | | | | | | | | |
Collapse
|
41
|
Roosterman D, Goerge T, Schneider SW, Bunnett NW, Steinhoff M. Neuronal Control of Skin Function: The Skin as a Neuroimmunoendocrine Organ. Physiol Rev 2006; 86:1309-79. [PMID: 17015491 DOI: 10.1152/physrev.00026.2005] [Citation(s) in RCA: 419] [Impact Index Per Article: 22.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
This review focuses on the role of the peripheral nervous system in cutaneous biology and disease. During the last few years, a modern concept of an interactive network between cutaneous nerves, the neuroendocrine axis, and the immune system has been established. We learned that neurocutaneous interactions influence a variety of physiological and pathophysiological functions, including cell growth, immunity, inflammation, pruritus, and wound healing. This interaction is mediated by primary afferent as well as autonomic nerves, which release neuromediators and activate specific receptors on many target cells in the skin. A dense network of sensory nerves releases neuropeptides, thereby modulating inflammation, cell growth, and the immune responses in the skin. Neurotrophic factors, in addition to regulating nerve growth, participate in many properties of skin function. The skin expresses a variety of neurohormone receptors coupled to heterotrimeric G proteins that are tightly involved in skin homeostasis and inflammation. This neurohormone-receptor interaction is modulated by endopeptidases, which are able to terminate neuropeptide-induced inflammatory or immune responses. Neuronal proteinase-activated receptors or transient receptor potential ion channels are recently described receptors that may have been important in regulating neurogenic inflammation, pain, and pruritus. Together, a close multidirectional interaction between neuromediators, high-affinity receptors, and regulatory proteases is critically involved to maintain tissue integrity and regulate inflammatory responses in the skin. A deeper understanding of cutaneous neuroimmunoendocrinology may help to develop new strategies for the treatment of several skin diseases.
Collapse
|
42
|
Campbell DE, Raftery N, Tustin R, Tustin NB, Desilvio ML, Cnaan A, Aye PP, Lackner AA, Douglas SD. Measurement of plasma-derived substance P: biological, methodological, and statistical considerations. CLINICAL AND VACCINE IMMUNOLOGY : CVI 2006; 13:1197-203. [PMID: 16971517 PMCID: PMC1656550 DOI: 10.1128/cvi.00174-06] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The undecapeptide substance P (SP) is a member of the tachykinin family of neurotransmitters, which has a pivotal role in the regulation of inflammatory and immune responses. One of the major barriers to the study of the in vivo role of SP in a number of immune disorders is the accurate measurement of SP in fluids. This is reflected in the variability of reported SP levels in serum and plasma of humans in both healthy and diseased states. This study was initiated in order to identify sources of variability by the comparative evaluation of the influences of sample preparation and analytical detection methods on the measurement of SP in plasma. The results indicate that sample preparation (peptide extraction versus no extraction) and the choice of analytical method for SP quantitation may yield significantly different values and may contribute to the variability in SP values reported in the literature. These results further emphasize the need for careful consideration in the selection of methods for SP quantitation, as well as caution in the interpretation and comparison of data reported in the literature.
Collapse
Affiliation(s)
- Donald E Campbell
- Division of Allergy and Immunology, Joseph Stokes Jr. Research Institute, The Children's Hospital of Philadelphia, 34th and Civic Center Blvd., Philadelphia, PA 19104, USA.
| | | | | | | | | | | | | | | | | |
Collapse
|
43
|
Lai JP, Ho WZ, Kilpatrick LE, Wang X, Tuluc F, Korchak HM, Douglas SD. Full-length and truncated neurokinin-1 receptor expression and function during monocyte/macrophage differentiation. Proc Natl Acad Sci U S A 2006; 103:7771-6. [PMID: 16675550 PMCID: PMC1457089 DOI: 10.1073/pnas.0602563103] [Citation(s) in RCA: 72] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
The substance P (SP)-preferring receptor neurokinin-1 receptor (NK-1R) has two forms: a full-length receptor consisting of 407 aa and a truncated receptor consisting of 311 aa. These two receptors differ in the length of the C terminus of NK-1R. We studied the undifferentiated and phorbol myristate acetate (PMA)-differentiated human monocyte/macrophage cell line THP-1 to investigate the expression and function of NK-1R. The expression of full-length and truncated NK-1R in this cell line was determined by using real-time PCR and immunofluorescence staining. Undifferentiated THP-1 cells expressed only truncated NK-1R. The differentiation of THP-1 cells with PMA to a macrophage-like phenotype resulted in the expression of full-length NK-1R, which was functionally accompanied by an SP (10(-6) M)-induced Ca2+ increase. In contrast, the addition of SP (10(-6) M) did not trigger Ca2+ response in undifferentiated THP-1 cells; however, SP did enhance the CCR5-preferring ligand RANTES (CCL5)-mediated Ca2+ increase. When a plasmid containing the full-length NK-1R was introduced into undifferentiated THP-1 cells, exposure to SP triggered Ca2+ increase, demonstrating that the full-length NK-1R is required for SP-induced Ca2+ increase. The NK-1R antagonist aprepitant (Emend, Merck) inhibited both the SP-induced Ca2+ increase in PMA-differentiated THP-1 cells and the SP priming effect on the CCL5-mediated Ca2+ increase, indicating that these effects are mediated through the full-length and truncated NK-1R, respectively. Taken together, these observations demonstrate that there are unique characteristics of NK-1R expression and NK-1R-mediated signaling between undifferentiated THP-1 cells and THP-1 cells differentiated to the macrophage phenotype.
Collapse
Affiliation(s)
- J.-P. Lai
- Division of Allergy and Immunology, The Joseph Stokes Jr. Research Institute, Children’s Hospital of Philadelphia, and Department of Pediatrics, University of Pennsylvania Medical School, Philadelphia, PA 19104
| | - W. Z. Ho
- Division of Allergy and Immunology, The Joseph Stokes Jr. Research Institute, Children’s Hospital of Philadelphia, and Department of Pediatrics, University of Pennsylvania Medical School, Philadelphia, PA 19104
| | - L. E. Kilpatrick
- Division of Allergy and Immunology, The Joseph Stokes Jr. Research Institute, Children’s Hospital of Philadelphia, and Department of Pediatrics, University of Pennsylvania Medical School, Philadelphia, PA 19104
| | - X. Wang
- Division of Allergy and Immunology, The Joseph Stokes Jr. Research Institute, Children’s Hospital of Philadelphia, and Department of Pediatrics, University of Pennsylvania Medical School, Philadelphia, PA 19104
| | - F. Tuluc
- Division of Allergy and Immunology, The Joseph Stokes Jr. Research Institute, Children’s Hospital of Philadelphia, and Department of Pediatrics, University of Pennsylvania Medical School, Philadelphia, PA 19104
| | - H. M. Korchak
- Division of Allergy and Immunology, The Joseph Stokes Jr. Research Institute, Children’s Hospital of Philadelphia, and Department of Pediatrics, University of Pennsylvania Medical School, Philadelphia, PA 19104
| | - S. D. Douglas
- Division of Allergy and Immunology, The Joseph Stokes Jr. Research Institute, Children’s Hospital of Philadelphia, and Department of Pediatrics, University of Pennsylvania Medical School, Philadelphia, PA 19104
- *To whom correspondence should be addressed at:
Division of Allergy and Immunology, Children’s Hospital of Philadelphia, 34th and Civic Center Boulevard, Philadelphia, PA 19104. E-mail:
| |
Collapse
|
44
|
Neuroimmunity and the blood-brain barrier: molecular regulation of leukocyte transmigration and viral entry into the nervous system with a focus on neuroAIDS. J Neuroimmune Pharmacol 2006; 1:160-81. [PMID: 18040782 DOI: 10.1007/s11481-006-9017-3] [Citation(s) in RCA: 69] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2005] [Accepted: 02/27/2006] [Indexed: 01/07/2023]
Abstract
HIV infection of the central nervous system (CNS) can result in neurologic dysfunction with devastating consequences in a significant number of individuals with AIDS. Two main CNS complications in individuals with HIV are encephalitis and dementia, which are characterized by leukocyte infiltration into the CNS, microglia activation, aberrant chemokine expression, blood-brain barrier (BBB) disruption, and eventual damage and/or loss of neurons. One of the major mediators of NeuroAIDS is the transmigration of HIV-infected leukocytes across the BBB into the CNS. This review summarizes new key findings that support a critical role of the BBB in regulating leukocyte transmigration. In addition, we discuss studies on communication among cells of the immune system, BBB, and the CNS parenchyma, and suggest how these interactions contribute to the pathogenesis of NeuroAIDS. We also describe some of the animal models that have been used to study and characterize important mechanisms that have been proposed to be involved in HIV-induced CNS dysfunction. Finally, we review the pharmacologic interventions that address neuroinflammation, and the effect of substance abuse on HIV-1 related neuroimmunity.
Collapse
|
45
|
Colibazzi T, Hsu TT, Gilmer WS. Human immunodeficiency virus and depression in primary care: a clinical review. PRIMARY CARE COMPANION TO THE JOURNAL OF CLINICAL PSYCHIATRY 2006; 8:201-11. [PMID: 16964315 PMCID: PMC1557477 DOI: 10.4088/pcc.v08n0403] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/25/2005] [Accepted: 11/07/2005] [Indexed: 10/20/2022]
Abstract
BACKGROUND Human immunodeficiency virus (HIV)-infected individuals are at increased risk of developing depression. Depressive syndromes in these patients pose a challenge both diagnostically and therapeutically. These syndromes reflect both the presence of preexisting mood disorders and the development of depressive syndromes subsequent to HIV infection. DATA SOURCES A search of the literature to 2005 was performed using the PubMed and Ovid search engines. English- and Portuguese-language articles were identified using the following keywords: HIV or AIDS and depression, mental illness, suicide, fatigue, psychiatry, and drug interactions. Additional references were identified through bibliography reviews of relevant articles. DATA SYNTHESIS The clinical presentation and differential diagnosis of depressive symptoms in HIV illness and the role of HIV in the development of these conditions are reviewed. Management issues including suicide assessment and treatment options are then discussed, and potentially important pharmacokinetic interactions are reviewed. CONCLUSIONS Individuals with HIV show higher rates of depression. This phenomenon may be due to a preexisting psychiatric disorder or to the HIV infection. Untreated depression symptoms may lead to non-compliance with drug regimens or increased high-risk behaviors. Given the adverse sequelae of untreated depressions in HIV illness, identification and management of depression are integral components of comprehensive HIV care.
Collapse
Affiliation(s)
- Tiziano Colibazzi
- New York State Psychiatric Institute/Columbia University, New York, USA.
| | | | | |
Collapse
|