1
|
Bala K, Porel P, Aran KR. Emerging roles of cannabinoid receptor CB2 receptor in the central nervous system: therapeutic target for CNS disorders. Psychopharmacology (Berl) 2024; 241:1939-1954. [PMID: 39264450 DOI: 10.1007/s00213-024-06683-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/21/2024] [Accepted: 08/30/2024] [Indexed: 09/13/2024]
Abstract
RATIONALE The endocannabinoid system (ECS) belongs to the G protein-coupled receptor family of cell membranes and is associated with neuropsychiatric conditions, and neurodegenerative diseases. Cannabinoid 2 receptors (CB2) are expressed in the central nervous system (CNS) on microglia and subgroups of neurons and are involved in various behavioural processes via immunological and neural regulation. OBJECTIVE The objective of this paper is to summarize and explore the impact of CB2 receptors on neuronal modulation, their involvement in various neurological disorders, and their influence on mood, behavior, and cognitive function. RESULTS The activation of CB2 appears to protect the brain and its functions from damage under neuroinflammatory actions, making it an attractive target in a variety of neurological conditions such as Parkinson's disease (PD), multiple sclerosis (MS), Alzheimer's disease (AD), and Huntington's disease (HD). During inflammation, there is an overexpression of CB2 receptors, and CB2 agonists show a strong anti-inflammatory effect. These results have sparked interest in the CB2 receptors as a potential target for neurodegenerative and neuroinflammatory disease treatment. CONCLUSION In conclusion, CB2 receptors signalling shows promise for developing targeted interventions that could positively affect both immune and neuronal functions, ultimately influencing behavioral outcomes in both health and disease.
Collapse
Affiliation(s)
- Kanchan Bala
- Department of Pharmacy Practice, ISF College of Pharmacy, Moga, Punjab, India
| | - Pratyush Porel
- Neuropharmacology Division, Department of Pharmacology, ISF College of Pharmacy, Moga, Punjab, 142001, India
| | - Khadga Raj Aran
- Neuropharmacology Division, Department of Pharmacology, ISF College of Pharmacy, Moga, Punjab, 142001, India.
| |
Collapse
|
2
|
Ergun P, Kipcak S, Gunel NS, Bor S, Sozmen EY. Roles of Cytokines in Pathological and Physiological Gastroesophageal Reflux Exposure. J Neurogastroenterol Motil 2024; 30:290-302. [PMID: 37957115 PMCID: PMC11238103 DOI: 10.5056/jnm22186] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/04/2022] [Revised: 01/29/2023] [Accepted: 04/10/2023] [Indexed: 11/15/2023] Open
Abstract
Background/Aims Gastroesophageal reflux disease is frequently observed and has no definitive treatment. There are 2 main views on the pathogenesis of gastroesophageal reflux disease. The first is that epithelial damage starts from the mucosa by acidic-peptic damage and the inflammatory response of granulocytes. The other view is that T-lymphocytes attract chemoattractants from the basal layer to the mucosa, and granulocytes do not migrate until damage occurs. We aim to investigate the inflammatory processes occurring in the esophageal epithelium of the phenotypes at the molecular level. We also examined the effects of these changes on tissue integrity. Methods Patients with mild and severe erosive reflux, nonerosive reflux, reflux hypersensitivity, and functional heartburn were included. Inflammatory gene expressions (JAK/STAT Signaling and NFKappaB Primer Libraries), chemokine protein levels, and tissue integrity were examined in the esophageal biopsies. Results There was chronic inflammation in the severe erosion group, the acute response was also triggered. In the mild erosion group, these 2 processes worked together, but homeostatic cytokines were also secreted. In nonerosive groups, T-lymphocytes were more dominant. In addition, the inflammatory response was highly triggered in the reflux hypersensitivity and functional heartburn groups, and it was associated with physiological reflux exposure and sensitivity. Conclusions "Microinflammation" in physiological acid exposure groups indicates that even a mild trigger is sufficient for the initiation and progression of inflammatory activity. Additionally, the anti-inflammatory cytokines were highly increased. The results may have a potential role in the treatment of heartburn symptoms and healing of the mucosa.
Collapse
Affiliation(s)
- Pelin Ergun
- Departments of Medical Biochemistry, Faculty of Medicine, Ege University, Izmir, Turkey
- Division of Gastroenterology, Faculty of Medicine, Ege University, Ege Reflux Study Group, Izmir, Turkey
| | - Sezgi Kipcak
- Departments of Medical Biology, Faculty of Medicine, Ege University, Izmir, Turkey
- Division of Gastroenterology, Faculty of Medicine, Ege University, Ege Reflux Study Group, Izmir, Turkey
| | - Nur S Gunel
- Departments of Medical Biology, Faculty of Medicine, Ege University, Izmir, Turkey
| | - Serhat Bor
- Division of Gastroenterology, Faculty of Medicine, Ege University, Ege Reflux Study Group, Izmir, Turkey
| | - Eser Y Sozmen
- Departments of Medical Biochemistry, Faculty of Medicine, Ege University, Izmir, Turkey
| |
Collapse
|
3
|
Ohbuchi M, Shibuta M, Tetsuka K, Sasaki-Iwaoka H, Oishi M, Shimizu F, Nagasaka Y. Modeling of Blood-Brain Barrier (BBB) Dysfunction and Immune Cell Migration Using Human BBB-on-a-Chip for Drug Discovery Research. Int J Mol Sci 2024; 25:6496. [PMID: 38928202 PMCID: PMC11204321 DOI: 10.3390/ijms25126496] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2024] [Revised: 06/03/2024] [Accepted: 06/05/2024] [Indexed: 06/28/2024] Open
Abstract
Blood-brain barrier (BBB) dysfunction is a key feature in neuroimmunological and neurodegenerative diseases. In this study, we developed a microfluidic human BBB-on-a-chip to model barrier dysfunction and immune cell migration using immortalized TY10 brain endothelial cells, pericytes, and astrocytes. It was found that immortalized TY10 brain endothelial cells developed a microvascular structure under flow. Pericytes were localized on the basal side surrounding the TY10 microvascular structure, showing an in vivo-like structure. Barrier integrity increased under co-culture with pericytes. In addition, both ethylenediaminetetraacetic acid (EDTA) and anti-Claudin-5 (CLDN5) neutralizing antibody caused a decrease in the transendothelial electrical resistance (TEER). EDTA caused the leakage of 20 kDa dextran, suggesting different effects on the BBB based on the mechanism of action, whereas anti-CLDN5 antibody did not cause leakage. In the tri-culture model, human T cells migrated through endothelial vessels towards basal C-X-C motif chemokine ligand 12 (CXCL12). The live-imaging analysis confirmed the extravasation of fluorescence-labelled T cells in a CXCL12-concentration- and time-dependent manner. Our BBB model had an in vivo-like structure and successfully represented barrier dysfunction and transendothelial T cell migration. In addition, our study suggests that the inhibition of CLDN5 attenuates the BBB in humans. This platform has various potential uses in relation to the BBB in both drug discovery research and in elucidating the mechanisms of central nervous system diseases.
Collapse
Affiliation(s)
- Masato Ohbuchi
- Applied Research & Operations, Astellas Pharma Inc., Tsukuba 305-8585, Ibaraki, Japan; (M.S.); (K.T.); (H.S.-I.); (M.O.); (Y.N.)
| | - Mayu Shibuta
- Applied Research & Operations, Astellas Pharma Inc., Tsukuba 305-8585, Ibaraki, Japan; (M.S.); (K.T.); (H.S.-I.); (M.O.); (Y.N.)
| | - Kazuhiro Tetsuka
- Applied Research & Operations, Astellas Pharma Inc., Tsukuba 305-8585, Ibaraki, Japan; (M.S.); (K.T.); (H.S.-I.); (M.O.); (Y.N.)
| | - Haruna Sasaki-Iwaoka
- Applied Research & Operations, Astellas Pharma Inc., Tsukuba 305-8585, Ibaraki, Japan; (M.S.); (K.T.); (H.S.-I.); (M.O.); (Y.N.)
| | - Masayo Oishi
- Applied Research & Operations, Astellas Pharma Inc., Tsukuba 305-8585, Ibaraki, Japan; (M.S.); (K.T.); (H.S.-I.); (M.O.); (Y.N.)
| | - Fumitaka Shimizu
- Department of Neurology and Clinical Neuroscience, Graduate School of Medicine, Yamaguchi University, Ube 755-8505, Yamaguchi, Japan;
| | - Yasuhisa Nagasaka
- Applied Research & Operations, Astellas Pharma Inc., Tsukuba 305-8585, Ibaraki, Japan; (M.S.); (K.T.); (H.S.-I.); (M.O.); (Y.N.)
| |
Collapse
|
4
|
Kodosaki E, Watkins WJ, Loveless S, Kreft KL, Richards A, Anderson V, Hurler L, Robertson NP, Zelek WM, Tallantyre EC. Combination protein biomarkers predict multiple sclerosis diagnosis and outcomes. J Neuroinflammation 2024; 21:52. [PMID: 38368354 PMCID: PMC10874571 DOI: 10.1186/s12974-024-03036-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Accepted: 02/01/2024] [Indexed: 02/19/2024] Open
Abstract
Establishing biomarkers to predict multiple sclerosis diagnosis and prognosis has been challenging using a single biomarker approach. We hypothesised that a combination of biomarkers would increase the accuracy of prediction models to differentiate multiple sclerosis from other neurological disorders and enhance prognostication for people with multiple sclerosis. We measured 24 fluid biomarkers in the blood and cerebrospinal fluid of 77 people with multiple sclerosis and 80 people with other neurological disorders, using ELISA or Single Molecule Array assays. Primary outcomes were multiple sclerosis versus any other diagnosis, time to first relapse, and time to disability milestone (Expanded Disability Status Scale 6), adjusted for age and sex. Multivariate prediction models were calculated using the area under the curve value for diagnostic prediction, and concordance statistics (the percentage of each pair of events that are correctly ordered in time for each of the Cox regression models) for prognostic predictions. Predictions using combinations of biomarkers were considerably better than single biomarker predictions. The combination of cerebrospinal fluid [chitinase-3-like-1 + TNF-receptor-1 + CD27] and serum [osteopontin + MCP-1] had an area under the curve of 0.97 for diagnosis of multiple sclerosis, compared to the best discriminative single marker in blood (osteopontin: area under the curve 0.84) and in cerebrospinal fluid (chitinase-3-like-1 area under the curve 0.84). Prediction for time to next relapse was optimal with a combination of cerebrospinal fluid[vitamin D binding protein + Factor I + C1inhibitor] + serum[Factor B + Interleukin-4 + C1inhibitor] (concordance 0.80), and time to Expanded Disability Status Scale 6 with cerebrospinal fluid [C9 + Neurofilament-light] + serum[chitinase-3-like-1 + CCL27 + vitamin D binding protein + C1inhibitor] (concordance 0.98). A combination of fluid biomarkers has a higher accuracy to differentiate multiple sclerosis from other neurological disorders and significantly improved the prediction of the development of sustained disability in multiple sclerosis. Serum models rivalled those of cerebrospinal fluid, holding promise for a non-invasive approach. The utility of our biomarker models can only be established by robust validation in different and varied cohorts.
Collapse
Affiliation(s)
- Eleftheria Kodosaki
- UK Dementia Research Institute at University College London, London, WC1E6BT, UK
- Department of Neurodegenerative Disease, UCL Institute of Neurology, Queen Square, London, WC1N3BG, UK
- Division of Psychological Medicine and Clinical Neurosciences, School of Medicine, Cardiff University, Cardiff, CF14 4XW, UK
| | - W John Watkins
- Division of Infection and Immunity, School of Medicine, Cardiff University, Cardiff, UK
| | - Sam Loveless
- Division of Psychological Medicine and Clinical Neurosciences, School of Medicine, Cardiff University, Cardiff, CF14 4XW, UK
| | - Karim L Kreft
- Department of Neurology, University Hospital of Wales, Cardiff, UK
| | - Aidan Richards
- Division of Psychological Medicine and Clinical Neurosciences, School of Medicine, Cardiff University, Cardiff, CF14 4XW, UK
| | - Valerie Anderson
- Division of Psychological Medicine and Clinical Neurosciences, School of Medicine, Cardiff University, Cardiff, CF14 4XW, UK
| | - Lisa Hurler
- Department of Internal Medicine and Haematology, Semmelweis University, Budapest, 1085, Hungary
| | - Neil P Robertson
- Division of Psychological Medicine and Clinical Neurosciences, School of Medicine, Cardiff University, Cardiff, CF14 4XW, UK
- Department of Neurology, University Hospital of Wales, Cardiff, UK
| | - Wioleta M Zelek
- Division of Infection and Immunity, School of Medicine, Cardiff University, Cardiff, UK
| | - Emma C Tallantyre
- Division of Psychological Medicine and Clinical Neurosciences, School of Medicine, Cardiff University, Cardiff, CF14 4XW, UK.
- Department of Neurology, University Hospital of Wales, Cardiff, UK.
| |
Collapse
|
5
|
Peng X, Li H, Zhu L, Zhao S, Li Z, Li S, DongtingWu, Chen J, Zheng S, Su W. Single-cell sequencing of the retina shows that LDHA regulates pathogenesis of autoimmune uveitis. J Autoimmun 2024; 143:103160. [PMID: 38160538 DOI: 10.1016/j.jaut.2023.103160] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Revised: 11/29/2023] [Accepted: 12/12/2023] [Indexed: 01/03/2024]
Abstract
Autoimmune uveitis (AU) is a severe disorder causing poor vision and blindness. However, the cellular dynamics and pathogenic mechanisms underlying retinal injury in uveitis remain unclear. In this study, single-cell RNA sequencing of the retina and cervical draining lymph nodes in experimental autoimmune uveitis mice was conducted to identify the cellular spatiotemporal dynamics and upregulation of the glycolysis-related gene LDHA. Suppression of LDHA can rescue the imbalance of T effector (Teff) cells/T regulator (Treg) cells under inflammation via downregulation of the glycolysis-PI3K signaling circuit and inhibition of the migration of CXCR4+ Teff cells towards retinal tissue. Furthermore, LDHA and CXCR4 are upregulated in the peripheral blood mononuclear cells of Vogt-Koyanagi-Harada patients. The LDHA inhibitor suppresses CD4+ T cell proliferation in humans. Therefore, our data indicate that the autoimmune environment of uveitis regulates Teff cell accumulation in the retina via glycolysis-associated LDHA. Modulation of this target may provide a novel therapeutic strategy for treating AU.
Collapse
Affiliation(s)
- Xuening Peng
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou 510060, China
| | - He Li
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou 510060, China
| | - Lei Zhu
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou 510060, China
| | - Sichen Zhao
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou 510060, China
| | - Zhaohuai Li
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou 510060, China
| | - Si Li
- Sun Yat-sen University, Guangzhou 510060, China
| | - DongtingWu
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou 510060, China
| | | | - Songguo Zheng
- Department of Immunology, School of Cell and Gene Therapy, Shanghai Jiaotong University School of Medicine, 201600, Shanghai, China.
| | - Wenru Su
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou 510060, China.
| |
Collapse
|
6
|
Zaripova LN, Midgley A, Christmas SE, Beresford MW, Pain C, Baildam EM, Oldershaw RA. Mesenchymal Stem Cells in the Pathogenesis and Therapy of Autoimmune and Autoinflammatory Diseases. Int J Mol Sci 2023; 24:16040. [PMID: 38003230 PMCID: PMC10671211 DOI: 10.3390/ijms242216040] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2023] [Revised: 10/27/2023] [Accepted: 10/31/2023] [Indexed: 11/26/2023] Open
Abstract
Mesenchymal stem cells (MSCs) modulate immune responses and maintain self-tolerance. Their trophic activities and regenerative properties make them potential immunosuppressants for treating autoimmune and autoinflammatory diseases. MSCs are drawn to sites of injury and inflammation where they can both reduce inflammation and contribute to tissue regeneration. An increased understanding of the role of MSCs in the development and progression of autoimmune disorders has revealed that MSCs are passive targets in the inflammatory process, becoming impaired by it and exhibiting loss of immunomodulatory activity. MSCs have been considered as potential novel cell therapies for severe autoimmune and autoinflammatory diseases, which at present have only disease modifying rather than curative treatment options. MSCs are emerging as potential therapies for severe autoimmune and autoinflammatory diseases. Clinical application of MSCs in rare cases of severe disease in which other existing treatment modalities have failed, have demonstrated potential use in treating multiple diseases, including rheumatoid arthritis, systemic lupus erythematosus, myocardial infarction, liver cirrhosis, spinal cord injury, multiple sclerosis, and COVID-19 pneumonia. This review explores the biological mechanisms behind the role of MSCs in autoimmune and autoinflammatory diseases. It also covers their immunomodulatory capabilities, potential therapeutic applications, and the challenges and risks associated with MSC therapy.
Collapse
Affiliation(s)
- Lina N. Zaripova
- Institute of Fundamental and Applied Medicine, National Scientific Medical Center, 42 Abylai Khan Avenue, Astana 010000, Kazakhstan;
- Department of Musculoskeletal and Ageing Science, Institute of Life Course and Medical Sciences, Faculty of Health and Life Sciences, University of Liverpool, William Henry Duncan Building, 6 West Derby Street, Liverpool L7 8TX, UK
| | - Angela Midgley
- Department of Women and Children’s Health, Institute of Life Course and Medical Sciences, University of Liverpool, Institute in the Park, Alder Hey Children’s NHS Foundation Trust, Liverpool L14 5AB, UK; (A.M.); (M.W.B.); (C.P.)
| | - Stephen E. Christmas
- Department of Clinical Infection, Microbiology and Immunology, Institute of Infection and Global Health, Faculty of Health and Life Sciences, University of Liverpool, The Ronald Ross Building, 8 West Derby Street, Liverpool L69 7BE, UK;
| | - Michael W. Beresford
- Department of Women and Children’s Health, Institute of Life Course and Medical Sciences, University of Liverpool, Institute in the Park, Alder Hey Children’s NHS Foundation Trust, Liverpool L14 5AB, UK; (A.M.); (M.W.B.); (C.P.)
- Department of Paediatric Rheumatology, Alder Hey Children’s NHS Foundation Trust, East Prescott Road, Liverpool L14 5AB, UK
| | - Clare Pain
- Department of Women and Children’s Health, Institute of Life Course and Medical Sciences, University of Liverpool, Institute in the Park, Alder Hey Children’s NHS Foundation Trust, Liverpool L14 5AB, UK; (A.M.); (M.W.B.); (C.P.)
- Department of Paediatric Rheumatology, Alder Hey Children’s NHS Foundation Trust, East Prescott Road, Liverpool L14 5AB, UK
| | - Eileen M. Baildam
- Department of Paediatric Rheumatology, The Alexandra Hospital, Mill Lane, Cheadle SK8 2PX, UK;
| | - Rachel A. Oldershaw
- Department of Musculoskeletal and Ageing Science, Institute of Life Course and Medical Sciences, Faculty of Health and Life Sciences, University of Liverpool, William Henry Duncan Building, 6 West Derby Street, Liverpool L7 8TX, UK
| |
Collapse
|
7
|
Fang M, Chen L, Tang T, Qiu M, Xu X. The committed oligodendrocyte precursor cell, a newly-defined intermediate progenitor cell type in oligodendroglial lineage. Glia 2023; 71:2499-2510. [PMID: 37278537 DOI: 10.1002/glia.24426] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2023] [Revised: 05/19/2023] [Accepted: 05/23/2023] [Indexed: 06/07/2023]
Abstract
In the central nervous system, oligodendrocytes (OLs) produce myelin sheaths that provide trophic support to neuronal axons and increase the propagation speed of action potential. OLs are constantly generated from OL precursor cells (OPCs) throughout life span. The production of myelinating OLs consists of three canonical stages: OPCs, newly-formed OLs (NFOs), and mature myelinating OLs. Recently, single-cell RNA transcriptomic analyses identified a new population of oligodendroglial cells, namely differentiation committed OPCs (COPs). COPs represent a critical intermediate population between OPCs and NFOs, as revealed by specific expression of G-protein coupled receptor 17 (GPR17). The dysregulation of COPs leads to the remyelination failure in demyelinating diseases and impairs the replacement of lost myelin sheaths due to aging. Hence, understanding the development of COPs and their underlying regulatory network will be helpful in establishing new strategies for promoting myelin repair in demyelinating diseases. This review summarizes the current knowledge on the development and functions of COPs under both physiological and pathological conditions. Overall, COPs function as "checkpoints" to prevent inappropriate precocious OL differentiation and myelination through expressing distinct regulatory factors. Deepening our understanding of COPs may not only advance our knowledge of how OL lineage progresses during development, but also open the door to new treatments for demyelinating diseases.
Collapse
Affiliation(s)
- Minxi Fang
- Zhejiang Key Laboratory of Organ Development and Regeneration, Institute of Life Sciences, College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou, China
- College of Life Sciences, Zhejiang University, Hangzhou, China
| | - Lixia Chen
- Zhejiang Key Laboratory of Organ Development and Regeneration, Institute of Life Sciences, College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou, China
| | - Tao Tang
- Department of Anatomy, Cell Biology & Physiology, Indiana University School of Medicine, Indianapolis, Indiana, USA
| | - Mengsheng Qiu
- Zhejiang Key Laboratory of Organ Development and Regeneration, Institute of Life Sciences, College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou, China
- College of Life Sciences, Zhejiang University, Hangzhou, China
- School of Basic Medical Science, Hangzhou Normal University, Hangzhou, China
| | - Xiaofeng Xu
- Zhejiang Key Laboratory of Organ Development and Regeneration, Institute of Life Sciences, College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou, China
| |
Collapse
|
8
|
Nair AL, Groenendijk L, Overdevest R, Fowke TM, Annida R, Mocellin O, de Vries HE, Wevers NR. Human BBB-on-a-chip reveals barrier disruption, endothelial inflammation, and T cell migration under neuroinflammatory conditions. Front Mol Neurosci 2023; 16:1250123. [PMID: 37818458 PMCID: PMC10561300 DOI: 10.3389/fnmol.2023.1250123] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Accepted: 09/06/2023] [Indexed: 10/12/2023] Open
Abstract
The blood-brain barrier (BBB) is a highly selective barrier that ensures a homeostatic environment for the central nervous system (CNS). BBB dysfunction, inflammation, and immune cell infiltration are hallmarks of many CNS disorders, including multiple sclerosis and stroke. Physiologically relevant human in vitro models of the BBB are essential to improve our understanding of its function in health and disease, identify novel drug targets, and assess potential new therapies. We present a BBB-on-a-chip model comprising human brain microvascular endothelial cells (HBMECs) cultured in a microfluidic platform that allows parallel culture of 40 chips. In each chip, a perfused HBMEC vessel was grown against an extracellular matrix gel in a membrane-free manner. BBBs-on-chips were exposed to varying concentrations of pro-inflammatory cytokines tumor necrosis factor alpha (TNFα) and interleukin-1 beta (IL-1β) to mimic inflammation. The effect of the inflammatory conditions was studied by assessing the BBBs-on-chips' barrier function, cell morphology, and expression of cell adhesion molecules. Primary human T cells were perfused through the lumen of the BBBs-on-chips to study T cell adhesion, extravasation, and migration. Under inflammatory conditions, the BBBs-on-chips showed decreased trans-endothelial electrical resistance (TEER), increased permeability to sodium fluorescein, and aberrant cell morphology in a concentration-dependent manner. Moreover, we observed increased expression of cell adhesion molecules and concomitant monocyte adhesion. T cells extravasated from the inflamed blood vessels and migrated towards a C-X-C Motif Chemokine Ligand 12 (CXCL12) gradient. T cell adhesion was significantly reduced and a trend towards decreased migration was observed in presence of Natalizumab, an antibody drug that blocks very late antigen-4 (VLA-4) and is used in the treatment of multiple sclerosis. In conclusion, we demonstrate a high-throughput microfluidic model of the human BBB that can be used to model neuroinflammation and assess anti-inflammatory and barrier-restoring interventions to fight neurological disorders.
Collapse
Affiliation(s)
- Arya Lekshmi Nair
- MIMETAS BV, Oegstgeest, Netherlands
- Amsterdam UMC, Vrije Universiteit Amsterdam, Amsterdam Neuroscience – Neuroinfection and Neuroinflammation, Amsterdam, Netherlands
| | | | | | | | | | | | - Helga E. de Vries
- Amsterdam UMC, Vrije Universiteit Amsterdam, Amsterdam Neuroscience – Neuroinfection and Neuroinflammation, Amsterdam, Netherlands
| | | |
Collapse
|
9
|
Dietz A, Senf K, Karius J, Stumm R, Neuhaus EM. Glia Cells Control Olfactory Neurogenesis by Fine-Tuning CXCL12. Cells 2023; 12:2164. [PMID: 37681896 PMCID: PMC10486585 DOI: 10.3390/cells12172164] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Revised: 08/21/2023] [Accepted: 08/25/2023] [Indexed: 09/09/2023] Open
Abstract
Olfaction depends on lifelong production of sensory neurons from CXCR4 expressing neurogenic stem cells. Signaling by CXCR4 depends on the concentration of CXCL12, CXCR4's principal ligand. Here, we use several genetic models to investigate how regulation of CXCL12 in the olfactory stem cell niche adjusts neurogenesis. We identify subepithelial tissue and sustentacular cells, the olfactory glia, as main CXCL12 sources. Lamina propria-derived CXCL12 accumulates on quiescent gliogenic stem cells via heparan sulfate. Additionally, CXCL12 is secreted within the olfactory epithelium by sustentacular cells. Both sustentacular-cell-derived and lamina propria-derived CXCL12 are required for CXCR4 activation. ACKR3, a high-affinity CXCL12 scavenger, is expressed by mature glial cells and titrates CXCL12. The accurate adjustment of CXCL12 by ACKR3 is critical for CXCR4-dependent proliferation of neuronal stem cells and for proper lineage progression. Overall, these findings establish precise regulation of CXCL12 by glia cells as a prerequisite for CXCR4-dependent neurogenesis and identify ACKR3 as a scavenger influencing tissue homeostasis beyond embryonic development.
Collapse
Affiliation(s)
| | | | | | | | - Eva Maria Neuhaus
- Pharmacology and Toxicology, Jena University Hospital, Friedrich Schiller University Jena, Drackendorfer Str. 1, 07747 Jena, Germany; (A.D.); (K.S.); (J.K.); (R.S.)
| |
Collapse
|
10
|
Lin D, Liu H, Song H, Chen B, Fu J, Sun M, Zhou H, Bai W, Wei S, Li H. Upregulation of C-X-C motif chemokine 12 in the spinal cord alleviated the symptoms of experimental autoimmune encephalomyelitis in Lewis rats. Front Neurosci 2023; 17:1105530. [PMID: 37008218 PMCID: PMC10060838 DOI: 10.3389/fnins.2023.1105530] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Accepted: 02/14/2023] [Indexed: 03/18/2023] Open
Abstract
BackgroundC-X-C motif chemokine 12 (CXCL12) is a chemokine that performs many functions. Studies have shown that CXCL12 can aggravate inflammatory symptoms in the central nervous system (CNS). Evidence also indicates that CXCL12 can promote the repair of myelin sheaths in the CNS in experimental autoimmune encephalomyelitis (EAE). Here, we investigated the function of CXCL12 in CNS inflammation by upregulating CXCL12 in the spinal cord and subsequently inducing EAE.Materials and methodsCXCL12 upregulation in the spinal cords of Lewis rats was induced by the injection of adeno-associated virus 9 (AAV9)/eGFP-P2A-CXCL12 after intrathecal catheter implantation. Twenty-one days after AAV injection, EAE was induced and clinical score was collected; Immunofluorescence staining, WB and LFB-PAS staining were used to evaluate the effect of CXCL12 upregulation. In the in vitro study, oligodendrocyte precursor cells (OPCs) were harvested, cultured with CXCL12 and AMD3100, and subjected to immunofluorescence staining for functional assessment.ResultsCXCL12 was upregulated in the lumbar enlargement of the spinal cord by AAV injection. In each stage of EAE, upregulation of CXCL12 significantly alleviated clinical scores by inhibiting leukocyte infiltration and promoting remyelination. In contrast, the addition of AMD3100, which is a CXCR4 antagonist, inhibited the effect of CXCL12. In vitro, 10 ng/ml CXCL12 promoted the differentiation of OPCs into oligodendrocytes.ConclusionAAV-mediated upregulation of CXCL12 in the CNS can alleviate the clinical signs and symptoms of EAE and significantly decrease the infiltration of leukocytes in the peak stage of EAE. CXCL12 can promote the maturation and differentiation of OPCs into oligodendrocytes in vitro. These data indicate that CXCL12 effectively promotes remyelination in the spinal cord and decreases the signs and symptoms of EAE.
Collapse
Affiliation(s)
- Dahe Lin
- Department of Ophthalmology, The First Medical Center of Chinese People’s Liberation Army (PLA) General Hospital, Beijing, China
- Fujian Provincial Key Laboratory of Ecology-Toxicological Effects and Control for Emerging Contaminants, College of Environmental and Biological Engineering, Putian University, Putian, Fujian, China
- Key Laboratory of Ecological Environment and Information Atlas, Fujian Provincial University (Putian University), Putian, Fujian, China
- *Correspondence: Dahe lin,
| | - Hongjuan Liu
- Department of Ophthalmology, The First Medical Center of Chinese People’s Liberation Army (PLA) General Hospital, Beijing, China
- Department of Ophthalmology, Beijing Tongren Eye Center, Beijing Tongren Hospital, Beijing, China
| | - Honglu Song
- Department of Ophthalmology, The First Medical Center of Chinese People’s Liberation Army (PLA) General Hospital, Beijing, China
- Department of Ophthalmology, The 980th Hospital of the Chinese People’s Liberation Army (PLA) Joint Logistics Support Force, Shijiazhuang, Hebei, China
| | - Biyue Chen
- Department of Ophthalmology, The First Medical Center of Chinese People’s Liberation Army (PLA) General Hospital, Beijing, China
| | - Junxia Fu
- Department of Ophthalmology, The First Medical Center of Chinese People’s Liberation Army (PLA) General Hospital, Beijing, China
| | - Mingming Sun
- Department of Ophthalmology, The Third Medical Center of Chinese People’s Liberation Army (PLA) General Hospital, Beijing, China
| | - Huanfen Zhou
- Department of Ophthalmology, The First Medical Center of Chinese People’s Liberation Army (PLA) General Hospital, Beijing, China
| | - Wenhao Bai
- Department of Ophthalmology, The First Medical Center of Chinese People’s Liberation Army (PLA) General Hospital, Beijing, China
| | - Shihui Wei
- Department of Ophthalmology, The First Medical Center of Chinese People’s Liberation Army (PLA) General Hospital, Beijing, China
- Shihui Wei,
| | - Hongen Li
- Department of Ophthalmology, The First Medical Center of Chinese People’s Liberation Army (PLA) General Hospital, Beijing, China
- Hongen Li,
| |
Collapse
|
11
|
Tian Y, Chen R, Su Z. HMGB1 is a Potential and Challenging Therapeutic Target for Parkinson's Disease. Cell Mol Neurobiol 2023; 43:47-58. [PMID: 34797463 DOI: 10.1007/s10571-021-01170-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2021] [Accepted: 11/14/2021] [Indexed: 01/07/2023]
Abstract
Parkinson's disease (PD) is one of the most common degenerative diseases of the human nervous system and has a wide range of serious impacts on human health and quality of life. Recently, research targeting high mobility group box 1 (HMGB1) in PD has emerged, and a variety of laboratory methods for inhibiting HMGB1 have achieved good results to a certain extent. However, given that HMGB1 undergoes a variety of intracellular modifications and three different forms of extracellular redox, the possible roles of these forms in PD are likely to be different. General inhibition of all forms of HMGB1 is obviously not ideal and has become one of the biggest obstacles in the clinical application of targeting HMGB1. In this review, pure mechanistic research of HMGB1 and in vivo research targeting HMGB1 were combined, the effects of HMGB1 on neurons and immune cell responses in PD are discussed in detail, and the problems that need to be focused on in the future are addressed.
Collapse
Affiliation(s)
- Yu Tian
- International Genome Center, Jiangsu University, 301 Xuefu Road, Zhenjiang, 212013, Jiangsu, China.,Department of Immunology, School of Medicine, Jiangsu University, Zhenjiang, 212013, China
| | - Rong Chen
- International Genome Center, Jiangsu University, 301 Xuefu Road, Zhenjiang, 212013, Jiangsu, China.,Department of Immunology, School of Medicine, Jiangsu University, Zhenjiang, 212013, China
| | - Zhaoliang Su
- International Genome Center, Jiangsu University, 301 Xuefu Road, Zhenjiang, 212013, Jiangsu, China. .,Department of Immunology, School of Medicine, Jiangsu University, Zhenjiang, 212013, China.
| |
Collapse
|
12
|
Lucchini M, De Arcangelis V, Piro G, Nociti V, Bianco A, De Fino C, Di Sante G, Ria F, Calabresi P, Mirabella M. CSF CXCL13 and Chitinase 3-like-1 Levels Predict Disease Course in Relapsing Multiple Sclerosis. Mol Neurobiol 2023; 60:36-50. [PMID: 36215027 PMCID: PMC9758105 DOI: 10.1007/s12035-022-03060-6] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Accepted: 10/03/2022] [Indexed: 12/29/2022]
Abstract
Several biomarkers from multiple sclerosis (MS) patients' biological fluids have been considered to support diagnosis, predict disease course, and evaluate treatment response. In this study, we assessed the CSF concentration of selected molecules implicated in the MS pathological process. To investigate the diagnostic and prognostic significance of CSF concentration of target candidate biomarkers in both relapsing (RMS, n = 107) and progressive (PMS, n = 18) MS patients and in other inflammatory (OIND, n = 10) and non-inflammatory (ONIND, n = 15) neurological disorders. We measured the CSF concentration of APRIL, BAFF, CHI3L1, CCL-2, CXCL-8, CXCL-10, CXCL-12, CXCL-13 through a Luminex Assay. MS patients were prospectively evaluated, and clinical and radiological activity were recorded. CHI3L1 and CXCL13 CSF levels were significantly higher in both MS groups compared to control groups, while CCL2, BAFF, and APRIL concentrations were lower in RMS patients compared to PMS and OIND. Considering RMS patients with a single demyelinating event, higher concentrations of CHI3L1, CXCL10, CXCL12, and CXCL13 were recorded in patients who converted to clinically defined MS(CDMS). RMS patients in the CXCL13 and CHI3L1 high concentration group had a significantly higher risk of relapse (HR 12.61 and 4.57), MRI activity (HR 7.04 and 2.46), and of any evidence of disease activity (HR 12.13 and 2.90) during follow-up. CSF CXCL13 and CHI3L1 levels represent very good prognostic biomarkers in RMS patients, and therefore can be helpful in the treatment choice. Higher CSF concentrations of neuro-inflammatory biomarkers were associated with a higher risk of conversion to CDMS in patients with a first clinical demyelinating event. Differential CSF BAFF and APRIL levels between RMS and PMS suggest a different modulation of B-cells pathways in the different phases of the disease.
Collapse
Affiliation(s)
- Matteo Lucchini
- grid.411075.60000 0004 1760 4193Fondazione Policlinico Universitario Agostino Gemelli IRCCS, UOC Neurologia, Rome, Italy ,grid.8142.f0000 0001 0941 3192Centro Di Ricerca Sclerosi Multipla (CERSM), Università Cattolica del Sacro Cuore, Largo Agostino Gemelli 8, 00168 Rome, Italy
| | - Valeria De Arcangelis
- grid.411075.60000 0004 1760 4193Fondazione Policlinico Universitario Agostino Gemelli IRCCS, UOC Neurologia, Rome, Italy
| | - Geny Piro
- grid.411075.60000 0004 1760 4193Fondazione Policlinico Universitario Agostino Gemelli IRCCS, Oncologia Medica, Rome, Italy
| | - Viviana Nociti
- grid.411075.60000 0004 1760 4193Fondazione Policlinico Universitario Agostino Gemelli IRCCS, UOC Neurologia, Rome, Italy ,grid.8142.f0000 0001 0941 3192Centro Di Ricerca Sclerosi Multipla (CERSM), Università Cattolica del Sacro Cuore, Largo Agostino Gemelli 8, 00168 Rome, Italy
| | - Assunta Bianco
- grid.411075.60000 0004 1760 4193Fondazione Policlinico Universitario Agostino Gemelli IRCCS, UOC Neurologia, Rome, Italy ,grid.8142.f0000 0001 0941 3192Centro Di Ricerca Sclerosi Multipla (CERSM), Università Cattolica del Sacro Cuore, Largo Agostino Gemelli 8, 00168 Rome, Italy
| | - Chiara De Fino
- grid.411075.60000 0004 1760 4193Fondazione Policlinico Universitario Agostino Gemelli IRCCS, UOC Neurologia, Rome, Italy
| | - Gabriele Di Sante
- grid.9027.c0000 0004 1757 3630Dipartimento Di Medicina e Chirurgia, Sezione Di Anatomia Umana, Clinica e Forense, Università Degli Studi Di Perugia, Perugia, Italy
| | - Francesco Ria
- grid.8142.f0000 0001 0941 3192Dipartimento Di Medicina E Chirurgia Traslazionale, Università Cattolica del Sacro Cuore, Rome, Italy ,grid.414603.4Dipartimento Di Scienze Di Laboratorio Ed Infettivologiche, Fondazione Policlinico Universitario A. Gemelli IRCCS, Rome, Italy
| | - Paolo Calabresi
- grid.411075.60000 0004 1760 4193Fondazione Policlinico Universitario Agostino Gemelli IRCCS, UOC Neurologia, Rome, Italy ,grid.8142.f0000 0001 0941 3192Centro Di Ricerca Sclerosi Multipla (CERSM), Università Cattolica del Sacro Cuore, Largo Agostino Gemelli 8, 00168 Rome, Italy
| | - Massimiliano Mirabella
- grid.411075.60000 0004 1760 4193Fondazione Policlinico Universitario Agostino Gemelli IRCCS, UOC Neurologia, Rome, Italy ,grid.8142.f0000 0001 0941 3192Centro Di Ricerca Sclerosi Multipla (CERSM), Università Cattolica del Sacro Cuore, Largo Agostino Gemelli 8, 00168 Rome, Italy
| |
Collapse
|
13
|
Yu F, Luo HR, Cui XF, Wu YJ, Li JL, Feng WR, Tang YK, Su SY, Xiao J, Hou ZS, Xu P. Changes in aggression and locomotor behaviors in response to zinc is accompanied by brain cell heterogeneity and metabolic and circadian dysregulation of the brain-liver axis. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2022; 248:114303. [PMID: 36403304 DOI: 10.1016/j.ecoenv.2022.114303] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/09/2022] [Revised: 10/24/2022] [Accepted: 11/14/2022] [Indexed: 06/16/2023]
Abstract
Zinc is an essential nutrient for life, but over-accumulation can result in toxicity. Anthropogenic activities can increase zinc concentrations in aquatic environments (e.g., to ∼0.46-1.00 mg/L), which are above the safe level of 0.1 mg/L. We investigated the behavior and physiology of zebrafish (Danio rerio) in response to environment-related exposure to zinc chloride at 0.0 (Ctrl), 1.0 (ZnCl2-low) and 1.5 (ZnCl2-high) mg/L for 6 weeks (the zinc conversion ratio of zinc chloride is ∼0.48 and the nominal (measured) values were: Ctrl, 0 (∼0.01); ZnCl2-low, 0.48 (∼0.51); ZnCl2-high, 0.72 (∼0.69) mg/L). Low-zinc exposure resulted in significantly increased locomotion and fast moving behaviors, while high-zinc exposure resulted in significantly increased aggression and freezing frequency. Single cell RNA-seq of neurons, astrocytes, and oligodendrocytes of the brain revealed expression of genes related to ion transport, neuron generation, and immunomodulation that were heterogeneously regulated by zinc exposure. Astrocyte-induced central nervous system inflammation potentially integrated neurotoxicity and behavior. Integrated analyses of brain and hepatic transcriptional signatures showed that genes (and pathways) dysregulated by zinc were associated with sensory functions, circadian rhythm, glucose and lipid metabolism, and amyloid β-protein clearance. Our results showed that environment-related zinc contamination can be heterogeneously toxic to brain cells and can disturb coordination of brain-liver physiology. This may disrupt neurobehavior and cause a neurodegeneration-like syndrome in adult zebrafish.
Collapse
Affiliation(s)
- Fan Yu
- Key Laboratory of Freshwater Fisheries and Germplasm Resources Utilization, Ministry of Agriculture and Rural Affairs, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi 214081, China
| | - Hong-Rui Luo
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China
| | - Xue-Fan Cui
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China
| | - Yi-Jie Wu
- Key Laboratory of Comprehensive Development and Utilization of Aquatic Germplasm Resources of China (Guangxi) and ASEAN (Co-construction by Ministry and Province), Nanning 530021, China
| | - Jian-Lin Li
- Key Laboratory of Freshwater Fisheries and Germplasm Resources Utilization, Ministry of Agriculture and Rural Affairs, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi 214081, China
| | - Wen-Rong Feng
- Key Laboratory of Freshwater Fisheries and Germplasm Resources Utilization, Ministry of Agriculture and Rural Affairs, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi 214081, China
| | - Yong-Kai Tang
- Key Laboratory of Freshwater Fisheries and Germplasm Resources Utilization, Ministry of Agriculture and Rural Affairs, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi 214081, China
| | - Sheng-Yan Su
- Key Laboratory of Freshwater Fisheries and Germplasm Resources Utilization, Ministry of Agriculture and Rural Affairs, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi 214081, China
| | - Jun Xiao
- Key Laboratory of Comprehensive Development and Utilization of Aquatic Germplasm Resources of China (Guangxi) and ASEAN (Co-construction by Ministry and Province), Nanning 530021, China.
| | - Zhi-Shuai Hou
- Key Laboratory of Mariculture (Ocean University of China), Ministry of Education (KLMME), Ocean University of China, Qingdao 266003, China.
| | - Pao Xu
- Key Laboratory of Freshwater Fisheries and Germplasm Resources Utilization, Ministry of Agriculture and Rural Affairs, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi 214081, China.
| |
Collapse
|
14
|
Abstract
Inflammation is a biological process that dynamically alters the surrounding microenvironment, including participating immune cells. As a well-protected organ surrounded by specialized barriers and with immune privilege properties, the central nervous system (CNS) tightly regulates immune responses. Yet in neuroinflammatory conditions, pathogenic immunity can disrupt CNS structure and function. T cells in particular play a key role in promoting and restricting neuroinflammatory responses, while the inflamed CNS microenvironment can influence and reshape T cell function and identity. Still, the contraction of aberrant T cell responses within the CNS is not well understood. Using autoimmunity as a model, here we address the contribution of CD4 T helper (Th) cell subsets in promoting neuropathology and disease. To address the mechanisms antagonizing neuroinflammation, we focus on the control of the immune response by regulatory T cells (Tregs) and describe the counteracting processes that preserve their identity under inflammatory challenges. Finally, given the influence of the local microenvironment on immune regulation, we address how CNS-intrinsic signals reshape T cell function to mitigate abnormal immune T cell responses.
Collapse
Affiliation(s)
- Nail Benallegue
- Department of Pathobiology, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, PA 19104
- Nantes Université, CHU Nantes, INSERM, Center for Research in Transplantation and Translational Immunology, UMR 1064, F-44000, Nantes, France
| | - Hania Kebir
- Department of Pathobiology, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, PA 19104
| | - Jorge I. Alvarez
- Department of Pathobiology, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, PA 19104
| |
Collapse
|
15
|
Yan Y, Su J, Zhang Z. The CXCL12/CXCR4/ACKR3 Response Axis in Chronic Neurodegenerative Disorders of the Central Nervous System: Therapeutic Target and Biomarker. Cell Mol Neurobiol 2022; 42:2147-2156. [PMID: 34117967 DOI: 10.1007/s10571-021-01115-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2021] [Accepted: 06/02/2021] [Indexed: 12/20/2022]
Abstract
There has been an increase in the incidence of chronic neurodegenerative disorders of the central nervous system, including Alzheimer's and Parkinson's diseases, over the recent years mostly due to the rise in the number of elderly individuals. In addition, various neurodegenerative disorders are related to imbalances in the CXCL12/CXCR4/ACKR3 response axis. Notably, the CXC Chemokine Ligand 12 (CXCL12) is essential for the development of the central nervous system. Moreover, the expression and distribution of CXCL12 and its receptors are associated with the aggravation or alleviation of symptoms of neurodegenerative disorders. Therefore, the current review sought to highlight the specific functions of CXCL12 and its receptors in various neurodegenerative disorders, in order to provide new insights for future research.
Collapse
Affiliation(s)
- Yudie Yan
- Department of Ultrasound, First Affiliated Hospital of China Medical University, Liaoning Province, Shenyang City, 110001, People's Republic of China
| | - Jingtong Su
- Jinzhou Medical University, Liaoning Province, Jinzhou City, People's Republic of China
| | - Zhen Zhang
- Department of Ultrasound, First Affiliated Hospital of China Medical University, Liaoning Province, Shenyang City, 110001, People's Republic of China.
| |
Collapse
|
16
|
Murray TE, Richards CM, Robert-Gostlin VN, Bernath AK, Lindhout IA, Klegeris A. Potential neurotoxic activity of diverse molecules released by astrocytes. Brain Res Bull 2022; 189:80-101. [PMID: 35988785 DOI: 10.1016/j.brainresbull.2022.08.015] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2022] [Revised: 07/04/2022] [Accepted: 08/14/2022] [Indexed: 11/02/2022]
Abstract
Astrocytes are the main support cells of the central nervous system. They also participate in neuroimmune reactions. In response to pathological and immune stimuli, astrocytes transform to reactive states characterized by increased release of inflammatory mediators. Some of these molecules are neuroprotective and inflammation resolving while others, including reactive oxygen species (ROS), nitric oxide (NO), matrix metalloproteinase (MMP)- 9, L-glutamate, and tumor necrosis factor α (TNF), are well-established toxins known to cause damage to surrounding cells and tissues. We hypothesized that similar to microglia, the brain immune cells, reactive astrocytes can release a broader set of diverse molecules that are potentially neurotoxic. A literature search was conducted to identify such molecules using the following two criteria: 1) evidence of their expression and secretion by astrocytes and 2) direct neurotoxic action. This review describes 14 structurally diverse molecules as less-established astrocyte neurotoxins, including C-X-C motif chemokine ligand (CXCL)10, CXCL12/CXCL12(5-67), FS-7-associated surface antigen ligand (FasL), macrophage inflammatory protein (MIP)- 2α, TNF-related apoptosis inducing ligand (TRAIL), pro-nerve growth factor (proNGF), pro-brain-derived neurotrophic factor (proBDNF), chondroitin sulfate proteoglycans (CSPGs), cathepsin (Cat)B, group IIA secretory phospholipase A2 (sPLA2-IIA), amyloid beta peptides (Aβ), high mobility group box (HMGB)1, ceramides, and lipocalin (LCN)2. For some of these molecules, further studies are required to establish either their direct neurotoxic effects or the full spectrum of stimuli that induce their release by astrocytes. Only limited studies with human-derived astrocytes and neurons are available for most of these potential neurotoxins, which is a knowledge gap that should be addressed in the future. We also summarize available evidence of the role these molecules play in select neuropathologies where reactive astrocytes are a key feature. A comprehensive understanding of the full spectrum of neurotoxins released by reactive astrocytes is key to understanding neuroinflammatory diseases characterized by the adverse activation of these cells and may guide the development of novel treatment strategies.
Collapse
Affiliation(s)
- Taryn E Murray
- Department of Biology, University of British Columbia Okanagan Campus, Kelowna, British Columbia V1V 1V7, Canada
| | - Christy M Richards
- Department of Biology, University of British Columbia Okanagan Campus, Kelowna, British Columbia V1V 1V7, Canada
| | - Victoria N Robert-Gostlin
- Department of Biology, University of British Columbia Okanagan Campus, Kelowna, British Columbia V1V 1V7, Canada
| | - Anna K Bernath
- Department of Biology, University of British Columbia Okanagan Campus, Kelowna, British Columbia V1V 1V7, Canada
| | - Ivan A Lindhout
- Department of Biology, University of British Columbia Okanagan Campus, Kelowna, British Columbia V1V 1V7, Canada
| | - Andis Klegeris
- Department of Biology, University of British Columbia Okanagan Campus, Kelowna, British Columbia V1V 1V7, Canada.
| |
Collapse
|
17
|
Heng AHS, Han CW, Abbott C, McColl SR, Comerford I. Chemokine-Driven Migration of Pro-Inflammatory CD4 + T Cells in CNS Autoimmune Disease. Front Immunol 2022; 13:817473. [PMID: 35250997 PMCID: PMC8889115 DOI: 10.3389/fimmu.2022.817473] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2021] [Accepted: 01/25/2022] [Indexed: 12/13/2022] Open
Abstract
Pro-inflammatory CD4+ T helper (Th) cells drive the pathogenesis of many autoimmune conditions. Recent advances have modified views of the phenotype of pro-inflammatory Th cells in autoimmunity, extending the breadth of known Th cell subsets that operate as drivers of these responses. Heterogeneity and plasticity within Th1 and Th17 cells, and the discovery of subsets of Th cells dedicated to production of other pro-inflammatory cytokines such as GM-CSF have led to these advances. Here, we review recent progress in this area and focus specifically upon evidence for chemokine receptors that drive recruitment of these various pro-inflammatory Th cell subsets to sites of autoimmune inflammation in the CNS. We discuss expression of specific chemokine receptors by subsets of pro-inflammatory Th cells and highlight which receptors may be tractable targets of therapeutic interventions to limit pathogenic Th cell recruitment in autoimmunity.
Collapse
Affiliation(s)
- Aaron H S Heng
- The Chemokine Biology Laboratory, Department of Molecular and Biomedical Science, School of Biological Sciences, Faculty of Science, The University of Adelaide, Adelaide, SA, Australia
| | - Caleb W Han
- The Chemokine Biology Laboratory, Department of Molecular and Biomedical Science, School of Biological Sciences, Faculty of Science, The University of Adelaide, Adelaide, SA, Australia
| | - Caitlin Abbott
- The Chemokine Biology Laboratory, Department of Molecular and Biomedical Science, School of Biological Sciences, Faculty of Science, The University of Adelaide, Adelaide, SA, Australia
| | - Shaun R McColl
- The Chemokine Biology Laboratory, Department of Molecular and Biomedical Science, School of Biological Sciences, Faculty of Science, The University of Adelaide, Adelaide, SA, Australia
| | - Iain Comerford
- The Chemokine Biology Laboratory, Department of Molecular and Biomedical Science, School of Biological Sciences, Faculty of Science, The University of Adelaide, Adelaide, SA, Australia
| |
Collapse
|
18
|
She S, Ren L, Chen P, Wang M, Chen D, Wang Y, Chen H. Functional Roles of Chemokine Receptor CCR2 and Its Ligands in Liver Disease. Front Immunol 2022; 13:812431. [PMID: 35281057 PMCID: PMC8913720 DOI: 10.3389/fimmu.2022.812431] [Citation(s) in RCA: 49] [Impact Index Per Article: 24.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2021] [Accepted: 02/08/2022] [Indexed: 12/12/2022] Open
Abstract
Chemokines are a family of cytokines that orchestrate the migration and positioning of immune cells within tissues and are critical for the function of the immune system. CCR2 participates in liver pathology, including acute liver injury, chronic hepatitis, fibrosis/cirrhosis, and tumor progression, by mediating the recruitment of immune cells to inflammation and tumor sites. Although a variety of chemokines have been well studied in various diseases, there is no comprehensive review presenting the roles of all known chemokine ligands of CCR2 (CCL2, CCL7, CCL8, CCL12, CCL13, CCL16, and PSMP) in liver disease, and this review aims to fill this gap. The introduction of each chemokine includes its discovery, its corresponding chemotactic receptors, physiological functions and roles in inflammation and tumors, and its impact on different immune cell subgroups.
Collapse
Affiliation(s)
- Shaoping She
- Peking University Hepatology Institute, Beijing Key Laboratory of Hepatitis C and Immunotherapy for Liver Diseases, Peking University People’s Hospital, Beijing, China
| | - Liying Ren
- Laboratory of Hepatobiliary and Pancreatic Surgery, Affiliated Hospital of Guilin Medical University, Guilin, China
| | - Pu Chen
- Peking University Hepatology Institute, Beijing Key Laboratory of Hepatitis C and Immunotherapy for Liver Diseases, Peking University People’s Hospital, Beijing, China
| | - Mingyang Wang
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, China
| | - Dongbo Chen
- Peking University Hepatology Institute, Beijing Key Laboratory of Hepatitis C and Immunotherapy for Liver Diseases, Peking University People’s Hospital, Beijing, China
| | - Ying Wang
- Department of Immunology, School of Basic Medical Sciences, and NHC Key Laboratory of Medical Immunology, Peking University, Beijing, China
| | - Hongsong Chen
- Peking University Hepatology Institute, Beijing Key Laboratory of Hepatitis C and Immunotherapy for Liver Diseases, Peking University People’s Hospital, Beijing, China
- *Correspondence: Hongsong Chen,
| |
Collapse
|
19
|
Krot M, Rolls A. Autoimmunity in neurodegeneration. Science 2021; 374:823-824. [PMID: 34762456 DOI: 10.1126/science.abm4739] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
A signaling axis in adaptive immunity is a potential target in Lewy body dementia.
Collapse
Affiliation(s)
- Maria Krot
- Department of Immunology, Rappaport Faculty of Medicine, Technion-Israel Institute of Technology, Haifa, Israel
- Department of Neuroscience, Rappaport Faculty of Medicine, Technion-Israel Institute of Technology, Haifa, Israel
| | - Asya Rolls
- Department of Immunology, Rappaport Faculty of Medicine, Technion-Israel Institute of Technology, Haifa, Israel
- Department of Neuroscience, Rappaport Faculty of Medicine, Technion-Israel Institute of Technology, Haifa, Israel
| |
Collapse
|
20
|
Kalafatakis I, Karagogeos D. Oligodendrocytes and Microglia: Key Players in Myelin Development, Damage and Repair. Biomolecules 2021; 11:1058. [PMID: 34356682 PMCID: PMC8301746 DOI: 10.3390/biom11071058] [Citation(s) in RCA: 39] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2021] [Revised: 07/16/2021] [Accepted: 07/16/2021] [Indexed: 12/13/2022] Open
Abstract
Oligodendrocytes, the myelin-making cells of the CNS, regulate the complex process of myelination under physiological and pathological conditions, significantly aided by other glial cell types such as microglia, the brain-resident, macrophage-like innate immune cells. In this review, we summarize how oligodendrocytes orchestrate myelination, and especially myelin repair after damage, and present novel aspects of oligodendroglial functions. We emphasize the contribution of microglia in the generation and regeneration of myelin by discussing their beneficial and detrimental roles, especially in remyelination, underlining the cellular and molecular components involved. Finally, we present recent findings towards human stem cell-derived preclinical models for the study of microglia in human pathologies and on the role of microbiome on glial cell functions.
Collapse
Affiliation(s)
- Ilias Kalafatakis
- Laboratory of Neuroscience, Department of Basic Science, University of Crete Medical School, 70013 Heraklion, Greece;
- IMBB FORTH, Nikolaou Plastira 100, Vassilika Vouton, 70013 Heraklion, Greece
| | - Domna Karagogeos
- Laboratory of Neuroscience, Department of Basic Science, University of Crete Medical School, 70013 Heraklion, Greece;
- IMBB FORTH, Nikolaou Plastira 100, Vassilika Vouton, 70013 Heraklion, Greece
| |
Collapse
|
21
|
Smith JA, Nicaise AM, Ionescu RB, Hamel R, Peruzzotti-Jametti L, Pluchino S. Stem Cell Therapies for Progressive Multiple Sclerosis. Front Cell Dev Biol 2021; 9:696434. [PMID: 34307372 PMCID: PMC8299560 DOI: 10.3389/fcell.2021.696434] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2021] [Accepted: 06/10/2021] [Indexed: 12/19/2022] Open
Abstract
Multiple sclerosis (MS) is a chronic inflammatory disease of the central nervous system characterized by demyelination and axonal degeneration. MS patients typically present with a relapsing-remitting (RR) disease course, manifesting as sporadic attacks of neurological symptoms including ataxia, fatigue, and sensory impairment. While there are several effective disease-modifying therapies able to address the inflammatory relapses associated with RRMS, most patients will inevitably advance to a progressive disease course marked by a gradual and irreversible accrual of disabilities. Therapeutic intervention in progressive MS (PMS) suffers from a lack of well-characterized biological targets and, hence, a dearth of successful drugs. The few medications approved for the treatment of PMS are typically limited in their efficacy to active forms of the disease, have little impact on slowing degeneration, and fail to promote repair. In looking to address these unmet needs, the multifactorial therapeutic benefits of stem cell therapies are particularly compelling. Ostensibly providing neurotrophic support, immunomodulation and cell replacement, stem cell transplantation holds substantial promise in combatting the complex pathology of chronic neuroinflammation. Herein, we explore the current state of preclinical and clinical evidence supporting the use of stem cells in treating PMS and we discuss prospective hurdles impeding their translation into revolutionary regenerative medicines.
Collapse
Affiliation(s)
- Jayden A. Smith
- Cambridge Innovation Technologies Consulting (CITC) Limited, Cambridge, United Kingdom
| | - Alexandra M. Nicaise
- Department of Clinical Neurosciences and National Institute for Health Research (NIHR) Biomedical Research Centre, University of Cambridge, Cambridge, United Kingdom
| | - Rosana-Bristena Ionescu
- Department of Clinical Neurosciences and National Institute for Health Research (NIHR) Biomedical Research Centre, University of Cambridge, Cambridge, United Kingdom
| | - Regan Hamel
- Department of Clinical Neurosciences and National Institute for Health Research (NIHR) Biomedical Research Centre, University of Cambridge, Cambridge, United Kingdom
| | - Luca Peruzzotti-Jametti
- Department of Clinical Neurosciences and National Institute for Health Research (NIHR) Biomedical Research Centre, University of Cambridge, Cambridge, United Kingdom
| | - Stefano Pluchino
- Department of Clinical Neurosciences and National Institute for Health Research (NIHR) Biomedical Research Centre, University of Cambridge, Cambridge, United Kingdom
| |
Collapse
|
22
|
Chu T, Shields LB, Zeng W, Zhang YP, Wang Y, Barnes GN, Shields CB, Cai J. Dynamic glial response and crosstalk in demyelination-remyelination and neurodegeneration processes. Neural Regen Res 2021; 16:1359-1368. [PMID: 33318418 PMCID: PMC8284258 DOI: 10.4103/1673-5374.300975] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2020] [Revised: 07/09/2020] [Accepted: 08/28/2020] [Indexed: 12/15/2022] Open
Abstract
Multiple sclerosis is an autoimmune disease in which the immune system attacks the myelin sheath in the central nervous system. It is characterized by blood-brain barrier dysfunction throughout the course of multiple sclerosis, followed by the entry of immune cells and activation of local microglia and astrocytes. Glial cells (microglia, astrocytes, and oligodendrocyte lineage cells) are known as the important mediators of neuroinflammation, all of which play major roles in the pathogenesis of multiple sclerosis. Network communications between glial cells affect the activities of oligodendrocyte lineage cells and influence the demyelination-remyelination process. A finely balanced glial response may create a favorable lesion environment for efficient remyelination and neuroregeneration. This review focuses on glial response and neurodegeneration based on the findings from multiple sclerosis and major rodent demyelination models. In particular, glial interaction and molecular crosstalk are discussed to provide insights into the potential cell- and molecule-specific therapeutic targets to improve remyelination and neuroregeneration.
Collapse
Affiliation(s)
- Tianci Chu
- Pediatric Research Institute, Department of Pediatrics, University of Louisville School of Medicine, Louisville, KY, USA
| | - Lisa B.E. Shields
- Norton Neuroscience Institute, Norton Healthcare, Louisville, KY, USA
| | - Wenxin Zeng
- Pediatric Research Institute, Department of Pediatrics, University of Louisville School of Medicine, Louisville, KY, USA
| | - Yi Ping Zhang
- Norton Neuroscience Institute, Norton Healthcare, Louisville, KY, USA
| | - Yuanyi Wang
- Department of Spine Surgery, The First Hospital of Jilin University, Changchun, Jilin Province, China
| | - Gregory N. Barnes
- Pediatric Research Institute, Department of Pediatrics, University of Louisville School of Medicine, Louisville, KY, USA
- Department of Neurology, University of Louisville School of Medicine, Louisville, KY, USA
- Department of Pharmacology and Toxicology, University of Louisville, Louisville, KY, USA
| | - Christopher B. Shields
- Norton Neuroscience Institute, Norton Healthcare, Louisville, KY, USA
- Department of Neurological Surgery, University of Louisville School of Medicine, Louisville, KY, USA
| | - Jun Cai
- Pediatric Research Institute, Department of Pediatrics, University of Louisville School of Medicine, Louisville, KY, USA
- Department of Pharmacology and Toxicology, University of Louisville, Louisville, KY, USA
| |
Collapse
|
23
|
The Distribution of GPR17-Expressing Cells Correlates with White Matter Inflammation Status in Brain Tissues of Multiple Sclerosis Patients. Int J Mol Sci 2021; 22:ijms22094574. [PMID: 33925469 PMCID: PMC8123849 DOI: 10.3390/ijms22094574] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2021] [Revised: 04/23/2021] [Accepted: 04/24/2021] [Indexed: 01/26/2023] Open
Abstract
In multiple sclerosis (MS), oligodendrocyte precursor cells (OPCs) are recruited to the site of injury to remyelinate damaged axons; however, in patients this process is often ineffective due to defects in OPC maturation. The membrane receptor GPR17 timely regulates the early stages of OPC differentiation; however, after reaching its highest levels in immature oligodendrocytes, it has to be downregulated to allow terminal maturation. Since, in several animal models of disease GPR17 is upregulated, the aim of this work was to characterize GPR17 alterations in MS patients. We developed immunohistochemistry and immunofluorescence procedures for the detection of GPR17 in human tissues and stained post-mortem MS brain lesions from patients with secondary progressive MS and control subjects. The inflammatory activity in each lesion was evaluated by immunohistochemistry for the myelin protein MOG and the HLA antigen to classify them as active, chronic inactive or chronic active. Hence, we assessed the distribution of GPR17-positive cells in these lesions compared to normal appearing white matter (NAWM) and white matter (WM) of control subjects. Our data have shown a marked increase of GPR17-expressing oligodendroglial cells accumulating at NAWM, in which moderate inflammation was also found. Furthermore, we identified two distinct subpopulations of GPR17-expressing oligodendroglial cells, characterized by either ramified or rounded morphology, that differently populate the WM of healthy controls and MS patients. We concluded that the coordinated presence of GPR17 in OPCs at the lesion sites and inflamed NAWM areas suggests that GPR17 could be exploited to support endogenous remyelination through advanced pharmacological approaches.
Collapse
|
24
|
Ghafouri-Fard S, Honarmand K, Taheri M. A comprehensive review on the role of chemokines in the pathogenesis of multiple sclerosis. Metab Brain Dis 2021; 36:375-406. [PMID: 33404937 DOI: 10.1007/s11011-020-00648-6] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/19/2020] [Accepted: 11/16/2020] [Indexed: 02/07/2023]
Abstract
Multiple sclerosis (MS) as a chronic inflammatory disorder of the central nervous system (CNS) is thought to be caused by the abnormal induction of immune responses. Chemokines as molecules that can engage leukocytes into the location of inflammation, actively participate in the pathogenesis of MS. Several members of this family of chemo attractants have been shown to be dysregulated in the peripheral blood, cerebrospinal fluid or CNS lesions of MS patients. Studies in animal models of MS particularly experimental autoimmune encephalomyelitis have indicated the critical roles of chemokines in the pathophysiology of MS. In the current review, we summarize the data regarding the role of CCL2, CCL3, CCL4, CCL11, CCL20, CXCL1, CXCL2, CXCL8, CXCL10, CXCL12 and CXCL13 in the pathogenesis of MS.
Collapse
Affiliation(s)
- Soudeh Ghafouri-Fard
- Department of Medical Genetics, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Kasra Honarmand
- Department of Medical Genetics, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mohammad Taheri
- Urogenital Stem Cell Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
25
|
das Neves SP, Sousa JC, Sousa N, Cerqueira JJ, Marques F. Altered astrocytic function in experimental neuroinflammation and multiple sclerosis. Glia 2020; 69:1341-1368. [PMID: 33247866 DOI: 10.1002/glia.23940] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2020] [Revised: 11/14/2020] [Accepted: 11/17/2020] [Indexed: 12/11/2022]
Abstract
Multiple sclerosis (MS) is a chronic inflammatory disease of the central nervous system (CNS) that affects about 2.5 million people worldwide. In MS, the patients' immune system starts to attack the myelin sheath, leading to demyelination, neurodegeneration, and, ultimately, loss of vital neurological functions such as walking. There is currently no cure for MS and the available treatments only slow the initial phases of the disease. The later-disease mechanisms are poorly understood and do not directly correlate with the activity of immune system cells, the main target of the available treatments. Instead, evidence suggests that disease progression and disability are better correlated with the maintenance of a persistent low-grade inflammation inside the CNS, driven by local glial cells, like astrocytes and microglia. Depending on the context, astrocytes can (a) exacerbate inflammation or (b) promote immunosuppression and tissue repair. In this review, we will address the present knowledge that exists regarding the role of astrocytes in MS and experimental animal models of the disease.
Collapse
Affiliation(s)
- Sofia Pereira das Neves
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Braga, Portugal.,ICVS/3B's - PT Government Associate Laboratory, Braga, Portugal
| | - João Carlos Sousa
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Braga, Portugal.,ICVS/3B's - PT Government Associate Laboratory, Braga, Portugal
| | - Nuno Sousa
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Braga, Portugal.,ICVS/3B's - PT Government Associate Laboratory, Braga, Portugal.,Clinical Academic Center, Braga, Portugal
| | - João José Cerqueira
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Braga, Portugal.,ICVS/3B's - PT Government Associate Laboratory, Braga, Portugal.,Clinical Academic Center, Braga, Portugal
| | - Fernanda Marques
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Braga, Portugal.,ICVS/3B's - PT Government Associate Laboratory, Braga, Portugal
| |
Collapse
|
26
|
Andrés-Benito P, Povedano M, Domínguez R, Marco C, Colomina MJ, López-Pérez Ó, Santana I, Baldeiras I, Martínez-Yelámos S, Zerr I, Llorens F, Fernández-Irigoyen J, Santamaría E, Ferrer I. Increased C-X-C Motif Chemokine Ligand 12 Levels in Cerebrospinal Fluid as a Candidate Biomarker in Sporadic Amyotrophic Lateral Sclerosis. Int J Mol Sci 2020; 21:ijms21228680. [PMID: 33213069 PMCID: PMC7698527 DOI: 10.3390/ijms21228680] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2020] [Revised: 11/11/2020] [Accepted: 11/16/2020] [Indexed: 12/17/2022] Open
Abstract
Sporadic amyotrophic lateral sclerosis (sALS) is a fatal progressive neurodegenerative disease affecting upper and lower motor neurons. Biomarkers are useful to facilitate the diagnosis and/or prognosis of patients and to reveal possible mechanistic clues about the disease. This study aimed to identify and validate selected putative biomarkers in the cerebrospinal fluid (CSF) of sALS patients at early disease stages compared with age-matched controls and with other neurodegenerative diseases including Alzheimer disease (AD), spinal muscular atrophy type III (SMA), frontotemporal dementia behavioral variant (FTD), and multiple sclerosis (MS). SWATH acquisition on liquid chromatography-tandem mass spectrometry (LC-MS/MS) for protein quantitation, and ELISA for validation, were used in CSF samples of sALS cases at early stages of the disease. Analysis of mRNA and protein expression was carried out in the anterior horn of the lumbar spinal cord in post-mortem tissue of sALS cases (terminal stage) and controls using RTq-PCR, and Western blotting, and immunohistochemistry, respectively. SWATH acquisition on liquid chromatography-tandem mass spectrometry (LC-MS/MS) revealed 51 differentially expressed proteins in the CSF in sALS. Receiver operating characteristic (ROC) curves showed CXCL12 to be the most valuable candidate biomarker. We validated the values of CXCL12 in CSF with ELISA in two different cohorts. Besides sALS, increased CXCL12 levels were found in MS but were not altered in AD, SMA, and FTD. Therefore, increased CXCL12 levels in the CSF can be useful in the diagnoses of MS and sALS in the context of the clinical settings. CXCL12 immunoreactivity was localized in motor neurons in control and sALS, and in a few glial cells in sALS at the terminal stage; CXCR4 was in a subset of oligodendroglial-like cells and axonal ballooning of motor neurons in sALS; and CXCR7 in motor neurons in control and sALS, and reactive astrocytes in the pyramidal tracts in terminal sALS. CXCL12/CXCR4/CXCR7 axis in the spinal cord probably plays a complex role in inflammation, oligodendroglial and astrocyte signaling, and neuronal and axonal preservation in sALS.
Collapse
Affiliation(s)
- Pol Andrés-Benito
- Department of Pathology and Experimental Therapeutics, University of Barcelona, Feixa Llarga s/n, 08907 L’Hospitalet de Llobregat, Barcelona, Spain;
- Biomedical Network Research Center on Neurodegenerative Diseases (CIBERNED), Institute Carlos III, Feixa Llarga s/n, 08907 L’Hospitalet de Llobregat, Barcelona, Spain;
- Bellvitge Biomedical Research Institute (IDIBELL), 08907 L’Hospitalet de Llobregat, Barcelona, Spain
- Institute of Neurosciences, University of Barcelona, 08907 L’Hospitalet de Llobregat, Barcelona, Spain
- International Initiative for Treatment and Research Initiative to Cure ALS (TRICALS), Bellvitge University Hospital, 08907 Hospitalet de Llobregat, Spain; (M.P.); (R.D.); (C.M.)
- Correspondence: (P.A.-B.); (I.F.); Tel./Fax: +34-94-403-5808 (P.A.-B. & I.F.)
| | - Mònica Povedano
- International Initiative for Treatment and Research Initiative to Cure ALS (TRICALS), Bellvitge University Hospital, 08907 Hospitalet de Llobregat, Spain; (M.P.); (R.D.); (C.M.)
- Functional Unit of Amyotrophic Lateral Sclerosis (UFELA), Service of Neurology, Bellvitge University Hospital, 08907 L’Hospitalet de Llobregat, Barcelona, Spain
| | - Raúl Domínguez
- International Initiative for Treatment and Research Initiative to Cure ALS (TRICALS), Bellvitge University Hospital, 08907 Hospitalet de Llobregat, Spain; (M.P.); (R.D.); (C.M.)
| | - Carla Marco
- International Initiative for Treatment and Research Initiative to Cure ALS (TRICALS), Bellvitge University Hospital, 08907 Hospitalet de Llobregat, Spain; (M.P.); (R.D.); (C.M.)
| | - Maria J. Colomina
- Anesthesia and Critical Care Department, Bellvitge University Hospital-University of Barcelona, 08907 L’Hospitalet de Llobregat, Barcelona, Spain;
| | - Óscar López-Pérez
- Biomedical Network Research Center on Neurodegenerative Diseases (CIBERNED), Institute Carlos III, Feixa Llarga s/n, 08907 L’Hospitalet de Llobregat, Barcelona, Spain;
| | - Isabel Santana
- Neurology Department, CHUC—Centro Hospitalar e Universitário de Coimbra, CNC—Center for Neuroscience and Cell Biology; and Faculty of Medicine, University of Coimbra, 3000-456 Coimbra, Portugal; (I.S.); (I.B.)
| | - Inês Baldeiras
- Neurology Department, CHUC—Centro Hospitalar e Universitário de Coimbra, CNC—Center for Neuroscience and Cell Biology; and Faculty of Medicine, University of Coimbra, 3000-456 Coimbra, Portugal; (I.S.); (I.B.)
| | - Sergio Martínez-Yelámos
- Multiple Sclerosis Unit, Service of Neurology, Bellvitge University Hospital, 08907 L’Hospitalet de Llobregat, Barcelona, Spain;
| | - Inga Zerr
- Department of Neurology, University Medical Center Göttingen, 37075 Göttingen, Germany;
- German Center for Neurodegenerative Diseases (DZNE), 37075 Göttingen, Germany
| | - Franc Llorens
- Department of Pathology and Experimental Therapeutics, University of Barcelona, Feixa Llarga s/n, 08907 L’Hospitalet de Llobregat, Barcelona, Spain;
- Biomedical Network Research Center on Neurodegenerative Diseases (CIBERNED), Institute Carlos III, Feixa Llarga s/n, 08907 L’Hospitalet de Llobregat, Barcelona, Spain;
- Bellvitge Biomedical Research Institute (IDIBELL), 08907 L’Hospitalet de Llobregat, Barcelona, Spain
- Institute of Neurosciences, University of Barcelona, 08907 L’Hospitalet de Llobregat, Barcelona, Spain
| | - Joaquín Fernández-Irigoyen
- IDISNA, Navarra Institute for Health Research, 31008 Pamplona, Spain; (J.F.-I.); (E.S.)
- Clinical Neuroproteomics Unit, Proteomics Platform, Proteored-ISCIII, Navarrabiomed, Complejo Hospitalario de Navarra (CHN), Universidad Pública de Navarra (UPNA), 31008 Pamplona, Spain
| | - Enrique Santamaría
- IDISNA, Navarra Institute for Health Research, 31008 Pamplona, Spain; (J.F.-I.); (E.S.)
- Clinical Neuroproteomics Unit, Proteomics Platform, Proteored-ISCIII, Navarrabiomed, Complejo Hospitalario de Navarra (CHN), Universidad Pública de Navarra (UPNA), 31008 Pamplona, Spain
| | - Isidro Ferrer
- Department of Pathology and Experimental Therapeutics, University of Barcelona, Feixa Llarga s/n, 08907 L’Hospitalet de Llobregat, Barcelona, Spain;
- Biomedical Network Research Center on Neurodegenerative Diseases (CIBERNED), Institute Carlos III, Feixa Llarga s/n, 08907 L’Hospitalet de Llobregat, Barcelona, Spain;
- Bellvitge Biomedical Research Institute (IDIBELL), 08907 L’Hospitalet de Llobregat, Barcelona, Spain
- Institute of Neurosciences, University of Barcelona, 08907 L’Hospitalet de Llobregat, Barcelona, Spain
- International Initiative for Treatment and Research Initiative to Cure ALS (TRICALS), Bellvitge University Hospital, 08907 Hospitalet de Llobregat, Spain; (M.P.); (R.D.); (C.M.)
- Neuropathology, Pathologic Anatomy Service, Bellvitge University Hospital, 08907 L’Hospitalet de Llobregat, Barcelona, Spain
- Correspondence: (P.A.-B.); (I.F.); Tel./Fax: +34-94-403-5808 (P.A.-B. & I.F.)
| |
Collapse
|
27
|
Dhaiban S, Al-Ani M, Elemam NM, Maghazachi AA. Targeting Chemokines and Chemokine Receptors in Multiple Sclerosis and Experimental Autoimmune Encephalomyelitis. J Inflamm Res 2020; 13:619-633. [PMID: 33061527 PMCID: PMC7532903 DOI: 10.2147/jir.s270872] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2020] [Accepted: 08/27/2020] [Indexed: 12/13/2022] Open
Abstract
Multiple sclerosis (MS) is an immune-mediated and neurodegenerative disorder that results in inflammation and demyelination of the central nervous system (CNS). MS symptoms include walking difficulties, visual weakening, as well as learning and memory impairment, thus affecting the quality of the patient's life. Chemokines and chemokine receptors are expressed on the immune cells as well as the CNS resident cells. Several sets of chemokine receptors and their ligands tend to be pathogenic players in MS, including CCL2, CCL3, CCL4, CCL5, CCL7, CCL8, CCL11, CCL17, CCL19, CCL21, CCL22, CXCL1, CXCL8, CXCL9, CXCL10, CXCL11, and CXCL16. Furthermore, current modulatory drugs that are used in the treatment of MS and its animal model, the experimental autoimmune encephalomyelitis (EAE), affect the expression of several chemokine and chemokine receptors. In this review, we highlight the pathogenic roles of chemokines and their receptors as well as utilizing them as potential therapeutic targets through selective agents, such as specific antibodies and receptor blockers, or indirectly through MS or EAE immunomodulatory drugs.
Collapse
Affiliation(s)
- Sarah Dhaiban
- College of Medicine and Immuno-Oncology Group, Sharjah Institute for Medical Research, University of Sharjah, Sharjah, United Arab Emirates
| | - Mena Al-Ani
- College of Medicine and Immuno-Oncology Group, Sharjah Institute for Medical Research, University of Sharjah, Sharjah, United Arab Emirates
| | - Noha Mousaad Elemam
- College of Medicine and Immuno-Oncology Group, Sharjah Institute for Medical Research, University of Sharjah, Sharjah, United Arab Emirates
| | - Azzam A Maghazachi
- College of Medicine and Immuno-Oncology Group, Sharjah Institute for Medical Research, University of Sharjah, Sharjah, United Arab Emirates
| |
Collapse
|
28
|
Huynh C, Dingemanse J, Meyer Zu Schwabedissen HE, Sidharta PN. Relevance of the CXCR4/CXCR7-CXCL12 axis and its effect in pathophysiological conditions. Pharmacol Res 2020; 161:105092. [PMID: 32758634 DOI: 10.1016/j.phrs.2020.105092] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/03/2020] [Revised: 07/16/2020] [Accepted: 07/19/2020] [Indexed: 02/07/2023]
Abstract
The impact of the C-X-C receptor (CXCR) 7 and its close co-player CXCR4 in different physiological and pathophysiological processes has been extensively investigated within the last decades. Following activation by their shared ligand C-X-C ligand (CXCL) 12, both chemokine receptors can induce various routes of cell signaling and/or scavenge CXCL12 from the extracellular environment. This contributes to organ development and maintenance of homeostasis. Alterations of the CXCR4/CXCR7-CXCL12 axis have been detected in diseases such as cancer, central nervous system and cardiac disorders, and autoimmune diseases. These alterations include changes of the expression pattern, distribution, or downstream effects. The progression of the diseases can be regulated in preclinical models by the use of various modulators suggesting that this axis serves as a promising therapeutic target. It is therefore of great interest to investigate CXCR4/CXCR7/CXCL12 modulators in clinical development, with several CXCR4 and CXCL12 modulators such as plerixafor, ulocuplumab, balixafortide, and olaptesed pegol having already reached this stage. An overview is presented of the most important diseases whose outcomes can be positively or negatively regulated by the CXCR4/CXCR7-CXCL12 axis and summarizes preclinical and clinical data of modulators of that axis. Contrary to CXCR4 and CXCL12 modulators, CXCR7 modulators have, thus far, not been extensively studied. Therefore, more (pre)clinical investigations are needed.
Collapse
Affiliation(s)
- Christine Huynh
- Idorsia Pharmaceuticals Ltd, Department of Clinical Pharmacology, Hegenheimermattweg 91, 4123 Allschwil, Switzerland; Biopharmacy, Department of Pharmaceutical Sciences, University of Basel, Klingelbergstrasse 50, 4056, Basel, Switzerland
| | - Jasper Dingemanse
- Idorsia Pharmaceuticals Ltd, Department of Clinical Pharmacology, Hegenheimermattweg 91, 4123 Allschwil, Switzerland
| | | | - Patricia N Sidharta
- Idorsia Pharmaceuticals Ltd, Department of Clinical Pharmacology, Hegenheimermattweg 91, 4123 Allschwil, Switzerland.
| |
Collapse
|
29
|
Musella A, Fresegna D, Rizzo FR, Gentile A, De Vito F, Caioli S, Guadalupi L, Bruno A, Dolcetti E, Buttari F, Bullitta S, Vanni V, Centonze D, Mandolesi G. 'Prototypical' proinflammatory cytokine (IL-1) in multiple sclerosis: role in pathogenesis and therapeutic targeting. Expert Opin Ther Targets 2020; 24:37-46. [PMID: 31899994 DOI: 10.1080/14728222.2020.1709823] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Introduction: It has been recognized for about 20 years that interleukin (IL)-1 signaling is implicated in Multiple Sclerosis (MS), a disabling, chronic, inflammatory and neurodegenerative disease of the central nervous system (CNS). Only recently, multifaceted roles of IL-1 emerged in MS pathophysiology as a result of both clinical and preclinical studies. Notably, drugs that directly target the IL-1 system have not been tested so far in MS.Areas covered: Recent studies in animal models, together with the development of ex vivo chimeric MS models, have disclosed a critical role for IL-1 not only at the peripheral level but also within the CNS. In the present review, we highlight the IL-1-dependent neuropathological aspects of MS, by providing an overview of the cells of the immune and CNS systems that respond to IL-1 signaling, and by emphasizing the subsequent effects on the CNS, from demyelinating processes, to synaptopathy, and excitotoxicity.Expert opinion: Drugs that act on the IL-1 system show a therapeutic potential in several autoinflammatory diseases and preclinical studies have highlighted the effects of these compounds in MS. We will discuss why anti-IL-1 therapies in MS have been neglected to date.
Collapse
Affiliation(s)
- Alessandra Musella
- Synaptic Immunopathology Lab, IRCCS San Raffaele Pisana, Rome, Italy.,San Raffaele University, Rome, Italy
| | - Diego Fresegna
- Synaptic Immunopathology Lab, IRCCS San Raffaele Pisana, Rome, Italy
| | - Francesca Romana Rizzo
- Synaptic Immunopathology Lab, Department of Systems Medicine, Tor Vergata University, Rome, Italy
| | - Antonietta Gentile
- Synaptic Immunopathology Lab, IRCCS San Raffaele Pisana, Rome, Italy.,Synaptic Immunopathology Lab, Department of Systems Medicine, Tor Vergata University, Rome, Italy
| | | | - Silvia Caioli
- Synaptic Immunopathology Lab, Department of Systems Medicine, Tor Vergata University, Rome, Italy
| | - Livia Guadalupi
- Synaptic Immunopathology Lab, Department of Systems Medicine, Tor Vergata University, Rome, Italy
| | - Antonio Bruno
- Synaptic Immunopathology Lab, Department of Systems Medicine, Tor Vergata University, Rome, Italy
| | - Ettore Dolcetti
- Synaptic Immunopathology Lab, Department of Systems Medicine, Tor Vergata University, Rome, Italy
| | - Fabio Buttari
- Unit of Neurology, IRCCS Neuromed, Pozzilli, IS, Italy
| | - Silvia Bullitta
- Synaptic Immunopathology Lab, Department of Systems Medicine, Tor Vergata University, Rome, Italy
| | - Valentina Vanni
- Synaptic Immunopathology Lab, IRCCS San Raffaele Pisana, Rome, Italy
| | - Diego Centonze
- Synaptic Immunopathology Lab, Department of Systems Medicine, Tor Vergata University, Rome, Italy.,Unit of Neurology, IRCCS Neuromed, Pozzilli, IS, Italy
| | - Georgia Mandolesi
- Synaptic Immunopathology Lab, IRCCS San Raffaele Pisana, Rome, Italy.,San Raffaele University, Rome, Italy
| |
Collapse
|
30
|
Multiple Sclerosis CD49d +CD154 + As Myelin-Specific Lymphocytes Induced During Remyelination. Cells 2019; 9:cells9010015. [PMID: 31861635 PMCID: PMC7017443 DOI: 10.3390/cells9010015] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2019] [Revised: 12/15/2019] [Accepted: 12/16/2019] [Indexed: 12/30/2022] Open
Abstract
Multiple sclerosis (MS) is a demyelinating autoimmune disease of the central nervous system (CNS) mediated by autoreactive lymphocytes. The role of autoreactive lymphocytes in the CNS demyelination is well described, whereas very little is known about their role in remyelination during MS remission. In this study, we identified a new subpopulation of myelin-specific CD49d+CD154+ lymphocytes presented in the peripheral blood of MS patients during remission, that proliferated in vitro in response to myelin peptides. These lymphocytes possessed the unique ability to migrate towards maturing oligodendrocyte precursor cells (OPCs) and synthetize proinflammatory chemokines/cytokines. The co-culture of maturing OPCs with myelin-specific CD49d+CD154+ lymphocytes was characterized by the increase in proinflammatory chemokine/cytokine secretion that was not only a result of their cumulative effect of what OPCs and CD49d+CD154+ lymphocytes produced alone. Moreover, maturing OPCs exposed to exogenous myelin peptides managed to induce CD40-CD154-dependent CD49d+CD154+ lymphocyte proliferation. We confirmed, in vivo, the presence of CD49d+CD154+ cells close to maturating OPCs and remyelinating plaque during disease remission in the MS mouse model (C57Bl/6 mice immunized with MOG35-55) by immunohistochemistry. Three weeks after an acute phase of experimental autoimmune encephalomyelitis, CD49d+/CD154+ cells were found to be co-localized with O4+ cells (oligodendrocyte progenitors) in the areas of remyelination identified by myelin basic protein (MBP) labelling. These data suggested that myelin-specific CD49d+CD154+ lymphocytes present in the brain can interfere with remyelination mediated by oligodendrocytes probably as a result of establishing proinflammatory environment.
Collapse
|
31
|
Emamnejad R, Sahraian M, Shakiba Y, Salehi Z, Masoomi A, Imani D, Najafi F, Laribi B, Shirzad H, Izad M. Circulating mesenchymal stem cells, stromal derived factor (SDF)-1 and IP-10 levels increased in clinically active multiple sclerosis patients but not in clinically stable patients treated with beta interferon. Mult Scler Relat Disord 2019; 35:233-238. [DOI: 10.1016/j.msard.2019.08.013] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2017] [Revised: 06/27/2019] [Accepted: 08/11/2019] [Indexed: 12/19/2022]
|
32
|
Trettel F, Di Castro MA, Limatola C. Chemokines: Key Molecules that Orchestrate Communication among Neurons, Microglia and Astrocytes to Preserve Brain Function. Neuroscience 2019; 439:230-240. [PMID: 31376422 DOI: 10.1016/j.neuroscience.2019.07.035] [Citation(s) in RCA: 53] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2019] [Revised: 07/01/2019] [Accepted: 07/19/2019] [Indexed: 12/19/2022]
Abstract
In the CNS, chemokines and chemokine receptors are involved in pleiotropic physiological and pathological activities. Several evidences demonstrated that chemokine signaling in the CNS plays key homeostatic roles and, being expressed on neurons, glia and endothelial cells, chemokines mediate the bidirectional cross-talk among parenchymal cells. An efficient communication between neurons and glia is crucial to establish and maintain a healthy brain environment which ensures normal functionality. Glial cells behave as active sensors of environmental changes induced by neuronal activity or detrimental insults, supporting and exerting neuroprotective activities. In this review we summarize the evidence that chemokines (CXCL12, CX3CL1, CXCL16 and CCL2) modulate neuroprotective processes upon different noxious stimuli and participate to orchestrate neurons-microglia-astrocytes action to preserve and limit brain damage. This article is part of a Special Issue entitled: Honoring Ricardo Miledi - outstanding neuroscientist of XX-XXI centuries.
Collapse
Affiliation(s)
- Flavia Trettel
- Department of Physiology and Pharmacology, laboratory affiliated to Istituto Pasteur Italia, Sapienza University, Piazzale Aldo Moro 5, 00185, Rome, Italy.
| | - Maria Amalia Di Castro
- Department of Physiology and Pharmacology, laboratory affiliated to Istituto Pasteur Italia, Sapienza University, Piazzale Aldo Moro 5, 00185, Rome, Italy
| | - Cristina Limatola
- Department of Physiology and Pharmacology, laboratory affiliated to Istituto Pasteur Italia, Sapienza University, Piazzale Aldo Moro 5, 00185, Rome, Italy; IRCCS Neuromed, Via Atinense 19, 86077, Pozzilli, Italy
| |
Collapse
|
33
|
Galli E, Hartmann FJ, Schreiner B, Ingelfinger F, Arvaniti E, Diebold M, Mrdjen D, van der Meer F, Krieg C, Nimer FA, Sanderson N, Stadelmann C, Khademi M, Piehl F, Claassen M, Derfuss T, Olsson T, Becher B. GM-CSF and CXCR4 define a T helper cell signature in multiple sclerosis. Nat Med 2019; 25:1290-1300. [PMID: 31332391 PMCID: PMC6689469 DOI: 10.1038/s41591-019-0521-4] [Citation(s) in RCA: 122] [Impact Index Per Article: 24.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2019] [Accepted: 06/11/2019] [Indexed: 12/17/2022]
Abstract
Cytokine dysregulation is a central driver of chronic inflammatory diseases such as multiple sclerosis (MS). Here we sought to determine the characteristic cellular and cytokine polarization profile in patients with relapsing-remitting multiple sclerosis (RRMS) by high-dimensional single-cell mass cytometry (CyTOF). Using a combination of neural network-based representation learning algorithms, we identified an expanded T helper cell subset in MS patients, characterized by the expression of GM-CSF and the C-X-C chemokine receptor type 4. This cellular signature, which includes expression of very late antigen 4 (VLA4) in peripheral blood, was also enriched in the central nervous system of RRMS patients. In independent validation cohorts, we confirmed that this cell population is increased in MS patients compared to other inflammatory and non-inflammatory conditions. Lastly, we also found the population to be reduced under effective disease-modifying therapy, suggesting that the identified T cell profile represents a specific therapeutic target in MS.
Collapse
Affiliation(s)
- Edoardo Galli
- Institute of Experimental Immunology, University of Zurich, Zurich, Switzerland
| | - Felix J Hartmann
- Institute of Experimental Immunology, University of Zurich, Zurich, Switzerland.,Department of Dermatology, Hollings Cancer Center, Medical University of South Carolina, Charleston, SC, USA
| | - Bettina Schreiner
- Institute of Experimental Immunology, University of Zurich, Zurich, Switzerland.,Department of Neurology, University Hospital Zurich, Zurich, Switzerland
| | - Florian Ingelfinger
- Institute of Experimental Immunology, University of Zurich, Zurich, Switzerland
| | - Eirini Arvaniti
- Institute for Molecular Systems Biology, Department of Biology, ETH Zurich, Zurich, Switzerland
| | - Martin Diebold
- Department of Biomedicine, University Hospital Basel, Basel, Switzerland
| | - Dunja Mrdjen
- Institute of Experimental Immunology, University of Zurich, Zurich, Switzerland
| | - Franziska van der Meer
- Institut für Neuropathologie, Klinik für Neurologie, Universitätsmedizin Göttingen, Gottingen, Germany
| | - Carsten Krieg
- Institute of Experimental Immunology, University of Zurich, Zurich, Switzerland.,Department of Microbiology and Immunology, Hollings Cancer Center, Medical University of South Carolina, Charleston, SC, USA
| | - Faiez Al Nimer
- Neuroimmunology Unit, Department of Clinical Neuroscience, Karolinska Institutet, Stockholm, Sweden.,Department of Pathology, School of Medicine, Stanford University, Palo Alto, CA, USA
| | - Nicholas Sanderson
- Department of Biomedicine, University Hospital Basel, Basel, Switzerland
| | - Christine Stadelmann
- Institut für Neuropathologie, Klinik für Neurologie, Universitätsmedizin Göttingen, Gottingen, Germany
| | - Mohsen Khademi
- Neuroimmunology Unit, Department of Clinical Neuroscience, Karolinska Institutet, Stockholm, Sweden
| | - Fredrik Piehl
- Neuroimmunology Unit, Department of Clinical Neuroscience, Karolinska Institutet, Stockholm, Sweden
| | - Manfred Claassen
- Institute for Molecular Systems Biology, Department of Biology, ETH Zurich, Zurich, Switzerland
| | - Tobias Derfuss
- Department of Biomedicine, University Hospital Basel, Basel, Switzerland
| | - Tomas Olsson
- Neuroimmunology Unit, Department of Clinical Neuroscience, Karolinska Institutet, Stockholm, Sweden
| | - Burkhard Becher
- Institute of Experimental Immunology, University of Zurich, Zurich, Switzerland.
| |
Collapse
|
34
|
Gao JH, Yu XH, Tang CK. CXC chemokine ligand 12 (CXCL12) in atherosclerosis: An underlying therapeutic target. Clin Chim Acta 2019; 495:538-544. [PMID: 31145896 DOI: 10.1016/j.cca.2019.05.022] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2019] [Revised: 05/23/2019] [Accepted: 05/24/2019] [Indexed: 12/27/2022]
Abstract
CXC chemokine ligand 12 (CXCL12) is a specific chemokine ligand and plays a significant role in cell chemotaxis. Upon binding to CXC chemokine receptor 4 (CXCR4) or CXCR7, CXCL12 can activate different signaling cascades to regulate cell proliferation, migration, and metabolism. CXCL12 exerts a pro-atherogenic action by aggravating multiple pathogenesis of atherogenesis, including dyslipidemia, inflammation, neointima hyperplasia, angiogenesis, and insulin resistance. Serum CXCL12 levels are also markedly increased in patients with atherosclerosis-associated disease. The present review focuses on recent advances in CXCL12 research in the pathogenesis of atherosclerosis together with its clinical values. This may provide insight into potential novel therapies for atherosclerosis.
Collapse
Affiliation(s)
- Jia-Hui Gao
- Institute of Cardiovascular Disease, Key Laboratory for Atherosclerology of Hunan Province, Medical Research Experiment Center, Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, University of South China, Hengyang, Hunan 421001, China
| | - Xiao-Hua Yu
- Institute of Cardiovascular Disease, Key Laboratory for Atherosclerology of Hunan Province, Medical Research Experiment Center, Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, University of South China, Hengyang, Hunan 421001, China
| | - Chao-Ke Tang
- Institute of Cardiovascular Disease, Key Laboratory for Atherosclerology of Hunan Province, Medical Research Experiment Center, Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, University of South China, Hengyang, Hunan 421001, China.
| |
Collapse
|
35
|
Ahmad F, Döbel T, Schmitz M, Schäkel K. Current Concepts on 6-sulfo LacNAc Expressing Monocytes (slanMo). Front Immunol 2019; 10:948. [PMID: 31191513 PMCID: PMC6540605 DOI: 10.3389/fimmu.2019.00948] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2018] [Accepted: 04/12/2019] [Indexed: 12/25/2022] Open
Abstract
The human mononuclear phagocytes system consists of dendritic cells (DCs), monocytes, and macrophages having different functions in bridging innate and adaptive immunity. Among the heterogeneous population of monocytes the cell surface marker slan (6-sulfo LacNAc) identifies a specific subset of human CD14- CD16+ non-classical monocytes, called slan+ monocytes (slanMo). In this review we discuss the identity and functions of slanMo, their contributions to immune surveillance by pro-inflammatory cytokine production, and cross talk with T cells and NK cells. We also consider the role of slanMo in the regulation of chronic inflammatory diseases and cancer. Finally, we highlight unresolved questions that should be the focus of future research.
Collapse
Affiliation(s)
- Fareed Ahmad
- Department of Dermatology, Heidelberg University Hospital, Heidelberg, Germany
| | - Thomas Döbel
- Department of Dermatology, Heidelberg University Hospital, Heidelberg, Germany.,Dermatology Branch, National Institute of Arthritis and Musculoskeletal and Skin Diseases, Bethesda, MD, United States
| | - Marc Schmitz
- Institute of Immunology, Faculty of Medicine Carl Gustav Carus, Technische Universtät Dresden, Dresden, Germany.,Partner Site Dresden, National Center for Tumor Diseases (NCT), Dresden, Germany
| | - Knut Schäkel
- Department of Dermatology, Heidelberg University Hospital, Heidelberg, Germany
| |
Collapse
|
36
|
The contribution of astrocytes to the neuroinflammatory response in multiple sclerosis and experimental autoimmune encephalomyelitis. Acta Neuropathol 2019; 137:757-783. [PMID: 30847559 DOI: 10.1007/s00401-019-01980-7] [Citation(s) in RCA: 159] [Impact Index Per Article: 31.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2019] [Revised: 02/21/2019] [Accepted: 02/23/2019] [Indexed: 02/06/2023]
Abstract
Neuroinflammation is the coordinated response of the central nervous system (CNS) to threats to its integrity posed by a variety of conditions, including autoimmunity, pathogens and trauma. Activated astrocytes, in concert with other cellular elements of the CNS and immune system, are important players in the modulation of the neuroinflammatory response. During neurological disease, they produce and respond to cellular signals that often lead to dichotomous processes, which can promote further damage or contribute to repair. This occurs also in multiple sclerosis (MS), where astrocytes are now recognized as key components of its immunopathology. Evidence supporting this role has emerged not only from studies in MS patients, but also from animal models, among which the experimental autoimmune encephalomyelitis (EAE) model has proved especially instrumental. Based on this premise, the purpose of the present review is to summarize the current knowledge of astrocyte behavior in MS and EAE. Following a brief description of the pathological characteristics of the two diseases and the main functional roles of astrocytes in CNS physiology, we will delve into the specific responses of this cell population, analyzing MS and EAE in parallel. We will define the temporal and anatomical profile of astroglial activation, then focus on key processes they participate in. These include: (1) production and response to soluble mediators (e.g., cytokines and chemokines), (2) regulation of oxidative stress, and (3) maintenance of BBB integrity and function. Finally, we will review the state of the art on the available methods to measure astroglial activation in vivo in MS patients, and how this could be exploited to optimize diagnosis, prognosis and treatment decisions. Ultimately, we believe that integrating the knowledge obtained from studies in MS and EAE may help not only better understand the pathophysiology of MS, but also uncover new signals to be targeted for therapeutic intervention.
Collapse
|
37
|
Kamizato K, Sato S, Shil SK, Umaru BA, Kagawa Y, Yamamoto Y, Ogata M, Yasumoto Y, Okuyama Y, Ishii N, Owada Y, Miyazaki H. The role of fatty acid binding protein 7 in spinal cord astrocytes in a mouse model of experimental autoimmune encephalomyelitis. Neuroscience 2019; 409:120-129. [PMID: 31051217 DOI: 10.1016/j.neuroscience.2019.03.050] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2018] [Revised: 03/19/2019] [Accepted: 03/20/2019] [Indexed: 01/20/2023]
Abstract
Fatty acid binding protein 7 (FABP7) is expressed in astrocytes of the developing and mature central nervous system, and modulates astrocyte function by controlling intracellular fatty acid homeostasis. Astrocytes in the spinal cord have an important role in the process of myelin degeneration and regeneration. In the present study, the authors examined the role of FABP7 in astrocytes in a mouse model of experimental autoimmune encephalomyelitis (EAE), which is an established model of multiple sclerosis (MS). FABP7 was expressed in the white matter astrocytes and increased after EAE onset; particularly strong expression was observed in demyelinating regions. In FABP7-knockout (KO) mice, the onset of EAE symptoms occurred earlier than in wild type (WT) mice, and mRNA expression levels of inflammatory cytokines (IL-17 and TNF-α) were higher in FABP7-KO lumbar spinal cord than in WT lumbar spinal cord at early stage of EAE. Interestingly, however, the clinical score was significantly reduced in FABP7-KO mice compared with WT mice in the late phase of EAE. Moreover, the area exhibiting expression of fibronectin, which is an extracellular matrix protein mainly produced by astrocytes and inhibits remyelination of oligodendrocytes, was significantly decreased in FABP7-KO compared with WT mice. Collectively, FABP7 in astrocyte may have a role to protect from the induction of inflammation leading to demyelination in CNS at early phase of EAE. Moreover, FABP7 may be involved in the regulation of fibronectin production through the modification of astrocyte activation at late phase of EAE.
Collapse
Affiliation(s)
- Kenyu Kamizato
- Department of Organ Anatomy, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Sho Sato
- Department of Organ Anatomy, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Subrata Kumar Shil
- Department of Organ Anatomy, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Banlanjo A Umaru
- Department of Organ Anatomy, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Yoshiteru Kagawa
- Department of Organ Anatomy, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Yui Yamamoto
- Department of Organ Anatomy, Tohoku University Graduate School of Medicine, Sendai, Japan; Department of Anatomy, Tohoku medical and Pharmaceutical University, Sendai, Japan
| | - Masaki Ogata
- Department of Organ Anatomy, Tohoku University Graduate School of Medicine, Sendai, Japan; Department of Anatomy, Tohoku medical and Pharmaceutical University, Sendai, Japan
| | - Yuki Yasumoto
- Department of Organ Anatomy, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Yuko Okuyama
- Department of Microbiology and Immunology, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Naoto Ishii
- Department of Microbiology and Immunology, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Yuji Owada
- Department of Organ Anatomy, Tohoku University Graduate School of Medicine, Sendai, Japan.
| | - Hirofumi Miyazaki
- Department of Organ Anatomy, Tohoku University Graduate School of Medicine, Sendai, Japan.
| |
Collapse
|
38
|
Haindl MT, Köck U, Zeitelhofer‐Adzemovic M, Fazekas F, Hochmeister S. The formation of a glial scar does not prohibit remyelination in an animal model of multiple sclerosis. Glia 2019; 67:467-481. [PMID: 30484905 PMCID: PMC6588096 DOI: 10.1002/glia.23556] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2017] [Revised: 10/03/2018] [Accepted: 10/09/2018] [Indexed: 01/12/2023]
Abstract
The role of astrocytes in the pathophysiology of multiple sclerosis (MS) is discussed controversially. Especially the formation of the glial scar is often believed to act as a barrier for remyelination. At the same time, astrocytes are known to produce factors that influence oligodendrocyte precursor cell (OPC) survival. To explore these mechanisms, we investigated the astrocytic reaction in an animal model induced by immunization with myelin oligodendrocyte glycoprotein (MOG) in Dark Agouti (DA) rats, which mimics most of the histological features of MS. We correlated the astroglial reaction by immunohistochemistry (IHC) for glial fibrillary acidic protein (GFAP) to the remyelination capacity by in situ hybridization for mRNA of proteolipid protein (PLP), indicative of OPCs, over the full course of the disease. PLP mRNA peaked in early remyelinating lesions while the amount of GFAP positive astrocytes was highest in remyelinated lesions. In shadow plaques, we found at the same time all features of a glial scar and numbers of OPCs and mature oligodendrocytes, which were nearly equal to that in unaffected white matter areas. To assess the plaque environment, we furthermore quantitatively analyzed factors expressed by astrocytes previously suggested to influence remyelination. From our data, we conclude that remyelination occurs despite an abundant glial reaction in this animal model. The different patterns of astrocytic factors and the occurrence of different astrocytic phenotypes during lesion evolution furthermore indicate a finely regulated, balanced astrocytic involvement leading to successful repair.
Collapse
Affiliation(s)
| | - Ulrike Köck
- Center for Brain ResearchMedical University of ViennaViennaAustria
| | | | - Franz Fazekas
- Department of NeurologyMedical University of GrazGrazAustria
| | | |
Collapse
|
39
|
García-Cuesta EM, Santiago CA, Vallejo-Díaz J, Juarranz Y, Rodríguez-Frade JM, Mellado M. The Role of the CXCL12/CXCR4/ACKR3 Axis in Autoimmune Diseases. Front Endocrinol (Lausanne) 2019; 10:585. [PMID: 31507535 PMCID: PMC6718456 DOI: 10.3389/fendo.2019.00585] [Citation(s) in RCA: 96] [Impact Index Per Article: 19.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/17/2019] [Accepted: 08/09/2019] [Indexed: 12/19/2022] Open
Abstract
Chemokine receptors are members of the G protein-coupled receptor superfamily. These receptors are intimately involved in cell movement, and thus play a critical role in several physiological and pathological situations that require the precise regulation of cell positioning. CXCR4 is one of the most studied chemokine receptors and is involved in many functions beyond leukocyte recruitment. During embryogenesis, it plays essential roles in vascular development, hematopoiesis, cardiogenesis, and nervous system organization. It has been also implicated in tumor progression and autoimmune diseases and, together with CD4, is one of the co-receptors used by the HIV-1 virus to infect immune cells. In contrast to other chemokine receptors that are characterized by ligand promiscuity, CXCR4 has a unique ligand-stromal cell-derived factor-1 (SDF1, CXCL12). However, this ligand also binds ACKR3, an atypical chemokine receptor that modulates CXCR4 functions and is overexpressed in multiple cancer types. The CXCL12/CXCR4/ACKR3 axis constitutes a potential therapeutic target for a wide variety of inflammatory diseases, not only by interfering with cell migration but also by modulating immune responses. Thus far, only one antagonist directed against the ligand-binding site of CXCR4, AMD3100, has demonstrated clinical relevance. Here, we review the role of this ligand and its receptors in different autoimmune diseases.
Collapse
Affiliation(s)
- Eva M. García-Cuesta
- Department of Immunology and Oncology, Centro Nacional de Biotecnología/CSIC, Madrid, Spain
| | - César A. Santiago
- Macromolecular X-Ray Crystallography Unit, Centro Nacional de Biotecnología/CSIC, Madrid, Spain
| | - Jesús Vallejo-Díaz
- Department of Immunology and Oncology, Centro Nacional de Biotecnología/CSIC, Madrid, Spain
| | - Yasmina Juarranz
- Department Cell Biology, Research Institute Hospital 12 de Octubre (i+12), Complutense University of Madrid, Madrid, Spain
| | | | - Mario Mellado
- Department of Immunology and Oncology, Centro Nacional de Biotecnología/CSIC, Madrid, Spain
- *Correspondence: Mario Mellado
| |
Collapse
|
40
|
Janssens R, Struyf S, Proost P. Pathological roles of the homeostatic chemokine CXCL12. Cytokine Growth Factor Rev 2018; 44:51-68. [PMID: 30396776 DOI: 10.1016/j.cytogfr.2018.10.004] [Citation(s) in RCA: 111] [Impact Index Per Article: 18.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2018] [Accepted: 10/19/2018] [Indexed: 12/12/2022]
Abstract
CXCL12 is a CXC chemokine that traditionally has been classified as a homeostatic chemokine. It contributes to physiological processes such as embryogenesis, hematopoiesis and angiogenesis. In contrast to these homeostatic functions, increased expression of CXCL12 in general, or of a specific CXCL12 splicing variant has been demonstrated in various pathologies. In addition to this increased or differential transcription of CXCL12, also upregulation of its receptors CXC chemokine receptor 4 (CXCR4) and atypical chemokine receptor 3 (ACKR3) contributes to the onset or progression of diseases. Moreover, posttranslational modification of CXCL12 during disease progression, through interaction with locally produced molecules or enzymes, also affects CXCL12 activity, adding further complexity. As CXCL12, CXCR4 and ACKR3 are broadly expressed, the number of pathologies wherein CXCL12 is involved is growing. In this review, the role of the CXCL12/CXCR4/ACKR3 axis will be discussed for the most prevalent pathologies. Administration of CXCL12-neutralizing antibodies or small-molecule antagonists of CXCR4 or ACKR3 delays disease onset or prevents disease progression in cancer, viral infections, inflammatory bowel diseases, rheumatoid arthritis and osteoarthritis, asthma and acute lung injury, amyotrophic lateral sclerosis and WHIM syndrome. On the other hand, CXCL12 has protective properties in Alzheimer's disease and multiple sclerosis, has a beneficial role in wound healing and has crucial homeostatic properties in general.
Collapse
Affiliation(s)
- Rik Janssens
- KU Leuven, University of Leuven, Department of Microbiology and Immunology, Rega Institute for Medical Research, Laboratory of Molecular Immunology, B-3000 Leuven, Belgium
| | - Sofie Struyf
- KU Leuven, University of Leuven, Department of Microbiology and Immunology, Rega Institute for Medical Research, Laboratory of Molecular Immunology, B-3000 Leuven, Belgium
| | - Paul Proost
- KU Leuven, University of Leuven, Department of Microbiology and Immunology, Rega Institute for Medical Research, Laboratory of Molecular Immunology, B-3000 Leuven, Belgium.
| |
Collapse
|
41
|
Natural nitration of CXCL12 reduces its signaling capacity and chemotactic activity in vitro and abrogates intra-articular lymphocyte recruitment in vivo. Oncotarget 2018; 7:62439-62459. [PMID: 27566567 PMCID: PMC5308738 DOI: 10.18632/oncotarget.11516] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2015] [Accepted: 08/13/2016] [Indexed: 01/01/2023] Open
Abstract
The chemokine CXCL12/stromal cell-derived factor-1 is important for leukocyte migration to lymphoid organs and inflamed tissues and stimulates tumor development. In vitro, CXCL12 activity through CXCR4 is abolished by proteolytic processing. However, limited information is available on in vivo effects of posttranslationally modified CXCL12. Natural CXCL12 was purified from the coculture supernatant of stromal cells stimulated with leukocytes and inflammatory agents. In this conditioned medium, CXCL12 with a nitration on Tyr7, designated [3-NT7]CXCL12, was discovered via Edman degradation. CXCL12 and [3-NT7]CXCL12 were chemically synthesized to evaluate the biological effects of this modification. [3-NT7]CXCL12 recruited β-arrestin 2 and phosphorylated the Akt kinase similar to CXCL12 in receptor-transfected cells. Also the affinity of CXCL12 and [3-NT7]CXCL12 for glycosaminoglycans, the G protein-coupled chemokine receptor CXCR4 and the atypical chemokine receptor ACKR3 were comparable. However, [3-NT7]CXCL12 showed a reduced ability to enhance intracellular calcium concentrations, to generate inositol triphosphate, to phosphorylate ERK1/2 and to induce monocyte and lymphocyte chemotaxis in vitro. Moreover, nitrated CXCL12 failed to induce in vivo extravasation of lymphocytes to the joint. In summary, nitration on Tyr7 under inflammatory conditions is a novel natural posttranslational regulatory mechanism of CXCL12 which may downregulate the CXCR4-mediated inflammatory and tumor-promoting activities of CXCL12.
Collapse
|
42
|
Coppolino GT, Marangon D, Negri C, Menichetti G, Fumagalli M, Gelosa P, Dimou L, Furlan R, Lecca D, Abbracchio MP. Differential local tissue permissiveness influences the final fate of GPR17-expressing oligodendrocyte precursors in two distinct models of demyelination. Glia 2018; 66:1118-1130. [PMID: 29424466 PMCID: PMC5900886 DOI: 10.1002/glia.23305] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2017] [Revised: 01/13/2018] [Accepted: 01/29/2018] [Indexed: 01/08/2023]
Abstract
Promoting remyelination is recognized as a novel strategy to foster repair in neurodegenerative demyelinating diseases, such as multiple sclerosis. In this respect, the receptor GPR17, recently emerged as a new target for remyelination, is expressed by early oligodendrocyte precursors (OPCs) and after a certain differentiation stage it has to be downregulated to allow progression to mature myelinating oligodendrocytes. Here, we took advantage of the first inducible GPR17 reporter mouse line (GPR17‐iCreERT2xCAG‐eGFP mice) allowing to follow the final fate of GPR17+ cells by tamoxifen‐induced GFP‐labeling to unveil the destiny of these cells in two demyelination models: experimental autoimmune encephalomyelitis (EAE), characterized by marked immune cell activation and inflammation, and cuprizone induced demyelination, where myelin dysfunction is achieved by a toxic insult. In both models, demyelination induced a strong increase of fluorescent GFP+ cells at damaged areas. However, only in the cuprizone model reacting GFP+ cells terminally differentiated to mature oligodendrocytes, thus contributing to remyelination. In EAE, GFP+ cells were blocked at immature stages and never became myelinating oligodendrocytes. We suggest these strikingly distinct fates be due to different permissiveness of the local CNS environment. Based on previously reported GPR17 activation by emergency signals (e.g., Stromal Derived Factor‐1), we propose that a marked inflammatory milieu, such as that reproduced in EAE, induces GPR17 overactivation resulting in impaired downregulation, untimely and prolonged permanence in OPCs, leading, in turn, to differentiation blockade. Combined treatments with remyelinating agents and anti‐inflammatory drugs may represent new potential adequate strategies to halt neurodegeneration and foster recovery.
Collapse
Affiliation(s)
- Giusy T Coppolino
- Laboratory of Molecular and Cellular Pharmacology of the Purinergic Transmission, Dipartimento di Scienze Farmacologiche e Biomolecolari, Università degli Studi di Milano, Via Balzaretti 9, Milan, 20133, Italy
| | - Davide Marangon
- Laboratory of Molecular and Cellular Pharmacology of the Purinergic Transmission, Dipartimento di Scienze Farmacologiche e Biomolecolari, Università degli Studi di Milano, Via Balzaretti 9, Milan, 20133, Italy
| | - Camilla Negri
- Laboratory of Molecular and Cellular Pharmacology of the Purinergic Transmission, Dipartimento di Scienze Farmacologiche e Biomolecolari, Università degli Studi di Milano, Via Balzaretti 9, Milan, 20133, Italy
| | - Gianluca Menichetti
- Laboratory of Molecular and Cellular Pharmacology of the Purinergic Transmission, Dipartimento di Scienze Farmacologiche e Biomolecolari, Università degli Studi di Milano, Via Balzaretti 9, Milan, 20133, Italy
| | - Marta Fumagalli
- Laboratory of Molecular and Cellular Pharmacology of the Purinergic Transmission, Dipartimento di Scienze Farmacologiche e Biomolecolari, Università degli Studi di Milano, Via Balzaretti 9, Milan, 20133, Italy
| | - Paolo Gelosa
- Centro Cardiologico Monzino, Via Parea, 4, Milano, 20138, Italy
| | - Leda Dimou
- Molecular and Translational Neuroscience, University of Ulm, Albert-Einstein-Allee 11, Ulm, D - 89081, Germany
| | - Roberto Furlan
- Institute of Experimental Neurology, S. Raffaele Scientific Institute, Via Olgettina, 58, Milano, 20132, Italy
| | - Davide Lecca
- Laboratory of Molecular and Cellular Pharmacology of the Purinergic Transmission, Dipartimento di Scienze Farmacologiche e Biomolecolari, Università degli Studi di Milano, Via Balzaretti 9, Milan, 20133, Italy
| | - Maria P Abbracchio
- Laboratory of Molecular and Cellular Pharmacology of the Purinergic Transmission, Dipartimento di Scienze Farmacologiche e Biomolecolari, Università degli Studi di Milano, Via Balzaretti 9, Milan, 20133, Italy
| |
Collapse
|
43
|
Pollok K, Mothes R, Ulbricht C, Liebheit A, Gerken JD, Uhlmann S, Paul F, Niesner R, Radbruch H, Hauser AE. The chronically inflamed central nervous system provides niches for long-lived plasma cells. Acta Neuropathol Commun 2017; 5:88. [PMID: 29178933 PMCID: PMC5702095 DOI: 10.1186/s40478-017-0487-8] [Citation(s) in RCA: 50] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2017] [Accepted: 10/30/2017] [Indexed: 11/11/2022] Open
Abstract
Although oligoclonal bands in the cerebrospinal fluid have been a hallmark of multiple sclerosis diagnosis for over three decades, the role of antibody-secreting cells in multiple sclerosis remains unclear. T and B cells are critical for multiple sclerosis pathogenesis, but increasing evidence suggests that plasma cells also contribute, through secretion of autoantibodies. Long-lived plasma cells are known to drive various chronic inflammatory conditions as e.g. systemic lupus erythematosus, however, to what extent they are present in autoimmune central nervous system inflammation has not yet been investigated. In brain biopsies from multiple sclerosis patients and other neurological diseases, we could detect non-proliferating plasma cells (CD138+Ki67−) in the parenchyma. Based on this finding, we hypothesized that long-lived plasma cells can persist in the central nervous system (CNS). In order to test this hypothesis, we adapted the multiple sclerosis mouse model experimental autoimmune encephalomyelitis to generate a B cell memory response. Plasma cells were found in the meninges and the parenchyma of the inflamed spinal cord, surrounded by tissue areas resembling survival niches for these cells, characterized by an up-regulation of chemokines (CXCL12), adhesion molecules (VCAM-1) and survival factors (APRIL and BAFF). In order to determine the lifetime of plasma cells in the chronically inflamed CNS, we labeled the DNA of proliferating cells with 5-ethynyl-2′-deoxyuridine (EdU). Up to five weeks later, we could detect EdU+ long-lived plasma cells in the murine CNS. To our knowledge, this is the first study describing non-proliferating plasma cells directly in the target tissue of a chronic inflammation in humans, as well as the first evidence demonstrating the ability of plasma cells to persist in the CNS, and the ability of the chronically inflamed CNS tissue to promote this persistence. Hence, our results suggest that the CNS provides survival niches for long-lived plasma cells, similar to the niches found in other organs. Targeting these cells in the CNS offers new perspectives for treatment of chronic autoimmune neuroinflammatory diseases, especially in patients who do not respond to conventional therapies.
Collapse
|
44
|
EZH2 regulates dental pulp inflammation by direct effect on inflammatory factors. Arch Oral Biol 2017; 85:16-22. [PMID: 29028630 DOI: 10.1016/j.archoralbio.2017.10.004] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2017] [Revised: 09/22/2017] [Accepted: 10/07/2017] [Indexed: 02/05/2023]
Abstract
OBJECTIVE Pulpitis is a multi-factorial disease that could be caused by complex interactions between genetics, epigenetics and environmental factors. We aimed to evaluate the role of Enhancer of Zeste Homolog 2 (EZH2) in the inflammatory response of human dental pulp cells (HDPCs) and dental pulp tissues. METHODS The expressions of inflammatory cytokines in HDPCs treated by EZH2 complex or EZH2 siRNA with or without rhTNF-α were examined by quantitative real-time polymerase chain reaction (q-PCR). The levels of secreted inflammatory cytokines including IL-6, IL-8, IL-15, CCL2 and CXCL12 in culture supernatants were measured by Luminex assay. In rat pulpitis model, the effects of EZH2 on dental pulp tissues were verified by histology. We invested the mechanisms of the effect of EZH2 on the inflammatory factors by ChIP assay. RESULTS EZH2 down-regulation inhibited the expression of inflammatory factors, including IL-6, IL-8, IL-15, CCL2 and CXCL12 in HDPCs. EZH2 complex promoted the expression and secretion of these inflammatory factors in HDPCs, while EZH2 silencing could attenuate the promotion of inflammatory factors that were induced by rhTNF-α. In pulpitis models of rats, EZH2 down-regulation inhibited the inflammatory process of dental pulp while EZH2 complex showed no significant facilitation of pulpal inflammation. In addition, EZH2 could bind on the promoters of IL-6, IL-8 and CCL2, but not IL-15 and CXCL12, to affect the transcription of these proinflammatory cytokines. CONCLUSIONS In HDPCs, EZH2 could induce inflammation, while EZH2 down-regulation could attenuate the inflammatory responses. EZH2 plays an important role in this inflammatory process of dental pulp.
Collapse
|
45
|
Lin CC, Edelson BT. New Insights into the Role of IL-1β in Experimental Autoimmune Encephalomyelitis and Multiple Sclerosis. THE JOURNAL OF IMMUNOLOGY 2017; 198:4553-4560. [PMID: 28583987 DOI: 10.4049/jimmunol.1700263] [Citation(s) in RCA: 97] [Impact Index Per Article: 13.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/21/2017] [Accepted: 03/23/2017] [Indexed: 01/05/2023]
Abstract
Multiple sclerosis (MS), and its animal model experimental autoimmune encephalomyelitis, are neuroinflammatory diseases driven by autoreactive pathogenic TH cells that elicit demyelination and axonal damage. How TH cells acquire pathogenicity and communicate with myeloid cells and cells of the CNS remain unclear. IL-1β is recognized to play an important role in experimental autoimmune encephalomyelitis (EAE) and perhaps MS. Clinical EAE is significantly attenuated in IL-1R-deficient and IL-1β-deficient mice, and IL-1β is found in the blood, cerebrospinal fluid, and CNS lesions of MS patients. In this article, we focus on new reports that elucidate the cellular sources of IL-1β and its actions during EAE, in both lymphoid tissues and within the CNS. Several immune cell types serve as critical producers of IL-1β during EAE, with this cytokine inducing response in both hematopoietic and nonhematopoietic cells. These findings from the EAE model should inspire efforts toward investigating the therapeutic potential of IL-1 blockade in MS.
Collapse
Affiliation(s)
- Chih-Chung Lin
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO 63110
| | - Brian T Edelson
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO 63110
| |
Collapse
|
46
|
Dopamine Increases CD14 +CD16 + Monocyte Transmigration across the Blood Brain Barrier: Implications for Substance Abuse and HIV Neuropathogenesis. J Neuroimmune Pharmacol 2017; 12:353-370. [PMID: 28133717 DOI: 10.1007/s11481-017-9726-9] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2016] [Accepted: 01/12/2017] [Indexed: 01/11/2023]
Abstract
In human immunodeficiency virus-1 (HIV) infected individuals, substance abuse may accelerate the development and/or increase the severity of HIV associated neurocognitive disorders (HAND). It is proposed that CD14+CD16+ monocytes mediate HIV entry into the central nervous system (CNS) and that uninfected and infected CD14+CD16+ monocyte transmigration across the blood brain barrier (BBB) contributes to the establishment and propagation of CNS HIV viral reservoirs and chronic neuroinflammation, important factors in the development of HAND. The effects of substance abuse on the frequency of CD14+CD16+ monocytes in the peripheral circulation and on the entry of these cells into the CNS during HIV neuropathogenesis are not known. PBMC from HIV infected individuals were analyzed by flow cytometry and we demonstrate that the frequency of peripheral blood CD14+CD16+ monocytes in HIV infected substance abusers is increased when compared to those without active substance use. Since drug use elevates extracellular dopamine concentrations in the CNS, we examined the effects of dopamine on CD14+CD16+ monocyte transmigration across our in vitro model of the human BBB. The transmigration of this monocyte subpopulation is increased by dopamine and the dopamine receptor agonist, SKF 38393, implicating D1-like dopamine receptors in the increase in transmigration elicited by this neurotransmitter. Thus, elevated extracellular CNS dopamine may be a novel common mechanism by which active substance use increases uninfected and HIV infected CD14+CD16+ monocyte transmigration across the BBB. The influx of these cells into the CNS may increase viral seeding and neuroinflammation, contributing to the development of HIV associated neurocognitive impairments.
Collapse
|
47
|
Chu T, Shields LBE, Zhang YP, Feng SQ, Shields CB, Cai J. CXCL12/CXCR4/CXCR7 Chemokine Axis in the Central Nervous System: Therapeutic Targets for Remyelination in Demyelinating Diseases. Neuroscientist 2017; 23:627-648. [PMID: 29283028 DOI: 10.1177/1073858416685690] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
The chemokine CXCL12 plays a vital role in regulating the development of the central nervous system (CNS) by binding to its receptors CXCR4 and CXCR7. Recent studies reported that the CXCL12/CXCR4/CXCR7 axis regulates both embryonic and adult oligodendrocyte precursor cells (OPCs) in their proliferation, migration, and differentiation. The changes in the expression and distribution of CXCL12 and its receptors are tightly associated with the pathological process of demyelination in multiple sclerosis (MS), suggesting that modulating the CXCL12/CXCR4/CXCR7 axis may benefit myelin repair by enhancing OPC recruitment and differentiation. This review aims to integrate the current findings of the CXCL12/CXCR4/CXCR7 signaling pathway in the CNS and to highlight its role in oligodendrocyte development and demyelinating diseases. Furthermore, this review provides potential therapeutic strategies for myelin repair by analyzing the relevance between the pathological changes and the regulatory roles of CXCL12/CXCR4/CXCR7 during MS.
Collapse
Affiliation(s)
- Tianci Chu
- 1 Department of Pediatrics, University of Louisville School of Medicine, Louisville, KY, USA
| | - Lisa B E Shields
- 2 Norton Neuroscience Institute, Norton Healthcare, Louisville, KY, USA
| | - Yi Ping Zhang
- 2 Norton Neuroscience Institute, Norton Healthcare, Louisville, KY, USA
| | - Shi-Qing Feng
- 3 Department of Orthopedics, General Hospital of Tianjin Medical University, Tianjin, People's Republic of China
| | | | - Jun Cai
- 1 Department of Pediatrics, University of Louisville School of Medicine, Louisville, KY, USA.,4 Department of Anatomical Sciences and Neurobiology, University of Louisville School of Medicine, Louisville, KY, USA
| |
Collapse
|
48
|
Lian YJ, Gong H, Wu TY, Su WJ, Zhang Y, Yang YY, Peng W, Zhang T, Zhou JR, Jiang CL, Wang YX. Ds-HMGB1 and fr-HMGB induce depressive behavior through neuroinflammation in contrast to nonoxid-HMGB1. Brain Behav Immun 2017; 59:322-332. [PMID: 27647532 DOI: 10.1016/j.bbi.2016.09.017] [Citation(s) in RCA: 79] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/06/2016] [Revised: 09/14/2016] [Accepted: 09/15/2016] [Indexed: 02/08/2023] Open
Abstract
High mobility group box 1 (HMGB1) has been implicated as a key factor in several neuroinflammatory conditions. Our previous study suggested that the release of central HMGB1 acts as a late-phase mediator in lipopolysaccharide (LPS)-induced depression. Recent findings indicate that the redox state of HMGB1 is a critical determinant of its immunomodulatory properties. Here, we aimed to investigate the potential mechanisms that link the redox states of HMGB1 to depression in mice. Distinct redox forms of recombinant HMGB1 (rHMGB1) were used that included fully reduced HMGB (fr-HMGB1), which acted as a chemokine, and disulfide-HMGB1 (ds-HMGB1), which possessed cytokine activity. Fr-HMGB1 in vivo was partially oxidized into ds-HMGB1; thus, the mutant protein non-oxidizable chemokine-HMGB (nonoxid-HMGB1) was applied. Concurrent with depressive behavior induced by four-week stress exposure, the HMGB1 concentrations in the serum and cerebral cortex substantially increased. Therefore, a single dose of rHMGB1 (200ng/5μl/mice) or vehicle was administered to mice via intracerebroventricular (i.c.v.) injection. The receptor inhibitors of TLR4/RAGE/CXCR4 (TAK-242/FPS-ZM1/AMD3100) (3mg/kg) were intraperitoneally injected 30min prior to rHMGB1 treatment. Depressive-like behavior was measured 20h post i.c.v. injection. Administration of fr-HMGB1 prolonged the immobility duration in the tail suspension test (TST) and decreased sucrose preference. In addition to depressive behavior, the hippocampal TNF-α protein slightly increased. These depressive behaviors and upregulation of hippocampal TNF-α were alleviated or abrogated by pretreatment with the inhibitors AMD3100, FPS-ZM1, and TAK-242. Alternatively, nonoxid-HMGB1 failed to induce TNF-α protein or prolong the immobility duration. As expected, ds-HMGB1 administration substantially upregulated hippocampal TNF-α protein, increased the immobility time in the TST and decreased sucrose preference. Moreover, both glycyrrhizin and TAK-242 improved ds-HMGB1-induced depressive behavior. Furthermore, TAK-242 significantly blocked the upregulation of hippocampal TNF-α protein and protected hippocampal myelin basic protein from ds-HMGB1-induced reduction. These drugs had no effect on the total or central distance in the open field test. Collectively, this initial experiment demonstrates the role and receptor mechanisms of HMGB1 under different redox states on the induction of depressive-like behavior. Both ds-HMGB1 and fr-HMGB1 may induce depressive-like behavior in vivo mainly via neuroinflammatory response activation.
Collapse
Affiliation(s)
- Yong-Jie Lian
- Lab of Stress Medicine, Department of Psychology and Mental Health, Second Military Medical University, Shanghai 200433, PR China
| | - Hong Gong
- Lab of Stress Medicine, Department of Psychology and Mental Health, Second Military Medical University, Shanghai 200433, PR China
| | - Teng-Yun Wu
- Team of Aviation Physical Examination, Air Force General Hospital of PLA, Beijing 100142, PR China
| | - Wen-Jun Su
- Lab of Stress Medicine, Department of Psychology and Mental Health, Second Military Medical University, Shanghai 200433, PR China
| | - Yi Zhang
- Lab of Stress Medicine, Department of Psychology and Mental Health, Second Military Medical University, Shanghai 200433, PR China
| | - Yuan-Yuan Yang
- Lab of Stress Medicine, Department of Psychology and Mental Health, Second Military Medical University, Shanghai 200433, PR China
| | - Wei Peng
- Lab of Stress Medicine, Department of Psychology and Mental Health, Second Military Medical University, Shanghai 200433, PR China
| | - Ting Zhang
- Department of Navy Medicine, Second Military Medical University, Shanghai 200433, PR China
| | - Jiang-Rui Zhou
- Lab of Stress Medicine, Department of Psychology and Mental Health, Second Military Medical University, Shanghai 200433, PR China
| | - Chun-Lei Jiang
- Lab of Stress Medicine, Department of Psychology and Mental Health, Second Military Medical University, Shanghai 200433, PR China
| | - Yun-Xia Wang
- Lab of Stress Medicine, Department of Psychology and Mental Health, Second Military Medical University, Shanghai 200433, PR China.
| |
Collapse
|
49
|
Karimabad MN, Khoramdelazad H, Hassanshahi G. Genetic variation, biological structure, sources, and fundamental parts played by CXCL12 in pathophysiology of type 1 diabetes mellitus. Int J Diabetes Dev Ctries 2016. [DOI: 10.1007/s13410-016-0534-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/20/2022] Open
|
50
|
Yasunaga S, Domen M, Nishi K, Kadota A, Sugahara T. Nobiletin suppresses monocyte chemoattractant protein-1 (MCP-1) expression by regulating MAPK signaling in 3T3-L1 cells. J Funct Foods 2016. [DOI: 10.1016/j.jff.2016.09.025] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
|