1
|
Lim S, Yum YJ, Kim JH, Lee CN, Joo HJ, Kwon DY. Cardiovascular outcomes in Parkinson's disease patients from a retrospective cohort study. Sci Rep 2024; 14:21928. [PMID: 39304675 PMCID: PMC11415384 DOI: 10.1038/s41598-024-72549-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2024] [Accepted: 09/09/2024] [Indexed: 09/22/2024] Open
Abstract
Parkinson's disease (PD) reports high rates of morbidity and mortality, but the risk of adverse cardiovascular outcomes in patients with PD has not been fully elucidated. This bi-center retrospective cohort study using the electronic health records (EHR) database of two tertiary hospitals screened a total of 327,292 subjects who visited the outpatient clinic, and 1194 patients with PD were propensity score-matched with a control population. The primary outcome was the occurrence of major adverse cardiovascular events (MACE). Key secondary outcomes included all-cause death, cardiovascular (CV) death, stroke, myocardial infarction (MI), heart failure hospitalization and 30-day CV death. After PS matching, MACE occurrence was not significantly different between PD and non-PD groups (18.2% vs. 17.5%, log-rank p = 0.98). Key secondary outcomes were also similar between the two groups. In patients with PD, MACE rate, and also CV risk score, were higher in patients with more severe PD (according to Hoehn and Yahr scale and unified Parkinson's disease rating scale), and after multivariable analysis, PD severity was not an independent predictor of MACE. Patients with PD are at an increased risk of adverse cardiovascular outcomes, but the contribution from other common CV risk factors cannot be ignored. The management of prevalent CV risk factors is therefore important in mitigating adverse outcomes among patients with PD.
Collapse
Affiliation(s)
- Subin Lim
- Division of Cardiology, Department of Internal Medicine, Korea University Anam Hospital, Seoul, Republic of Korea
| | - Yun Jin Yum
- Department of Biostatistics, Korea University College of Medicine, Seoul, Republic of Korea
| | - Jong-Ho Kim
- Korea University Research Institute for Medical Bigdata Science, Korea University College of Medicine, Seongbuk-Gu, Seoul, Republic of Korea
| | - Chan-Nyoung Lee
- Department of Neurology, Korea University Anam Hospital, Seoul, Republic of Korea
| | - Hyung Joon Joo
- Division of Cardiology, Department of Internal Medicine, Korea University Anam Hospital, Seoul, Republic of Korea.
- Korea University Research Institute for Medical Bigdata Science, Korea University College of Medicine, Seongbuk-Gu, Seoul, Republic of Korea.
- Department of Medical Informatics, Korea University College of Medicine, Seoul, Korea.
| | - Do-Young Kwon
- Department of Neurology, Korea University Ansan Hospital, 123 Jeokgeum-ro, Danwon-gu, Ansan-si, Gyeonggi-do, Republic of Korea.
| |
Collapse
|
2
|
Shi Y, Zhang X, Feng Y, Yue Z. Association of metabolic syndrome and its components with Parkinson's disease: a cross-sectional study. BMC Endocr Disord 2024; 24:92. [PMID: 38890672 PMCID: PMC11186221 DOI: 10.1186/s12902-024-01623-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/13/2024] [Accepted: 06/13/2024] [Indexed: 06/20/2024] Open
Abstract
BACKGROUND The interrelation between metabolic syndrome (MetS) and Parkinson's disease (PD) likely arises from shared pathological mechanisms. This study thus aims to examine the impact of MetS and its components on PD. METHODS This study utilized data extracted from the National Health and Nutrition Examination Survey database spanning 1999 to 2020. The random forest algorithm was applied to fill in the missing data. Propensity score optimal full matching was conducted. The data were adjusted by total weights derived from both sampling and matching weights. The weighted data were utilized to create multifactor logistic regression models. Odds ratios (ORs) and average marginal effects, along with their corresponding 95% confidence intervals (CIs), were calculated. RESULTS MetS did not significantly affect the risk of PD (OR: 1.01; 95% CI: 0.77, 1.34; P = 0.92). Hypertension elevated the risk of PD (OR: 1.33; 95% CI: 1.01, 1.76; P = 0.045), accompanied by a 0.26% increased probability of PD occurrence (95% CI: 0.01%, 0.52%; P = 0.04). Diabetes mellitus (DM) had a 1.38 times greater likelihood of developing PD (OR:1.38; 95% CI: 1.004, 1.89; P = 0.046), corresponding to a 0.32% increased probability of PD occurrence (95% CI: -0.03%, 0.67%; P = 0.07). Nevertheless, no correlation was observed between hyperlipidemia, waist circumference and PD. CONCLUSION MetS does not affect PD; however, hypertension and DM significantly increase the risk of PD.
Collapse
Affiliation(s)
- Yue Shi
- Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - XueYi Zhang
- Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Yue Feng
- Chengdu University of Traditional Chinese Medicine, Chengdu, China.
| | - ZongXiang Yue
- Meishan Hospital of Traditional Chinese Medicine, Meishan, China.
| |
Collapse
|
3
|
Azami M, Moradkhani A, Afraie M, Khateri S, Sharifian E, Zamani K, Moradi Y. The risk of Parkinson's disease in diabetic people: an updated systematic review and meta-analysis. Acta Neurol Belg 2024; 124:775-790. [PMID: 37982931 DOI: 10.1007/s13760-023-02424-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2023] [Accepted: 10/23/2023] [Indexed: 11/21/2023]
Abstract
BACKGROUND Diabetes mellitus (DM) and the risk of Parkinson's disease (PD) have been linked in previous studies. But the outcomes are still up for debate. This meta-analysis examined how DM affected the likelihood of developing PD. METHODS A comprehensive search of international databases, including Medline (PubMed), Web of Sciences, Scopus, and EMBASE until January 2023, was conducted to assess the relationship between DM and PD. Cohort and case-control studies were included. Subgroup analysis was carried out based on the duration of PD, continent, age, PD criteria, DM criteria, and effect size. RESULTS In the meta-analysis, 25 studies encompassing a total of 39,209,316 participants were incorporated. The collective estimation of the relative risk concerning the association between Diabetes Mellitus (DM) and Parkinson's Disease (PD) yielded a value of 1.22 (95% CI 1.08-1.37). Subsequent subgroup analyses unveiled a heightened risk of DM among patients in the Asian demographic, particularly those of a younger age and a longer duration of PD. The findings from our comprehensive meta-analysis underscore a potentially emerging connection between DM and PD. CONCLUSION These results showed that people with DM are more susceptible to developing other neurological diseases, such as PD, indicating that efforts are required to prevent the progression of such diseases among individuals with DM.
Collapse
Affiliation(s)
- Mobin Azami
- Student of the Research Committee, Kurdistan University of Medical Sciences, Sanandaj, Iran
| | - Asra Moradkhani
- Student of the Research Committee, Kurdistan University of Medical Sciences, Sanandaj, Iran
| | - Maryam Afraie
- Department of Epidemiology and Biostatistics, Faculty of Medicine, Kurdistan University of Medical Sciences, Sanandaj, Iran
| | - Sorour Khateri
- Department of Physical Medicine and Rehabilitation, School of Medicine, Sina (Farshchian) Educational and Medical Center, Hamadan University of Medical Sciences, Hamedan, Iran
| | - Erfan Sharifian
- Student of the Research Committee, Kurdistan University of Medical Sciences, Sanandaj, Iran
| | - Kamran Zamani
- Student of the Research Committee, Kurdistan University of Medical Sciences, Sanandaj, Iran
| | - Yousef Moradi
- Social Determinants of the Health Research Center, Research Institute for Health Development, Kurdistan University of Medical Sciences, Sanandaj, Iran.
| |
Collapse
|
4
|
Wang Q, Cai B, Zhong L, Intirach J, Chen T. Causal relationship between diabetes mellitus, glycemic traits and Parkinson's disease: a multivariable mendelian randomization analysis. Diabetol Metab Syndr 2024; 16:59. [PMID: 38438892 PMCID: PMC10913216 DOI: 10.1186/s13098-024-01299-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/18/2023] [Accepted: 02/23/2024] [Indexed: 03/06/2024] Open
Abstract
BACKGROUND Observational studies have indicated an association between diabetes mellitus (DM), glycemic traits, and the occurrence of Parkinson's disease (PD). However, the complex interactions between these factors and the presence of a causal relationship remain unclear. Therefore, we aim to systematically assess the causal relationship between diabetes, glycemic traits, and PD onset, risk, and progression. METHOD We used two-sample Mendelian randomization (MR) to investigate potential associations between diabetes, glycemic traits, and PD. We used summary statistics from genome-wide association studies (GWAS). In addition, we employed multivariable Mendelian randomization to evaluate the mediating effects of anti-diabetic medications on the relationship between diabetes, glycemic traits, and PD. To ensure the robustness of our findings, we performed a series of sensitivity analyses. RESULTS In our univariable Mendelian randomization (MR) analysis, we found evidence of a causal relationship between genetic susceptibility to type 1 diabetes (T1DM) and a reduced risk of PD (OR = 0.9708; 95% CI: 0.9466, 0.9956; P = 0.0214). In our multivariable MR analysis, after considering the conditions of anti-diabetic drug use, this correlation disappeared with adjustment for potential mediators, including anti-diabetic medications, insulin use, and metformin use. CONCLUSION Our MR study confirms a potential protective causal relationship between genetically predicted type 1 diabetes and reduced risk of PD, which may be mediated by factors related to anti-diabetic medications.
Collapse
Affiliation(s)
- Qitong Wang
- Department of Neurology, Hainan General Hospital, Hainan Afliated Hospital of Hainan Medical University, 570311, Haikou, Hainan, China
| | - Benchi Cai
- Department of Neurology, Hainan General Hospital, Hainan Afliated Hospital of Hainan Medical University, 570311, Haikou, Hainan, China
| | - Lifan Zhong
- Department of Neurology, Hainan General Hospital, Hainan Afliated Hospital of Hainan Medical University, 570311, Haikou, Hainan, China
| | - Jitrawadee Intirach
- Department of Neurology, Hainan General Hospital, Hainan Afliated Hospital of Hainan Medical University, 570311, Haikou, Hainan, China
| | - Tao Chen
- Department of Neurology, Hainan General Hospital, Hainan Afliated Hospital of Hainan Medical University, 570311, Haikou, Hainan, China.
- Hainan Provincial Bureau of Disease Prevention and Control, 570100, Haikou, China.
| |
Collapse
|
5
|
Santiago JA, Karthikeyan M, Lackey M, Villavicencio D, Potashkin JA. Diabetes: a tipping point in neurodegenerative diseases. Trends Mol Med 2023; 29:1029-1044. [PMID: 37827904 PMCID: PMC10844978 DOI: 10.1016/j.molmed.2023.09.005] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2023] [Revised: 09/11/2023] [Accepted: 09/21/2023] [Indexed: 10/14/2023]
Abstract
Diabetes is associated with an increased risk and progression of Alzheimer's (AD) and Parkinson's (PD) diseases. Conversely, diabetes may confer neuroprotection against amyotrophic lateral sclerosis (ALS). It has been posited that perturbations in glucose and insulin regulation, cholesterol metabolism, and mitochondrial bioenergetics defects may underlie the molecular underpinnings of diabetes effects on the brain. Nevertheless, the precise molecular mechanisms remain elusive. Here, we discuss the evidence from molecular, epidemiological, and clinical studies investigating the impact of diabetes on neurodegeneration and highlight shared dysregulated pathways between these complex comorbidities. We also discuss promising antidiabetic drugs, molecular diagnostics currently in clinical trials, and outstanding questions and challenges for future pursuit.
Collapse
Affiliation(s)
| | | | | | | | - Judith A Potashkin
- Center for Neurodegenerative Diseases and Therapeutics, Cellular and Molecular Pharmacology Department, The Chicago Medical School, Rosalind Franklin University of Medicine and Science, North Chicago, IL, USA.
| |
Collapse
|
6
|
Deck BL, Kelkar A, Erickson B, Erani F, McConathey E, Sacchetti D, Faseyitan O, Hamilton R, Medaglia JD. Individual-level functional connectivity predicts cognitive control efficiency. Neuroimage 2023; 283:120386. [PMID: 37820860 DOI: 10.1016/j.neuroimage.2023.120386] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2023] [Revised: 08/30/2023] [Accepted: 09/21/2023] [Indexed: 10/13/2023] Open
Abstract
Cognitive control (CC) is essential for problem-solving in everyday life, and CC-related deficits occur alongside costly and debilitating disorders. The tri-partite model suggests that CC comprises multiple behaviors, including switching, inhibiting, and updating. Activity within the fronto-parietal control network B (FPCN-B), the dorsal attention network (DAN), the cingulo-opercular network (CON), and the lateral default-mode network (L-DMN) is related to switching and inhibiting behaviors. However, our understanding of how these brain regions interact to bring about cognitive switching and inhibiting in individuals is unclear. In the current study, subjects performed two in-scanner tasks that required switching and inhibiting. We used support vector regression (SVR) models containing individually-estimated functional connectivity between the FPCN-B, DAN, CON and L-DMN to predict switching and inhibiting behaviors. We observed that: inter-network connectivity can predict inhibiting and switching behaviors in individuals, and the L-DMN plays a role in switching and inhibiting behaviors. Therefore, individually estimated inter-network connections are markers of CC behaviors, and CC behaviors may arise due to interactions between a set of networks.
Collapse
Affiliation(s)
- Benjamin L Deck
- Department of Psychological and Brain Sciences, Drexel University, 3201 Chestnut Street, Philadelphia, 19104, PA, USA
| | - Apoorva Kelkar
- Department of Psychological and Brain Sciences, Drexel University, 3201 Chestnut Street, Philadelphia, 19104, PA, USA
| | - Brian Erickson
- Department of Psychological and Brain Sciences, Drexel University, 3201 Chestnut Street, Philadelphia, 19104, PA, USA
| | - Fareshte Erani
- Department of Psychological and Brain Sciences, Drexel University, 3201 Chestnut Street, Philadelphia, 19104, PA, USA
| | - Eric McConathey
- Department of Neurology, The University of Pennsylvania: Perelman School of Medicine, 3400 Civic Center Blvd, Philadelphia, 19104, PA, USA
| | - Daniela Sacchetti
- Department of Neurology, The University of Pennsylvania: Perelman School of Medicine, 3400 Civic Center Blvd, Philadelphia, 19104, PA, USA
| | - Olufunsho Faseyitan
- Department of Neurology, The University of Pennsylvania: Perelman School of Medicine, 3400 Civic Center Blvd, Philadelphia, 19104, PA, USA
| | - Roy Hamilton
- Department of Neurology, The University of Pennsylvania: Perelman School of Medicine, 3400 Civic Center Blvd, Philadelphia, 19104, PA, USA
| | - John D Medaglia
- Department of Psychological and Brain Sciences, Drexel University, 3201 Chestnut Street, Philadelphia, 19104, PA, USA; Department of Neurology, The University of Pennsylvania: Perelman School of Medicine, 3400 Civic Center Blvd, Philadelphia, 19104, PA, USA.
| |
Collapse
|
7
|
Li LY, Liu SF, Zhuang JL, Li MM, Huang ZP, Chen YH, Chen XR, Chen CN, Lin S, Ye LC. Recent research progress on metabolic syndrome and risk of Parkinson's disease. Rev Neurosci 2023; 34:719-735. [PMID: 36450297 DOI: 10.1515/revneuro-2022-0093] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2022] [Accepted: 11/06/2022] [Indexed: 10/05/2023]
Abstract
Parkinson's disease (PD) is one of the most widespread neurodegenerative diseases. PD is associated with progressive loss of substantia nigra dopaminergic neurons, including various motor symptoms (e.g., bradykinesia, rigidity, and resting tremor), as well as non-motor symptoms (e.g., cognitive impairment, constipation, fatigue, sleep disturbance, and depression). PD involves multiple biological processes, including mitochondrial or lysosomal dysfunction, oxidative stress, insulin resistance, and neuroinflammation. Metabolic syndrome (MetS), a collection of numerous connected cerebral cardiovascular conditions, is a common and growing public health problem associated with many chronic diseases worldwide. MetS components include central/abdominal obesity, systemic hypertension, diabetes, and atherogenic dyslipidemia. MetS and PD share multiple pathophysiological processes, including insulin resistance, oxidative stress, and chronic inflammation. In recent years, MetS has been linked to an increased risk of PD, according to studies; however, the specific mechanism remains unclear. Researchers also found that some related metabolic therapies are potential therapeutic strategies to prevent and improve PD. This article reviews the epidemiological relationship between components of MetS and the risk of PD and discusses the potentially relevant mechanisms and recent progress of MetS as a risk factor for PD. Furthermore, we conclude that MetS-related therapies are beneficial for the prevention and treatment of PD.
Collapse
Affiliation(s)
- Lin-Yi Li
- Department of Neurology, The Second Affiliated Hospital, Fujian Medical University, No. 34 North Zhongshan Road, Quanzhou 362000, Fujian Province, China
| | - Shu-Fen Liu
- Department of Neurology, The Second Affiliated Hospital, Fujian Medical University, No. 34 North Zhongshan Road, Quanzhou 362000, Fujian Province, China
| | - Jian-Long Zhuang
- Prenatal Diagnosis Center, Quanzhou Women's and Children's Hospital, Quanzhou 362000, China
| | - Mi-Mi Li
- Department of Neurology, The Second Affiliated Hospital, Fujian Medical University, No. 34 North Zhongshan Road, Quanzhou 362000, Fujian Province, China
| | - Zheng-Ping Huang
- Department of Neurology, The Second Affiliated Hospital, Fujian Medical University, No. 34 North Zhongshan Road, Quanzhou 362000, Fujian Province, China
| | - Yan-Hong Chen
- Department of Neurology, Shishi General Hospital, Quanzhou 362000, Fujian Province, China
| | - Xiang-Rong Chen
- Department of Neurosurgery, The Second Affiliated Hospital, Fujian Medical University, Quanzhou 362000, Fujian Province, China
| | - Chun-Nuan Chen
- Department of Neurology, The Second Affiliated Hospital, Fujian Medical University, No. 34 North Zhongshan Road, Quanzhou 362000, Fujian Province, China
| | - Shu Lin
- Centre of Neurological and Metabolic Research, The Second Affiliated Hospital of Fujian Medical University, Quanzhou 362000, Fujian Province, China
- Group of Neuroendocrinology, Garvan Institute of Medical Research, 384 Victoria St, Sydney, NSW, Australia
| | - Li-Chao Ye
- Department of Neurology, The Second Affiliated Hospital, Fujian Medical University, No. 34 North Zhongshan Road, Quanzhou 362000, Fujian Province, China
| |
Collapse
|
8
|
Choi JY, Han K, Kim YW, Lee SC, Shin J, Yang SN, Yoon SY. Association between Low Blood Pressure and Subsequent Risk of Parkinson's Disease in Older Adults Aged ≥75 Years. Gerontology 2023; 69:1269-1277. [PMID: 37640013 PMCID: PMC10634271 DOI: 10.1159/000533676] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Accepted: 08/14/2023] [Indexed: 08/31/2023] Open
Abstract
INTRODUCTION The association between blood pressure (BP) and incidence of Parkinson's disease (PD) in older adults remains uncertain. Therefore, this study aimed to investigate the association between BP (high or low) and PD incidence in adults aged ≥75 years. METHODS In this nationwide population-based cohort study, we enrolled participants aged ≥75 years without a prior PD diagnosis who had undergone health examination provided by the Korean National Health Insurance Service at least once from January 1, 2009, to December 31, 2012. The participants were followed up until December 31, 2019, or the date of their death. The Cox proportional hazards model was used to assess the risk of PD depending on systolic BP (SBP), diastolic BP (DBP), and pulse pressure. RESULTS Overall, 963,525 participants were enrolled in the analysis and followed up until December 31, 2019, or the date of death (40.7% male, mean age 78.5 ± 3.6 years). The mean SBP and DBP were 131.4 ± 16.7 and 77.9 ± 10.3 mm Hg, respectively. During the 10-year follow-up period, 16,414 (1.7%) newly diagnosed cases of PD were reported. A significant inverse dose-response association was found between SBP and PD incidence. In the subgroup analysis, this association was maintained for most variables, including sex, use of antihypertensive medication, comorbidities, alcohol consumption, physical activity, and body mass index, except for smoking status. CONCLUSION Lower SBP and DBP were associated with a higher PD incidence in older adults. These results may have substantial implications for determining the optimal BP control target in adults aged ≥75 years.
Collapse
Affiliation(s)
- Ja Young Choi
- Department of Physical and Rehabilitation Medicine, Chungnam National University College of Medicine, Daejeon, Republic of Korea
| | - Kyungdo Han
- Statistics and Actuarial Science, Soongsil University, Seoul, Republic of Korea
| | - Yong Wook Kim
- Department and Research Institute of Rehabilitation Medicine, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Sang Chul Lee
- Department and Research Institute of Rehabilitation Medicine, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Jaeyong Shin
- Department of Preventive Medicine and Public Health, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Seung Nam Yang
- Department of Physical Medicine & Rehabilitation, Korea University Guro Hospital, Seoul, Republic of Korea
| | - Seo Yeon Yoon
- Department and Research Institute of Rehabilitation Medicine, Yonsei University College of Medicine, Seoul, Republic of Korea
| |
Collapse
|
9
|
Alavi MS, Karimi G, Ghanimi HA, Roohbakhsh A. The potential of CYP46A1 as a novel therapeutic target for neurological disorders: An updated review of mechanisms. Eur J Pharmacol 2023; 949:175726. [PMID: 37062503 DOI: 10.1016/j.ejphar.2023.175726] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2022] [Revised: 04/03/2023] [Accepted: 04/14/2023] [Indexed: 04/18/2023]
Abstract
Cholesterol is a key component of the cell membrane that impacts the permeability, fluidity, and functions of membrane-bound proteins. It also participates in synaptogenesis, synaptic function, axonal growth, dendrite outgrowth, and microtubule stability. Cholesterol biosynthesis and metabolism are in balance in the brain. Its metabolism in the brain is mediated mainly by CYP46A1 or cholesterol 24-hydroxylase. It is responsible for eliminating about 80% of the cholesterol excess from the human brain. CYP46A1 converts cholesterol to 24S-hydroxycholesterol (24HC) that readily crosses the blood-brain barrier and reaches the liver for the final elimination process. Studies show that cholesterol and 24HC levels change during neurological diseases and conditions. So, it was hypothesized that inhibition or activation of CYP46A1 would be an effective therapeutic strategy. Accordingly, preclinical studies, using genetic and pharmacological interventions, assessed the role of CYP46A1 in main neurodegenerative disorders such as Parkinson's disease, Huntington's disease, Alzheimer's disease, multiple sclerosis, spinocerebellar ataxias, and amyotrophic lateral sclerosis. In addition, its role in seizures and brain injury was evaluated. The recent development of soticlestat, as a selective and potent CYP46A1 inhibitor, with significant anti-seizure effects in preclinical and clinical studies, suggests the importance of this target for future drug developments. Previous studies have shown that both activation and inhibition of CYP46A1 are of therapeutic value. This article, using recent studies, highlights the role of CYP46A1 in various brain diseases and insults.
Collapse
Affiliation(s)
- Mohaddeseh Sadat Alavi
- Pharmacological Research Center of Medicinal Plants, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Gholamreza Karimi
- Pharmaceutical Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran; Department of Pharmacodynamics and Toxicology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| | | | - Ali Roohbakhsh
- Pharmaceutical Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran; Department of Pharmacodynamics and Toxicology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran.
| |
Collapse
|
10
|
Zhong Q, Wang S. Association between diabetes mellitus, prediabetes and risk, disease progression of Parkinson's disease: A systematic review and meta-analysis. Front Aging Neurosci 2023; 15:1109914. [PMID: 37009459 PMCID: PMC10060805 DOI: 10.3389/fnagi.2023.1109914] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2022] [Accepted: 02/17/2023] [Indexed: 03/18/2023] Open
Abstract
Background Previous studies reported inconsistent results regarding association between diabetes mellitus (DM), prediabetes and risk, disease progression of Parkinson's disease (PD). The meta-analysis was made to investigate association between DM, prediabetes and risk, disease progression of PD. Methods Literatures investigating association between DM, prediabetes and risk, disease progression of PD were searched in these databases: PubMed and Web of Science. Included literatures were published before October 2022. STATA 12.0 software was used to compute odds ratios (ORs)/relative risks (RRs) or standard mean differences (SMDs). Results DM was associated with a higher risk of PD, compared to non-diabetic participants with a random effects model (OR/RR = 1.23, 95% CI 1.12-1.35, I 2 = 90.4%, p < 0.001). PD with DM (PD-DM) was associated with a faster motor progression compared to PD without DM (PD-noDM) with a fixed effects model (RR = 1.85, 95% CI 1.47-2.34, I 2 = 47.3%, p = 0.091). However, meta-analysis for comparison in change rate of United Rating Scale (UPDRS) III scores from baseline to follow-up time between PD-DM and PD-noDM reported no difference in motor progression between PD-DM and PD-noDM with a random effects model (SMD = 2.58, 95% CI = -3.11 to 8.27, I 2 = 99.9%, p < 0.001). PD-DM was associated with a faster cognitive decline compared to PD-noDM with a fixed effects model (OR/RR = 1.92, 95% CI 1.45-2.55, I 2 = 50.3%, p = 0.110). Conclusions In conclusion, DM was associated with a higher risk and faster disease decline of PD. More large-scale cohort studies should be adopted to evaluate the association between DM, prediabetes and PD.
Collapse
Affiliation(s)
| | - Shenglong Wang
- Department of Neurology, The Affiliated Jiangsu Shengze Hospital of Nanjing Medical University, Suzhou, Jiangsu, China
| |
Collapse
|
11
|
Porrini V, Pilotto A, Vezzoli M, Lanzillotta A, Gennari MM, Bonacina S, Alberici A, Turrone R, Bellucci A, Antonini A, Padovani A, Pizzi M. NF-κB/c-Rel DNA-binding is reduced in substantia nigra and peripheral blood mononuclear cells of Parkinson's disease patients. Neurobiol Dis 2023; 180:106067. [PMID: 36893901 DOI: 10.1016/j.nbd.2023.106067] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2022] [Revised: 02/20/2023] [Accepted: 03/03/2023] [Indexed: 03/09/2023] Open
Abstract
Although Parkinson's disease (PD) key neuropathological hallmarks are well known, the underlying pathogenic mechanisms of the disease still need to be elucidated to identify innovative disease-modifying drugs and specific biomarkers. NF-κB transcription factors are involved in regulating several processes associated with neurodegeneration, such as neuroinflammation and cell death, that could be related to PD pathology. NF-κB/c-Rel deficient (c-rel-/-) mice develop a progressive PD-like phenotype. The c-rel-/- mice present both prodromal and motor symptoms as well as key neuropathological features, including nigrostriatal dopaminergic neurons degeneration, accumulation of pro-apoptotic NF-κB/RelA acetylated at the lysine 310 residue (Ac-RelA(lys310)) and progressive caudo-rostral brain deposition of alpha-synuclein. c-Rel inhibition can exacerbate MPTP-induced neurotoxicity in mice. These findings support the claim that misregulation of c-Rel protein may be implicated in PD pathophysiology. In this study, we aimed at evaluating c-Rel levels and DNA-binding activity in human brains and peripheral blood mononuclear cells (PBMCs) of sporadic PD patients. We analyzed c-Rel protein content and activity in frozen substantia nigra (SN) samples from post-mortem brains of 10 PD patients and 9 age-matched controls as well as in PBMCs from 72 PD patients and 40 age-matched controls. c-Rel DNA-binding was significantly lower and inversely correlated with Ac-RelA(lys310) content in post-mortem SN of sporadic PD cases, when compared to healthy controls. c-Rel DNA-binding activity was also reduced in PBMCs of followed-up PD subjects. The decrease of c-Rel activity in PBMCs from PD patients appeared to be independent from dopaminergic medication or disease progression, as it was evident even in early stage, drug-naïve patients. Remarkably, the levels of c-Rel protein were comparable in PD and control subjects, pointing out a putative role for post-translational modifications of the protein in c-Rel dysfunctions. These findings support that PD is characterized by the loss of NF-κB/c-Rel activity that potentially has a role in PD pathophysiology. Future studies will be aimed at addressing whether the reduction of c-Rel DNA-binding could constitute a novel biomarker for PD.
Collapse
Affiliation(s)
- Vanessa Porrini
- Department of Molecular and Translational Medicine, University of Brescia, Brescia 25123, Italy.
| | - Andrea Pilotto
- Neurology Unit, Department of Clinical and Experimental Sciences, University of Brescia, Brescia 25123, Italy
| | - Marika Vezzoli
- Department of Molecular and Translational Medicine, University of Brescia, Brescia 25123, Italy
| | - Annamaria Lanzillotta
- Department of Molecular and Translational Medicine, University of Brescia, Brescia 25123, Italy
| | - Michele M Gennari
- Department of Molecular and Translational Medicine, University of Brescia, Brescia 25123, Italy
| | - Sonia Bonacina
- Neurology Unit, Department of Clinical and Experimental Sciences, University of Brescia, Brescia 25123, Italy
| | - Antonella Alberici
- Neurology Unit, Department of Clinical and Experimental Sciences, University of Brescia, Brescia 25123, Italy
| | - Rosanna Turrone
- Neurology Unit, Department of Clinical and Experimental Sciences, University of Brescia, Brescia 25123, Italy
| | - Arianna Bellucci
- Department of Molecular and Translational Medicine, University of Brescia, Brescia 25123, Italy
| | - Angelo Antonini
- Parkinson and Movement Disorders Unit, Study Centre for Neurodegeneration (CESNE), Department of Neuroscience, University of Padua, Padua 35121, Italy; IRCCS S. Camillo, Lido Alberoni, Venice 30126, Italy
| | - Alessandro Padovani
- Neurology Unit, Department of Clinical and Experimental Sciences, University of Brescia, Brescia 25123, Italy
| | - Marina Pizzi
- Department of Molecular and Translational Medicine, University of Brescia, Brescia 25123, Italy
| |
Collapse
|
12
|
Schrag A, Bohlken J, Dammertz L, Teipel S, Hermann W, Akmatov MK, Bätzing J, Holstiege J. Widening the Spectrum of Risk Factors, Comorbidities, and Prodromal Features of Parkinson Disease. JAMA Neurol 2023; 80:161-171. [PMID: 36342675 PMCID: PMC9641600 DOI: 10.1001/jamaneurol.2022.3902] [Citation(s) in RCA: 20] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Importance The prodromal phase of Parkinson disease (PD) may last for more than 10 years. Recognition of the spectrum and occurrence of risk factors, comorbidities, and prodromal features of PD can increase understanding of the causes and development of the disease and help identify individuals at risk. Objective To identify the association of a subsequent diagnosis of PD with a range of risk factors and prodromal features, including lifestyle factors, comorbidities, and potential extracerebral manifestations of PD. Design, Setting, and Participants This was a case-control study using insurance claims of outpatient consultations of patients with German statutory health insurance between January 1, 2011, and December 31, 2020. Included were patients with incident diagnosis of PD without a previous diagnosis of parkinsonism or dementia and controls matched 1:2 for age, sex, region, and earliest year of outpatient encounter. Exposures Exposures were selected based on previous systematic reviews, case-control and cohort studies reporting on risk factors, comorbidities, and prodromal features of PD. Main Outcomes and Measures Previously postulated risk factors and prodromal features of PD, using the International Statistical Classification of Diseases and Related Health Problems, Tenth Revision (ICD-10) coding. Results A total of 138 345 patients with incident PD (mean [SD] age, 75.1 [9.8] years; 73 720 male [53.3%]) and 276 690 matched controls (mean [SD] age, 75.1 (9.8) years; 147 440 male [53.3%]) were identified. Study participants were followed up for a mean (SD) of 6.0 (2.0) years. Consistent with previous reports, risk factors and prodromal features associated with PD included traumatic brain injury, odds ratio (OR), 1.62; 95% CI, 1.36-1.92; alcohol misuse, OR, 1.32; 95% CI, 1.21-1.44; hypertension, OR, 1.29; 95% CI, 1.26-1.31; anosmia, OR, 2.16; 95% CI, 1.59-2.93; and parasomnias (including RBD), OR, 1.62; 95% CI, 1.42-1.84. In addition, there were associations with restless legs syndrome (OR, 4.19; 95% CI, 3.91-4.50), sleep apnea (OR, 1.45; 95% CI, 1.37-1.54), epilepsy (OR, 2.26; 95% CI, 2.07-2.46), migraine (OR, 1.21; 95% CI, 1.12-1.29), bipolar disorder (OR, 3.81; 95% CI, 3.11-4.67), and schizophrenia (OR, 4.48; 95% CI, 3.82-5.25). The following diagnoses were also found to be associated with PD: sensory impairments beyond anosmia, such as hearing loss (OR, 1.14; 95% CI, 1.09-1.20) and changes of skin sensation (OR, 1.31; 95% CI, 1.21-1.43). There were also positive associations with skin disorders (eg, seborrheic dermatitis, OR, 1.30; 95% CI, 1.15-1.46; psoriasis, OR, 1.13; 95% CI, 1.05-1.21), gastrointestinal disorders (eg, gastroesophageal reflux, OR, 1.29; 95% CI, 1.25-1.33; gastritis, OR, 1.28; 95% CI, 1.24-1.33), conditions with a potential inflammatory component (eg, seronegative osteoarthritis, OR, 1.21; 95% CI, 1.03-1.43), and diabetes types 1 (OR, 1.32; 95% CI, 1.21-1.43) and 2 (OR, 1.24; 95% CI, 1.20-1.27). Associations even 5 to 10 years before diagnosis included tremor (odds ratio [OR], 4.49; 95% CI, 3.98-5.06), restless legs syndrome (OR, 3.73; 95% CI, 3.39-4.09), bipolar disorder (OR, 3.80; 95% CI, 2.82-5.14), and schizophrenia (OR, 4.00; 95% CI, 3.31-4.85). Conclusions and Relevance Results of this case-control study suggest that the associations found between PD and certain risk factors, comorbidities, and prodromal symptoms in a representative population may reflect possible early extrastriatal and extracerebral pathology of PD. This may be due to shared genetic risk with PD, medication exposure, or direct causation, or represent pathophysiologically relevant factors contributing to the pathogenesis of PD.
Collapse
Affiliation(s)
- Anette Schrag
- Department of Clinical and Movement Neurosciences, University College London, London, United Kingdom
| | - Jens Bohlken
- Institut für Sozialmedizin, Arbeitsmedizin und Public Health der Medizinischen Fakultät der Universität Leipzig, Leipzig, Germany
| | - Lotte Dammertz
- Central Research Institute of Ambulatory Health Care in Germany, Department of Epidemiology and Healthcare Atlas, Berlin, Germany
| | - Stefan Teipel
- Deutsches Zentrum für Neurodegenerative Erkrankungen Rostock/Greifswald, Rostock, Germany,Department of Psychosomatic Medicine, University of Rostock, Rostock, Germany
| | - Wiebke Hermann
- Department of Neurology, University of Rostock, Rostock, Germany
| | - Manas K. Akmatov
- Central Research Institute of Ambulatory Health Care in Germany, Department of Epidemiology and Healthcare Atlas, Berlin, Germany
| | - Jörg Bätzing
- Central Research Institute of Ambulatory Health Care in Germany, Department of Epidemiology and Healthcare Atlas, Berlin, Germany
| | - Jakob Holstiege
- Central Research Institute of Ambulatory Health Care in Germany, Department of Epidemiology and Healthcare Atlas, Berlin, Germany
| |
Collapse
|
13
|
Ramasubbu K, Devi Rajeswari V. Impairment of insulin signaling pathway PI3K/Akt/mTOR and insulin resistance induced AGEs on diabetes mellitus and neurodegenerative diseases: a perspective review. Mol Cell Biochem 2022; 478:1307-1324. [PMID: 36308670 DOI: 10.1007/s11010-022-04587-x] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2022] [Accepted: 10/12/2022] [Indexed: 12/01/2022]
Abstract
Insulin resistance is common in type 2 diabetes mellitus (T2DM), neurodegenerative diseases, cardiovascular diseases, kidney diseases, and polycystic ovary syndrome. Impairment in insulin signaling pathways, such as the PI3K/Akt/mTOR pathway, would lead to insulin resistance. It might induce the synthesis and deposition of advanced glycation end products (AGEs), reactive oxygen species, and reactive nitrogen species, resulting in stress, protein misfolding, protein accumulation, mitochondrial dysfunction, reticulum function, and metabolic syndrome dysregulation, inflammation, and apoptosis. It plays a huge role in various neurodegenerative diseases like Parkinson's disease, Alzheimer's disease, Huntington's disease, and Amyloid lateral sclerosis. In this review, we intend to focus on the possible effect of insulin resistance in the progression of neurodegeneration via the impaired P13K/Akt/mTOR signaling pathway, AGEs, and receptors for AGEs.
Collapse
Affiliation(s)
- Kanagavalli Ramasubbu
- Department of Biomedical Sciences, School of Biosciences and Technology, Vellore Institute of Technology, Tamil Nadu, Vellore, 632014, India
| | - V Devi Rajeswari
- Department of Biomedical Sciences, School of Biosciences and Technology, Vellore Institute of Technology, Tamil Nadu, Vellore, 632014, India.
| |
Collapse
|
14
|
Chen HC, Wang CY, Chen HH, Liou HH. Cost-effectiveness of the add-on exenatide to conventional treatment in patients with Parkinson’s disease when considering the coexisting effects of diabetes mellitus. PLoS One 2022; 17:e0269006. [PMID: 35951654 PMCID: PMC9371359 DOI: 10.1371/journal.pone.0269006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2021] [Accepted: 05/13/2022] [Indexed: 11/22/2022] Open
Abstract
Objective This study aims to investigate the cost-effectiveness of the add-on exenatide to conventional pharmacotherapy in patients with Parkinson’s disease (PD) when considering the coexistence of diabetes mellitus (DM). Methods We used the Keelung and Community-based Integrated Screening databases to understand the medical utilisation in the Hoehn and Yahr stages of patients with PD. A Markov model with 1-year cycle length and 50-year time horizon was used to assess the cost-effectiveness of add-on exenatide to conventional pharmacotherapy compared to conventional pharmacotherapy alone. All costs were adjusted to the value of the new Taiwanese dollar (NT$) as of the year 2020. One-way sensitivity and probability analyses were performed to test the robustness of the results. Results From a societal perspective, the add-on exenatide brought an average of 0.39 quality-adjusted life years (QALYs) gained, and a cost increment of NT$104,744 per person in a 50-year horizon compared to conventional pharmacotherapy. The incremental cost-effectiveness ratio (ICER) was NT$268,333 per QALY gained. As the ICER was less than the gross domestic product per capita (NT$839,558), the add-on exenatide was considered to be very cost-effective in the two models, according to the World Health Organization recommendation. Add-on exenatide had a 96.9% probability of being cost-effective in patients with PD, and a 100% probability of being cost-effective in patients with PD and DM. Conclusion Add-on exenatide is cost-effective in PD combined with DM. Considering that DM may be a risk factor for neurodegenerative diseases, exenatide provides both clinical benefits and cost-effectiveness when considering both PD and DM.
Collapse
Affiliation(s)
- Hsuan-Chih Chen
- Graduate Institute of Clinical Pharmacy, College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Chen-Yu Wang
- Graduate Institute of Clinical Pharmacy, College of Medicine, National Taiwan University, Taipei, Taiwan
- School of Pharmacy, College of Medicine, National Taiwan University, Taipei, Taiwan
- Department of Pharmacy, National Taiwan University Hospital Yun-Lin Branch, Douliu, Taiwan
- National Center for Geriatrics and Welfare Research, National Health Research Institutes, Yunlin, Taiwan
| | - Hsiu-Hsi Chen
- Institute of Epidemiology and Prevention Medicine, College of Public Health, National Taiwan University, Taipei, Taiwan
| | - Horng- Huei Liou
- Department of Neurology, National Taiwan University Hospital, Yunlin Branch, Yunlin, Taiwan
- Department of Neurology and Pharmacology, College of Medicine, National Taiwan University, Taipei, Taiwan
- * E-mail:
| |
Collapse
|
15
|
Risk Factors of Parkinson’s Disease: A Case-Control Study in Moroccan Patients. ARCHIVES OF NEUROSCIENCE 2022. [DOI: 10.5812/ans-126351] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Background: Parkinson’s disease (PD) remains a significant health concern in Morocco. Multivariate analysis was not used in any study to evaluate the role of various factors that contributed to the onset of the disease. Objectives: This study investigates the role of family, environmental, and professional factors in PD development. Methods: The present study is an age-matched case-control study with risk estimation based on odds ratios (OR) with a 95% confidence interval (CI). In total, 180 cases were matched with 360 controls. Results: The average age of participants was 68.3 ± 11.2 years. Adjusted logistic regression analysis showed that the family history of PD (ORa = 7.19, CI 95% 3.41 - 15.13), male sex (ORa = 1.92, CI 95% 1.16 - 3.16), spring water consumption (ORa = 3.31, CI 95% 2.05 - 5.34), drug use (ORa = 2.12, CI 95% 1.33 - 3.38), a history of head injury (ORa = 3.38, CI 95% 1.16 - 9.83) and non - consumption of coffee (ORa = 3.04, CI 95% 1.56 - 5.90) were significantly associated with the onset of the disease. In a univariate analysis, well water consumption was observed as a significant risk factor but could not be shown to be significant in a multivariate analysis. Previous work on a farm (ORa = 0.30, CI 95% 0.16 - 0.54) and history of general anesthesia (ORa = 0.47, CI 95% 0.27 - 0.83) were inversely associated with PD risk. No statistical significance was observed in the data on occupational exposure and disease risk, although there was a 30% decrease in risk for the service occupations (ORa = 0.05, CI 95% 0.01 - 0.18). Conclusions: As a result, further research is needed to determine additional risk factors.
Collapse
|
16
|
Orthostatic hypotension with nondipping: phenotype of neurodegenerative disease. Hypertens Res 2022; 45:1514-1516. [PMID: 35836000 DOI: 10.1038/s41440-022-00980-7] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2022] [Accepted: 06/12/2022] [Indexed: 11/08/2022]
|
17
|
Venkatesan D, Iyer M, S RW, Narayanasamy A, Kamalakannan S, Valsala Gopalakrishnan A, Vellingiri B. Genotypic-Phenotypic Analysis, Metabolic Profiling and Clinical Correlations in Parkinson's Disease Patients from Tamil Nadu Population, India. J Mol Neurosci 2022; 72:1724-1737. [PMID: 35676593 DOI: 10.1007/s12031-022-02028-4] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2022] [Accepted: 05/07/2022] [Indexed: 02/07/2023]
Abstract
Parkinson's disease (PD) is an ageing disorder caused by dopaminergic neuron depletion with age. Growing research in the field of metabolomics is expected to play a major role in PD diagnosis, prognosis and therapeutic development. In this study, we looked at how SNCA and GBA1 gene mutations, as well as metabolomic abnormalities of kynurenine and cholesterol metabolites, were linked to alpha-synuclein (α-syn) and clinical characteristics in three different PD age groups. In all three age groups, a metabolomics analysis revealed an increased amount of 27-hydroxycholesterol (27-OHC) and a lower level of kynurenic acid (KYNA). The effect of 27-OHC on SNCA and GBA1 modifications was shown to be significant (P < 0.05) only in the A53T variant of the SNCA gene in late-onset and early-onset PD groups, whereas GBA1 variants were not. Based on the findings, we observed that the increase in 27-OHC would have elevated α-syn expression, which triggered the changes in the SNCA gene but not in the GBA1 gene. Missense variations in the SNCA and GBA1 genes were investigated using the sequencing technique. SNCA mutation A53T has been linked to increased PD symptoms, but there is no phenotypic link between GBA1 and PD. As a result of the data, we hypothesise that cholesterol and kynurenine metabolites play an important role in PD, with the metabolite 27-OHC potentially serving as a PD biomarker. These findings will aid in the investigation of pathogenic causes as well as the development of therapeutic and preventative measures for PD.
Collapse
Affiliation(s)
- Dhivya Venkatesan
- Human Molecular Cytogenetics and Stem Cell Laboratory, Department of Human Genetics and Molecular Biology, Bharathiar University, Coimbatore, 641 046, Tamil Nadu, India
| | - Mahalaxmi Iyer
- Livestock Farming, & Bioresources Technology, Tamil Nadu, India
| | - Robert Wilson S
- Department of Neurology and Neurosurgery, SRM University, Kattankulathur, 603 203, Kancheepuram District, Tamil Nadu, India
| | - Arul Narayanasamy
- Disease Proteomic Laboratory, Department of Zoology, Bharathiar University, Coimbatore, 641 046, Tamil Nadu, India
| | - Siva Kamalakannan
- Ministry of Health and Family Welfare, National Centre for Disease Control, Civil Line, 22-Sham Nath Marg, Delhi, 110054, India
| | - Abilash Valsala Gopalakrishnan
- Department of Biomedical Sciences, School of Biosciences and Technology, Vellore Institute of Technology, Tamil Nadu, Vellore, 632 014, India
| | - Balachandar Vellingiri
- Human Molecular Cytogenetics and Stem Cell Laboratory, Department of Human Genetics and Molecular Biology, Bharathiar University, Coimbatore, 641 046, Tamil Nadu, India.
| |
Collapse
|
18
|
Zolfaghari S, Lewandowski N, Pelletier A, Naeimi SA, Gagnon JF, Brillon-Corbeil M, Montplaisir JY, Postuma RB. Cardiovascular Risk Factors and Phenoconversion to Neurodegenerative Synucleinopathies in Idiopathic REM Sleep Behavior Disorder. JOURNAL OF PARKINSON'S DISEASE 2022; 12:927-933. [PMID: 35001898 PMCID: PMC9789479 DOI: 10.3233/jpd-212984] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
Several studies have suggested that atherosclerotic diseases and diabetes may be risk factors for α-synucleinopathies. This prospective cohort study evaluated whether cardiovascular diseases and metabolic risk factors alter the rate or type of phenoconversion from idiopathic/isolated REM sleep behavior disorder (iRBD) to parkinsonism or dementia. Polysomnography-confirmed iRBD patients recruited between 2004 and 2020 were followed annually. Baseline history of cardiovascular disorders, hypertension, hypercholesterolemia, and diabetes were compared among patients who developed outcomes versus those who remained outcome-free. No atherosclerotic risk factors were associated with development of α-synucleinopathies. Patients with hypercholesterolemia were somewhat more likely to develop dementia with Lewy bodies rather than Parkinson's disease.
Collapse
Affiliation(s)
- Sheida Zolfaghari
- Integrated Program in Neuroscience, McGill University, Montreal, Quebec, Canada,Research Institute of the McGill University Health Centre, Montreal, Quebec, Canada
| | | | - Amelie Pelletier
- Research Institute of the McGill University Health Centre, Montreal, Quebec, Canada,Centre for Advanced Research in Sleep Medicine, Hôpital du Sacré-Coeur de Montréal, Montreal, Quebec, Canada
| | - Seyed Ali Naeimi
- Research Institute of the McGill University Health Centre, Montreal, Quebec, Canada,
Department of Neurology and Neurosurgery, McGill University, Montreal, Quebec, Canada
| | - Jean-François Gagnon
- Centre for Advanced Research in Sleep Medicine, Hôpital du Sacré-Coeur de Montréal, Montreal, Quebec, Canada,
Department of Psychology, Université du Québec à Montréal, Montreal, Quebec, Canada
| | - Marina Brillon-Corbeil
- Centre for Advanced Research in Sleep Medicine, Hôpital du Sacré-Coeur de Montréal, Montreal, Quebec, Canada,
Department of Psychology, Université du Québec à Montréal, Montreal, Quebec, Canada
| | - Jacques Y. Montplaisir
- Centre for Advanced Research in Sleep Medicine, Hôpital du Sacré-Coeur de Montréal, Montreal, Quebec, Canada,
Department of Psychiatry, Université de Montréal, Montreal, Quebec, Canada
| | - Ronald B. Postuma
- Research Institute of the McGill University Health Centre, Montreal, Quebec, Canada,Centre for Advanced Research in Sleep Medicine, Hôpital du Sacré-Coeur de Montréal, Montreal, Quebec, Canada,
Department of Neurology and Neurosurgery, McGill University, Montreal, Quebec, Canada,Correspondence to: Dr. Ronald B. Postuma, Department of Neurology, L7-305, Montreal General Hospital, 1650 Cedar Ave., Montreal, Quebec H3G 1A4, Canada. Tel.: +1 514 934 8026; Fax: +1 514 934 8265; E-mail:
| |
Collapse
|
19
|
Kim JH, Chang IB, Kim YH, Kwon MJ, Kim JH, Choi HG. Association between statin use and Parkinson's disease in Korean patients with hyperlipidemia. Parkinsonism Relat Disord 2022; 97:15-24. [PMID: 35276584 DOI: 10.1016/j.parkreldis.2022.02.011] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/16/2021] [Revised: 02/10/2022] [Accepted: 02/16/2022] [Indexed: 12/20/2022]
Abstract
INTRODUCTION Findings on the association between statin therapy and Parkinson's disease (PD) occurrence have been inconsistent. This study aimed to identify the association between statin use and PD in participants with a history of hyperlipidemia or blood cholesterol >200 in a Korean population to exclude nonstatin users owing to normal lipid values. METHODS We conducted a nested case-control analysis using the Korean National Health Insurance Service-National Sample Cohort assessed between 2002 and 2015. We identified 3026 PD cases. A total of 12,104 controls were then individually matched by age, sex, income, and region of residence at a ratio of 1:4. Potential confounders comprised basic demographic factors, lifestyle factors, various medical conditions and comorbidities. A conditional/unconditional logistic regression method was applied. RESULTS Compared with statin use for <6 months, adjusted odds ratios (aORs) with 95% confidence intervals (CIs) for 6-12 months of statin use and ≥12 months of statin use were 1.03 (0.92-1.15) and 1.61 (1.35-1.93) after adjustment for confounders, respectively (P = 0.664 and P < 0.001). In analyses according to statin solubility, only the association between lipophilic statin use for ≥12 months and PD maintained statistical significance, with an aOR of 1.64 (95% CI = 1.34-2.01, P < 0.001). These relations were consistent in subgroup analyses by covariates. CONCLUSIONS Statin use for more than 12 months was associated with a higher probability of PD in the Korean population with hyperlipidemia. This probability was significant for lipophilic statins but not hydrophilic statins.
Collapse
Affiliation(s)
- Ji Hee Kim
- Department of Neurosurgery, Hallym University College of Medicine, Anyang, South Korea
| | - In Bok Chang
- Department of Neurosurgery, Hallym University College of Medicine, Anyang, South Korea
| | - Yoo Hwan Kim
- Department of Neurology, Hallym University College of Medicine, Anyang, South Korea
| | - Mi Jung Kwon
- Department of Pathology, Hallym University College of Medicine, Anyang, South Korea
| | - Joo-Hee Kim
- Division of Pulmonary, Allergy, and Critical Care Medicine, Department of Medicine, Hallym University College of Medicine, Anyang, South Korea
| | - Hyo Geun Choi
- Hallym Data Science Laboratory, Hallym University College of Medicine, Anyang, South Korea; Department of Otorhinolaryngology-Head & Neck Surgery, Hallym University College of Medicine, Anyang, South Korea.
| |
Collapse
|
20
|
Lv YQ, Yuan L, Sun Y, Dou HW, Su JH, Hou ZP, Li JY, Li W. Long-term hyperglycemia aggravates α-synuclein aggregation and dopaminergic neuronal loss in a Parkinson’s disease mouse model. Transl Neurodegener 2022; 11:14. [PMID: 35255986 PMCID: PMC8900445 DOI: 10.1186/s40035-022-00288-z] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2021] [Accepted: 02/14/2022] [Indexed: 12/16/2022] Open
Abstract
Abstract
Background
Growing evidence suggests an association between Parkinson’s disease (PD) and diabetes mellitus (DM). At the cellular level, long-term elevated levels of glucose have been shown to lead to nigrostriatal degeneration in PD models. However, the underlying mechanism is still unclear. Previously, we have elucidated the potential of type 2 diabetes mellitus (T2DM) in facilitating PD progression, involving aggregation of both alpha-synuclein (α-syn) and islet amyloid polypeptide in the pancreatic and brain tissues. However, due to the complicated effect of insulin resistance on PD onset, the actual mechanism of hyperglycemia-induced dopaminergic degeneration remains unknown.
Methods
We employed the type 1 diabetes mellitus (T1DM) model induced by streptozotocin (STZ) injection in a transgenic mouse line (BAC-α-syn-GFP) overexpressing human α-syn, to investigate the direct effect of elevated blood glucose on nigrostriatal degeneration.
Results
STZ treatment induced more severe pathological alterations in the pancreatic islets and T1DM symptoms in α-syn-overexpressing mice than in wild-type mice, at one month and three months after STZ injections. Behavioral tests evaluating motor performance confirmed the nigrostriatal degeneration. Furthermore, there was a marked decrease in dopaminergic profiles and an increase of α-syn accumulation and Serine 129 (S129) phosphorylation in STZ-treated α-syn mice compared with the vehicle-treated mice. In addition, more severe neuroinflammation was observed in the brains of the STZ-treated α-syn mice.
Conclusion
Our results solidify the potential link between DM and PD, providing insights into how hyperglycemia induces nigrostriatal degeneration and contributes to pathogenic mechanisms in PD.
Collapse
|
21
|
De Iuliis A, Montinaro E, Fatati G, Plebani M, Colosimo C. Diabetes mellitus and Parkinson's disease: dangerous liaisons between insulin and dopamine. Neural Regen Res 2022; 17:523-533. [PMID: 34380882 PMCID: PMC8504381 DOI: 10.4103/1673-5374.320965] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2021] [Revised: 02/08/2021] [Accepted: 03/04/2021] [Indexed: 11/13/2022] Open
Abstract
The relationship between diabetes mellitus and Parkinson's disease has been described in several epidemiological studies over the 1960s to date. Molecular studies have shown the possible functional link between insulin and dopamine, as there is strong evidence demonstrating the action of dopamine in pancreatic islets, as well as the insulin effects on feeding and cognition through central nervous system mechanism, largely independent of glucose utilization. Therapies used for the treatment of type 2 diabetes mellitus appear to be promising candidates for symptomatic and/or disease-modifying action in neurodegenerative diseases including Parkinson's disease, while an old dopamine agonist, bromocriptine, has been repositioned for the type 2 diabetes mellitus treatment. This review will aim at reappraising the different studies that have highlighted the dangerous liaisons between diabetes mellitus and Parkinson's disease.
Collapse
Affiliation(s)
| | - Ennio Montinaro
- Department of Neurology, Santa Maria University Hospital, Terni, Italy
| | | | - Mario Plebani
- Department of Medicine-DiMED, University of Padova, Italy
- Department of Medicine-DiMED, University of Padova, Padova, Italy; Department of Laboratory Medicine-Hospital of Padova, Padova, Italy
| | - Carlo Colosimo
- Department of Neurology, Santa Maria University Hospital, Terni, Italy
| |
Collapse
|
22
|
Zhao Y, Gagliano Taliun SA. Lipid-lowering drug targets and Parkinson's disease: A sex-specific Mendelian randomization study. Front Neurol 2022; 13:940118. [PMID: 36119674 PMCID: PMC9477004 DOI: 10.3389/fneur.2022.940118] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2022] [Accepted: 08/01/2022] [Indexed: 11/13/2022] Open
Abstract
Parkinson's disease (PD) affects millions of individuals worldwide, and it is the second most common late-onset neurodegenerative disorder. There is no cure and current treatments only alleviate symptoms. Modifiable risk factors have been explored as possible options for decreasing risk or developing drug targets to treat PD, including low-density lipoprotein cholesterol (LDL-C). There is evidence of sex differences for cholesterol levels as well as for PD risk. Genetic datasets of increasing size are permitting association analyses with increased power, including sex-stratified analyses. These association results empower Mendelian randomization (MR) studies, which, given certain assumptions, test whether there is a causal relationship between the risk factor and the outcome using genetic instruments. Sex-specific causal inference approaches could highlight sex-specific effects that may otherwise be masked by sex-agnostic approaches. We conducted a sex-specific two-sample cis-MR analysis based on genetic variants in LDL-C target encoding genes to assess the impact of lipid-lowering drug targets on PD risk. To complement the cis-MR analysis, we also conducted a sex-specific standard MR analysis (using genome-wide independent variants). We did not find evidence of a causal relationship between LDL-C levels and PD risk in females [OR (95% CI) = 1.01 (0.60, 1.69), IVW random-effects] or males [OR (95% CI) = 0.93 (0.55, 1.56)]. The sex-specific standard MR analysis also supported this conclusion. We encourage future work assessing sex-specific effects using causal inference techniques to better understand factors that may contribute to complex disease risk differently between the sexes.
Collapse
Affiliation(s)
- Yangfan Zhao
- Faculty of Medicine, Université de Montréal, Montréal, QC, Canada
| | - Sarah A Gagliano Taliun
- Department of Medicine, Department of Neurosciences, Faculty of Medicine, Université de Montréal, Montréal, QC, Canada.,Montreal Heart Institute, Montréal, QC, Canada
| |
Collapse
|
23
|
Shen W, Jiang L, Zhao J, Wang H, Hu M, Chen L, Chen Y. Bioactive lipids and their metabolism: new therapeutic opportunities for Parkinson's disease. Eur J Neurosci 2021; 55:846-872. [PMID: 34904314 DOI: 10.1111/ejn.15566] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2021] [Revised: 11/30/2021] [Accepted: 12/03/2021] [Indexed: 11/28/2022]
Abstract
Parkinson's disease (PD) is a neurological disorder characterized by motor dysfunction, which can also be associated with non-motor symptoms. Its pathogenesis is thought to stem from a loss of dopaminergic neurons in the substantia nigra pars compacta and the formation of Lewy bodies containing aggregated α-synuclein. Recent works suggested that lipids might play a pivotal role in the pathophysiology of PD. In particular, the so-called "bioactive" lipids whose changes in the concentration may lead to functional consequences and affect many pathophysiological processes, including neuroinflammation, are closely related to PD in terms of symptoms, disease progression, and incidence. This study aimed to explore the molecular metabolism and physiological functions of bioactive lipids, such as fatty acids (mainly unsaturated fatty acids), eicosanoids, endocannabinoids, oxysterols, representative sphingolipids, diacylglycerols, and lysophosphatidic acid, in the development of PD. The knowledge of bioactive lipids in PD gained through preclinical and clinical studies is expected to improve the understanding of disease pathogenesis and provide novel therapeutic avenues.
Collapse
Affiliation(s)
- Wenjing Shen
- Department of Neurology, Clinical Medical College, Yangzhou University, Yangzhou, Jiangsu, China
| | - Li Jiang
- Department of Neurology, Clinical Medical College, Yangzhou University, Yangzhou, Jiangsu, China
| | - Jingyi Zhao
- Department of Neurology, Dalian Medical University, Dalian, Liaoning, China
| | - Haili Wang
- Department of Neurology, Dalian Medical University, Dalian, Liaoning, China
| | - Meng Hu
- The Second Xiangya Hospital, Central Sounth University, Changsha, Hunan Province, China
| | - Lanlan Chen
- Department of Neurology, Clinical Medical College, Yangzhou University, Yangzhou, Jiangsu, China
| | - Yingzhu Chen
- Department of Neurology, Clinical Medical College, Yangzhou University, Yangzhou, Jiangsu, China
| |
Collapse
|
24
|
Peng Z, Zhou R, Liu D, Cui M, Yu K, Yang H, Li L, Liu J, Chen Y, Hong W, Huang J, Wang C, Ma J, Zhou H. Association Between Metabolic Syndrome and Mild Parkinsonian Signs Progression in the Elderly. Front Aging Neurosci 2021; 13:722836. [PMID: 34658837 PMCID: PMC8518184 DOI: 10.3389/fnagi.2021.722836] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2021] [Accepted: 09/03/2021] [Indexed: 11/13/2022] Open
Abstract
Background: This study investigated the impact of metabolic syndrome on the progression from mild parkinsonian signs (MPS) to Parkinson's disease (PD). Methods: A total of 1,563 participants with MPS completed 6 years of follow-up. The diagnosis of metabolic syndrome was made according to Adult Treatment Panel III of the National Cholesterol Education Program. The evaluations of MPS and PD were based on the motor portion of the Unified Parkinson's Disease Rating Scale. Cox proportional hazard models were used to identify the association between metabolic syndrome and PD conversion. Results: Of the 1,563 participants, 482 (30.8%) with MPS developed PD at the end of the follow-up. Metabolic syndrome (HR: 1.69, 95% CI: 1.29-2.03) was associated with the risk of PD conversion. Metabolic syndrome was associated with the progression of bradykinesia (HR: 1.85, 95% CI: 1.43-2.34), rigidity (HR: 1.36, 95% CI: 1.19-1.57), tremor (HR: 1.98, 95% CI: 1.73-2.32), and gait/balance impairment (HR: 1.66, 95% CI: 1.25-2.11). The effect of metabolic syndrome on the progression of bradykinesia and tremor was nearly two fold. Participants treated for two or three to four components of metabolic syndrome, including high blood pressure, high fasting plasma glucose, hypertriglyceridemia, and low HDL-C, had a lower risk of PD conversion. Conclusion: Metabolic syndrome increased the risk of progression from MPS to PD. Participants treated for two or more components of metabolic syndrome had a lower risk of PD conversion.
Collapse
Affiliation(s)
- Zeyan Peng
- Department of Neurology, The First Affiliated Hospital of Bengbu Medical College, Bengbu, China
| | - Rui Zhou
- Department of Neurology, Army Medical Center of PLA, Chongqing, China
| | - Dong Liu
- Southwest Hospital, Army Medical University, Chongqing, China
| | - Min Cui
- State Key Laboratory of Trauma, Army Medical Center of PLA, Chongqing, China
| | - Ke Yu
- Department of Neurology, The General Hospital of Central Theater Command, Wuhan, China
| | - Hai Yang
- Department of Neurology, The First Affiliated Hospital of Bengbu Medical College, Bengbu, China
| | - Ling Li
- Department of Neurology, The First Affiliated Hospital of Bengbu Medical College, Bengbu, China
| | - Juan Liu
- Department of Neurology, The First Affiliated Hospital of Bengbu Medical College, Bengbu, China
| | - Yang Chen
- Department of Neurology, The First Affiliated Hospital of Bengbu Medical College, Bengbu, China
| | - Wenjuan Hong
- Department of Neurology, The General Hospital of Western Theater Command, Chengdu, China
| | - Jie Huang
- Department of Neurology, The General Hospital of Western Theater Command, Chengdu, China
| | - Congguo Wang
- Department of Neurology, The General Hospital of Western Theater Command, Chengdu, China
| | - Jingjing Ma
- Department of Neurology, The General Hospital of Western Theater Command, Chengdu, China
| | - Huadong Zhou
- Department of Neurology, The General Hospital of Western Theater Command, Chengdu, China
| |
Collapse
|
25
|
Komici K, Femminella GD, Bencivenga L, Rengo G, Pagano G. Diabetes Mellitus and Parkinson's Disease: A Systematic Review and Meta-Analyses. JOURNAL OF PARKINSONS DISEASE 2021; 11:1585-1596. [PMID: 34486987 DOI: 10.3233/jpd-212725] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
BACKGROUND A link between diabetes mellitus (DM) and Parkinson's disease (PD) have been proposed but evidence are sparse and inconsistent. OBJECTIVE Perform a systematic review of all evidence that link DM and PD characterising the prevalence of DM in PD patients, the risk of developing PD in DM patients and the influence of DM on PD severity and progression. METHODS MEDLINE, Scopus, and Cochrane Library from inception to June 30, 2021 were searched. Studies reporting prevalence, incidence, severity and disease progression of DM and PD were included. Prevalence of DM in PD and incidence of PD in DM patients, and characteristics of PD. RESULTS A total of 21 studies (n = 11,396) included data on DM prevalence in PD patients, 12 studies (n = 17,797,221) included data on incidence of PD in DM patients, and 10 studies (n = 2,482) included data on DM impact on PD severity and disease progression. The prevalence of DM in PD patients was 10.02 %, (95%C.I. 7.88 -12.16), DM patients showed a higher risk of developing PD (OR: 1.34 95%CI 1.26-1.43 p < 0.0001) compared to non-DM, and PD patients with DM showed a greater severity of motor symptoms, with higher Hoehn and Yahr stage (SMD: 0.36 95%CI 0.12-0.60; p < 0.001) and higher UPDRS (SMD 0.60 95%CI 0.28-0.92; p < 0.001) compared with PD patients without DM. CONCLUSION Although the prevalence of DM in PD patients is similar to the general population, patients with DM have a higher risk of developing PD, and the presence of DM is associated with greater PD severity and faster progression, which suggests that DM may be a facilitating factor of neurodegeneration.
Collapse
Affiliation(s)
- Klara Komici
- Department of Medicine and Health Sciences, University of Molise, Campobasso, Italy
| | | | - Leonardo Bencivenga
- Department of Translational Medical Sciences, University of Naples "Federico II", Naples, Italy.,Department of Advanced Biomedical Sciences, University of Naples "Federico II", Naples, Italy
| | - Giuseppe Rengo
- Department of Translational Medical Sciences, University of Naples "Federico II", Naples, Italy.,Istituti Clinici Scientifici Maugeri SpA Società Benefit (ICS Maugeri SpA SB), Scientific Institute of Telese Terme, Telese Terme (BN), Italy
| | - Gennaro Pagano
- King's College London, London, UK.,Roche Pharma Research and Early Development (pRED), Neuroscience and Rare Diseases Discovery and Translational Area, Roche Innovation Center, Basel, Switzerland
| |
Collapse
|
26
|
El Gizawy HA, Abo-Salem HM, Ali AA, Hussein MA. Phenolic Profiling and Therapeutic Potential of Certain Isolated Compounds from Parkia roxburghii against AChE Activity as well as GABA A α5, GSK-3β, and p38α MAP-Kinase Genes. ACS OMEGA 2021; 6:20492-20511. [PMID: 34395996 PMCID: PMC8359133 DOI: 10.1021/acsomega.1c02340] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/13/2021] [Accepted: 07/12/2021] [Indexed: 05/08/2023]
Abstract
Parkia roxburghii belongs to the family Mimosaceae; it has been used since ancient times as a cure for different health complications; such as inflammatory and gynecological diseases and hemiplegia. In this investigation, a reversed-phase-high-performance liquid chromatography (RP-HPLC) profile was carried out for P. roxburghii; also, the isolated bioactive compounds including quercetin, catechin, and biochaninA were individually and/or in combination investigated for their inhibitory effects on scopolamine-induced memory impairments in mice, implying that they have the ability to reduce the neurodegenerative effects of scopolamine and thus could be employed as a more effective therapeutic agent in the treatment of Alzheimer's disease (AD) in humans. The possible interactions of Parkia flavonoids with acetylcholinesterase (AChE), γ-aminobutyric acid A receptor, alpha5 (GABAA α5), glycogen synthase kinase-3 (GSK-3), p38 mitogen-activated protein kinase (p38MAP-kinase), signal-regulated kinase (ERK), and protein-serine/threonine kinase (Akt) were then determined using molecular docking.
Collapse
Affiliation(s)
- Heba A. El Gizawy
- Pharmacognosy
Department, Faculty of Pharmacy, October
6 University, 12585 6th of October City, Egypt
| | - Heba M. Abo-Salem
- Chemistry
and Natural Compounds Department, Pharmaceutical and Drug Industries
Research Division, National Research Center, Dokki, 12585 Giza, Egypt
| | - Ali A. Ali
- Postgraduate
Studies, October 6 University, 12585 Sixth of
October City, Egypt
| | - Mohammed A. Hussein
- Biochemistry
Department, Faculty of Applied Medical Sciences, October 6 University, 12585 Sixth of October City, Egypt
- . Tel: 0020124832580
| |
Collapse
|
27
|
Lv M, Xue G, Cheng H, Meng P, Lian X, Hölscher C, Li D. The GLP-1/GIP dual-receptor agonist DA5-CH inhibits the NF-κB inflammatory pathway in the MPTP mouse model of Parkinson's disease more effectively than the GLP-1 single-receptor agonist NLY01. Brain Behav 2021; 11:e2231. [PMID: 34125470 PMCID: PMC8413783 DOI: 10.1002/brb3.2231] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/23/2021] [Revised: 05/01/2021] [Accepted: 05/19/2021] [Indexed: 12/13/2022] Open
Abstract
The GLP-1 receptor agonist exendin-4 has recently shown good effects in a phase II clinical trial in Parkinson's disease (PD) patients. Here, a comparison of the new GLP-1/GIP dual receptor agonist DA5-CH and NLY01, a 40 kDa pegylated form of exendin-4, on motor impairments and reducing inflammation in the 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) PD mouse model is provided. The drug groups received either DA5-CH or NLY01 (25 nmol/kg) i.p. after daily MPTP intraperitoneal injection. Both drugs showed improvements in motor activity, open field experiments, rotarod tests, and gait analysis, but DA5-CH was more potent. Tyrosine hydroxylase expression in dopaminergic neurons was much reduced by MPTP and improved by DA5-CH, while NLY01 showed weak effects. When analyzing levels of α-synuclein (α-Syn), DA5-CH reduced levels effectively while NLY01 had no effect. When measuring the levels of the inflammation markers Toll-like receptor 4 (TLR4), specific markers of microglia activation (Iba-1), the marker of astrocyte activation glial fibrillary acidic protein (GFAP), nuclear factor-κB (NF-κB), tumor necrosis factor (TNF-α), and transforming growth factor β1 (TGF-β1), DA5-CH was very effective in reducing the chronic inflammation response, while NLY01 did not show significant effects. Levels of key growth factors such as Glial cell-derived neurotrophic factor (GDNF) and Brain-derived neurotrophic factor (BDNF) were much reduced by MPTP, and DA5-CH was able to normalize levels in the brain, while NLY01 showed little effect. The levels of pro-inflammatory cytokines (IL-6 and IL-Iβ) were much reduced by DA5-CH, too, while NLY01 showed no effect. In a separate experiment, we tested the ability of the two drugs to cross the blood-brain barrier. After injecting fluorescin-labelled peptides peripherally, the fluorescence in brain tissue was measured. It was found that the pegylated NLY01 peptide did not cross the BBB in meaningful quantities while exendin-4 and the dual agonist DA5-CH did. The results show that DA5-CH shows promise as a therapeutic drug for PD.
Collapse
Affiliation(s)
- MiaoJun Lv
- Second Hospital, Neurology Department, Shanxi Medical University, Taiyuan, Shanxi Province, People's Republic of China
| | - GuoFang Xue
- Second Hospital, Neurology Department, Shanxi Medical University, Taiyuan, Shanxi Province, People's Republic of China
| | - HuiFeng Cheng
- Second Hospital, Neurology Department, Shanxi Medical University, Taiyuan, Shanxi Province, People's Republic of China
| | - PengFei Meng
- Second Hospital, Neurology Department, Shanxi Medical University, Taiyuan, Shanxi Province, People's Republic of China
| | - Xia Lian
- Second Hospital, Neurology Department, Shanxi Medical University, Taiyuan, Shanxi Province, People's Republic of China
| | - Christian Hölscher
- Second Hospital, Neurology Department, Shanxi Medical University, Taiyuan, Shanxi Province, People's Republic of China.,Research and Experimental Center, Henan University of Chinese Medicine, Zhengzhou, Henan Province, People's Republic of China
| | - DongFang Li
- Second Hospital, Neurology Department, Shanxi Medical University, Taiyuan, Shanxi Province, People's Republic of China
| |
Collapse
|
28
|
Liu W, Tang J. Association between diabetes mellitus and risk of Parkinson's disease: A prisma-compliant meta-analysis. Brain Behav 2021; 11:e02082. [PMID: 34291588 PMCID: PMC8413776 DOI: 10.1002/brb3.2082] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/14/2020] [Revised: 12/21/2020] [Accepted: 01/31/2021] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND Previous studies showed inconsistent results regarding associations between diabetes mellitus (DM) and risk of Parkinson's disease (PD). The study aimed to make a meta-analysis to clarify whether DM is a risk factor for PD. METHODS We searched for articles regarding the effect of DM on risk of PD and published before July 2020 with search terms as follows: ("diabetes mellitus" OR "diabetes") AND ("Parkinson's disease" OR "PD") in the following databases: PubMed, Web of Science, MEDLINE, EMBASE, and Google Scholar. We used STATA 12.0 software to compute multivariate odds ratio (OR) or relative risk (RR) and 95% confidence intervals (CI) regarding the association between DM and risk of PD. RESULTS The present study finally included 7 case-control studies (including 26,654 PD patients) and 9 cohort studies (including 3,819,006 DM patients) exploring the association between DM and risk of PD. The meta-analysis indicated that DM was related to elevated risk of PD (OR/RR = 1.15, 95% CI 1.03-1.28, I2 = 92.4%, p < .001). Subgroup study showed that DM was associated with higher risk of PD in cohort studies (RR = 1.29, 95% CI 1.15-1.45, I2 = 93.9%, p < .001), whereas no significant association was indicated between DM and risk of PD in case-control studies (OR = 0.74, 95% CI 0.51-1.09, I2 = 82.3%, p < .001). Sensitivity analysis showed no changes in the direction of effect when any one study was excluded from all meta-analyses. In addition, Begg's test, Egger's test, and funnel plot showed no significant risks of publication bias. CONCLUSION In conclusion, we have tried to determine whether prior onset of DM may contribute to the risk of developing PD. More and more large-scale prospective studies should be conducted to evaluate the relationship between DM and PD.
Collapse
Affiliation(s)
- Wei Liu
- Department of Metabolism and EndocrinologyYongzhou Central HospitalYongzhouChina
| | - Jianfeng Tang
- Department of Metabolism and EndocrinologyYongzhou Central HospitalYongzhouChina
| |
Collapse
|
29
|
Ng YF, Ng E, Lim EW, Prakash KM, Tan LCS, Tan EK. Case-control study of hypertension and Parkinson's disease. NPJ Parkinsons Dis 2021; 7:63. [PMID: 34290246 PMCID: PMC8295270 DOI: 10.1038/s41531-021-00202-w] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2020] [Accepted: 02/26/2021] [Indexed: 11/17/2022] Open
Abstract
We evaluate the association of hypertension with PD in an Asian population and performed a meta-analysis on similar studies to address the effect of hypertension on PD risk. A matched case-control study involving 1342 Chinese subjects (671 PD and 671 age and gender-matched controls (with a mean age of 63.9 ± 9.7 and 63.5 ± 9.8 years, and identical proportion of gender distribution) was conducted. Hypertension increases PD risk by 1.9 times [OR 1.86 (1.46–2.38)]. The literature search identified 618 studies initially; however, only three matched case-control studies (all in Caucasians) met the inclusion criteria for meta-analysis. Overall analysis showed that hypertension decreases PD risk by 0.2 times [OR 0.80 (0.66–0.96)]. Hypertension increases PD risk by 1.9 times in our Asian population. However, a meta-analysis comprising of Caucasian populations showed a protective effect of hypertension suggesting that ethnic differences or other genetic or environmental factors may contribute to the divergent observation. Early diagnosis and treatment of hypertension may potentially reduce the risk of PD, at least in our population.
Collapse
Affiliation(s)
- Yuen-Fann Ng
- Duke-NUS Medical School, 8 College Road, Singapore, 169857, Singapore.,Department of Neurology, National Neuroscience Institute, 11 Jalan Tan Tock Seng, Singapore, 308433, Singapore
| | - Ebonne Ng
- Department of Neurology, National Neuroscience Institute, 11 Jalan Tan Tock Seng, Singapore, 308433, Singapore
| | - Ee-Wei Lim
- Department of Neurology, National Neuroscience Institute, 11 Jalan Tan Tock Seng, Singapore, 308433, Singapore
| | - Kumar M Prakash
- Duke-NUS Medical School, 8 College Road, Singapore, 169857, Singapore.,Department of Neurology, National Neuroscience Institute, 11 Jalan Tan Tock Seng, Singapore, 308433, Singapore
| | - Louis C S Tan
- Duke-NUS Medical School, 8 College Road, Singapore, 169857, Singapore.,Department of Neurology, National Neuroscience Institute, 11 Jalan Tan Tock Seng, Singapore, 308433, Singapore
| | - Eng-King Tan
- Duke-NUS Medical School, 8 College Road, Singapore, 169857, Singapore. .,Department of Neurology, National Neuroscience Institute, 11 Jalan Tan Tock Seng, Singapore, 308433, Singapore.
| |
Collapse
|
30
|
Qin X, Zhang X, Li P, Wang M, Yan L, Bao Z, Liu Q. Association Between Diabetes Medications and the Risk of Parkinson's Disease: A Systematic Review and Meta-Analysis. Front Neurol 2021; 12:678649. [PMID: 34349721 PMCID: PMC8326375 DOI: 10.3389/fneur.2021.678649] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2021] [Accepted: 06/15/2021] [Indexed: 12/19/2022] Open
Abstract
Background: Diabetes mellitus (DM) increases the risk of Parkinson's disease (PD). However, whether DM medications play a part on that increased PD risk is unclear. We designed this meta-analysis to assess the influence of different oral DM medications on the PD risk in patients with DM. Methods: We searched PubMed, Embase, and CENTRAL databases for relevant studies up until January 2021. We pooled adjusted outcomes to assess the PD risk in patients using different DM medications including sulfonylurea, metformin, glitazones (GTZ), dipeptidyl peptidase-4 inhibitors (DPP4i), and glucagon-like peptide-1 agonists (GLP1a). Results: We included 10 studies in our analysis. Our results indicate a lack of significant association between the PD risk and the use of sulfonylureas (three studies; HR, 1.26; 95% CI, 0.95 to 1.66; I2, 70%; p = 0.11), DPP4i (three studies; HR, 0.69; 95% CI, 0.35 to 1.38; I2, 88%; p = 0.30), metformin (five studies; HR, 1.23; 95% CI, 0.98 to 1.78; I2, 84%; p = 0.13), and GTZ (six studies; HR, 0.88; 95% CI, 0.66 to 1.16; I2, 92%; p = 0.35). After exclusion of a single study in the GTZ analysis, our results indicate a significantly reduced PD risk with GTZ use (HR, 0.78; 95% CI, 0.65 to 0.93; I2, 59%; p = 0.06). Similarly, after the exclusion of a single study, our results indicate a significantly increased PD risk with the use of metformin (HR, 1.50; 95% CI, 1.11 to 2.02; I2, 80%; p = 0.008). We also found a significantly reduced PD risk with the use of GLP1a (two studies; HR, 0.41; 95% CI, 0.19 to 0.87; I2, 0%; p = 0.02). Conclusion: The role of different DM medications on the PD risk remains unclear, and the quality of studies is low. While our analysis suggests a lack of association between the use of metformin, GTZ, DPP4i, and sulfonylureas and the PD risk, metformin (to a higher degree) and GTZ may still increase the risk. Limited data suggest a protective effect of GLP1a on the PD risk.
Collapse
Affiliation(s)
- Xiaocui Qin
- Department of Physiology, Zhaoqing Medical College, Zhaoqing, China
| | - Xia Zhang
- Department of Pathology and Physiology, Zhaoqing Medical College, Zhaoqing, China
| | - Pinyu Li
- Department of Pathology and Physiology, Zhaoqing Medical College, Zhaoqing, China
| | - Min Wang
- Department of Pathology and Physiology, Zhaoqing Medical College, Zhaoqing, China
| | - Li Yan
- Department of Pharmacology, Zhaoqing Medical College, Zhaoqing, China
| | - Zeqing Bao
- Department of Pharmacology, Zhaoqing Medical College, Zhaoqing, China
| | - Qili Liu
- Department of Physiology, Zhaoqing Medical College, Zhaoqing, China
| |
Collapse
|
31
|
Huang MH, Liu YF, Nfor ON, Hsu SY, Lin WY, Chang YS, Liaw YP. Interactive Association Between Intronic Polymorphism (rs10506151) of the LRRK2 Gene and Type 2 Diabetes on Neurodegenerative Diseases. PHARMACOGENOMICS & PERSONALIZED MEDICINE 2021; 14:839-847. [PMID: 34285552 PMCID: PMC8286148 DOI: 10.2147/pgpm.s316158] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/16/2021] [Accepted: 06/16/2021] [Indexed: 12/22/2022]
Abstract
Purpose We investigated the interactive effect of rs10506151 polymorphism of the Leucine-rich repeat kinase 2 (LRRK2) gene and type 2 diabetes (T2D) on neurodegenerative disease (ND) risk. Materials and Methods Data of 17, 927 participants in the Taiwan Biobank (TWB) assessed between 2008 and 2015 were linked to healthcare records in the National Health Insurance Research Database (NHIRD). The odd ratios (ORs) and 95% confidence intervals (CIs) for NDs were determined using logistic regression analysis. Results There were 145 cases with NDs, and 28.28% (n = 41) of these individuals had T2D. Associations of neurodegenerative disorders with LRRK2 rs10506151 variant and T2D were not significant. The corresponding ORs (95% CI) for NDs were 1.06 (0.75–1.49) in CA/AA compared to CC individuals and 0.93 (0.63–1.39) in those with T2D compared to non-diabetic participants. However, we found evidence of a significant interaction between rs10506151 and T2D (p = 0.0073). After stratification by genotypes of rs10506151, the OR for NDs was 0.37 (CI, 0.17–0.82) in CA/AA individuals with T2D and 1.41 (0.88–2.27) in their CC counterparts. When CA/AA individuals with T2D represented the reference group, the OR (95% CI) was 1.74 (0.81–3.73) in CC individuals with no T2D, 2.47 (CI, 1.14–5.38) in CA/AA individuals with no T2D, and 2.34 (CI, 1.07–5.11) in CC individuals with T2D. Conclusion Our data indicated that the risk of NDs was significantly lower among diabetic individuals with combined CA/AA of the LRRK2 rs10506151 variant in Taiwan.
Collapse
Affiliation(s)
- Mei-Hsuen Huang
- Department of Chinese Pharmaceutical Sciences and Chinese Medicine Resources, College of Chinese Medicine, China Medical University, Taichung, 40402, Taiwan
| | - Yu-Fan Liu
- Department of Biomedical Sciences, Chung Shan Medical University, Taichung, Taiwan.,Division of Allergy, Department of Pediatrics, Chung Shan Medical University Hospital, Taichung, Taiwan
| | - Oswald Ndi Nfor
- Department of Public Health and Institute of Public Health, Chung Shan Medical University, Taichung, 40201, Taiwan
| | - Shu-Yi Hsu
- Department of Public Health and Institute of Public Health, Chung Shan Medical University, Taichung, 40201, Taiwan
| | - Wei-Yong Lin
- Graduate Institute of Integrated Medicine, College of Chinese Medicine, China Medical University, Taichung, 40402, Taiwan.,Department of Medical Research, China Medical University Hospital, Taichung, 40447, Taiwan.,Brain Diseases Research Center, China Medical University, Taichung, 40402, Taiwan
| | - Yuan-Shiun Chang
- Department of Chinese Pharmaceutical Sciences and Chinese Medicine Resources, College of Chinese Medicine, China Medical University, Taichung, 40402, Taiwan
| | - Yung-Po Liaw
- Department of Public Health and Institute of Public Health, Chung Shan Medical University, Taichung, 40201, Taiwan.,Department of Medical Imaging, Chung Shan Medical University Hospital, Taichung City, 40201, Taiwan
| |
Collapse
|
32
|
Zhao J, Imai R, Ukon N, Shimoyama S, Tan C, Maejima Y, Omiya Y, Takahashi K, Nan G, Zhao S, Ito H, Shimomura K. Evaluation of Effect of Ninjin'yoeito on Regional Brain Glucose Metabolism by 18F-FDG Autoradiography With Insulin Loading in Aged Mice. Front Nutr 2021; 8:657663. [PMID: 34055854 PMCID: PMC8152663 DOI: 10.3389/fnut.2021.657663] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2021] [Accepted: 03/16/2021] [Indexed: 12/02/2022] Open
Abstract
Introduction: A recent clinical study revealed that Ninjin'yoeito (NYT) may potentially improve cognitive outcome. However, the mechanism by which NYT exerts its effect on elderly patients remains unclear. The aim of this study is to evaluate the effect of Ninjin'yoeito on regional brain glucose metabolism by 18F-FDG autoradiography with insulin loading in aged wild-type mice. Materials and Methods: After 12 weeks of feeding NYT, mice were assigned to the control and insulin-loaded groups and received an intraperitoneal injection of human insulin (2 U/kg body weight) 30 min prior to 18F-FDG injection. Ninety minutes after the injection, brain autoradiography was performed. Results: After insulin loading, the 18F-FDG accumulation showed negative changes in the cortex, striatum, thalamus, and hippocampus in the control group, whereas positive changes were observed in the NYT-treated group. Conclusions: Ninjin'yoeito may potentially reduce insulin resistance in the brain regions in aged mice, thereby preventing age-related brain diseases.
Collapse
Affiliation(s)
- Jingmin Zhao
- Department of Neurology, China-Japan Union Hospital of Jilin University, Changchun, China.,Department of Radiology and Nuclear Medicine, Fukushima Medical University, Fukushima, Japan
| | - Ryota Imai
- Tsumura Kampo Research Laboratories, Kampo Research and Development Division, Tsumura & Co., Ibaraki, Japan.,Department of Bioregulation and Pharmacological Medicine, Fukushima Medical University, Fukushima, Japan
| | - Naoyuki Ukon
- Advanced Clinical Research Center, Fukushima Global Medical Science Center, Fukushima Medical University, Fukushima, Japan
| | - Saki Shimoyama
- Advanced Clinical Research Center, Fukushima Global Medical Science Center, Fukushima Medical University, Fukushima, Japan
| | - Chengbo Tan
- Advanced Clinical Research Center, Fukushima Global Medical Science Center, Fukushima Medical University, Fukushima, Japan.,Department of Neurosurgery, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, China
| | - Yuko Maejima
- Department of Bioregulation and Pharmacological Medicine, Fukushima Medical University, Fukushima, Japan
| | - Yuji Omiya
- Tsumura Kampo Research Laboratories, Kampo Research and Development Division, Tsumura & Co., Ibaraki, Japan
| | - Kazuhiro Takahashi
- Advanced Clinical Research Center, Fukushima Global Medical Science Center, Fukushima Medical University, Fukushima, Japan
| | - Guangxian Nan
- Department of Neurology, China-Japan Union Hospital of Jilin University, Changchun, China
| | - Songji Zhao
- Advanced Clinical Research Center, Fukushima Global Medical Science Center, Fukushima Medical University, Fukushima, Japan.,Department of Pathophysiology, Basic Medical College of Jilin University, Changchun, China
| | - Hiroshi Ito
- Department of Radiology and Nuclear Medicine, Fukushima Medical University, Fukushima, Japan.,Advanced Clinical Research Center, Fukushima Global Medical Science Center, Fukushima Medical University, Fukushima, Japan
| | - Kenju Shimomura
- Department of Bioregulation and Pharmacological Medicine, Fukushima Medical University, Fukushima, Japan
| |
Collapse
|
33
|
Katsi V, Papakonstantinou I, Solomou E, Antonopoulos AS, Vlachopoulos C, Tsioufis K. Management of Hypertension and Blood Pressure Dysregulation in Patients with Parkinson's Disease-a Systematic Review. Curr Hypertens Rep 2021; 23:26. [PMID: 33961147 DOI: 10.1007/s11906-021-01146-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/16/2021] [Indexed: 12/17/2022]
Abstract
PURPOSE OF REVIEW The aim of this review article was to summarize the cardiovascular and blood pressure profile regarding Parkinson disease patients and to provide an update on the recent advancements in the field of the diagnosis and management of blood pressure abnormalities in these patients. Our goal was to guide physicians to avoid pitfalls in current practice while treating patients with Parkinson disease and blood pressure abnormalities. For this purpose, we searched bibliographic databases (PubMed, Google Scholar) for all publications published on blood pressure effects in Parkinson disease until May 2020. Furthermore, we highlight some thoughts and potential perspectives for the next possible steps in the field. RECENT FINDINGS Blood pressure dysregulation in patients with Parkinson's disease has several implications in clinical practice and presents an ongoing concern. Compared with chronic essential hypertension, the syndrome of combined neurogenic orthostatic hypotension and supine hypertension in Parkinson's disease has received little attention. If left untreated, hypertension may lead to cardiovascular disease whereas hypotension may lead to fall-related complications, with tremendous impact on the quality of life of affected individuals. The effect of blood Epressure control and the risk of death from cardiovascular disease in Parkinson disease are largely unexplored. Blood pressure abnormalities in Parkinson disease present bidirectional relationship and the rationale for treating and controlling hypertension in persons with Parkinson disease and concurrent neurogenic orthostatic hypotension and/or supine hypertension is compelling. Further research is warranted in order to clarify the mechanisms, clinical implications, and potential reversibility of compromised cardiovascular function, in persons with Parkinson disease.
Collapse
Affiliation(s)
- Vasiliki Katsi
- Cardiology Department, Hippokration General Hospital, Athens, Greece. .,Internal Medicine, Evangelismos Hospital, Athens, Greece.
| | - Ilias Papakonstantinou
- Cardiology Department, Hippokration General Hospital, Athens, Greece.,Internal Medicine, Evangelismos Hospital, Athens, Greece
| | - Eirini Solomou
- Cardiology Department, Hippokration General Hospital, Athens, Greece.,Internal Medicine, Evangelismos Hospital, Athens, Greece
| | - Alexios S Antonopoulos
- Cardiology Department, Hippokration General Hospital, Athens, Greece.,Internal Medicine, Evangelismos Hospital, Athens, Greece
| | - Charalambos Vlachopoulos
- Cardiology Department, Hippokration General Hospital, Athens, Greece.,Internal Medicine, Evangelismos Hospital, Athens, Greece
| | - Konstantinos Tsioufis
- Cardiology Department, Hippokration General Hospital, Athens, Greece.,Internal Medicine, Evangelismos Hospital, Athens, Greece
| |
Collapse
|
34
|
Chohan H, Senkevich K, Patel RK, Bestwick JP, Jacobs BM, Bandres Ciga S, Gan-Or Z, Noyce AJ. Type 2 Diabetes as a Determinant of Parkinson's Disease Risk and Progression. Mov Disord 2021; 36:1420-1429. [PMID: 33682937 PMCID: PMC9017318 DOI: 10.1002/mds.28551] [Citation(s) in RCA: 99] [Impact Index Per Article: 33.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2020] [Revised: 01/12/2021] [Accepted: 02/01/2021] [Indexed: 12/14/2022] Open
Abstract
Background: Type 2 diabetes (T2DM) and Parkinson’s disease (PD) are prevalent diseases that affect an aging population. Previous systematic reviews and meta-analyses have explored the relationship between diabetes and the risk of PD, but the results have been conflicting. Objective: The objective was to investigate T2DM as a determinant of PD through a meta-analysis of observational and genetic summary data. Methods: A systematic review and meta-analysis of observational studies was undertaken by searching 6 databases. We selected the highest-quality studies investigating the association of T2DM with PD risk and progression. We then used Mendelian randomization (MR) to investigate the causal effects of genetic liability toward T2DM on PD risk and progression, using summary data derived from genome-wide association studies. Results: In the observational part of the study, pooled effect estimates showed that T2DM was associated with an increased risk of PD (odds ratio [OR] 1.21, 95% confidence interval [CI] 1.07–1.36), and there was some evidence that T2DM was associated with faster progression of motor symptoms (standardized mean difference [SMD] 0.55, 95% CI 0.39–0.72) and cognitive decline (SMD −0.92, 95% CI −1.50 to −0.34). Using MR, we found supportive evidence for a causal effect of diabetes on PD risk (inverse-variance weighted method [IVW] OR 1.08, 95% CI 1.02–1.14; P = 0.010) and some evidence of an effect on motor progression (IVW OR 1.10, 95% CI 1.01–1.20; P = 0.032) but not on cognitive progression. Conclusions: Using meta-analyses of traditional observational studies and genetic data, we observed convincing evidence for an effect of T2DM on PD risk and new evidence to support a role in PD progression.
Collapse
Affiliation(s)
- Harneek Chohan
- Preventive Neurology Unit, Wolfson Institute of Preventive Medicine, Barts and the London School of Medicine and Dentistry, Queen Mary University of London, London, UK
| | - Konstantin Senkevich
- Department of Neurology and Neurosurgery, McGill University, Montréal, Quebec, Canada.,Montreal Neurological Institute, McGill University, Montréal, Quebec, Canada
| | - Radhika K Patel
- Preventive Neurology Unit, Wolfson Institute of Preventive Medicine, Barts and the London School of Medicine and Dentistry, Queen Mary University of London, London, UK
| | - Jonathan P Bestwick
- Preventive Neurology Unit, Wolfson Institute of Preventive Medicine, Barts and the London School of Medicine and Dentistry, Queen Mary University of London, London, UK
| | - Benjamin M Jacobs
- Preventive Neurology Unit, Wolfson Institute of Preventive Medicine, Barts and the London School of Medicine and Dentistry, Queen Mary University of London, London, UK
| | - Sara Bandres Ciga
- Molecular Genetics Section, Laboratory of Neurogenetics, National Institute on Aging, National Institutes of Health, Bethesda, Maryland, USA
| | - Ziv Gan-Or
- Department of Neurology and Neurosurgery, McGill University, Montréal, Quebec, Canada.,Montreal Neurological Institute, McGill University, Montréal, Quebec, Canada.,Department of Human Genetics, McGill University, Montréal, Quebec, Canada
| | - Alastair J Noyce
- Preventive Neurology Unit, Wolfson Institute of Preventive Medicine, Barts and the London School of Medicine and Dentistry, Queen Mary University of London, London, UK.,Department of Clinical and Movement Neurosciences, UCL Institute of Neurology, London, UK
| |
Collapse
|
35
|
Saedi S, Hemmati-Dinarvand M, Barmaki H, Mokhtari Z, Musavi H, Valilo M, Mota A, Mahjoub S. Serum lipid profile of Parkinson's disease patients: A study from the Northwest of Iran. CASPIAN JOURNAL OF INTERNAL MEDICINE 2021; 12:155-161. [PMID: 34012532 PMCID: PMC8111816 DOI: 10.22088/cjim.12.2.155] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/28/2020] [Revised: 05/30/2020] [Accepted: 09/27/2020] [Indexed: 01/05/2023]
Abstract
BACKGROUND Parkinson's disease (PD) is defined as a long-lasting, neurological illness. Low levels of serum lipid fractions are related with a high risk of PD. Current investigation was designed to evaluate the concentration blood lipid fractions in patients suffering from PD and compared with healthy subjects. METHODS This case-control study was conducted from February 2016 to September 2018 in Tabriz University of Medical Sciences, Tabriz, Iran. The present investigation consisted of 75 persons who had PD and 75 normal people. The blood levels of lipid fractions were measured by concentrations of total cholesterol (TC), serum triglycerides (TG), low-density lipoprotein (LDL-C), high-density lipoprotein (HDL-C), and total cholesterol. The results were analyzed with SPSS software using Kolmogorov-Smirnov, chi-square, and student's t-test. RESULTS Serum level of TG was remarkably lower in patients with PD (111.92±8.75 mg/dL) compared with healthy subjects (123.64±9.97 mg/dL, P=0.008). Furthermore, we saw an important difference in the level of LDL-C (P=0.001) and TC (P=0.004) between the two groups. However, there was not any observed meaningful difference in the serum concentrations of HDL-C between the studied groups (P=0.135). CONCLUSION Our results showed that the serum concentration of TG, LDL-C, and TC are noticeably lower in the PD suffering patients. Further investigations are needed to provide comprehensive information on the participants' cognitive layout and subsequent actions.
Collapse
Affiliation(s)
- Samira Saedi
- Department of Medicine Microbiology, Faculty of Medicine, Kurdistan University of Medical Sciences, Sanandaj, Iran
- Samira Saedi and Mohsen Hemmati-Dinarvand contributed equally in this article
| | - Mohsen Hemmati-Dinarvand
- Department of Clinical Biochemistry and Laboratory Medicine, Faculty of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
- Samira Saedi and Mohsen Hemmati-Dinarvand contributed equally in this article
| | - Haleh Barmaki
- Department of Laboratory Medicine, Faculty of Paramedical Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Zohreh Mokhtari
- Department of Clinical Biochemistry and Laboratory Medicine, Faculty of Medicine, International Branch, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Hadis Musavi
- Student Research Committee, Babol University of Medical Sciences, Babol Iran
- Department of Clinical Biochemistry, School of Medicine, Babol University of Medical Sciences, Babol, Iran
| | - Mohamad Valilo
- Department of Clinical Biochemistry and Laboratory Medicine, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Ali Mota
- Department of Clinical Biochemistry and Laboratory Medicine, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Soleiman Mahjoub
- Department of Clinical Biochemistry, School of Medicine, Babol University of Medical Sciences, Babol, Iran
- Cellular and Molecular Biology Research Center, Health Research Institute, Babol University of Medical Sciences, Babol, Iran
| |
Collapse
|
36
|
Roh JH, Lee S, Yoon JH. Metabolic Syndrome and Parkinson's Disease Incidence: A Nationwide Study Using Propensity Score Matching. Metab Syndr Relat Disord 2020; 19:1-7. [PMID: 32876524 DOI: 10.1089/met.2020.0060] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
Abstract
Background: Metabolic syndrome (MetS) and Parkinson's disease (PD) share common pathophysiological mechanisms. This study aimed to investigate the influence of MetS on PD incidence. Materials and Methods: A propensity score-matched cohort study was conducted using the National Health Insurance Service-National Health Screening Cohort (NHIS-HealS) data (2002-2015) from the Korean National Health Insurance Service. Individuals with MetS were identified from those who underwent a health checkup in 2009-2010 and were 1:1 matched to individuals without MetS (non-MetS) using the propensity score method. Among 314,737 eligible individuals, 85,530 MetS and non-MetS pairs were selected. Results: During a mean follow-up of 7.23 years, 819 (0.48%) PD cases occurred. Individuals with MetS exhibited 1.23 times greater PD incidence (95% confidence interval [CI], 1.06-1.43; P = 0.006). The risk of PD increased with the number of MetS components, with the presence of five MetS components altogether doubling the incidence of PD (odds ratio [OR], 2.00; 95% CI, 1.30-3.04; P = 0.001). High blood pressure, low high-density lipoprotein cholesterol, and high fasting blood glucose increased PD incidence by 1.34 times (95% CI, 1.15-1.58; P < 0.001), 1.31 times (95% CI, 1.13-1.52; P < 0.001), and 1.20 times (95% CI, 1.04-1.38; P = 0.013), respectively. Elevated waist circumference was not associated with PD incidence (OR, 1.11; 95% CI, 0.96-1.28; P = 0.176). High triglycerides exerted a protective effect against PD incidence especially in men (OR, 0.66; 95% CI, 0.54-0.81; P < 0.001). Conclusions: MetS may be a risk factor for PD incidence, and individual components of MetS exert different effects depending on sex.
Collapse
Affiliation(s)
- Ji-Hye Roh
- Department of Pharmacy, College of Pharmacy, Pusan National University, Busan, Republic of Korea
| | - Sangjin Lee
- Department of Statistics, College of Natural Science, Pusan National University, Busan, Republic of Korea
| | - Jeong-Hyun Yoon
- Department of Pharmacy, College of Pharmacy, Pusan National University, Busan, Republic of Korea
| |
Collapse
|
37
|
|
38
|
Jiang Z, Xu X, Gu X, Ou R, Luo X, Shang H, Song W. Effects of Higher Serum Lipid Levels on the Risk of Parkinson's Disease: A Systematic Review and Meta-Analysis. Front Neurol 2020; 11:597. [PMID: 32670190 PMCID: PMC7332704 DOI: 10.3389/fneur.2020.00597] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2019] [Accepted: 05/22/2020] [Indexed: 02/05/2023] Open
Abstract
Background: The causal relationship between serum lipid levels and the risk of Parkinson's disease (PD) remains largely uncertain. We summarized the existing controversial evidence on this topic. Methods: We searched the electronic databases for observational studies from January 1988 to March 2020. We applied random-effects models to calculate pooled relative risk (RR) with their 95% confidence intervals (CI). Random-effects dose-response meta-analyses were further conducted to explore the dose-risk relationship. Results: Twelve cohort studies and three case-control studies were included in this meta-analysis. Higher levels of serum low-density lipoprotein cholesterol (LDL-C) were inversely associated with the subsequent risk of PD (RR 0.73, 95% CI 0.57–0.93), whereas, there were no associations between serum levels of total cholesterol (TC) (RR 0.91, 95% CI 0.73–1.13), high-density lipoprotein cholesterol (HDL-C) (RR 0.97, 95% CI 0.73–1.27), or triglycerides (TG) (RR 0.85, 95% CI 0.55–1.29) and the risk of PD. Further dose-response meta-analysis revealed that every 38.6 mg/dL (1mmol/L) increase in serum LDL-C correlates with a 7% decreased risk of PD. Conclusions: Our paper supports the protective effect of higher serum LDL-C on the subsequent risk of PD. More prospective cohort studies are warranted to confirm the conclusion, and further fundamental researches are needed to elucidate the underlying biological mechanisms.
Collapse
Affiliation(s)
- Zheng Jiang
- Department of Neurology, West China Hospital, Sichuan University, Chengdu, China
| | - Xinran Xu
- Department of Neurology, West China Hospital, Sichuan University, Chengdu, China
| | - Xiaojing Gu
- Department of Neurology, West China Hospital, Sichuan University, Chengdu, China
| | - Ruwei Ou
- Department of Neurology, West China Hospital, Sichuan University, Chengdu, China
| | - Xiaoyue Luo
- Department of Neurology, West China Hospital, Sichuan University, Chengdu, China
| | - Huifang Shang
- Department of Neurology, West China Hospital, Sichuan University, Chengdu, China
| | - Wei Song
- Department of Neurology, West China Hospital, Sichuan University, Chengdu, China
| |
Collapse
|
39
|
Metabolic syndrome does not influence the phenotype of LRRK2 and GBA related Parkinson's disease. Sci Rep 2020; 10:9329. [PMID: 32518334 PMCID: PMC7283235 DOI: 10.1038/s41598-020-66319-9] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2020] [Accepted: 05/11/2020] [Indexed: 01/06/2023] Open
Abstract
In order toevaluate the influence of the metabolic syndrome (MS) (obesity, hypertension, elevated triglycerides, reduced levels of HDL cholesterol and glucose impairment) on the phenotype of LRRK2 and GBA Parkinson’s disease (PD), and on the prevalence of prodromal features among individuals at risk, we collected, laboratory test results, blood pressure, demographic, cognitive, motor, olfactory and affective information enabling the assessment of each component of MS and the construction of the MDS prodromal probability score. The number of metabolic components and their levels were compared between participants who were separated based on disease state and genetic status. One hundred and four idiopathic PD, 40 LRRK2-PD, 70 GBA-PD, 196 healthy non-carriers, 55 LRRK2-NMC and 97 GBA-NMC participated in this study. PD groups and non manifesting carriers (NMC) did not differ in the number of metabolic components (p = 0.101, p = 0.685, respectively). LRRK2-PD had higher levels of triglycerides (p = 0.015) and higher rates of prediabetes (p = 0.004), while LRRK2-NMC had higher triglyceride levels (p = 0.014). NMC with probability rates for prodromal PD above 50% had higher frequencies of hypertriglyceridemia and prediabetes (p < 0.005, p = 0.023 respectively). While elevated triglycerides and prediabetes were more frequent among LRRK2 carriers, MS does not seem to influence GBA and LRRK2-PD phenotype.
Collapse
|
40
|
Fu X, Wang Y, He X, Li H, Liu H, Zhang X. A systematic review and meta-analysis of serum cholesterol and triglyceride levels in patients with Parkinson's disease. Lipids Health Dis 2020; 19:97. [PMID: 32430016 PMCID: PMC7236933 DOI: 10.1186/s12944-020-01284-w] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2019] [Accepted: 05/12/2020] [Indexed: 01/05/2023] Open
Abstract
Objectives Numerous studies have reported that lipid metabolic abnormalities may play an important role in the development of Parkinson’s disease (PD), with mixed results. This meta-analysis aims to systematically assess the relationship between serum cholesterol or triglyceride and the PD risk and to further determine the role of dyslipidemia in potential predictive value. Methods This research systematically consulted and screened observational studies to evaluate the association of serum lipids with the risk of PD as of April 01, 2020 based on the inclusion and exclusion criteria. Two researchers screened and extracted the data independently. Then this article summarized the characteristics of all clinical studies and collected the corresponding data to perform pooled and sensitivity analyses. The meta-analysis was performed by using the RevMan 5.3 software after data extraction, quality assessment and analysis of publication bias. Results Twenty-one related studies (13 case-control and 8 cohort studies) were selected with a total of 980,180 subjects, including 11,188 PD patients. Meta-analysis showed that higher levels of serum triglyceride (S-TG) [standard mean different (SMD) = − 0.26 (95% confidence interval (CI): − 0.39 to − 0.13, p<0.00001), relative risk (RR) = 0.67 (95% CI: 0.60 to 0.75, p<0.00001)] could be considered as protective factors for the pathogenesis of PD. However, there was no significant association between serum high density lipoprotein cholesterol (S-HDL) and the risk of PD. Meanwhile, serum low density lipoprotein cholesterol (S-LDL) [SMD = -0.26 (95% CI: − 0.43 to − 0.07, p = 0.006), RR = 0.76 (95% CI: 0.59 to 0.97, p = 0.03)] and serum total cholesterol (S-TC) levels [SMD = -0.21 (95% CI: − 0.33 to − 0.10, p = 0.0002), RR = 0.86 (95% CI: 0.77 to 0.97, p = 0.01)] were negatively associated with PD risk. Conclusions This systematic review suggests that elevated serum levels of TG, LDL and TC may be protective factors for the pathogenesis of PD. Further longitudinal and well-designed prospective studies with a large sample size are needed to confirm the findings in this meta-analysis.
Collapse
Affiliation(s)
- Xiaoxue Fu
- Heping Hospital Affiliated to Changzhi Medical College, Changzhi, Shanxi Province, China
| | - Yu Wang
- Department of Neurology, Tianjin Medical University General Hospital, Tianjin, China
| | - Xiaofeng He
- Department of Science and Education, Heping Hospital Affiliated to Changzhi Medical College, Changzhi city, Shanxi, P.R. China
| | - Hongyu Li
- Heping Hospital Affiliated to Changzhi Medical College, Changzhi, Shanxi Province, China
| | - Hong Liu
- Heping Hospital Affiliated to Changzhi Medical College, Changzhi, Shanxi Province, China.
| | - Xiangyang Zhang
- CAS Key Laboratory of Mental Health, Institute of Psychology, Chinese Academy of Sciences, 16 Lincui Road, Chaoyang District, Beijing, 100101, China. .,Department of Psychology, University of Chinese Academy of Sciences, 16 Lincui Road, Chaoyang District, Beijing, 100101, China.
| |
Collapse
|
41
|
Ibrahim Fouad G. Combination of Omega 3 and Coenzyme Q10 Exerts Neuroprotective Potential Against Hypercholesterolemia-Induced Alzheimer's-Like Disease in Rats. Neurochem Res 2020; 45:1142-1155. [PMID: 32124160 DOI: 10.1007/s11064-020-02996-2] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2019] [Revised: 02/15/2020] [Accepted: 02/20/2020] [Indexed: 12/13/2022]
Abstract
Alzheimer's disease (AD) is the most common form of dementia that progressively disrupts neurocognitive function, which has neither cure nor effective treatment. Hypercholesterolemia might be involved in brain alterations that could evolve into AD. The present study aims to evaluate the potential of omega-3, Co-enzyme Q10 (Co-Q10), as well as their combination in ameliorating hypercholesterolemia-initiated AD-like disease. We adapted a hypercholesterolemic (HC) rat model, a model of oxidative stress-mediated neurodegeneration, to study AD-like pathology. Hypercholesterolemia resulted in increased lipid peroxidation coupled with declined nitric oxide production, reduced glutathione levels, and decreased antioxidant activities of glutathione-s-transferase (GST) and glutathione peroxidase (GSH-Px) in the brain. Moreover, hypercholesterolemia resulted in decreased acetylcholine (ACh) levels and increased acetylcholine-esterase (AChE) activity, along with an increment of tumor necrosis factor and amyloid-β 42. Behaviorally, HC-rats demonstrated depressive-like behavior and declined memory. Treatment of HC-rats with omega-3 and Co-Q10 (alone or in combination) alleviated the brain oxidative stress and inflammation, regulated cholinergic functioning, and enhanced the functional outcome. These findings were verified by the histopathological investigation of brain tissues. This neuroprotective potential of omega-3 and Co-Q10 was achieved through anti-oxidative, anti-inflammatory, anti-amyloidogenic, pro-cholinergic, and memory-enhancing activities against HC-induced AD-like disease; suggesting that they may be useful as prophylactic and therapeutic agents against the neurotoxic effects of hypercholesterolemia.
Collapse
Affiliation(s)
- Ghadha Ibrahim Fouad
- Department of Therapeutic Chemistry, National Research Centre, 33 El-Bohouth St., Dokki, Cairo, 12622, Egypt.
| |
Collapse
|
42
|
Lietzau G, Magni G, Kehr J, Yoshitake T, Candeias E, Duarte AI, Pettersson H, Skogsberg J, Abbracchio MP, Klein T, Nyström T, Ceruti S, Darsalia V, Patrone C. Dipeptidyl peptidase-4 inhibitors and sulfonylureas prevent the progressive impairment of the nigrostriatal dopaminergic system induced by diabetes during aging. Neurobiol Aging 2020; 89:12-23. [PMID: 32143981 DOI: 10.1016/j.neurobiolaging.2020.01.004] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2019] [Revised: 01/07/2020] [Accepted: 01/10/2020] [Indexed: 02/08/2023]
Abstract
The nigrostriatal dopaminergic system (NDS) controls motor activity, and its impairment during type 2 diabetes (T2D) progression could increase Parkinson's disease risk in diabetics. If so, whether glycemia regulation prevents this impairment needs to be addressed. We investigated whether T2D impairs the NDS and whether dipeptidyl peptidase-4 inhibition (DPP-4i; a clinical strategy against T2D but also neuroprotective in animal models) prevents this effect, in middle-aged mice. Neither T2D (induced by 12 months of high-fat diet) nor aging (14 months) changed striatal dopamine content assessed by high-performance liquid chromatography. However, T2D reduced basal and amphetamine-stimulated striatal extracellular dopamine, assessed by microdialysis. Both the DPP-4i linagliptin and the sulfonylurea glimepiride (an antidiabetic comparator unrelated to DPP-4i) counteracted these effects. The functional T2D-induced effects did not correlate with NDS neuronal/glial alterations. However, aging itself affected striatal neurons/glia, and the glia effects were counteracted mainly by DPP-4i. These findings show NDS functional pathophysiology in T2D and suggest the preventive use of two unrelated anti-T2D drugs. Moreover, DPP-4i counteracted striatal age-related glial alterations suggesting striatal rejuvenation properties.
Collapse
Affiliation(s)
- Grazyna Lietzau
- Department of Clinical Science and Education, Södersjukhuset, Internal Medicine, Karolinska Institutet, Stockholm, Sweden.
| | - Giulia Magni
- Department of Pharmacological and Biomolecular Sciences, Università degli Studi di Milano, Milan, Italy
| | - Jan Kehr
- Pronexus Analytical AB, Bromma, Sweden; Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm, Sweden
| | - Takashi Yoshitake
- Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm, Sweden
| | - Emanuel Candeias
- Center for Neuroscience and Cell Biology, University of Coimbra, Coimbra, Portugal
| | - Ana I Duarte
- Center for Neuroscience and Cell Biology, University of Coimbra, Coimbra, Portugal
| | - Hans Pettersson
- Department of Clinical Science and Education, Södersjukhuset, Internal Medicine, Karolinska Institutet, Stockholm, Sweden
| | | | - Maria P Abbracchio
- Department of Pharmacological and Biomolecular Sciences, Università degli Studi di Milano, Milan, Italy
| | - Thomas Klein
- Boehringer Ingelheim Pharma GmbH & Co KG, Biberach, Germany
| | - Thomas Nyström
- Department of Clinical Science and Education, Södersjukhuset, Internal Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Stefania Ceruti
- Department of Pharmacological and Biomolecular Sciences, Università degli Studi di Milano, Milan, Italy
| | - Vladimer Darsalia
- Department of Clinical Science and Education, Södersjukhuset, Internal Medicine, Karolinska Institutet, Stockholm, Sweden.
| | - Cesare Patrone
- Department of Clinical Science and Education, Södersjukhuset, Internal Medicine, Karolinska Institutet, Stockholm, Sweden.
| |
Collapse
|
43
|
Potashkin J, Huang X, Becker C, Chen H, Foltynie T, Marras C. Understanding the links between cardiovascular disease and Parkinson's disease. Mov Disord 2020; 35:55-74. [PMID: 31483535 PMCID: PMC6981000 DOI: 10.1002/mds.27836] [Citation(s) in RCA: 71] [Impact Index Per Article: 17.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2019] [Revised: 07/16/2019] [Accepted: 08/01/2019] [Indexed: 12/14/2022] Open
Abstract
Studies investigating the associations between genetic or environmental factors and Parkinson's disease (PD) have uncovered a number of factors shared with cardiovascular disease, either as risk factors or manifestations of cardiovascular disease itself. Older age, male sex, and possibly type 2 diabetes are examples. On the other hand, coffee consumption and physical activity are each associated with a lower risk of both PD and cardiovascular disease. This observation raises questions about the underlying pathophysiological links between cardiovascular disease and PD. There is evidence for common mechanisms in the areas of glucose metabolism, cellular stress, lipid metabolism, and inflammation. On the other hand, smoking and total/low-density lipoprotein cholesterol appear to have opposite associations with cardiovascular disease and PD. Thus, it is uncertain whether the treatment of cardiovascular risk factors will impact on the onset or progression of PD. The available data suggest that a nuanced approach is necessary to manage risk factors such as cholesterol levels once the associations are better understood. Ultimately, the choice of therapy may be tailored to a patient's comorbidity profile. This review presents the epidemiological evidence for both concordant and discordant associations between cardiovascular disease and PD, discusses the cellular and metabolic processes that may underlie these links, and explores the implications this has for patient care and future research. © 2019 International Parkinson and Movement Disorder Society.
Collapse
Affiliation(s)
- Judy Potashkin
- The Cellular and Molecular Pharmacology Department, The Chicago Medical School, Rosalind Franklin University of Medicine and Science, North Chicago, Illinois, USA
| | - Xuemei Huang
- Translational Brain Research Center and Department of Neurology, Penn State College of Medicine, Hershey, Pennsylvania, USA
| | - Claudia Becker
- Basel Pharmacoepidemiology Unit, Division of Clinical Pharmacy and Epidemiology, Department of Pharmaceutical Sciences, University of Basel, Basel, Switzerland
| | - Honglei Chen
- Department of Epidemiology and Biostatistics, Michigan State University, East Lansing, Michigan, USA
| | - Thomas Foltynie
- Department of Clinical & Movement Neurosciences, University College London Institute of Neurology, Queen Square, London, United Kingdom
| | - Connie Marras
- The Edmond J Safra Program in Parkinson's Research, Toronto Western Hospital, University of Toronto, Toronto, Canada
| |
Collapse
|
44
|
Analysis of the Relationship between Type II Diabetes Mellitus and Parkinson's Disease: A Systematic Review. PARKINSONS DISEASE 2019; 2019:4951379. [PMID: 31871617 PMCID: PMC6906831 DOI: 10.1155/2019/4951379] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/01/2019] [Revised: 10/01/2019] [Accepted: 11/06/2019] [Indexed: 12/31/2022]
Abstract
In the early sixties, a discussion started regarding the association between Parkinson's disease (PD) and type II diabetes mellitus (T2DM). Today, this potential relationship is still a matter of debate. This review aims to analyze both diseases concerning causal relationships and treatments. A total of 104 articles were found, and studies on animal and “in vitro” models showed that T2DM causes neurological alterations that may be associated with PD, such as deregulation of the dopaminergic system, a decrease in the expression of peroxisome proliferator-activated receptor-gamma coactivator-1α (PGC-1α), an increase in the expression of phosphoprotein enriched in diabetes/phosphoprotein enriched in astrocytes 15 (PED/PEA-15), and neuroinflammation, as well as acceleration of the formation of alpha-synuclein amyloid fibrils. In addition, clinical studies described that Parkinson's symptoms were notably worse after the onset of T2DM, and seven deregulated genes were identified in the DNA of T2DM and PD patients. Regarding treatment, the action of antidiabetic drugs, especially incretin mimetic agents, seems to confer certain degree of neuroprotection to PD patients. In conclusion, the available evidence on the interaction between T2DM and PD justifies more robust clinical trials exploring this interaction especially the clinical management of patients with both conditions.
Collapse
|
45
|
Kim YJ, Lee CM, Kim S, Jang JW, Lee SY, Lee SH. Risk of Parkinson’s disease after colectomy: longitudinal follow-up study using a national sample cohort. J Neurol 2019; 267:513-521. [DOI: 10.1007/s00415-019-09617-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2019] [Revised: 10/18/2019] [Accepted: 11/02/2019] [Indexed: 12/20/2022]
|
46
|
Kummer BR, Diaz I, Wu X, Aaroe AE, Chen ML, Iadecola C, Kamel H, Navi BB. Associations between cerebrovascular risk factors and parkinson disease. Ann Neurol 2019; 86:572-581. [PMID: 31464350 DOI: 10.1002/ana.25564] [Citation(s) in RCA: 59] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2019] [Revised: 07/22/2019] [Accepted: 07/28/2019] [Indexed: 12/31/2022]
Abstract
OBJECTIVE To determine whether cerebrovascular risk factors are associated with subsequent diagnoses of Parkinson disease, and whether these associations are similar in magnitude to those with subsequent diagnoses of Alzheimer disease. METHODS This was a retrospective cohort study using claims data from a 5% random sample of Medicare beneficiaries from 2008 to 2015. The exposures were stroke, atrial fibrillation, coronary disease, hyperlipidemia, hypertension, sleep apnea, diabetes mellitus, heart failure, peripheral vascular disease, chronic kidney disease, chronic obstructive pulmonary disease, valvular heart disease, tobacco use, and alcohol abuse. The primary outcome was a new diagnosis of idiopathic Parkinson disease. The secondary outcome was a new diagnosis of Alzheimer disease. Marginal structural Cox models adjusting for time-dependent confounding were used to characterize the association between exposures and outcomes. We also evaluated the association between cerebrovascular risk factors and subsequent renal colic (negative control). RESULTS Among 1,035,536 Medicare beneficiaries followed for a mean of 5.2 years, 15,531 (1.5%) participants were diagnosed with Parkinson disease and 81,974 (7.9%) were diagnosed with Alzheimer disease. Most evaluated cerebrovascular risk factors, including prior stroke (hazard ratio = 1.55; 95% confidence interval = 1.39-1.72), were associated with the subsequent diagnosis of Parkinson disease. The magnitudes of these associations were similar, but attenuated, to the associations between cerebrovascular risk factors and Alzheimer disease. Confirming the validity of our analytical model, most cerebrovascular risk factors were not associated with the subsequent diagnosis of renal colic. INTERPRETATION Cerebrovascular risk factors are associated with Parkinson disease, an effect comparable to their association with Alzheimer disease. ANN NEUROL 2019;86:572-581.
Collapse
Affiliation(s)
- Benjamin R Kummer
- Clinical and Translational Neuroscience Unit, Feil Family Brain and Mind Research Institute, and Department of Neurology, Weill Cornell Medicine, New York, NY
| | - Iván Diaz
- Division of Biostatistics and Epidemiology, Department of Healthcare Policy and Research, Weill Cornell Medicine, New York, NY
| | - Xian Wu
- Division of Biostatistics and Epidemiology, Department of Healthcare Policy and Research, Weill Cornell Medicine, New York, NY
| | - Ashley E Aaroe
- Clinical and Translational Neuroscience Unit, Feil Family Brain and Mind Research Institute, and Department of Neurology, Weill Cornell Medicine, New York, NY
| | - Monica L Chen
- Clinical and Translational Neuroscience Unit, Feil Family Brain and Mind Research Institute, and Department of Neurology, Weill Cornell Medicine, New York, NY
| | - Costantino Iadecola
- Clinical and Translational Neuroscience Unit, Feil Family Brain and Mind Research Institute, and Department of Neurology, Weill Cornell Medicine, New York, NY
| | - Hooman Kamel
- Clinical and Translational Neuroscience Unit, Feil Family Brain and Mind Research Institute, and Department of Neurology, Weill Cornell Medicine, New York, NY
| | - Babak B Navi
- Clinical and Translational Neuroscience Unit, Feil Family Brain and Mind Research Institute, and Department of Neurology, Weill Cornell Medicine, New York, NY
| |
Collapse
|
47
|
Fiory F, Perruolo G, Cimmino I, Cabaro S, Pignalosa FC, Miele C, Beguinot F, Formisano P, Oriente F. The Relevance of Insulin Action in the Dopaminergic System. Front Neurosci 2019; 13:868. [PMID: 31474827 PMCID: PMC6706784 DOI: 10.3389/fnins.2019.00868] [Citation(s) in RCA: 51] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2019] [Accepted: 08/02/2019] [Indexed: 12/13/2022] Open
Abstract
The advances in medicine, together with lifestyle modifications, led to a rising life expectancy. Unfortunately, however, aging is accompanied by an alarming boost of age-associated chronic pathologies, including neurodegenerative and metabolic diseases. Interestingly, a non-negligible interplay between alterations of glucose homeostasis and brain dysfunction has clearly emerged. In particular, epidemiological studies have pointed out a possible association between Type 2 Diabetes (T2D) and Parkinson’s Disease (PD). Insulin resistance, one of the major hallmark for etiology of T2D, has a detrimental influence on PD, negatively affecting PD phenotype, accelerating its progression and worsening cognitive impairment. This review aims to provide an exhaustive analysis of the most recent evidences supporting the key role of insulin resistance in PD pathogenesis. It will focus on the relevance of insulin in the brain, working as pro-survival neurotrophic factor and as a master regulator of neuronal mitochondrial function and oxidative stress. Insulin action as a modulator of dopamine signaling and of alpha-synuclein degradation will be described in details, too. The intriguing idea that shared deregulated pathogenic pathways represent a link between PD and insulin resistance has clinical and therapeutic implications. Thus, ongoing studies about the promising healing potential of common antidiabetic drugs such as metformin, exenatide, DPP IV inhibitors, thiazolidinediones and bromocriptine, will be summarized and the rationale for their use to decelerate neurodegeneration will be critically assessed.
Collapse
Affiliation(s)
- Francesca Fiory
- Department of Translational Medicine, University of Naples Federico II, Naples, Italy.,URT "Genomic of Diabetes," Institute of Experimental Endocrinology and Oncology, National Research Council, Naples, Italy
| | - Giuseppe Perruolo
- Department of Translational Medicine, University of Naples Federico II, Naples, Italy.,URT "Genomic of Diabetes," Institute of Experimental Endocrinology and Oncology, National Research Council, Naples, Italy
| | - Ilaria Cimmino
- Department of Translational Medicine, University of Naples Federico II, Naples, Italy.,URT "Genomic of Diabetes," Institute of Experimental Endocrinology and Oncology, National Research Council, Naples, Italy
| | - Serena Cabaro
- Department of Translational Medicine, University of Naples Federico II, Naples, Italy.,URT "Genomic of Diabetes," Institute of Experimental Endocrinology and Oncology, National Research Council, Naples, Italy
| | - Francesca Chiara Pignalosa
- Department of Translational Medicine, University of Naples Federico II, Naples, Italy.,URT "Genomic of Diabetes," Institute of Experimental Endocrinology and Oncology, National Research Council, Naples, Italy
| | - Claudia Miele
- Department of Translational Medicine, University of Naples Federico II, Naples, Italy.,URT "Genomic of Diabetes," Institute of Experimental Endocrinology and Oncology, National Research Council, Naples, Italy
| | - Francesco Beguinot
- Department of Translational Medicine, University of Naples Federico II, Naples, Italy.,URT "Genomic of Diabetes," Institute of Experimental Endocrinology and Oncology, National Research Council, Naples, Italy
| | - Pietro Formisano
- Department of Translational Medicine, University of Naples Federico II, Naples, Italy.,URT "Genomic of Diabetes," Institute of Experimental Endocrinology and Oncology, National Research Council, Naples, Italy
| | - Francesco Oriente
- Department of Translational Medicine, University of Naples Federico II, Naples, Italy.,URT "Genomic of Diabetes," Institute of Experimental Endocrinology and Oncology, National Research Council, Naples, Italy
| |
Collapse
|
48
|
Lai SW. Reader response: Association between diabetes and subsequent Parkinson disease: A record-linkage cohort study. Neurology 2019; 92:925. [DOI: 10.1212/wnl.0000000000007458] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
|
49
|
Alecu I, Bennett SAL. Dysregulated Lipid Metabolism and Its Role in α-Synucleinopathy in Parkinson's Disease. Front Neurosci 2019; 13:328. [PMID: 31031582 PMCID: PMC6470291 DOI: 10.3389/fnins.2019.00328] [Citation(s) in RCA: 148] [Impact Index Per Article: 29.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2018] [Accepted: 03/21/2019] [Indexed: 12/23/2022] Open
Abstract
Parkinson's disease (PD) is the second most common neurodegenerative disease, the main pathological hallmark of which is the accumulation of α-synuclein (α-syn) and the formation of filamentous aggregates called Lewy bodies in the brainstem, limbic system, and cortical areas. Lipidomics is a newly emerging field which can provide fresh insights and new answers that will enhance our capacity for early diagnosis, tracking disease progression, predicting critical endpoints, and identifying risk in pre-symptomatic persons. In recent years, lipids have been implicated in many aspects of PD pathology. Biophysical and lipidomic studies have demonstrated that α-syn binds preferentially not only to specific lipid families but also to specific molecular species and that these lipid-protein complexes enhance its interaction with synaptic membranes, influence its oligomerization and aggregation, and interfere with the catalytic activity of cytoplasmic lipid enzymes and lysosomal lipases, thereby affecting lipid metabolism. The genetic link between aberrant lipid metabolism and PD is even more direct, with mutations in GBA and SMPD1 enhancing PD risk in humans and loss of GALC function increasing α-syn aggregation and accumulation in experimental murine models. Moreover, a number of lipidomic studies have reported PD-specific lipid alterations in both patient brains and plasma, including alterations in the lipid composition of lipid rafts in the frontal cortex. A further aspect of lipid dysregulation promoting PD pathogenesis is oxidative stress and inflammation, with proinflammatory lipid mediators such as platelet activating factors (PAFs) playing key roles in arbitrating the progressive neurodegeneration seen in PD linked to α-syn intracellular trafficking. Lastly, there are a number of genetic risk factors of PD which are involved in normal lipid metabolism and function. Genes such as PLA2G6 and SCARB2, which are involved in glycerophospholipid and sphingolipid metabolism either directly or indirectly are associated with risk of PD. This review seeks to describe these facets of metabolic lipid dysregulation as they relate to PD pathology and potential pathomechanisms involved in disease progression, while highlighting incongruous findings and gaps in knowledge that necessitate further research.
Collapse
Affiliation(s)
- Irina Alecu
- Neural Regeneration Laboratory, Department of Biochemistry, Microbiology and Immunology, Ottawa Institute of Systems Biology, University of Ottawa, Ottawa, ON, Canada
- Department of Cellular and Molecular Medicine, Brain and Mind Research Institute, University of Ottawa, Ottawa, ON, Canada
- Department of Chemistry and Biomolecular Sciences, Centre for Catalysis and Research Innovation, University of Ottawa, Ottawa, ON, Canada
| | - Steffany A. L. Bennett
- Neural Regeneration Laboratory, Department of Biochemistry, Microbiology and Immunology, Ottawa Institute of Systems Biology, University of Ottawa, Ottawa, ON, Canada
- Department of Cellular and Molecular Medicine, Brain and Mind Research Institute, University of Ottawa, Ottawa, ON, Canada
- Department of Chemistry and Biomolecular Sciences, Centre for Catalysis and Research Innovation, University of Ottawa, Ottawa, ON, Canada
| |
Collapse
|
50
|
Yan LY, He QF, Lu MY, Wang SL, Qi ZQ, Dong HR. Association between carotid plaque and Parkinson's disease. ANNALS OF TRANSLATIONAL MEDICINE 2019; 7:94. [PMID: 31019944 DOI: 10.21037/atm.2019.01.68] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Background Epidemiological studies show that patients with Parkinson's disease (PD) are prone to have a reduced incidence of ischemic cerebrovascular disease. Previous studies show the correlation between PD and the lipids serum levels. The PD,s patients are found with a reduced serum level of triglyceride and low-density lipoprotein cholesterol (LDL-C); thus, the level of serum uric acid (UA) is closely related to the occurrence and development of PD. Patients with low serum UA levels have a higher chance of developing PD than the ones who do not. However, the relationship between carotid plaques and PD is still unknown. Methods Our study was based on 68 patients with PD (known as the PD group) and 81 people without PD (known as the control group). Patients in the PD group were of the same age and gender. Both groups were recorded and analyzed for UA, LDL-C, and carotid plaques or intima-media thickness (IMT). The PD group was then divided into three subgroups: the stable plaque group, the unstable plaque group, and the non-plaque group. Results In the present study, the PD group showed a significantly lower level of UA and LDL-C than the control group (P<0.01); somehow there were no statistically significant differences in the IMT and plaque incidence between the two groups (P>0.05). There were also no significant differences (P>0.05) in both the LDL-C and UA levels in all subgroups, but there was a close relation in both age and duration of disease to IMT. According to the Hoehn and Yahr staging scale, serum levels of LDL-C were inversely correlated in PD patients, while UA was related to the duration of the disease. Conclusions Our study suggested that there were no differences in carotid artery arteriosclerosis plaque and IMT, but the PD progress was indeed correlated with IMT. Meanwhile, LDL-C and UA had different priorities in H&Y and disease progression.
Collapse
Affiliation(s)
- Lan-Yun Yan
- Department of Neurology, The First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, China
| | - Qing-Fang He
- Department of Neurology, The Affiliated Jiangsu Shengze Hospital of Nanjing Medical University, Suzhou 215228, China
| | - Min-Yan Lu
- Department of Neurology, The Affiliated Jiangsu Shengze Hospital of Nanjing Medical University, Suzhou 215228, China
| | - Sheng-Long Wang
- Department of Neurology, The Affiliated Jiangsu Shengze Hospital of Nanjing Medical University, Suzhou 215228, China
| | - Zhi-Qiang Qi
- Department of Neurology, The Affiliated Jiangsu Shengze Hospital of Nanjing Medical University, Suzhou 215228, China
| | - Hai-Rong Dong
- Department of Neurology, The First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, China.,Department of Neurology, The Affiliated Jiangsu Shengze Hospital of Nanjing Medical University, Suzhou 215228, China
| |
Collapse
|