1
|
Yu H, Chen Y, Qi Y, Yang H, Cao G, Yang W, Li S, Yang X, Wang H, Zhang J, Chen X. First-in-Human Study of BAT4406F, an ADCC-Enhanced Fully Humanized Anti-CD20 Monoclonal Antibody in Patients With Neuromyelitis Optica Spectrum Disorders. CNS Neurosci Ther 2024; 30:e70126. [PMID: 39592888 PMCID: PMC11598743 DOI: 10.1111/cns.70126] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2024] [Accepted: 11/02/2024] [Indexed: 11/28/2024] Open
Abstract
INTRODUCTION Neuromyelitis optica spectrum disorder (NMOSD) is a rare debilitating autoimmune disease of the central nervous system (CNS). This is the first-in-human dose-escalation Phase I clinical study of BAT4406F, an antibody-dependent cell-mediated cytotoxicity (ADCC)-enhanced fully humanized anti-CD20 monoclonal antibody, in Chinese NMOSD patients. PATIENTS AND METHODS Using a "3 + 3" design and based on the planned algorithm of dose escalation, the enrolled NMOSD patients were sequentially assigned to one of the five dose-escalation cohorts of BAT4406F with a single intravenous dose, and were then followed for a 6-month observation period. The maximum tolerated dose (MTD) and dose-limiting toxicity (DLT), safety, pharmacokinetics (PK), pharmacodynamics, and immunogenicity of BAT4406F were investigated, and the efficacy of BAT4406F in NMOSD was also preliminarily explored. RESULTS Fifteen Chinese NMOSD patients were enrolled to receive BAT4406F of escalated doses ranging from 20 to 750 mg. No subjects experienced DLT at the studied doses. BAT4406F injection exhibited favorable safety, with most of the adverse events (AE) of CTCAE Grade 1 or 2 in severity, and no Grade ≥ 3 adverse drug reactions (ADR) or serious adverse reactions occurred in any subjects. With the dose increase of BAT4406F, the maximum plasma concentration (Cmax), area under concentration-time curve from 0 to the last measurable timepoint (AUC0-t) and area under concentration-time curve from 0 to infinity (AUC0-inf) showed an increasing trend, whereas the mean clearance (CLt), terminal elimination rate (λZ), and apparent volume of distribution (Vd) decreased. The mean elimination half-life (T1/2) was ranged from 9.0-16.4 days. PK profile of BAT4406F was generally nonlinear. BAT4406F led to a rapid and significant B-cell depletion in all dose groups. Single administration of 500 mg or 750 mg maintains the CD19+ B lymphocyte count below 10/μL within the whole 6-month observation period. Three subjects were antidrug antibody (ADA) positive and all of them were neutralizing antibody (NAb)-negative. On day 99/180 postdose, several groups had decreased expanded disability status scale (EDSS) scores compared to baseline. During the observation period, NMOSD relapse occurred in two patients (13.3%) and the other 13 (86.7%) subjects remained relapse free. CONCLUSION BAT4406F was well tolerated at doses up to 750 mg and showed an expected pharmacodynamic effect of significant and long-term depletion of CD19+ B lymphocytes. It has also shown preliminary evidence of activity in NMOSD maintenance treatment, warranting further investigations. TRIAL REGISTRATION ClinicalTrials.gov identifier: NCT04146285.
Collapse
Affiliation(s)
- Hai Yu
- Department of Neurology, Huashan Hospital, Fudan University and Institute of NeurologyFudan UniversityShanghaiChina
- National Center for Neurological DisordersShanghaiChina
| | - Yuancheng Chen
- Clinical Pharmacology Research Center, Huashan HospitalFudan UniversityShanghaiChina
- National Clinical Research Center for Aging and Medicine, Huashan HospitalFudan UniversityShanghaiChina
- Research Ward of Huashan HospitalFudan UniversityShanghaiChina
| | | | - Haijing Yang
- Clinical Pharmacology Research Center, Huashan HospitalFudan UniversityShanghaiChina
- National Clinical Research Center for Aging and Medicine, Huashan HospitalFudan UniversityShanghaiChina
- Research Ward of Huashan HospitalFudan UniversityShanghaiChina
| | - Guoying Cao
- Clinical Pharmacology Research Center, Huashan HospitalFudan UniversityShanghaiChina
- National Clinical Research Center for Aging and Medicine, Huashan HospitalFudan UniversityShanghaiChina
- Research Ward of Huashan HospitalFudan UniversityShanghaiChina
| | - Wenbo Yang
- Department of Neurology, Huashan Hospital, Fudan University and Institute of NeurologyFudan UniversityShanghaiChina
- National Center for Neurological DisordersShanghaiChina
| | - Size Li
- Clinical Pharmacology Research Center, Huashan HospitalFudan UniversityShanghaiChina
- National Clinical Research Center for Aging and Medicine, Huashan HospitalFudan UniversityShanghaiChina
- Research Ward of Huashan HospitalFudan UniversityShanghaiChina
| | | | - Hai Wang
- Bio‐Thera Solutions LtdGuangzhouChina
| | - Jing Zhang
- Clinical Pharmacology Research Center, Huashan HospitalFudan UniversityShanghaiChina
- National Clinical Research Center for Aging and Medicine, Huashan HospitalFudan UniversityShanghaiChina
- Research Ward of Huashan HospitalFudan UniversityShanghaiChina
| | - Xiangjun Chen
- Department of Neurology, Huashan Hospital, Fudan University and Institute of NeurologyFudan UniversityShanghaiChina
- National Center for Neurological DisordersShanghaiChina
| |
Collapse
|
2
|
Arnett S, Chew SH, Leitner U, Hor JY, Paul F, Yeaman MR, Levy M, Weinshenker BG, Banwell BL, Fujihara K, Abboud H, Dujmovic Basuroski I, Arrambide G, Neubrand VE, Quan C, Melamed E, Palace J, Sun J, Asgari N, Broadley SA. Sex ratio and age of onset in AQP4 antibody-associated NMOSD: a review and meta-analysis. J Neurol 2024; 271:4794-4812. [PMID: 38958756 PMCID: PMC11319503 DOI: 10.1007/s00415-024-12452-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2024] [Revised: 05/15/2024] [Accepted: 05/16/2024] [Indexed: 07/04/2024]
Abstract
BACKGROUND Aquaporin-4 (AQP4) antibody-associated neuromyelitis optica spectrum disorder (NMOSD) is an antibody-mediated inflammatory disease of the central nervous system. We have undertaken a systematic review and meta-analysis to ascertain the sex ratio and mean age of onset for AQP4 antibody associated NMOSD. We have also explored factors that impact on these demographic data. METHODS A systematic search of databases was conducted according to the PRISMA guidelines. Articles reporting sex distribution and age of onset for AQP4 antibody-associated NMSOD were reviewed. An initially inclusive approach involving exploration with regression meta-analysis was followed by an analysis of just AQP4 antibody positive cases. RESULTS A total of 528 articles were screened to yield 89 articles covering 19,415 individuals from 88 population samples. The female:male sex ratio was significantly influenced by the proportion of AQP4 antibody positive cases in the samples studied (p < 0.001). For AQP4 antibody-positive cases the overall estimate of the sex ratio was 8.89 (95% CI 7.78-10.15). For paediatric populations the estimate was 5.68 (95% CI 4.01-8.03) and for late-onset cases, it was 5.48 (95% CI 4.10-7.33). The mean age of onset was significantly associated with the mean life expectancy of the population sampled (p < 0.001). The mean age of onset for AQP4 antibody-positive cases in long-lived populations was 41.7 years versus 33.3 years in the remainder. CONCLUSIONS The female:male sex ratio and the mean age of onset of AQP4 antibody-associated NMOSD are significantly higher than MS. The sex ratio increases with the proportion of cases that are positive for AQP4 antibodies and the mean age of onset increases with population life expectancy.
Collapse
Affiliation(s)
- Simon Arnett
- School of Medicine and Dentistry, Gold Coast Campus, Griffith University, Gold Coast, QLD, 4222, Australia.
- Department of Neurology, Gold Coast University Hospital, Southport, QLD, Australia.
| | - Sin Hong Chew
- School of Medicine and Dentistry, Gold Coast Campus, Griffith University, Gold Coast, QLD, 4222, Australia
- Department of Neurology, Gold Coast University Hospital, Southport, QLD, Australia
| | - Unnah Leitner
- School of Medicine and Dentistry, Gold Coast Campus, Griffith University, Gold Coast, QLD, 4222, Australia
| | - Jyh Yung Hor
- Department of Neurology, Penang General Hospital, George Town, Penang, Malaysia
| | - Friedemann Paul
- NeuroCure Clinical Research Center, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität Zu Berlin, and Berlin Institute of Health, Berlin, Germany
- Experimental and Clinical Research Center, Max Delbrueck Center for Molecular Medicine and Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Michael R Yeaman
- Department of Medicine, David Geffen School of Medicine at the University of California, Los Angeles, CA, USA
- Department of Medicine, Divisions of Molecular Medicine & Infectious Diseases, Harbor-UCLA Medical Center, Torrance, CA, USA
- Lundquist Institute for Biomedical Innovation at Harbor-UCLA Medical Center, Torrance, CA, USA
| | - Michael Levy
- Department of Neurology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| | | | - Brenda L Banwell
- Division of Child Neurology, Children's Hospital of Philadelphia, Department of Neurology and Department of Pediatrics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Kazuo Fujihara
- Department of Multiple Sclerosis Therapeutics, Fukushima Medical University and Multiple Sclerosis and Neuromyelitis Optica Center, Southern Tohoku Research Institute for Neuroscience, Koriyama, Japan
| | - Hesham Abboud
- Case Western Reserve University, University Hospitals Cleveland Medical Center, Cleveland, OH, USA
| | | | - Georgina Arrambide
- Neurology-Neuroimmunology Department, Multiple Sclerosis Centre of Catalonia (Cemcat), Vall d'Hebron Barcelona Hospital Campus, Barcelona, Catalonia, Spain
| | - Veronika E Neubrand
- Department of Cell Biology, Faculty of Sciences, University of Granada, Granada, Spain
| | - Chao Quan
- Department of Neurology, The National Centre for Neurological Disorders, Huashan Hospital, Shanghai Medical College, Fudan University, Shanghai, China
| | - Esther Melamed
- Dell Medical School, University of Texas, Austin, TX, USA
| | - Jacqueline Palace
- Nuffield Department of Clinical Neurosciences, Oxford University Hospitals, Oxford, UK
- Department Clinical Neurology, John Radcliffe Hospital, Oxford, OX3 9DU, UK
| | - Jing Sun
- School of Medicine and Dentistry, Gold Coast Campus, Griffith University, Gold Coast, QLD, 4222, Australia
- Institute of Integrated Intelligence and Systems, Nathan Campus, Griffith University, Nathan, QLD, Australia
- Rural Health Research Institute, Charles Sturt University, Bathurst, NSW, Australia
| | - Nasrin Asgari
- Department of Neurology, Slagelse Hospital, Slagelse, Denmark
- Institutes of Regional Health Research and Molecular Medicine, University of Southern Denmark, Odense, Denmark
| | - Simon A Broadley
- School of Medicine and Dentistry, Gold Coast Campus, Griffith University, Gold Coast, QLD, 4222, Australia
- Department of Neurology, Gold Coast University Hospital, Southport, QLD, Australia
| |
Collapse
|
3
|
Akosman S, Li R, Asahi M, Kwon B, Dossantos J, Tavakoli M, Chen JJ. Trends in Plasma Exchange Use in Optic Neuritis Hospitalizations in the United States. Ophthalmology 2024:S0161-6420(24)00201-X. [PMID: 38552677 DOI: 10.1016/j.ophtha.2024.03.020] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2024] [Revised: 03/15/2024] [Accepted: 03/18/2024] [Indexed: 06/07/2024] Open
Abstract
PURPOSE To report use trends of plasma exchange (PLEX) as well as sociodemographic and medical comorbidities associated with PLEX in the United States. DESIGN Retrospective cross-sectional study. PARTICIPANTS Adult patients (≥ 18 years) admitted for inpatient hospitalization with a primary diagnosis of optic neuritis (ON). METHODS Data from the National Inpatient Sample database was compiled to assess PLEX use rates between 2000 and 2020. The cohorts of patients receiving PLEX versus not receiving PLEX were analyzed between quarter 4 of 2015 through 2020 (International Classification of Diseases, Tenth Revision [ICD-10], only) for patient sociodemographic variables, medical diagnoses, insurance types, hospital characteristics, cause of disease, time to therapy, length of stay (LOS), and total charges incurred. MAIN OUTCOME MEASURES Incidence of ON, incidence of PLEX, demographics, diagnoses associated with PLEX therapy, total charges, and LOS. RESULTS From 2000 through 2020, 11 209 patients hospitalized with a primary diagnosis of ON were identified, with a significant majority managed at urban teaching hospitals. Use of PLEX increased steadily over 2 decades from 0.63% to 5.46%. Use was greatest in the western United States and least in the eastern United States. In the subset of ICD-10 cases, 3215 patients were identified. The median time to therapy of PLEX was 1 day after admission, and PLEX use was highest in patients with neuromyelitis optica spectrum disorder (NMOSD) (21.21%) and lowest in multiple sclerosis-associated ON (3.80%). Use of PLEX was associated with significantly longer LOS and higher total charges incurred. Medical comorbidities associated with PLEX included adverse reaction to glucocorticoids (adjusted odds ratio [aOR], 31.50), hemiplegia (aOR, 28.48), neuralgia (aOR, 4.81), optic atrophy (aOR, 3.74), paralytic strabismus (aOR, 2.36), and psoriasis (aOR, 1.76). CONCLUSIONS Over the last 2 decades in the United States, PLEX therapy for ON has increased, with the highest use in the western United States and for patients with the diagnosis NMOSD ON. FINANCIAL DISCLOSURE(S) The author(s) have no proprietary or commercial interest in any materials discussed in this article.
Collapse
Affiliation(s)
- Sinan Akosman
- Department of Ophthalmology, George Washington University, Washington, DC
| | - Renxi Li
- Department of Ophthalmology, George Washington University, Washington, DC
| | - Masumi Asahi
- Gavin Herbert Eye Institute, University of California Irvine, Irvine, California
| | - Bryan Kwon
- Department of Ophthalmology, George Washington University, Washington, DC
| | - Jason Dossantos
- Department of Ophthalmology, George Washington University, Washington, DC
| | - Mehdi Tavakoli
- Department of Ophthalmology, George Washington University, Washington, DC
| | - John J Chen
- Department of Ophthalmology and Neurology, Mayo Clinic, Rochester, Minnesota.
| |
Collapse
|
4
|
Kraker JA, Chen JJ. An update on optic neuritis. J Neurol 2023; 270:5113-5126. [PMID: 37542657 DOI: 10.1007/s00415-023-11920-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2023] [Revised: 07/27/2023] [Accepted: 07/30/2023] [Indexed: 08/07/2023]
Abstract
Optic neuritis (ON) is the most common cause of subacute optic neuropathy in young adults. Although most cases of optic neuritis (ON) are classified as typical, meaning idiopathic or associated with multiple sclerosis, there is a growing understanding of atypical forms of optic neuritis such as antibody mediated aquaporin-4 (AQP4)-IgG neuromyelitis optica spectrum disorder (NMOSD) and the recently described entity, myelin oligodendrocyte glycoprotein (MOG) antibody-associated disease (MOGAD). Differentiating typical ON from atypical ON is important because they have different prognoses and treatments. Findings of atypical ON, including severe vision loss with poor recovery with steroids or steroid dependence, prominent optic disc edema, bilateral vision loss, and childhood or late adult onset, should prompt serologic testing for AQP4-IgG and MOG-IgG. Although the traditional division of typical and atypical ON can be helpful, it should be noted that there can be severe presentations of otherwise typical ON and mild presentations of atypical ON that blur these traditional lines. Rare causes of autoimmune optic neuropathies, such as glial fibrillary acidic protein (GFAP) and collapsin response-mediator protein 5 (CRMP5) autoimmunity also should be considered in patients with bilateral painless optic neuropathy associated with optic disc edema, especially if there are other accompanying suggestive neurologic symptoms/signs. Typical ON usually recovers well without treatment, though recovery may be expedited by steroids. Atypical ON is usually treated with intravenous steroids, and some forms, such as NMOSD, often require plasma exchange for acute attacks and long-term immunosuppressive therapy to prevent relapses. Since treatment is tailored to the cause of the ON, elucidating the etiology of the ON is of the utmost importance.
Collapse
Affiliation(s)
- Jessica A Kraker
- Department of Ophthalmology, Mayo Clinic Hospital, Rochester, MN, USA
| | - John J Chen
- Department of Ophthalmology, Mayo Clinic Hospital, Rochester, MN, USA.
- Department of Neurology, Mayo Clinic Hospital, Rochester, MN, USA.
| |
Collapse
|
5
|
Song H, Chuai Y, Yang M, Zhou H, Sun M, Xu Q, Wei S. Glial autoantibody prevalence in Chinese optic neuritis with onset after age 45: clinical factors for diagnosis. Front Immunol 2023; 14:1181908. [PMID: 37705973 PMCID: PMC10495982 DOI: 10.3389/fimmu.2023.1181908] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2023] [Accepted: 08/08/2023] [Indexed: 09/15/2023] Open
Abstract
Purpose As glial autoantibody testing is not yet available in some areas of the world, an alternative approach is to use clinical indicators to predict which subtypes of middle-aged and elderly-onset optic neuritis (ON) have manifested. Method This study was a single-center hospital-based retrospective cohort study. Middle-aged and elderly-onset ON patients (age > 45 years) who had experienced the first episode of ON were included in this cohort. Single- and multi-parametric diagnostic factors for middle-aged and elderly-onset myelin oligodendrocyte glycoprotein immunoglobulin-associated ON (MOG-ON) and aquaporin-4 immunoglobulin-related ON (AQP4-ON) were calculated. Results From January 2016 to January 2020, there were 81 patients with middle-aged and elderly-onset ON, including 32 (39.5%) AQP4-ON cases, 19 (23.5%) MOG-ON cases, and 30 (37.0%) Seronegative-ON cases. Bilateral involvement (47.4%, P = 0.025) was most common in the MOG-ON group. The presence of other concomitant autoimmune antibodies (65.6%, P = 0.014) and prior neurological history (37.5%, P = 0.001) were more common in the AQP4-ON group. The MOG-ON group had the best follow-up best-corrected visual acuity (BCVA) (89.5% ≤ 1.0 LogMAR, P = 0.001). The most sensitive diagnostic factors for middle-aged and elderly-onset MOG-ON were 'follow-up VA ≤ 0.1 logMAR' (sensitivity 0.89), 'bilateral involvement or follow-up VA ≤ 0.1 logMAR' (sensitivity 0.95), 'bilateral involvement or without neurological history' (sensitivity 1.00), and 'follow-up VA ≤ 0.1 logMAR or without neurological history' (sensitivity 1.00), and the most specific factor was 'bilateral involvement' (specificity 0.81). The most sensitive diagnostic factors for middle-aged and elderly-onset AQP4-ON were 'unilateral involvement' (sensitivity 0.88), 'unilateral involvement or neurological history' (sensitivity 0.91), and 'unilateral involvement or other autoimmune antibodies' (sensitivity 1.00), and the most specific factor was neurological history (specificity 0.98). Conclusion Based on our cohort study of middle-aged and elderly-onset ON, MOG-ON is less prevalent than AQP4-ON and Seronegative-ON. Using multiple combined parameters improves the sensitivity and negative predictive value for diagnosing middle-aged and elderly-onset MOG-ON and AQP4-ON. These combined parameters can help physicians identify and treat middle-aged and elderly-onset ON early when glial autoantibody status is not available.
Collapse
Affiliation(s)
- Honglu Song
- Department of Ophthalmology, The First Medical Center of the Chinese People's Liberation Army General Hospital, Beijing, China
- Department of Ophthalmology, Bethune International Peace Hospital, Shijiazhuang, Hebei, China
| | - Yucai Chuai
- Department of Special Medical Services, Bethune International Peace Hospital, Shijiazhuang, Hebei, China
| | - Mo Yang
- Department of Neuro-ophthalmology, Eye Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Huanfen Zhou
- Department of Ophthalmology, The First Medical Center of the Chinese People's Liberation Army General Hospital, Beijing, China
| | - Mingming Sun
- Department of Ophthalmology, The First Medical Center of the Chinese People's Liberation Army General Hospital, Beijing, China
| | - Quangang Xu
- Department of Ophthalmology, The First Medical Center of the Chinese People's Liberation Army General Hospital, Beijing, China
| | - Shihui Wei
- Department of Ophthalmology, The First Medical Center of the Chinese People's Liberation Army General Hospital, Beijing, China
| |
Collapse
|
6
|
Chen JJ, Flanagan EP, Pittock SJ, Stern NC, Tisavipat N, Bhatti MT, Chodnicki KD, Tajfirouz DA, Jamali S, Kunchok A, Eggenberger ER, Nome MAD, Sotirchos ES, Vasileiou ES, Henderson AD, Arnold AC, Bonelli L, Moss HE, Navarro SEV, Padungkiatsagul T, Stiebel-Kalish H, Lotan I, Wilf-Yarkoni A, Danesh-Meyer H, Ivanov S, Huda S, Forcadela M, Hodge D, Poullin P, Rode J, Papeix C, Saheb S, Boudot de la Motte M, Vignal C, Hacohen Y, Pique J, Maillart E, Deschamps R, Audoin B, Marignier R. Visual Outcomes Following Plasma Exchange for Optic Neuritis: An International Multicenter Retrospective Analysis of 395 Optic Neuritis Attacks. Am J Ophthalmol 2023; 252:213-224. [PMID: 36822570 PMCID: PMC10363193 DOI: 10.1016/j.ajo.2023.02.013] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2023] [Revised: 02/14/2023] [Accepted: 02/14/2023] [Indexed: 02/25/2023]
Abstract
PURPOSE To evaluate the effectiveness of plasma exchange (PLEX) for optic neuritis (ON). METHODS We conducted an international multicenter retrospective study evaluating the outcomes of ON following PLEX. Outcomes were compared to raw data from the Optic Neuritis Treatment Trial (ONTT) using a matched subset. RESULTS A total of 395 ON attack treated with PLEX from 317 patients were evaluated. The median age was 37 years (range 9-75), and 71% were female. Causes of ON included multiple sclerosis (108), myelin oligodendrocyte glycoprotein antibody-associated disease (MOGAD) (92), aquaporin-4-IgG-positive neuromyelitis optica spectrum disorder (AQP4+NMOSD) (75), seronegative-NMOSD (34), idiopathic (83), and other (3). Median time from onset of vision loss to PLEX was 2.6 weeks (interquartile range [IQR], 1.4-4.0). Median visual acuity (VA) at the time of PLEX was count fingers (IQR, 20/200-hand motion), and median final VA was 20/25 (IQR, 20/20-20/60) with no differences among etiologies except MOGAD-ON, which had better outcomes. In 81 (20.5%) ON attacks, the final VA was 20/200 or worse. Patients with poor outcomes were older (P = .002), had worse VA at the time of PLEX (P < .001), and longer delay to PLEX (P < .001). In comparison with the ONTT subset with severe corticosteroid-unresponsive ON, a final VA of worse than 20/40 occurred in 6 of 50 (12%) PLEX-treated ON vs 7 of 19 (37%) from the ONTT treated with intravenous methylprednisolone without PLEX (P = .04). CONCLUSION Most ON attacks improved with PLEX, and outcomes were better than attacks with similar severity in the ONTT. The presence of severe vision loss at nadir, older age, and longer delay to PLEX predicted a worse outcome whereas MOGAD-ON had a more favorable prognosis. NOTE: Publication of this article is sponsored by the American Ophthalmological Society.
Collapse
Affiliation(s)
- John J Chen
- Departments of Ophthalmology (J.J.C., N.C.S., K.D.C., D.A.T., S.J.); Neurology (J.J.C., E.P.F., S.J.P., N.T., D.A.T., A.K.).
| | - Eoin P Flanagan
- Neurology (J.J.C., E.P.F., S.J.P., N.T., D.A.T., A.K.); Laboratory Medicine and Pathology (E.P.F., S.J.P.); Center for MS and Autoimmune Neurology (E.P.F., S.J.P., A.K.), Mayo Clinic, Rochester, Minnesota, USA
| | - Sean J Pittock
- Neurology (J.J.C., E.P.F., S.J.P., N.T., D.A.T., A.K.); Laboratory Medicine and Pathology (E.P.F., S.J.P.); Center for MS and Autoimmune Neurology (E.P.F., S.J.P., A.K.), Mayo Clinic, Rochester, Minnesota, USA
| | | | | | - M Tariq Bhatti
- The Permanente Medical Group (M.T.B.), Kaiser Permanente-Northern California, Roseville, California, USA
| | | | - Deena A Tajfirouz
- Departments of Ophthalmology (J.J.C., N.C.S., K.D.C., D.A.T., S.J.); Neurology (J.J.C., E.P.F., S.J.P., N.T., D.A.T., A.K.)
| | - Sepideh Jamali
- Departments of Ophthalmology (J.J.C., N.C.S., K.D.C., D.A.T., S.J.)
| | - Amy Kunchok
- Neurology (J.J.C., E.P.F., S.J.P., N.T., D.A.T., A.K.); Center for MS and Autoimmune Neurology (E.P.F., S.J.P., A.K.), Mayo Clinic, Rochester, Minnesota, USA; Department of Neurology, Cleveland Clinic (A.K.), Cleveland, Ohio, USA
| | - Eric R Eggenberger
- Departments of Neurology, Neurosurgery, and Neuro-Ophthalmology, Mayo Clinic (E.R.E.), Jacksonville, Florida, USA
| | - Marie A Di Nome
- Departments of Ophthalmology (M.A.D.N.); Neurosurgery, Mayo Clinic (M.A.D.N.), Scottsdale, AZ
| | - Elias S Sotirchos
- Department of Neurology, Johns Hopkins University (E.S.S., E.S.V., A.D.H.), Baltimore, Maryland, USA
| | - Eleni S Vasileiou
- Department of Neurology, Johns Hopkins University (E.S.S., E.S.V., A.D.H.), Baltimore, Maryland, USA
| | - Amanda D Henderson
- Department of Neurology, Johns Hopkins University (E.S.S., E.S.V., A.D.H.), Baltimore, Maryland, USA; Department of Ophthalmology, Johns Hopkins University School of Medicine (A.D.H.), Baltimore, Maryland, USA
| | - Anthony C Arnold
- Department of Ophthalmology, University of California Los Angeles (A.C.A., L.B.), Los Angeles, California, USA
| | - Laura Bonelli
- Department of Ophthalmology, University of California Los Angeles (A.C.A., L.B.), Los Angeles, California, USA
| | - Heather E Moss
- Department of Neurology & Neurological Sciences, Stanford University (H.E.M.), Palo Alto, California, USA; Department of Ophthalmology, Stanford University (H.E.M., S.E.V.N., T.P.), Palo Alto, California, USA
| | | | - Tanyatuth Padungkiatsagul
- Department of Ophthalmology, Stanford University (H.E.M., S.E.V.N., T.P.), Palo Alto, California, USA; Department of Ophthalmology, Faculty of Medicine, Ramathibodi Hospital (T.P.), Mahidol University, Bangkok, Thailand
| | - Hadas Stiebel-Kalish
- Department of Ophthalmology (H.S.-K.), Neuro-Ophthalmology Division, Rabin Medical Center and Sackler School of Medicine, Tel Aviv University, Israel; Felsenstein Medical Research Center (H.S.-K.), Tel Aviv University, Israel
| | - Itay Lotan
- Department of Neurology, Rabin Medical Center, Sackler School of Medicine (I.L., A.W.-Y.), Tel Aviv University, Israel
| | - Adi Wilf-Yarkoni
- Department of Neurology, Rabin Medical Center, Sackler School of Medicine (I.L., A.W.-Y.), Tel Aviv University, Israel
| | - Helen Danesh-Meyer
- Department of Ophthalmology, University of Auckland, New Zealand, and Vision Research Foundation (H.D.-M., S.I.), Auckland, New Zealand
| | - Stefan Ivanov
- Department of Ophthalmology, University of Auckland, New Zealand, and Vision Research Foundation (H.D.-M., S.I.), Auckland, New Zealand
| | - Saif Huda
- Department of Neurology, The Walton Centre NHS Foundation Trust (S.H., M.F.), Liverpool, United Kingdom
| | - Mirasol Forcadela
- Department of Neurology, The Walton Centre NHS Foundation Trust (S.H., M.F.), Liverpool, United Kingdom
| | - David Hodge
- Department of Quantitative Health Sciences, Mayo Clinic (D.H.), Jacksonville, Florida
| | - Pascale Poullin
- Department of Neurology, University Hospital of Marseille (P.P., J.R., B.A.), Marseille, France; Aix-Marseille University, CRMBM UMR 7339, CNRS (P.P., J.R., B.A.), Marseille, France
| | - Julie Rode
- Department of Neurology, University Hospital of Marseille (P.P., J.R., B.A.), Marseille, France; Aix-Marseille University, CRMBM UMR 7339, CNRS (P.P., J.R., B.A.), Marseille, France
| | - Caroline Papeix
- Department of Neurology, Pitie-Salpetriere Hospital, APHP (C.P., S.S., E.M.), Paris, France; Centre de référence des Maladies Inflammatoires Rares du Cerveau et de la Moelle (MIRCEM) (C.P., S.S., E.M.); Department of Neurology, Adolphe de Rothschild Foundation Hospital (C.P., M.B.d.l.M., R.D.), Paris, France
| | - Samir Saheb
- Department of Neurology, Pitie-Salpetriere Hospital, APHP (C.P., S.S., E.M.), Paris, France; Centre de référence des Maladies Inflammatoires Rares du Cerveau et de la Moelle (MIRCEM) (C.P., S.S., E.M.)
| | - Marine Boudot de la Motte
- Department of Neurology, Adolphe de Rothschild Foundation Hospital (C.P., M.B.d.l.M., R.D.), Paris, France
| | - Catherine Vignal
- Department of Neuro-Ophthalmology, Adolphe de Rothschild Foundation Hospital (C.V.), Paris, France
| | - Yael Hacohen
- Department of Neurology, Great Ormond Street Hospital for Children (Y.H.), London, United Kingdom; Queen Square Multiple Sclerosis Centre, UCL Institute of Neurology, Faculty of Brain Sciences, University College London (Y.H.), London, United Kingdom
| | - Julie Pique
- Centre de Référence des Maladies Inflammatoires Rares du Cerveau et de la Moelle (MIRCEM), Service de Neurologie, Sclérose en Plaques, Pathologies de la Myéline et Neuro-inflammation, Hôpital Neurologique Pierre Wertheimer, Hospices Civils de Lyon (J.P., R.M.), Lyon, France
| | - Elisabeth Maillart
- Department of Neurology, Pitie-Salpetriere Hospital, APHP (C.P., S.S., E.M.), Paris, France; Centre de référence des Maladies Inflammatoires Rares du Cerveau et de la Moelle (MIRCEM) (C.P., S.S., E.M.)
| | - Romain Deschamps
- Department of Neurology, Adolphe de Rothschild Foundation Hospital (C.P., M.B.d.l.M., R.D.), Paris, France
| | - Bertrand Audoin
- Department of Neurology, University Hospital of Marseille (P.P., J.R., B.A.), Marseille, France; Aix-Marseille University, CRMBM UMR 7339, CNRS (P.P., J.R., B.A.), Marseille, France
| | - Romain Marignier
- Centre de Référence des Maladies Inflammatoires Rares du Cerveau et de la Moelle (MIRCEM), Service de Neurologie, Sclérose en Plaques, Pathologies de la Myéline et Neuro-inflammation, Hôpital Neurologique Pierre Wertheimer, Hospices Civils de Lyon (J.P., R.M.), Lyon, France
| |
Collapse
|
7
|
Moheb N, Chen JJ. The neuro-ophthalmological manifestations of NMOSD and MOGAD-a comprehensive review. Eye (Lond) 2023; 37:2391-2398. [PMID: 36928226 PMCID: PMC10397275 DOI: 10.1038/s41433-023-02477-0] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Revised: 01/07/2023] [Accepted: 02/28/2023] [Indexed: 03/18/2023] Open
Abstract
Optic neuritis (ON) is one of the most frequently seen neuro-ophthalmic causes of vision loss worldwide. Typical ON is often idiopathic or seen in patients with multiple sclerosis, which is well described in the landmark clinical trial, the Optic Neuritis Treatment Trial (ONTT). However, since the completion of the ONTT, there has been the discovery of aquaporin-4 (AQP4) and myelin oligodendrocyte glycoprotein (MOG) antibodies, which are biomarkers for neuromyelitis optica spectrum disorder (NMOSD) and MOG antibody-associated disease (MOGAD), respectively. These disorders are associated with atypical ON that was not well characterised in the ONTT. The severity, rate of recurrence and overall outcome differs in these two entities requiring prompt and accurate diagnosis and management. This review will summarise the characteristic neuro-ophthalmological signs in NMOSD and MOGAD, serological markers and radiographic findings, as well as acute and long-term therapies used for these disorders.
Collapse
Affiliation(s)
- Negar Moheb
- Department of Ophthalmology and Neurology, Mayo Clinic, Rochester, MN, USA
| | - John J Chen
- Department of Ophthalmology and Neurology, Mayo Clinic, Rochester, MN, USA.
| |
Collapse
|
8
|
CHAUDHURY PRANATI, MISRA ANITA, MOHANTY SUBHRAJYOTI, BADWAL KALPANA, GUPTA RUPA, SUBUDHI PRIYAMBADA. A STUDY ON CLINICAL PROFILE AND OUTCOME OF VISUAL PARAMETERS OF OPTIC NEURITIS PATIENTS IN A TERTIARY EYE CARE CENTRE. ASIAN JOURNAL OF PHARMACEUTICAL AND CLINICAL RESEARCH 2023:68-70. [DOI: 10.22159/ajpcr.2023.v16i7.48208] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/19/2023]
Abstract
Introduction: Optic neuritis (ON) is the inflammation of the optic nerve secondary to autoimmune, infectious, or inflammatory conditions.
Objective: The objective is to study the clinical profile and changes in visual parameters after the treatment of patients with ON.
Methods: This prospective interventional research was done at the ophthalmology department of a tertiary eye care center. 36 cases diagnosed with ON have been analyzed, treated, and followed up for 1 year, for the type of clinical presentation, rate of recurrence, and changes in visual parameters.
Results: The prevalence rate was bimodal, more common among age groups between 46 and 55 years at 32% and age group 16–25 at 27%. A higher prevalence rate was seen in females in 63% of cases. The bilateral presentation was observed in 18%. 44% of cases presented as retrobulbar neuritis (RBN) whereas 56% were as papillitis. At 1 year follow up Optic disc edema suggestive of papillitis was seen in 17% of cases, normal disc with RBN in 44% and disc pallor in 32% discs. At the final follow-up after 1 year, 75% of patients could read maximum (10/13) color plates, 64% of cases showed standard contrast sensitivity and 47% showed normal visual field. VA of 6/60 or worse at presentation was seen in 53% cases and <6/12 in (84%) cases which improved to better than 6/12 in 58% cases and better than 6/60 in 67% cases at final follow up at 1 year. The most common visual field abnormality at presentation was generalized field constriction in (34%), central or centrocecal scotoma in (18%), hemianopia or quadrantanopia (12%), and enlarged blind spot in (06%) cases. During the final follow-up at 1 year, 22 cases (61%) showed normal field. Visual Field could not be tested in (30%) at presentation as vision was <3/60, although visual evoked potential was abnormal in all of 36 (100%) cases with mean P 100 latency being 128 ms. Furthermore, 3 (8%) cases demonstrated additional neurological symptoms till the final follow-up and were subsequently identified to be multiple sclerosis (MS). Recurrence rate was 08 (22%) within 1 year follow-up, of which 06 (17%) cases were clinically RBN and 02 (05%) were papillitis.
Conclusion: In our study, findings of clinical profile and visual outcomes of ON patients were different from that of Western studies as well as from those done previously in the Indian population, notably lesser prevalence of MS, although other differences were not very significant.
Collapse
|
9
|
Lazzaro C, Mazzanti NA, Rossi S, Parazzini F. Inebilizumab for neuromyelitis optica spectrum disorders in Italy: a budget impact model. Expert Rev Pharmacoecon Outcomes Res 2023; 23:1185-1200. [PMID: 37795872 DOI: 10.1080/14737167.2023.2267176] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Accepted: 10/01/2023] [Indexed: 10/06/2023]
Abstract
BACKGROUND The Italian National Health Service (INHS) has recently reimbursed the monoclonal antibody inebilizumab as a second line monotherapy after rituximab (RTX) use for neuromyelitis optica spectrum disorders (NMOSD) patients ≥ 18 years anti-aquaporin 4 antibody-immunoglobulin G positive, who experienced a relapse in the last year or cannot receive RTX, if incident patients. Other INHS-reimbursed drugs for NMOSD treatment are satralizumab, eculizumab and, off-label, besides RTX, ocrelizumab, tocilizumab, and immunosuppressants. RESEARCH DESIGN AND METHODS A 3-year (2023-2025) prevalence-based budget impact model following the INHS viewpoint compared the costs and the NMOSD attacks without (1st scenario) and with inebilizumab (2nd scenario). The epidemiology of NMOSD, and the INHS-funded healthcare resources (drugs and their administration; specialist visits; hospitalizations due to drug-related adverse events and NMOSD attacks) were obtained from the literature. One-way, threshold value and scenario sensitivity analyses investigated the robustness of the baseline findings. RESULTS During 2023-2025 inebilizumab saves the INHS €8,373,125.13 (1st scenario: €176,770,028.63; 2nd scenario: €168,396,903.50) and 12.74 NMOSD attacks (1st scenario: 213.94; 2nd scenario: 201.19). Sensitivity analyses confirmed the robustness of the baseline results. CONCLUSION Inebilizumab reduces the INHS expenditure for NMOSD drugs. Future research should explore the cost-effectiveness of inebilizumab vs other NMOSD-targeting drugs in Italy.
Collapse
Affiliation(s)
- Carlo Lazzaro
- Studio di Economia Sanitaria, Milan, Italy
- Biology and Biotechnologies Department "Lazzaro Spallanzani", University of Pavia, Pavia, Italy
| | | | | | - Fabio Parazzini
- Department of Clinical Sciences and Community Health (DISCCO), University of Milan, Milan, Italy
| |
Collapse
|
10
|
Deschamps R, Shor N, Vignal C, Guillaume J, Bensa C, Lecler A, Marignier R, Vasseur V, Papeix C, Boudot de la Motte M, Lamirel C. Acute optic neuritis: What are the clues to the aetiological diagnosis in real life? Mult Scler Relat Disord 2023; 76:104764. [PMID: 37270881 DOI: 10.1016/j.msard.2023.104764] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2023] [Revised: 05/03/2023] [Accepted: 05/14/2023] [Indexed: 06/06/2023]
Abstract
BACKGROUND Previous cross-sectional studies have reported distinct clinical and radiological features among the different acute optic neuritis (ON) aetiologies. Nevertheless, these reports often included the same number of patients in each group, not taking into account the disparity in frequencies of ON aetiologies in a real-life setting and thus, it remains unclear what are the truly useful features for distinguishing the different ON causes. To determine whether clinical evaluation, ophthalmological assessment including the optical coherence tomography (OCT), CSF analysis, and MRI imaging may help to discriminate the different causes of acute ON in a real-life cohort. METHODS In this prospective monocentric study, adult patients with recent acute ON (<1 month) underwent evaluation at baseline and 1 and 12 months, including, high- and low-contrast visual acuity, visual field assessment and OCT measurements, baseline CSF analysis and MRI. RESULTS Among 108 patients, 71 (65.7%) had multiple sclerosis (MS), 19 (17.6%) had idiopathic ON, 13 (12.0%) and 5 (4.6%) had myelin oligodendrocyte glycoprotein and aquaporin-4 antibodies, at last follow up respectively.At baseline, the distribution of bilateral ON, CSF-restricted oligoclonal bands, optic perineuritis, optic nerve length lesions and positive dissemination in space and dissemination in time criteria on MRI were significantly different between the four groups (p <0.001). No significant difference in visual acuity nor inner retinal layer thickness was found between the different ON aetiologies. CONCLUSIONS In this large prospective study, bilateral visual involvement, CSF and MRI results are the most useful clues in distinguishing the different aetiologies of acute ON, whereas ophthalmological assessments including OCT measurements revealed no significant difference between the aetiologies.
Collapse
Affiliation(s)
- Romain Deschamps
- Department of Neurology, Hôpital Fondation Adolphe de Rothschild, Paris, France.
| | - Natalia Shor
- Department of Radiology, Hôpital Fondation Adolphe de Rothschild, Paris, France; Department of Neuro-Radiology, Assistance Publique Hôpitaux de Paris, Hôpitaux Universitaires La Pitié Salpêtrière - Sorbonne Université, Paris, France
| | - Catherine Vignal
- Department of Neuro-Ophthalmology, Hôpital Fondation Adolphe de Rothschild, Paris, France
| | - Jessica Guillaume
- Clinical Research Department, Hôpital Fondation Adolphe de Rothschild, Paris, France
| | - Caroline Bensa
- Department of Neurology, Hôpital Fondation Adolphe de Rothschild, Paris, France
| | - Augustin Lecler
- Department of Radiology, Hôpital Fondation Adolphe de Rothschild, Paris, France
| | - Romain Marignier
- Department of Neurology and Centre de Référence des Maladies Inflammatoires Rares du Cerveau et de la Moelle, Hospices civils de Lyon, Hôpital neurologique Pierre Wertheimer, Lyon/Bron, France
| | - Vivien Vasseur
- Clinical Research Department, Hôpital Fondation Adolphe de Rothschild, Paris, France
| | - Caroline Papeix
- Department of Neurology, Hôpital Fondation Adolphe de Rothschild, Paris, France
| | | | - Cedric Lamirel
- Department of Neuro-Ophthalmology, Hôpital Fondation Adolphe de Rothschild, Paris, France
| |
Collapse
|
11
|
Song H, Yang M, Zhou H, Li Z, Wei S. MOG antibody prevalence in adult optic neuritis and clinical predictive factors for diagnosis: A Chinese cohort study. Mult Scler Relat Disord 2022; 68:104248. [PMID: 36544312 DOI: 10.1016/j.msard.2022.104248] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2022] [Revised: 10/13/2022] [Accepted: 10/15/2022] [Indexed: 11/05/2022]
Abstract
OBJECTIVE Because AQP4/MOG antibody testing is not available in some parts of the world and there are often delays in obtaining results, it is particularly important to use clinical factors to predict the subtypes of adult optic neuritis (ON). METHODS This was a single-center retrospective cohort study. RESULTS The final analysis included 249 adult patients presenting with the first ON attack during January 2016 to January 2020. These included 109 (43.8%) AQP4-ON cases, 49 (19.7%) MOG-ON cases, and 91 (36.5%) Seronegative-ON cases. The proportion of optic disk swelling (ODS) and bilateral involvement in MOG-ON group was significantly higher than in the other two subgroups (P = 0.029, 0.001). The MOG-ON group had the best follow-up BCVA (P = 0.003). To predict adult AQP4-ON, unilateral involvement (sensitivity 0.88, NPV 0.77) was the most sensitivity predictors, while neurological history (specificity 0.96, PPV 0.65) and concomitant other autoimmune antibodies (specificity 0.76, PPV 0.65) were the most specific predictors. Using the parallel test 'unilateral or other autoimmune antibodies' increased sensitivity to 0.95, with an optimal NPV of 0.88. To predict adult MOG-ON, the most sensitive clinical characteristics were ODS (sensitivity 0.79, NPV 0.88), and follow-up VA ≤0.1logMAR (sensitivity 0.78, NPV 0.92), whereas the most specific values were prior neurological history or bilateral involvement, with specificities of 0.92 and 0.82, respectively. The sensitivity increased to 0.94, 0.97, and 0.97 when using the parallel clinical factors of 'bilateral or ODS or relapse', 'bilateral or ODS or follow-up VA ≤0.1logMAR', and 'ODS or follow-up VA ≤0.1logMAR', and the corresponding NPV (0.94, 0.97 vs 0.98). CONCLUSION The proportion of MOG-ON (19.7%) was less than that of AQP4-ON and Seronegative-ON. Moreover, MOG-ON had a better prognosis and was more likely to be associated with ODS or bilateral involvement. The use of parallel clinical parameters improved the sensitivity for the diagnosis of adult MOG-ON and AQP4-ON.
Collapse
Affiliation(s)
- Honglu Song
- Senior Department of Ophthalmology, The Chinese People's Liberation Army General Hospital, Beijing, China; Department of Ophthalmology, the 980th Hospital of the Chinese PLA Joint Logistics Support Force, Shijiazhuang, Hebei, China
| | - Mo Yang
- Department of Neuro-ophthalmology, Eye Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Huanfen Zhou
- Senior Department of Ophthalmology, The Chinese People's Liberation Army General Hospital, Beijing, China
| | - Zhaohui Li
- Senior Department of Ophthalmology, The Chinese People's Liberation Army General Hospital, Beijing, China.
| | - Shihui Wei
- Senior Department of Ophthalmology, The Chinese People's Liberation Army General Hospital, Beijing, China.
| |
Collapse
|
12
|
Should Aquaporin-4 Antibody Test Be Performed in all Patients With Isolated Optic Neuritis? J Neuroophthalmol 2022; 42:454-461. [PMID: 36255079 DOI: 10.1097/wno.0000000000001573] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
BACKGROUND Optic neuritis (ON) may be the initial manifestation of neuromyelitis optica spectrum disorder (NMOSD). Aquaporin-4 antibody (AQP4 Ab) is used to diagnose NMOSD. This has implications on prognosis and is important for optimal management. We aim to evaluate if clinical features can distinguish AQP4 Ab seropositive and seronegative ON patients. METHODS We reviewed patients with first episode of isolated ON from Tan Tock Seng Hospital and Singapore National Eye Centre who tested for AQP4 Ab from 2008 to 2017. Demographic and clinical data were compared between seropositive and seronegative patients. RESULTS Among 106 patients (120 eyes) with first episode of isolated ON, 23 (26 eyes; 22%) were AQP4 Ab positive and 83 (94 eyes; 78%) were AQP4 Ab negative. At presentation, AQP4 Ab positive patients had older mean onset age (47.9 ± 13.6 vs 36.8 ± 12.6 years, P < 0.001), worse nadir VA (OR 1.714; 95% CI, 1.36 to 2.16; P < 0.001), less optic disc swelling (OR 5.04; 95% CI, 1.682 to 15.073; p = 0.004), and higher proportions of concomitant anti-Ro antibody (17% vs 4%, p = 0.038) and anti-La antibody (17% vs 1%, p = 0.008). More AQP4 Ab positive patients received steroid-sparing immunosuppressants (74% vs 19%, p < 0.001) and plasma exchange (13% vs 0%, p = 0.009). AQP4 Ab positive patients had worse mean logMAR VA (visual acuity) at 12 months (0.70 ± 0.3 vs 0.29 ± 0.5, p = 0.051) and 36 months (0.37±0.4 vs 0.14 ± 0.2, p = 0.048) follow-up. CONCLUSION Other than older onset age and retrobulbar optic neuritis, clinical features are non-discriminatory for NMOSD. We propose a low threshold for AQP4 Ab serology testing in inflammatory ON patients, particularly in high NMOSD prevalence populations, to minimize diagnostic and treatment delays.
Collapse
|
13
|
Mewes D, Kuchling J, Schindler P, Khalil AAA, Jarius S, Paul F, Chien C. Diagnostik der Neuromyelitis-optica-Spektrum-Erkrankung (NMOSD) und der MOG-Antikörper-assoziierten Erkrankung (MOGAD). Klin Monbl Augenheilkd 2022; 239:1315-1324. [DOI: 10.1055/a-1918-1824] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
ZusammenfassungDie Aquaporin-4-Antikörper-positive Neuromyelitis-optica-Spektrum-Erkrankung (engl. NMOSD) und die Myelin-Oligodendrozyten-Glykoprotein-Antikörper-assoziierte Erkrankung (engl. MOGAD) sind
Autoimmunerkrankungen des zentralen Nervensystems. Typische Erstmanifestationen sind bei Erwachsenen Optikusneuritis und Myelitis. Eine Beteiligung auch von Hirn und Hirnstamm, spätestens im
weiteren Verlauf, ist häufig. Während die NMOSD nahezu immer schubförmig verläuft, nimmt die MOGAD gelegentlich einen monophasischen Verlauf. Die Differenzialdiagnostik ist anspruchsvoll und
stützt sich auf u. a. auf radiologische und serologische Befunde. Die Abgrenzung von der häufigeren neuroinflammatorischen Erkrankung, Multiple Sklerose (MS), ist von erheblicher Bedeutung,
da sich Behandlung und langfristige Prognose von NMOSD, MOGAD und MS wesentlich unterscheiden. Die vielfältigen Symptome und die umfangreiche Diagnostik machen eine enge Zusammenarbeit
zwischen Ophthalmologie, Neurologie und Radiologie erforderlich. Dieser Artikel gibt einen Überblick über typische MRT-Befunde und die serologische Antikörperdiagnostik bei NMOSD und MOGAD.
Zwei illustrative Fallberichte aus der ärztlichen Praxis ergänzen die Darstellung.
Collapse
Affiliation(s)
- Darius Mewes
- Experimental and Clinical Research Center, Charité Universitätsmedizin Berlin & Max-Delbrück-Centrum für molekulare Medizin Berlin, Berlin, Deutschland
- NeuroCure Clinical Research Center, Charité – Universitätsmedizin Berlin, Berlin, Deutschland
- Biomedical Innovation Academy, Berlin Institute of Health at Charité – Universitätsmedizin Berlin, Berlin, Deutschland
| | - Joseph Kuchling
- NeuroCure Clinical Research Center, Charité – Universitätsmedizin Berlin, Berlin, Deutschland
- Biomedical Innovation Academy, Berlin Institute of Health at Charité – Universitätsmedizin Berlin, Berlin, Deutschland
- Klinik für Neurologie, Charité – Universitätsmedizin Berlin, Berlin, Deutschland
| | - Patrick Schindler
- Experimental and Clinical Research Center, Charité Universitätsmedizin Berlin & Max-Delbrück-Centrum für molekulare Medizin Berlin, Berlin, Deutschland
- NeuroCure Clinical Research Center, Charité – Universitätsmedizin Berlin, Berlin, Deutschland
- Klinik für Neurologie, Charité – Universitätsmedizin Berlin, Berlin, Deutschland
| | - Ahmed Abdelrahim Ahmed Khalil
- Centrum für Schlaganfallforschung, Charité – Universitätsmedizin Berlin, Berlin, Deutschland
- Abteilung Neurologie, Max-Planck-Institut für Kognitions- und Neurowissenschaften, Leipzig, Deutschland
- Mind Brain Body Institute, Berlin School of Mind and Brain, Humboldt-Universität zu Berlin, Berlin, Deutschland
| | - Sven Jarius
- AG Molekulare Neuroimmunologie, Neurologische Klinik, Universität Heidelberg, Heidelberg, Deutschland
| | - Friedemann Paul
- Experimental and Clinical Research Center, Charité Universitätsmedizin Berlin & Max-Delbrück-Centrum für molekulare Medizin Berlin, Berlin, Deutschland
- NeuroCure Clinical Research Center, Charité – Universitätsmedizin Berlin, Berlin, Deutschland
- Klinik für Neurologie, Charité – Universitätsmedizin Berlin, Berlin, Deutschland
| | - Claudia Chien
- Experimental and Clinical Research Center, Charité Universitätsmedizin Berlin & Max-Delbrück-Centrum für molekulare Medizin Berlin, Berlin, Deutschland
- NeuroCure Clinical Research Center, Charité – Universitätsmedizin Berlin, Berlin, Deutschland
- Klinik für Psychiatrie und Psychotherapie, Charité – Universitätsmedizin Berlin, Berlin, Deutschland
| |
Collapse
|
14
|
Petzold A, Fraser CL, Abegg M, Alroughani R, Alshowaeir D, Alvarenga R, Andris C, Asgari N, Barnett Y, Battistella R, Behbehani R, Berger T, Bikbov MM, Biotti D, Biousse V, Boschi A, Brazdil M, Brezhnev A, Calabresi PA, Cordonnier M, Costello F, Cruz FM, Cunha LP, Daoudi S, Deschamps R, de Seze J, Diem R, Etemadifar M, Flores-Rivera J, Fonseca P, Frederiksen J, Frohman E, Frohman T, Tilikete CF, Fujihara K, Gálvez A, Gouider R, Gracia F, Grigoriadis N, Guajardo JM, Habek M, Hawlina M, Martínez-Lapiscina EH, Hooker J, Hor JY, Howlett W, Huang-Link Y, Idrissova Z, Illes Z, Jancic J, Jindahra P, Karussis D, Kerty E, Kim HJ, Lagrèze W, Leocani L, Levin N, Liskova P, Liu Y, Maiga Y, Marignier R, McGuigan C, Meira D, Merle H, Monteiro MLR, Moodley A, Moura F, Muñoz S, Mustafa S, Nakashima I, Noval S, Oehninger C, Ogun O, Omoti A, Pandit L, Paul F, Rebolleda G, Reddel S, Rejdak K, Rejdak R, Rodriguez-Morales AJ, Rougier MB, Sa MJ, Sanchez-Dalmau B, Saylor D, Shatriah I, Siva A, Stiebel-Kalish H, Szatmary G, Ta L, Tenembaum S, Tran H, Trufanov Y, van Pesch V, Wang AG, Wattjes MP, Willoughby E, Zakaria M, Zvornicanin J, Balcer L, Plant GT. Diagnosis and classification of optic neuritis. Lancet Neurol 2022; 21:1120-1134. [PMID: 36179757 DOI: 10.1016/s1474-4422(22)00200-9] [Citation(s) in RCA: 111] [Impact Index Per Article: 37.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2021] [Revised: 03/16/2022] [Accepted: 04/20/2022] [Indexed: 11/28/2022]
Abstract
There is no consensus regarding the classification of optic neuritis, and precise diagnostic criteria are not available. This reality means that the diagnosis of disorders that have optic neuritis as the first manifestation can be challenging. Accurate diagnosis of optic neuritis at presentation can facilitate the timely treatment of individuals with multiple sclerosis, neuromyelitis optica spectrum disorder, or myelin oligodendrocyte glycoprotein antibody-associated disease. Epidemiological data show that, cumulatively, optic neuritis is most frequently caused by many conditions other than multiple sclerosis. Worldwide, the cause and management of optic neuritis varies with geographical location, treatment availability, and ethnic background. We have developed diagnostic criteria for optic neuritis and a classification of optic neuritis subgroups. Our diagnostic criteria are based on clinical features that permit a diagnosis of possible optic neuritis; further paraclinical tests, utilising brain, orbital, and retinal imaging, together with antibody and other protein biomarker data, can lead to a diagnosis of definite optic neuritis. Paraclinical tests can also be applied retrospectively on stored samples and historical brain or retinal scans, which will be useful for future validation studies. Our criteria have the potential to reduce the risk of misdiagnosis, provide information on optic neuritis disease course that can guide future treatment trial design, and enable physicians to judge the likelihood of a need for long-term pharmacological management, which might differ according to optic neuritis subgroups.
Collapse
|
15
|
Update on glial antibody-mediated optic neuritis. Jpn J Ophthalmol 2022; 66:405-412. [PMID: 35895155 DOI: 10.1007/s10384-022-00932-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2022] [Accepted: 05/16/2022] [Indexed: 10/16/2022]
Abstract
Optic neuritis (ON) refers to inflammatory demyelinating lesions of the optic nerve, which can cause acute or subacute vision loss and is a major cause of vision loss in young adults. Much of our understanding of typical ON is from the Optic Neuritis Treatment Trial. Glial autoantibodies to aquaporin-4 immunoglobulin (AQP4-IgG) and myelin oligodendrocyte glycoprotein immunoglobulin (MOG-IgG) are recently established biomarkers of ON that have revolutionized our understanding of atypical ON. The detection of glial antibodies is helpful in the diagnosis, treatment, and follow-up of patients with different types of ON. AQP4-IgG and MOG-IgG screening is strongly recommended for patients with atypical ON. Research on the pathogenesis of NMOSD and MOGAD will promote the development and marketing of targeted immunotherapies. The application of new and efficient drugs, such as the selective complement C5 inhibitor, IL-6 receptor inhibitor, B cell-depleting agents, and drugs against other monoclonal antibodies, provides additional medical evidence. This review provides information on the diagnosis and management of glial antibody-mediated ON.
Collapse
|
16
|
Apetse K, Kouassi K, Anayo NK, Waklatsi KP, Guinhouya MK, Agba L, Kumako VK, Kombate D, Assogba K, Belo M, Balogou AK. Neuromyelitis Optica Spectrum Disorders in Black African: Experience of Togo (2015–2020). J Neurosci Rural Pract 2022; 13:541-545. [PMID: 35946029 PMCID: PMC9357491 DOI: 10.1055/s-0042-1750081] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022] Open
Abstract
Introduction
Neuromyelitis optica spectrum disorders (NMOSD) would disproportionately affect blacks within mixed populations. However, they are rarely reported in black African. The objective of this work was to report the experience of Togo, a West African country in terms of NMOSD.
Methods
This is a series of six cases diagnosed between 2015 and 2020 in the only three neurology departments in Togo. The diagnosis of NMOSD was made according to the criteria of the International Panel for NMO Diagnosis (2015) and the patients had a minimum clinical follow-up of 6 months after the diagnosis. The search for anti-aquaporin 4 (AQP4) antibodies was performed by immunofluorescence on transfected cells.
Results
The mean age was 25.33 years and the sex ratio female/male was 5/1. The average time between the first attack and the diagnosis was 122.83 days. Clinically, there was isolated medullary involvement (2/6), simultaneous opticomedullary involvement (3/6), and area postrema syndrome (1/6). Five patients were anti-AQP4 positive. All six patients had extensive longitudinal myelitis. At 6 months of follow-up, there was one case of death and one case of blindness.
Conclusion
The rarity of NMOSD cases in Togo could be linked to an underestimation. To better characterize the NMOSDs of the black African population, multicenter and multidisciplinary studies are necessary.
Collapse
Affiliation(s)
- Kossivi Apetse
- Service de Neurologie du CHU Campus, Faculté des Sciences de la Santé, Université de Lomé, Lomé, Togo
| | - Komlan Kouassi
- Service de Neurologie du CHU Campus, Faculté des Sciences de la Santé, Université de Lomé, Lomé, Togo
| | - Nyinèvi Komla Anayo
- Service de Neurologie du CHU Campus, Faculté des Sciences de la Santé, Université de Lomé, Lomé, Togo
| | - Kokouvi Panabalo Waklatsi
- Service de Neurologie du CHU Campus, Faculté des Sciences de la Santé, Université de Lomé, Lomé, Togo
| | - Mensah Kokou Guinhouya
- Service de Neurologie du CHU Campus, Faculté des Sciences de la Santé, Université de Lomé, Lomé, Togo
| | - Léhleng Agba
- Service de Neurologie du CHU Campus, Faculté des Sciences de la Santé, Université de Lomé, Lomé, Togo
| | - Vinyo Kodzo Kumako
- Service de Neurologie du CHU Campus, Faculté des Sciences de la Santé, Université de Lomé, Lomé, Togo
| | - Damelan Kombate
- Service de Neurologie du CHU Campus, Faculté des Sciences de la Santé, Université de Lomé, Lomé, Togo
| | - Komi Assogba
- Service de Neurologie du CHU Campus, Faculté des Sciences de la Santé, Université de Lomé, Lomé, Togo
| | - Mofou Belo
- Service de Neurologie du CHU Campus, Faculté des Sciences de la Santé, Université de Lomé, Lomé, Togo
| | - Agnon Koffi Balogou
- Service de Neurologie du CHU Campus, Faculté des Sciences de la Santé, Université de Lomé, Lomé, Togo
| |
Collapse
|
17
|
Chen X, Zhou J, Li R, Zhang B, Wang Y, Zhong X, Shu Y, Chang Y, Qiu W. Disease Course and Outcomes in Patients With the Limited Form of Neuromyelitis Optica Spectrum Disorders and Negative AQP4-IgG Serology at Disease Onset: A Prospective Cohort Study. J Clin Neurol 2022; 18:453-462. [PMID: 35796271 PMCID: PMC9262456 DOI: 10.3988/jcn.2022.18.4.453] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2021] [Revised: 12/01/2021] [Accepted: 12/01/2021] [Indexed: 11/17/2022] Open
Abstract
Background and Purpose Patients presenting with clinical characteristics that are strongly suggestive of neuromyelitis optica spectrum disorders (NMOSD) have a high risk of developing definite NMOSD in the future. Little is known about the clinical course, treatment, and prognosis of these patients with likely NMOSD at disease onset. Methods This study prospectively recruited and visited 24 patients with the limited form of NMOSD (LF-NMOSD) at disease onset from November 2012 to June 2021. Their demographics, clinical course, longitudinal aquaporin-4 immunoglobulin G (AQP4-IgG) serology, MRI, therapeutic management, and outcome data were collected and analyzed. Results The onset age of the cohort was 38.1±12.0 years (mean±standard deviation). The median disease duration was 73.5 months (interquartile range=44.3–117.0 months), and the follow-up period was 54.2±23.8 months. At the end of the last visit, the final diagnosis was categorized into AQP4-IgG-seronegative NMOSD (n=16, 66.7%), AQP4-IgG-seropositive NMOSD (n=7, 29.2%), or multiple sclerosis (n=1, 4.2%). Seven of the 24 patients (29.2%) experienced conversion to AQP4-IgG seropositivity, and the interval from onset to this serological conversion was 37.9±21.9 months. Isolated/mixed area postrema syndrome (APS) was the predominant onset phenotype (37.5%). The patients with isolated/mixed APS onset showed a predilection for conversion to AQP4-IgG seropositivity. All patients experienced a multiphasic disease course, with immunosuppressive therapy reducing the incidence rates of clinical relapse and residual functional disability. Conclusions Definite NMOSD may be preceded by LF-NMOSD, particularly isolated/mixed APS. Intensive long-term follow-up and attack-prevention immunotherapeutic management is recommended in patients with LF-NMOSD.
Collapse
Affiliation(s)
- Xiaodong Chen
- Department of Neurology, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Jing Zhou
- Department of Neurology, Foshan First People's Hospital, Foshan, China
| | - Rui Li
- Department of Neurology, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Bingjun Zhang
- Department of Neurology, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Yuge Wang
- Department of Neurology, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Xiaonan Zhong
- Department of Neurology, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Yaqing Shu
- Department of Neurology, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Yanyu Chang
- Department of Neurology, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Wei Qiu
- Department of Neurology, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China.
| |
Collapse
|
18
|
Foo R, Yau C, Singhal S, Tow S, Loo JL, Tan K, Milea D. Optic Neuritis in the Era of NMOSD and MOGAD: A Survey of Practice Patterns in Singapore. Asia Pac J Ophthalmol (Phila) 2022; 11:184-195. [PMID: 35533337 DOI: 10.1097/apo.0000000000000513] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
PURPOSE The Optic Neuritis Treatment Trial was a landmark study with implications worldwide. In the advent of antibody testing for neuromyelitis optica spectrum disease (NMOSD) and myelin oligodendrocyte glycoprotein antibody-associated disease (MOGAD), emerging concepts, such as routine antibody testing and management, remain controversial, resulting mostly from studies in White populations. We evaluate the practice patterns of optic neuritis investigation and management by neuro-ophthalmologists and neurologists in Singapore. DESIGN 21-question online survey consisting of 4 clinical vignettes. METHODS The survey was sent to all Singapore Medical Council- registered ophthalmologists and neurologists who regularly manage patients with optic neuritis. RESULTS Forty-two recipients (17 formally trained neuro-ophthalmol-ogists [100% response rate] and 25 neurologists) responded. Participants opted for routine testing of anti-aquaporin-4 antibodies (88.1% in mild optic neuritis and 97.6% in severe optic neuritis). Anti-MOG antibodies were frequently obtained (76.2% in mild and 88.1% in severe optic neuritis). Plasmapheresis was rapidly initiated (85.7%) in cases of nonresponse to intravenous steroids, even before obtaining anti-aquaporin-4 or anti-MOG serology results. In both NMOSD and MOGAD, oral mycophenolate mofetil was the preferred option if chronic immunosuppression was necessary. Steroids were given for a longer duration and tapered more gradually than in idiopathic optic neuritis cases. CONCLUSIONS Serological testing for NMOSD and MOGAD is considered as a routine procedure in cases of optic neuritis in Singapore, possibly due to local epidemiological features of these conditions. Chronic oral immunosuppression is preferred for the long term, but further research is necessary to establish the efficacy and cost-effectiveness of these practices.
Collapse
Affiliation(s)
- Reuben Foo
- Department of Neuro-Ophthalmology, Singapore National Eye Centre, Singapore City, Singapore
| | - Christine Yau
- Department of Neuro-Ophthalmology, Singapore National Eye Centre, Singapore City, Singapore
| | - Shweta Singhal
- Department of Neuro-Ophthalmology, Singapore National Eye Centre, Singapore City, Singapore
- Singapore Eye Research Institute, Singapore City, Singapore
- Duke-NUS Medical School, Singapore City, Singapore
| | - Sharon Tow
- Department of Neuro-Ophthalmology, Singapore National Eye Centre, Singapore City, Singapore
- Duke-NUS Medical School, Singapore City, Singapore
| | - Jing-Liang Loo
- Department of Neuro-Ophthalmology, Singapore National Eye Centre, Singapore City, Singapore
- Singapore Eye Research Institute, Singapore City, Singapore
- National University Hospital, Singapore City, Singapore
| | - Kevin Tan
- Duke-NUS Medical School, Singapore City, Singapore
- Department of Neurology, National Neuroscience Institute, Singapore City, Singapore
| | - Dan Milea
- Department of Neuro-Ophthalmology, Singapore National Eye Centre, Singapore City, Singapore
- Singapore Eye Research Institute, Singapore City, Singapore
- Duke-NUS Medical School, Singapore City, Singapore
| |
Collapse
|
19
|
Jeyalatha MV, Therese KL, Anand AR. An Update on the Laboratory Diagnosis of Neuromyelitis Optica Spectrum Disorders. J Clin Neurol 2022; 18:152-162. [PMID: 35274835 PMCID: PMC8926771 DOI: 10.3988/jcn.2022.18.2.152] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2021] [Revised: 12/06/2021] [Accepted: 12/06/2021] [Indexed: 11/17/2022] Open
Abstract
Neuromyelitis optica spectrum disorder (NMOSD) is an autoimmune disorder of the central nervous system that is specifically associated with demyelination of spinal cord and optic nerves. The discovery of specific autoantibody markers such as aquaporin-4 IgG and myelin oligodendrocyte glycoprotein IgG has led to several methodologies being developed and validated. There have been numerous investigations of the clinical and radiological presentations used in the clinical diagnosis of NMOSD. However, although various laboratory diagnostic techniques have been standardized and validated, a gold-standard test has yet to be finalized due to uncertain sensitivities and specificities of the methodologies. For this review, the literature was surveyed to compile the standardized laboratory techniques utilized for the differential diagnosis of NMOSD. Enzyme-linked immunosorbent assays enable screening of NMOSD, but they are considered less sensitive than cell-based assays (CBAs), which were found to be highly sensitive and specific. However, CBAs are laborious and prone to batch variations in their results, since the expression levels of protein need to be maintained and monitored meticulously. Standardizing point-of-care devices and peptide-based assays would make it possible to improve the turnaround time and accessibility of the test, especially in resource-poor settings.
Collapse
Affiliation(s)
- Mani Vimalin Jeyalatha
- Department of Microbiology, Larsen & Toubro Microbiology Research Centre, Vision Research Foundation, Kamal Nayan Bajaj Institute for Research in Vision and Ophthalmology, Chennai, India
| | - Kulandai Lily Therese
- Department of Microbiology, Larsen & Toubro Microbiology Research Centre, Vision Research Foundation, Kamal Nayan Bajaj Institute for Research in Vision and Ophthalmology, Chennai, India.
| | - Appakkudal Ramaswamy Anand
- Department of Microbiology, Larsen & Toubro Microbiology Research Centre, Vision Research Foundation, Kamal Nayan Bajaj Institute for Research in Vision and Ophthalmology, Chennai, India
| |
Collapse
|
20
|
Molina-Carrión LE, Lira-Tecpa J, Jiménez-Arellano MP, Cruz-Domínguez MP, Medina G. Disease course of Chronic Relapsing Inflammatory Optic Neuropathy (CRION) in a single care center. ARQUIVOS DE NEURO-PSIQUIATRIA 2022; 80:510-515. [PMID: 35195230 DOI: 10.1590/0004-282x-anp-2021-0157] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/22/2021] [Accepted: 07/19/2021] [Indexed: 11/22/2022]
Abstract
BACKGROUND Chronic relapsing inflammatory optic neuropathy (CRION) is a recurrent, idiopathic optic neuritis and is considered as a rare disease. OBJECTIVE To describe the clinical course during long-term follow-up of patients with a diagnosis of CRION. METHODS From a cohort of 1,735 patients with demyelinating disorders, we selected patients aged over 16 years with CRION according to current criteria. Demographic and clinical data, including initial presentation, symptoms, number of relapses, time delay in diagnosis, diagnostic methods, and treatment were obtained from clinical files. Infections, autoimmune diseases, and multiple sclerosis, among other conditions, were ruled out in all patients. RESULTS We analyzed 30 patients with CRION: 24 women and six men, with mean age of 42.8±10.2 years, median disease course of 7.9 years (5.29-13.1), and median number of attacks of 2 (IQR 2-4). The initial manifestation was ocular pain in 97% and bilateral and sequential affection in 87%. Visual acuity was recovered in 50%, did not improve in 33%, and recovered incompletely in 17%. Antibodies against aquaporin-4 (AQP4-Abs) were negative in 73.3%. Magnetic resonance imaging of the brain was normal in 76.7%. None of the patients evolved to another demyelinating disease over time. Initial treatment was methylprednisolone in 100%, and plasmapheresis in 20%. Currently, all patients are on maintenance treatment with mycophenolate mofetil or rituximab with a decrease in relapsing rate. CONCLUSIONS Diagnosis of CRION is challenging and should be kept in mind. Prompt diagnosis, adequate treatment and close follow-up are essential to prevent disabling sequelae in these patients.
Collapse
Affiliation(s)
- Luis Enrique Molina-Carrión
- Hospital de Especialidades Centro Médico Nacional "La Raza", Instituto Mexicano Del Seguro Social, Neurology Department, Mexico City, Mexico
| | | | | | - María Pilar Cruz-Domínguez
- Hospital de Especialidades Centro Médico Nacional "La Raza", Instituto Mexicano del Seguro Social, Research Division, Mexico City, Mexico.,Universidad Nacional Autónoma de México, Mexico City, Mexico
| | - Gabriela Medina
- Universidad Nacional Autónoma de México, Mexico City, Mexico.,Hospital de Especialidades Centro Médico Nacional "La Raza", Instituto Mexicano del Seguro Social, Translational Research Unit, Mexico City, Mexico
| |
Collapse
|
21
|
Ambasta A, Kusumesh R, Sharma J, Sinha BP, Shree S, Gupta A, Priyadarshi RN. Clinico-epidemiologic characteristics of optic neuritis in a tertiary eye centre in Eastern India based on the status of serum aquaporin-4 antibody. Indian J Ophthalmol 2022; 70:490-496. [PMID: 35086223 PMCID: PMC9023929 DOI: 10.4103/ijo.ijo_290_21] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Purpose: To elucidate the clinico-epidemiologic characteristics of optic neuritis based on the status of serum aquaporin-4 antibody (AQP4-Ab) in patients with optic neuritis (ON). Methods: Medical records of 106 patients with ON and a follow-up of 3 years were reviewed. For each patient, the following data were extracted: medical history, findings of the ocular examination, brain, orbital or spinal MRI, and serological tests for AQP4. The ON was classified as typical or atypical based on disc examination and improvement in vision after intravenous methylprednisolone (IVMP). The clinical findings (typical or atypical), disease course, and outcomes were analyzed according to the serostatus of the ON. Results: 10 patients ((9.4%) were seropositive for AQP4-Ab; all had atypical ON. 96 patients (91%) were seronegative for AQP4-Ab: 36 atypical ON and 60 typical ON. Profound visual impairment at presentation was seen in all patients. However, at the end of the study period, seropositive and seronegative atypical ON had poor visual outcomes as compared to seronegative typical ON (P = 0.002). Five seropositive and four seronegative patients with atypical ON developed transverse myelitis. Bilateral disease with relapse was more in seropositive patients (80%); however, seronegative with atypical ON also had bilateral presentation and relapse in 42% and 41%, respectively. Conclusion: AQP4-Ab seropositive patients mostly present with atypical features such as bilateral recurrent ON, poor visual outcome, and increased incidence of transverse myelitis. However, atypical clinical features can also be seen in seronegative ON with a poor visual outcome and a recalcitrant course.
Collapse
Affiliation(s)
- Anita Ambasta
- Regional Institute of Ophthalmology, Indira Gandhi Institute of Medical Sciences, Patna, Bihar, India
| | - Rakhi Kusumesh
- Regional Institute of Ophthalmology, Indira Gandhi Institute of Medical Sciences, Patna, Bihar, India
| | - Janardan Sharma
- Department of Neurology, Indira Gandhi Institute of Medical Sciences, Patna, Bihar, India
| | - Bibhuti Prassan Sinha
- Regional Institute of Ophthalmology, Indira Gandhi Institute of Medical Sciences, Patna, Bihar, India
| | - Srishti Shree
- Regional Institute of Ophthalmology, Indira Gandhi Institute of Medical Sciences, Patna, Bihar, India
| | - Abhishek Gupta
- Department of Ophthalmology, All India Institute of Medical Sciences, Patna, Bihar, India
| | - Rajeev N Priyadarshi
- Department of Radiology, All India Institute of Medical Sciences, Patna, Bihar, India
| |
Collapse
|
22
|
AQP4-IgG-seronegative patient outcomes in the N-MOmentum trial of inebilizumab in neuromyelitis optica spectrum disorder. Mult Scler Relat Disord 2021; 57:103356. [DOI: 10.1016/j.msard.2021.103356] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2021] [Revised: 10/22/2021] [Accepted: 10/28/2021] [Indexed: 01/01/2023]
|
23
|
Cavanagh JJ, Levy M. Differential diagnosis of multiple sclerosis. Presse Med 2021; 50:104092. [PMID: 34715293 DOI: 10.1016/j.lpm.2021.104092] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/21/2021] [Revised: 10/22/2021] [Accepted: 10/22/2021] [Indexed: 01/17/2023] Open
Abstract
BACKGROUND AND OBJECTIVES Despite immense progress of imaging and updates in the MacDonald criteria, the diagnosis of multiple sclerosis remains difficult as it must integrate history, clinical presentation, biological markers, and imaging. There is a multitude of syndromes resembling multiple sclerosis both clinically or on imaging. The goal of this review is to help clinicians orient themselves in these various diagnoses. We organized our review in two categories: inflammatory and autoimmune diseases that are close or can be confused with multiple sclerosis, and non-inflammatory syndromes that can present with symptoms or imaging mimicking those of multiple sclerosis. METHOD Review of literature CONCLUSION: Progress of imaging and biological sciences have drastically changed the approach and management of multiple sclerosis. But these developments have also shined a light on a variety of diseases previously unknown or poorly known, therefore greatly expanding the differential diagnosis of multiple sclerosis. While autoimmune, many of these diseases have underlying biological mechanisms that are very different from those of multiple sclerosis, rendering MS therapies usually inefficient. It is crucial to approach these diseases with utmost thoroughness, integrating history, clinical exam, and evolving ancillary tests.
Collapse
Affiliation(s)
- Julien J Cavanagh
- Department of Neurology, Massachusetts General Hospital, Harvard Medical School, 55 Fruit st., Wang 721J, Boston, MA 02114, United States.
| | - Michael Levy
- Department of Neurology, Massachusetts General Hospital, Harvard Medical School, 55 Fruit st., Wang 721J, Boston, MA 02114, United States
| |
Collapse
|
24
|
Hickman SJ, Petzold A. Update on Optic Neuritis: An International View. Neuroophthalmology 2021; 46:1-18. [PMID: 35095131 PMCID: PMC8794242 DOI: 10.1080/01658107.2021.1964541] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2021] [Revised: 07/26/2021] [Accepted: 07/31/2021] [Indexed: 10/20/2022] Open
Abstract
Previously, optic neuritis was thought to be typical, i.e. idiopathic or multiple sclerosis (MS) related, associated with a good visual prognosis, or atypical, i.e. not associated with MS and requiring corticosteroids or plasma exchange for vision to recover. More recently, the importance of optic neuritis in neuromyelitis optica spectrum disorder and myelin oligodendrocyte glycoprotein (MOG) antibody disease has become more appreciated. The results of the Optic Neuritis Treatment Trial (ONTT) has influenced how optic neuritis is treated around the world. For this review we surveyed the international literature on optic neuritis in adults. Our aims were first to find the reported incidence of optic neuritis in different countries and to ascertain what percentage of cases were seropositive for anti-aquaporin 4 and anti-MOG antibodies, and second, to document the presenting features, treatment, and outcomes from a first episode of the different types of optic neuritis from these countries, and to compare the results with the outcomes of the ONTT cohort. From these data we have sought to highlight where ambiguities currently lie in how to manage optic neuritis and have made recommendations as to how future treatment trials in optic neuritis should be carried out in the current antibody testing era.
Collapse
Affiliation(s)
- Simon J. Hickman
- Department of Neurology, Royal Hallamshire Hospital, Sheffield, UK
| | - Axel Petzold
- Expertise Centrum Neuro-ophthalmology, Departments of Neurology & Ophthalmology, Amsterdam Umc, Amsterdam, The Netherlands
- Department of Neuro-Ophthalmology, Moorfields Eye Hospital, London, UK
- Department of Neuro-Ophthalmology, The National Hospital For Neurology And Neurosurgery, London, UK
- Department of Molecular Neurosciences, Ucl Institute of Neurology, London, UK
| |
Collapse
|
25
|
[Aquaporin 4 antibody-positive neuromyelitis optica spectrum disorders and myelin oligodendrocyte glycoprotein antibody-associated encephalomyelitis. A brief review]. DER NERVENARZT 2021; 92:317-333. [PMID: 33787942 DOI: 10.1007/s00115-021-01106-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 02/25/2021] [Indexed: 10/21/2022]
Abstract
Aquaporin 4 (AQP4) immunoglobulin (Ig)G-associated neuromyelitis optica spectrum disorders (NMOSD) and myelin oligodendrocyte glycoprotein immunoglobulin (Ig)G-associated encephalomyelitis (MOG-EM, also termed MOG antibody-associated disease, MOGAD) are important autoimmune differential diagnoses of multiple sclerosis (MS), which differ from MS with respect to optimum treatment and prognosis. AQP4 IgG-positive NMOSD take a relapsing course in virtually all cases and MOG-EM in at least 80% of adult cases. Both diseases can quickly lead to permanent disability if left untreated, although MOG-EM is associated with a better overall long-term prognosis. Antibody testing must be carried out by means of so-called cell-based assays. A number of red flags have been defined that must be checked prior to making a diagnosis of NMOSD or MOG-EM. Acute attacks are treated using high-dose glucocorticoids and plasma exchange or immunoadsorption. Rituximab and other immunosuppressants are used off-label for attack prevention. Recently, eculizumab, a C5 complement inhibitor, has been approved in the European Union (EU) for the treatment of patients with AQP4 IgG-positive NMOSD. This article gives a brief overview of the clinical and paraclinical features, pathology, treatment and prognosis of these rare disorders.
Collapse
|
26
|
Gospe SM, Chen JJ, Bhatti MT. Neuromyelitis optica spectrum disorder and myelin oligodendrocyte glycoprotein associated disorder-optic neuritis: a comprehensive review of diagnosis and treatment. Eye (Lond) 2021; 35:753-768. [PMID: 33323985 PMCID: PMC8026985 DOI: 10.1038/s41433-020-01334-8] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2020] [Revised: 11/10/2020] [Accepted: 11/18/2020] [Indexed: 12/13/2022] Open
Abstract
Optic neuritis (ON) is the most common cause of acute optic neuropathy in patients younger than 50 years of age and is most frequently idiopathic or associated with multiple sclerosis. However, the discovery of aquaporin-4 immunoglobulin G (IgG) and myelin oligodendrocyte glycoprotein (MOG)-IgG as biomarkers for two separate central nervous system inflammatory demyelinating diseases has revealed that neuromyelitis optica spectrum disorder (NMSOD) and MOG-IgG-associated disease (MOGAD) are responsible for clinically distinct subsets of ON. NMOSD-ON and MOGAD-ON both demonstrate tendencies for bilateral optic nerve involvement and often exhibit a relapsing course with the potential for devastating long-term visual outcomes. Early and accurate diagnosis is therefore essential. This review will summarize the current understanding of the clinical spectra of NMOSD and MOGAD, the radiographic and serological findings which support their diagnoses, and the current evidence behind various acute and long-term therapeutic strategies for ON related to these conditions. A particular emphasis is placed on a number of recent multi-centre randomized placebo-controlled trials, which provide the first level I evidence for long-term treatment of NMOSD.
Collapse
Affiliation(s)
- Sidney M Gospe
- Department of Ophthalmology, Duke University School of Medicine, Durham, NC, USA
| | - John J Chen
- Departments of Ophthalmology and Neurology, Mayo Clinic College of Medicine, Rochester, MN, USA
| | - M Tariq Bhatti
- Departments of Ophthalmology and Neurology, Mayo Clinic College of Medicine, Rochester, MN, USA.
| |
Collapse
|
27
|
Clinical phenotype, radiological features, and treatment of myelin oligodendrocyte glycoprotein-immunoglobulin G (MOG-IgG) optic neuritis. Curr Opin Neurol 2021; 33:47-54. [PMID: 31743235 DOI: 10.1097/wco.0000000000000766] [Citation(s) in RCA: 74] [Impact Index Per Article: 18.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
PURPOSE OF REVIEW To review the clinical characteristics, radiological manifestations and treatment of myelin oligodendrocyte glycoprotein (MOG)-immunoglobulin G (IgG) optic neuritis. RECENT FINDINGS Serum antibodies to MOG have recently been found to be a biomarker of MOG-IgG-associated disorder (MOGAD), a demyelinating disease distinct from both multiple sclerosis (MS) and aquaporin-4-IgG neuromyelitis optica spectrum disorder (AQP4-IgG-positive NMOSD). The phenotype of MOGAD is broad and includes optic neuritis, transverse myelitis, and acute demyelinating encephalomyelitis (ADEM). Optic neuritis is the most common presentation in adults, whereas ADEM is the most common presentation in children. Clinical characteristics suggestive of MOG-IgG optic neuritis include recurrent optic neuritis, prominent disc edema, and perineural enhancement of the optic nerve on magnetic resonance imaging. Although the nadir of vision loss is severe with MOG-IgG optic neuritis, the recovery is typically better than AQP4-IgG optic neuritis and therefore has a favorable overall prognosis. Patients with relapsing disease will often need chronic immunotherapy. Rituximab, azathioprine, mycophenolate mofetil, and monthly intravenous immune globulin are the most commonly utilized treatments. SUMMARY MOGAD is a unique entity that is separate from both MS and AQP4-IgG-positive NMOSD. Recognition of the clinical and radiologic features allow for the correct diagnosis. Future randomized trials will determine the optimal treatment for MOGAD.
Collapse
|
28
|
Abstract
Acute isolated optic neuritis can be the initial presentation of demyelinating inflammatory central nervous system disease related to multiple sclerosis (MS), neuromyelitis optica (NMO) or myelin oligodendrocyte glycoprotein antibody disease (MOG-AD). In addition to the well-characterized brain and spinal cord imaging features, important and characteristic differences in the radiologic appearance of the optic nerves in these disorders are being described, and magnetic resonance imaging (MRI) of the optic nerves is becoming an essential tool in the differential diagnosis of optic neuritis. Whereas typical demyelinating optic neuritis is a relatively mild and self-limited disease, atypical optic neuritis in NMO and MOG-AD is potentially much more vision-threatening and merits a different treatment approach. Thus, differentiation based on MRI features may be particularly important during the first attack of optic neuritis, when antibody status is not yet known. This review discusses the optic nerve imaging in the major demyelinating disorders with an emphasis on clinically relevant differences that can help clinicians assess and manage these important neuro-ophthalmic disorders. It also reviews the utility of optic nerve MRI as a prognostic indicator in acute optic neuritis.
Collapse
Affiliation(s)
- Aaron Winter
- Department of Neuro-Ophthalmology, Massachusetts Eye and Ear, Harvard Medical School, Boston, Massachusetts, USA
| | - Bart Chwalisz
- Department of Neuro-Ophthalmology, Massachusetts Eye and Ear, Harvard Medical School, Boston, Massachusetts, USA.,Neuroimmunology Division, Department of Neurology, Massachusetts General Hospital/Harvard Medical School , Boston, MA, USA
| |
Collapse
|
29
|
Valencia-Sanchez C, Wingerchuk DM. Emerging Targeted Therapies for Neuromyelitis Optica Spectrum Disorders. BioDrugs 2020; 35:7-17. [PMID: 33301078 DOI: 10.1007/s40259-020-00460-9] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/20/2020] [Indexed: 12/26/2022]
Abstract
Neuromyelitis optica spectrum disorder (NMOSD) is an autoimmune, inflammatory disorder of the central nervous system that typically presents with recurrent episodes of optic neuritis, longitudinally extensive myelitis, brainstem, diencephalic, and cerebral syndromes. Up to 80% of NMOSD patients have a circulating pathogenic autoantibody that targets the water channel aquaporin-4 (AQP4-IgG). The discovery of AQP4-IgG transformed our understanding of the pathogenesis of the disease and its possible treatment targets. Monoclonal antibodies targeting terminal complement (eculizumab), CD19 (inebilizumab), and the interleukin-6 receptor (satralizumab) have demonstrated efficacy in NMOSD attack prevention in recent phase 3 trials and have gained subsequent regulatory approval in the USA and other countries. We aim to review the evidence supporting the efficacy of these new drugs.
Collapse
Affiliation(s)
| | - Dean M Wingerchuk
- Department of Neurology, Mayo Clinic, 13400 East Shea Boulevard, Scottsdale, AZ, 85259, USA.
| |
Collapse
|
30
|
Padungkiatsagul T, Chen JJ, Jindahra P, Akaishi T, Takahashi T, Nakashima I, Takeshita T, Moss HE. Differences in Clinical Features of Myelin Oligodendrocyte Glycoprotein Antibody-Associated Optic Neuritis in White and Asian Race. Am J Ophthalmol 2020; 219:332-340. [PMID: 32681910 DOI: 10.1016/j.ajo.2020.07.008] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2020] [Revised: 07/03/2020] [Accepted: 07/06/2020] [Indexed: 01/01/2023]
Abstract
PURPOSE To determine whether clinical features and visual outcomes of myelin oligodendrocyte glycoprotein antibody-associated optic neuritis (MOG-ON) differ between White and Asian subjects. DESIGN Multicenter retrospective cohort. METHODS This was a multicenter study of 153 subjects who were White or Asian with a history of adult-onset (age 18 years or older) optic neuritis (ON) and positive MOG-IgG serology by cell-based assay. Subjects were enrolled from 2 unpublished cohorts (January 2017-November 2019) and 9 published cohorts with case-level data available (2012-2018). Subjects with alternative etiologies of demyelinating disease and positive or lack of aquaporin-4-IgG serology result were excluded. The main outcome measurements were clinical features and final visual outcomes. RESULTS Of the 153 subjects who were White (n = 80) or Asian (n = 73) included in the study, 93 (61%) were women, mean age of onset was 40.8 ± 14.9 years, and median follow-up was 35.2 months (range: 1-432 months); all of these characteristics were similar between White and Asian subjects. White subjects were more likely to have recurrent ON (57 [71%] vs 20 [27%]; P = .001) and extra-optic nerve manifestations (35 [44%] vs 8 [11%]; P = .001). Optic disc swelling, neuroimaging findings, presenting visual acuity (VA), treatment, and final VA did not differ according to subjects' race. Despite the high prevalence of severe visual loss (<20/200) during nadir, most subjects had good recovery of VA (>20/40) at final examination (51/77 [66%] White subjects vs 52/70 [74%] Asian subjects). CONCLUSION White subjects with MOG-ON were more likely to have recurrent disease and extra-optic nerve manifestations. Visual outcomes were similar between White and Asian subjects.
Collapse
|
31
|
Jarius S, Paul F, Weinshenker BG, Levy M, Kim HJ, Wildemann B. Neuromyelitis optica. Nat Rev Dis Primers 2020; 6:85. [PMID: 33093467 DOI: 10.1038/s41572-020-0214-9] [Citation(s) in RCA: 257] [Impact Index Per Article: 51.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 08/25/2020] [Indexed: 12/11/2022]
Abstract
Neuromyelitis optica (NMO; also known as Devic syndrome) is a clinical syndrome characterized by attacks of acute optic neuritis and transverse myelitis. In most patients, NMO is caused by pathogenetic serum IgG autoantibodies to aquaporin 4 (AQP4), the most abundant water-channel protein in the central nervous system. In a subset of patients negative for AQP4-IgG, pathogenetic serum IgG antibodies to myelin oligodendrocyte glycoprotein, an antigen in the outer myelin sheath of central nervous system neurons, are present. Other causes of NMO (such as paraneoplastic disorders and neurosarcoidosis) are rare. NMO was previously associated with a poor prognosis; however, treatment with steroids and plasma exchange for acute attacks and with immunosuppressants (in particular, B cell-depleting agents) for attack prevention has greatly improved the long-term outcomes. Recently, a number of randomized controlled trials have been completed and the first drugs, all therapeutic monoclonal antibodies, have been approved for the treatment of AQP4-IgG-positive NMO and its formes frustes.
Collapse
Affiliation(s)
- Sven Jarius
- Molecular Neuroimmunology Group, Department of Neurology, University of Heidelberg, Heidelberg, Germany.
| | - Friedemann Paul
- NeuroCure Clinical Research Center, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany.,Experimental and Clinical Research Center, Max Delbrueck Center for Molecular Medicine and Charité - Universitätsmedizin Berlin, Berlin, Germany
| | | | - Michael Levy
- Department of Neurology, Massachusetts General Hospital and Harvard Medical School, Boston, USA
| | - Ho Jin Kim
- Department of Neurology, Research Institute and Hospital of National Cancer Center, Goyang, Korea
| | - Brigitte Wildemann
- Molecular Neuroimmunology Group, Department of Neurology, University of Heidelberg, Heidelberg, Germany
| |
Collapse
|
32
|
Filippatou AG, Mukharesh L, Saidha S, Calabresi PA, Sotirchos ES. AQP4-IgG and MOG-IgG Related Optic Neuritis-Prevalence, Optical Coherence Tomography Findings, and Visual Outcomes: A Systematic Review and Meta-Analysis. Front Neurol 2020; 11:540156. [PMID: 33132999 PMCID: PMC7578376 DOI: 10.3389/fneur.2020.540156] [Citation(s) in RCA: 63] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2020] [Accepted: 08/25/2020] [Indexed: 12/15/2022] Open
Abstract
Background: Optic neuritis (ON) is a cardinal manifestation of multiple sclerosis (MS), aquaporin-4 (AQP4)-IgG-, and myelin oligodendrocyte glycoprotein (MOG)-IgG-associated disease. However, the prevalence of AQP4-IgG seropositivity and MOG-IgG seropositivity in isolated ON is unclear, and studies comparing visual outcomes and optical coherence tomography (OCT)-derived structural retinal measures between MS-ON, AQP4-ON, and MOG-ON eyes are limited by small sample sizes. Objectives: (1) To assess the prevalence of AQP4-IgG and MOG-IgG seropositivity among patients presenting with isolated ON; (2) to compare visual outcomes and OCT measures between AQP4-ON, MOG-ON, and MS-ON eyes. Methods: In this systematic review and meta-analysis, a total of 65 eligible studies were identified by PubMed search. Statistical analyses were performed with random effects models. Results: In adults with isolated ON, AQP4-IgG seroprevalence was 4% in non-Asian and 27% in Asian populations, whereas MOG-IgG seroprevalence was 8 and 20%, respectively. In children, AQP4-IgG seroprevalence was 0.4% in non-Asian and 15% in Asian populations, whereas MOG-IgG seroprevalence was 47 and 31%, respectively. AQP4-ON eyes had lower peri-papillary retinal nerve fiber layer (pRNFL; -11.7 μm, 95% CI: -15.2 to -8.3 μm) and macular ganglion cell + inner plexiform layer (GCIPL; -9.0 μm, 95% CI: -12.5 to -5.4 μm) thicknesses compared with MS-ON eyes. Similarly, pRNFL (-11.2 μm, 95% CI: -21.5 to -0.9 μm) and GCIPL (-6.1 μm, 95% CI: -10.8 to -1.3 μm) thicknesses were lower in MOG-ON compared to MS-ON eyes, but did not differ between AQP4-ON and MOG-ON eyes (pRNFL: -1.9 μm, 95% CI: -9.1 to 5.4 μm; GCIPL: -2.6 μm, 95% CI: -8.9 to 3.8 μm). Visual outcomes were worse in AQP4-ON compared to both MOG-ON (mean logMAR difference: 0.60, 95% CI: 0.39 to 0.81) and MS-ON eyes (mean logMAR difference: 0.68, 95% CI: 0.40 to 0.96) but were similar in MOG-ON and MS-ON eyes (mean logMAR difference: 0.04, 95% CI: -0.05 to 0.14). Conclusions: AQP4-IgG- and MOG-IgG-associated disease are important diagnostic considerations in adults presenting with isolated ON, especially in Asian populations. Furthermore, MOG-IgG seroprevalence is especially high in pediatric isolated ON, in both non-Asian and Asian populations. Despite a similar severity of GCIPL and pRNFL thinning in AQP4-ON and MOG-ON, AQP4-ON is associated with markedly worse visual outcomes.
Collapse
Affiliation(s)
- Angeliki G Filippatou
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD, United States
| | - Loulwah Mukharesh
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD, United States
| | - Shiv Saidha
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD, United States
| | - Peter A Calabresi
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD, United States
| | - Elias S Sotirchos
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD, United States
| |
Collapse
|
33
|
S1 guidelines "lumbar puncture and cerebrospinal fluid analysis" (abridged and translated version). Neurol Res Pract 2020; 2:8. [PMID: 33324914 PMCID: PMC7650145 DOI: 10.1186/s42466-020-0051-z] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2019] [Accepted: 02/03/2020] [Indexed: 12/12/2022] Open
Abstract
Introduction Cerebrospinal fluid (CSF) analysis is important for detecting inflammation of the nervous system and the meninges, bleeding in the area of the subarachnoid space that may not be visualized by imaging, and the spread of malignant diseases to the CSF space. In the diagnosis and differential diagnosis of neurodegenerative diseases, the importance of CSF analysis is increasing. Measuring the opening pressure of CSF in idiopathic intracranial hypertension and at spinal tap in normal pressure hydrocephalus constitute diagnostic examination procedures with therapeutic benefits.Recommendations (most important 3-5 recommendations on a glimpse): The indications and contraindications must be checked before lumbar puncture (LP) is performed, and sampling CSF requires the consent of the patient.Puncture with an atraumatic needle is associated with a lower incidence of postpuncture discomfort. The frequency of postpuncture syndrome correlates inversely with age and body mass index, and it is more common in women and patients with a history of headache. The sharp needle is preferably used in older or obese patients, also in punctures expected to be difficult.In order to avoid repeating LP, a sufficient quantity of CSF (at least 10 ml) should be collected. The CSF sample and the serum sample taken at the same time should be sent to a specialized laboratory immediately so that the emergency and basic CSF analysis program can be carried out within 2 h.The indication for LP in anticoagulant therapy should always be decided on an individual basis. The risk of interrupting anticoagulant therapy must be weighed against the increased bleeding risk of LP with anticoagulant therapy.As a quality assurance measure in CSF analysis, it is recommended that all cytological, clinical-chemical, and microbiological findings are combined in an integrated summary report and evaluated by an expert in CSF analysis. Conclusions In view of the importance and developments in CSF analysis, the S1 guideline "Lumbar puncture and cerebrospinal fluid analysis" was recently prepared by the German Society for CSF analysis and clinical neurochemistry (DGLN) and published in German in accordance with the guidelines of the AWMF (https://www.awmf.org). /uploads/tx_szleitlinien/030-141l_S1_Lumbalpunktion_und_Liquordiagnostik_2019-08.pdf). The present article is an abridged translation of the above cited guideline. The guideline has been jointly edited by the DGLN and DGN.
Collapse
|
34
|
Posporis C, Beltran E, Dunning M, Espadas I, Gillespie S, Barry AT, Wessmann A. Prognostic Factors for Recovery of Vision in Canine Optic Neuritis of Unknown Etiology: 26 Dogs (2003-2018). Front Vet Sci 2019; 6:415. [PMID: 31824972 PMCID: PMC6882734 DOI: 10.3389/fvets.2019.00415] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2019] [Accepted: 11/07/2019] [Indexed: 12/03/2022] Open
Abstract
Optic neuritis (ON) is a recognized condition, yet factors influencing recovery of vision are currently unknown. The purpose of this study was to identify prognostic factors for recovery of vision in canine ON of unknown etiology. Clinical databases of three referral hospitals were searched for dogs with presumptive ON based on clinicopathologic, MRI/CT, and fundoscopic findings. Twenty-six dogs diagnosed with presumptive ON of unknown etiology, isolated (I-ON) and MUE-associated (MUE-ON), were included in the study. Their medical records were reviewed retrospectively, and the association of complete recovery of vision with signalment, clinicopathologic findings, and treatment was investigated. Datasets were tested for normality using the D'Agostino and Shapiro-Wilk tests. Individual datasets were compared using the Chi-squared test, Fisher's exact test, and the Mann-Whitney U-test. For multiple comparisons with parametric datasets, the one-way analysis of variance (ANOVA) was performed, and for non-parametric datasets, the Kruskal-Wallis test was performed to test for independence. For all data, averages are expressed as median with interquartile range and significance set at p < 0.05. Twenty-six dogs met the inclusion criteria. Median follow-up was 230 days (range 21–1901 days, mean 496 days). Six dogs (23%) achieved complete recovery and 20 dogs (77%) incomplete or no recovery of vision. The presence of a reactive pupillary light reflex (p = 0.013), the absence of fundoscopic lesions (p = 0.0006), a younger age (p = 0.038), and a lower cerebrospinal fluid (CSF) total nucleated cell count (TNCC) (p = 0.022) were statistically associated with complete recovery of vision. Dogs with I-ON were significantly younger (p = 0.046) and had lower CSF TNCC (p = 0.030) compared to the MUE-ON group. This study identified prognostic factors that may influence complete recovery of vision in dogs with ON. A larger cohort of dogs is required to determine whether these findings are robust and whether additional parameters aid accurate prognosis for recovery of vision in canine ON.
Collapse
Affiliation(s)
| | - Elsa Beltran
- Queen Mother Hospital for Animals, Royal Veterinary College, Hatfield, United Kingdom
| | - Mark Dunning
- School of Veterinary Medicine and Science, University of Nottingham, Loughborough, United Kingdom.,Willows Veterinary Centre and Referral Service, Shirley, United Kingdom
| | - Irene Espadas
- Neurology/Neurosurgery Service, Pride Veterinary Centre, Derby, United Kingdom.,Small Animal Teaching Hospital, School of Veterinary Sciences, University of Liverpool, Neston, United Kingdom
| | - Sabrina Gillespie
- Queen Mother Hospital for Animals, Royal Veterinary College, Hatfield, United Kingdom
| | - Amy Teresa Barry
- Queen Mother Hospital for Animals, Royal Veterinary College, Hatfield, United Kingdom
| | - Annette Wessmann
- Neurology/Neurosurgery Service, Pride Veterinary Centre, Derby, United Kingdom
| |
Collapse
|
35
|
Cree BAC, Bennett JL, Kim HJ, Weinshenker BG, Pittock SJ, Wingerchuk DM, Fujihara K, Paul F, Cutter GR, Marignier R, Green AJ, Aktas O, Hartung HP, Lublin FD, Drappa J, Barron G, Madani S, Ratchford JN, She D, Cimbora D, Katz E. Inebilizumab for the treatment of neuromyelitis optica spectrum disorder (N-MOmentum): a double-blind, randomised placebo-controlled phase 2/3 trial. Lancet 2019; 394:1352-1363. [PMID: 31495497 DOI: 10.1016/s0140-6736(19)31817-3] [Citation(s) in RCA: 422] [Impact Index Per Article: 70.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/17/2019] [Revised: 07/01/2019] [Accepted: 07/05/2019] [Indexed: 11/27/2022]
Abstract
BACKGROUND No approved therapies exist for neuromyelitis optica spectrum disorder (NMOSD), a rare, relapsing, autoimmune, inflammatory disease of the CNS that causes blindness and paralysis. We aimed to assess the efficacy and safety of inebilizumab, an anti-CD19, B cell-depleting antibody, in reducing the risk of attacks and disability in NMOSD. METHODS We did a multicentre, double-blind, randomised placebo-controlled phase 2/3 study at 99 outpatient specialty clinics or hospitals in 25 countries. Eligible participants were adults (≥18 years old) with a diagnosis of NMOSD, an Expanded Disability Status Scale score of 8·0 or less, and a history of at least one attack requiring rescue therapy in the year before screening or at least two attacks requiring rescue therapy in the 2 years before screening. Participants were randomly allocated (3:1) to 300 mg intravenous inebilizumab or placebo with a central interactive voice response system or interactive web response system and permuted block randomisation. Inebilizumab or placebo was administered on days 1 and 15. Participants, investigators, and all clinical staff were masked to the treatments, and inebilizumab and placebo were indistinguishable in appearance. The primary endpoint was time to onset of an NMOSD attack, as determined by the adjudication committee. Efficacy endpoints were assessed in all randomly allocated patients who received at least one dose of study intervention, and safety endpoints were assessed in the as-treated population. The study is registered with ClinicalTrials.gov, number NCT02200770. FINDINGS Between Jan 6, 2015, and Sept 24, 2018, 230 participants were randomly assigned to treatment and dosed, with 174 participants receiving inebilizumab and 56 receiving placebo. The randomised controlled period was stopped before complete enrolment, as recommended by the independent data-monitoring committee, because of a clear demonstration of efficacy. 21 (12%) of 174 participants receiving inebilizumab had an attack versus 22 (39%) of 56 participants receiving placebo (hazard ratio 0·272 [95% CI 0·150-0·496]; p<0·0001). Adverse events occurred in 125 (72%) of 174 participants receiving inebilizumab and 41 (73%) of 56 participants receiving placebo. Serious adverse events occurred in eight (5%) of 174 participants receiving inebilizumab and five (9%) of 56 participants receiving placebo. INTERPRETATION Compared with placebo, inebilizumab reduced the risk of an NMOSD attack. Inebilizumab has potential application as an evidence-based treatment for patients with NMOSD. FUNDING MedImmune and Viela Bio.
Collapse
Affiliation(s)
- Bruce A C Cree
- UCSF Weill Institute for Neurosciences, Department of Neurology, University of California San Francisco, San Francisco, CA, USA.
| | - Jeffrey L Bennett
- School of Medicine, Anschutz Medical Campus, University of Colorado, Aurora, CO, USA
| | - Ho Jin Kim
- Research Institute and Hospital of National Cancer Center, Seoul, South Korea
| | | | | | | | - Kazuo Fujihara
- Department of Multiple Sclerosis Therapeutics, Fukushima Medical University, Fukushima, Japan; Multiple Sclerosis and Neuromyelitis Optica Center, Southern Tohoku Research Institute for Neuroscience, Koriyama, Japan
| | - Friedemann Paul
- Experimental and Clinical Research Center, Max Delbrueck Center for Molecular Medicine, Berlin, Germany; Charité-Universitätsmedizin Berlin, Berlin, Germany
| | - Gary R Cutter
- Department of Biostatistics, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Romain Marignier
- Service de Neurologie, Sclérose en Plaques, Pathologies de la Myéline et Neuro-inflammation, Lyon University Hospital, Lyon, France
| | - Ari J Green
- UCSF Weill Institute for Neurosciences, Department of Neurology, University of California San Francisco, San Francisco, CA, USA; Department of Ophthalmology, University of California San Francisco, San Francisco, CA, USA
| | - Orhan Aktas
- Medical Faculty, Heinrich Heine University, Düsseldorf, Germany
| | | | - Fred D Lublin
- Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | | | | | | | | | | | | | | |
Collapse
|
36
|
Chen JJ, Tobin WO, Majed M, Jitprapaikulsan J, Fryer JP, Leavitt JA, Flanagan EP, McKeon A, Pittock SJ. Prevalence of Myelin Oligodendrocyte Glycoprotein and Aquaporin-4-IgG in Patients in the Optic Neuritis Treatment Trial. JAMA Ophthalmol 2019; 136:419-422. [PMID: 29470571 DOI: 10.1001/jamaophthalmol.2017.6757] [Citation(s) in RCA: 77] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Importance Autoantibodies to aquaporin-4 (AQP4) and myelin oligodendrocyte glycoprotein (MOG) are recently established biomarkers of autoimmune optic neuritis whose frequency and accompanying phenotype, especially for MOG-IgG, are still being characterized. The Optic Neuritis Treatment Trial (ONTT) was a well-known randomized clinical trial in optic neuritis; therefore, knowledge of the serostatus and accompanying phenotype of these patients would be useful to determine the frequency of these antibodies in patients presenting with typical monocular optic neuritis and their outcomes. Objectives To determine the AQP4-IgG and MOG-IgG serostatus of patients within the ONTT and describe the clinical features of seropositive patients. Design, Setting, and Participants In this follow-up study of the randomized clinical trial, ONTT, conducted between July 1, 1988, and June 30, 1991, analysis of serum for AQP4-IgG and MOG-IgG was performed from January 1 to April 30, 2017. A total of 177 patients from the ONTT with acute optic neuritis and serum available for analysis were enrolled from 13 academic referral centers. Interventions Analysis of serum for AQP4-IgG and MOG-IgG was performed at Mayo Clinic Neuroimmunology Laboratory in 2017 with a flow cytometry, live cell, AQP4- and MOG-transfected cell-based assay. Main Outcomes and Measures Aquaporin-4-IgG and MOG-IgG serostatus. Results Of the 177 patients in the study (135 women and 42 men; mean [SD] age, 32.8 [6.9] years), 3 were positive for MOG-IgG (1.7%) and none were positive for AQP4-IgG. All 3 patients positive for MOG-IgG had disc edema at presentation. Two patients later had a single episode of recurrent optic neuritis. All 3 patients had complete recovery of visual acuity, and none were corticosteroid dependent, although peripheral visual field loss persisted in 1 patient. None of the 3 patients positive for MOG-IgG had demyelinating lesions on magnetic resonance imaging scans, and none had developed multiple sclerosis at the 15-year follow-up. Conclusions and Relevance Frequency of MOG-IgG was rare in the ONTT, and AQP4-IgG was not found in patients in the ONTT. Characteristics of patients positive for MOG-IgG in the ONTT support the previously described phenotype of MOG-IgG optic neuritis. Myelin oligodendrocyte glycoprotein-related disease appears to be a different entity than multiple sclerosis. Overall, AQP4-IgG and MOG-IgG may be less common in isolated optic neuritis than previously reported.
Collapse
Affiliation(s)
- John J Chen
- Department of Ophthalmology, Mayo Clinic, Rochester, Minnesota.,Department of Neurology, Mayo Clinic, Rochester, Minnesota
| | - W Oliver Tobin
- Department of Neurology, Mayo Clinic, Rochester, Minnesota
| | - Masoud Majed
- Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, Minnesota
| | | | - James P Fryer
- Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, Minnesota
| | | | | | - Andrew McKeon
- Department of Neurology, Mayo Clinic, Rochester, Minnesota.,Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, Minnesota
| | - Sean J Pittock
- Department of Neurology, Mayo Clinic, Rochester, Minnesota.,Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, Minnesota
| |
Collapse
|
37
|
Do Myelin Oligodendrocyte Glycoprotein Antibodies Represent a Distinct Syndrome? J Neuroophthalmol 2019; 39:416-423. [DOI: 10.1097/wno.0000000000000779] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
|
38
|
Chen JJ, Pittock SJ, Flanagan EP, Lennon VA, Bhatti MT. Optic neuritis in the era of biomarkers. Surv Ophthalmol 2019; 65:12-17. [PMID: 31425702 DOI: 10.1016/j.survophthal.2019.08.001] [Citation(s) in RCA: 48] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2019] [Revised: 07/24/2019] [Accepted: 08/05/2019] [Indexed: 11/19/2022]
Abstract
The Optic Neuritis Treatment Trial, a landmark study completed in 1991, stratified the risk of multiple sclerosis in patients with optic neuritis. Since that time, unique biomarkers for optic neuritis have been found. The antibody against aquaporin-4 (AQP4)-immunoglobulin G (IgG) discovered in 2004 was found to be both the pathologic cause and a reliable biomarker for neuromyelitis optica spectrum disorders. This finding enabled an expanded definition of the phenotype of neuromyelitis optica spectrum disorder and improved treatment of the disease. Subsequently, myelin oligodendrocyte glycoprotein (MOG) IgG was recognized to be a marker for MOG-IgG-associated disorder, a central demyelinating disease characterized by recurrent optic neuritis, prominent disk edema, and perineural optic nerve enhancement on magnetic resonance imaging. Most multiple sclerosis disease-modifying agents are ineffective for AQP4-IgG-positive neuromyelitis optica spectrum disorder and MOG-IgG-associated disorder. Because there are crucial differences in treatment and prognosis between multiple sclerosis, AQP4-IgG-positive neuromyelitis optica spectrum disorder, and MOG-IgG-associated disorder, ophthalmologists should be aware of these new biomarkers of optic neuritis and incorporate their testing in all patients with atypical optic neuritis.
Collapse
Affiliation(s)
- John J Chen
- Department of Ophthalmology, Mayo Clinic College of Medicine, Rochester, Minnesota, USA; Department of Neurology, Mayo Clinic College of Medicine, Rochester, Minnesota, USA.
| | - Sean J Pittock
- Department of Neurology, Mayo Clinic College of Medicine, Rochester, Minnesota, USA; Department of Laboratory Medicine and Pathology, Mayo Clinic College of Medicine, Rochester, Minnesota, USA; Center for Multiple Sclerosis and Autoimmune Neurology, Mayo Clinic College of Medicine, Rochester, Minnesota, USA
| | - Eoin P Flanagan
- Department of Neurology, Mayo Clinic College of Medicine, Rochester, Minnesota, USA; Department of Laboratory Medicine and Pathology, Mayo Clinic College of Medicine, Rochester, Minnesota, USA; Center for Multiple Sclerosis and Autoimmune Neurology, Mayo Clinic College of Medicine, Rochester, Minnesota, USA
| | - Vanda A Lennon
- Department of Neurology, Mayo Clinic College of Medicine, Rochester, Minnesota, USA; Department of Laboratory Medicine and Pathology, Mayo Clinic College of Medicine, Rochester, Minnesota, USA; Center for Multiple Sclerosis and Autoimmune Neurology, Mayo Clinic College of Medicine, Rochester, Minnesota, USA; Department of Immunology, Mayo Clinic College of Medicine, Rochester, Minnesota, USA
| | - M Tariq Bhatti
- Department of Ophthalmology, Mayo Clinic College of Medicine, Rochester, Minnesota, USA; Department of Neurology, Mayo Clinic College of Medicine, Rochester, Minnesota, USA
| |
Collapse
|
39
|
Tampoia M, Abbracciavento L, Barberio G, Fabris M, Bizzaro N. A new M23-based ELISA assay for anti-aquaporin 4 autoantibodies: diagnostic accuracy and clinical correlation. AUTOIMMUNITY HIGHLIGHTS 2019; 10:5. [PMID: 32257061 PMCID: PMC7065340 DOI: 10.1186/s13317-019-0115-7] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/11/2018] [Accepted: 05/30/2019] [Indexed: 01/05/2023]
Abstract
Purpose Although many assays have been developed to detect anti-aquaporin-4 (AQP4) antibodies, most of these assays require sophisticated techniques and are thus only available at specialized laboratories. The aim of this study was to evaluate the analytical and clinical performance of a new commercial enzyme-linked immunosorbent assay (ELISA RSR, AQP4 Ab Version 2) to detect anti-AQP4 antibodies performed on a fully automated system (SkyLAB 752). Methods Serum samples from 64 patients with neuromyelitis optica spectrum disorders (NMOSD) (including NMO, longitudinally extensive myelitis-LETM, optical neuritis and myelitis) and 27 controls were tested for anti-AQP4 antibodies. All sera were previously tested using an indirect immunofluorescence (IIF) method on primate tissue, as the reference method. Commercial control sera were used to determine within-run, between-day and within-laboratory precision (CLSI guidelines). Results At a cut-off value of 2.1 U/mL as determined by ROC curves, sensitivity and specificity for NMO were 83.3% and 100%, respectively. The ELISA assay provided 100% concordant results with the reference IIF method. The median concentration of anti-AQP4 antibodies was statistically higher in patients with NMO than in patients with LETM (p = 0.0006) or with other NMOSD and in controls (p < 0.0001). At the concentration of 12.4 and 28.1 U/mL, the within-run, between-day and within-laboratory coefficients of variation (CV) were 3.2% and 3%, 7.6% and 7.4%, and 8.2% and 8.0%, respectively. Conclusions This new ELISA method performed on a fully automated system, showed high sensitivity and absolute specificity, good CV in precision tests, and provided observer-independent quantitative results.
Collapse
Affiliation(s)
- Marilina Tampoia
- 1Clinical Pathology Laboratory, Polyclinic of Bari, Department of Biomedical Sciences and Human Oncology, University of Bari, Piazza Giulio Cesare 11, 70124 Bari, Italy
| | - Letizia Abbracciavento
- 1Clinical Pathology Laboratory, Polyclinic of Bari, Department of Biomedical Sciences and Human Oncology, University of Bari, Piazza Giulio Cesare 11, 70124 Bari, Italy
| | - Giuseppina Barberio
- 2Laboratory Medicine, Department of Clinical Pathology, Treviso Hospital, Treviso, Italy
| | - Martina Fabris
- 3Laboratory of Immunopathology and Allergology, University Hospital Udine, P.le S. Maria della Misericordia 15, 33100 Udine, Italy
| | - Nicola Bizzaro
- 4Laboratory of Clinical Pathology, San Antonio Hospital, Azienda Sanitaria Universitaria Integrata di Udine, Udine, Italy
| | | |
Collapse
|
40
|
Aquaporin-4 Serostatus and Visual Outcomes in Clinically Isolated Acute Optic Neuritis. J Neuroophthalmol 2019; 39:165-169. [DOI: 10.1097/wno.0000000000000668] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
41
|
Song H, Zhou H, Yang M, Xu Q, Sun M, Wei S. Clinical characteristics and outcomes of myelin oligodendrocyte glycoprotein antibody-seropositive optic neuritis in varying age groups: A cohort study in China. J Neurol Sci 2019; 400:83-89. [PMID: 30904690 DOI: 10.1016/j.jns.2019.03.014] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2018] [Revised: 02/22/2019] [Accepted: 03/15/2019] [Indexed: 12/29/2022]
Abstract
PURPOSE To investigate the clinical characteristics and outcomes of myelin oligodendrocyte glycoprotein antibody-seropositive optic neuritis (MOG-ON) in patients with varying ages of onset in China. METHODS Patients displaying symptoms of MOG-ON were recruited from the Neuro-ophthalmology Department in the Chinese People's Liberation Army General Hospital from January 2016 to May 2018. They were assigned to one of three subgroups based on age of onset: pediatric (<18 years), young (18-46 years), and middle-aged (>46 years) MOG-ON. RESULTS 110 patients (188 eyes) were assessed, including 58 pediatric (52.7%), 34 young (30.9%), and 18 middle-aged (16.4%) patients. Of the pediatric patients, 93.9% had good recovery of visual acuity (≥0.5) compared with 79.7% of young patients and 66.7% of middle-aged patients (p < .001). The annual relapse rate was lower in the pediatric group than young and middle-aged groups (0.32 ± 0.50 vs 0.73 ± 0.87 vs 0.49 ± 1.08, p = .036). Six children (10.3%) were diagnosed with acute disseminated encephalomyelitis, while seven young patients (20.6%) were diagnosed with aquaporin-4 antibody seronegative neuromyelitis optica spectrum disorder upon follow-up. The average peripapillary RNFL and macular GCIPL thicknesses were not statistically different between subgroups (p = .996, p = .608). Overall, MRIs of the optic nerve showed perineural enhancement in 52.0% of patients and longitudinal extensive involvement in 87.7%. MRIs also revealed a greater proportion of pediatric patients with intracranial optic nerve involvement than in the other two subgroups (45.4% vs. 21.2% vs. 36.7%, p = .014). CONCLUSION Pediatric ON was the most common MOG-ON subgroup. Pediatric patients had different clinical features, including better recovery of visual acuity, lower annual relapse rate, and more intracranial optic nerve involvement than young and middle-aged patients. Additionally, age of onset may be a potential predictor for determining visual prognosis with MOG-ON.
Collapse
Affiliation(s)
- Honglu Song
- Department of Ophthalmology, Chinese PLA General Hospital, Fuxing Road No.28, Haidian district, Beijing 100853, China; Department of Ophthalmology, Bethune International Peace Hospital, Shijiazhuang, Hebei, China
| | - Huanfen Zhou
- Department of Ophthalmology, Chinese PLA General Hospital, Fuxing Road No.28, Haidian district, Beijing 100853, China
| | - Mo Yang
- Department of Ophthalmology, Chinese PLA General Hospital, Fuxing Road No.28, Haidian district, Beijing 100853, China
| | - Quangang Xu
- Department of Ophthalmology, Chinese PLA General Hospital, Fuxing Road No.28, Haidian district, Beijing 100853, China
| | - Mingming Sun
- Department of Ophthalmology, Chinese PLA General Hospital, Fuxing Road No.28, Haidian district, Beijing 100853, China
| | - Shihui Wei
- Department of Ophthalmology, Chinese PLA General Hospital, Fuxing Road No.28, Haidian district, Beijing 100853, China.
| |
Collapse
|
42
|
Miller NR. Optic Neuritis. Neuroophthalmology 2019. [DOI: 10.1007/978-3-319-98455-1_1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022] Open
|
43
|
Abati E, Faravelli I, Magri F, Govoni A, Velardo D, Gagliardi D, Mauri E, Brusa R, Bresolin N, Fabio G, Comi GP, Carrabba M, Corti S. Central Nervous System Involvement in Common Variable Immunodeficiency: A Case of Acute Unilateral Optic Neuritis in a 26-Year-Old Italian Patient. Front Neurol 2018; 9:1031. [PMID: 30555409 PMCID: PMC6284006 DOI: 10.3389/fneur.2018.01031] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2018] [Accepted: 11/15/2018] [Indexed: 12/12/2022] Open
Abstract
Common Variable Immunodeficiency (CVID) is a group of heterogeneous primary immunodeficiencies sharing defective B lymphocytes maturation and dysregulated immune response and resulting in impaired immunoglobulin production. Clinical picture encompasses increased susceptibility to infections, hematologic malignancies, inflammatory, and autoimmune diseases. Neurological manifestations are uncommon and optic neuritis has been previously reported only in one case with bilateral involvement. We hereby report a case of a 26-year-old man affected by CVID undergoing regular immunoglobulin supplementation, who presented with acute unilateral demyelinating optic neuritis and lymphocytic pleocytosis in the cerebrospinal fluid. A variety of infectious, inflammatory, and neoplastic conditions were excluded and a diagnosis of clinically isolated optic neuritis was made. The patient was treated with a short course of intravenous steroids with complete recovery. Overall, this case expands our current knowledge about clinical spectrum of complications in CVID and highlights the need for further research about this complex disease.
Collapse
Affiliation(s)
- Elena Abati
- Neurology Unit, Department of Pathophysiology and Transplantation (DEPT), Dino Ferrari Centre, Neuroscience Section, Foundation IRCCS Ca' Granda Ospedale Maggiore Policlinico, University of Milan, Milan, Italy
| | - Irene Faravelli
- Neurology Unit, Department of Pathophysiology and Transplantation (DEPT), Dino Ferrari Centre, Neuroscience Section, Foundation IRCCS Ca' Granda Ospedale Maggiore Policlinico, University of Milan, Milan, Italy
| | - Francesca Magri
- Neurology Unit, Department of Pathophysiology and Transplantation (DEPT), Dino Ferrari Centre, Neuroscience Section, Foundation IRCCS Ca' Granda Ospedale Maggiore Policlinico, University of Milan, Milan, Italy
| | - Alessandra Govoni
- Neurology Unit, Department of Pathophysiology and Transplantation (DEPT), Dino Ferrari Centre, Neuroscience Section, Foundation IRCCS Ca' Granda Ospedale Maggiore Policlinico, University of Milan, Milan, Italy
| | - Daniele Velardo
- Neurology Unit, Department of Pathophysiology and Transplantation (DEPT), Dino Ferrari Centre, Neuroscience Section, Foundation IRCCS Ca' Granda Ospedale Maggiore Policlinico, University of Milan, Milan, Italy
| | - Delia Gagliardi
- Neurology Unit, Department of Pathophysiology and Transplantation (DEPT), Dino Ferrari Centre, Neuroscience Section, Foundation IRCCS Ca' Granda Ospedale Maggiore Policlinico, University of Milan, Milan, Italy
| | - Eleonora Mauri
- Neurology Unit, Department of Pathophysiology and Transplantation (DEPT), Dino Ferrari Centre, Neuroscience Section, Foundation IRCCS Ca' Granda Ospedale Maggiore Policlinico, University of Milan, Milan, Italy
| | - Roberta Brusa
- Neurology Unit, Department of Pathophysiology and Transplantation (DEPT), Dino Ferrari Centre, Neuroscience Section, Foundation IRCCS Ca' Granda Ospedale Maggiore Policlinico, University of Milan, Milan, Italy
| | - Nereo Bresolin
- Neurology Unit, Department of Pathophysiology and Transplantation (DEPT), Dino Ferrari Centre, Neuroscience Section, Foundation IRCCS Ca' Granda Ospedale Maggiore Policlinico, University of Milan, Milan, Italy
| | - Giovanna Fabio
- Department of Internal Medicine, IPINet Primary Immunodeficiency Centre for Adult Care, IRCCS Foundation Ca' Granda Ospedale Maggiore Policlinico, University of Milan, Milan, Italy
| | - Giacomo Pietro Comi
- Neurology Unit, Department of Pathophysiology and Transplantation (DEPT), Dino Ferrari Centre, Neuroscience Section, Foundation IRCCS Ca' Granda Ospedale Maggiore Policlinico, University of Milan, Milan, Italy
| | - Maria Carrabba
- Department of Internal Medicine, IPINet Primary Immunodeficiency Centre for Adult Care, IRCCS Foundation Ca' Granda Ospedale Maggiore Policlinico, University of Milan, Milan, Italy
| | - Stefania Corti
- Neurology Unit, Department of Pathophysiology and Transplantation (DEPT), Dino Ferrari Centre, Neuroscience Section, Foundation IRCCS Ca' Granda Ospedale Maggiore Policlinico, University of Milan, Milan, Italy
| |
Collapse
|
44
|
Chen JJ, Flanagan EP, Jitprapaikulsan J, López-Chiriboga A(SS, Fryer JP, Leavitt JA, Weinshenker BG, McKeon A, Tillema JM, Lennon VA, Tobin WO, Keegan BM, Lucchinetti CF, Kantarci OH, McClelland CM, Lee MS, Bennett JL, Pelak VS, Chen Y, VanStavern G, Adesina OOO, Eggenberger ER, Acierno MD, Wingerchuk DM, Brazis PW, Sagen J, Pittock SJ. Myelin Oligodendrocyte Glycoprotein Antibody-Positive Optic Neuritis: Clinical Characteristics, Radiologic Clues, and Outcome. Am J Ophthalmol 2018; 195:8-15. [PMID: 30055153 DOI: 10.1016/j.ajo.2018.07.020] [Citation(s) in RCA: 256] [Impact Index Per Article: 36.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2018] [Revised: 06/25/2018] [Accepted: 07/18/2018] [Indexed: 12/22/2022]
Abstract
PURPOSE To characterize the clinical phenotype of myelin oligodendrocyte glycoprotein antibody (MOG-IgG) optic neuritis. DESIGN Observational case series. METHODS Setting: Multicenter. Patient/Study Population: Subjects meeting inclusion criteria: (1) history of optic neuritis; (2) seropositivity (MOG-IgG binding index > 2.5); 87 MOG-IgG-seropositive patients with optic neuritis were included (Mayo Clinic, 76; other medical centers, 11). MOG-IgG was detected using full-length MOG-transfected live HEK293 cells in a clinically validated flow cytometry assay. MAIN OUTCOME MEASURES Clinical and radiologic characteristics and visual outcomes. RESULTS Fifty-seven percent were female and median age at onset was 31 (range 2-79) years. Median number of optic neuritis attacks was 3 (range 1-8), median follow-up 2.9 years (range 0.5-24 years), and annualized relapse rate 0.8. Average visual acuity (VA) at nadir of worst attack was count fingers. Average final VA was 20/30; for 5 patients (6%) it was ≤20/200 in either eye. Optic disc edema and pain each occurred in 86% of patients. Magnetic resonance imaging showed perineural enhancement in 50% and longitudinally extensive involvement in 80%. Twenty-six patients (30%) had recurrent optic neuritis without other neurologic symptoms, 10 (12%) had single optic neuritis, 14 (16%) had chronic relapsing inflammatory optic neuropathy, and 36 (41%) had optic neuritis with other neurologic symptoms (most neuromyelitis optica spectrum disorder-like phenotype or acute disseminated encephalomyelitis). Only 1 patient was diagnosed with MS (MOG-IgG-binding index 2.8; normal range ≤ 2.5). Persistent MOG-IgG seropositivity occurred in 61 of 62 (98%). A total of 61% received long-term immunosuppressant therapy. CONCLUSIONS Manifestations of MOG-IgG-positive optic neuritis are diverse. Despite recurrent attacks with severe vision loss, the majority of patients have significant recovery and retain functional vision long-term.
Collapse
|
45
|
Sakalauskaitė-Juodeikienė E, Armalienė G, Kizlaitienė R, Bagdonaitė L, Giedraitienė N, Mickevičienė D, Rastenytė D, Kaubrys G, Jatužis D. Detection of aquaporin-4 antibodies for patients with CNS inflammatory demyelinating diseases other than typical MS in Lithuania. Brain Behav 2018; 8:e01129. [PMID: 30284401 PMCID: PMC6236230 DOI: 10.1002/brb3.1129] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/25/2018] [Revised: 08/31/2018] [Accepted: 08/31/2018] [Indexed: 01/08/2023] Open
Abstract
OBJECTIVES Neuromyelitis optica (NMO) is frequently associated with aquaporin-4 autoantibodies (AQP4-Ab); however, studies of NMO in Lithuania are lacking. Therefore, the main objective of our study is to assess positivity for AQP4-Ab in patients presenting with inflammatory demyelinating central nervous system (CNS) diseases other than typical multiple sclerosis (MS) in Lithuania. MATERIALS AND METHODS Data were collected from the two largest University hospitals in Lithuania. During the study period, there were 121 newly diagnosed typical MS cases, which were included in the MS registry database. After excluding these typical MS cases, we analyzed the remaining 29 cases of other CNS inflammatory demyelinating diseases, including atypical MS (n = 14), acute transverse myelitis, TM (n = 8), acute disseminated encephalomyelitis, ADEM (n = 3), clinically isolated syndrome, CIS (n = 2), atypical optic neuritis, ON (n = 1), and NMO (n = 1). We assessed positivity for AQP4-Ab for the 29 patients and evaluated clinical, laboratory, and instrumental differences between AQP4-Ab seropositive and AQP4-Ab seronegative patient groups. RESULTS AQP4-Ab test was positive for three (10.3%) patients in our study, with initial diagnoses of atypical MS (n = 2) and ADEM (n = 1). One study patient was AQP4-Ab negative despite being previously clinically diagnosed with NMO. There were no significant clinical, laboratory, or instrumental differences between the groups of AQP4-Ab positive (3 [10.3%]) and negative (26 [89.7%]) patients. CONCLUSIONS AQP4-Ab test was positive for one-tenth of patients with CNS inflammatory demyelinating diseases other than typical MS in our study. AQP4-Ab testing is highly recommended for patients presenting with not only TM and ON but also an atypical course of MS and ADEM.
Collapse
Affiliation(s)
- Eglė Sakalauskaitė-Juodeikienė
- Clinic of Neurology and Neurosurgery, Institute of Clinical Medicine, Faculty of Medicine, Vilnius University, Vilnius, Lithuania
| | - Giedrė Armalienė
- Clinic of Neurology and Neurosurgery, Institute of Clinical Medicine, Faculty of Medicine, Vilnius University, Vilnius, Lithuania
| | - Rasa Kizlaitienė
- Clinic of Neurology and Neurosurgery, Institute of Clinical Medicine, Faculty of Medicine, Vilnius University, Vilnius, Lithuania
| | - Loreta Bagdonaitė
- Department of Physiology, Biochemistry, Microbiology and Laboratory Medicine, Faculty of Medicine, Vilnius University, Vilnius, Lithuania
| | - Nataša Giedraitienė
- Clinic of Neurology and Neurosurgery, Institute of Clinical Medicine, Faculty of Medicine, Vilnius University, Vilnius, Lithuania
| | - Dalia Mickevičienė
- Department of Neurology, Hospital of Lithuanian University of Health Sciences Kauno Klinikos, Kaunas, Lithuania.,Department of Neurology, Medical Academy, Lithuanian University of Health Sciences, Kaunas, Lithuania
| | - Daiva Rastenytė
- Department of Neurology, Hospital of Lithuanian University of Health Sciences Kauno Klinikos, Kaunas, Lithuania.,Department of Neurology, Medical Academy, Lithuanian University of Health Sciences, Kaunas, Lithuania
| | - Gintaras Kaubrys
- Clinic of Neurology and Neurosurgery, Institute of Clinical Medicine, Faculty of Medicine, Vilnius University, Vilnius, Lithuania
| | - Dalius Jatužis
- Clinic of Neurology and Neurosurgery, Institute of Clinical Medicine, Faculty of Medicine, Vilnius University, Vilnius, Lithuania
| |
Collapse
|
46
|
Borisow N, Mori M, Kuwabara S, Scheel M, Paul F. Diagnosis and Treatment of NMO Spectrum Disorder and MOG-Encephalomyelitis. Front Neurol 2018; 9:888. [PMID: 30405519 PMCID: PMC6206299 DOI: 10.3389/fneur.2018.00888] [Citation(s) in RCA: 165] [Impact Index Per Article: 23.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2018] [Accepted: 10/01/2018] [Indexed: 12/21/2022] Open
Abstract
Neuromyelitis optica spectrum disorders (NMOSD) are autoantibody mediated chronic inflammatory diseases. Serum antibodies (Abs) against the aquaporin-4 water channel lead to recurrent attacks of optic neuritis, myelitis and/or brainstem syndromes. In some patients with symptoms of NMOSD, no AQP4-Abs but Abs against myelin-oligodendrocyte-glycoprotein (MOG) are detectable. These clinical syndromes are now frequently referred to as "MOG-encephalomyelitis" (MOG-EM). Here we give an overview on current recommendations concerning diagnosis of NMOSD and MOG-EM. These include antibody and further laboratory testing, MR imaging and optical coherence tomography. We discuss therapeutic options of acute attacks as well as longterm immunosuppressive treatment, including azathioprine, rituximab, and immunoglobulins.
Collapse
Affiliation(s)
- Nadja Borisow
- NeuroCure Clinical Research Center, Charité – Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
| | - Masahiro Mori
- Department of Neurology, Graduate School of Medicine, Chiba University, Chiba, Japan
| | - Satoshi Kuwabara
- Department of Neurology, Graduate School of Medicine, Chiba University, Chiba, Japan
| | - Michael Scheel
- NeuroCure Clinical Research Center, Charité – Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
- Department of Neuroradiology, Charité – Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
| | - Friedemann Paul
- NeuroCure Clinical Research Center, Charité – Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
- Experimental and Clinical Research Center, Max Delbrueck Center for Molecular Medicine and Charité – Universitätsmedizin Berlin, Berlin, Germany
| |
Collapse
|
47
|
Hansapinyo L, Vivattanaseth C. Clinical Characteristics, Treatment Outcomes and Predictive Factors in Optic Neuritis. Open Ophthalmol J 2018; 12:247-255. [PMID: 30258505 PMCID: PMC6131319 DOI: 10.2174/1874364101812010247] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2018] [Revised: 07/17/2018] [Accepted: 07/24/2018] [Indexed: 01/31/2023] Open
Abstract
Background: The causes, clinical presentations and treatment outcomes of optic neuritis are distinct among different populations. Early diagnosis based on clinical presentations plays an important role in treating optic neuritis patients. Objective:
The study aimed to determine clinical characteristics, treatment outcomes and predictive factors of treatment outcomes in optic neuritis patients with and without demyelinating disease. Methods: A retrospective descriptive study of optic neuritis patients carried out between January 2009 and December 2016 was done. Univariate analysis and multivariate logistic regression analysis were used to evaluate the predictive factors of treatment outcomes. Results: Among 150 patients with optic neuritis, 58 patients were diagnosed with Neuromyelitis Optica Spectrum Disease (NMOSD), 23 patients were diagnosed with Multiple Sclerosis (MS) and 69 patients were idiopathic. The age at presentation in the NMOSD group was significantly younger than the MS group and the idiopathic group. The female:male ratio was significantly lower in the idiopathic group than in the NMOSD group. The initial Best Corrected Visual Activity (BCVA) of 20/20-20/60 (p = 0.001) and the idiopathic group (p =0.030) was associated with good visual outcomes. Initial BCVA of < 20/200 (p = 0.009) and the NMOSD group (p < 0.001) was associated with poor visual outcomes. Conclusion: NMOSD is a more common cause of optic neuritis than MS in Thai population. Female patients with poor initial VA, poor response to steroids treatment, and presenting recurrent attacks are highly suspicious for NMOSD. Optic neuritis without associated demyelinating disease has a better visual outcome and lower recurrence rate.
Collapse
Affiliation(s)
- Linda Hansapinyo
- Department of Ophthalmology, Faculty of Medicine, Chiang Mai University, Chiang Mai, 50200, Thailand
| | - Chayanee Vivattanaseth
- Department of Ophthalmology, Faculty of Medicine, Chiang Mai University, Chiang Mai, 50200, Thailand
| |
Collapse
|
48
|
Seay M, Rucker JC. Neuromyelitis Optica: Review and Utility of Testing Aquaporin-4 Antibody in Typical Optic Neuritis. Asia Pac J Ophthalmol (Phila) 2018; 7:229-234. [PMID: 29766684 DOI: 10.22608/apo.2018170] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Abstract
Neuromyelitis optica (NMO) is an autoimmune, inflammatory demyelinating disorder often leading to severe vision impairment and disability. The discovery of a diagnostic biomarker, the aquaporin-4 antibody (AQP4-IgG), transformed the clinical diagnosis and treatment of NMO and broadened the spectrum of disease [NMO spectrum disorders (NMOSD)]. Though the antibody is highly sensitive and specific to NMOSD, routine testing in patients with typical optic neuritis is considered controversial. This article will provide a brief review of NMOSD and highlight the pros and cons of routine testing in typical optic neuritis.
Collapse
Affiliation(s)
- Meagan Seay
- Department of Neurology, New York University School of Medicine, New York, New York
| | - Janet C Rucker
- Department of Neurology, New York University School of Medicine, New York, New York
- Department of Ophthalmology, New York University School of Medicine, New York, New York
| |
Collapse
|
49
|
Asgari N, Lillevang ST, Skejoe HPB, Falah M, Stenager E, Kyvik KO. Epidemiology of neuromyelitis optica spectrum disorder. Acta Neurol Scand 2018; 137:626-627. [PMID: 29732539 DOI: 10.1111/ane.12936] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Affiliation(s)
- N. Asgari
- Department of Regional Health Research; University of Southern Denmark; Odense Denmark
- Department of Molecular Medicine; University of Southern Denmark; Odense Denmark
| | - S. T. Lillevang
- Department of Clinical Immunology; Odense University Hospital; Odense Denmark
| | - H. P. B. Skejoe
- Department of Radiology; Aleris-Hamlet Hospital; Copenhagen Denmark
| | - M. Falah
- Department of Neurology; Regionhospital Holstebro; Holstebro Denmark
| | - E. Stenager
- Department of Regional Health Research; University of Southern Denmark; Odense Denmark
- Department of Neurology; Sonderborg Denmark
| | - K. O. Kyvik
- OPEN; Odense Patient data Explorative Network; Odense University Hospital; Odense Denmark
- Department of Clinical Research; University of Southern Denmark; Odense Denmark
| |
Collapse
|
50
|
Falcão-Gonçalves AB, Bichuetti DB, de Oliveira EML. Recurrent Optic Neuritis as the Initial Symptom in Demyelinating Diseases. J Clin Neurol 2018; 14:351-358. [PMID: 29856159 PMCID: PMC6031992 DOI: 10.3988/jcn.2018.14.3.351] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2017] [Revised: 03/15/2018] [Accepted: 03/15/2018] [Indexed: 01/08/2023] Open
Abstract
Background and Purpose Optic neuritis (ON) is an inflammation of the optic nerve that can be recurrent, with unilateral or bilateral presentation. Diagnosing recurrent cases may be challenging. We aimed to compare patients with recurrent ON as their initial symptom according to their following final diagnoses: multiple sclerosis (MS), neuromyelitis optica spectrum disorders (NMOSD), or chronic relapsing inflammatory optic neuropathy (CRION). Methods The medical records of patients with initial recurrent ON who were followed at the Neuroimmunology Clinic of the Federal University of São Paulo between 2004 and 2016 were analyzed retrospectively. Patients were classified according to their final diagnosis into MS, NMOSD, or CRION, and the characteristics of these groups were compared to identify predictive factors. Results Thirty-three patients with recurrent ON were included, and 6, 14, and 13 had final diagnoses of MS, NMOSD, and CRION, respectively. Most of the patients were female with unilateral and severe ON in their first episode, and the initial Visual Functional System Score (VFSS) was ≥5 in 63.6%, 85.7%, and 16.7% of the patients with CRION, NMOSD, and MS, respectively. Anti-aquaporin-4 antibodies were detected in 9 of 21 (42.8%) tested patients. Seven of nine (77.8%) seropositive NMOSD patients experienced transverse myelitis episodes during the follow-up period. A multivariate regression analysis showed that the VFSS at the last medical appointment predicted the final diagnosis. Conclusions A lower VFSS at the last medical appointment was predictive of MS. Patients with NMOSD and CRION have similar clinical characteristics, whereas NMOSD patients tend to have worse visual acuity.
Collapse
Affiliation(s)
| | - Denis Bernardi Bichuetti
- Department of Neurology and Neurosurgery, Federal University of São Paulo (UNIFESP), São Paulo, SP, Brazil
| | | |
Collapse
|