1
|
Reitlo LS, Mihailovic JM, Stensvold D, Wisløff U, Hyder F, Håberg AK. Hippocampal neurochemicals are associated with exercise group and intensity, psychological health, and general cognition in older adults. GeroScience 2023; 45:1667-1685. [PMID: 36626020 PMCID: PMC10400748 DOI: 10.1007/s11357-022-00719-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2022] [Accepted: 12/24/2022] [Indexed: 01/11/2023] Open
Abstract
Based on the premise that physical activity/exercise impacts hippocampal structure and function, we investigated if hippocampal metabolites for neuronal viability and cell membrane density (i.e., N-acetyl aspartate (NAA), choline (Cho), creatine (Cr)) were higher in older adults performing supervised exercise compared to following national physical activity guidelines. Sixty-three participants (75.3 ± 1.9 years after 3 years of intervention) recruited from the Generation 100 study (NCT01666340_date:08.16.2012) were randomized into a supervised exercise group (SEG) performing twice weekly moderate- to high-intensity training, and a control group (CG) following national physical activity guidelines of ≥ 30-min moderate physical activity ≥ 5 days/week. Hippocampal body and head volumes and NAA, Cho, and Cr levels were acquired at 3T with magnetic resonance imaging and spectroscopic imaging. Sociodemographic data, peak oxygen uptake (VO2peak), exercise characteristics, psychological health, and cognition were recorded. General linear models were used to assess group differences and associations corrected for age, sex, education, and hippocampal volume. Both groups adhered to their training, where SEG trained at higher intensity. SEG had significantly lower NAA/Cr in hippocampal body than CG (p = 0.04). Across participants, higher training intensity was associated with lower Cho/Cr in hippocampal body (p < 0.001). Change in VO2peak, increasing VO2peak from baseline to 3 years, or VO2peak at 3 years were not associated with hippocampal neurochemicals. Lower NAA/Cr in hippocampal body was associated with poorer psychological health and slightly higher cognitive scores. Thus, following the national physical activity guidelines and not training at the highest intensity level were associated with the best neurochemical profile in the hippocampus at 3 years.
Collapse
Affiliation(s)
- Line S Reitlo
- Department of Neuromedicine and Movement Science, Faculty of Medicine and Health Sciences, Norwegian University of Science and Technology, Trondheim, Norway
| | - Jelena M Mihailovic
- Department of Radiology and Biomedical Imaging, Yale University, New Haven, CT, USA
| | - Dorthe Stensvold
- Department of Circulation and Medical Imaging, Faculty of Medicine and Health Sciences, Norwegian University of Science and Technology, Trondheim, Norway
| | - Ulrik Wisløff
- Department of Circulation and Medical Imaging, Faculty of Medicine and Health Sciences, Norwegian University of Science and Technology, Trondheim, Norway
- School of Human Movement and Nutrition Science, University of Queensland, Brisbane, Australia
| | - Fahmeed Hyder
- Department of Radiology and Biomedical Imaging, Yale University, New Haven, CT, USA
| | - Asta Kristine Håberg
- Department of Neuromedicine and Movement Science, Faculty of Medicine and Health Sciences, Norwegian University of Science and Technology, Trondheim, Norway.
- Department of Radiology and Nuclear Medicine, St. Olavs Hospital, Trondheim University Hospital, Trondheim, Norway.
| |
Collapse
|
2
|
N-acetyl-aspartate and Myo-inositol as Markers of White Matter Microstructural Organization in Mild Cognitive Impairment: Evidence from a DTI- 1H-MRS Pilot Study. Diagnostics (Basel) 2023; 13:diagnostics13040654. [PMID: 36832141 PMCID: PMC9955118 DOI: 10.3390/diagnostics13040654] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2023] [Revised: 02/06/2023] [Accepted: 02/07/2023] [Indexed: 02/12/2023] Open
Abstract
We implemented a multimodal approach to examine associations between structural and neurochemical changes that could signify neurodegenerative processes related to mild cognitive impairment (MCI). Fifty-nine older adults (60-85 years; 22 MCI) underwent whole-brain structural 3T MRI (T1W, T2W, DTI) and proton magnetic resonance spectroscopy (1H-MRS). The regions of interest (ROIs) for 1H-MRS measurements were the dorsal posterior cingulate cortex, left hippocampal cortex, left medial temporal cortex, left primary sensorimotor cortex, and right dorsolateral prefrontal cortex. The findings revealed that subjects in the MCI group showed moderate to strong positive associations between the total N-acetylaspartate to total creatine and the total N-acetylaspartate to myo-inositol ratios in the hippocampus and dorsal posterior cingulate cortex and fractional anisotropy (FA) of WM tracts crossing these regions-specifically, the left temporal tapetum, right corona radiata, and right posterior cingulate gyri. In addition, negative associations between the myo-inositol to total creatine ratio and FA of the left temporal tapetum and right posterior cingulate gyri were observed. These observations suggest that the biochemical integrity of the hippocampus and cingulate cortex is associated with a microstructural organization of ipsilateral WM tracts originating in the hippocampus. Specifically, elevated myo-inositol might be an underlying mechanism for decreased connectivity between the hippocampus and the prefrontal/cingulate cortex in MCI.
Collapse
|
3
|
Levin O, Vints WAJ, Ziv G, Katkutė G, Kušleikienė S, Valatkevičienė K, Sheoran S, Drozdova-Statkevičienė M, Gleiznienė R, Pääsuke M, Dudonienė V, Himmelreich U, Česnaitienė VJ, Masiulis N. Neurometabolic correlates of posturography in normal aging and older adults with mild cognitive impairment: Evidence from a 1H-MRS study. Neuroimage Clin 2023; 37:103304. [PMID: 36580713 PMCID: PMC9827054 DOI: 10.1016/j.nicl.2022.103304] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2022] [Revised: 12/03/2022] [Accepted: 12/22/2022] [Indexed: 12/25/2022]
Abstract
Proton magnetic resonance spectroscopy (1H-MRS) holds promise for revealing and understanding neurodegenerative processes associated with cognitive and functional impairments in aging. In the present study, we examined the neurometabolic correlates of balance performance in 42 cognitively intact older adults (healthy controls - HC) and 26 older individuals that were diagnosed with mild cognitive impairment (MCI). Neurometabolite ratios of total N-acetyl aspartate (tNAA), glutamate-glutamine complex (Glx), total choline (tCho) and myo-inositol (mIns) relative to total creatine (tCr) were assessed using single voxel 1H-MRS in four different brain regions. Regions of interest were the left hippocampus (HPC), dorsal posterior cingulate cortex (dPCC), left sensorimotor cortex (SM1), and right dorsolateral prefrontal cortex (dlPFC). Center-of-pressure velocity (Vcop) and dual task effect (DTE) were used as measures of balance performance. Results indicated no significant group differences in neurometabolite ratios and balance performance measures. However, our observations revealed that higher tCho/tCr and mIns/tCr in hippocampus and dPCC were generic predictors of worse balance performance, suggesting that neuroinflammatory processes in these regions might be a driving factor for impaired balance performance in aging. Further, we found that higher tNAA/tCr and mIns/tCr and lower Glx/tCr in left SM1 were predictors of better balance performance in MCI but not in HC. The latter observation hints at the possibility that individuals with MCI may upregulate balance control through recruitment of sensorimotor pathways.
Collapse
Affiliation(s)
- Oron Levin
- Department of Health Promotion and Rehabilitation, Lithuanian Sports University, LT-44221 Kaunas, Lithuania; Movement Control & Neuroplasticity Research Group, Group Biomedical Sciences, KU Leuven, Heverlee 3001, Belgium
| | - Wouter A J Vints
- Department of Health Promotion and Rehabilitation, Lithuanian Sports University, LT-44221 Kaunas, Lithuania; Department of Rehabilitation Medicine Research School CAPHRI, Maastricht University P.O. Box 616, 6200 MD Maastricht, the Netherlands; Centre of Expertise in Rehabilitation and Audiology, Adelante Zorggroep, Hoensbroek, The Netherlands.
| | - Gal Ziv
- The Academic College at Wingate, Netanya 4290200, Israel
| | - Gintarė Katkutė
- Department of Health Promotion and Rehabilitation, Lithuanian Sports University, LT-44221 Kaunas, Lithuania
| | - Simona Kušleikienė
- Department of Health Promotion and Rehabilitation, Lithuanian Sports University, LT-44221 Kaunas, Lithuania
| | - Kristina Valatkevičienė
- Department of Radiology, Medical Academy, Lithuanian University of Health Sciences, Kaunas, Lithuania
| | - Samrat Sheoran
- Department of Health Promotion and Rehabilitation, Lithuanian Sports University, LT-44221 Kaunas, Lithuania; Faculty of Kinesiology, Sport, and Recreation, University of Alberta, Edmonton, Canada
| | | | - Rymantė Gleiznienė
- Department of Radiology, Medical Academy, Lithuanian University of Health Sciences, Kaunas, Lithuania
| | - Mati Pääsuke
- Institute of Sport Sciences and Physiotherapy, University of Tartu, Estonia
| | - Vilma Dudonienė
- Department of Health Promotion and Rehabilitation, Lithuanian Sports University, LT-44221 Kaunas, Lithuania
| | - Uwe Himmelreich
- Biomedical MRI Unit, Department of Imaging and Pathology, Group Biomedical Sciences, KU Leuven, Leuven 3000, Belgium
| | - Vida J Česnaitienė
- Department of Health Promotion and Rehabilitation, Lithuanian Sports University, LT-44221 Kaunas, Lithuania
| | - Nerijus Masiulis
- Department of Health Promotion and Rehabilitation, Lithuanian Sports University, LT-44221 Kaunas, Lithuania; Department of Rehabilitation, Physical and Sports Medicine, Institute of Health Science, Vilnius University, Vilnius, Lithuania
| |
Collapse
|
4
|
Mai W, Zhang A, Liu Q, Tang L, Wei Y, Su J, Duan G, Teng J, Nong X, Yu B, Li C, Shao L, Deng D, Chen S, Zhao L. Effects of Moxa Cone Moxibustion Therapy on Cognitive Function and Brain Metabolic Changes in MCI Patients: A Pilot 1H-MRS Study. Front Aging Neurosci 2022; 14:773687. [PMID: 35721029 PMCID: PMC9204283 DOI: 10.3389/fnagi.2022.773687] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2021] [Accepted: 04/12/2022] [Indexed: 11/13/2022] Open
Abstract
Objective To explore the effect of moxa cone moxibustion on N-acetyl aspartate/total creatinine (NAA/tCr) and choline/total creatinine (Cho/tCr) in the bilateral hippocampus (HIP) and bilateral posterior cingulate gyrus (PCG) in patients with mild cognitive impairment (MCI) using hydrogen proton magnetic resonance spectroscopy (1H-MRS) and to provide imaging basis for moxa cone moxibustion treatment for MCI. Methods One hundred eight patients with MCI were served as the MCI group, and 67 age-matched subjects were enrolled as the normal control group. The MCI group was randomized and allocated into acupoint group, drug group, and sham acupoint group, with 36 cases in each group. Some patients in each group withdrew. Finally, 25 cases were included in the acupoint group, 24 cases in the drug group, and 20 cases in the sham acupoint group. The drug group was treated with oral donepezil hydrochloride. The acupoint group and sham acupoint group received moxa cone moxibustion treatment. Mini-mental state exam (MMSE) and Montreal cognitive assessment (MoCA) scores were recorded before intervention, at the end of the first and the second months of intervention, and in the 5th month of follow-up. The NAA/tCr and Cho/tCr ratios in the HIP and PCG were bilaterally measured by 1H-MRS before and after intervention. Results Before intervention, compared with the normal control group, the MMSE and MoCA scores, the Cho/tCr ratio in the right HIP, the NAA/tCr ratio in the bilateral HIP, and the NAA/tCr ratio in the left PCG in the three treatment groups decreased significantly (both p < 0.01), and the NAA/tCr ratio in the right PCG significantly reduced in the acupoint and drug groups (p < 0.05). After two months of treatment, compared with the normal control group, there were no differences in the MoCA scores, the NAA/tCr, and Cho/tCr ratios in the bilateral PCG and bilateral HIP in the three treatment groups (p > 0.05). However, the MMSE scores in the drug group decreased when compared with the acupoint group and normal control group (p < 0.05, p < 0.01). The scores of MMSE and MoCA in the acupoint group and sham acupoint group at all time points were better than those in the drug group, which were similar to those in the normal control group. Conclusion Our findings suggest that moxibustion could improve the cognitive function of patients with MCI. The mechanism may be related to the improvement of abnormal brain metabolism in HIP and PCG.
Collapse
Affiliation(s)
- Wei Mai
- Guangxi University of Chinese Medicine, Nanning, China
- Department of Traditional Chinese Medicine, Guangxi Tumour Hospital, Nanning, China
| | | | - Qiang Liu
- Xinghu Outpatient Department, The People’s Hospital of Guangxi Zhuang Autonomous Region, Nanning, China
| | - Liying Tang
- Xinghu Outpatient Department, The People’s Hospital of Guangxi Zhuang Autonomous Region, Nanning, China
| | - Yichen Wei
- Department of Radiology, The First Affiliated Hospital, Guangxi University of Chinese Medicine, Nanning, China
| | - Jiahui Su
- Department of Acupuncture, The First Affiliated Hospital, Guangxi University of Chinese Medicine, Nanning, China
| | - Gaoxiong Duan
- Department of Radiology, The People’s Hospital of Guangxi Zhuang Autonomous Region, Nanning, China
| | - Jinlong Teng
- Department of Acupuncture, The First Affiliated Hospital, Guangxi University of Chinese Medicine, Nanning, China
| | - Xiucheng Nong
- Department of Acupuncture, The First Affiliated Hospital, Guangxi University of Chinese Medicine, Nanning, China
| | - Bihan Yu
- Department of Acupuncture, The First Affiliated Hospital, Guangxi University of Chinese Medicine, Nanning, China
| | - Chong Li
- Department of Acupuncture, The First Affiliated Hospital, Guangxi University of Chinese Medicine, Nanning, China
| | - Lijuan Shao
- Department of Acupuncture, The First Affiliated Hospital, Guangxi University of Chinese Medicine, Nanning, China
| | - Demao Deng
- Department of Radiology, The People’s Hospital of Guangxi Zhuang Autonomous Region, Nanning, China
- Demao Deng,
| | - Shangjie Chen
- Department of Rehabilitation, The Second Affiliated Hospital of Shenzhen University, Shenzhen, China
- Shangjie Chen,
| | - Lihua Zhao
- Department of Acupuncture, The First Affiliated Hospital, Guangxi University of Chinese Medicine, Nanning, China
- *Correspondence: Lihua Zhao,
| |
Collapse
|
5
|
Bolo NR, Jacobson AM, Musen G, Simonson DC. Hyperglycemia and hyperinsulinemia effects on anterior cingulate cortex myoinositol-relation to brain network functional connectivity in healthy adults. J Neurophysiol 2022; 127:1426-1437. [PMID: 35417272 PMCID: PMC9109787 DOI: 10.1152/jn.00408.2021] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2021] [Revised: 03/22/2022] [Accepted: 04/11/2022] [Indexed: 11/22/2022] Open
Abstract
Brain mechanisms underlying the association of diabetes metabolic disorders-hyperglycemia and insulin resistance-with cognitive impairment are unknown. Myoinositol is a brain metabolite involved in cell osmotic balance, membrane phospholipid turnover, and second messenger neurotransmission, which affect brain function. Increased brain myoinositol and altered functional connectivity have been found in diabetes, mild cognitive impairment, and Alzheimer's disease, but the independent effects of plasma glucose and insulin on brain myoinositol and function are not characterized. We measured myoinositol concentrations in the pregenual anterior cingulate cortex (ACC), a region involved in self-reflective awareness and decision making, using proton magnetic resonance spectroscopy, and whole brain resting-state functional connectivity using fMRI, during acute hyperglycemia (with attendant hyperinsulinemia) and euglycemic-hyperinsulinemia compared with basal fasting-euglycemia (EU) in 11 healthy nondiabetic participants (5 women/6 men, means ± SD, age: 27 ± 7 yr, fasting-glucose: 5.2 ± 0.4 mmol/L, fasting-insulin: 4.9 ± 4.4 μU/mL). Brain MR data were acquired during two separate visits: 1) EU followed by a 60-min hyperglycemic-clamp (glucose: 10.7 ± 0.2 mmol/L, insulin: 33 ± 6 μU/mL); 2) EU followed by a hyperinsulinemic-euglycemic-clamp (glucose: 5.3 ± 0.1 mmol/L, insulin: 27 ± 5 μU/mL) designed to match individual insulin levels achieved during the visit 1 hyperglycemic-clamp. Myoinositol decreased by 14% during the hyperglycemic-clamp (from 7.7 ± 1.5 mmol/kg to 6.6 ± 0.8 mmol/kg, P = 0.031), and by 9% during the hyperinsulinemic-euglycemic-clamp (from 7.1 ± 0.7 mmol/kg to 6.5 ± 0.7 mmol/kg, P = 0.014), with no significant difference between the two clamps. Lower myoinositol was associated with higher functional connectivity of the thalamus and precentral cortex with insula-ACC-related networks, suggesting myoinositol is involved in insulin modulation of cognitive/emotional network function in healthy adults. Regional brain myoinositol levels may be useful biomarkers for monitoring cognitive and mood-enhancing treatment responses.NEW & NOTEWORTHY Hyperinsulinemia-related decreases of brain anterior cingulate cortex (ACC) myoinositol independent of plasma glucose levels and the association of low ACC myoinositol with increased functional connectivity between sensorimotor regions and ACC/insula-related networks suggest involvement of myoinositol in insulin-modulated brain network function in healthy adults. In diabetes, elevated brain myoinositol may be due to reduced brain insulin levels or action, rather than hyperglycemia, and may be involved in brain network dysfunctions leading to cognitive or mood disorders.
Collapse
Affiliation(s)
- Nicolas R Bolo
- Department of Psychiatry, Beth Israel Deaconess Medical Center, Boston, Massachusetts
- Department of Psychiatry, Harvard Medical School, Boston, Massachusetts
| | - Alan M Jacobson
- Research Institute, NYU Long Island School of Medicine, Mineola, New York
| | - Gail Musen
- Department of Psychiatry, Harvard Medical School, Boston, Massachusetts
- Research Division, Joslin Diabetes Center, Boston, Massachusetts
| | - Donald C Simonson
- Division of Endocrinology, Diabetes and Hypertension, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts
| |
Collapse
|
6
|
Hone-Blanchet A, Bohsali A, Krishnamurthy LC, Shahid SS, Lin Q, Zhao L, Bisht AS, John SE, Loring D, Goldstein F, Levey A, Lah J, Qiu D, Crosson B. Frontal Metabolites and Alzheimer's Disease Biomarkers in Healthy Older Women and Women Diagnosed with Mild Cognitive Impairment. J Alzheimers Dis 2022; 87:1131-1141. [PMID: 35431238 PMCID: PMC9795460 DOI: 10.3233/jad-215431] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
BACKGROUND Women account for two thirds of the prevalence and incidence of Alzheimer's disease (AD) and mild cognitive impairment (MCI). Evidence suggest that sex may differently influence the expression of proteins amyloid-beta (Aβ1-42) and tau, for which early detection is crucial in prevention of the disease. OBJECTIVE We investigated the effect of aging and cerebrospinal fluid (CSF) levels of Aβ1-42 and tau on frontal metabolites measured with proton magnetic resonance spectroscopy (MRS) in a cohort of cognitively normal older women and women with MCI. METHODS 3T single-voxel MRS was performed on the medial frontal cortex, using Point Resolved Spectroscopy (PRESS) and Mescher-Garwood Point Resolved Spectroscopy (MEGA-PRESS) in 120 women (age range 50-85). CSF samples of Aβ1-42 and tau and scores of general cognition were also obtained. RESULTS Levels of frontal gamma aminobutyric acid (GABA+) were predicted by age, independently of disease and CSF biomarkers. Importantly, levels of GABA+ were reduced in MCI patients. Additionally, we found that levels of N-acetylaspartate relative to myo-inositol (tNAA/mI) predicted cognition in MCI patients only and were not related to CSF biomarkers. CONCLUSION This study is the first to demonstrate a strong association between frontal GABA+ levels and neurological aging in a sample consisting exclusively of healthy older women with various levels of CSF tau and Aβ1-42 and women with MCI. Importantly, our results show no correlation between CSF biomarkers and MRS metabolites in this sample.
Collapse
Affiliation(s)
- Antoine Hone-Blanchet
- Department of Neurology, School of Medicine, Emory University, Atlanta, GA, USA,Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| | - Anastasia Bohsali
- Department of Neurology, School of Medicine, Emory University, Atlanta, GA, USA
| | - Lisa C. Krishnamurthy
- Department of Physics & Astronomy, Georgia State University, Atlanta, GA, USA,Center for Visual and Neurocognitive Rehabilitation, Atlanta VAMC, Decatur, GA, USA
| | - Salman S. Shahid
- Department of Neurology, School of Medicine, Emory University, Atlanta, GA, USA,Department of Radiology and Imaging Sciences, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Qixiang Lin
- Department of Neurology, School of Medicine, Emory University, Atlanta, GA, USA
| | - Liping Zhao
- Department of Biostatistics and Bioinformatics, Rollins School of Public Health, Emory University, Atlanta, GA, USA
| | - Aditya S. Bisht
- Department of Neurology, School of Medicine, Emory University, Atlanta, GA, USA
| | - Samantha E. John
- Department of Brain Health, Population Health & Health Equity Initiative, University of Nevada, Las Vegas, NV, USA
| | - David Loring
- Department of Neurology, School of Medicine, Emory University, Atlanta, GA, USA
| | - Felicia Goldstein
- Department of Neurology, School of Medicine, Emory University, Atlanta, GA, USA
| | - Allan Levey
- Department of Neurology, School of Medicine, Emory University, Atlanta, GA, USA
| | - James Lah
- Department of Neurology, School of Medicine, Emory University, Atlanta, GA, USA
| | - Deqiang Qiu
- Department of Radiology and Imaging Sciences, School of Medicine, Emory University, Atlanta, GA, USA,Joint Department of Biomedical Engineering, Emory University and Georgia Institute of Technology, Atlanta, GA, USA,Correspondence to: Deqiang Qiu, Department of Radiology and Imaging Sciences, School of Medicine, Emory University, 100 Woodruff Circle, Atlanta, GA, 30322, USA. Tel.: +1 404 712 0356;
| | - Bruce Crosson
- Department of Neurology, School of Medicine, Emory University, Atlanta, GA, USA,Center for Visual and Neurocognitive Rehabilitation, Atlanta VAMC, Decatur, GA, USA,Department of Radiology and Imaging Sciences, School of Medicine, Emory University, Atlanta, GA, USA
| |
Collapse
|
7
|
Song T, Song X, Zhu C, Patrick R, Skurla M, Santangelo I, Green M, Harper D, Ren B, Forester BP, Öngür D, Du F. Mitochondrial dysfunction, oxidative stress, neuroinflammation, and metabolic alterations in the progression of Alzheimer's disease: A meta-analysis of in vivo magnetic resonance spectroscopy studies. Ageing Res Rev 2021; 72:101503. [PMID: 34751136 PMCID: PMC8662951 DOI: 10.1016/j.arr.2021.101503] [Citation(s) in RCA: 115] [Impact Index Per Article: 38.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2021] [Revised: 10/19/2021] [Accepted: 10/25/2021] [Indexed: 12/13/2022]
Abstract
Accumulating evidence demonstrates that metabolic changes in the brain associated with neuroinflammation, oxidative stress, and mitochondrial dysfunction play an important role in the pathophysiology of mild cognitive impairment (MCI) and Alzheimer's disease (AD). However, the neural signatures associated with these metabolic alterations and underlying molecular mechanisms are still elusive. Accordingly, we reviewed the literature on in vivo human brain 1H and 31P-MRS studies and use meta-analyses to identify patterns of brain metabolic alterations in MCI and AD. 40 and 39 studies on MCI and AD, respectively, were classified according to brain regions. Our results indicate decreased N-acetyl aspartate and creatine but increased myo-inositol levels in both MCI and AD, decreased glutathione level in MCI as well as disrupted energy metabolism in AD. In addition, the hippocampus shows the strongest alterations in most of these metabolites. This meta-analysis also illustrates progressive metabolite alterations from MCI to AD. Taken together, it suggests that 1) neuroinflammation and oxidative stress may occur in the early stages of AD, and likely precede neuron loss in its progression; 2) the hippocampus is a sensitive region of interest for early diagnosis and monitoring the response of interventions; 3) targeting bioenergetics associated with neuroinflammation/oxidative stress is a promising approach for treating AD.
Collapse
Affiliation(s)
- Tao Song
- Psychotic Disorders Division, McLean Hospital, 02478, USA; McLean Imaging Center, McLean Hospital, 02478, USA; Harvard Medical School, Boston, Massachusetts 02115, USA
| | - Xiaopeng Song
- Psychotic Disorders Division, McLean Hospital, 02478, USA; McLean Imaging Center, McLean Hospital, 02478, USA; Harvard Medical School, Boston, Massachusetts 02115, USA
| | - Chenyawen Zhu
- Psychotic Disorders Division, McLean Hospital, 02478, USA; McLean Imaging Center, McLean Hospital, 02478, USA
| | - Regan Patrick
- Division of Geriatric Psychiatry, McLean Hospital, 02478, USA; Department of Neuropsychology, McLean Hospital, 02478, USA; Harvard Medical School, Boston, Massachusetts 02115, USA
| | - Miranda Skurla
- Division of Geriatric Psychiatry, McLean Hospital, 02478, USA
| | | | - Morgan Green
- Division of Geriatric Psychiatry, McLean Hospital, 02478, USA
| | - David Harper
- Division of Geriatric Psychiatry, McLean Hospital, 02478, USA; Harvard Medical School, Boston, Massachusetts 02115, USA
| | - Boyu Ren
- Harvard Medical School, Boston, Massachusetts 02115, USA
| | - Brent P Forester
- Division of Geriatric Psychiatry, McLean Hospital, 02478, USA; Harvard Medical School, Boston, Massachusetts 02115, USA
| | - Dost Öngür
- Psychotic Disorders Division, McLean Hospital, 02478, USA; Harvard Medical School, Boston, Massachusetts 02115, USA
| | - Fei Du
- Psychotic Disorders Division, McLean Hospital, 02478, USA; McLean Imaging Center, McLean Hospital, 02478, USA; Harvard Medical School, Boston, Massachusetts 02115, USA.
| |
Collapse
|
8
|
Liu H, Zhang D, Lin H, Zhang Q, Zheng L, Zheng Y, Yin X, Li Z, Liang S, Huang S. Meta-Analysis of Neurochemical Changes Estimated via Magnetic Resonance Spectroscopy in Mild Cognitive Impairment and Alzheimer's Disease. Front Aging Neurosci 2021; 13:738971. [PMID: 34744689 PMCID: PMC8569809 DOI: 10.3389/fnagi.2021.738971] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2021] [Accepted: 08/26/2021] [Indexed: 11/18/2022] Open
Abstract
The changes of neurochemicals in mild cognitive impairment (MCI) and Alzheimer's disease (AD) patients has been observed via magnetic resonance spectroscopy in several studies. However, whether it exists the consistent pattern of changes of neurochemicals in the encephalic region during the progression of MCI to AD were still not clear. The study performed meta-analysis to investigate the patterns of neurochemical changes in the encephalic region in the progress of AD. We searched the PubMed, Embase, Cochrane Library, and Web of Science databases, and finally included 63 studies comprising 1,086 MCI patients, 1,256 AD patients, and 1,907 healthy controls. It showed that during the progression from MCI to AD, N-acetyl aspartate (NAA) decreased continuously in the posterior cingulate (PC) (SMD: −0.42 [95% CI: −0.62 to −0.21], z = −3.89, P < 0.05), NAA/Cr (creatine) was consistently reduced in PC (SMD: −0.58 [95% CI: −0.86 to −0.30], z = −4.06, P < 0.05) and hippocampus (SMD: −0.65 [95% CI: −1.11 to −0.12], z = −2.44, P < 0.05), while myo-inositol (mI) (SMD: 0.44 [95% CI: 0.26–0.61], z = 4.97, P < 0.05) and mI/Cr (SMD: 0.43 [95% CI: 0.17–0.68], z = 3.30, P < 0.05) were raised in PC. Furthermore, these results were further verified by a sustained decrease in the NAA/mI of PC (SMD: −0.94 [95% CI: −1.24 to −0.65], z = −6.26, P < 0.05). Therefore, the levels of NAA and mI were associated with the cognitive decline and might be used as potentially biomarkers to predict the possible progression from MCI to AD. Systematic Review Registration:https://www.crd.york.ac.uk/PROSPERO/, identifier: CRD42020200308.
Collapse
Affiliation(s)
- Huanhuan Liu
- National-Local Joint Engineering Research Center of Rehabilitation Medicine Technology, Fujian University of Traditional Chinese Medicine, Fuzhou, China.,Rehabilitation Industry Institute, Fujian University of Traditional Chinese Medicine, Fuzhou, China.,College of Rehabilitation Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou, China
| | - Dandan Zhang
- College of Traditional Chinese Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou, China
| | - Huawei Lin
- National-Local Joint Engineering Research Center of Rehabilitation Medicine Technology, Fujian University of Traditional Chinese Medicine, Fuzhou, China.,Rehabilitation Industry Institute, Fujian University of Traditional Chinese Medicine, Fuzhou, China.,College of Rehabilitation Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou, China
| | - Qi Zhang
- College of Rehabilitation Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou, China
| | - Ling Zheng
- College of Rehabilitation Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou, China
| | - Yuxin Zheng
- College of Rehabilitation Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou, China
| | - Xiaolong Yin
- National-Local Joint Engineering Research Center of Rehabilitation Medicine Technology, Fujian University of Traditional Chinese Medicine, Fuzhou, China.,Rehabilitation Industry Institute, Fujian University of Traditional Chinese Medicine, Fuzhou, China
| | - Zuanfang Li
- Academy of Integrative Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou, China.,Fujian Key Laboratory of Integrative Medicine on Geriatrics, Fuzhou, China
| | - Shengxiang Liang
- National-Local Joint Engineering Research Center of Rehabilitation Medicine Technology, Fujian University of Traditional Chinese Medicine, Fuzhou, China.,Rehabilitation Industry Institute, Fujian University of Traditional Chinese Medicine, Fuzhou, China.,Traditional Chinese Medicine Rehabilitation Research Center of State Administration of Traditional Chinese Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou, China
| | - Saie Huang
- Department of Neurological Rehabilitation, Fujian University of Traditional Chinese Medicine Subsidiary Rehabilitation Hospital, Fuzhou, China
| |
Collapse
|
9
|
Chaney AM, Lopez-Picon FR, Serrière S, Wang R, Bochicchio D, Webb SD, Vandesquille M, Harte MK, Georgiadou C, Lawrence C, Busson J, Vercouillie J, Tauber C, Buron F, Routier S, Reekie T, Snellman A, Kassiou M, Rokka J, Davies KE, Rinne JO, Salih DA, Edwards FA, Orton LD, Williams SR, Chalon S, Boutin H. Prodromal neuroinflammatory, cholinergic and metabolite dysfunction detected by PET and MRS in the TgF344-AD transgenic rat model of AD: a collaborative multi-modal study. Am J Cancer Res 2021; 11:6644-6667. [PMID: 34093845 PMCID: PMC8171096 DOI: 10.7150/thno.56059] [Citation(s) in RCA: 39] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2020] [Accepted: 02/15/2021] [Indexed: 12/25/2022] Open
Abstract
Mouse models of Alzheimer's disease (AD) are valuable but do not fully recapitulate human AD pathology, such as spontaneous Tau fibril accumulation and neuronal loss, necessitating the development of new AD models. The transgenic (TG) TgF344-AD rat has been reported to develop age-dependent AD features including neuronal loss and neurofibrillary tangles, despite only expressing APP and PSEN1 mutations, suggesting an improved modelling of AD hallmarks. Alterations in neuronal networks as well as learning performance and cognition tasks have been reported in this model, but none have combined a longitudinal, multimodal approach across multiple centres, which mimics the approaches commonly taken in clinical studies. We therefore aimed to further characterise the progression of AD-like pathology and cognition in the TgF344-AD rat from young-adults (6 months (m)) to mid- (12 m) and advanced-stage (18 m, 25 m) of the disease. Methods: TgF344-AD rats and wild-type (WT) littermates were imaged at 6 m, 12 m and 18 m with [18F]DPA-714 (TSPO, neuroinflammation), [18F]Florbetaben (Aβ) and [18F]ASEM (α7-nicotinic acetylcholine receptor) and with magnetic resonance spectroscopy (MRS) and with (S)-[18F]THK5117 (Tau) at 15 and 25 m. Behaviour tests were also performed at 6 m, 12 m and 18 m. Immunohistochemistry (CD11b, GFAP, Aβ, NeuN, NeuroChrom) and Tau (S)-[18F]THK5117 autoradiography, immunohistochemistry and Western blot were also performed. Results: [18F]DPA-714 positron emission tomography (PET) showed an increase in neuroinflammation in TG vs wildtype animals from 12 m in the hippocampus (+11%), and at the advanced-stage AD in the hippocampus (+12%), the thalamus (+11%) and frontal cortex (+14%). This finding coincided with strong increases in brain microgliosis (CD11b) and astrogliosis (GFAP) at these time-points as assessed by immunohistochemistry. In vivo [18F]ASEM PET revealed an age-dependent increase uptake in the striatum and pallidum/nucleus basalis of Meynert in WT only, similar to that observed with this tracer in humans, resulting in TG being significantly lower than WT by 18 m. In vivo [18F]Florbetaben PET scanning detected Aβ accumulation at 18 m, and (S)-[18F]THK5117 PET revealed subsequent Tau accumulation at 25m in hippocampal and cortical regions. Aβ plaques were low but detectable by immunohistochemistry from 6 m, increasing further at 12 and 18 m with Tau-positive neurons adjacent to Aβ plaques at 18 m. NeuroChrom (a pan neuronal marker) immunohistochemistry revealed a loss of neuronal staining at the Aβ plaques locations, while NeuN labelling revealed an age-dependent decrease in hippocampal neuron number in both genotypes. Behavioural assessment using the novel object recognition task revealed that both WT & TgF344-AD animals discriminated the novel from familiar object at 3 m and 6 m of age. However, low levels of exploration observed in both genotypes at later time-points resulted in neither genotype successfully completing the task. Deficits in social interaction were only observed at 3 m in the TgF344-AD animals. By in vivo MRS, we showed a decrease in neuronal marker N-acetyl-aspartate in the hippocampus at 18 m (-18% vs age-matched WT, and -31% vs 6 m TG) and increased Taurine in the cortex of TG (+35% vs age-matched WT, and +55% vs 6 m TG). Conclusions: This multi-centre multi-modal study demonstrates, for the first time, alterations in brain metabolites, cholinergic receptors and neuroinflammation in vivo in this model, validated by robust ex vivo approaches. Our data confirm that, unlike mouse models, the TgF344-AD express Tau pathology that can be detected via PET, albeit later than by ex vivo techniques, and is a useful model to assess and longitudinally monitor early neurotransmission dysfunction and neuroinflammation in AD.
Collapse
|
10
|
Zeng HM, Han HB, Zhang QF, Bai H. Application of modern neuroimaging technology in the diagnosis and study of Alzheimer's disease. Neural Regen Res 2021; 16:73-79. [PMID: 32788450 PMCID: PMC7818875 DOI: 10.4103/1673-5374.286957] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Neurological abnormalities identified via neuroimaging are common in patients with Alzheimer’s disease. However, it is not yet possible to easily detect these abnormalities using head computed tomography in the early stages of the disease. In this review, we evaluated the ways in which modern imaging techniques such as positron emission computed tomography, single photon emission tomography, magnetic resonance spectrum imaging, structural magnetic resonance imaging, magnetic resonance diffusion tensor imaging, magnetic resonance perfusion weighted imaging, magnetic resonance sensitive weighted imaging, and functional magnetic resonance imaging have revealed specific changes not only in brain structure, but also in brain function in Alzheimer’s disease patients. The reviewed literature indicated that decreased fluorodeoxyglucose metabolism in the temporal and parietal lobes of Alzheimer’s disease patients is frequently observed via positron emission computed tomography. Furthermore, patients with Alzheimer’s disease often show a decreased N-acetylaspartic acid/creatine ratio and an increased myoinositol/creatine ratio revealed via magnetic resonance imaging. Atrophy of the entorhinal cortex, hippocampus, and posterior cingulate gyrus can be detected early using structural magnetic resonance imaging. Magnetic resonance sensitive weighted imaging can show small bleeds and abnormal iron metabolism. Task-related functional magnetic resonance imaging can display brain function activity through cerebral blood oxygenation. Resting functional magnetic resonance imaging can display the functional connection between brain neural networks. These are helpful for the differential diagnosis and experimental study of Alzheimer’s disease, and are valuable for exploring the pathogenesis of Alzheimer’s disease.
Collapse
Affiliation(s)
- Hong-Mei Zeng
- Department of Neurology, Third Affiliated Hospital of Guizhou Medical University, Duyun; Department of Neurology, Affiliated Hospital of Guizhou Medical University, Guiyang, Guizhou Province, China
| | - Hua-Bo Han
- Department of Radiology, Third Affiliated Hospital of Guizhou Medical University, Duyun, Guizhou Province, China
| | - Qi-Fang Zhang
- Key Laboratory of Endemic and Ethnic Diseases of Ministry of Education, and Key Laboratory of Medical Molecular Biology, Guizhou Medical University, Guiyang, Guizhou Province, China
| | - Hua Bai
- Department of Neurology, Third Affiliated Hospital of Guizhou Medical University, Duyun; Department of Neurology, Affiliated Hospital of Guizhou Medical University, Guiyang; Medical Experiment Center, Third Affiliated Hospital of Guizhou Medical University, Duyun, Guizhou Province, China
| |
Collapse
|
11
|
Kotb MA, Kamal AM, Aldossary NM, Alsify AA, Ahmed YM. Value of magnetic resonance spectroscopy in geriatric patients with cognitive impairment. THE EGYPTIAN JOURNAL OF NEUROLOGY, PSYCHIATRY AND NEUROSURGERY 2020. [DOI: 10.1186/s41983-020-0147-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
Abstract
Background
Mild cognitive impairment is a transitional stage prior to dementia, and it is reported in depressed patients. Early diagnosis could predict the reversible etiologies and prevent further deterioration. Proton magnetic resonance spectroscopy has been used for early diagnosis and differential diagnosis of cognitive impairment.
Objective
We aimed to study the difference of hippocampal and frontal white matter metabolites between patients with Alzheimer’s disease, mild cognitive impairment, and cognitive impairment associated with depression, and if those metabolites can differentiate between them.
Subjects and methods
Geriatric patients with cognitive impairment were recruited from neurology and psychiatry clinics. All subjects underwent comprehensive medical evaluations, neuropsychological testing, laboratory tests as well as brain MRI and 1H-MRS studies.
Results
The present study included 85 subjects. Patients with MCI and AD had lower hippocampal NAA and NAA/Cr ratio than patients with depression and normal controls, while, frontal NAA and NAA/Cr ratio were lower in all patient’s subgroups compared to normal control.
Conclusion
Hippocampal NAA and NAA/Cr ratio might help to differentiate between MCI and cognitive impairment associated with depression.
Collapse
|
12
|
Moonis G, Subramaniam RM, Trofimova A, Burns J, Bykowski J, Chakraborty S, Holloway K, Ledbetter LN, Lee RK, Pannell JS, Pollock JM, Powers WJ, Roca RP, Rosenow JM, Shih RY, Utukuri PS, Corey AS. ACR Appropriateness Criteria® Dementia. J Am Coll Radiol 2020; 17:S100-S112. [PMID: 32370954 DOI: 10.1016/j.jacr.2020.01.040] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2020] [Accepted: 01/25/2020] [Indexed: 12/24/2022]
Abstract
Degenerative disease of the central nervous system is a growing public health concern. The primary role of neuroimaging in the workup of patients with probable or possible Alzheimer disease has typically been to exclude other significant intracranial abnormalities. In general, the imaging findings in structural studies, such as MRI, are nonspecific and have limited potential in differentiating different types of dementia. Advanced imaging methods are not routinely used in community or general practices for the diagnosis or differentiation of forms of dementia. Nonetheless, in patients who have been evaluated by a dementia expert, FDG-PET helps to distinguish Alzheimer disease from frontotemporal dementia. In patients with suspected dementia with Lewy bodies, functional imaging of the dopamine transporter (ioflupane) using SPECT may be helpful. In patients with suspected normal-pressure hydrocephalus, DTPA cisternography and HMPAO SPECT/CT brain may provide assessment. The American College of Radiology Appropriateness Criteria are evidence-based guidelines for specific clinical conditions that are reviewed annually by a multidisciplinary expert panel. The guideline development and revision include an extensive analysis of current medical literature from peer reviewed journals and the application of well-established methodologies (RAND/UCLA Appropriateness Method and Grading of Recommendations Assessment, Development, and Evaluation or GRADE) to rate the appropriateness of imaging and treatment procedures for specific clinical scenarios. In those instances where evidence is lacking or equivocal, expert opinion may supplement the available evidence to recommend imaging or treatment.
Collapse
Affiliation(s)
- Gul Moonis
- Columbia University Medical Center, New York, New York.
| | | | | | - Judah Burns
- Panel Chair, Montefiore Medical Center, Bronx, New York
| | | | - Santanu Chakraborty
- Ottawa Hospital Research Institute and the Department of Radiology, The University of Ottawa, Ottawa, Ontario, Canada; Canadian Association of Radiologists
| | - Kathryn Holloway
- MCVH-Virginia Commonwealth University, Richmond, Virginia; Neurosurgery Expert
| | | | - Ryan K Lee
- Einstein Healthcare Network, Philadelphia, Pennsylvania
| | - Jeffrey S Pannell
- University of California San Diego Medical Center, San Diego, California
| | | | - William J Powers
- University of North Carolina School of Medicine, Chapel Hill, North Carolina; American Academy of Neurology
| | - Robert P Roca
- Sheppard Pratt Health System, Towson, Maryland; American Psychiatric Association
| | - Joshua M Rosenow
- Northwestern University Feinberg School of Medicine, Chicago, Illinois; Neurosurgery Expert
| | - Robert Y Shih
- Walter Reed National Military Medical Center, Bethesda, Maryland
| | | | - Amanda S Corey
- Specialty Chair, Atlanta VA Health Care System and Emory University, Atlanta, Georgia
| |
Collapse
|
13
|
Joe E, Medina LD, Ringman JM, O'Neill J. 1H MRS spectroscopy in preclinical autosomal dominant Alzheimer disease. Brain Imaging Behav 2020; 13:925-932. [PMID: 29907927 DOI: 10.1007/s11682-018-9913-1] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
1H magnetic resonance spectroscopy (MRS) can reveal changes in brain biochemistry in vivo in humans and has been applied to late onset Alzheimer disease (AD). Carriers of mutations for autosomal dominant Alzheimer disease (ADAD) may show changes in levels of metabolites prior to the onset of clinical symptoms. Proton MR spectra were acquired at 1.5 T for 16 cognitively asymptomatic or mildly symptomatic mutation carriers (CDR < 1) and 11 non-carriers as part of a comprehensive cross-sectional study of preclinical ADAD. Levels of N-acetyl-aspartate+N-acetyl-aspartyl-glutamate (NAA), glutamate/glutamine (Glx), creatine/phosphocreate (Cr), choline (Cho), and myo-inositol (mI) in the left and right anterior cingulate and midline posterior cingulate and precuneus were compared between mutation carriers (MCs) and non-carriers (NCs) using multivariate analysis of variance with age as a covariate. Among MCs, correlations between metabolite levels and time until expected age of dementia diagnosis were calculated. MCs had significantly lower levels of NAA and Glx in the left pregenual anterior cingulate cortex, and lower levels of NAA and higher levels of mI and Cho in the precuneus compared to NCs. Increased levels of mI were seen in these regions in association with increased proximity to expected age of dementia onset. MRS shows effects of ADAD similar to those seen in late onset AD even during the preclinical period including lower levels of NAA and higher levels of mI. These indices of neuronal and glial dysfunction might serve as surrogate outcome measures in prevention studies of putative disease-modifying agents.
Collapse
Affiliation(s)
- Elizabeth Joe
- Alzheimer Disease Research Center, Keck School of Medicine, Univeristy of Southern California, Center for Health Professions, 1540 Alcazar Street, Los Angeles, CA, 90033, USA.
| | - Luis D Medina
- Easton Center for Alzheimer's Disease Research, University of California, Los Angeles, 710 Westwood Plaza, Room C-224, Los Angeles, CA, 90095, USA.,Department of Neurosurgery, University of Colorado School of Medicine, 12631 E. 17th Ave., C307, Aurora, CO, 80045, USA
| | - John M Ringman
- Alzheimer Disease Research Center, Keck School of Medicine, Univeristy of Southern California, Center for Health Professions, 1540 Alcazar Street, Los Angeles, CA, 90033, USA.,Easton Center for Alzheimer's Disease Research, University of California, Los Angeles, 710 Westwood Plaza, Room C-224, Los Angeles, CA, 90095, USA
| | - Joseph O'Neill
- Division of Child & Adolescent Psychiatry, Semel Institute For Neuroscience, University of California, Los Angeles, 760 Westwood Plaza, 58-227, Los Angeles, CA, 90095, USA
| |
Collapse
|
14
|
Chaney A, Williams SR, Boutin H. In vivo molecular imaging of neuroinflammation in Alzheimer's disease. J Neurochem 2018; 149:438-451. [PMID: 30339715 PMCID: PMC6563454 DOI: 10.1111/jnc.14615] [Citation(s) in RCA: 69] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2018] [Revised: 09/24/2018] [Accepted: 09/27/2018] [Indexed: 12/11/2022]
Abstract
It has become increasingly evident that neuroinflammation plays a critical role in the pathophysiology of Alzheimer's disease (AD) and other neurodegenerative disorders. Increased glial cell activation is consistently reported in both rodent models of AD and in AD patients. Moreover, recent genome wide association studies have revealed multiple genes associated with inflammation and immunity are significantly associated with an increased risk of AD development (e.g. TREM2). Non‐invasive in vivo detection and tracking of neuroinflammation is necessary to enhance our understanding of the contribution of neuroinflammation to the initiation and progression of AD. Importantly, accurate methods of quantifying neuroinflammation may aid early diagnosis and serve as an output for therapeutic monitoring and disease management. This review details current in vivo imaging biomarkers of neuroinflammation being explored and summarizes both pre‐clinical and clinical results from molecular imaging studies investigating the role of neuroinflammation in AD, with a focus on positron emission tomography and magnetic resonance spectroscopy (MRS). ![]()
Collapse
Affiliation(s)
- Aisling Chaney
- School of Health Sciences, Division of Informatics, Faculty of Biology, Medicine and Health, Manchester Academic Health Sciences Centre University of Manchester, Manchester, UK.,Wolfson Molecular Imaging Centre, Faculty of Biology, Medicine and Health and Manchester Academic Health Sciences Centre, University of Manchester, Manchester, UK
| | - Steve R Williams
- School of Health Sciences, Division of Informatics, Faculty of Biology, Medicine and Health, Manchester Academic Health Sciences Centre University of Manchester, Manchester, UK
| | - Herve Boutin
- Wolfson Molecular Imaging Centre, Faculty of Biology, Medicine and Health and Manchester Academic Health Sciences Centre, University of Manchester, Manchester, UK.,School of Biological Sciences, Division of Neuroscience and Experimental Psychology, Faculty of Biology, Medicine and Health, Manchester Academic Health Sciences Centre, University of Manchester, Manchester, UK
| |
Collapse
|
15
|
Lin R, Li L, Zhang Y, Huang S, Chen S, Shi J, Zhuo P, Jin H, Li Z, Liu W, Wang Z, Chen L, Tao J. Electroacupuncture ameliorate learning and memory by improving N-acetylaspartate and glutamate metabolism in APP/PS1 mice. Biol Res 2018; 51:21. [PMID: 29980225 PMCID: PMC6034239 DOI: 10.1186/s40659-018-0166-7] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2018] [Accepted: 05/24/2018] [Indexed: 01/13/2023] Open
Abstract
Objective To explore the precise mechanism of electroacupuncture (EA) to delay cognitive impairment in Alzheimer disease. Methods N-Acetylaspartate (NAA), glutamate (Glu) and myoinositol (mI) metabolism were measured by magnetic resonance spectroscopy, learning and memory of APP/PS1 mouse was evaluated by the Morris water maze test and the step-down avoidance test, neuron survival number and neuronal structure in the hippocampus were observed by Nissl staining, and BDNF and phosphorylated TrkB detected by Western blot. Results EA at DU20 acupuncture significantly improve learning and memory in behavioral tests, up-regulate NAA, Glu and mI metabolism, increase the surviving neurons in hippocampus, and promote the expression of BDNF and TrkB in the APP/PS1 transgenic mice. Conclusion These findings suggested that EA is a potential therapeutic for ameliorate cognitive dysfunction, and it might be due to EA could improve NAA and Glu metabolism by upregulation of BDNF in APP/PS1 mice.
Collapse
Affiliation(s)
- Ruhui Lin
- Fujian Collaborative Innovation Center for Rehabilitation Technology, Fuzhou, 350122, People's Republic of China
| | - Long Li
- Fujian Collaborative Innovation Center for Rehabilitation Technology, Fuzhou, 350122, People's Republic of China
| | - Yingzheng Zhang
- Fujian Collaborative Innovation Center for Rehabilitation Technology, Fuzhou, 350122, People's Republic of China
| | - Sheng Huang
- TCM Rehabilitation Research Center of SATCM, Fuzhou, 350122, People's Republic of China
| | - Shangjie Chen
- Baoan People's Hospital Affiliated to Southern Medical University, Shenzhen, 518000, People's Republic of China
| | - Jiao Shi
- Baoan People's Hospital Affiliated to Southern Medical University, Shenzhen, 518000, People's Republic of China
| | - Peiyuan Zhuo
- Fujian Collaborative Innovation Center for Rehabilitation Technology, Fuzhou, 350122, People's Republic of China
| | - Hao Jin
- TCM Rehabilitation Research Center of SATCM, Fuzhou, 350122, People's Republic of China
| | - Zuanfang Li
- National-Local Joint Engineering Research Center of Rehabilitation Medicine Technology, Fuzhou, 350122, People's Republic of China
| | - Weilin Liu
- College of Rehabilitation Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou, 350122, Fujian, People's Republic of China
| | - Zhifu Wang
- National-Local Joint Engineering Research Center of Rehabilitation Medicine Technology, Fuzhou, 350122, People's Republic of China
| | - Lidian Chen
- National-Local Joint Engineering Research Center of Rehabilitation Medicine Technology, Fuzhou, 350122, People's Republic of China
| | - Jing Tao
- College of Rehabilitation Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou, 350122, Fujian, People's Republic of China.
| |
Collapse
|
16
|
Kroll JL, Steele AM, Pinkham AE, Choi C, Khan DA, Patel SV, Chen JR, Aslan S, Sherwood Brown E, Ritz T. Hippocampal metabolites in asthma and their implications for cognitive function. Neuroimage Clin 2018; 19:213-221. [PMID: 30035015 PMCID: PMC6051470 DOI: 10.1016/j.nicl.2018.04.012] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2017] [Revised: 03/07/2018] [Accepted: 04/11/2018] [Indexed: 12/16/2022]
Abstract
Emerging research indicates that individuals with asthma have an increased risk of cognitive impairment, yet the associations of asthma with neural correlates of memory remain relatively unknown. The hippocampus is the predominant neural structure involved in memory, and alterations in the hippocampal metabolic profile are observed in individuals with mild cognitive impairment. We therefore hypothesized that individuals with asthma may have altered hippocampal metabolites compared to healthy controls. Structural magnetic resonance imaging (sMRI) and proton magnetic resonance spectroscopy (1H-MRS) were used to compare hippocampal volume and metabolites of otherwise healthy adults with and without asthma (N = 40), and to study the association of these measures with cognitive function and asthma-related variables. Participants underwent 3-Tesla sMRI and 1H-MRS, with the volume of interest placed in the left hippocampus to measure levels of N-acetylaspartate (NAA), glutamate (Glu), creatine (Cr), and myo-inositol (MI), as indicators of neuronal viability, cellular activity, cellular energy reserve, as well as glial activation. Individuals with asthma had lower hippocampal NAA compared to healthy controls. For all participants, poorer cognitive function was associated with reduced NAA and Glu. For individuals with asthma, poorer cognitive function was associated with reduced disease control. Additionally, short-acting rescue bronchodilator use was associated with significantly lower NAA, and Glu, whereas inhaled corticosteroid use was related to significantly higher Cr and in tendency higher NAA and Glu. All findings controlled for left hippocampal volume, which was not different between groups. These findings highlight that asthma and/or its treatment may affect hippocampal chemistry. It is possible that the observed reductions in hippocampal metabolites in younger individuals with asthma may precede cognitive and hippocampal structural deficits observed in older individuals with asthma.
Collapse
Affiliation(s)
- Juliet L Kroll
- Department of Psychology, Southern Methodist University, Dallas, TX, USA.
| | - Ashton M Steele
- Department of Psychology, Southern Methodist University, Dallas, TX, USA
| | - Amy E Pinkham
- School of Behavioral and Brain Sciences, The University of Texas, Dallas, TX, USA
| | - Changho Choi
- Department of Radiology, The University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - David A Khan
- Department of Internal Medicine, The University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Sheenal V Patel
- Department of Internal Medicine, The University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Justin R Chen
- Department of Internal Medicine, The University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Sina Aslan
- School of Behavioral and Brain Sciences, The University of Texas, Dallas, TX, USA; Advance MRI LLC, Frisco, TX, USA; Department of Psychiatry, The University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - E Sherwood Brown
- Department of Psychiatry, The University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Thomas Ritz
- Department of Psychology, Southern Methodist University, Dallas, TX, USA.
| |
Collapse
|
17
|
Zeydan B, Deelchand DK, Tosakulwong N, Lesnick TG, Kantarci OH, Machulda MM, Knopman DS, Lowe VJ, Jack CR, Petersen RC, Öz G, Kantarci K. Decreased Glutamate Levels in Patients with Amnestic Mild Cognitive Impairment: An sLASER Proton MR Spectroscopy and PiB-PET Study. J Neuroimaging 2017; 27:630-636. [PMID: 28661060 DOI: 10.1111/jon.12454] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2017] [Revised: 05/17/2017] [Accepted: 05/18/2017] [Indexed: 12/23/2022] Open
Abstract
BACKGROUND AND PURPOSE Glutamate levels may be informative about the declining neuronal health in the central nervous system. We used an advanced proton MR spectroscopy (1 H-MRS) protocol composed of semi-localization by adiabatic selective refocusing (sLASER) localization and FAST(EST)MAP shimming for detection of alterations in brain glutamate concentrations in patients with amnestic mild cognitive impairment. METHODS Participants with amnestic mild cognitive impairment (n = 14; median age = 80) and age- and sex-matched clinically normal controls (n = 32; median age = 79) from the population-based Mayo Clinic Study of Aging were recruited prospectively to the 3T single-voxel 1 H-MRS study that examined metabolite changes in the posterior cingulate gyri. To be included, controls had to have low β-amyloid load on [11 C] Pittsburgh Compound B (PiB)-PET (standard uptake value ratio; SUVr < 1.42) and patients with amnestic mild cognitive impairment had to have high β-amyloid load (SUVr ≥ 1.42). RESULTS Glutamate concentration and the glutamate/myo-inositol ratio were lower in patients with amnestic mild cognitive impairment than clinically normal controls (P < .05). Higher global cortical PiB-PET SUVr correlated with lower glutamate/myo-inositol (r = -.3, P = .04). CONCLUSIONS The advanced sLASER with FAST(EST)MAP shimming is a promising protocol for identifying glutamate alterations. Advanced 1 H-MRS protocols may add to the understanding of early Alzheimer's disease pathophysiology through detection of glutamate concentration in posterior cingulate gyri of individuals with amnestic mild cognitive impairment.
Collapse
Affiliation(s)
- Burcu Zeydan
- Department of Radiology, Mayo Clinic College of Medicine, Rochester, MN.,Department of Neurology, Mayo Clinic College of Medicine, Rochester, MN
| | - Dinesh K Deelchand
- Department of Radiology, University of Minnesota, Center for Magnetic Resonance Research, Minneapolis, MN
| | - Nirubol Tosakulwong
- Department of Health Sciences Research, Mayo Clinic College of Medicine, Rochester, MN
| | - Timothy G Lesnick
- Department of Health Sciences Research, Mayo Clinic College of Medicine, Rochester, MN
| | - Orhun H Kantarci
- Department of Neurology, Mayo Clinic College of Medicine, Rochester, MN
| | - Mary M Machulda
- Department of Psychiatry and Psychology, Mayo Clinic College of Medicine, Rochester, MN
| | - David S Knopman
- Department of Neurology, Mayo Clinic College of Medicine, Rochester, MN
| | - Val J Lowe
- Department of Radiology, Mayo Clinic College of Medicine, Rochester, MN
| | - Clifford R Jack
- Department of Radiology, Mayo Clinic College of Medicine, Rochester, MN
| | - Ronald C Petersen
- Department of Neurology, Mayo Clinic College of Medicine, Rochester, MN
| | - Gülin Öz
- Department of Radiology, University of Minnesota, Center for Magnetic Resonance Research, Minneapolis, MN
| | - Kejal Kantarci
- Department of Radiology, Mayo Clinic College of Medicine, Rochester, MN
| |
Collapse
|
18
|
Guo S, Lai C, Wu C, Cen G. Conversion Discriminative Analysis on Mild Cognitive Impairment Using Multiple Cortical Features from MR Images. Front Aging Neurosci 2017; 9:146. [PMID: 28572766 PMCID: PMC5435825 DOI: 10.3389/fnagi.2017.00146] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2016] [Accepted: 05/01/2017] [Indexed: 01/18/2023] Open
Abstract
Neuroimaging measurements derived from magnetic resonance imaging provide important information required for detecting changes related to the progression of mild cognitive impairment (MCI). Cortical features and changes play a crucial role in revealing unique anatomical patterns of brain regions, and further differentiate MCI patients from normal states. Four cortical features, namely, gray matter volume, cortical thickness, surface area, and mean curvature, were explored for discriminative analysis among three groups including the stable MCI (sMCI), the converted MCI (cMCI), and the normal control (NC) groups. In this study, 158 subjects (72 NC, 46 sMCI, and 40 cMCI) were selected from the Alzheimer's Disease Neuroimaging Initiative. A sparse-constrained regression model based on the l2-1-norm was introduced to reduce the feature dimensionality and retrieve essential features for the discrimination of the three groups by using a support vector machine (SVM). An optimized strategy of feature addition based on the weight of each feature was adopted for the SVM classifier in order to achieve the best classification performance. The baseline cortical features combined with the longitudinal measurements for 2 years of follow-up data yielded prominent classification results. In particular, the cortical thickness produced a classification with 98.84% accuracy, 97.5% sensitivity, and 100% specificity for the sMCI–cMCI comparison; 92.37% accuracy, 84.78% sensitivity, and 97.22% specificity for the cMCI–NC comparison; and 93.75% accuracy, 92.5% sensitivity, and 94.44% specificity for the sMCI–NC comparison. The best performances obtained by the SVM classifier using the essential features were 5–40% more than those using all of the retained features. The feasibility of the cortical features for the recognition of anatomical patterns was certified; thus, the proposed method has the potential to improve the clinical diagnosis of sub-types of MCI and predict the risk of its conversion to Alzheimer's disease.
Collapse
Affiliation(s)
- Shengwen Guo
- Department of Biomedical Engineering, South China University of TechnologyGuangzhou, China
| | - Chunren Lai
- Department of Biomedical Engineering, South China University of TechnologyGuangzhou, China
| | - Congling Wu
- Department of Biomedical Engineering, South China University of TechnologyGuangzhou, China
| | - Guiyin Cen
- Guangdong General HospitalGuangzhou, China
| | | |
Collapse
|
19
|
Del Sole A, Malaspina S, Magenta Biasina A. Magnetic resonance imaging and positron emission tomography in the diagnosis of neurodegenerative dementias. FUNCTIONAL NEUROLOGY 2017; 31:205-215. [PMID: 28072381 DOI: 10.11138/fneur/2016.31.4.205] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
Neuroimaging, both with magnetic resonance imaging (MRI) and positron emission tomography (PET), has gained a pivotal role in the diagnosis of primary neurodegenerative diseases. These two techniques are used as biomarkers of both pathology and progression of Alzheimer's disease (AD) and to differentiate AD from other neurodegenerative diseases. MRI is able to identify structural changes including patterns of atrophy characterizing neurodegenerative diseases, and to distinguish these from other causes of cognitive impairment, e.g. infarcts, space-occupying lesions and hydrocephalus. PET is widely used to identify regional patterns of glucose utilization, since distinct patterns of distribution of cerebral glucose metabolism are related to different subtypes of neurodegenerative dementia. The use of PET in mild cognitive impairment, though controversial, is deemed helpful for predicting conversion to dementia and the dementia clinical subtype. Recently, new radiopharmaceuticals for the in vivo imaging of amyloid burden have been licensed and more tracers are being developed for the assessment of tauopathies and inflammatory processes, which may underlie the onset of the amyloid cascade. At present, the cerebral amyloid burden, imaged with PET, may help to exclude the presence of AD as well as forecast its possible onset. Finally PET imaging may be particularly useful in ongoing clinical trials for the development of dementia treatments. In the near future, the use of the above methods, in accordance with specific guidelines, along with the use of effective treatments will likely lead to more timely and successful treatment of neurodegenerative dementias.
Collapse
|
20
|
van Bussel FC, Backes WH, Hofman PA, Puts NA, Edden RA, van Boxtel MP, Schram MT, Stehouwer CD, Wildberger JE, Jansen JF. Increased GABA concentrations in type 2 diabetes mellitus are related to lower cognitive functioning. Medicine (Baltimore) 2016; 95:e4803. [PMID: 27603392 PMCID: PMC5023915 DOI: 10.1097/md.0000000000004803] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Type 2 diabetes mellitus is associated with accelerated cognitive decline. The underlying pathophysiological mechanisms still remain to be elucidated although it is known that insulin signaling modulates neurotransmitter activity, including inhibitory γ-aminobutyric acid (GABA) and excitatory glutamate (Glu) receptors. Therefore, we examined whether levels of GABA and Glu are related to diabetes status and cognitive performance.Forty-one participants with type 2 diabetes and 39 participants without type 2 diabetes underwent detailed cognitive assessments and 3-Tesla proton MR spectroscopy. The associations of neurotransmitters with type 2 diabetes and cognitive performance were examined using multivariate regression analyses controlling for age, sex, education, BMI, and percentage gray/white matter ratio in spectroscopic voxel.Analysis revealed higher GABA+ levels in participants with type 2 diabetes, in participants with higher fasting blood glucose levels and in participants with higher HbA1c levels, and higher GABA+ levels in participants with both high HbA1c levels and less cognitive performance.To conclude, participants with type 2 diabetes have alterations in the GABAergic neurotransmitter system, which are related to lower cognitive functioning, and hint at the involvement of an underlying metabolic mechanism.
Collapse
Affiliation(s)
- Frank C.G. van Bussel
- Departments of Radiology and Nuclear Medicine
- School for Mental Health and Neuroscience (MHeNS)
| | - Walter H. Backes
- Departments of Radiology and Nuclear Medicine
- School for Mental Health and Neuroscience (MHeNS)
- Cardiovascular Research Institute Maastricht (CARIM), Maastricht University Medical Center, Maastricht, The Netherlands
| | - Paul A.M. Hofman
- Departments of Radiology and Nuclear Medicine
- School for Mental Health and Neuroscience (MHeNS)
| | - Nicolaas A.J. Puts
- Russell H. Morgan Department of Radiology and Radiological Science, The Johns Hopkins University School of Medicine
- F.M. Kirby Center for Functional Brain Imaging, Kennedy Krieger Institute, Baltimore, MD
| | - Richard A.E. Edden
- Russell H. Morgan Department of Radiology and Radiological Science, The Johns Hopkins University School of Medicine
- F.M. Kirby Center for Functional Brain Imaging, Kennedy Krieger Institute, Baltimore, MD
| | - Martin P.J. van Boxtel
- School for Mental Health and Neuroscience (MHeNS)
- Department of Psychiatry and Neuropsychology
| | - Miranda T. Schram
- Cardiovascular Research Institute Maastricht (CARIM), Maastricht University Medical Center, Maastricht, The Netherlands
- Department of Internal Medicine, Maastricht University Medical Center, Maastricht, The Netherlands
| | - Coen D.A. Stehouwer
- Cardiovascular Research Institute Maastricht (CARIM), Maastricht University Medical Center, Maastricht, The Netherlands
- Department of Internal Medicine, Maastricht University Medical Center, Maastricht, The Netherlands
| | - Joachim E. Wildberger
- Departments of Radiology and Nuclear Medicine
- Cardiovascular Research Institute Maastricht (CARIM), Maastricht University Medical Center, Maastricht, The Netherlands
| | - Jacobus F.A. Jansen
- Departments of Radiology and Nuclear Medicine
- School for Mental Health and Neuroscience (MHeNS)
- Correspondence: Jacobus F.A. Jansen, Department of Radiology and Nuclear Medicine, Maastricht University Medical Center, PO Box 5800, 6202 AZ Maastricht, The Netherlands (e-mail: )
| |
Collapse
|
21
|
(1)H-MRS asymmetry changes in the anterior and posterior cingulate gyrus in patients with mild cognitive impairment and mild Alzheimer's disease. Compr Psychiatry 2016; 69:179-85. [PMID: 27423359 DOI: 10.1016/j.comppsych.2016.06.001] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/11/2016] [Revised: 05/13/2016] [Accepted: 06/04/2016] [Indexed: 11/20/2022] Open
Abstract
Alzheimer's disease (AD) is the most common cause of dementia worldwide. Amnestic mild cognitive impairment (aMCI) is often the prodromal stage to AD. Most patients with aMCI harbor the pathologic changes of AD and demonstrate transition to AD at a rate of 10%-15% per year. Patients with AD and aMCI experience progressive brain metabolite changes. Accumulating evidence indicates that the asymmetry changes of left and right brain happen in the early stage of AD. However, the features of asymmetry changes in both anterior cingulate gyrus (ACG) and posterior cingulate gyrus (PCG) are still unclear. Here, we examine the left-right asymmetry changes of metabolites in ACG and PCG. Fifteen cases of mild AD patients meeting criteria for probable AD of NINDS-ADRDA, thirteen cases of aMCI according to the Mayo Clinic Alzheimer's Disease Research Center criteria, and sixteen cases of age-matched normal controls (NC) received Proton magnetic resonance spectroscopy ((1)H-MRS) for measurement of NAA/mI, NAA/Cr, Cho/Cr, and mI/Cr ratios in the PCG and ACG bilaterally. We analyzed (1)H-MRS data by paired t-test to validate the left-right asymmetry of (1)H-MRS data in the PCG and ACG. In AD, there was a significant difference in mI/Cr between the left and right ACG (P<0.001) and the left and right PCG (P=0.007). In aMCI, there was a significant difference in mI/Cr between the left and right ACG (P<0.001). In NC, there were no differences in the ratio value of metabolites NAA/mI, NAA/Cr, Cho/Cr, and mI/Cr between the left and right ACG and PCG. Thus, the left-right asymmetry of mI/Cr in the ACG and PCG may be an important biological indicator of mild AD.
Collapse
|
22
|
Proton magnetic resonance spectroscopy as a diagnostic biomarker in mild cognitive impairment following stroke in acute phase. Neuroreport 2016; 27:559-63. [PMID: 26981713 DOI: 10.1097/wnr.0000000000000555] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
To investigate proton magnetic resonance spectroscopy (HMRS) as a diagnostic biomarker to identify mild cognitive impairment (MCI) following stroke in the acute phase. A total of 72 stroke patients were recruited in the acute phase of stroke from the Department of Neurology, including 36 stroke patients with MCI and 36 stroke patients without MCI. All patients underwent brain MRI/MRS examination on a 3.0 T scanner and a neuropsychological test in the acute phase of stroke. Single-voxel HMRS was performed to obtain hippocampal metabolism intensities and brain infarcts were assessed on MRI. Group difference in metabolite ratios was analyzed using a T-test. Spearman rank correlation was used to study the correlation between metabolite ratios and Montreal Cognitive Assessment scores. The hippocampal n-acetylaspartate/creatine (NAA/Cr) ratio was found to be significantly lower in stroke patients with MCI compared with stroke patients without MCI (P<0.02). However, we found no differences in the metabolite ratios between hippocampus ipsilateral to infarctions and the contralateral side (P>0.05) in stroke patients with MCI. Furthermore, a correlation was found between hippocampal NAA/Cr ratios and Montreal Cognitive Assessment scores in stroke patients with MCI (P<0.01). HMRS could be a biomarker to identify MCI following stroke in the acute phase by capturing neurodegenerative changes.
Collapse
|
23
|
Chen YJ, Zheng HY, Huang XX, Han SX, Zhang DS, Ni JZ, He XY. Neuroprotective Effects of Icariin on Brain Metabolism, Mitochondrial Functions, and Cognition in Triple-Transgenic Alzheimer's Disease Mice. CNS Neurosci Ther 2015; 22:63-73. [PMID: 26584824 DOI: 10.1111/cns.12473] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2015] [Revised: 09/18/2015] [Accepted: 10/04/2015] [Indexed: 12/14/2022] Open
Abstract
AIMS This study investigated the neuroprotective properties of icariin (an effective component of traditional Chinese herbal medicine Epimedium) on neuronal function and brain energy metabolism maintenance in a triple-transgenic mouse model of Alzheimer's disease (3 × Tg-AD). METHODS 3 × Tg-AD mice as well as primary neurons were subjected to icariin treatment. Morris water maze assay, magnetic resonance spectroscopy (MRS), Western blotting, ELISA, and immunohistochemistry analysis were used to evaluate the effects of icariin administration. RESULTS Icariin significantly improved spatial learning and memory retention in 3 × Tg-AD mice, promoted neuronal cell activity as identified by the enhancement of brain metabolite N-acetylaspartate level and ATP production in AD mice, preserved the expressions of mitochondrial key enzymes COX IV, PDHE1α, and synaptic protein PSD95, reduced Aβ plaque deposition in the cortex and hippocampus of AD mice, and inhibited β-site APP cleavage enzyme 1 (BACE1) expression. Icariin treatment also decreased the levels of extracellular and intracellular Aβ1-42 in 3 × Tg-AD primary neurons, modulated the distribution of Aβ along the neurites, and protected against mitochondrial fragmentation in 3 × Tg-AD neurons. CONCLUSIONS Icariin shows neuroprotective effects in 3 × Tg-AD mice and may be a promising multitarget drug in the prevention/protection against AD.
Collapse
Affiliation(s)
- Yi-Jing Chen
- College of Life Science, Shenzhen Key Laboratory of Marine Bioresources and Ecology, Shenzhen University, Shenzhen, China
| | - Hai-Yang Zheng
- College of Life Science, Shenzhen Key Laboratory of Marine Bioresources and Ecology, Shenzhen University, Shenzhen, China
| | - Xiu-Xian Huang
- College of Life Science, Shenzhen Key Laboratory of Microbial Genetic Engineering, Shenzhen University, Shenzhen, China
| | - Shuang-Xue Han
- College of Life Science, Shenzhen Key Laboratory of Marine Bioresources and Ecology, Shenzhen University, Shenzhen, China
| | - Dong-Sheng Zhang
- College of Life Science, Shenzhen Key Laboratory of Microbial Genetic Engineering, Shenzhen University, Shenzhen, China
| | - Jia-Zuan Ni
- College of Life Science, Shenzhen Key Laboratory of Marine Bioresources and Ecology, Shenzhen University, Shenzhen, China
| | - Xiao-Yang He
- College of Life Science, Shenzhen Key Laboratory of Marine Bioresources and Ecology, Shenzhen University, Shenzhen, China
| |
Collapse
|
24
|
Pospisil P, Kazda T, Bulik M, Dobiaskova M, Burkon P, Hynkova L, Slampa P, Jancalek R. Hippocampal proton MR spectroscopy as a novel approach in the assessment of radiation injury and the correlation to neurocognitive function impairment: initial experiences. Radiat Oncol 2015; 10:211. [PMID: 26474857 PMCID: PMC4609038 DOI: 10.1186/s13014-015-0518-1] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2015] [Accepted: 10/06/2015] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND The hippocampus is considered as the main radiosensitive brain structure responsible for postradiotherapy cognitive decline. We prospectively assessed correlation of memory change to hippocampal N-acetylaspartate (h-tNAA) concentration, a neuronal density and viability marker, by (1)H-MR spectroscopy focused on the hippocampus. METHODS Patients with brain metastases underwent whole brain radiotherapy (WBRT) to a dose of 30 Gy in ten fractions daily. Pre-radiotherapy (1)H-MR spectroscopy focused on the h-tNAA concentration and memory testing was performed. Memory was evaluated by Auditory Verbal Learning Test (AVLT) and Brief Visuospatial Memory Test-Revised (BVMT-R). Total recall, recognition and delayed recall were reported. The both investigation procedures were repeated 4 months after WBRT and the h-tNAA and memory changes were correlated. RESULTS Of the 20 patients, ten passed whole protocol. The h-tNAA concentration significantly decreased from pre-WBRT 8.9, 8.86 and 8.88 [mM] in the right, left and both hippocampi to 7.16, 7.65 and 7.4 after WBRT, respectively. In the memory tests a significant decrease was observed in AVLT total-recall, BVMT-R total-recall and BVMT-R delayed-recall. Weak to moderate correlations were observed between left h-tNAA and AVLT recognition and all BVMT-R subtests and between the right h-tNAA and AVLT total-recall. CONCLUSIONS A significant decrease in h-tNAA after WBRT was proven by (1)H-MR spectroscopy as a feasible method for the in vivo investigation of radiation injury. Continuing patient recruitment focusing on other cognitive tests and metabolites is needed.
Collapse
Affiliation(s)
- Petr Pospisil
- Department of Radiation Oncology, Faculty of Medicine, Masaryk University, Kamenice 5, 625 00, Brno, Czech Republic. .,Department of Radiation Oncology, Masaryk Memorial Cancer Institute, Zluty kopec 7, 656 53, Brno, Czech Republic.
| | - Tomas Kazda
- Department of Radiation Oncology, Faculty of Medicine, Masaryk University, Kamenice 5, 625 00, Brno, Czech Republic. .,Department of Radiation Oncology, Masaryk Memorial Cancer Institute, Zluty kopec 7, 656 53, Brno, Czech Republic. .,International Clinical Research Center, St. Anne's University Hospital Brno, Pekarska 53, 656 91, Brno, Czech Republic.
| | - Martin Bulik
- International Clinical Research Center, St. Anne's University Hospital Brno, Pekarska 53, 656 91, Brno, Czech Republic. .,Department of Diagnostic Imaging, Faculty of Medicine, Masaryk University, Kamenice 5, 625 00, Brno, Czech Republic. .,Department of Diagnostic Imaging, St. Anne's University Hospital Brno, Pekarska 53, 656 91, Brno, Czech Republic.
| | - Marie Dobiaskova
- International Clinical Research Center, St. Anne's University Hospital Brno, Pekarska 53, 656 91, Brno, Czech Republic. .,Department of Clinical Psychology, St. Anne's University Hospital Brno, Pekarska 53, Brno, Czech Republic.
| | - Petr Burkon
- Department of Radiation Oncology, Faculty of Medicine, Masaryk University, Kamenice 5, 625 00, Brno, Czech Republic. .,Department of Radiation Oncology, Masaryk Memorial Cancer Institute, Zluty kopec 7, 656 53, Brno, Czech Republic.
| | - Ludmila Hynkova
- Department of Radiation Oncology, Faculty of Medicine, Masaryk University, Kamenice 5, 625 00, Brno, Czech Republic. .,Department of Radiation Oncology, Masaryk Memorial Cancer Institute, Zluty kopec 7, 656 53, Brno, Czech Republic.
| | - Pavel Slampa
- Department of Radiation Oncology, Faculty of Medicine, Masaryk University, Kamenice 5, 625 00, Brno, Czech Republic. .,Department of Radiation Oncology, Masaryk Memorial Cancer Institute, Zluty kopec 7, 656 53, Brno, Czech Republic.
| | - Radim Jancalek
- Department of Neurosurgery - St. Anne's University Hospital Brno, Faculty of Medicine, Masaryk University, Kamenice 5, 625 00, Brno, Czech Republic. .,Department of Neurosurgery, St. Anne's University Hospital Brno, Pekarska 53, 656 91, Brno, Czech Republic.
| |
Collapse
|
25
|
Coutinho AM, Porto FH, Zampieri PF, Otaduy MC, Perroco TR, Oliveira MO, Nunes RF, Pinheiro TL, Bottino CM, Leite CC, Buchpiguel CA. Analysis of the posterior cingulate cortex with [18F]FDG-PET and Naa/mI in mild cognitive impairment and Alzheimer's disease: Correlations and differences between the two methods. Dement Neuropsychol 2015; 9:385-393. [PMID: 29213988 PMCID: PMC5619321 DOI: 10.1590/1980-57642015dn94000385] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2015] [Accepted: 11/03/2015] [Indexed: 11/22/2022] Open
Abstract
Reduction of regional brain glucose metabolism (rBGM) measured by [18F]FDG-PET in the posterior cingulate cortex (PCC) has been associated with a higher conversion rate from mild cognitive impairment (MCI) to Alzheimer's disease (AD). Magnetic Resonance Spectroscopy (MRS) is a potential biomarker that has disclosed Naa/mI reductions within the PCC in both MCI and AD. Studies investigating the relationships between the two modalities are scarce. OBJECTIVE To evaluate differences and possible correlations between the findings of rBGM and NAA/mI in the PCC of individuals with AD, MCI and of cognitively normal volunteers. METHODS Patients diagnosed with AD (N=32) or MCI (N=27) and cognitively normal older adults (CG, N=28), were submitted to [18F]FDG-PET and MRS to analyze the PCC. The two methods were compared and possible correlations between the modalities were investigated. RESULTS The AD group exhibited rBGM reduction in the PCC when compared to the CG but not in the MCI group. MRS revealed lower NAA/mI values in the AD group compared to the CG but not in the MCI group. A positive correlation between rBGM and NAA/mI in the PCC was found. NAA/mI reduction in the PCC differentiated AD patients from control subjects with an area under the ROC curve of 0.70, while [18F]FDG-PET yielded a value of 0.93. CONCLUSION rBGM and Naa/mI in the PCC were positively correlated in patients with MCI and AD. [18F]FDG-PET had greater accuracy than MRS for discriminating AD patients from controls.
Collapse
Affiliation(s)
- Artur M.N. Coutinho
- Centro de Medicina Nuclear, Instituto e Departamento de
Radiologia, HC/FMUSP, LIM 43
| | - Fábio H.G. Porto
- Centro de Referência em Distúrbios
Cognitivos (CEREDIC) do HC/FMUSP
| | - Poliana F. Zampieri
- Centro de Medicina Nuclear, Instituto e Departamento de
Radiologia, HC/FMUSP, LIM 43
| | - Maria C. Otaduy
- Serviço de Ressonância Magnética,
Instituto e Departamento de Radiologia, HC/FMUSP, LIM 44
| | - Tíbor R. Perroco
- Centro de Referência em Distúrbios
Cognitivos (CEREDIC) do HC/FMUSP
| | | | - Rafael F. Nunes
- Centro de Medicina Nuclear, Instituto e Departamento de
Radiologia, HC/FMUSP, LIM 43
| | | | | | - Claudia C. Leite
- Serviço de Ressonância Magnética,
Instituto e Departamento de Radiologia, HC/FMUSP, LIM 44
| | - Carlos A. Buchpiguel
- Centro de Medicina Nuclear, Instituto e Departamento de
Radiologia, HC/FMUSP, LIM 43
| |
Collapse
|
26
|
Gray NE, Quinn JF. Alterations in mitochondrial number and function in Alzheimer's disease fibroblasts. Metab Brain Dis 2015; 30:1275-8. [PMID: 25862550 PMCID: PMC4800977 DOI: 10.1007/s11011-015-9667-z] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/29/2015] [Accepted: 03/24/2015] [Indexed: 01/09/2023]
Abstract
Mitochondrial dysfunction is observed in brains of Alzheimer's Disease patients as well as many rodent model systems including those modeling mutations in preseinilin 1 (PSEN1). The aim of our study was to characterize mitochondrial function and number in fibroblasts from AD patients with PSEN1 mutations. We used biochemical assays, metabolic profiling and fluorescent labeling to assess mitochondrial number and function in fibroblasts from three AD patients compared to fibroblasts from three controls. The mutant AD fibroblasts had increased Aβ42 relative to controls along with reduction in ATP, basal and maximal mitochondrial respiration as well as impaired spare mitochondrial respiratory capacity. Fluorescent staining and expression of genes encoding electron transport chain enzymes showed diminished mitochondrial content in the AD fibroblasts. This study demonstrates that mitochondrial dysfunction is observable in AD fibroblasts and provides evidence that this model system could be useful as a tool to screen disease-modifying compounds.
Collapse
Affiliation(s)
- Nora E Gray
- Department of Neurology, Oregon Health and Science University, Portland, OR, 97239, USA,
| | | |
Collapse
|
27
|
Watanabe T, Shiino A, Akiguchi I. [Prediction of conversion from amnestic mild cognitive impairment to Alzheimer's disease using proton magnetic resonance spectroscopy]. Rinsho Shinkeigaku 2015; 55:709-15. [PMID: 26369373 DOI: 10.5692/clinicalneurol.cn-000751] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
Amnestic mild cognitive impairment (aMCI) has been considered to be a transitional state between healthy aging and very mild Alzheimer's disease (AD). Most patients with aMCI convert to AD over time, but some of them remain stable as aMCI. In this study, 22 patients with aMCI underwent proton magnetic resonance spectroscopy (1H-MRS) of hippocampus and posterior cingulate cortex. Ten patients converted to AD had significantly lower N-acetylaspartate (NAA) concentrations in both hippocampi when compared to 12 patients remained stable to be aMCI. The mean NAA concentration of both hippocampi equal to or lower than 7.6 mmol/l predicted conversion to AD at 1.0 sensitivity and 1.0 specificity and the area under receiver operating curve (ROC) was 1.0. Absolute quantification of 1H-MRS of hippocampus seems to be a useful marker for predicting conversion to AD from patients with aMCI .
Collapse
|
28
|
Scheff SW, Price DA, Ansari MA, Roberts KN, Schmitt FA, Ikonomovic MD, Mufson EJ. Synaptic change in the posterior cingulate gyrus in the progression of Alzheimer's disease. J Alzheimers Dis 2015; 43:1073-90. [PMID: 25147118 DOI: 10.3233/jad-141518] [Citation(s) in RCA: 113] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Mild cognitive impairment (MCI) is considered to be an early stage in the progression of Alzheimer's disease (AD) providing an opportunity to investigate brain pathogenesis prior to the onset of dementia. Neuroimaging studies have identified the posterior cingulate gyrus (PostC) as a cortical region affected early in the onset of AD. This association cortex is involved in a variety of different cognitive tasks and is intimately connected with the hippocampal/entorhinal cortex region, a component of the medial temporal memory circuit that displays early AD pathology. We quantified the total number of synapses in lamina 3 of the PostC using unbiased stereology coupled with electron microscopy from short postmortem autopsy tissue harvested from cases at different stage of AD progression. Individuals in the early stages of AD showed a significant decline in synaptic numbers compared to individuals with no cognitive impairment (NCI). Subjects with MCI exhibited synaptic numbers that were between the AD and NCI cohorts. Adjacent tissue was evaluated for changes in both pre and postsynaptic proteins levels. Individuals with MCI demonstrated a significant loss in presynaptic markers synapsin-1 and synaptophysin and postsynaptic markers PSD-95 and SAP-97. Levels of [3H]PiB binding was significantly increased in MCI and AD and correlated strongly with levels of synaptic proteins. All synaptic markers showed a significant association with Mini-Mental Status Examination scores. These results support the idea that the PostC synaptic function is affected during the prodromal stage of the disease and may underlie some of the early clinical sequelae associated with AD.
Collapse
Affiliation(s)
- Stephen W Scheff
- Sanders-Brown Center on Aging, University of Kentucky, Lexington, KY, USA
| | - Douglas A Price
- Sanders-Brown Center on Aging, University of Kentucky, Lexington, KY, USA
| | - Mubeen A Ansari
- Sanders-Brown Center on Aging, University of Kentucky, Lexington, KY, USA
| | - Kelly N Roberts
- Sanders-Brown Center on Aging, University of Kentucky, Lexington, KY, USA
| | | | - Milos D Ikonomovic
- Department of Neurology, University of Pittsburgh, Pittsburgh, PA, USA Geriatric Research Educational and Clinical Center, V.A. Pittsburgh Healthcare System, Pittsburgh, PA, USA
| | - Elliott J Mufson
- Rush University Medical Center, Department of Neurological Sciences, Chicago, IL, USA
| |
Collapse
|
29
|
Tian B, Ma C, Wang J, Pan CS, Yang GJ, Lu JP. Analysis of metabolic characteristics in a rat model of chronic pancreatitis using high-resolution magic-angle spinning nuclear magnetic resonance spectroscopy. Mol Med Rep 2014; 11:53-8. [PMID: 25338744 PMCID: PMC4237080 DOI: 10.3892/mmr.2014.2738] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2013] [Accepted: 06/18/2014] [Indexed: 12/11/2022] Open
Abstract
Pathological and metabolic alterations co-exist and co-develop in the progression of chronic pancreatitis (CP). The aim of the present study was to investigate the metabolic characteristics and disease severity of a rat model of CP in order to determine associations in the observed pathology and the metabolites of CP using high-resolution magic-angle spinning nuclear magnetic resonance spectroscopy (HR-MAS NMR). Wistar rats (n=36) were randomly assigned into 6 groups (n=6 per group). CP was established by administering dibutyltin dichloride solution into the tail vein. After 0, 7, 14, 21, 28 and 35 days, the pancreatic tissues were collected for pathological scoring or for HR-MAS NMR. Correlation analyses between the major pathological scores and the integral areas of the major metabolites were determined. The most representative metabolites, aspartate, betaine and fatty acids, were identified as possessing the greatest discriminatory significance. The Spearman’s rank correlation coefficients between the pathology and metabolites of the pancreatic tissues were as follows: Betaine and fibrosis, 0.454 (P=0.044); betaine and inflammatory cell infiltration, 0.716 (P=0.0001); aspartate and fibrosis, −0.768 (P=0.0001); aspartate and inflammatory cell infiltration, −0.394 (P=0.085); fatty acid and fibrosis, −0.764 (P=0.0001); and fatty acid and inflammatory cell infiltration, −0.619 (P=0.004). The metabolite betaine positively correlated with fibrosis and inflammatory cell infiltration in CP. In addition, aspartate negatively correlated with fibrosis, but exhibited no significant correlation with inflammatory cell infiltration. Furthermore, the presence of fatty acids negatively correlated with fibrosis and inflammatory cell infiltration in CP. HR-MAS NMR may be used to analyze metabolic characteristics in a rat model of different degrees of chronic pancreatitis.
Collapse
Affiliation(s)
- Bing Tian
- Department of Radiology, Changhai Hospital of Shanghai, The Second Military Medical University, Shanghai 200433, P.R. China
| | - Chao Ma
- Department of Radiology, Changhai Hospital of Shanghai, The Second Military Medical University, Shanghai 200433, P.R. China
| | - Jian Wang
- Department of Radiology, Changhai Hospital of Shanghai, The Second Military Medical University, Shanghai 200433, P.R. China
| | - Chun-Shu Pan
- Department of Radiology, Changhai Hospital of Shanghai, The Second Military Medical University, Shanghai 200433, P.R. China
| | - Gen-Jin Yang
- Pharmaceutical Analysis and Testing Center, School of Pharmacy, The Second Military Medical University, Shanghai 200433, P.R. China
| | - Jian-Ping Lu
- Department of Radiology, Changhai Hospital of Shanghai, The Second Military Medical University, Shanghai 200433, P.R. China
| |
Collapse
|
30
|
Zou JX, Wang MJ, Lei XJ, Chen XG. 3.0 T MRI arterial spin labeling and magnetic resonance spectroscopy technology in the application of Alzheimer's disease. Exp Gerontol 2014; 60:31-6. [PMID: 25220149 DOI: 10.1016/j.exger.2014.09.009] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2014] [Accepted: 09/11/2014] [Indexed: 11/25/2022]
Abstract
The purpose of this study was to investigate the changes in the cerebral blood flow (CBF) and spectrum variables in the posterior cingulate region of patients with AD under the detection of arterial spin labeling (ASL) and magnetic resonance spectroscopy (MRS). A total of 20 AD patients (8 males and 12 females; mean age, 64.84±8.82 years) and 20 healthy controls (9 males and 11 females; mean age, 64.94±7.93 years) were included in this study for analysis. All images were obtained using a 3.0-T MR imager and an 8-channel head array receiving coil. MRS measurements were conducted exploring variables of metabolite ratios. Statistical analyses were conducted with the SPSS 11.0 statistical software package. Findings in the present study revealed a significant difference in the mean MMSE scores between the AD group and the healthy control group (16.21±4.01 vs. 27.35±1.01, P<0.01). Compared with the healthy control group, CBF in the bilateral frontal region showed a significant decrease in the AD group (right frontal: 83.5±7.2 vs. 110±11.5, P<0.05; left frontal: 85.6±8.1 vs. 108.7±12.2, P<0.05, respectively), and a similar association was also observed in the TL, TPJ, parietal, and hippocampal regions (all P<0.05). MRS imaging in the posterior cingulate region showed a significant reduction in the NAA/Cr ratio in the AD group (1.43±0.1 vs. 1.49±0.0, P<0.05). Additionally, we found that the MI/Cr and Cho/Cr ratios were higher than normal controls in patients with AD (all P<0.05). Our results suggested that 3D ASL detection combined with MRS in studying AD could show the regional hypo-perfusion with the decrease of CBF and the abnormal metabolic changes of the posterior cingulate cortex.
Collapse
Affiliation(s)
- Jian-Xun Zou
- Department of Radiology, Lishui People's Hospital, Lishui 323000, PR China.
| | - Ming-Jie Wang
- Department of Radiology, Lishui People's Hospital, Lishui 323000, PR China
| | - Xin-Jun Lei
- Department of Radiology, Lishui People's Hospital, Lishui 323000, PR China
| | - Xu-Gao Chen
- Department of Radiology, Lishui People's Hospital, Lishui 323000, PR China
| |
Collapse
|
31
|
Fayed N, Andrés E, Viguera L, Modrego PJ, Garcia-Campayo J. Higher glutamate+glutamine and reduction of N-acetylaspartate in posterior cingulate according to age range in patients with cognitive impairment and/or pain. Acad Radiol 2014; 21:1211-7. [PMID: 24981958 DOI: 10.1016/j.acra.2014.04.009] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2014] [Revised: 02/11/2014] [Accepted: 04/14/2014] [Indexed: 01/03/2023]
Abstract
RATIONALE AND OBJECTIVES The aim of the study was to analyze 1) whether the metabolite levels in the posterior cingulate cortex (PCC) are different in healthy individuals compared to a group of patients with cognitive impairment and/or pain and 2) whether there exists a correlation between brain metabolites and the age of a patient. MATERIALS AND METHODS Two hundred seven patients with cognitive impairment and/or pain (66 mild cognitive impairment, 54 fibromyalgia, 36 Alzheimer disease, 33 interictal migraine, 10 somatization disorder, and 8 after trigeminal neuralgia, and 193 healthy participants adjusted for gender and age. Proton magnetic resonance spectroscopy (MRS) of the brain was performed with the voxel placed in the ventral PCC and postprocessed with LCModel (Stephen Provencher, Oakville, Ontario, Canada). RESULTS Using linear regression and adjusting for gender and age, mean brain metabolite values for the pathological group, when compared to healthy controls, were significantly lower in N-acetylaspartate (P=.003) and N-acetylaspartate/creatine (P=.015) and significantly greater in glutamate+glutamine (P<.001) and glutamate+glutamine/creatine (P<.000). All metabolites were significantly correlated with age: glutamate, glutamate+glutamine, N-acetylaspartate, and their creatine ratios exhibited a negative correlation, whereas myoinositol and choline exhibited a positive correlation. CONCLUSIONS Although the number of patients is relatively small with heterogeneous state of disease, MRS in PCC may serve as a useful noninvasive tool for diagnostic of patients with cognitive impairment and pain.
Collapse
|
32
|
Patel T, Blyth JC, Griffiths G, Kelly D, Talcott JB. Moderate relationships between NAA and cognitive ability in healthy adults: implications for cognitive spectroscopy. Front Hum Neurosci 2014; 8:39. [PMID: 24592224 PMCID: PMC3924143 DOI: 10.3389/fnhum.2014.00039] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2013] [Accepted: 01/19/2014] [Indexed: 12/21/2022] Open
Abstract
BACKGROUND Proton Magnetic Resonance Spectroscopy ((1)H-MRS) is a non-invasive imaging technique that enables quantification of neurochemistry in vivo and thereby facilitates investigation of the biochemical underpinnings of human cognitive variability. Studies in the field of cognitive spectroscopy have commonly focused on relationships between measures of N-acetyl aspartate (NAA), a surrogate marker of neuronal health and function, and broad measures of cognitive performance, such as IQ. METHODOLOGY/PRINCIPAL FINDINGS In this study, we used (1)H-MRS to interrogate single-voxels in occipitoparietal and frontal cortex, in parallel with assessments of psychometric intelligence, in a sample of 40 healthy adult participants. We found correlations between NAA and IQ that were within the range reported in previous studies. However, the magnitude of these effects was significantly modulated by the stringency of data screening and the extent to which outlying values contributed to statistical analyses. CONCLUSIONS/SIGNIFICANCE (1)H-MRS offers a sensitive tool for assessing neurochemistry non-invasively, yet the relationships between brain metabolites and broad aspects of human behavior such as IQ are subtle. We highlight the need to develop an increasingly rigorous analytical and interpretive framework for collecting and reporting data obtained from cognitive spectroscopy studies of this kind.
Collapse
Affiliation(s)
- Tulpesh Patel
- Aston Brain Centre, School of Life and Health Sciences, Aston University Birmingham, UK
| | | | - Gareth Griffiths
- European Bioenergy Research Institute, Aston University Birmingham, UK
| | | | - Joel B Talcott
- Aston Brain Centre, School of Life and Health Sciences, Aston University Birmingham, UK
| |
Collapse
|