1
|
Abbasi H, Jourabchi-Ghadim N, Asgarzade A, Mirshekari M, Ebrahimi-Mameghani M. Unveiling the veil of adipokines: A meta-analysis and systematic review in amyotrophic lateral sclerosis. Neuroscience 2024; 563:1-9. [PMID: 39505137 DOI: 10.1016/j.neuroscience.2024.11.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Revised: 10/20/2024] [Accepted: 11/03/2024] [Indexed: 11/08/2024]
Abstract
BACKGROUND Adipokines are proposed to be associated with ALS progression through assorted pathways. Therefore, The present meta-analysis explored the link between various adipokines and ALS progression. METHOD International database like PubMed, Scopus, and Web of Science databases were searched to achieve eligible papers published before December 2023. The following PICO structure was utilized: Population (patients with ALS); Intervention (serum concentrations of ghrelin, leptin, and adiponectin), Comparison (with or without controls), and Outcome (ALS progression). the risk of bias of selected papers was assessed through the Newcastle-Ottawa Scale (NOS) tool. RESULTS 11 out of 240 papers were selected for this study which were published between 2010 and 2024. Lower serum leptin concentrations were detected in the ALS compared to control groups (WMD: -0.91, 95% CI:-1.77, -0.05). Serum concentrations of adiponectin were higher in ALS compared to control groups (WMD: 0.41, 95% CI:-0.7, 0.89). Ultimately, The serum concentrations of ghrelin in the ALS groups were lower than control groups (WMD: -1.21, 95% CI: -2.95, 0.53). CONCLUSION Our findings revealed that serum concentrations of ghrelin and leptin were higher in ALS patients compared to control, unlike adiponectin.
Collapse
Affiliation(s)
- Hamid Abbasi
- Student Research Committee, Tabriz University of Medical Sciences, Tabriz, Iran; Neurosciences Research Center (NSRC), Tabriz University of Medical Sciences, Tabriz, Iran.
| | - Neda Jourabchi-Ghadim
- Student Research Committee, Tabriz University of Medical Sciences, Tabriz, Iran; Nutrition Research Center, Faculty of Nutrition and Food Science, Tabriz University of Medical Sciences, Tabriz, Iran.
| | - Ali Asgarzade
- Students Research Committee, School of Medicine, Ardabil University of Medical Sciences, Ardabil, Iran.
| | - Mobin Mirshekari
- Student Research Committee, Tabriz University of Medical Sciences, Tabriz, Iran.
| | - Mehrangiz Ebrahimi-Mameghani
- Nutrition Research Center, Faculty of Nutrition and Food Science, Tabriz University of Medical Sciences, Tabriz, Iran.
| |
Collapse
|
2
|
Moțățăianu A, Mănescu IB, Șerban G, Bărcuțean L, Ion V, Bălașa R, Andone S. Exploring the Role of Metabolic Hormones in Amyotrophic Lateral Sclerosis. Int J Mol Sci 2024; 25:5059. [PMID: 38791099 PMCID: PMC11121721 DOI: 10.3390/ijms25105059] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Revised: 04/27/2024] [Accepted: 05/04/2024] [Indexed: 05/26/2024] Open
Abstract
Amyotrophic lateral sclerosis (ALS) is a devastating neurodegenerative disease characterized by progressive loss of motor neurons. Emerging evidence suggests a potential link between metabolic dysregulation and ALS pathogenesis. This study aimed to investigate the relationship between metabolic hormones and disease progression in ALS patients. A cross-sectional study was conducted involving 44 ALS patients recruited from a tertiary care center. Serum levels of insulin, total amylin, C-peptide, active ghrelin, GIP (gastric inhibitory peptide), GLP-1 active (glucagon-like peptide-1), glucagon, PYY (peptide YY), PP (pancreatic polypeptide), leptin, interleukin-6, MCP-1 (monocyte chemoattractant protein-1), and TNFα (tumor necrosis factor alpha) were measured, and correlations with ALSFRS-R, evolution scores, and biomarkers were analyzed using Spearman correlation coefficients. Subgroup analyses based on ALS subtypes, progression pattern of disease, and disease progression rate patterns were performed. Significant correlations were observed between metabolic hormones and ALS evolution scores. Insulin and amylin exhibited strong correlations with disease progression and clinical functional outcomes, with insulin showing particularly robust associations. Other hormones such as C-peptide, leptin, and GLP-1 also showed correlations with ALS progression and functional status. Subgroup analyses revealed differences in hormone levels based on sex and disease evolution patterns, with male patients showing higher amylin and glucagon levels. ALS patients with slower disease progression exhibited elevated levels of amylin and insulin. Our findings suggest a potential role for metabolic hormones in modulating ALS progression and functional outcomes. Further research is needed to elucidate the underlying mechanisms and explore the therapeutic implications of targeting metabolic pathways in ALS management.
Collapse
Affiliation(s)
- Anca Moțățăianu
- Department of Neurology, University of Medicine, Pharmacy, Science and Technology of Târgu Mureș ‘George Emil Palade’, 540142 Târgu Mureș, Romania
- 1st Neurology Clinic, Mures County Clinical Emergency Hospital, 540136 Târgu Mureș, Romania
| | - Ion Bogdan Mănescu
- Department of Laboratory Medicine, University of Medicine, Pharmacy, Science and Technology of Târgu Mureș ‘George Emil Palade’, 540142 Târgu Mureș, Romania
| | - Georgiana Șerban
- Doctoral School, University of Medicine, Pharmacy, Science and Technology of Târgu Mureș ‘George Emil Palade’, 540142 Târgu Mureș, Romania
| | - Laura Bărcuțean
- Department of Neurology, University of Medicine, Pharmacy, Science and Technology of Târgu Mureș ‘George Emil Palade’, 540142 Târgu Mureș, Romania
- 1st Neurology Clinic, Mures County Clinical Emergency Hospital, 540136 Târgu Mureș, Romania
| | - Valentin Ion
- Faculty of Pharmacy, Department of Analytical Chemistry and Drug Analysis, University of Medicine, Pharmacy, Science and Technology of Târgu Mureș ‘George Emil Palade’, 540142 Târgu Mureș, Romania
- Drug Testing Laboratory, University of Medicine, Pharmacy, Science and Technology of Târgu Mureș ‘George Emil Palade’, 540142 Târgu Mureș, Romania
| | - Rodica Bălașa
- Department of Neurology, University of Medicine, Pharmacy, Science and Technology of Târgu Mureș ‘George Emil Palade’, 540142 Târgu Mureș, Romania
- 1st Neurology Clinic, Mures County Clinical Emergency Hospital, 540136 Târgu Mureș, Romania
| | - Sebastian Andone
- Department of Neurology, University of Medicine, Pharmacy, Science and Technology of Târgu Mureș ‘George Emil Palade’, 540142 Târgu Mureș, Romania
- 1st Neurology Clinic, Mures County Clinical Emergency Hospital, 540136 Târgu Mureș, Romania
| |
Collapse
|
3
|
La Cognata V, Morello G, Guarnaccia M, Cavallaro S. The multifaceted role of the CXC chemokines and receptors signaling axes in ALS pathophysiology. Prog Neurobiol 2024; 235:102587. [PMID: 38367748 DOI: 10.1016/j.pneurobio.2024.102587] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2023] [Revised: 01/17/2024] [Accepted: 02/13/2024] [Indexed: 02/19/2024]
Abstract
Amyotrophic lateral sclerosis (ALS) is a late-onset motor neuron disease with complex genetic basis and still no clear etiology. Multiple intertwined layers of immune system-related dysfunctions and neuroinflammatory mechanisms are emerging as substantial determinants in ALS onset and progression. In this review, we collect the increasingly arising evidence implicating four main CXC chemokines/cognate receptors signaling axes (CXCR1/2-CXCL1/2/8; CXCR3-CXCL9/10/11; CXCR4/7-CXCL12; CXCR5-CXCL13) in the pathophysiology of ALS. Findings in preclinical models implicate these signaling pathways in motor neuron toxicity and neuroprotection, while in ALS patients dysregulation of CXCLs/CXCRs has been shown at both central and peripheral levels. Immunological monitoring of CXC-ligands in ALS may allow tracking of disease progression, while pharmacological modulation of CXC-receptors provides a novel therapeutic strategy. A deeper understanding of the interplay between CXC-mediated neuroinflammation and ALS is crucial to advance research into treatments for this debilitating uncurable disorder.
Collapse
Affiliation(s)
- Valentina La Cognata
- Institute for Biomedical Research and Innovation, National Research Council, Via P. Gaifami 18, Catania 95126, Italy
| | - Giovanna Morello
- Institute for Biomedical Research and Innovation, National Research Council, Via P. Gaifami 18, Catania 95126, Italy
| | - Maria Guarnaccia
- Institute for Biomedical Research and Innovation, National Research Council, Via P. Gaifami 18, Catania 95126, Italy
| | - Sebastiano Cavallaro
- Institute for Biomedical Research and Innovation, National Research Council, Via P. Gaifami 18, Catania 95126, Italy.
| |
Collapse
|
4
|
Fernández-Beltrán LC, Ali Z, Larrad-Sanz A, Lopez-Carbonero JI, Godoy-Corchuelo JM, Jimenez-Coca I, Garcia-Toledo I, Bentley L, Gomez-Pinedo U, Matias-Guiu JA, Gil-Moreno MJ, Matias-Guiu J, Corrochano S. Leptin haploinsufficiency exerts sex-dependent partial protection in SOD1 G93A mice by reducing inflammatory pathways in the adipose tissue. Sci Rep 2024; 14:2671. [PMID: 38302474 PMCID: PMC10834470 DOI: 10.1038/s41598-024-52439-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Accepted: 01/18/2024] [Indexed: 02/03/2024] Open
Abstract
Amyotrophic lateral sclerosis (ALS) is a fatal neurodegenerative disorder characterized by significant metabolic disruptions, including weight loss and hypermetabolism in both patients and animal models. Leptin, an adipose-derived hormone, displays altered levels in ALS. Genetically reducing leptin levels (Lepob/+) to maintain body weight improved motor performance and extended survival in female SOD1G93A mice, although the exact molecular mechanisms behind these effects remain elusive. Here, we corroborated the sexual dimorphism in circulating leptin levels in ALS patients and in SOD1G93A mice. We reproduced a previous strategy to generate a genetically deficient leptin SOD1G93A mice (SOD1G93ALepob/+) and studied the transcriptomic profile in the subcutaneous adipose tissue and the spinal cord. We found that leptin deficiency reduced the inflammation pathways activated by the SOD1G93A mutation in the adipose tissue, but not in the spinal cord. These findings emphasize the importance of considering sex-specific approaches in metabolic therapies and highlight the role of leptin in the systemic modulation of ALS by regulating immune responses outside the central nervous system.
Collapse
Affiliation(s)
- Luis C Fernández-Beltrán
- Neurological Disorders Group, Department of Neurology, Hospital Clínico San Carlos, Instituto de Investigación Sanitaria San Carlos (IdISSC), Madrid, Spain
- Department of Medicine, Universidad Complutense de Madrid, Madrid, Spain
| | - Zeinab Ali
- Neurological Disorders Group, Department of Neurology, Hospital Clínico San Carlos, Instituto de Investigación Sanitaria San Carlos (IdISSC), Madrid, Spain
- Mary Lyon Centre at MRC Harwell, Oxfordshire, UK
| | - Angélica Larrad-Sanz
- Department of Endocrinology and Nutrition, Hospital Clínico San Carlos, Instituto de Investigación Sanitaria San Carlos (IdISSC), Madrid, Spain
| | - Juan I Lopez-Carbonero
- Neurological Disorders Group, Department of Neurology, Hospital Clínico San Carlos, Instituto de Investigación Sanitaria San Carlos (IdISSC), Madrid, Spain
| | - Juan M Godoy-Corchuelo
- Neurological Disorders Group, Department of Neurology, Hospital Clínico San Carlos, Instituto de Investigación Sanitaria San Carlos (IdISSC), Madrid, Spain
| | - Irene Jimenez-Coca
- Neurological Disorders Group, Department of Neurology, Hospital Clínico San Carlos, Instituto de Investigación Sanitaria San Carlos (IdISSC), Madrid, Spain
| | - Irene Garcia-Toledo
- Neurological Disorders Group, Department of Neurology, Hospital Clínico San Carlos, Instituto de Investigación Sanitaria San Carlos (IdISSC), Madrid, Spain
| | - Liz Bentley
- Mary Lyon Centre at MRC Harwell, Oxfordshire, UK
| | - Ulises Gomez-Pinedo
- Neurological Disorders Group, Department of Neurology, Hospital Clínico San Carlos, Instituto de Investigación Sanitaria San Carlos (IdISSC), Madrid, Spain
| | - Jordi A Matias-Guiu
- Neurological Disorders Group, Department of Neurology, Hospital Clínico San Carlos, Instituto de Investigación Sanitaria San Carlos (IdISSC), Madrid, Spain
| | - Maria Jose Gil-Moreno
- Neurological Disorders Group, Department of Neurology, Hospital Clínico San Carlos, Instituto de Investigación Sanitaria San Carlos (IdISSC), Madrid, Spain
| | - Jorge Matias-Guiu
- Neurological Disorders Group, Department of Neurology, Hospital Clínico San Carlos, Instituto de Investigación Sanitaria San Carlos (IdISSC), Madrid, Spain
| | - Silvia Corrochano
- Neurological Disorders Group, Department of Neurology, Hospital Clínico San Carlos, Instituto de Investigación Sanitaria San Carlos (IdISSC), Madrid, Spain.
| |
Collapse
|
5
|
Howe SL, Holdom CJ, McCombe PA, Henderson RD, Zigman JM, Ngo ST, Steyn FJ. Associations of postprandial ghrelin, liver-expressed antimicrobial peptide 2 and leptin levels with body composition, disease progression and survival in patients with amyotrophic lateral sclerosis. Eur J Neurol 2024; 31:e16052. [PMID: 37658515 PMCID: PMC10840749 DOI: 10.1111/ene.16052] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2023] [Revised: 08/06/2023] [Accepted: 08/17/2023] [Indexed: 09/03/2023]
Abstract
BACKGROUND AND PURPOSE Loss of appetite contributes to weight loss and faster disease progression in amyotrophic lateral sclerosis (ALS). Impairment of appetite control in ALS may include altered production or action of orexigenic (i.e., ghrelin) and anorexigenic (i.e., liver-expressed antimicrobial peptide 2 [LEAP2] and leptin) hormones. We aimed to determine if postprandial circulating ghrelin levels, LEAP2 levels, LEAP2:ghrelin molar ratio and leptin levels differ in ALS patients compared to non-neurodegenerative disease controls, and whether they are associated with disease progression and body composition. METHODS In this prospective natural history study, we assessed postprandial plasma levels of ghrelin, LEAP2 and leptin in patients with ALS (cases; n = 46) and controls (controls; n = 43). For cases, measures were compared to changes in body weight, body composition and clinical outcomes. RESULTS Postprandial ghrelin level was decreased by 52% in cases compared to controls (p = 0.013). LEAP2:ghrelin molar ratio was increased by 249% (p = 0.009), suggesting greater ghrelin resistance. Patients with lower LEAP2:ghrelin tended to have better functional capacity at assessment, as inferred by the ALS Functional Rating Scale-Revised (τ = -0.179, p = 0.086). Furthermore, ghrelin and LEAP2:ghrelin molar ratio correlated with diagnostic delay (ghrelin, τ = 0.223, p = 0.029; LEAP2:ghrelin, τ = -0.213, p = 0.037). Baseline ghrelin level, LEAP2 level, LEAP2:ghrelin ratio and leptin level were, however, not predictive of change in functional capacity during follow-up. Also, patients with higher postprandial ghrelin levels (hazard ratio [HR] 1.375, p = 0.048), and lower LEAP2:ghelin ratios (HR 0.828, p = 0.051) had an increased risk of earlier death. CONCLUSIONS Reduced postprandial ghrelin levels, coupled with increased LEAP2:ghrelin molar ratios, suggests a loss of ghrelin action in patients with ALS. Given ghrelin's actions on appetite, metabolism and neuroprotection, reduced ghrelin and greater ghrelin resistance could contribute to impaired capacity to tolerate the physiological impact of disease. Comprehensive studies are needed to explain how ghrelin and LEAP2 contribute to body weight regulation and disease progression in ALS.
Collapse
Affiliation(s)
- Stephanie L. Howe
- Australian Institute for Bioengineering and NanotechnologyThe University of QueenslandBrisbaneQueenslandAustralia
| | - Cory J. Holdom
- Australian Institute for Bioengineering and NanotechnologyThe University of QueenslandBrisbaneQueenslandAustralia
- Centre for Clinical ResearchThe University of QueenslandBrisbaneQueenslandAustralia
| | - Pamela A. McCombe
- Centre for Clinical ResearchThe University of QueenslandBrisbaneQueenslandAustralia
- Department of NeurologyRoyal Brisbane and Women's HospitalBrisbaneQueenslandAustralia
| | - Robert D. Henderson
- Centre for Clinical ResearchThe University of QueenslandBrisbaneQueenslandAustralia
- Department of NeurologyRoyal Brisbane and Women's HospitalBrisbaneQueenslandAustralia
| | - Jeffrey M. Zigman
- Center for Hypothalamic Research, Department of Internal MedicineUniversity of Texas Southwestern Medical CenterDallasTexasUSA
| | - Shyuan T. Ngo
- Australian Institute for Bioengineering and NanotechnologyThe University of QueenslandBrisbaneQueenslandAustralia
- Centre for Clinical ResearchThe University of QueenslandBrisbaneQueenslandAustralia
- Department of NeurologyRoyal Brisbane and Women's HospitalBrisbaneQueenslandAustralia
| | - Frederik J. Steyn
- Department of NeurologyRoyal Brisbane and Women's HospitalBrisbaneQueenslandAustralia
- School of Biomedical SciencesThe University of QueenslandBrisbaneQueenslandAustralia
| |
Collapse
|
6
|
Cao W, Fan D. Neutrophils: a subgroup of neglected immune cells in ALS. Front Immunol 2023; 14:1246768. [PMID: 37662922 PMCID: PMC10468589 DOI: 10.3389/fimmu.2023.1246768] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2023] [Accepted: 08/02/2023] [Indexed: 09/05/2023] Open
Abstract
Amyotrophic lateral sclerosis (ALS) is a chronic, progressive neurodegenerative disease characterized by the loss of motor neurons. Dysregulated peripheral immunity has been identified as a hallmark of ALS. Neutrophils, as the front-line responders of innate immunity, contribute to host defense through pathogen clearance. However, they can concurrently play a detrimental role in chronic inflammation. With the unveiling of novel functions of neutrophils in neurodegenerative diseases, it becomes essential to review our current understanding of neutrophils and to recognize the gap in our knowledge about their role in ALS. Thus, a detailed comprehension of the biological processes underlying neutrophil-induced pathogenesis in ALS may assist in identifying potential cell-based therapeutic strategies to delay disease progression.
Collapse
Affiliation(s)
- Wen Cao
- Department of Neurology, Peking University Third Hospital, Beijing, China
- Beijing Key Laboratory of Biomarker and Translational Research in Neurodegenerative Disorders, Beijing, China
- Key Laboratory for Neuroscience, National Health Commission/Ministry of Education, Peking University, Beijing, China
| | - Dongsheng Fan
- Department of Neurology, Peking University Third Hospital, Beijing, China
- Beijing Key Laboratory of Biomarker and Translational Research in Neurodegenerative Disorders, Beijing, China
- Key Laboratory for Neuroscience, National Health Commission/Ministry of Education, Peking University, Beijing, China
| |
Collapse
|
7
|
Yin Z, Chen J, Xia M, Zhang X, Li Y, Chen Z, Bao Q, Zhong W, Yao J, Wu K, Zhao L, Liang F. Assessing causal relationship between circulating cytokines and age-related neurodegenerative diseases: a bidirectional two-sample Mendelian randomization analysis. Sci Rep 2023; 13:12325. [PMID: 37516812 PMCID: PMC10387057 DOI: 10.1038/s41598-023-39520-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2023] [Accepted: 07/26/2023] [Indexed: 07/31/2023] Open
Abstract
Numerous studies have reported that circulating cytokines (CCs) are linked to age-related neurodegenerative diseases (ANDDs); however, there is a lack of systematic investigation for the causal association. A two-sample bidirectional Mendelian Randomisation (MR) method was utilized to evaluate the causal effect. We applied genetic variants correlated with concentrations of CCs from a genome-wide association study meta-analysis (n = 8293) as instrumental variables. Summary data of three major ANDDs [Alzheimer's disease (AD), Parkinson's disease (PD), and Amyotrophic lateral sclerosis (ALS)] were identified from the IEU OpenGWAS platform (n = 627, 266). Inverse-variance weighted method is the main approach to analyse causal effect, and MR results are verified by several sensitivity and pleiotropy analyses. In directional MR, it suggested that several CCs were nominally correlated with the risk of ANDDs, with a causal odds ratio (OR) of Interleukin (IL)-5 of 0.909 for AD; OR of IL-2 of 1.169 for PD; and OR of Beta nerve growth factor of 1.142 for ALS). In reverse MR, there were some suggestively causal effects of ANDDs on CCs (AD on increased Basic fibroblast growth factor and IL-12 and decreased Stem cell growth factor beta; PD on decreased Monokine induced by interferon-gamma; ALS on decreased Basic fibroblast growth factor and IL-17). The findings were stable across sensitivity and pleiotropy analyses. However, after Bonferroni correction, there is no statistically significant association between CCs and ANDDs. Through the genetic epidemiological approach, our study assessed the role and presented possible causal associations between CCs and ANDDs. Further studies are warranted to verify the causal associations.
Collapse
Affiliation(s)
- Zihan Yin
- School of Acu-Mox and Tuina, Chengdu University of Traditional Chinese Medicine, 37 Shierqiao Road, Chengdu, 610075, Sichuan, China
- Acupuncture Clinical Research Center of Sichuan Province, Chengdu, China
| | - Jiao Chen
- School of Acu-Mox and Tuina, Chengdu University of Traditional Chinese Medicine, 37 Shierqiao Road, Chengdu, 610075, Sichuan, China
- Acupuncture Clinical Research Center of Sichuan Province, Chengdu, China
| | - Manze Xia
- School of Acu-Mox and Tuina, Chengdu University of Traditional Chinese Medicine, 37 Shierqiao Road, Chengdu, 610075, Sichuan, China
- Acupuncture Clinical Research Center of Sichuan Province, Chengdu, China
| | - Xinyue Zhang
- School of Acu-Mox and Tuina, Chengdu University of Traditional Chinese Medicine, 37 Shierqiao Road, Chengdu, 610075, Sichuan, China
- Acupuncture Clinical Research Center of Sichuan Province, Chengdu, China
| | - Yaqin Li
- School of Acu-Mox and Tuina, Chengdu University of Traditional Chinese Medicine, 37 Shierqiao Road, Chengdu, 610075, Sichuan, China
| | - Zhenghong Chen
- School of Acu-Mox and Tuina, Chengdu University of Traditional Chinese Medicine, 37 Shierqiao Road, Chengdu, 610075, Sichuan, China
- Acupuncture Clinical Research Center of Sichuan Province, Chengdu, China
| | - Qiongnan Bao
- School of Acu-Mox and Tuina, Chengdu University of Traditional Chinese Medicine, 37 Shierqiao Road, Chengdu, 610075, Sichuan, China
- Acupuncture Clinical Research Center of Sichuan Province, Chengdu, China
| | - Wanqi Zhong
- School of Acu-Mox and Tuina, Chengdu University of Traditional Chinese Medicine, 37 Shierqiao Road, Chengdu, 610075, Sichuan, China
- Acupuncture Clinical Research Center of Sichuan Province, Chengdu, China
| | - Jin Yao
- School of Acu-Mox and Tuina, Chengdu University of Traditional Chinese Medicine, 37 Shierqiao Road, Chengdu, 610075, Sichuan, China
- Acupuncture Clinical Research Center of Sichuan Province, Chengdu, China
| | - Kexin Wu
- School of Acu-Mox and Tuina, Chengdu University of Traditional Chinese Medicine, 37 Shierqiao Road, Chengdu, 610075, Sichuan, China
- Acupuncture Clinical Research Center of Sichuan Province, Chengdu, China
| | - Ling Zhao
- School of Acu-Mox and Tuina, Chengdu University of Traditional Chinese Medicine, 37 Shierqiao Road, Chengdu, 610075, Sichuan, China.
- Acupuncture Clinical Research Center of Sichuan Province, Chengdu, China.
| | - Fanrong Liang
- School of Acu-Mox and Tuina, Chengdu University of Traditional Chinese Medicine, 37 Shierqiao Road, Chengdu, 610075, Sichuan, China.
- Acupuncture Clinical Research Center of Sichuan Province, Chengdu, China.
| |
Collapse
|
8
|
Picher-Martel V, Boutej H, Vézina A, Cordeau P, Kaneb H, Julien JP, Genge A, Dupré N, Kriz J. Distinct Plasma Immune Profile in ALS Implicates sTNFR-II in pAMPK/Leptin Homeostasis. Int J Mol Sci 2023; 24:ijms24065065. [PMID: 36982140 PMCID: PMC10049559 DOI: 10.3390/ijms24065065] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2022] [Revised: 02/20/2023] [Accepted: 02/27/2023] [Indexed: 03/09/2023] Open
Abstract
Amyotrophic lateral sclerosis (ALS) is a clinically highly heterogeneous disease with a survival rate ranging from months to decades. Evidence suggests that a systemic deregulation of immune response may play a role and affect disease progression. Here, we measured 62 different immune/metabolic mediators in plasma of sporadic ALS (sALS) patients. We show that, at the protein level, the majority of immune mediators including a metabolic sensor, leptin, were significantly decreased in the plasma of sALS patients and in two animal models of the disease. Next, we found that a subset of patients with rapidly progressing ALS develop a distinct plasma assess immune–metabolic molecular signature characterized by a differential increase in soluble tumor necrosis factor receptor II (sTNF-RII) and chemokine (C-C motif) ligand 16 (CCL16) and further decrease in the levels of leptin, mostly dysregulated in male patients. Consistent with in vivo findings, exposure of human adipocytes to sALS plasma and/or sTNF-RII alone, induced a significant deregulation in leptin production/homeostasis and was associated with a robust increase in AMP-activated protein kinase (AMPK) phosphorylation. Conversely, treatment with an AMPK inhibitor restored leptin production in human adipocytes. Together, this study provides evidence of a distinct plasma immune profile in sALS which affects adipocyte function and leptin signaling. Furthermore, our results suggest that targeting the sTNF-RII/AMPK/leptin pathway in adipocytes may help restore assess immune–metabolic homeostasis in ALS.
Collapse
Affiliation(s)
- Vincent Picher-Martel
- CERVO Brain Research Centre, Department of Psychiatry and Neuroscience, Faculty of Medicine, Université Laval, Québec City, QC G1J 2G3, Canada
- CHU de Québec, Department of Medicine, Université Laval, Québec City, QC G1J 1Z4, Canada
| | - Hejer Boutej
- CERVO Brain Research Centre, Department of Psychiatry and Neuroscience, Faculty of Medicine, Université Laval, Québec City, QC G1J 2G3, Canada
| | - Alexandre Vézina
- CERVO Brain Research Centre, Department of Psychiatry and Neuroscience, Faculty of Medicine, Université Laval, Québec City, QC G1J 2G3, Canada
| | - Pierre Cordeau
- CERVO Brain Research Centre, Department of Psychiatry and Neuroscience, Faculty of Medicine, Université Laval, Québec City, QC G1J 2G3, Canada
| | - Hannah Kaneb
- Montreal Neurological Institute and Hospital, McGill University, Montreal, QC H3A 2B4, Canada
| | - Jean-Pierre Julien
- CERVO Brain Research Centre, Department of Psychiatry and Neuroscience, Faculty of Medicine, Université Laval, Québec City, QC G1J 2G3, Canada
| | - Angela Genge
- Montreal Neurological Institute and Hospital, McGill University, Montreal, QC H3A 2B4, Canada
| | - Nicolas Dupré
- CHU de Québec, Department of Medicine, Université Laval, Québec City, QC G1J 1Z4, Canada
| | - Jasna Kriz
- CERVO Brain Research Centre, Department of Psychiatry and Neuroscience, Faculty of Medicine, Université Laval, Québec City, QC G1J 2G3, Canada
- Correspondence: ; Tel.: +1-418-663-5000 (ext. 6732)
| |
Collapse
|
9
|
Berrone E, Chiorino G, Guana F, Benedetti V, Palmitessa C, Gallo M, Calvo A, Casale F, Manera U, Favole A, Crociara P, Testori C, Carta V, Tessarolo C, D’Angelo A, De Marco G, Caramelli M, Chiò A, Casalone C, Corona C. SOMAscan Proteomics Identifies Novel Plasma Proteins in Amyotrophic Lateral Sclerosis Patients. Int J Mol Sci 2023; 24:ijms24031899. [PMID: 36768220 PMCID: PMC9916400 DOI: 10.3390/ijms24031899] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2022] [Revised: 01/09/2023] [Accepted: 01/14/2023] [Indexed: 01/21/2023] Open
Abstract
Amyotrophic lateral sclerosis (ALS) is a complex disease characterized by the interplay of genetic and environmental factors for which, despite decades of intense research, diagnosis remains rather delayed, and most therapeutic options fail. Therefore, unravelling other potential pathogenetic mechanisms and searching for reliable markers are high priorities. In the present study, we employ the SOMAscan assay, an aptamer-based proteomic technology, to determine the circulating proteomic profile of ALS patients. The expression levels of ~1300 proteins were assessed in plasma, and 42 proteins with statistically significant differential expression between ALS patients and healthy controls were identified. Among these, four were upregulated proteins, Thymus- and activation-regulated chemokine, metalloproteinase inhibitor 3 and nidogen 1 and 2 were selected and validated by enzyme-linked immunosorbent assays in an overlapping cohort of patients. Following statistical analyses, different expression patterns of these proteins were observed in the familial and sporadic ALS patients. The proteins identified in this study might provide insight into ALS pathogenesis and represent potential candidates to develop novel targeted therapies.
Collapse
Affiliation(s)
- Elena Berrone
- S.C. Neuroscienze, Istituto Zooprofilattico Sperimentale del Piemonte, Liguria e Valle d’Aosta, 10154 Turin, Italy
| | - Giovanna Chiorino
- Cancer Genomics Laboratory, Fondazione Edo ed Elvo Tempia, 13900 Biella, Italy
| | - Francesca Guana
- Cancer Genomics Laboratory, Fondazione Edo ed Elvo Tempia, 13900 Biella, Italy
| | - Valerio Benedetti
- S.C. Neuroscienze, Istituto Zooprofilattico Sperimentale del Piemonte, Liguria e Valle d’Aosta, 10154 Turin, Italy
| | - Claudia Palmitessa
- S.C. Neuroscienze, Istituto Zooprofilattico Sperimentale del Piemonte, Liguria e Valle d’Aosta, 10154 Turin, Italy
| | - Marina Gallo
- S.C. Neuroscienze, Istituto Zooprofilattico Sperimentale del Piemonte, Liguria e Valle d’Aosta, 10154 Turin, Italy
| | - Andrea Calvo
- Rita Levi Montalcini Department of Neuroscience, University of Turin, 10126 Turin, Italy
- Neurology, Hospital Department of Neuroscience and Mental Health, Città della Salute e della Scienza Hospital of Turin, 10126 Turin, Italy
| | - Federico Casale
- Rita Levi Montalcini Department of Neuroscience, University of Turin, 10126 Turin, Italy
| | - Umberto Manera
- Rita Levi Montalcini Department of Neuroscience, University of Turin, 10126 Turin, Italy
- Neurology, Hospital Department of Neuroscience and Mental Health, Città della Salute e della Scienza Hospital of Turin, 10126 Turin, Italy
| | - Alessandra Favole
- S.C. Neuroscienze, Istituto Zooprofilattico Sperimentale del Piemonte, Liguria e Valle d’Aosta, 10154 Turin, Italy
- Correspondence: (A.F.); (A.C.)
| | - Paola Crociara
- S.C. Neuroscienze, Istituto Zooprofilattico Sperimentale del Piemonte, Liguria e Valle d’Aosta, 10154 Turin, Italy
- ASL TO4, 10034 Chivasso, Italy
| | - Camilla Testori
- S.C. Neuroscienze, Istituto Zooprofilattico Sperimentale del Piemonte, Liguria e Valle d’Aosta, 10154 Turin, Italy
| | - Valerio Carta
- S.C. Neuroscienze, Istituto Zooprofilattico Sperimentale del Piemonte, Liguria e Valle d’Aosta, 10154 Turin, Italy
| | - Carlotta Tessarolo
- S.C. Neuroscienze, Istituto Zooprofilattico Sperimentale del Piemonte, Liguria e Valle d’Aosta, 10154 Turin, Italy
| | - Antonio D’Angelo
- Department of Veterinary Science, University of Turin, 10095 Grugliasco, Italy
| | - Giovanni De Marco
- Rita Levi Montalcini Department of Neuroscience, University of Turin, 10126 Turin, Italy
- Neurology, Hospital Department of Neuroscience and Mental Health, Città della Salute e della Scienza Hospital of Turin, 10126 Turin, Italy
| | - Maria Caramelli
- S.C. Neuroscienze, Istituto Zooprofilattico Sperimentale del Piemonte, Liguria e Valle d’Aosta, 10154 Turin, Italy
| | - Adriano Chiò
- Rita Levi Montalcini Department of Neuroscience, University of Turin, 10126 Turin, Italy
- Neurology, Hospital Department of Neuroscience and Mental Health, Città della Salute e della Scienza Hospital of Turin, 10126 Turin, Italy
- Correspondence: (A.F.); (A.C.)
| | - Cristina Casalone
- S.C. Neuroscienze, Istituto Zooprofilattico Sperimentale del Piemonte, Liguria e Valle d’Aosta, 10154 Turin, Italy
| | - Cristiano Corona
- S.C. Neuroscienze, Istituto Zooprofilattico Sperimentale del Piemonte, Liguria e Valle d’Aosta, 10154 Turin, Italy
| |
Collapse
|
10
|
Meanti R, Bresciani E, Rizzi L, Coco S, Zambelli V, Dimitroulas A, Molteni L, Omeljaniuk RJ, Locatelli V, Torsello A. Potential Applications for Growth Hormone Secretagogues Treatment of Amyotrophic Lateral Sclerosis. Curr Neuropharmacol 2023; 21:2376-2394. [PMID: 36111771 PMCID: PMC10616926 DOI: 10.2174/1570159x20666220915103613] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2022] [Revised: 07/18/2022] [Accepted: 08/01/2022] [Indexed: 11/22/2022] Open
Abstract
Amyotrophic lateral sclerosis (ALS) arises from neuronal death due to complex interactions of genetic, molecular, and environmental factors. Currently, only two drugs, riluzole and edaravone, have been approved to slow the progression of this disease. However, ghrelin and other ligands of the GHS-R1a receptor have demonstrated interesting neuroprotective activities that could be exploited in this pathology. Ghrelin, a 28-amino acid hormone, primarily synthesized and secreted by oxyntic cells in the stomach wall, binds to the pituitary GHS-R1a and stimulates GH secretion; in addition, ghrelin is endowed with multiple extra endocrine bioactivities. Native ghrelin requires esterification with octanoic acid for binding to the GHS-R1a receptor; however, this esterified form is very labile and represents less than 10% of circulating ghrelin. A large number of synthetic compounds, the growth hormone secretagogues (GHS) encompassing short peptides, peptoids, and non-peptidic moieties, are capable of mimicking several biological activities of ghrelin, including stimulation of GH release, appetite, and elevation of blood IGF-I levels. GHS have demonstrated neuroprotective and anticonvulsant effects in experimental models of pathologies both in vitro and in vivo. To illustrate, some GHS, currently under evaluation by regulatory agencies for the treatment of human cachexia, have a good safety profile and are safe for human use. Collectively, evidence suggests that ghrelin and cognate GHS may constitute potential therapies for ALS.
Collapse
Affiliation(s)
- Ramona Meanti
- School of Medicine and Surgery, University of Milano-Bicocca, Via Cadore 48, Monza, 20900, Italy
| | - Elena Bresciani
- School of Medicine and Surgery, University of Milano-Bicocca, Via Cadore 48, Monza, 20900, Italy
| | - Laura Rizzi
- School of Medicine and Surgery, University of Milano-Bicocca, Via Cadore 48, Monza, 20900, Italy
| | - Silvia Coco
- School of Medicine and Surgery, University of Milano-Bicocca, Via Cadore 48, Monza, 20900, Italy
| | - Vanessa Zambelli
- School of Medicine and Surgery, University of Milano-Bicocca, Via Cadore 48, Monza, 20900, Italy
| | - Anna Dimitroulas
- Faculty of Health and Medical Sciences, University of Surrey, Stag Hill, Guildford, GU2 7XH, United Kingdom
| | - Laura Molteni
- School of Medicine and Surgery, University of Milano-Bicocca, Via Cadore 48, Monza, 20900, Italy
| | - Robert J. Omeljaniuk
- Department of Biology, Lakehead University, 955 Oliver Rd, Thunder Bay, Ontario, P7B 5E1, Canada
| | - Vittorio Locatelli
- School of Medicine and Surgery, University of Milano-Bicocca, Via Cadore 48, Monza, 20900, Italy
| | - Antonio Torsello
- School of Medicine and Surgery, University of Milano-Bicocca, Via Cadore 48, Monza, 20900, Italy
| |
Collapse
|
11
|
Jiang Z, Wang Z, Wei X, Yu XF. Inflammatory checkpoints in amyotrophic lateral sclerosis: From biomarkers to therapeutic targets. Front Immunol 2022; 13:1059994. [PMID: 36618399 PMCID: PMC9815501 DOI: 10.3389/fimmu.2022.1059994] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2022] [Accepted: 11/21/2022] [Indexed: 12/24/2022] Open
Abstract
Amyotrophic lateral sclerosis (ALS) is a neurodegenerative disease characterized by progressive motor neuron damage. Due to the complexity of the ALS, so far the etiology and underlying pathogenesis of sporadic ALS are not completely understood. Recently, many studies have emphasized the role of inflammatory networks, which are comprised of various inflammatory molecules and proteins in the pathogenesis of ALS. Inflammatory molecules and proteins may be used as independent predictors of patient survival and might be used in patient stratification and in evaluating the therapeutic response in clinical trials. This review article describes the latest advances in various inflammatory markers in ALS and its animal models. In particular, this review discusses the role of inflammatory molecule markers in the pathogenesis of the disease and their relationship with clinical parameters. We also highlight the advantages and disadvantages of applying inflammatory markers in clinical manifestations, animal studies, and drug clinical trials. Further, we summarize the potential application of some inflammatory biomarkers as new therapeutic targets and therapeutic strategies, which would perhaps expand the therapeutic interventions for ALS.
Collapse
|
12
|
Aydemir D, Surucu S, Basak AN, Ulusu NN. Evaluation of the Hematological and Serum Biochemistry Parameters in the Pre-Symptomatic and Symptomatic Stages of ALS Disease to Support Early Diagnosis and Prognosis. Cells 2022; 11:cells11223569. [PMID: 36428998 PMCID: PMC9688239 DOI: 10.3390/cells11223569] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2022] [Revised: 11/03/2022] [Accepted: 11/08/2022] [Indexed: 11/16/2022] Open
Abstract
Amyotrophic lateral sclerosis (ALS) is the most common motor neuron disease. Since there are no pathognomonic tests for ALS prognoses; clinical diagnoses of the disease take time and are usually difficult. Prognostic biomarkers are urgently needed for rapid and effective ALS prognoses. Male albino rats were divided into ten groups based on age: 0 (40-45 days old), A (70-75 days old), B (90-95 days old), C (110-115 days old), and D (130-135 days old). Each group was divided into two subgroups according to its mutation status: wild type (SOD1WT) or mutated (SOD1G93A). Serum biochemistry and hematological parameters were measured in 90 rats to evaluate possible biomarkers for faster ALS diagnoses and prognoses. Weight loss, cholesterol, creatinine, glucose, total bilirubin (TBIL), blood urine nitrogen (BUN), c-peptide, glucagon, PYY, white blood cell (WBC), lymphocyte (LYM), monocyte (MID), granulocyte (GRAN), red cell distribution width with standard deviation (RDW-SD), red cell distribution width with the coefficient of variation (RDW-CV), platelet (PLT), mean platelet volume (MPV), platelet distribution width (PDW), and procalcitonin (PCT) levels were changed in the SOD1G93A rats compared to the SOD1WT rats independently from aging. For the first time in the literature, we showed promising hematological and serum biochemistry parameters in the pre-symptomatic and symptomatic stages of ALS by eliminating the effects of aging. Our results can be used for early diagnoses and prognoses of ALS, improving the quality of life and survival time of ALS patients.
Collapse
Affiliation(s)
- Duygu Aydemir
- Department of Medical Biochemistry, School of Medicine, Koc University, Sariyer, Istanbul 34450, Turkey
- Koç University Research Center for Translational Medicine (KUTTAM), Sariyer, Istanbul 34450, Turkey
| | - Selcuk Surucu
- Department of Anatomy, School of Medicine, Koc University, Sariyer, Istanbul 34450, Turkey
| | - Ayse Nazli Basak
- Suna and İnan Kıraç Foundation, Neurodegeneration Research Laboratory, NDAL-KUTTAM, School of Medicine, Koç University, Istanbul 34010, Turkey
| | - Nuriye Nuray Ulusu
- Department of Medical Biochemistry, School of Medicine, Koc University, Sariyer, Istanbul 34450, Turkey
- Koç University Research Center for Translational Medicine (KUTTAM), Sariyer, Istanbul 34450, Turkey
- Correspondence:
| |
Collapse
|
13
|
Díaz-García D, Ferrer-Donato Á, Méndez-Arriaga JM, Cabrera-Pinto M, Díaz-Sánchez M, Prashar S, Fernandez-Martos CM, Gómez-Ruiz S. Design of Mesoporous Silica Nanoparticles for the Treatment of Amyotrophic Lateral Sclerosis (ALS) with a Therapeutic Cocktail Based on Leptin and Pioglitazone. ACS Biomater Sci Eng 2022; 8:4838-4849. [PMID: 36240025 PMCID: PMC9667463 DOI: 10.1021/acsbiomaterials.2c00865] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
![]()
Amyotrophic lateral sclerosis (ALS) is a devasting neurodegenerative
disease with no cure to date. Therapeutic agents used to treat ALS
are very limited, although combined therapies may offer a more effective
treatment strategy. Herein, we have studied the potential of nanomedicine
to prepare a single platform based on mesoporous silica nanoparticles
(MSNs) for the treatment of an ALS animal model with a cocktail of
agents such as leptin (neuroprotective) and pioglitazone (anti-inflammatory),
which have already demonstrated promising therapeutic ability in other
neurodegenerative diseases. Our goal is to study the potential of
functionalized mesoporous materials as therapeutic agents against
ALS using MSNs as nanocarriers for the proposed drug cocktail leptin/pioglitazone
(MSN-LEP-PIO). The nanostructured materials have been
characterized by different techniques, which confirmed the incorporation
of both agents in the nanosystem. Subsequently, the effect, in vivo, of the proposed drug cocktail, MSN-LEP-PIO, was used in the murine model of TDP-43 proteinopathy (TDP-43A315T mice). Body weight loss was studied, and using the rotarod
test, motor performance was assessed, observing a continuous reduction
in body weight and motor coordination in TDP-43A315T mice
and wild-type (WT) mice. Nevertheless, the disease progression was
slower and showed significant improvements in motor performance, indicating
that TDP-43A315T mice treated with MSN-LEP-PIO seem to have less energy demand in the late stage of the symptoms
of ALS. Collectively, these results seem to indicate the efficiency
of the systems in vivo and the usefulness of their
use in neurodegenerative models, including ALS.
Collapse
Affiliation(s)
- Diana Díaz-García
- COMET-NANO Group, Departamento de Biología y Geología, Física y Química Inorgánica, E.S.C.E.T., Universidad Rey Juan Carlos, Calle Tulipán s/n, E-28933 Móstoles, Madrid, Spain
| | - Águeda Ferrer-Donato
- Neurometabolism Group, Research Unit of the National Hospital of Paraplegics (UDI-HNP), Finca La Peraleda s/n, 45071 Toledo, Spain
| | - José M Méndez-Arriaga
- COMET-NANO Group, Departamento de Biología y Geología, Física y Química Inorgánica, E.S.C.E.T., Universidad Rey Juan Carlos, Calle Tulipán s/n, E-28933 Móstoles, Madrid, Spain
| | - Marta Cabrera-Pinto
- Neurometabolism Group, Research Unit of the National Hospital of Paraplegics (UDI-HNP), Finca La Peraleda s/n, 45071 Toledo, Spain
| | - Miguel Díaz-Sánchez
- COMET-NANO Group, Departamento de Biología y Geología, Física y Química Inorgánica, E.S.C.E.T., Universidad Rey Juan Carlos, Calle Tulipán s/n, E-28933 Móstoles, Madrid, Spain
| | - Sanjiv Prashar
- COMET-NANO Group, Departamento de Biología y Geología, Física y Química Inorgánica, E.S.C.E.T., Universidad Rey Juan Carlos, Calle Tulipán s/n, E-28933 Móstoles, Madrid, Spain
| | - Carmen M Fernandez-Martos
- Neurometabolism Group, Research Unit of the National Hospital of Paraplegics (UDI-HNP), Finca La Peraleda s/n, 45071 Toledo, Spain.,Wicking Dementia Research and Education Centre, College of Health and Medicine, University of Tasmania, Hobart, Tasmania 7005, Australia
| | - Santiago Gómez-Ruiz
- COMET-NANO Group, Departamento de Biología y Geología, Física y Química Inorgánica, E.S.C.E.T., Universidad Rey Juan Carlos, Calle Tulipán s/n, E-28933 Móstoles, Madrid, Spain
| |
Collapse
|
14
|
Kershner M, Askren AN. It's not only swallowing: a clinician primer to adult food refusal beyond dysphagia. Curr Opin Otolaryngol Head Neck Surg 2022; 30:194-197. [PMID: 35143423 DOI: 10.1097/moo.0000000000000798] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
PURPOSE OF REVIEW Medical teams are frequently faced with challenging clinical scenarios when their patients exhibit reduced intake of food and drink. Speech-language pathologists, who serve as oropharyngeal swallowing specialists in medical settings, are frequently the first to be summoned with the referral, 'Poor PO intake. Please evaluate and treat.' As our practices have illuminated, many differentials other than oropharyngeal dysphagia are often at play. RECENT FINDINGS Changes to taste, salivary supply/dry mouth, hunger drive, and psychosocial circumstances will significantly impact intake per os - each scenario to be explored further in this paper. Consequences to diminished nutrition and hydration include medical complications, lengthier hospital stays, and diminished quality of life. SUMMARY In this review, two medical speech-language pathologists detail more common alternative diagnoses that explain reduced intake by mouth amongst adults with acute and chronic diseases. Ultimately, a multidisciplinary approach should be considered when evaluating such patients to ensure a comprehensive and effective care plan.
Collapse
Affiliation(s)
- Marnie Kershner
- MedStar National Rehabilitation Hospital, Washington, District of Columbia
| | - Annette N Askren
- VA Puget Sound Healthcare System, Seattle, WA, USA, West Virginia University School of Medicine, Morgantown, WV, USA
| |
Collapse
|
15
|
Li JY, Cui LY, Sun XH, Shen DC, Yang XZ, Liu Q, Liu MS. Alterations in metabolic biomarkers and their potential role in amyotrophic lateral sclerosis. Ann Clin Transl Neurol 2022; 9:1027-1038. [PMID: 35584112 PMCID: PMC9268864 DOI: 10.1002/acn3.51580] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2022] [Revised: 05/05/2022] [Accepted: 05/06/2022] [Indexed: 12/14/2022] Open
Abstract
Background Metabolic dysfunction has been suggested to be involved in the pathophysiology of amyotrophic lateral sclerosis (ALS). This study aimed to investigate the potential role of metabolic biomarkers in the progression of ALS and understand the possible metabolic mechanisms. Methods Fifty‐two patients with ALS and 24 normal controls were included, and blood samples were collected for analysis of metabolic biomarkers. Basal anthropometric measures, including body composition and clinical features, were measured in ALS patients. The disease progression rate was calculated using the revised ALS functional rating scale (ALSFRS‐R) during the 6‐month follow‐up. Results ALS patients had higher levels of adipokines (adiponectin, adipsin, resistin, and visfatin) and other metabolic biomarkers [C‐peptide, glucagon, glucagon‐like peptide 1 (GLP‐1), gastric inhibitory peptide, and plasminogen activator inhibitor type 1] than controls. Leptin levels in serum were positively correlated with body mass index, body fat, and visceral fat index (VFI). Adiponectin was positively correlated with the VFI and showed a positive correlation with the ALSFRS‐R and a negative correlation with baseline disease progression. Patients with lower body fat, VFI, and fat in limbs showed faster disease progression during follow‐ups. Lower leptin and adiponectin levels were correlated with faster disease progression. After adjusting for confounders, lower adiponectin levels and higher visfatin levels were independently correlated with faster disease progression. Interpretation The current study found altered levels of metabolic biomarkers in ALS patients, which may play a role in ALS pathogenesis. Adiponectin and visfatin represent potential biomarkers for prediction of disease progression in ALS.
Collapse
Affiliation(s)
- Jin-Yue Li
- Department of Neurology, Peking Union Medical College Hospital, Chinese Academy of Medical Science & Peking Union Medical College, Beijing, China
| | - Li-Ying Cui
- Department of Neurology, Peking Union Medical College Hospital, Chinese Academy of Medical Science & Peking Union Medical College, Beijing, China.,Neuroscience Center, Chinese Academy of Medical Sciences, Beijing, 100730, China
| | - Xiao-Han Sun
- Department of Neurology, Peking Union Medical College Hospital, Chinese Academy of Medical Science & Peking Union Medical College, Beijing, China
| | - Dong-Chao Shen
- Department of Neurology, Peking Union Medical College Hospital, Chinese Academy of Medical Science & Peking Union Medical College, Beijing, China
| | - Xun-Zhe Yang
- Department of Neurology, Peking Union Medical College Hospital, Chinese Academy of Medical Science & Peking Union Medical College, Beijing, China
| | - Qing Liu
- Department of Neurology, Peking Union Medical College Hospital, Chinese Academy of Medical Science & Peking Union Medical College, Beijing, China
| | - Ming-Sheng Liu
- Department of Neurology, Peking Union Medical College Hospital, Chinese Academy of Medical Science & Peking Union Medical College, Beijing, China
| |
Collapse
|
16
|
Ferrer-Donato A, Contreras A, Fernandez P, Fernandez-Martos CM. The potential benefit of leptin therapy against amyotrophic lateral sclerosis (ALS). Brain Behav 2022; 12:e2465. [PMID: 34935299 PMCID: PMC8785645 DOI: 10.1002/brb3.2465] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/02/2021] [Revised: 11/02/2021] [Accepted: 11/15/2021] [Indexed: 11/28/2022] Open
Abstract
BACKGROUND Targeting leptin could represent a rational strategy to treat amyotrophic lateral sclerosis (ALS), as previously clinical studies have shown its levels to be associated with a lower risk of ALS disease. However, very little is known about the potential influence of leptin in altering disease progression in ALS, as it has thus far been correlated with the protection exerted by increased fat mass stores. METHODS We studied the impact of leptin treatment beginning at 42-days of age (asymptomatic stage of disease) in the TDP-43 (TDP43A315T ) transgenic (Tg) ALS mouse model. RESULTS Our study shows that leptin treatment was associated with altered expression of adipokines and metabolic proteins in TDP43A315T mice. We also observed that weight loss decline was less prominent after leptin treatment in TDP43A315T mice relative to vehicle-treated animals. In TDP43A315T mice treated with leptin the disease duration lasted longer along with an improvement in motor performance relative to vehicle-treated animals. CONCLUSIONS Collectively, our results support leptin as a potential novel treatment approach for ALS.
Collapse
Affiliation(s)
- Agueda Ferrer-Donato
- Neurometabolism Research Lab., Hospital Nacional de Paraplejicos, SESCAM, Toledo, Spain
| | - Ana Contreras
- Centro de Investigación en Salud (CEINSA), Universidad de Almería, Almería, Spain
| | - Paloma Fernandez
- Institute of Applied Molecular Medicine (IMMA), Faculty of Medicine, Universidad San Pablo CEU, Madrid, Spain
| | - Carmen M Fernandez-Martos
- Neurometabolism Research Lab., Hospital Nacional de Paraplejicos, SESCAM, Toledo, Spain.,Wicking Dementia Research and Education Centre, College of Health and Medicine, University of Tasmania, Hobart, Australia
| |
Collapse
|
17
|
Liu E, Karpf L, Bohl D. Neuroinflammation in Amyotrophic Lateral Sclerosis and Frontotemporal Dementia and the Interest of Induced Pluripotent Stem Cells to Study Immune Cells Interactions With Neurons. Front Mol Neurosci 2022; 14:767041. [PMID: 34970118 PMCID: PMC8712677 DOI: 10.3389/fnmol.2021.767041] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2021] [Accepted: 11/16/2021] [Indexed: 12/14/2022] Open
Abstract
Inflammation is a shared hallmark between amyotrophic lateral sclerosis (ALS) and frontotemporal dementia (FTD). For long, studies were conducted on tissues of post-mortem patients and neuroinflammation was thought to be only bystander result of the disease with the immune system reacting to dying neurons. In the last two decades, thanks to improving technologies, the identification of causal genes and the development of new tools and models, the involvement of inflammation has emerged as a potential driver of the diseases and evolved as a new area of intense research. In this review, we present the current knowledge about neuroinflammation in ALS, ALS-FTD, and FTD patients and animal models and we discuss reasons of failures linked to therapeutic trials with immunomodulator drugs. Then we present the induced pluripotent stem cell (iPSC) technology and its interest as a new tool to have a better immunopathological comprehension of both diseases in a human context. The iPSC technology giving the unique opportunity to study cells across differentiation and maturation times, brings the hope to shed light on the different mechanisms linking neurodegeneration and activation of the immune system. Protocols available to differentiate iPSC into different immune cell types are presented. Finally, we discuss the interest in studying monocultures of iPS-derived immune cells, co-cultures with neurons and 3D cultures with different cell types, as more integrated cellular approaches. The hope is that the future work with human iPS-derived cells helps not only to identify disease-specific defects in the different cell types but also to decipher the synergistic effects between neurons and immune cells. These new cellular tools could help to find new therapeutic approaches for all patients with ALS, ALS-FTD, and FTD.
Collapse
Affiliation(s)
- Elise Liu
- Sorbonne Université, Institut du Cerveau - Paris Brain Institute - ICM, INSERM, CNRS, AP-HP, Hôpital de la Pitié-Salpêtrière, Paris, France
| | - Léa Karpf
- Sorbonne Université, Institut du Cerveau - Paris Brain Institute - ICM, INSERM, CNRS, AP-HP, Hôpital de la Pitié-Salpêtrière, Paris, France
| | - Delphine Bohl
- Sorbonne Université, Institut du Cerveau - Paris Brain Institute - ICM, INSERM, CNRS, AP-HP, Hôpital de la Pitié-Salpêtrière, Paris, France
| |
Collapse
|
18
|
Nagaoka U, Shimizu T, Uchihara T, Komori T, Hosoda H, Takahashi K. Decreased plasma ghrelin in male ALS patients is associated with poor prognosis. Neurosci Res 2021; 177:111-117. [PMID: 34823917 DOI: 10.1016/j.neures.2021.11.003] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2021] [Revised: 11/12/2021] [Accepted: 11/15/2021] [Indexed: 11/19/2022]
Abstract
Physiological changes including altered nutritional status influence disease progression and survival in patients with amyotrophic lateral sclerosis (ALS). Ghrelin affects the nutritional status by regulating appetite and energy expenditure, and also has neuroprotective effects. To investigate the association between ghrelin and ALS prognosis, we analyzed plasma acylated-ghrelin levels in 33 patients with ALS. Compared among ALS patients, male had lower plasma ghrelin levels than female, although disease specificity is unknown. ALS patients, especially male ALS patients, with low plasma ghrelin levels (<15 fmol/mL) had significantly shorter post-examination survival times than those with high plasma ghrelin levels (≥15 fmol/mL). Univariate and multivariate analyses revealed a significant effect of ghrelin levels on post-examination survival. Immunohistochemical study of autopsied stomach samples from 8 of 33 patients revealed that the population of ghrelin-positive cells tended to be reduced in the low-plasma ghrelin group than in the high-plasma ghrelin group. Our findings suggest that ghrelin levels are an independent predictor of survival in ALS, especially male ALS patients, and the ghrelin-positive cells may decrease in ALS with low plasma ghrelin. Thus, reduced ghrelin secretion may be associated with poor prognosis among patients with ALS.
Collapse
Affiliation(s)
- Utako Nagaoka
- Department of Neurology, Tokyo Metropolitan Neurological Hospital, Tokyo, 183-0042, Japan.
| | - Toshio Shimizu
- Department of Neurology, Tokyo Metropolitan Neurological Hospital, Tokyo, 183-0042, Japan
| | - Toshiki Uchihara
- Laboratory of Structural Neuropathology, Tokyo Metropolitan Institute of Medical Science, Tokyo, 156-8506, Japan; Department of Neurology, Nitobe Memorial Nakano General Hospital, Tokyo, 164-8607, Japan
| | - Takashi Komori
- Laboratory Medicine and Pathology, Tokyo Metropolitan Neurological Hospital, Tokyo, 183-0042, Japan
| | - Hiroshi Hosoda
- Department of Regenerative Medicine and Tissue Engineering, National Cerebral and Cardiovascular Center Research Institute, Osaka, 564-8565, Japan
| | - Kazushi Takahashi
- Department of Neurology, Tokyo Metropolitan Neurological Hospital, Tokyo, 183-0042, Japan
| |
Collapse
|
19
|
Alterations in Leptin Signaling in Amyotrophic Lateral Sclerosis (ALS). Int J Mol Sci 2021; 22:ijms221910305. [PMID: 34638645 PMCID: PMC8508891 DOI: 10.3390/ijms221910305] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2021] [Revised: 09/21/2021] [Accepted: 09/21/2021] [Indexed: 02/07/2023] Open
Abstract
Leptin has been suggested to play a role in amyotrophic lateral sclerosis (ALS), a fatal progressive neurodegenerative disease. This adipokine has previously been shown to be associated with a lower risk of ALS and to confer a survival advantage in ALS patients. However, the role of leptin in the progression of ALS is unknown. Indeed, our understanding of the mechanisms underlying leptin's effects in the pathogenesis of ALS is very limited, and it is fundamental to determine whether alterations in leptin's actions take place in this neurodegenerative disease. To characterize the association between leptin signaling and the clinical course of ALS, we assessed the mRNA and protein expression profiles of leptin, the long-form of the leptin receptor (Ob-Rb), and leptin-related signaling pathways at two different stages of the disease (onset and end-stage) in TDP-43A315T mice compared to age-matched WT littermates. In addition, at selected time-points, an immunoassay analysis was conducted to characterize plasma levels of total ghrelin, the adipokines resistin and leptin, and metabolic proteins (plasminogen activator inhibitor type 1 (PAI-1), gastric inhibitory peptide (GIP), glucagon-like peptide 1 (GLP-1), insulin and glucagon) in TDP-43A315T mice compared to WT controls. Our results indicate alterations in leptin signaling in the spinal cord and the hypothalamus on the backdrop of TDP-43-induced deficits in mice, providing new evidence about the pathways that could link leptin signaling to ALS.
Collapse
|
20
|
Dekens DW, Eisel ULM, Gouweleeuw L, Schoemaker RG, De Deyn PP, Naudé PJW. Lipocalin 2 as a link between ageing, risk factor conditions and age-related brain diseases. Ageing Res Rev 2021; 70:101414. [PMID: 34325073 DOI: 10.1016/j.arr.2021.101414] [Citation(s) in RCA: 43] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2021] [Revised: 07/19/2021] [Accepted: 07/20/2021] [Indexed: 12/12/2022]
Abstract
Chronic (neuro)inflammation plays an important role in many age-related central nervous system (CNS) diseases, including Alzheimer's disease, Parkinson's disease and vascular dementia. Inflammation also characterizes many conditions that form a risk factor for these CNS disorders, such as physical inactivity, obesity and cardiovascular disease. Lipocalin 2 (Lcn2) is an inflammatory protein shown to be involved in different age-related CNS diseases, as well as risk factor conditions thereof. Lcn2 expression is increased in the periphery and the brain in different age-related CNS diseases and also their risk factor conditions. Experimental studies indicate that Lcn2 contributes to various neuropathophysiological processes of age-related CNS diseases, including exacerbated neuroinflammation, cell death and iron dysregulation, which may negatively impact cognitive function. We hypothesize that increased Lcn2 levels as a result of age-related risk factor conditions may sensitize the brain and increase the risk to develop age-related CNS diseases. In this review we first provide a comprehensive overview of the known functions of Lcn2, and its effects in the CNS. Subsequently, this review explores Lcn2 as a potential (neuro)inflammatory link between different risk factor conditions and the development of age-related CNS disorders. Altogether, evidence convincingly indicates Lcn2 as a key constituent in ageing and age-related brain diseases.
Collapse
Affiliation(s)
- Doortje W Dekens
- Department of Neurology and Alzheimer Center Groningen, University Medical Center Groningen, University of Groningen, Groningen, the Netherlands; Department of Molecular Neurobiology, Groningen Institute for Evolutionary Life Sciences (GELIFES), University of Groningen, Groningen, the Netherlands
| | - Ulrich L M Eisel
- Department of Molecular Neurobiology, Groningen Institute for Evolutionary Life Sciences (GELIFES), University of Groningen, Groningen, the Netherlands
| | - Leonie Gouweleeuw
- Department of Molecular Neurobiology, Groningen Institute for Evolutionary Life Sciences (GELIFES), University of Groningen, Groningen, the Netherlands
| | - Regien G Schoemaker
- Department of Molecular Neurobiology, Groningen Institute for Evolutionary Life Sciences (GELIFES), University of Groningen, Groningen, the Netherlands
| | - Peter P De Deyn
- Department of Neurology and Alzheimer Center Groningen, University Medical Center Groningen, University of Groningen, Groningen, the Netherlands; Laboratory of Neurochemistry and Behaviour, Biobank, Institute Born-Bunge, University of Antwerp, Antwerp, Belgium
| | - Petrus J W Naudé
- Department of Neurology and Alzheimer Center Groningen, University Medical Center Groningen, University of Groningen, Groningen, the Netherlands; Department of Molecular Neurobiology, Groningen Institute for Evolutionary Life Sciences (GELIFES), University of Groningen, Groningen, the Netherlands; Department of Psychiatry and Mental Health and Neuroscience Institute, Brain Behaviour Unit, University of Cape Town, Cape Town, South Africa.
| |
Collapse
|
21
|
Nash Y, Sitty M. Non-Motor Symptoms of Amyotrophic Lateral Sclerosis: A Multi-Faceted Disorder. J Neuromuscul Dis 2021; 8:699-713. [PMID: 34024773 DOI: 10.3233/jnd-210632] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Amyotrophic Lateral Sclerosis (ALS) is a fatal neurodegenerative disease characterized by progressive degeneration of motor pathways. A growing body of evidence from recent years suggests that ALS results in a wide range of non-motor symptoms as well, which can have a significant impact on patients' quality of life. These symptoms could also, in turn, provide useful information as biomarkers for disease progression, and can shed insight on ALS mechanisms. Here we aim to review a wide range of non-motor symptoms of ALS, with emphasis on their importance to research and clinical treatment of patients.
Collapse
Affiliation(s)
- Yuval Nash
- Tel Aviv Youth University, The Jaime and Joan Constantiner School of Education, Tel Aviv University, Tel Aviv, Israel
| | - Michal Sitty
- Clalit Health Services, Kiryat Ono, Israel.,Department of Family Medicine, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| |
Collapse
|
22
|
Spiridon IA, Ciobanu DGA, Giușcă SE, Căruntu ID. Ghrelin and its role in gastrointestinal tract tumors (Review). Mol Med Rep 2021; 24:663. [PMID: 34296307 PMCID: PMC8335721 DOI: 10.3892/mmr.2021.12302] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2021] [Accepted: 06/23/2021] [Indexed: 12/13/2022] Open
Abstract
Ghrelin, an orexigenic hormone, is a peptide that binds to the growth hormone secretagogue receptor; it is secreted mainly by enteroendocrine cells in the oxyntic glands of the stomach. Ghrelin serves a role in both local and systemic physiological processes, and is implicated in various pathologies, including neoplasia, with tissue expression in several types of malignancies in both in vitro and in vivo studies. However, the precise implications of the ghrelin axis in metastasis, invasion and cancer progression regulation has yet to be established. In the case of gastrointestinal (GI) tract malignancies, ghrelin has shown potential to become a prognostic factor or even a therapeutic target, although data in the literature are inconsistent and unsystematic, with reports untailored to a specific histological subtype of cancer or a particular localization. The evaluation of immunohistochemical expression shows a limited outlook owing to the low number of cases analyzed, and in vivo analyses have conflicting data regarding differences in ghrelin serum levels in patients with cancer. The aim of this review was to examine the relationship between ghrelin and GI tract malignancies to demonstrate the inconsistencies in current results and to highlight its clinical significance in the outcome of these patients.
Collapse
Affiliation(s)
- Irene Alexandra Spiridon
- Department of Pathology, 'Grigore T. Popa' University of Medicine and Pharmacy, Iași 700115, Romania
| | | | - Simona Eliza Giușcă
- Department of Pathology, 'Grigore T. Popa' University of Medicine and Pharmacy, Iași 700115, Romania
| | - Irina Draga Căruntu
- Department of Histology, 'Grigore T. Popa' University of Medicine and Pharmacy, Iași 700115, Romania
| |
Collapse
|
23
|
McDonald TS, Kumar V, Fung JN, Woodruff TM, Lee JD. Glucose clearance and uptake is increased in the SOD1 G93A mouse model of amyotrophic lateral sclerosis through an insulin-independent mechanism. FASEB J 2021; 35:e21707. [PMID: 34118098 DOI: 10.1096/fj.202002450r] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2020] [Revised: 04/27/2021] [Accepted: 05/17/2021] [Indexed: 12/25/2022]
Abstract
Metabolic disturbances are associated with the progression of the neurodegenerative disorder, amyotrophic lateral sclerosis (ALS). However, the molecular events that drive energy imbalances in ALS are not completely understood. In this study, we aimed to elucidate deficits in energy homeostasis in the SOD1G93A mouse model of ALS. SOD1G93A mice and their wild-type littermates underwent indirect calorimetry and intraperitoneal glucose/insulin tolerance tests at both the onset and mid-symptomatic stages of the disease. Glucose uptake and the plasma glucoregulatory hormone profiles were analyzed. Pancreatic islet cell mass and function were assessed by measuring hormone concentrations and secretion in isolated islets, and pancreatic α- and β-cell immunoreactive areas. Finally, we profiled liver glycogen metabolism by measuring glucagon concentrations and liver metabolic gene expressions. We identified that mid-symptomatic SOD1G93A mice have increased oxygen consumption and faster exogenous glucose uptake, despite presenting with normal insulin tolerance. The capacity for pancreatic islets to secrete insulin appears intact, however, islet cell insulin concentrations and β-cell mass were reduced. Fasting glucose homeostasis was also disturbed, along with increased liver glycogen stores, despite elevated circulating glucagon, suggesting that glucagon signaling is impaired. Metabolic gene expression profiling of livers indicated that glucose cannot be utilized efficiently in SOD1G93A mice. Overall, we demonstrate that glucose homeostasis and uptake are altered in SOD1G93A mice, which is linked to an increase in insulin-independent glucose uptake, and a loss of β-cells, insulin production, and glucagon sensitivity. This suggests that the hormonal regulation of glucose concentrations may contribute to the progression of disease in this ALS mouse model.
Collapse
Affiliation(s)
- Tanya S McDonald
- School of Biomedical Sciences, The University of Queensland, St Lucia, Brisbane, QLD, Australia
| | - Vinod Kumar
- School of Biomedical Sciences, The University of Queensland, St Lucia, Brisbane, QLD, Australia
| | - Jenny N Fung
- School of Biomedical Sciences, The University of Queensland, St Lucia, Brisbane, QLD, Australia
| | - Trent M Woodruff
- School of Biomedical Sciences, The University of Queensland, St Lucia, Brisbane, QLD, Australia.,Queensland Brain Institute, The University of Queensland, St Lucia, Brisbane, QLD, Australia
| | - John D Lee
- School of Biomedical Sciences, The University of Queensland, St Lucia, Brisbane, QLD, Australia
| |
Collapse
|
24
|
Skeletal Muscle Metabolism: Origin or Prognostic Factor for Amyotrophic Lateral Sclerosis (ALS) Development? Cells 2021; 10:cells10061449. [PMID: 34207859 PMCID: PMC8226541 DOI: 10.3390/cells10061449] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2021] [Revised: 06/03/2021] [Accepted: 06/07/2021] [Indexed: 12/26/2022] Open
Abstract
Amyotrophic lateral sclerosis (ALS) is a fatal neurodegenerative disease characterized by progressive and selective loss of motor neurons, amyotrophy and skeletal muscle paralysis usually leading to death due to respiratory failure. While generally considered an intrinsic motor neuron disease, data obtained in recent years, including our own, suggest that motor neuron protection is not sufficient to counter the disease. The dismantling of the neuromuscular junction is closely linked to chronic energy deficit found throughout the body. Metabolic (hypermetabolism and dyslipidemia) and mitochondrial alterations described in patients and murine models of ALS are associated with the development and progression of disease pathology and they appear long before motor neurons die. It is clear that these metabolic changes participate in the pathology of the disease. In this review, we summarize these changes seen throughout the course of the disease, and the subsequent impact of glucose–fatty acid oxidation imbalance on disease progression. We also highlight studies that show that correcting this loss of metabolic flexibility should now be considered a major goal for the treatment of ALS.
Collapse
|
25
|
Metabolic Dysfunction in Spinal Muscular Atrophy. Int J Mol Sci 2021; 22:ijms22115913. [PMID: 34072857 PMCID: PMC8198411 DOI: 10.3390/ijms22115913] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2021] [Revised: 05/25/2021] [Accepted: 05/29/2021] [Indexed: 12/11/2022] Open
Abstract
Spinal muscular atrophy (SMA) is an autosomal recessive genetic disorder leading to paralysis, muscle atrophy, and death. Significant advances in antisense oligonucleotide treatment and gene therapy have made it possible for SMA patients to benefit from improvements in many aspects of the once devastating natural history of the disease. How the depletion of survival motor neuron (SMN) protein, the product of the gene implicated in the disease, leads to the consequent pathogenic changes remains unresolved. Over the past few years, evidence toward a potential contribution of gastrointestinal, metabolic, and endocrine defects to disease phenotype has surfaced. These findings ranged from disrupted body composition, gastrointestinal tract, fatty acid, glucose, amino acid, and hormonal regulation. Together, these changes could have a meaningful clinical impact on disease traits. However, it is currently unclear whether these findings are secondary to widespread denervation or unique to the SMA phenotype. This review provides an in-depth account of metabolism-related research available to date, with a discussion of unique features compared to other motor neuron and related disorders.
Collapse
|
26
|
Guidotti G, Scarlata C, Brambilla L, Rossi D. Tumor Necrosis Factor Alpha in Amyotrophic Lateral Sclerosis: Friend or Foe? Cells 2021; 10:cells10030518. [PMID: 33804386 PMCID: PMC8000008 DOI: 10.3390/cells10030518] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2020] [Revised: 02/15/2021] [Accepted: 02/23/2021] [Indexed: 12/11/2022] Open
Abstract
Amyotrophic lateral sclerosis (ALS) is a fatal neurodegenerative disease characterized by a massive neuroinflammatory reaction, which plays a key role in the progression of the disease. One of the major mediators of the inflammatory response is the pleiotropic cytokine tumor necrosis factor α (TNFα), mainly released within the central nervous system (CNS) by reactive astrocytes and microglia. Increased levels of TNFα and its receptors (TNFR1 and TNFR2) have been described in plasma, serum, cerebrospinal fluid and CNS tissue from both ALS patients and transgenic animal models of disease. However, the precise role exerted by TNFα in the context of ALS is still highly controversial, since both protective and detrimental functions have been reported. These opposing actions depend on multiple factors, among which includes the type of TNFα receptor activated. In fact, TNFR2 seems to mediate a harmful role being involved in motor neuron cell death, whereas TNFR1 signaling mediates neuroprotective effects, promoting the expression and secretion of trophic factors. This suggests that a better understanding of the cytokine impact on ALS progression may enable the development of effective therapies aimed at strengthening the protective roles of TNFα and at suppressing the detrimental ones.
Collapse
|
27
|
Casani-Cubel J, Benlloch M, Sanchis-Sanchis CE, Marin R, Lajara-Romance JM, de la Rubia Orti JE. The Impact of Microbiota on the Pathogenesis of Amyotrophic Lateral Sclerosis and the Possible Benefits of Polyphenols. An Overview. Metabolites 2021; 11:120. [PMID: 33672485 PMCID: PMC7923408 DOI: 10.3390/metabo11020120] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2021] [Revised: 02/14/2021] [Accepted: 02/17/2021] [Indexed: 12/11/2022] Open
Abstract
The relationship between gut microbiota and neurodegenerative diseases is becoming clearer. Among said diseases amyotrophic lateral sclerosis (ALS) stands out due to its severity and, as with other chronic pathologies that cause neurodegeneration, gut microbiota could play a fundamental role in its pathogenesis. Therefore, polyphenols could be a therapeutic alternative due to their anti-inflammatory action and probiotic effect. Thus, the objective of our narrative review was to identify those bacteria that could have connection with the mentioned disease (ALS) and to analyze the benefits produced by administering polyphenols. Therefore, an extensive search was carried out selecting the most relevant articles published between 2005 and 2020 on the PubMed and EBSCO database on research carried out on cell, animal and human models of the disease. Thereby, after selecting, analyzing and debating the main articles on this topic, the bacteria related to the pathogenesis of ALS have been identified, among which we can positively highlight the presence mainly of Akkermansia muciniphila, but also Lactobacillus spp., Bifidobacterium spp. or Butyrivibrio fibrisolvens. Nevertheless, the presence of Escherichia coli or Ruminococcus torques stand out negatively for the disease. In addition, most of these bacteria are associated with molecular changes also linked to the pathogenesis of ALS. However, once the main polyphenols related to improvements in any of these three ALS models were assessed, many of them show positive results that could improve the prognosis of the disease. Nonetheless, epigallocatechin gallate (EGCG), curcumin and resveratrol are the polyphenols considered to show the most promising results as a therapeutic alternative for ALS through changes in microbiota.
Collapse
Affiliation(s)
- Julia Casani-Cubel
- Doctoral Degree School, Catholic University of Valencia San Vicente Mártir, 46001 Valencia, Spain;
| | - María Benlloch
- Department of Health Science, Catholic University San Vicente Mártir, 46001 Valencia, Spain;
| | | | - Raquel Marin
- Laboratory of Cellular Neurobiology, School of Medicine, Faculty of Health Sciences, University of La Laguna, 38190 Tenerife, Spain;
| | | | | |
Collapse
|
28
|
Ngo ST, Wang H, Henderson RD, Bowers C, Steyn FJ. Ghrelin as a treatment for amyotrophic lateral sclerosis. J Neuroendocrinol 2021; 33:e12938. [PMID: 33512025 DOI: 10.1111/jne.12938] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/08/2020] [Revised: 01/04/2021] [Accepted: 01/06/2021] [Indexed: 12/27/2022]
Abstract
Ghrelin is a gut hormone best known for its role in regulating appetite and stimulating the secretion of the anabolic hormone growth hormone (GH). However, there is considerable evidence to show wider-ranging biological actions of ghrelin that favour improvements in cellular and systemic metabolism, as well as neuroprotection. Activation of these ghrelin-mediated pathways may alleviate pathogenic processes that are assumed to contribute to accelerated progression of disease in patients with neurodegenerative disease. Here, we provide a brief overview on the history of discoveries that led to the identification of ghrelin. Focussing on the neurodegenerative disease amyotrophic lateral sclerosis (ALS), we also present an overview of emerging evidence that suggests that ghrelin and ghrelin mimetics may serve as potential therapies for the treatment of ALS. Given that ALS is a highly heterogeneous disease, where multiple disease mechanisms contribute to variability in disease onset and rate of disease progression, we speculate that the wide-ranging biological actions of ghrelin might offer therapeutic benefit through modulating multiple disease-relevant processes observed in ALS. Expanding on the well-known actions of ghrelin in regulating food intake and GH secretion, we consider the potential of ghrelin-mediated pathways in improving body weight regulation, metabolism and the anabolic and neuroprotective actions of GH and insulin-like growth factor-1 (IGF-1). This is of clinical significance because loss of body weight, impairments in systemic and cellular metabolism, and reductions in IGF-1 are associated with faster disease progression and worse disease outcome in patients with ALS.
Collapse
Affiliation(s)
- Shyuan T Ngo
- Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, Brisbane, QLD, Australia
- Department of Neurology, Royal Brisbane and Women's Hospital, Brisbane, QLD, Australia
- Centre for Clinical Research, The University of Queensland, Brisbane, QLD, Australia
| | - Hao Wang
- Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, Brisbane, QLD, Australia
| | - Robert D Henderson
- Department of Neurology, Royal Brisbane and Women's Hospital, Brisbane, QLD, Australia
- Centre for Clinical Research, The University of Queensland, Brisbane, QLD, Australia
| | - Cyril Bowers
- Department of Internal Medicine, Tulane University Health Sciences Centre, New Orleans, LA, USA
| | - Frederik J Steyn
- Department of Neurology, Royal Brisbane and Women's Hospital, Brisbane, QLD, Australia
- Centre for Clinical Research, The University of Queensland, Brisbane, QLD, Australia
- School of Biomedical Sciences, The University of Queensland, Brisbane, QLD, Australia
| |
Collapse
|
29
|
Ahmed RM, Steyn F, Dupuis L. Hypothalamus and weight loss in amyotrophic lateral sclerosis. HANDBOOK OF CLINICAL NEUROLOGY 2021; 180:327-338. [PMID: 34225938 DOI: 10.1016/b978-0-12-820107-7.00020-3] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Amyotrophic lateral sclerosis (ALS) is a devastating progressive neurodegenerative disorder. While initially pathophysiology was thought to be restricted to motor deficits, it is increasingly recognized that patients develop prominent changes in weight and eating behavior that result from and mediate the underlying neurodegenerative process. These changes include alterations in metabolism, lipid levels, and insulin resistance. Emerging research suggests that these alterations may be mediated through changes in the hypothalamic function, with atrophy of the hypothalamus shown in both ALS patients and also presymptomatic genetic at-risk patients. This chapter reviews the evidence for hypothalamic involvement in ALS, including melanocortin pathways and potential treatment targets.
Collapse
Affiliation(s)
- Rebekah M Ahmed
- Memory and Cognition Clinic, Department of Clinical Neurosciences, Royal Prince Alfred Hospital, Sydney, NSW, Australia; Central Sydney Medical School and Brain & Mind Centre, Faculty of Medicine and Health, University of Sydney, Sydney, NSW, Australia
| | - Frederik Steyn
- School of Biomedical Sciences, University of Queensland, Brisbane, QLD, Australia; Department of Neurology, Royal Brisbane & Women's Hospital, Brisbane, QLD, Australia
| | - Luc Dupuis
- Université de Strasbourg, Inserm, UMR-S 1118, Centre de Recherches en Biomédecine, Strasbourg, France.
| |
Collapse
|
30
|
Carter GT, McLaughlin RJ, Cuttler C, Sauber GJ, Weeks DL, Hillard CJ, Weiss MD. Endocannabinoids and related lipids in serum from patients with amyotrophic lateral sclerosis. Muscle Nerve 2020; 63:120-126. [PMID: 33094490 DOI: 10.1002/mus.27096] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2020] [Revised: 10/09/2020] [Accepted: 10/18/2020] [Indexed: 12/11/2022]
Abstract
BACKGROUND The goals of this study were to determine whether serum concentrations of endocannabinoids (eCB) and related lipids predict disease status in patients with amyotrophic lateral sclerosis (ALS) relative to healthy controls, and whether concentrations correlate with disease duration and severity. METHODS Serum concentrations of the eCBs 2-arachidonoylglycerol (2-AG) and N-arachidonoylethanolamine (AEA), and related lipids palmitoylethanolamine (PEA), oleoylethanolamine (OEA), and 2-oleoylglycerol (2-OG), were measured in samples from 47 patients with ALS and 19 healthy adults. Hierarchical binary logistic and linear regression analyses assessed whether lipid concentrations predicted disease status (ALS or healthy control), duration, or severity. RESULTS Binary logistic regression revealed that, after controlling for age and gender, 2-AG, 2-OG and AEA concentrations were unique predictors of the presence of ALS, demonstrating odds ratios of 0.86 (P = .039), 1.03 (P = .023), and 42.17 (P = .026), respectively. When all five lipids and covariates (age, sex, race, ethnicity, body mass index, presence of a feeding tube) were included, the resulting model had an overall classification accuracy of 92.9%. Hierarchical linear regression analyses indicated that in patients with ALS, AEA and OEA inversely correlated with disease duration (P = .030 and .031 respectively), while PEA demonstrated a positive relationship with disease duration (P = .013). None of the lipids examined predicted disease severity. CONCLUSIONS These findings support previous studies indicating significant alterations in concentrations of circulating lipids in patients with ALS. They suggest that arachidonic and oleic acid containing small lipids may serve as biomarkers for identifying the presence and duration of this disease.
Collapse
Affiliation(s)
| | - Ryan J McLaughlin
- Department of Integrative Physiology & Neuroscience, College of Veterinary Medicine, Washington State University, Pullman, Washington, USA
| | - Carrie Cuttler
- Department of Psychology, Washington State University, Pullman, Washington, USA
| | - Garrett J Sauber
- Department of Pharmacology and Toxicology, Neuroscience Research Center, Medical College of Wisconsin, Milwaukee, Wisconsin, USA
| | - Douglas L Weeks
- St. Luke's Rehabilitation Institute, Spokane, Washington, USA
| | - Cecilia J Hillard
- Department of Pharmacology and Toxicology, Neuroscience Research Center, Medical College of Wisconsin, Milwaukee, Wisconsin, USA
| | - Michael D Weiss
- Department of Neurology, University of Washington School of Medicine, Seattle, Washington, USA
| |
Collapse
|
31
|
Cunnane SC, Trushina E, Morland C, Prigione A, Casadesus G, Andrews ZB, Beal MF, Bergersen LH, Brinton RD, de la Monte S, Eckert A, Harvey J, Jeggo R, Jhamandas JH, Kann O, la Cour CM, Martin WF, Mithieux G, Moreira PI, Murphy MP, Nave KA, Nuriel T, Oliet SHR, Saudou F, Mattson MP, Swerdlow RH, Millan MJ. Brain energy rescue: an emerging therapeutic concept for neurodegenerative disorders of ageing. Nat Rev Drug Discov 2020; 19:609-633. [PMID: 32709961 PMCID: PMC7948516 DOI: 10.1038/s41573-020-0072-x] [Citation(s) in RCA: 466] [Impact Index Per Article: 116.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/03/2020] [Indexed: 12/11/2022]
Abstract
The brain requires a continuous supply of energy in the form of ATP, most of which is produced from glucose by oxidative phosphorylation in mitochondria, complemented by aerobic glycolysis in the cytoplasm. When glucose levels are limited, ketone bodies generated in the liver and lactate derived from exercising skeletal muscle can also become important energy substrates for the brain. In neurodegenerative disorders of ageing, brain glucose metabolism deteriorates in a progressive, region-specific and disease-specific manner - a problem that is best characterized in Alzheimer disease, where it begins presymptomatically. This Review discusses the status and prospects of therapeutic strategies for countering neurodegenerative disorders of ageing by improving, preserving or rescuing brain energetics. The approaches described include restoring oxidative phosphorylation and glycolysis, increasing insulin sensitivity, correcting mitochondrial dysfunction, ketone-based interventions, acting via hormones that modulate cerebral energetics, RNA therapeutics and complementary multimodal lifestyle changes.
Collapse
Affiliation(s)
- Stephen C Cunnane
- Department of Medicine, Université de Sherbrooke, Sherbrooke, QC, Canada.
- Research Center on Aging, Sherbrooke, QC, Canada.
| | | | - Cecilie Morland
- Department of Pharmaceutical Biosciences, Institute of Pharmacy, University of Oslo, Oslo, Norway
| | - Alessandro Prigione
- Department of General Pediatrics, Neonatology, and Pediatric Cardiology, University of Dusseldorf, Dusseldorf, Germany
| | - Gemma Casadesus
- Department of Biological Sciences, Kent State University, Kent, OH, USA
| | - Zane B Andrews
- Monash Biomedicine Discovery Institute, Monash University, Clayton, VIC, Australia
- Department of Physiology, Monash University, Clayton, VIC, Australia
| | - M Flint Beal
- Department of Neurology, Weill Cornell Medicine, New York, NY, USA
| | - Linda H Bergersen
- Department of Anatomy, Institute of Basic Medical Sciences, University of Oslo, Oslo, Norway
| | | | | | | | - Jenni Harvey
- Ninewells Hospital, University of Dundee, Dundee, UK
- Medical School, University of Dundee, Dundee, UK
| | - Ross Jeggo
- Centre for Therapeutic Innovation in Neuropsychiatry, Institut de Recherche Servier, Croissy sur Seine, France
| | - Jack H Jhamandas
- Department of Medicine, University of Albeta, Edmonton, AB, Canada
- Neuroscience and Mental Health Institute, University of Albeta, Edmonton, AB, Canada
| | - Oliver Kann
- Institute of Physiology and Pathophysiology, University of Heidelberg, Heidelberg, Germany
| | - Clothide Mannoury la Cour
- Centre for Therapeutic Innovation in Neuropsychiatry, Institut de Recherche Servier, Croissy sur Seine, France
| | - William F Martin
- Institute of Molecular Evolution, University of Dusseldorf, Dusseldorf, Germany
| | | | - Paula I Moreira
- CNC Center for Neuroscience and Cell Biology, University of Coimbra, Coimbra, Portugal
- Faculty of Medicine, University of Coimbra, Coimbra, Portugal
| | - Michael P Murphy
- MRC Mitochondrial Biology Unit, University of Cambridge, Cambridge, UK
| | - Klaus-Armin Nave
- Department of Biosciences, University of Heidelberg, Heidelberg, Germany
| | - Tal Nuriel
- Columbia University Medical Center, New York, NY, USA
| | - Stéphane H R Oliet
- Neurocentre Magendie, INSERM U1215, Bordeaux, France
- Université de Bordeaux, Bordeaux, France
| | - Frédéric Saudou
- University of Grenoble Alpes, Grenoble, France
- INSERM U1216, CHU Grenoble Alpes, Grenoble Institute Neurosciences, Grenoble, France
| | - Mark P Mattson
- Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | | | - Mark J Millan
- Centre for Therapeutic Innovation in Neuropsychiatry, Institut de Recherche Servier, Croissy sur Seine, France.
| |
Collapse
|
32
|
Janse van Mantgem MR, van Eijk RPA, van der Burgh HK, Tan HHG, Westeneng HJ, van Es MA, Veldink JH, van den Berg LH. Prognostic value of weight loss in patients with amyotrophic lateral sclerosis: a population-based study. J Neurol Neurosurg Psychiatry 2020; 91:867-875. [PMID: 32576612 DOI: 10.1136/jnnp-2020-322909] [Citation(s) in RCA: 41] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/29/2020] [Revised: 03/24/2020] [Accepted: 04/07/2020] [Indexed: 12/18/2022]
Abstract
OBJECTIVE To determine the prevalence and prognostic value of weight loss (WL) prior to diagnosis in patients with amyotrophic lateral sclerosis (ALS). METHODS We enrolled patients diagnosed with ALS between 2010 and 2018 in a population-based setting. At diagnosis, detailed information was obtained regarding the patient's disease characteristics, anthropological changes, ALS-related genotypes and cognitive functioning. Complete survival data were obtained. Cox proportional hazard models were used to assess the association between WL and the risk of death during follow-up. RESULTS The data set comprised 2420 patients of whom 67.5% reported WL at diagnosis. WL occurred in 71.8% of the bulbar-onset and in 64.2% of the spinal-onset patients; the mean loss of body weight was 6.9% (95% CI 6.8 to 6.9) and 5.5% (95% CI 5.5 to 5.6), respectively (p<0.001). WL occurred in 35.1% of the patients without any symptom of dysphagia. WL is a strong independent predictor of survival, with a dose response relationship between the amount of WL and the risk of death: the risk of death during follow-up increased by 23% for every 10% increase in WL relative to body weight (HR 1.23, 95% CI 1.13 to 1.51, p<0.001). CONCLUSIONS This population-based study shows that two-thirds of the patients with ALS have WL at diagnosis, which also occurs independent of dysphagia, and is related to survival. Our results suggest that WL is a multifactorial process that may differ from patient to patient. Gaining further insight in its underlying factors could prove essential for future therapeutic measures.
Collapse
Affiliation(s)
| | - Ruben P A van Eijk
- Neurology, University Medical Centre Utrecht Brain Centre, Utrecht, The Netherlands.,Biostatistics and Research Support, Julius Center for Health Sciences and Primary Care, Utrecht, The Netherlands
| | | | - Harold H G Tan
- Neurology, University Medical Centre Utrecht Brain Centre, Utrecht, The Netherlands
| | - Henk-Jan Westeneng
- Neurology, University Medical Centre Utrecht Brain Centre, Utrecht, The Netherlands
| | - Michael A van Es
- Neurology, University Medical Centre Utrecht Brain Centre, Utrecht, The Netherlands
| | - Jan H Veldink
- Neurology, University Medical Centre Utrecht Brain Centre, Utrecht, The Netherlands
| | | |
Collapse
|
33
|
McCombe PA, Garton FC, Katz M, Wray NR, Henderson RD. What do we know about the variability in survival of patients with amyotrophic lateral sclerosis? Expert Rev Neurother 2020; 20:921-941. [PMID: 32569484 DOI: 10.1080/14737175.2020.1785873] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
INTRODUCTION ALS is a fatal neurodegenerative disease. However, patients show variability in the length of survival after symptom onset. Understanding the mechanisms of long survival could lead to possible avenues for therapy. AREAS COVERED This review surveys the reported length of survival in ALS, the clinical features that predict survival in individual patients, and possible factors, particularly genetic factors, that could cause short or long survival. The authors also speculate on possible mechanisms. EXPERT OPINION a small number of known factors can explain some variability in ALS survival. However, other disease-modifying factors likely exist. Factors that alter motor neurone vulnerability and immune, metabolic, and muscle function could affect survival by modulating the disease process. Knowing these factors could lead to interventions to change the course of the disease. The authors suggest a broad approach is needed to quantify the proportion of variation survival attributable to genetic and non-genetic factors and to identify and estimate the effect size of specific factors. Studies of this nature could not only identify novel avenues for therapeutic research but also play an important role in clinical trial design and personalized medicine.
Collapse
Affiliation(s)
- Pamela A McCombe
- Centre for Clinical Research, The University of Queensland , Brisbane, Australia.,Department of Neurology, Royal Brisbane and Women's Hospital , Brisbane, Australia
| | - Fleur C Garton
- Institute for Molecular Biosciences, The University of Queensland , Brisbane, Australia
| | - Matthew Katz
- Department of Neurology, Royal Brisbane and Women's Hospital , Brisbane, Australia
| | - Naomi R Wray
- Institute for Molecular Biosciences, The University of Queensland , Brisbane, Australia.,Queensland Brain Institute, The University of Queensland , Brisbane, Australia
| | - Robert D Henderson
- Centre for Clinical Research, The University of Queensland , Brisbane, Australia
| |
Collapse
|
34
|
Petrozziello T, Mills AN, Farhan SM, Mueller KA, Granucci EJ, Glajch KE, Chan J, Chew S, Berry JD, Sadri‐Vakili G. Lipocalin‐2 is increased in amyotrophic lateral sclerosis. Muscle Nerve 2020; 62:272-283. [DOI: 10.1002/mus.26911] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2019] [Revised: 04/24/2020] [Accepted: 04/29/2020] [Indexed: 12/12/2022]
Affiliation(s)
- Tiziana Petrozziello
- Sean M. Healey & AMG Center for ALS at Mass GeneralMassachusetts General Hospital Boston Massachusetts
| | - Alexandra N. Mills
- Sean M. Healey & AMG Center for ALS at Mass GeneralMassachusetts General Hospital Boston Massachusetts
| | - Sali M.K. Farhan
- Analytic and Translational Genetics Unit, Department of MedicineMassachusetts General Hospital and Harvard Medical School Boston Massachusetts
- Program in Medical and Population GeneticsBroad Institute of MIT and Harvard Cambridge Massachusetts
| | - Kaly A. Mueller
- Sean M. Healey & AMG Center for ALS at Mass GeneralMassachusetts General Hospital Boston Massachusetts
| | - Eric J. Granucci
- Sean M. Healey & AMG Center for ALS at Mass GeneralMassachusetts General Hospital Boston Massachusetts
| | - Kelly E. Glajch
- Sean M. Healey & AMG Center for ALS at Mass GeneralMassachusetts General Hospital Boston Massachusetts
| | - James Chan
- Biostatistics Center, Department of MedicineMassachusetts General Hospital Boston Massachusetts
| | - Sheena Chew
- Sean M. Healey & AMG Center for ALS at Mass GeneralMassachusetts General Hospital Boston Massachusetts
| | - James D. Berry
- Sean M. Healey & AMG Center for ALS at Mass GeneralMassachusetts General Hospital Boston Massachusetts
| | - Ghazaleh Sadri‐Vakili
- Sean M. Healey & AMG Center for ALS at Mass GeneralMassachusetts General Hospital Boston Massachusetts
| |
Collapse
|
35
|
Kuraszkiewicz B, Goszczyńska H, Podsiadły-Marczykowska T, Piotrkiewicz M, Andersen P, Gromicho M, Grosskreutz J, Kuźma-Kozakiewicz M, Petri S, Stubbendorf B, Szacka K, Uysal H, de Carvalho M. Potential Preventive Strategies for Amyotrophic Lateral Sclerosis. Front Neurosci 2020; 14:428. [PMID: 32528241 PMCID: PMC7264408 DOI: 10.3389/fnins.2020.00428] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2019] [Accepted: 04/07/2020] [Indexed: 12/11/2022] Open
Abstract
It may seem useless to propose preventive measures for a disease without established pathogenesis and successful therapy, such as amyotrophic lateral sclerosis (ALS). However, we will show that ALS shares essential molecular mechanisms with aging and that established anti-aging strategies, such as healthy diet or individually adjusted exercise, may be successfully applied to ameliorate the condition of ALS patients. These strategies might be applied for prevention if persons at ALS risk could be identified early enough. Recent research advances indicate that this may happen soon.
Collapse
Affiliation(s)
- B Kuraszkiewicz
- Department of Methods of Brain Imaging and Functional Research of Nervous System, Nalecz Institute of Biocybernetics and Biomedical Engineering, Polish Academy of Sciences, Warsaw, Poland
| | - H Goszczyńska
- Department of Methods of Brain Imaging and Functional Research of Nervous System, Nalecz Institute of Biocybernetics and Biomedical Engineering, Polish Academy of Sciences, Warsaw, Poland
| | - T Podsiadły-Marczykowska
- Department of Methods of Brain Imaging and Functional Research of Nervous System, Nalecz Institute of Biocybernetics and Biomedical Engineering, Polish Academy of Sciences, Warsaw, Poland
| | - M Piotrkiewicz
- Department of Methods of Brain Imaging and Functional Research of Nervous System, Nalecz Institute of Biocybernetics and Biomedical Engineering, Polish Academy of Sciences, Warsaw, Poland
| | - P Andersen
- Department of Clinical Sciences, Umeå University, Umeå, Sweden
| | - M Gromicho
- Institute of Physiology, Faculty of Medicine, University of Lisbon, Lisbon, Portugal
| | - J Grosskreutz
- Department of Neurology, University Hospital Jena, Jena, Germany.,Jena Centre for Healthy Aging, University Hospital Jena, Jena, Germany
| | | | - S Petri
- Clinic for Neurology, Hannover Medical School, Hanover, Germany
| | - B Stubbendorf
- Department of Neurology, University Hospital Jena, Jena, Germany
| | - K Szacka
- Department of Neurology, Medical University of Warsaw, Warsaw, Poland
| | - H Uysal
- Akdeniz University Faculty of Medicine, Antalya, Turkey
| | - M de Carvalho
- Institute of Physiology, Faculty of Medicine, University of Lisbon, Lisbon, Portugal
| |
Collapse
|
36
|
Moreno-Martinez L, de la Torre M, Muñoz MJ, Zaragoza P, Aguilera J, Calvo AC, Osta R. Neuroprotective Fragment C of Tetanus Toxin Modulates IL-6 in an ALS Mouse Model. Toxins (Basel) 2020; 12:toxins12050330. [PMID: 32429516 PMCID: PMC7290364 DOI: 10.3390/toxins12050330] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2020] [Revised: 04/15/2020] [Accepted: 05/13/2020] [Indexed: 12/12/2022] Open
Abstract
Neuroinflammation plays a significant role in amyotrophic lateral sclerosis (ALS) pathology, leading to the development of therapies targeting inflammation in recent years. Our group has studied the tetanus toxin C-terminal fragment (TTC) as a therapeutic molecule, showing neuroprotective properties in the SOD1G93A mouse model. However, it is unknown whether TTC could have some effect on inflammation. The objective of this study was to assess the effect of TTC on the regulation of inflammatory mediators to elucidate its potential role in modulating inflammation occurring in ALS. After TTC treatment in SOD1G93A mice, levels of eotaxin-1, interleukin (IL)-2, IL-6 and macrophage inflammatory protein (MIP)-1 alpha (α) and galectin-1 were analyzed by immunoassays in plasma samples, whilst protein expression of caspase-1, IL-1β, IL-6 and NOD-, LRR- and pyrin domain-containing protein 3 (NLRP3) was measured in the spinal cord, extensor digitorum longus (EDL) muscle and soleus (SOL) muscle. The results showed reduced levels of IL-6 in spinal cord, EDL and SOL in treated SOD1G93A mice. In addition, TTC showed a different role in the modulation of NLRP3 and caspase-1 depending on the tissue analyzed. In conclusion, our results suggest that TTC could have a potential anti-inflammatory effect by reducing IL-6 levels in tissues drastically affected by the disease. However, further research is needed to study more in depth the anti-inflammatory effect of TTC in ALS.
Collapse
Affiliation(s)
- Laura Moreno-Martinez
- Laboratory of Genetics and Biochemistry (LAGENBIO), Faculty of Veterinary, Institute for Health Research Aragon (IIS Aragón), AgriFood Institute of Aragon (IA2), Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), University of Zaragoza, Miguel Servet 177, 50013 Zaragoza, Spain; (L.M.-M.); (M.d.l.T.); (M.J.M.); (P.Z.)
| | - Miriam de la Torre
- Laboratory of Genetics and Biochemistry (LAGENBIO), Faculty of Veterinary, Institute for Health Research Aragon (IIS Aragón), AgriFood Institute of Aragon (IA2), Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), University of Zaragoza, Miguel Servet 177, 50013 Zaragoza, Spain; (L.M.-M.); (M.d.l.T.); (M.J.M.); (P.Z.)
| | - María J. Muñoz
- Laboratory of Genetics and Biochemistry (LAGENBIO), Faculty of Veterinary, Institute for Health Research Aragon (IIS Aragón), AgriFood Institute of Aragon (IA2), Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), University of Zaragoza, Miguel Servet 177, 50013 Zaragoza, Spain; (L.M.-M.); (M.d.l.T.); (M.J.M.); (P.Z.)
| | - Pilar Zaragoza
- Laboratory of Genetics and Biochemistry (LAGENBIO), Faculty of Veterinary, Institute for Health Research Aragon (IIS Aragón), AgriFood Institute of Aragon (IA2), Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), University of Zaragoza, Miguel Servet 177, 50013 Zaragoza, Spain; (L.M.-M.); (M.d.l.T.); (M.J.M.); (P.Z.)
| | - José Aguilera
- Institut de Neurociències and Departament de Bioquímica i de Biologia Molecular, Facultat de Medicina, Universitat Autònoma de Barcelona (UAB) and Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), 08193 Barcelona, Spain;
| | - Ana C. Calvo
- Laboratory of Genetics and Biochemistry (LAGENBIO), Faculty of Veterinary, Institute for Health Research Aragon (IIS Aragón), AgriFood Institute of Aragon (IA2), Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), University of Zaragoza, Miguel Servet 177, 50013 Zaragoza, Spain; (L.M.-M.); (M.d.l.T.); (M.J.M.); (P.Z.)
- Correspondence: (A.C.C.); (R.O.); Tel.: +34-976761622 (A.C.C.); +34-976761621 (R.O.)
| | - Rosario Osta
- Laboratory of Genetics and Biochemistry (LAGENBIO), Faculty of Veterinary, Institute for Health Research Aragon (IIS Aragón), AgriFood Institute of Aragon (IA2), Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), University of Zaragoza, Miguel Servet 177, 50013 Zaragoza, Spain; (L.M.-M.); (M.d.l.T.); (M.J.M.); (P.Z.)
- Correspondence: (A.C.C.); (R.O.); Tel.: +34-976761622 (A.C.C.); +34-976761621 (R.O.)
| |
Collapse
|
37
|
McCombe PA, Lee JD, Woodruff TM, Henderson RD. The Peripheral Immune System and Amyotrophic Lateral Sclerosis. Front Neurol 2020; 11:279. [PMID: 32373052 PMCID: PMC7186478 DOI: 10.3389/fneur.2020.00279] [Citation(s) in RCA: 56] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2019] [Accepted: 03/25/2020] [Indexed: 12/11/2022] Open
Abstract
Amyotrophic lateral sclerosis (ALS) is a severe neurodegenerative disease that is defined by loss of upper and lower motor neurons, associated with accumulation of protein aggregates in cells. There is also pathology in extra-motor areas of the brain, Possible causes of cell death include failure to deal with the aggregated proteins, glutamate toxicity and mitochondrial failure. ALS also involves abnormalities of metabolism and the immune system, including neuroinflammation in the brain and spinal cord. Strikingly, there are also abnormalities of the peripheral immune system, with alterations of T lymphocytes, monocytes, complement and cytokines in the peripheral blood of patients with ALS. The precise contribution of the peripheral immune system in ALS pathogenesis is an active area of research. Although some trials of immunomodulatory agents have been negative, there is strong preclinical evidence of benefit from immune modulation and further trials are currently underway. Here, we review the emerging evidence implicating peripheral immune alterations contributing to ALS, and their potential as future therapeutic targets for clinical intervention.
Collapse
Affiliation(s)
- Pamela A. McCombe
- Centre for Clinical Research, The University of Queensland, Brisbane, QLD, Australia
- Wesley Medical Research, The Wesley Hospital, Brisbane, QLD, Australia
| | - John D. Lee
- School of Biomedical Sciences, The University of Queensland, Brisbane, QLD, Australia
| | - Trent M. Woodruff
- Wesley Medical Research, The Wesley Hospital, Brisbane, QLD, Australia
- School of Biomedical Sciences, The University of Queensland, Brisbane, QLD, Australia
| | | |
Collapse
|
38
|
TDP-43 knockdown causes innate immune activation via protein kinase R in astrocytes. Neurobiol Dis 2019; 132:104514. [PMID: 31229690 DOI: 10.1016/j.nbd.2019.104514] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2019] [Revised: 04/26/2019] [Accepted: 06/19/2019] [Indexed: 12/13/2022] Open
Abstract
TAR-DNA binding protein 43 (TDP-43) is a multifunctional RNA binding protein directly implicated in the etiology of amyotrophic lateral sclerosis (ALS). Previous studies have demonstrated that loss of TDP-43 function leads to intracellular accumulation of non-coding repetitive element transcripts and double-stranded RNA (dsRNA). These events could cause immune activation and contribute to the neuroinflammation observed in ALS, but this possibility has not been investigated. Here, we knock down TDP-43 in primary rat astrocytes via siRNA, and we use RNA-seq, immunofluorescence, and immunoblotting to show that this results in: 1) accumulation of repetitive element transcripts and dsRNA; and 2) pro-inflammatory gene and protein expression consistent with innate immune signaling and astrocyte activation. We also show that both chemical inhibition and siRNA knockdown of protein kinase R (PKR), a dsRNA-activated kinase implicated in the innate immune response, block the expression of all activation markers assayed. Based on these findings, we suggest that intracellular accumulation of endogenous dsRNA may be a novel and important mechanism underlying the pathogenesis of ALS (and perhaps other neurodegenerative diseases), and that PKR inhibitors may have the potential to prevent reactive astrocytosis in ALS.
Collapse
|
39
|
Moreno-Martinez L, Calvo AC, Muñoz MJ, Osta R. Are Circulating Cytokines Reliable Biomarkers for Amyotrophic Lateral Sclerosis? Int J Mol Sci 2019; 20:ijms20112759. [PMID: 31195629 PMCID: PMC6600567 DOI: 10.3390/ijms20112759] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2019] [Revised: 05/30/2019] [Accepted: 06/03/2019] [Indexed: 02/06/2023] Open
Abstract
Amyotrophic lateral sclerosis (ALS) is a fatal neurodegenerative disease that has no effective treatment. The lack of any specific biomarker that can help in the diagnosis or prognosis of ALS has made the identification of biomarkers an urgent challenge. Multiple panels have shown alterations in levels of numerous cytokines in ALS, supporting the contribution of neuroinflammation to the progressive motor neuron loss. However, none of them is fully sensitive and specific enough to become a universal biomarker for ALS. This review gathers the numerous circulating cytokines that have been found dysregulated in both ALS animal models and patients. Particularly, it highlights the opposing results found in the literature to date, and points out another potential application of inflammatory cytokines as therapeutic targets.
Collapse
Affiliation(s)
- Laura Moreno-Martinez
- Laboratory of Genetics and Biochemistry (LAGENBIO), Faculty of Veterinary-IIS Aragón, IA2-CITA, CIBERNED, University of Zaragoza, Miguel Servet 177, 50013 Zaragoza, Spain.
| | - Ana Cristina Calvo
- Laboratory of Genetics and Biochemistry (LAGENBIO), Faculty of Veterinary-IIS Aragón, IA2-CITA, CIBERNED, University of Zaragoza, Miguel Servet 177, 50013 Zaragoza, Spain.
| | - María Jesús Muñoz
- Laboratory of Genetics and Biochemistry (LAGENBIO), Faculty of Veterinary-IIS Aragón, IA2-CITA, CIBERNED, University of Zaragoza, Miguel Servet 177, 50013 Zaragoza, Spain.
| | - Rosario Osta
- Laboratory of Genetics and Biochemistry (LAGENBIO), Faculty of Veterinary-IIS Aragón, IA2-CITA, CIBERNED, University of Zaragoza, Miguel Servet 177, 50013 Zaragoza, Spain.
| |
Collapse
|
40
|
Ngo ST, van Eijk RPA, Chachay V, van den Berg LH, McCombe PA, Henderson RD, Steyn FJ. Loss of appetite is associated with a loss of weight and fat mass in patients with amyotrophic lateral sclerosis. Amyotroph Lateral Scler Frontotemporal Degener 2019; 20:497-505. [PMID: 31144522 DOI: 10.1080/21678421.2019.1621346] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
Objective: Weight loss in amyotrophic lateral sclerosis (ALS) is associated with faster disease progression and shorter survival. It has different possible causes, including loss of appetite. Our objective is to determine the prevalence and impact of loss of appetite on change in body weight and composition in patients with ALS. Methods: We conducted a prospective case-control study, comparing demographic, clinical, appetite and prognostic features between 62 patients with ALS and 45 healthy non-neurodegenerative disease (NND) controls. To determine the impact of loss of appetite on weight throughout disease course, we conducted serial assessments at ∼three to four-month intervals. Results: Loss of appetite is more prevalent in patients with ALS than NND controls (29 vs. 11.1%, odds ratio = 3.27 (1.1-9.6); p < 0.01). In patients with ALS, loss of appetite is associated with greater weight loss and greater loss of fat mass. Appetite scores in patients with ALS worsens as disease progresses and are correlated with worsening ALS Functional Rating Scale-Revised scores. Conclusion: We confirm that loss of appetite is prevalent in patients with ALS and is significantly associated with weight loss and loss of fat mass. Appetite worsens with disease progression. Identification and early interventions to address loss of appetite in patients with ALS may prevent or slow weight loss; this could improve disease outcome.
Collapse
Affiliation(s)
- Shyuan T Ngo
- Australian Institute for Bioengineering and Nanotechnology, The University of Queensland , Brisbane , Australia.,Queensland Brain Institute, The University of Queensland , Brisbane , Australia.,Centre for Clinical Research, The University of Queensland , Brisbane , Australia.,Department of Neurology, Royal Brisbane and Women's Hospital , Brisbane , Australia.,Wesley Medical Research, The Wesley Hospital , Brisbane , Australia
| | - Ruben P A van Eijk
- Department of Neurology, Brain Center Rudolf Magnus, University Medical Center Utrecht , Utrecht , The Netherlands.,Biostatistics & Research Support, Julius Center for Health Sciences and Primary Care, University Medical Center Utrecht , Utrecht , The Netherlands , and
| | - V Chachay
- School of Human Movement and Nutrition Sciences, The University of Queensland , Brisbane , Australia
| | - Leonard H van den Berg
- Department of Neurology, Brain Center Rudolf Magnus, University Medical Center Utrecht , Utrecht , The Netherlands
| | - Pamela A McCombe
- Centre for Clinical Research, The University of Queensland , Brisbane , Australia.,Department of Neurology, Royal Brisbane and Women's Hospital , Brisbane , Australia.,Wesley Medical Research, The Wesley Hospital , Brisbane , Australia
| | - Robert D Henderson
- Queensland Brain Institute, The University of Queensland , Brisbane , Australia.,Centre for Clinical Research, The University of Queensland , Brisbane , Australia.,Department of Neurology, Royal Brisbane and Women's Hospital , Brisbane , Australia.,Wesley Medical Research, The Wesley Hospital , Brisbane , Australia
| | - Frederik J Steyn
- Australian Institute for Bioengineering and Nanotechnology, The University of Queensland , Brisbane , Australia.,Centre for Clinical Research, The University of Queensland , Brisbane , Australia.,Department of Neurology, Royal Brisbane and Women's Hospital , Brisbane , Australia.,Wesley Medical Research, The Wesley Hospital , Brisbane , Australia
| |
Collapse
|
41
|
Moreno-Martínez L, de la Torre M, Toivonen JM, Zaragoza P, García-Redondo A, Calvo AC, Osta R. Circulating Cytokines Could Not Be Good Prognostic Biomarkers in a Mouse Model of Amyotrophic Lateral Sclerosis. Front Immunol 2019; 10:801. [PMID: 31031774 PMCID: PMC6473074 DOI: 10.3389/fimmu.2019.00801] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2018] [Accepted: 03/26/2019] [Indexed: 11/13/2022] Open
Abstract
Background: There is growing evidence of the role of inflammation in Amyotrophic Lateral Sclerosis (ALS) during the last decade. Although the origin of ALS remains unknown, multiple potential inflammatory biomarkers have been described in ALS patients and murine models of this disease to explain the progressive motor neuron loss and muscle atrophy. However, the results remain controversial. To shed light on this issue, we aimed to identify novel biomarkers of inflammation that can influence disease progression and survival in serial blood samples from transgenic SOD1G93A mice, a model of ALS. Methods: A cytokine array assay was performed to analyze protein expression of 97 cytokines in plasma samples from wildtype controls and transgenic SOD1G93A mice at asymptomatic stage. Subsequently, serial plasma samples were obtained from SOD1G93A mice at early symptomatic, symptomatic and terminal stages to monitor cytokine levels during disease progression through immunoassays. Comparisons of means of quantifiable cytokines between short-and long-lived mice were analyzed by unrelated t-test or Mann-Whitney U-test. Relationships between cytokines levels and survival time were assessed using Pearson's correlation analysis and Kaplan-Meier analysis. Results: A total of 16 cytokines (6Ckine, ALK-1, CD30 L, eotaxin-1, galectin-1, GITR, IL-2, IL-6, IL-10, IL-13, IL-17B R, MIP-1α, MIP-3β, RANKL, TROY, and VEGF-D) were found dysregulated in transgenic SOD1G93A mice at asymptomatic stage compared with age-matched controls. Immunoassays of serial samples revealed positive expression of ALK-1, GITR and IL-17B R at P60 and P90 in mice with shorter survival. In addition, eotaxin-1 and galectin-1 levels were significantly increased at terminal stage in SOD1G93A mice that showed shorter survival time. Finally, levels of eotaxin-1, galectin-1, IL-2, IL-6, MIP-1α, and TROY at P90 or endpoint negatively correlated with the longevity of transgenic mice. Conclusions: We demonstrated in the SOD1G93A model of ALS that increased levels of several cytokines were associated with a shorter lifespan. However, their role as prognostic biomarkers is unclear as their expression was very variable depending on both the disease stage and the subject. Nevertheless, cytokines may be potential therapeutic targets.
Collapse
Affiliation(s)
- Laura Moreno-Martínez
- LAGENBIO, Faculty of Veterinary-IIS, IA2-CITA, CIBERNED, University of Zaragoza, Zaragoza, Spain
| | - Miriam de la Torre
- LAGENBIO, Faculty of Veterinary-IIS, IA2-CITA, CIBERNED, University of Zaragoza, Zaragoza, Spain
| | - Janne M Toivonen
- LAGENBIO, Faculty of Veterinary-IIS, IA2-CITA, CIBERNED, University of Zaragoza, Zaragoza, Spain
| | - Pilar Zaragoza
- LAGENBIO, Faculty of Veterinary-IIS, IA2-CITA, CIBERNED, University of Zaragoza, Zaragoza, Spain
| | | | - Ana Cristina Calvo
- LAGENBIO, Faculty of Veterinary-IIS, IA2-CITA, CIBERNED, University of Zaragoza, Zaragoza, Spain
| | - Rosario Osta
- LAGENBIO, Faculty of Veterinary-IIS, IA2-CITA, CIBERNED, University of Zaragoza, Zaragoza, Spain
| |
Collapse
|
42
|
Kirk SE, Tracey TJ, Steyn FJ, Ngo ST. Biomarkers of Metabolism in Amyotrophic Lateral Sclerosis. Front Neurol 2019; 10:191. [PMID: 30936848 PMCID: PMC6431787 DOI: 10.3389/fneur.2019.00191] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2018] [Accepted: 02/14/2019] [Indexed: 12/11/2022] Open
Abstract
Amyotrophic lateral sclerosis (ALS) is a neurodegenerative disorder characterized by the deterioration of motor neurons. However, this complex disease extends beyond the boundaries of the central nervous system, with metabolic alterations being observed at the systemic and cellular level. While the number of studies that assess the role and impact of metabolic perturbations in ALS is rapidly increasing, the use of metabolism biomarkers in ALS remains largely underinvestigated. In this review, we discuss current and potential metabolism biomarkers in the context of ALS. Of those for which data does exist, there is limited insight provided by individual markers, with specificity for disease, and lack of reproducibility and efficacy in informing prognosis being the largest drawbacks. However, given the array of metabolic markers available, the potential exists for a panel of metabolism biomarkers, which may complement other current biomarkers (including neurophysiology, imaging, as well as CSF, blood and urine markers) to overturn these limitations and give rise to new diagnostic and prognostic indicators.
Collapse
Affiliation(s)
- Siobhan E Kirk
- The Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, Brisbane, QLD, Australia
| | - Timothy J Tracey
- The Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, Brisbane, QLD, Australia
| | - Frederik J Steyn
- The Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, Brisbane, QLD, Australia.,Centre for Clinical Research, The University of Queensland, Brisbane, QLD, Australia
| | - Shyuan T Ngo
- The Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, Brisbane, QLD, Australia.,Centre for Clinical Research, The University of Queensland, Brisbane, QLD, Australia.,Queensland Brain Institute, The University of Queensland, Brisbane, QLD, Australia
| |
Collapse
|
43
|
Pronto-Laborinho A, Pinto S, Gromicho M, Pereira M, Swash M, de Carvalho M. Interleukin-6 and amyotrophic lateral sclerosis. J Neurol Sci 2019; 398:50-53. [PMID: 30682521 DOI: 10.1016/j.jns.2019.01.026] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2018] [Revised: 12/24/2018] [Accepted: 01/15/2019] [Indexed: 12/13/2022]
Abstract
BACKGROUND IL-6 is an inflammatory cytokine that is a possible factor in progression of the disease. We have investigated venous blood levels of IL-6 in controls and ALS patients in relation to clinical staging and respiratory function. METHODS We studied 82 patients with ALS and 43 age and gender-matched healthy control subjects. Blood was drawn at the same time of day in the mornings to avoid diurnal variation. IL-6 levels were estimated according to a fixed protocol. Clinical measures included ALSFRS-R, vital capacity, and mean bilateral phrenic nerve CMAP amplitude. A multi-regression data analysis was used in addition to conventional statistical methods. RESULTS IL-6 levels were positively correlated with increasing age in the control group. In ALS patients mean IL-6 levels were raised but the levels were markedly variable from case to case and did not reach significance (p 0.1). In addition to age effects reduction in phrenic nerve CMAP amplitude was correlated with increased IL-6 levels (p 0.026). CONCLUSIONS IL-6 levels were physiologically influenced by aging in controls and by respiratory dysfunction in ALS. There was marked variability in levels from case to case, which might be related to respiratory factors, which cause pulmonary inflammation.
Collapse
Affiliation(s)
- Ana Pronto-Laborinho
- Institute of Physiology and Instituto de Medicina Molecular, Faculdade de Medicina, Universidade de Lisboa, Portugal
| | - Susana Pinto
- Institute of Physiology and Instituto de Medicina Molecular, Faculdade de Medicina, Universidade de Lisboa, Portugal
| | - Marta Gromicho
- Institute of Physiology and Instituto de Medicina Molecular, Faculdade de Medicina, Universidade de Lisboa, Portugal
| | - Mariana Pereira
- Institute of Physiology and Instituto de Medicina Molecular, Faculdade de Medicina, Universidade de Lisboa, Portugal
| | - Michael Swash
- Institute of Physiology and Instituto de Medicina Molecular, Faculdade de Medicina, Universidade de Lisboa, Portugal; Barts and the London School of Medicine, Queen Mary University of London, United Kingdom
| | - Mamede de Carvalho
- Institute of Physiology and Instituto de Medicina Molecular, Faculdade de Medicina, Universidade de Lisboa, Portugal; Department of Neurosciences and Mental Health, Hospital de Santa Maria-CHLN, Lisbon, Portugal.
| |
Collapse
|
44
|
Overview of Lipid Biomarkers in Amyotrophic Lateral Sclerosis (ALS). ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2019; 1161:233-241. [PMID: 31562633 DOI: 10.1007/978-3-030-21735-8_18] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Amyotrophic lateral sclerosis (ALS) is a multifactorial neurodegenerative disease involving motor neuron (MN) degeneration in the spinal cord, brain stem and primary motor cortex. The existence of inflammatory processes around MN and axonal degeneration in ALS has been shown. Unfortunately, none of the successful therapies in ALS animal models has improved clinical outcomes in patients with ALS. Therefore, the detection of blood biomarkers to be used as screening tools for disease onset and progression has been an expanding research area with few advances in the development of drugs for the treatment of ALS. In this review, we will address the available data analyzing regarding the relationship of lipid metabolism and lipid derived- products with ALS. We will address the advances on the studies about the role that lipids plays at the onset, progression and lifespan extension of ALS patients.
Collapse
|
45
|
Adipsin, MIP-1b, and IL-8 as CSF Biomarker Panels for ALS Diagnosis. DISEASE MARKERS 2018; 2018:3023826. [PMID: 30405855 PMCID: PMC6199888 DOI: 10.1155/2018/3023826] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/13/2018] [Revised: 08/15/2018] [Accepted: 08/28/2018] [Indexed: 12/20/2022]
Abstract
Amyotrophic lateral sclerosis (ALS) is an aggressive neurodegenerative disorder that selectively attacks motor neurons in the brain and spinal cord. Despite important advances in the knowledge of the etiology and progression of the disease, there are still no solid grounds in which a clinician could make an early objective and reliable diagnosis from which patients could benefit. Diagnosis is difficult and basically made by clinical rating scales (ALSRs and El Escorial). The possible finding of biomarkers to aid in the early diagnosis and rate of disease progression could serve for future innovative therapeutic approaches. Recently, it has been suggested that ALS has an important immune component that could represent either the cause or the consequence of the disease. In this report, we analyzed 19 different cytokines and growth factors in the cerebrospinal fluid of 77 ALS patients and 13 controls by decision tree and PanelomiX program. Results showed an increase of Adipsin, MIP-1b, and IL-6, associated with a decrease of IL-8 thresholds, related with ALS patients. This biomarker panel analysis could represent an important aid for diagnosis of ALS alongside the clinical and neurophysiological criteria.
Collapse
|
46
|
Safety and Feasibility of Lin- Cells Administration to ALS Patients: A Novel View on Humoral Factors and miRNA Profiles. Int J Mol Sci 2018; 19:ijms19051312. [PMID: 29702606 PMCID: PMC5983708 DOI: 10.3390/ijms19051312] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2018] [Revised: 04/20/2018] [Accepted: 04/24/2018] [Indexed: 12/27/2022] Open
Abstract
Therapeutic options for amyotrophic lateral sclerosis (ALS) are still limited. Great hopes, however, are placed in growth factors that show neuroprotective abilities (e.g., nerve growth factor (NGF), brain-derived neurotrophic factor (BDNF), and vascular endothelial growth factor (VEGF)) and in the immune modulating features, in particular, the anti-inflammatory effects. In our study we aimed to investigate whether a bone marrow-derived lineage-negative (Lin-) cells population, after autologous application into cerebrospinal fluid (CSF), is able to produce noticeable concentrations of trophic factors and inflammatory-related proteins and thus influence the clinical course of ALS. To our knowledge, the evaluation of Lin- cells transplantation for ALS treatment has not been previously reported. Early hematopoietic Lin- cells were isolated from twelve ALS patients’ bone marrow, and later, the suspension of cells was administered into the subarachnoid space by lumbar puncture. Concentrations of selected proteins in the CSF and plasma were quantified by multiplex fluorescent bead-based immunoassays at different timepoints post-transplantation. We also chose microRNAs (miRNAs) related to muscle biology (miRNA-1, miRNA-133a, and miRNA-206) and angiogenesis and inflammation (miRNA-155 and miRNA-378) and tested, for the first time, their expression profiles in the CSF and plasma of ALS patients after Lin- cells transplantation. The injection of bone marrow cells resulted in decreased concentration of selected inflammatory proteins (C3) after Lin- cells injection, particularly in patients who had a better clinical outcome. Moreover, several analyzed miRNAs have changed expression levels in the CSF and plasma of ALS patients subsequent to Lin- cells administration. Interestingly, the expression of miR-206 increased in ALS patients, while miR-378 decreased both in the CSF and plasma one month after the cells’ injection. We propose that autologous lineage-negative early hematopoietic cells injected intrathecally may be a safe and feasible source of material for transplantations to the central nervous system (CNS) environment aimed at anti-inflammatory support provision for ALS adjuvant treatment strategies. Further research is needed to evaluate whether the observed effects could significantly influence the ALS progression.
Collapse
|
47
|
Xu Z, Lee A, Nouwens A, Henderson RD, McCombe PA. Mass spectrometry analysis of plasma from amyotrophic lateral sclerosis and control subjects. Amyotroph Lateral Scler Frontotemporal Degener 2018; 19:362-376. [PMID: 29384411 DOI: 10.1080/21678421.2018.1433689] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
Mass spectrometry was used to study blood samples from patients with amyotrophic lateral sclerosis (ALS) and healthy controls. Addenbrooke's cognitive examination-III (ACE-III) was used to test for cognitive impairment (CI). Nano liquid chromatography and time of flight mass spectrometry (MS) were performed on samples from 42 ALS patients and 18 healthy controls. SWATH™ proteomic analysis was utilized to look for differences between groups. Western blot analysis was used to study levels of 4 proteins, selected as being of possible interest in ALS, in the MS discovery cohort and a second validation group of 10 ALS patients and 10 healthy controls. INGENUITY PATHWAY ANALYSIS (IPA) was applied to the final proteomic data. Between ALS patients and controls, there were significant differences in the expression of 30 proteins. Between controls and ALS patients without CI, there were significant differences in 15 proteins. Between controls and ALS patients with CI, there were significant differences in 32 proteins. Changes in levels of gelsolin, clusterin, and CD5L were validated by using western blot analysis in the discovery cohort. Changes in the expression of gelsolin, clusterin, and ficolin 3 were replicated in a validation group. In ALS, the LXR/RXR and coagulation pathways were downregulated whereas the complement pathway was upregulated. The proteomic data were used to produce two new networks, centered on IL1 and on NFkB, which showed altered levels in ALS. This study highlights the usefulness of MS of blood samples as a tool to study ALS.
Collapse
Affiliation(s)
- Zhouwei Xu
- a The University of Queensland, UQ Centre for Clinical Research , Brisbane , Queensland , Australia
| | - Aven Lee
- a The University of Queensland, UQ Centre for Clinical Research , Brisbane , Queensland , Australia
| | - Amanda Nouwens
- b School of Chemistry and Molecular Biosciences , University of Queensland , Brisbane , Australia , and
| | - Robert David Henderson
- c Department of Neurology , Royal Brisbane & Women's Hospital , Brisbane , Queensland , Australia
| | - Pamela Ann McCombe
- a The University of Queensland, UQ Centre for Clinical Research , Brisbane , Queensland , Australia
| |
Collapse
|
48
|
What is "Hyper" in the ALS Hypermetabolism? Mediators Inflamm 2017; 2017:7821672. [PMID: 29081604 PMCID: PMC5610793 DOI: 10.1155/2017/7821672] [Citation(s) in RCA: 52] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2017] [Accepted: 07/03/2017] [Indexed: 12/11/2022] Open
Abstract
The progressive and fatal loss of upper (brain) and lower (spinal cord) motor neurons and muscle denervation concisely condenses the clinical picture of amyotrophic lateral sclerosis (ALS). Despite the multiple mechanisms believed to underlie the selective loss of motor neurons, ALS aetiology remains elusive and obscure. Likewise, there is also a cluster of alterations in ALS patients in which muscle wasting, body weight loss, eating dysfunction, and abnormal energy dissipation coexist. Defective energy metabolism characterizes the ALS progression, and such paradox of energy balance stands as a challenge for the understanding of ALS pathogenesis. The hypermetabolism in ALS will be examined from tissue-specific energy imbalance (e.g., skeletal muscle) to major energetic pathways (e.g., AMP-activated protein kinase) and whole-body energy alterations including glucose and lipid metabolism, nutrition, and potential involvement of interorgan communication. From the point of view here expressed, the hypermetabolism in ALS should be evaluated as a magnifying glass through which looking at the ALS pathogenesis is from a different perspective in which defective metabolism can disclose novel mechanistic interpretations and lines of intervention.
Collapse
|
49
|
Hu Y, Cao C, Qin XY, Yu Y, Yuan J, Zhao Y, Cheng Y. Increased peripheral blood inflammatory cytokine levels in amyotrophic lateral sclerosis: a meta-analysis study. Sci Rep 2017; 7:9094. [PMID: 28831083 PMCID: PMC5567306 DOI: 10.1038/s41598-017-09097-1] [Citation(s) in RCA: 106] [Impact Index Per Article: 15.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2017] [Accepted: 07/20/2017] [Indexed: 12/13/2022] Open
Abstract
Amyotrophic lateral sclerosis (ALS) is a fatal neurodegenerative disease with poorly understood etiology. Increasing evidence suggest that inflammation may play a critical role in the pathogenesis of ALS. Several studies have demonstrated altered levels of blood cytokines in ALS, but results were inconsistent. Therefore, we did a systematic review of studies comparing blood inflammatory cytokines between ALS patients and control subjects, and quantitatively combined the clinical data with a meta-analysis. The systematic review of Pubmed and Web of Science identified 25 studies encompassing 812 ALS patients and 639 control subjects. Random-effects meta-analysis demonstrated that blood tumor necrosis factor-α (TNF; Hedges' g = 0.655; p = 0.001), TNF receptor 1 (Hedges' g = 0.741; p < 0.001), interleukin 6 (IL-6; Hedges' g = 0.25; p = 0.005), IL-1β (Hedges' g = 0.296; p = 0.038), IL-8 (Hedges' g = 0.449; p < 0.001) and vascular endothelial growth factor (Hedges' g = 0.891; p = 0.003) levels were significantly elevated in patients with ALS compared with control subjects. These results substantially enhance our knowledge of the inflammatory response in ALS, and peripheral blood inflammatory cytokines may be used as diagnostic biomarkers for ALS in the future.
Collapse
Affiliation(s)
- Yang Hu
- Center on Translational Neuroscience, College of Life and Environmental Sciences, Minzu University of China, Beijing, 100081, China
| | - Chang Cao
- Center on Translational Neuroscience, College of Life and Environmental Sciences, Minzu University of China, Beijing, 100081, China
| | - Xiao-Yan Qin
- Center on Translational Neuroscience, College of Life and Environmental Sciences, Minzu University of China, Beijing, 100081, China
| | - Yun Yu
- Center on Translational Neuroscience, College of Life and Environmental Sciences, Minzu University of China, Beijing, 100081, China
| | - Jing Yuan
- Center on Translational Neuroscience, College of Life and Environmental Sciences, Minzu University of China, Beijing, 100081, China
| | - Yu Zhao
- Center on Translational Neuroscience, College of Life and Environmental Sciences, Minzu University of China, Beijing, 100081, China
| | - Yong Cheng
- Center on Translational Neuroscience, College of Life and Environmental Sciences, Minzu University of China, Beijing, 100081, China.
| |
Collapse
|
50
|
Ngo ST, Mi JD, Henderson RD, McCombe PA, Steyn FJ. Exploring targets and therapies for amyotrophic lateral sclerosis: current insights into dietary interventions. Degener Neurol Neuromuscul Dis 2017; 7:95-108. [PMID: 30050381 PMCID: PMC6053104 DOI: 10.2147/dnnd.s120607] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
A growing number of preclinical and human studies demonstrate a disease-modifying effect of nutritional state in amyotrophic lateral sclerosis (ALS). The management of optimal nutrition in ALS is complicated, as physiological, physical, and psychological effects of the disease need to be considered and addressed accordingly. In this regard, multidisciplinary care teams play an integral role in providing dietary guidance to ALS patients and their carers. However, with an increasing research focus on the use of dietary intervention strategies to manage disease symptoms and improve prognosis in ALS, many ALS patients are now seeking or are actively engaged in using complementary and alternative therapies that are dietary in nature. In this article, we review the aspects of appetite control, energy balance, and the physiological effects of ALS relative to their impact on overall nutrition. We then provide current insights into dietary interventions for ALS, considering the mechanisms of action of some of the common dietary interventions used in ALS, discussing their validity in the context of clinical trials.
Collapse
Affiliation(s)
- Shyuan T Ngo
- School of Biomedical Sciences.,Queensland Brain Institute.,Centre for Clinical Research, The University of Queensland, .,Department of Neurology, Royal Brisbane & Women's Hospital, .,Wesley Medical Research, The Wesley Hospital, Auchenflower, Brisbane, QLD, Australia,
| | | | - Robert D Henderson
- Centre for Clinical Research, The University of Queensland, .,Department of Neurology, Royal Brisbane & Women's Hospital,
| | - Pamela A McCombe
- Centre for Clinical Research, The University of Queensland, .,Department of Neurology, Royal Brisbane & Women's Hospital,
| | - Frederik J Steyn
- Centre for Clinical Research, The University of Queensland, .,Department of Neurology, Royal Brisbane & Women's Hospital, .,Wesley Medical Research, The Wesley Hospital, Auchenflower, Brisbane, QLD, Australia,
| |
Collapse
|