1
|
Beura SK, Panigrahi AR, Yadav P, Kulkarni PP, Lakhanpal V, Singh B, Singh SK. Role of Thrombosis in Neurodegenerative Diseases: An Intricate Mechanism of Neurovascular Complications. Mol Neurobiol 2024:10.1007/s12035-024-04589-4. [PMID: 39482419 DOI: 10.1007/s12035-024-04589-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2024] [Accepted: 10/23/2024] [Indexed: 11/03/2024]
Abstract
Thrombosis, the formation of blood clots in arteries or veins, poses a significant health risk by disrupting the blood flow. It can potentially lead to major cardiovascular complications such as acute myocardial infarction or ischemic stroke (arterial thrombosis) and deep vein thrombosis or pulmonary embolism (venous thrombosis). Nevertheless, over the course of several decades, researchers have observed an association between different cardiovascular events and neurodegenerative diseases, which progressively harm and impair parts of the nervous system, particularly the brain. Furthermore, thrombotic complications have been identified in numerous clinical instances of neurodegenerative diseases, particularly Alzheimer's disease, Parkinson's disease, multiple sclerosis, and Huntington's disease. Substantial research indicates that endothelial dysfunction, vascular inflammation, coagulation abnormalities, and platelet hyperactivation are commonly observed in these conditions, collectively contributing to an increased risk of thrombosis. Thrombosis can, in turn, contribute to the onset, pathogenesis, and severity of these neurological disorders. Hence, this concise review comprehensively explores the correlation between cardiovascular diseases and neurodegenerative diseases, elucidating the cellular and molecular mechanisms of thrombosis in these neurodegenerative diseases. Additionally, a detailed discussion is provided on the commonly employed antithrombotic medications in the context of these neuronal diseases.
Collapse
Affiliation(s)
- Samir Kumar Beura
- Department of Zoology, School of Basic Sciences, Central University of Punjab, Bathinda, Punjab, India, 151401
| | | | - Pooja Yadav
- Department of Zoology, School of Basic Sciences, Central University of Punjab, Bathinda, Punjab, India, 151401
| | - Paresh P Kulkarni
- Department of Cardiovascular and Metabolic Sciences, Lerner Research Institute, Cleveland Clinic, Cleveland, OH, 44195, USA
| | - Vikas Lakhanpal
- Department of Neurology, All India Institute of Medical Sciences, Bathinda, Punjab, India, 151001
| | - Bhupinder Singh
- Department of Cardiology, All India Institute of Medical Sciences, Bathinda, Punjab, India, 151001
| | - Sunil Kumar Singh
- Department of Zoology, School of Basic Sciences, Central University of Punjab, Bathinda, Punjab, India, 151401.
- Department of Biochemistry, School of Basic Sciences, Central University of Punjab, Bathinda, Punjab, India, 151401.
| |
Collapse
|
2
|
Swann P, Mirza-Davies A, O'Brien J. Associations Between Neuropsychiatric Symptoms and Inflammation in Neurodegenerative Dementia: A Systematic Review. J Inflamm Res 2024; 17:6113-6141. [PMID: 39262651 PMCID: PMC11389708 DOI: 10.2147/jir.s385825] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Accepted: 08/30/2024] [Indexed: 09/13/2024] Open
Abstract
Background Neuropsychiatric symptoms are common in dementia and linked to adverse outcomes. Inflammation is increasingly recognized as playing a role as a driver of early disease progression in Alzheimer's disease (AD) and related dementias. Inflammation has also been linked to primary psychiatric disorders, however its association with neuropsychiatric symptoms in neurodegenerative dementias remains uncertain. Methods We conducted a systematic literature review investigating associations between inflammation and neuropsychiatric symptoms in neurodegenerative dementias, including AD, Lewy body, Frontotemporal, Parkinson's (PD) and Huntington's disease dementias. Results Ninety-nine studies met our inclusion criteria, and the majority (n = 59) investigated AD and/or mild cognitive impairment (MCI). Thirty-five studies included PD, and only 6 investigated non-AD dementias. Inflammation was measured in blood, CSF, by genotype, brain tissue and PET imaging. Overall, studies exhibited considerable heterogeneity and evidence for specific inflammatory markers was inconsistent, with lack of replication and few longitudinal studies with repeat biomarkers. Depression was the most frequently investigated symptom. In AD, some studies reported increases in peripheral IL-6, TNF-a associated with depressive symptoms. Preliminary investigations using PET measures of microglial activation found an association with agitation. In PD, studies reported positive associations between TNF-a, IL-6, CRP, MCP-1, IL-10 and depression. Conclusion Central and peripheral inflammation may play a role in neuropsychiatric symptoms in neurodegenerative dementias; however, the evidence is inconsistent. There is a need for multi-site longitudinal studies with detailed assessments of neuropsychiatric symptoms combined with replicable peripheral and central markers of inflammation.
Collapse
Affiliation(s)
- Peter Swann
- Department of Psychiatry, University of Cambridge, School of Clinical Medicine, Cambridge, UK
| | - Anastasia Mirza-Davies
- Department of Psychiatry, University of Cambridge, School of Clinical Medicine, Cambridge, UK
| | - John O'Brien
- Department of Psychiatry, University of Cambridge, School of Clinical Medicine, Cambridge, UK
| |
Collapse
|
3
|
Shah A, Prasad S, Indoria A, Pal PK, Saini J, Ingalhalikar M. Free water imaging in Parkinson's disease and atypical parkinsonian disorders. J Neurol 2024; 271:2521-2528. [PMID: 38265472 DOI: 10.1007/s00415-024-12184-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Revised: 12/28/2023] [Accepted: 12/30/2023] [Indexed: 01/25/2024]
Abstract
BACKGROUND Free water (FW)-corrected diffusion measures are more precise compared to standard diffusion measures. This study comprehensively evaluates FW and corrected diffusion metrics for whole brain white and deep gray matter (WM, GM) structures in patients with Parkinson's disease (PD), progressive supranuclear palsy (PSP) and multiple system atrophy (MSA) and attempts to ascertain the probable patterns of WM abnormalities. METHOD Diffusion MRI was acquired for subjects with PD (n = 133), MSA (n = 25), PSP (n = 30) and matched healthy controls (HC) (n = 99, n = 24, n = 12). Diffusion metrics of FA, MD, AD, RD were generated and FW, corrected FA maps were calculated using a bi-tensor model. TBSS was carried out at 5000 permutations with significance at p < 0.05. For GM, diffusivity maps were extracted from the basal ganglia, and analyzed at an FDR with p < 0.05. RESULTS Compared to HC, PD showed focal changes in FW. MSA showed changes in the cerebellum and brainstem, and PSP showed increase in FW involving supratentorial WM and midbrain. All three showed increased substantia nigra FW. MSA, PSP demonstrated increased FW in bilateral putamen. PD showed increased FW in left GP externa, and bilateral thalamus. Compared to HC, MSA had increased FW in bilateral GP interna, and left thalamic. PSP had an additional increase in FW of the right GP externa, right GP interna, and bilateral thalamus. CONCLUSION The present study demonstrated definitive differences in the patterns of FW alterations between PD and atypical parkinsonian disorders suggesting the possibility of whole brain FW maps being used as markers for diagnosis of these disorders.
Collapse
Affiliation(s)
- Apurva Shah
- Symbiosis Center for Medical Image Analysis and Symbiosis Institute of Technology, Symbiosis International University, Lavale, Mulshi, Pune, 412115, Maharashtra, India
| | - Shweta Prasad
- Department of Neuroimaging and Interventional Radiology, National Institute of Mental Health and Neuro Sciences (NIMHANS), Hosur Road, Bengaluru, 560029, Karnataka, India
| | - Abhilasha Indoria
- Department of Neuroimaging and Interventional Radiology, National Institute of Mental Health and Neuro Sciences (NIMHANS), Hosur Road, Bengaluru, 560029, Karnataka, India
| | - Pramod Kumar Pal
- Department of Neurology, National Institute of Mental Health and Neuro Sciences (NIMHANS), Hosur Road, Bengaluru, 560029, Karnataka, India
| | - Jitender Saini
- Department of Neuroimaging and Interventional Radiology, National Institute of Mental Health and Neuro Sciences (NIMHANS), Hosur Road, Bengaluru, 560029, Karnataka, India
| | - Madhura Ingalhalikar
- Symbiosis Center for Medical Image Analysis and Symbiosis Institute of Technology, Symbiosis International University, Lavale, Mulshi, Pune, 412115, Maharashtra, India.
| |
Collapse
|
4
|
Shan C, Zhang C, Zhang C. The Role of IL-6 in Neurodegenerative Disorders. Neurochem Res 2024; 49:834-846. [PMID: 38227113 DOI: 10.1007/s11064-023-04085-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Revised: 11/26/2023] [Accepted: 12/08/2023] [Indexed: 01/17/2024]
Abstract
"Neurodegenerative disorder" is an umbrella term for a group of fatal progressive neurological illnesses characterized by neuronal loss and inflammation. Interleukin-6 (IL-6), a pleiotropic cytokine, significantly affects the activities of nerve cells and plays a pivotal role in neuroinflammation. Furthermore, as high levels of IL-6 have been frequently observed in association with several neurodegenerative disorders, it may potentially be used as a biomarker for the progression and prognosis of these diseases. This review summarizes the production and function of IL-6 as well as its downstream signaling pathways. Moreover, we make a comprehensive review on the roles of IL-6 in neurodegenerative disorders and its potential clinical application.
Collapse
Affiliation(s)
- Chen Shan
- National Center for Clinical Laboratories, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing Hospital/National Center of Gerontology, Beijing, People's Republic of China
- Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, People's Republic of China
| | - Chao Zhang
- National Center for Clinical Laboratories, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing Hospital/National Center of Gerontology, Beijing, People's Republic of China.
- Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, People's Republic of China.
| | - Chuanbao Zhang
- National Center for Clinical Laboratories, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing Hospital/National Center of Gerontology, Beijing, People's Republic of China.
- Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, People's Republic of China.
| |
Collapse
|
5
|
Yang Q, Wu Q, Zhan Q, Deng L, Ding Y, Wang F, Chen J, Xie L. Association between cytokines and fatigue in patients with type 1 narcolepsy. J Clin Neurosci 2024; 120:102-106. [PMID: 38237487 DOI: 10.1016/j.jocn.2024.01.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Revised: 12/19/2023] [Accepted: 01/08/2024] [Indexed: 02/12/2024]
Abstract
BACKGROUND Fatigue is a frequent complaint among patients with narcolepsy. Studies have shown that inflammatory cytokines are associated with fatigue in neurological disorders; however, this association has not been identified in patients with type 1 narcolepsy. The purpose of this study was to investigate the potential relationship between cytokines and fatigue in patients with type 1 narcolepsy. METHODS We investigated the association between 12 inflammatory cytokines and fatigue in 49 patients with type 1 narcolepsy. The Multidimensional Fatigue Inventory-20 was used to assess the fatigue severity. The associations of fatigue were identified using Spearman and Pearson correlation analyses. A linear regression analysis model was used to adjust the confounding factors and evaluate the associations of fatigue. RESULTS Correlation analysis showed that the plasma interleukin (IL)-2 level (r = 0.409, p = 0.004) was positively correlated with fatigue in patients with narcolepsy type 1. After adjusting for confounding factors, the linear regression model revealed a positive association between the IL-2 level (β = 1.148, p = 0.04) and fatigue in individuals diagnosed with type 1 narcolepsy. CONCLUSION IL-2 levels show a positive correlation with fatigue in type 1 narcolepsy, suggesting its potential role in the pathophysiology of fatigue.
Collapse
Affiliation(s)
- Qiao Yang
- Department of Neurology, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, China
| | - Qiong Wu
- Department of Clinical Laboratory, The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, China; Jiangxi Province Key Laboratory of Laboratory Medicine, Nanchang, China; Jiangxi Provincial Clinical Research Center for Laboratory Medicine, Nanchang, China
| | - Qinqin Zhan
- Department of Neurology, Jiangxi Provincial People's Hospital, Nanchang, China
| | - Liying Deng
- Department of Neurology, The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, China; Jiangxi Key Laboratory of Neurological Tumors and Cerebrovascular Diseases, Nanchang, China; Jiangxi Health Commission Key Laboratory of Neurological Medicine, Nanchang, China; Institute of Neuroscience, Nanchang University, Nanchang, China
| | - Yongmin Ding
- Department of Neurology, The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, China; Jiangxi Key Laboratory of Neurological Tumors and Cerebrovascular Diseases, Nanchang, China; Jiangxi Health Commission Key Laboratory of Neurological Medicine, Nanchang, China; Institute of Neuroscience, Nanchang University, Nanchang, China
| | - Fen Wang
- Department of Neurology, The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, China; Jiangxi Key Laboratory of Neurological Tumors and Cerebrovascular Diseases, Nanchang, China; Jiangxi Health Commission Key Laboratory of Neurological Medicine, Nanchang, China; Institute of Neuroscience, Nanchang University, Nanchang, China
| | - Jin Chen
- Department of Neurology, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, China.
| | - Liang Xie
- Department of Neurology, The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, China; Jiangxi Key Laboratory of Neurological Tumors and Cerebrovascular Diseases, Nanchang, China; Jiangxi Health Commission Key Laboratory of Neurological Medicine, Nanchang, China; Institute of Neuroscience, Nanchang University, Nanchang, China.
| |
Collapse
|
6
|
Wang L, Yi H, Liang X, Xu F, Li T, Yang X, Wei M, Ou Z, Tong Q. Plasma TNF-α and phosphorylated α-syn are associated with fatigue in patients with Parkinson's disease. J Neuroimmunol 2023; 385:578222. [PMID: 37918213 DOI: 10.1016/j.jneuroim.2023.578222] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Revised: 09/25/2023] [Accepted: 10/23/2023] [Indexed: 11/04/2023]
Abstract
BACKGROUD Fatigue is one of the most common non-motor symptoms among patients with Parkinson's disease (PD).However, the pathogenesis keeps largely unknown. Moreover, it is lack of objective biomarker. OBJECTIVE To investigate the relationship between plasma inflammatory cytokines and α-syn levels and fatigue in patients with PD. METHODS A total of 63 PD patients were enrolled, including 35 patients with fatigue and 28 patients without fatigue. We compared the difference between plasma cytokines and alpha-synuclein (α-syn) in the two groups. Meanwhile, we analyzed the relationship between plasma cytokines and p-α-syn levels and fatigue. RESULTS PD patients with fatigue had older age, longer disease duration, more severe motor scores. There were significant differences in the plasma levels of IL-1β, IL-18, TNF-α, and phosphorylated α-syn (p-α-syn) between the two groups. The plasm inflammatory cytokine levels (IL-1β, IL-18 and TNF-α) were positively associated with FSS scores. Moreover, the plasma p-α-syn level was significantly positively correlated with FSS scores. Furthermore, the higher PDQ-39 scores and higher plasma levels of TNF-α and p-α-syn were strongly associated with fatigue in PD. The ROC curve analysis showed the AUC of TNF-α for fatigue in PD was 0.663 with a sensitivity of 65.71% and specificity of 67.86%, while the AUC of p-α-syn was 0.786 with a sensitivity of 74.29% and specificity of 64.29%. The combination of TNF-α and p-α-syn improves the AUC to 0.803 with a sensitivity of 88.57% and specificity of 64.29%. CONCLUSION The high plasma levels of TNF-α and p-α-syn were strongly associated with fatigue in PD.
Collapse
Affiliation(s)
- Lijun Wang
- Department of Neurology, The Affiliated Huaian No. 1 People's Hospital of Nanjing Medical University, 1 Huanghe Road West, Huaian, Jiangsu 223300, China
| | - Hongyan Yi
- Department of Neurology, The Affiliated Huaian No. 1 People's Hospital of Nanjing Medical University, 1 Huanghe Road West, Huaian, Jiangsu 223300, China
| | - Xiaojing Liang
- Department of Neurology, The Affiliated Huaian No. 1 People's Hospital of Nanjing Medical University, 1 Huanghe Road West, Huaian, Jiangsu 223300, China
| | - Fugui Xu
- Department of Neurology, The Affiliated Huaian No. 1 People's Hospital of Nanjing Medical University, 1 Huanghe Road West, Huaian, Jiangsu 223300, China
| | - Tiantian Li
- Department of Neurology, The Affiliated Huaian No. 1 People's Hospital of Nanjing Medical University, 1 Huanghe Road West, Huaian, Jiangsu 223300, China
| | - Xiu Yang
- Department of Neurology, The Affiliated Huaian No. 1 People's Hospital of Nanjing Medical University, 1 Huanghe Road West, Huaian, Jiangsu 223300, China
| | - Ming Wei
- Department of Neurology, The Affiliated Huaian No. 1 People's Hospital of Nanjing Medical University, 1 Huanghe Road West, Huaian, Jiangsu 223300, China
| | - Zhou Ou
- Department of Neurology, The Affiliated Huaian No. 1 People's Hospital of Nanjing Medical University, 1 Huanghe Road West, Huaian, Jiangsu 223300, China.
| | - Qiang Tong
- Department of Neurology, The Affiliated Huaian No. 1 People's Hospital of Nanjing Medical University, 1 Huanghe Road West, Huaian, Jiangsu 223300, China.
| |
Collapse
|
7
|
Sharma P, Kishore A, De I, Negi S, Kumar G, Bhardwaj S, Singh M. Mitigating neuroinflammation in Parkinson's disease: Exploring the role of proinflammatory cytokines and the potential of phytochemicals as natural therapeutics. Neurochem Int 2023; 170:105604. [PMID: 37683836 DOI: 10.1016/j.neuint.2023.105604] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2023] [Revised: 08/22/2023] [Accepted: 08/23/2023] [Indexed: 09/10/2023]
Abstract
Parkinson's disease (PD) is one of the most prevalent neuroinflammatory illnesses, characterized by the progressive loss of neurons in the brain. Proinflammatory cytokines play a key role in initiating and perpetuating neuroinflammation, which can lead to the activation of glial cells and the deregulation of inflammatory pathways, ultimately leading to permanent brain damage. Currently, available drugs for PD mostly alleviate symptoms but do not target underlying inflammatory processes. There is a growing interest in exploring the potential of phytochemicals to mitigate neuroinflammation. Phytochemicals such as resveratrol, apigenin, catechin, anthocyanins, amentoflavone, quercetin, berberine, and genistein have been studied for their ability to scavenge free radicals and reduce proinflammatory cytokine levels in the brain. These plant-derived compounds offer a natural and potentially safe alternative to conventional drugs for managing neuroinflammation in PD and other neurodegenerative diseases. However, further research is necessary to elucidate their underlying mechanisms of action and clinical effectiveness. So, this review delves into the pathophysiology of PD and its intricate relationship with proinflammatory cytokines, and explores how their insidious contributions fuel the disease's initiation and progression via cytokine-dependent signaling pathways. Additionally, we tried to give an account of PD management using existing drugs along with their limitations. Furthermore, our aim is to provide a thorough overview of the diverse groups of phytochemicals, their plentiful sources, and the current understanding of their anti-neuroinflammatory properties. Through this exploration, we posit the innovative idea that consuming nutrient-rich phytochemicals could be an effective approach to preventing and treating PD.
Collapse
Affiliation(s)
- Prashant Sharma
- Chemical Biology Unit, Institute of Nano Science and Technology, Mohali, Punjab, India
| | - Abhinoy Kishore
- Chemical Biology Unit, Institute of Nano Science and Technology, Mohali, Punjab, India
| | - Indranil De
- Chemical Biology Unit, Institute of Nano Science and Technology, Mohali, Punjab, India
| | - Swarnima Negi
- Chemical Biology Unit, Institute of Nano Science and Technology, Mohali, Punjab, India
| | - Gulshan Kumar
- Chemical Biology Unit, Institute of Nano Science and Technology, Mohali, Punjab, India
| | - Sahil Bhardwaj
- Chemical Biology Unit, Institute of Nano Science and Technology, Mohali, Punjab, India
| | - Manish Singh
- Chemical Biology Unit, Institute of Nano Science and Technology, Mohali, Punjab, India.
| |
Collapse
|
8
|
Chmielewski G, Majewski MS, Kuna J, Mikiewicz M, Krajewska-Włodarczyk M. Fatigue in Inflammatory Joint Diseases. Int J Mol Sci 2023; 24:12040. [PMID: 37569413 PMCID: PMC10418999 DOI: 10.3390/ijms241512040] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Revised: 07/24/2023] [Accepted: 07/25/2023] [Indexed: 08/13/2023] Open
Abstract
Fatigue is a prevalent symptom in various rheumatic diseases, such as rheumatoid arthritis, psoriatic arthritis, and ankylosing spondylitis. It is characterised as a subjective, enduring feeling of generalised tiredness or exhaustion, impacting the patient's life quality and exacerbating disability. The fatigue nature is multifaceted, encompassing physiological, psychological, and social factors, and although the exact cause of inflammatory joint diseases is not fully understood, several factors are believed to contribute to its development. Despite high prevalence and importance, the symptom is often underestimated in clinical practice. Chronic inflammation, commonly associated with rheumatic diseases, has been proposed as a potential contributor to fatigue development. While current treatments effectively target inflammation and reduce disease activity, fatigue remains a persistent problem. Clinical evaluation of rheumatic diseases primarily relies on objective criteria, whereas fatigue, being a subjective symptom, is solely experienced and reported by the patient. Managing fatigue in inflammatory joint diseases involves a multifaceted approach. Identifying and comprehensively assessing the subjective components of fatigue in individual patients is crucial for effectively managing this symptom in everyday clinical practice.
Collapse
Affiliation(s)
- Grzegorz Chmielewski
- Department of Rheumatology, School of Medicine, Collegium Medicum, University of Warmia and Mazury in Olsztyn, 10-900 Olsztyn, Poland; (G.C.); (J.K.)
| | - Michał S. Majewski
- Department of Pharmacology and Toxicology, Faculty of Medicine, University of Warmia and Mazury in Olsztyn, 10-082 Olsztyn, Poland;
| | - Jakub Kuna
- Department of Rheumatology, School of Medicine, Collegium Medicum, University of Warmia and Mazury in Olsztyn, 10-900 Olsztyn, Poland; (G.C.); (J.K.)
| | - Mateusz Mikiewicz
- Department of Pathological Anatomy, Faculty of Veterinary Medicine, University of Warmia and Mazury in Olsztyn, 10-719 Olsztyn, Poland;
| | - Magdalena Krajewska-Włodarczyk
- Department of Rheumatology, School of Medicine, Collegium Medicum, University of Warmia and Mazury in Olsztyn, 10-900 Olsztyn, Poland; (G.C.); (J.K.)
| |
Collapse
|
9
|
Pauletti C, Locuratolo N, Mannarelli D, Maffucci A, Petritis A, Menini E, Fattapposta F. Fatigue in fluctuating Parkinson's disease patients: possible impact of safinamide. J Neural Transm (Vienna) 2023:10.1007/s00702-023-02654-1. [PMID: 37210459 DOI: 10.1007/s00702-023-02654-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2023] [Accepted: 05/13/2023] [Indexed: 05/22/2023]
Abstract
Fatigue is a common non-motor symptom in Parkinson's disease (PD). Among other pathophysiological mechanisms, neuroinflammation, a pathological PD hallmark associated with changes in glutamatergic transmission in basal ganglia, has been proposed as a crucial factor closely related to fatigue. To test the hypothesis that safinamide could represent an effective treatment of fatigue in PD patients, given its dual mechanism of action (it selectively and reversibly inhibits MAOB and modulates glutamate release), we administered the validated versions of fatigue severity scale (FSS) and Parkinson fatigue scale-16 (PFS-16) to 39 fluctuating PD patients with fatigue before and after a 24-week treatment period with safinamide as add-on therapy. An assessment of secondary variables such as depression, quality of life (QoL), and motor and non-motor symptoms (NMS) was conducted. After 24 weeks of treatment with safinamide, both FSS (p < 0.001) and PF-S16 (p = 0.02) scores were significantly lower than at baseline. Moreover, 46.2% and 41% of patients scored below the cut-off for the presence of fatigue according to FSS and PFS-16, respectively (responders). At follow-up, a significant difference emerged between responders and non-responders in mood, QoL, and NMS. Fatigue improved in fluctuating PD, and more than 40% of patients were "fatigue-free" after a 6 month treatment with safinamide. Patients without fatigue at follow-up displayed significantly better scores in QoL domains, such as mobility or activities of daily living, although disease severity remained stable, supporting the hypothesis that fatigue could considerably affect QoL. Drugs that interact with multiple neurotransmission systems, such as safinamide, could be useful in reducing this symptom.
Collapse
Affiliation(s)
- Caterina Pauletti
- Department of Human Neurosciences, Universita degli Studi di Roma La Sapienza, Rome, Italy.
| | - Nicoletta Locuratolo
- Department of Human Neurosciences, Universita degli Studi di Roma La Sapienza, Rome, Italy
- National Centre for Disease Prevention and Health Promotion, National Institute of Health, Rome, Italy
| | - Daniela Mannarelli
- Department of Human Neurosciences, Universita degli Studi di Roma La Sapienza, Rome, Italy
| | - Andrea Maffucci
- Department of Human Neurosciences, Universita degli Studi di Roma La Sapienza, Rome, Italy
| | - Alessia Petritis
- Department of Human Neurosciences, Universita degli Studi di Roma La Sapienza, Rome, Italy
| | - Elisa Menini
- Department of Human Neurosciences, Universita degli Studi di Roma La Sapienza, Rome, Italy
- Department of Neurosciences, Biomedicine and Movement Sciences, University of Verona, Verona, Italy
| | - Francesco Fattapposta
- Department of Human Neurosciences, Universita degli Studi di Roma La Sapienza, Rome, Italy
| |
Collapse
|
10
|
Blood Biomarkers in Patients with Parkinson's Disease: A Review in Context of Anesthetic Care. Diagnostics (Basel) 2023; 13:diagnostics13040693. [PMID: 36832181 PMCID: PMC9955162 DOI: 10.3390/diagnostics13040693] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Revised: 02/08/2023] [Accepted: 02/10/2023] [Indexed: 02/15/2023] Open
Abstract
Parkinson's disease (PD) is the second most common inflammatory neurodegenerative disorder after dementia. Preclinical and epidemiological data strongly suggest that chronic neuroinflammation slowly induces neuronal dysfunction. Activated microglia secrete several neurotoxic substances, such as chemokines and proinflammatory cytokines, which may promote blood-brain barrier (BBB) permeabilization. CD4+ T cells comprise proinflammatory cells such as T helper (Th) 1 and Th17 cells, as well as anti-inflammatory cells such as Th2 and T regulatory cells (Tregs). Th1 and Th17 cells can be detrimental to dopamine neurons, whereas Th2 and Tregs are neuroprotective. The results of studies on the serum levels of cytokines such as IFN-γ and TNF-α secreted by Th1 T cells, IL-8 and IL-10 secreted by Th2 T cells, and IL-17 secreted by Th17 cells in PD patients are not uniform. In addition, the relationships between serum cytokine levels and motor and non-motor symptoms of PD are controversial. Surgical stress and anesthesia induce inflammatory responses by disturbing the balance between pro- and anti-inflammatory cytokines, which may exacerbate the neuroinflammatory response in PD patients. Here we review studies on blood inflammatory biomarkers in PD patients and discuss the roles of surgery and anesthesia in PD progression.
Collapse
|
11
|
Fu J, Chen S, Liu J, Yang J, Ou R, Zhang L, Chen X, Shang H. Serum inflammatory cytokines levels and the correlation analyses in Parkinson's disease. Front Cell Dev Biol 2023; 11:1104393. [PMID: 36875766 PMCID: PMC9978777 DOI: 10.3389/fcell.2023.1104393] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2022] [Accepted: 02/07/2023] [Indexed: 02/18/2023] Open
Abstract
Objective: To investigate the serum levels of inflammatory cytokines and the correlations with Parkinson's disease (PD) clinical symptoms. Methods: Serum levels of the cytokines, including IL-6, IL-8, and TNF-α, were measured in 273 PD patients and 91 healthy controls (HCs). The clinical manifestations of PD were assessed with nine different scales to evaluate the cognitive function, non-motor symptoms, motor symptoms, and disease severity. The differences in these inflammatory indicators were examined between PD patients and HCs, and the correlations of these inflammatory indicators with clinical variables were analyzed in PD patients. Results: Serum levels of interleukin-6 (IL-6) and tumor necrosis factor-α (TNF-α) in PD patients were higher than those in HCs, but serum interleukin-8 (IL-8) level was not significantly different from that in HCs. In PD patients, serum IL-6 level was positively correlated with age of onset, the Hamilton Depression Scale (HAMD), and the Non-Motor Symptom Scale (NMSS), UPDRS part I, part II, and part III, but it was inversely correlated with the Frontal Assessment Battery (FAB) and the Montreal Cognitive Assessment (MoCA) scores. Serum TNF-α level was positively correlated with age of onset and H&Y stage in PD patients (p = .037), but negatively correlated with FAB scores in PD patients (p = .010). However, no associations were found between all the clinical variables and the serum IL-8 level. The forward binary logistic regression model revealed that serum IL-6 level was associated with MoCA (p = .023) and UPDRS I scores (p = .023), but no associations was found with the remaining factors. The ROC curve of TNF-α for the diagnosis of PD showed the area under the curve (AUC) was .719 (p < .05, 95% CI: .655-.784), and the critical value of TNF-α was 5.380 pg/ml, with a diagnostic sensitivity of 76.0% and a specificity of 59.3%. Conclusion: Our results suggest increased serum levels of IL-6 and TNF-α in PD, we further found that IL-6 level was associated with non-motor symptoms and cognitive dysfunction, and IL-6 may play a role in the pathophysiology of non-motor symptoms in PD. At the same time, we also propose that TNF-α has a good diagnostic value for PD despite its irrelevance to clinical symptoms.
Collapse
Affiliation(s)
- Jiajia Fu
- Department of Neurology, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Sihui Chen
- Department of Neurology, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Jiao Liu
- Department of Neurology, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Jing Yang
- Department of Neurology, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Ruwei Ou
- Department of Neurology, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Lingyu Zhang
- Department of Neurology, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Xueping Chen
- Department of Neurology, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Huifang Shang
- Department of Neurology, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| |
Collapse
|
12
|
Nash D, Hughes MG, Butcher L, Aicheler R, Smith P, Cullen T, Webb R. IL-6 signaling in acute exercise and chronic training: Potential consequences for health and athletic performance. Scand J Med Sci Sports 2023; 33:4-19. [PMID: 36168944 PMCID: PMC10092579 DOI: 10.1111/sms.14241] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2022] [Revised: 08/25/2022] [Accepted: 09/20/2022] [Indexed: 12/13/2022]
Abstract
The cytokine interleukin-6 (IL-6) is involved in a diverse set of physiological processes. Traditionally, IL-6 has been thought of in terms of its inflammatory actions during the acute phase response and in chronic conditions such as rheumatoid arthritis and obesity. However, IL-6 is also an important signaling molecule during exercise, being acutely released from working muscle fibers with increased exercise duration, intensity, and muscle glycogen depletion. In this context, IL-6 enables muscle-organ crosstalk, facilitating a coordinated response to help maintain muscle energy homeostasis, while also having anti-inflammatory actions. The range of actions of IL-6 can be explained by its dichotomous signaling pathways. Classical signaling involves IL-6 binding to a cell-surface receptor (mbIL-6R; present on only a small number of cell types) and is the predominant signaling mechanism during exercise. Trans-signaling involves IL-6 binding to a soluble version of its receptor (sIL-6R), with the resulting complex having a much greater half-life and the ability to signal in all cell types. Trans-signaling drives the inflammatory actions of IL-6 and is the predominant pathway in disease. A single nucleotide polymorphism (rs2228145) on the IL-6R gene can modify the classical/trans-signaling balance through increasing the levels of sIL-6R. This SNP has clinical significance, having been linked to inflammatory conditions such as rheumatoid arthritis and type 1 diabetes, as well as to the severity of symptoms experienced with COVID-19. This review will describe how acute exercise, chronic training and the rs2228145 SNP can modify the IL-6 signaling pathway and the consequent implications for health and athletic performance.
Collapse
Affiliation(s)
- Dan Nash
- School of Sport and Health Sciences, Cardiff Metropolitan University, Cardiff, UK
| | - Michael G Hughes
- School of Sport and Health Sciences, Cardiff Metropolitan University, Cardiff, UK
| | - Lee Butcher
- School of Sport and Health Sciences, Cardiff Metropolitan University, Cardiff, UK
| | - Rebecca Aicheler
- School of Sport and Health Sciences, Cardiff Metropolitan University, Cardiff, UK
| | - Paul Smith
- School of Sport and Health Sciences, Cardiff Metropolitan University, Cardiff, UK
| | - Tom Cullen
- Research Centre for Sport, Exercise and Life Sciences, Coventry University, Coventry, UK
| | - Richard Webb
- School of Sport and Health Sciences, Cardiff Metropolitan University, Cardiff, UK
| |
Collapse
|
13
|
Jayanti S, Moretti R, Tiribelli C, Gazzin S. Bilirubin Prevents the TH + Dopaminergic Neuron Loss in a Parkinson's Disease Model by Acting on TNF-α. Int J Mol Sci 2022; 23:ijms232214276. [PMID: 36430754 PMCID: PMC9693357 DOI: 10.3390/ijms232214276] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2022] [Revised: 11/09/2022] [Accepted: 11/16/2022] [Indexed: 11/19/2022] Open
Abstract
Parkinson's disease (PD), the fastest-growing movement disorder, is still challenged by the unavailability of disease-modifying therapy. Mildly elevated levels of unconjugated bilirubin (UCB, PubChem CID 5280352) have been shown to be protective against several extra-CNS diseases, and the effect is attributed to its well-known anti-oxidant and anti-inflammatory capability. We explored the neuroprotective effect of low concentrations of UCB (from 0.5 to 4 µM) in our PD model based on organotypic brain cultures of substantia nigra (OBCs-SN) challenged with a low dose of rotenone (Rot). UCB at 0.5 and 1 µM fully protects against the loss of TH+ (dopaminergic) neurons (DOPAn). The alteration in oxidative stress is involved in TH+ positive neuron demise induced by Rot, but is not the key player in UCB-conferred protection. On the contrary, inflammation, specifically tumor necrosis factor alpha (TNF-α), was found to be the key to UCB protection against DOPAn sufferance. Further work will be needed to introduce the use of UCB into clinical settings, but determining that TNF-α plays a key role in PD may be crucial in designing therapeutic options.
Collapse
Affiliation(s)
- Sri Jayanti
- The Liver-Brain Unit “Rita-Moretti”, Fondazione Italiana Fegato-Onlus, Bldg. Q, AREA Science Park, ss14, Km 163.5, Basovizza, 34149 Trieste, Italy
- Faculty of Medicine, University of Hasanuddin, Makassar 90245, Indonesia
- Molecular Biomedicine Ph.D. Program, Department of Life Sciences, University of Trieste, 34127 Trieste, Italy
| | - Rita Moretti
- Neurology Clinic, Department of Medical, Surgical and Health Sciences, University of Trieste, 34139 Trieste, Italy
| | - Claudio Tiribelli
- The Liver-Brain Unit “Rita-Moretti”, Fondazione Italiana Fegato-Onlus, Bldg. Q, AREA Science Park, ss14, Km 163.5, Basovizza, 34149 Trieste, Italy
- Correspondence: ; Tel.: +39-040-375-7840
| | - Silvia Gazzin
- The Liver-Brain Unit “Rita-Moretti”, Fondazione Italiana Fegato-Onlus, Bldg. Q, AREA Science Park, ss14, Km 163.5, Basovizza, 34149 Trieste, Italy
| |
Collapse
|
14
|
McGovern KA, Durham WJ, Wright TJ, Dillon EL, Randolph KM, Danesi CP, Urban RJ, Sheffield-Moore M. Impact of Adjunct Testosterone on Cancer-Related Fatigue: An Ancillary Analysis from a Controlled Randomized Trial. Curr Oncol 2022; 29:8340-8356. [PMID: 36354718 PMCID: PMC9689748 DOI: 10.3390/curroncol29110658] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2022] [Revised: 10/29/2022] [Accepted: 10/31/2022] [Indexed: 11/06/2022] Open
Abstract
Many cancer patients undergoing treatment experience cancer-related fatigue (CRF). Inflammatory markers are correlated with CRF but are not routinely targeted for treatment. We previously demonstrated in an NIH-funded placebo-controlled, double-blind, randomized clinical trial (NCT00878995, closed to follow-up) that seven weekly injections of 100 mg adjunct testosterone preserved lean body mass in cancer patients undergoing standard-of-care treatment in a hospital setting. Because testosterone therapy can reduce circulating proinflammatory cytokines, we conducted an ancillary analysis to determine if this testosterone treatment reduced inflammatory burden and improved CRF symptoms and health-related quality of life. Randomization was computer-generated and managed by the pharmacy, which dispensed testosterone and placebo in opaque syringes to the administering study personnel. A total of 24 patients were randomized (14 placebo, 10 testosterone), and 21 were included in the primary analysis (11 placebo, 10 testosterone). Testosterone therapy did not ameliorate CRF symptoms (placebo to testosterone difference in predicted mean multidimensional fatigue symptom inventory scores: -5.6, 95% CI: -24.6 to 13.3), improve inflammatory markers, or preserve health-related quality of life and functional measures of performance in late-stage cancer patients.
Collapse
Affiliation(s)
- Kristen A. McGovern
- Department of Internal Medicine, The University of Texas Medical Branch (UTMB), 301 University Blvd., Galveston, TX 77555, USA
| | | | | | | | | | | | | | | |
Collapse
|
15
|
Gordon J, Lockard G, Monsour M, Alayli A, Choudhary H, Borlongan CV. Sequestration of Inflammation in Parkinson's Disease via Stem Cell Therapy. Int J Mol Sci 2022; 23:ijms231710138. [PMID: 36077534 PMCID: PMC9456021 DOI: 10.3390/ijms231710138] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2022] [Revised: 09/01/2022] [Accepted: 09/02/2022] [Indexed: 12/02/2022] Open
Abstract
Parkinson’s disease is the second most common neurodegenerative disease. Insidious and progressive, this disorder is secondary to the gradual loss of dopaminergic signaling and worsening neuroinflammation, affecting patients’ motor capabilities. Gold standard treatment includes exogenous dopamine therapy in the form of levodopa–carbidopa, or surgical intervention with a deep brain stimulator to the subcortical basal ganglia. Unfortunately, these therapies may ironically exacerbate the already pro-inflammatory environment. An alternative approach may involve cell-based therapies. Cell-based therapies, whether endogenous or exogenous, often have anti-inflammatory properties. Alternative strategies, such as exercise and diet modifications, also appear to play a significant role in facilitating endogenous and exogenous stem cells to induce an anti-inflammatory response, and thus are of unique interest to neuroinflammatory conditions including Parkinson’s disease. Treating patients with current gold standard therapeutics and adding adjuvant stem cell therapy, alongside the aforementioned lifestyle modifications, may ideally sequester inflammation and thus halt neurodegeneration.
Collapse
Affiliation(s)
- Jonah Gordon
- Morsani College of Medicine, University of South Florida, Tampa, FL 33602, USA
| | - Gavin Lockard
- Morsani College of Medicine, University of South Florida, Tampa, FL 33602, USA
| | - Molly Monsour
- Morsani College of Medicine, University of South Florida, Tampa, FL 33602, USA
| | - Adam Alayli
- Morsani College of Medicine, University of South Florida, Tampa, FL 33602, USA
| | - Hassan Choudhary
- Morsani College of Medicine, University of South Florida, Tampa, FL 33602, USA
| | - Cesario V. Borlongan
- Center of Excellence for Aging and Brain Repair, Department of Neurosurgery and Brain Repair, College of Medicine, University of South Florida, Tampa, FL 33612, USA
- Correspondence:
| |
Collapse
|
16
|
Kim R, Kim HJ, Shin JH, Lee CY, Jeon SH, Jeon B. Serum Inflammatory Markers and Progression of Nonmotor Symptoms in Early Parkinson's Disease. Mov Disord 2022; 37:1535-1541. [PMID: 35596676 DOI: 10.1002/mds.29056] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2021] [Revised: 03/03/2022] [Accepted: 03/21/2022] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND The influence of peripheral inflammation on nonmotor symptoms (NMSs) in Parkinson's disease (PD) remains unclear. OBJECTIVE The aim of this study was to explore whether serum inflammatory marker profiles are associated with the progression of NMSs in early PD. METHODS We included 45 patients with early PD and 20 healthy control subjects. Six inflammatory markers, including interleukin (IL)-1β, IL-2, IL-6, IL-10, tumor necrosis factor-α, and high-sensitivity C-reactive protein, were measured. NMSs were assessed using the Non-Motor Symptoms Scale, Montreal Cognitive Assessment, and Composite Autonomic Symptom Score-31 at baseline and after 3 years. RESULTS Principal component (PC) analysis showed that only PC3 scores, mainly loaded by IL-2 and IL-6, were significantly elevated in the PD group compared with the control group. Higher PC3 scores in the PD group were associated with faster progression of Non-Motor Symptoms Scale total and mood/apathy domain scores. There were no significant associations of PC scores with Montreal Cognitive Assessment and Composite Autonomic Symptom Score-31 score changes. CONCLUSIONS Peripheral inflammation may be related to the evolution of NMSs, particularly mood symptoms, in the early stages of PD. © 2022 International Parkinson and Movement Disorder Society.
Collapse
Affiliation(s)
- Ryul Kim
- Department of Neurology, Inha University Hospital, Inha University College of Medicine, Incheon, South Korea
| | - Han-Joon Kim
- Department of Neurology and Movement Disorder Center, Seoul National University Hospital, Seoul National University College of Medicine, Seoul, South Korea
| | - Jung Hwan Shin
- Department of Neurology and Movement Disorder Center, Seoul National University Hospital, Seoul National University College of Medicine, Seoul, South Korea
| | - Chan Young Lee
- Department of Neurology, School of Medicine, Ewha Womans University Mokdong Hospital, Seoul, South Korea
| | | | - Beomseok Jeon
- Department of Neurology and Movement Disorder Center, Seoul National University Hospital, Seoul National University College of Medicine, Seoul, South Korea
| |
Collapse
|
17
|
Bartl M, Xylaki M, Bähr M, Weber S, Trenkwalder C, Mollenhauer B. Evidence for immune system alterations in peripheral biological fluids in Parkinson's disease. Neurobiol Dis 2022; 170:105744. [DOI: 10.1016/j.nbd.2022.105744] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2022] [Revised: 04/19/2022] [Accepted: 04/26/2022] [Indexed: 12/16/2022] Open
|
18
|
Tabikh M, Chahla C, Okdeh N, Kovacic H, Sabatier JM, Fajloun Z. Parkinson disease: Protective role and function of neuropeptides. Peptides 2022; 151:170713. [PMID: 34929264 DOI: 10.1016/j.peptides.2021.170713] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/02/2021] [Revised: 11/16/2021] [Accepted: 12/16/2021] [Indexed: 01/07/2023]
Abstract
Neuropeptides are bioactive molecules, made up of small chains of amino acids, with many neuromodulatory properties. Several lines of evidence suggest that neuropeptides, mainly expressed in the central nervous system (CNS), play an important role in the onset of Parkinson's Disease (PD) pathology. The wide spread disruption of neuropeptides has been excessively demonstrated to be related to the pathophysiological symptoms in PD where impairment in motor function per example was correlated with neuropeptides dysregulation in the substantia niagra (SN). Moreover, the levels of different neuropeptides have been found modified in the cerebrospinal fluid and blood of PD patients, indicating their potential role in the manifestation of PD symptoms and dysfunctions. In this review, we outlined the neuroprotective effects of neuropeptides on dopaminergic neuronal loss, oxidative stress and neuroinflammation in several models and tissues of PD. Our main focus was to elaborate the role of orexin, pituitary adenylate cyclase activating polypeptide (PACAP), vasoactive intestinal peptide (VIP), opioids, angiotensin, carnosine and many others in the protection and/or involvement in the neurodegeneration of striatal dopaminergic cells. Further studies are required to better assess the mode of action and cellular mechanisms of neuropeptides in order to shift the focus from the in vitro and in vivo testing to applicable clinical testing. This review, allows a support for future use of neuropeptides as therapeutic solution for PA pathophysiology.
Collapse
Affiliation(s)
- Mireille Tabikh
- Faculty of Sciences 3, Department of Biology, Lebanese University, Campus Michel Slayman Ras Maska, 1352, Tripoli, Lebanon
| | - Charbel Chahla
- Faculty of Sciences 3, Department of Biology, Lebanese University, Campus Michel Slayman Ras Maska, 1352, Tripoli, Lebanon
| | - Nathalie Okdeh
- Faculty of Sciences 3, Department of Biology, Lebanese University, Campus Michel Slayman Ras Maska, 1352, Tripoli, Lebanon
| | - Herve Kovacic
- Faculté de Médecine, Université Aix-Marseille, Institut de Neuro-Physiopathologie, UMR 7051, Boulevard Pierre Dramard-CS80011, 13344, Marseille Cedex 15, France
| | - Jean-Marc Sabatier
- Faculté de Médecine, Université Aix-Marseille, Institut de Neuro-Physiopathologie, UMR 7051, Boulevard Pierre Dramard-CS80011, 13344, Marseille Cedex 15, France.
| | - Ziad Fajloun
- Faculty of Sciences 3, Department of Biology, Lebanese University, Campus Michel Slayman Ras Maska, 1352, Tripoli, Lebanon; Laboratory of Applied Biotechnology (LBA3B), Azm Center for Research in Biotechnology and its Applications, EDST, Lebanese University, 1300, Tripoli, Lebanon.
| |
Collapse
|
19
|
Lawrie S, Coe S, Mansoubi M, Welch J, Razzaque J, Hu MT, Dawes H. Dietary Patterns and Nonmotor Symptoms in Parkinson's Disease: A Cross-Sectional Analysis. JOURNAL OF THE AMERICAN NUTRITION ASSOCIATION 2022; 42:393-402. [PMID: 35512773 DOI: 10.1080/07315724.2022.2056544] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
OBJECTIVE Evidence-based treatment for nonmotor symptoms in Parkinson's disease (PD) is limited. Lifestyle-based improvements including dietary changes may be a potential management strategy. The intent of this research was to investigate the extent to which 3 dietary indices (Mediterranean-DASH Diet Intervention for Neurodegenerative Delay [MIND], Dietary Inflammation Index [DII], and Healthy Diet Indicator [HDI-2020]) are associated with overall and individual nonmotor symptom severity among individuals with PD. METHOD An exploratory cross-sectional analysis of dietary (food frequency questionnaire) and clinical data was undertaken, including measures of overall nonmotor symptom severity, such as fatigue, depression, anxiety, apathy, sleep problems, daytime sleepiness, and cognitive impairment. The relationship between each dietary score and symptom outcome was assessed by linear regression for continuous variables and through general linear model analysis for tertiles of dietary adherence. RESULTS None of the dietary indices significantly predicted the total nonmotor symptom severity score. The HDI predicted a significant decrease in fatigue scores as measured by the NeuroQoL fatigue item (standardized β = -.19, p = 0.022), after adjusting for age, sex, energy intake, years since diagnosis, physical activity level, education, and smoking. Self-reported depression symptoms reduced by .17 (standardized β) for each unit increase in HDI score (p = 0.035), after controlling for age, gender, energy intake, and years since diagnosis. No other significant associations were evident between dietary scores and any other nonmotor symptoms. CONCLUSIONS Our results indicate that fatigue and depression in PD may be modified by diet; however, more research is needed using a larger sample to replicate these findings. Supplemental data for this article is available online at https://doi.org/10.1080/07315724.2022.2056544 .
Collapse
Affiliation(s)
- Sophie Lawrie
- Centre for Movement, Occupational and Rehabilitation Sciences (MOReS), Oxford Brookes University, Oxford, UK
| | - Shelly Coe
- Centre for Movement, Occupational and Rehabilitation Sciences (MOReS), Oxford Brookes University, Oxford, UK
- Oxford Brookes Centre for Nutrition and Health, Oxford Brookes University, Oxford, UK
| | - Maedeh Mansoubi
- College of Medicine and Health, University of Exeter, Exeter, UK
| | - Jessica Welch
- Oxford Parkinson's Disease Centre Clinical Cohort Team, Oxford, UK
| | - Jamil Razzaque
- Oxford Parkinson's Disease Centre Clinical Cohort Team, Oxford, UK
| | - Michele T Hu
- Division of Clinical Neurology, Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, UK
| | - Helen Dawes
- Centre for Movement, Occupational and Rehabilitation Sciences (MOReS), Oxford Brookes University, Oxford, UK
- College of Medicine and Health, University of Exeter, Exeter, UK
- Oxford Health BRC, University of Oxford, Oxford, UK
| |
Collapse
|
20
|
Zimmermann M, Brockmann K. Blood and Cerebrospinal Fluid Biomarkers of Inflammation in Parkinson's Disease. JOURNAL OF PARKINSON'S DISEASE 2022; 12:S183-S200. [PMID: 35661021 PMCID: PMC9535573 DOI: 10.3233/jpd-223277] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Accepted: 05/09/2022] [Indexed: 02/07/2023]
Abstract
Given the clear role of inflammation in the pathogenesis of Parkinson's disease (PD) and its impact on incidence and phenotypical characteristics, this review provides an overview with focus on inflammatory biofluid markers in blood and cerebrospinal fluid (CSF) in PD patient cohorts. In preparation for clinical trials targeting the immune system, we specifically address the following questions: 1) What evidence do we have for pro-inflammatory profiles in blood and in CSF of sporadic and genetic PD patients? 2) Is there a role of anti-inflammatory mediators in blood/CSF? 3) Do inflammatory profiles in blood reflect those in CSF indicative of a cross-talk between periphery and brain? 4) Do blood/CSF inflammatory profiles change over the disease course as assessed in repeatedly taken biosamples? 5) Are blood/CSF inflammatory profiles associated with phenotypical trajectories in PD? 6) Are blood/CSF inflammatory profiles associated with CSF levels of neurodegenerative/PD-specific biomarkers? Knowledge on these questions will inform future strategies for patient stratification and cohort enrichment as well as suitable outcome measures for clinical trials.
Collapse
Affiliation(s)
- Milan Zimmermann
- Center of Neurology, Department of Neurodegeneration and Hertie Institute for Clinical Brain Research, University of Tuebingen, Tuebingen, Germany
- German Center for Neurodegenerative Diseases, University of Tuebingen, Tuebingen, Germany
| | - Kathrin Brockmann
- Center of Neurology, Department of Neurodegeneration and Hertie Institute for Clinical Brain Research, University of Tuebingen, Tuebingen, Germany
- German Center for Neurodegenerative Diseases, University of Tuebingen, Tuebingen, Germany
| |
Collapse
|
21
|
Ganguly U, Singh S, Chakrabarti S, Saini AK, Saini RV. Immunotherapeutic interventions in Parkinson's disease: Focus on α-Synuclein. ADVANCES IN PROTEIN CHEMISTRY AND STRUCTURAL BIOLOGY 2021; 129:381-433. [PMID: 35305723 DOI: 10.1016/bs.apcsb.2021.11.010] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Parkinson's disease (PD) is a neurodegenerative disorder characterized classically by motor manifestations. However, nonmotor symptoms appear early in the course of the disease progression, making both diagnosis and treatment difficult. The pathology of PD is complicated by the accumulation and aggregation of misfolded proteins in intracellular cytoplasmic inclusions called Lewy bodies (LBs). The main toxic component of LBs is the protein α-Synuclein which plays a pivotal role in PD pathogenesis. α-Synuclein can propagate from cell-to-cell exhibiting prion-like properties and spread PD pathology throughout the central nervous system. Immunotherapeutic interventions in PD, both active and passive immunization, have targeted α-Synuclein in both experimental models and clinical trials. In addition, targeting the hyperactive inflammation in PD also holds promise in designing potential immunotherapeutics. The inflammatory and proteotoxic pathways are interlinked and contribute immensely to the disease pathology. In this chapter, we critically review the targets of immunotherapeutic interventions in PD, focusing on the pathogenetic mechanisms of PD, particularly neuroinflammation and α-Synuclein misfolding, aggregation, and propagation. We thoroughly summarized the various immunotherapeutic strategies designed to treat PD-in vitro, in vivo, and clinical trials. The development of these targeted immunotherapies could open a new avenue in the treatment of patients with PD.
Collapse
Affiliation(s)
- Upasana Ganguly
- Department of Biochemistry and Central Research Cell, Maharishi Markandeshwar Institute of Medical Sciences and Research, Maharishi Markandeshwar University (Deemed to be), Mullana, India
| | - Sukhpal Singh
- Department of Biochemistry and Central Research Cell, Maharishi Markandeshwar Institute of Medical Sciences and Research, Maharishi Markandeshwar University (Deemed to be), Mullana, India
| | - Sasanka Chakrabarti
- Department of Biochemistry and Central Research Cell, Maharishi Markandeshwar Institute of Medical Sciences and Research, Maharishi Markandeshwar University (Deemed to be), Mullana, India
| | - Adesh K Saini
- Department of Biotechnology, Maharishi Markandeshwar Engineering College, Maharishi Markandeshwar (Deemed to be University), Mullana, India
| | - Reena V Saini
- Department of Biotechnology, Maharishi Markandeshwar Engineering College, Maharishi Markandeshwar (Deemed to be University), Mullana, India.
| |
Collapse
|
22
|
Ou R, Hou Y, Liu K, Lin J, Jiang Z, Wei Q, Zhang L, Cao B, Zhao B, Song W, Shang H. Progression of Fatigue in Early Parkinson's Disease: A 3-Year Prospective Cohort Study. Front Aging Neurosci 2021; 13:701906. [PMID: 34744684 PMCID: PMC8568310 DOI: 10.3389/fnagi.2021.701906] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2021] [Accepted: 09/28/2021] [Indexed: 02/05/2023] Open
Abstract
Objective: To explore the frequency, evolution, associated factors, and risk factors of fatigue over 3-year of prospective follow-up in a cohort of patients with early Parkinson’s disease (PD). Methods: A total of 174 PD patients in the early stage were enrolled and quantitively assessed motor and non-motor symptoms using comprehensive scales including the Fatigue Severity Scale (FSS) annually. Each subject was categorized as PD with and without fatigue based on a cut-off mean value of 4 using FSS. The generalized estimating equation (GEE) was utilized to investigate the associated factors, and the stepwise binary logistic regression model was performed to explore the predictors. Results: The frequency of fatigue was slightly changed (ranging from 35.1 to 40.4%) during the 3-year follow-up. The changed pattern of the frequency of fatigue was similar to that of anxiety. Fatigue was significantly associated with nocturnal sleep disorders (B 2.446, P < 0.001), high Hamilton Anxiety Rating Scale (HAMA) score (B 1.072, P = 0.011), and high Unified PD Rating Scale (UPDRS) III score (B 1.029, P = 0.003) over time. High UPDRS III score [odds ratio (OR) 1.051, P = 0.015] at baseline increased the risk of developing fatigue after 1-year; high LEDD (OR 1.002, P = 0.037) increased the risk of developing fatigue after 2-year; and high LEDD (OR 1.003, P = 0.049) and high HAMA score (OR 1.077, P = 0.042) increased the risk of developing fatigue after 3-year. Conclusion: Our present study provided evidence of the longitudinal evolution of fatigue in patients with early PD and help clinical management of fatigue.
Collapse
Affiliation(s)
- Ruwei Ou
- Laboratory of Neurodegenerative Disorders, Department of Neurology, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, China
| | - Yanbing Hou
- Laboratory of Neurodegenerative Disorders, Department of Neurology, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, China
| | - Kuncheng Liu
- Laboratory of Neurodegenerative Disorders, Department of Neurology, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, China
| | - Junyu Lin
- Laboratory of Neurodegenerative Disorders, Department of Neurology, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, China
| | - Zheng Jiang
- Laboratory of Neurodegenerative Disorders, Department of Neurology, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, China
| | - Qianqian Wei
- Laboratory of Neurodegenerative Disorders, Department of Neurology, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, China
| | - Lingyu Zhang
- Laboratory of Neurodegenerative Disorders, Department of Neurology, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, China
| | - Bei Cao
- Laboratory of Neurodegenerative Disorders, Department of Neurology, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, China
| | - Bi Zhao
- Laboratory of Neurodegenerative Disorders, Department of Neurology, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, China
| | - Wei Song
- Laboratory of Neurodegenerative Disorders, Department of Neurology, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, China
| | - Huifang Shang
- Laboratory of Neurodegenerative Disorders, Department of Neurology, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, China
| |
Collapse
|
23
|
Wang H, Liu Y, Zhao J, Guo X, Hu M, Chen Y. Possible inflammatory mechanisms and predictors of Parkinson's disease patients with fatigue (Brief Review). Clin Neurol Neurosurg 2021; 208:106844. [PMID: 34388595 DOI: 10.1016/j.clineuro.2021.106844] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2020] [Revised: 04/27/2021] [Accepted: 07/23/2021] [Indexed: 01/02/2023]
Abstract
Parkinson's disease (PD) is a progressive neurodegenerative disorder characterized by the loss of dopamine-producing neurons in the substantia nigra and the abnormal cytoplasmic accumulation of proteinaceous aggregates called Lewy bodies (LBs), mainly composed of α-synuclein (α-syn). In recent years, it has been gradually recognized that fatigue is one of the most common and disabling symptoms in PD patients, with a prevalence of approximately 50%. Although neuroinflammation, a pathological hallmark of PD, is closely associated with fatigue, present mechanisms of fatigue in PD patients have not yet been systematically summarized, with their inflammatory predictors remaining controversial. Therefore, the aim of this brief review is to fill in the gaps in our understanding on the inflammatory factors involved in the pathophysiological mechanisms of fatigue and predicting its occurrence in PD patients. The determination of fatigue is mainly assessed using the Parkinson Fatigue Scale 16 (PFS-16) and Fatigue Severity Scale 9 (FSS-9). Several studies have reported that inflammatory marker levels, such as interleukin-6 (IL-6), and other inflammatory predictors closely associated with fatigue, such as soluble IL-2 receptor (sIL-2R), tumor necrosis factor alpha (TNF-α), high-sensitivity C-reactive protein (hs-CRP), neutrophil-to-lymphocyte ratio (NLR), and red blood cell distribution width (RDW), may help detect fatigue. Moreover, the following inflammatory mechanisms may be involved. (1) Abnormal aggregation of α-syn undergoes a conformational change, which then activates toll-like receptor 4 (TLR4) to release a large number of proinflammatory cytokines, causing fatigue symptoms. (2) Chronic peripheral inflammation and immune activation responses induce elevated levels of proinflammatory cytokines in PD patients, which enter the brain mainly through the traditional endocrine route or via direct vagus nerve transmission. The rising levels of proinflammatory cytokines cause the destruction of the blood-brain barrier (BBB) by combining with BBB endothelial cells, allowing many proinflammatory cytokines to cross the destroyed BBB and enter the brain, preventing astrocytes from reuptaking glutamate and laying foundations for the occurrence of fatigue. Furthermore, studies have suggested that fatigue symptoms in PD patients often represent a poor prognosis. Nevertheless, if the aforementioned inflammatory markers can effectively predict the occurrence of fatigue and allow early intervention, the prognosis of PD patients could be significantly improved. At present, its management mainly includes medical treatment (levodopa, dopamine receptor agonists, rasagiline, and antidepressants) and non-medical treatment (acupuncture and yoga). Thus, it is of great significance to be able to practice early detection and intervention in fatigue and improve the prognosis of patients with PD.
Collapse
Affiliation(s)
- Haili Wang
- Department of Clinical Medicine, Dalian Medical University, Dalian, Liaoning Province, China; Neurology, Department of Clinical Medicine, Yangzhou University, Yangzhou, Jiangsu Province, China
| | - Yimin Liu
- Department of Clinical Medicine, Dalian Medical University, Dalian, Liaoning Province, China; Neurology, Department of Clinical Medicine, Yangzhou University, Yangzhou, Jiangsu Province, China
| | - Jingyi Zhao
- Department of Clinical Medicine, Dalian Medical University, Dalian, Liaoning Province, China; Neurology, Department of Clinical Medicine, Yangzhou University, Yangzhou, Jiangsu Province, China
| | - Xin Guo
- Department of Clinical Medicine, Dalian Medical University, Dalian, Liaoning Province, China
| | - Meng Hu
- Neurology, Department of Clinical Medicine, Yangzhou University, Yangzhou, Jiangsu Province, China; Department of Clinical Medicine, Central South University, Changsha, Hunan Province, China
| | - Yingzhu Chen
- Neurology, Department of Clinical Medicine, Yangzhou University, Yangzhou, Jiangsu Province, China.
| |
Collapse
|
24
|
TNFα increases tyrosine hydroxylase expression in human monocytes. NPJ Parkinsons Dis 2021; 7:62. [PMID: 34285243 PMCID: PMC8292430 DOI: 10.1038/s41531-021-00201-x] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2021] [Accepted: 06/16/2021] [Indexed: 02/06/2023] Open
Abstract
Most, if not all, peripheral immune cells in humans and animals express tyrosine hydroxylase (TH), the rate limiting enzyme in catecholamine synthesis. Since TH is typically studied in the context of brain catecholamine signaling, little is known about changes in TH production and function in peripheral immune cells. This knowledge gap is due, in part, to the lack of an adequately sensitive assay to measure TH in immune cells expressing lower TH levels compared to other TH expressing cells. Here, we report the development of a highly sensitive and reproducible Bio-ELISA to quantify picogram levels of TH in multiple model systems. We have applied this assay to monocytes isolated from blood of persons with Parkinson's disease (PD) and to age-matched, healthy controls. Our study unexpectedly revealed that PD patients' monocytes express significantly higher levels of TH protein in peripheral monocytes relative to healthy controls. Tumor necrosis factor (TNFα), a pro-inflammatory cytokine, has also been shown to be increased in the brains and peripheral circulation in human PD, as well as in animal models of PD. Therefore, we investigated a possible connection between higher levels of TH protein and the known increase in circulating TNFα in PD. Monocytes isolated from healthy donors were treated with TNFα or with TNFα in the presence of an inhibitor. Tissue plasminogen activator (TPA) was used as a positive control. We observed that TNFα stimulation increased both the number of TH+ monocytes and the quantity of TH per monocyte, without increasing the total numbers of monocytes. These results revealed that TNFα could potentially modify monocytic TH production and serve a regulatory role in peripheral immune function. The development and application of a highly sensitive assay to quantify TH in both human and animal cells will provide a novel tool for further investigating possible PD immune regulatory pathways between brain and periphery.
Collapse
|
25
|
Conte C. Possible Link between SARS-CoV-2 Infection and Parkinson's Disease: The Role of Toll-Like Receptor 4. Int J Mol Sci 2021; 22:7135. [PMID: 34281186 PMCID: PMC8269350 DOI: 10.3390/ijms22137135] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2021] [Revised: 06/19/2021] [Accepted: 06/29/2021] [Indexed: 12/13/2022] Open
Abstract
Parkinson's disease (PD) is the most common neurodegenerative motor disorder characterized by selective degeneration of dopaminergic neurons in the substantia nigra pars compacta (SNpc) of the midbrain, depletion of dopamine (DA), and impaired nigrostriatal pathway. The pathological hallmark of PD includes the aggregation and accumulation α-synuclein (α-SYN). Although the precise mechanisms underlying the pathogenesis of PD are still unknown, the activation of toll-like receptors (TLRs), mainly TLR4 and subsequent neuroinflammatory immune response, seem to play a significant role. Mounting evidence suggests that viral infection can concur with the precipitation of PD or parkinsonism. The recently identified coronavirus named severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is the causative agent of ongoing pandemic coronavirus disease 2019 (COVID-19), responsible for 160 million cases that led to the death of more than three million individuals worldwide. Studies have reported that many patients with COVID-19 display several neurological manifestations, including acute cerebrovascular diseases, conscious disturbance, and typical motor and non-motor symptoms accompanying PD. In this review, the neurotropic potential of SARS-CoV-2 and its possible involvement in the pathogenesis of PD are discussed. Specifically, the involvement of the TLR4 signaling pathway in mediating the virus entry, as well as the massive immune and inflammatory response in COVID-19 patients is explored. The binding of SARS-CoV-2 spike (S) protein to TLR4 and the possible interaction between SARS-CoV-2 and α-SYN as contributing factors to neuronal death are also considered.
Collapse
Affiliation(s)
- Carmela Conte
- Department of Pharmaceutical Sciences, University of Perugia, via Fabretti, 06123 Perugia, Italy
| |
Collapse
|
26
|
Azevedo LVDS, Pereira JR, Silva Santos RM, Rocha NP, Teixeira AL, Christo PP, Santos VR, Scalzo PL. Acute exercise increases BDNF serum levels in patients with Parkinson's disease regardless of depression or fatigue. Eur J Sport Sci 2021; 22:1296-1303. [PMID: 33944700 DOI: 10.1080/17461391.2021.1922505] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
Studies have consistently reported a decreased level of brain-derived neurotrophic factor (BDNF) in individuals with Parkinson's disease (PD). The benefits of exercise on BDNF levels are well-documented in humans, however, the effects of acute exercise are inconclusive in neurological disorders. In addition, there are no studies investigating a precursor molecule - proBDNF - and its comparison to patients with vs. without depression or fatigue. Thirty patients with PD were instructed to walk on a treadmill at light to moderate intensity for 30 min. Generalized Estimating Equation (GEE) showed a significant effect of time (pre- vs. post-exercise) when compared individuals with vs. without depression [Wald Chi Square (4.392), p = 0.036)] and with vs. without fatigue [Wald Chi Square (7.123), p = 0.008)] for mature BDNF (mBDNF) level. There was no effect of group, time, and group x time interaction for proBDNF level when compared individuals with vs. without depression or fatigue. The present study showed that a single bout of light to moderate-intensity exercise increases mBDNF serum levels in patients with PD regardless of depression and fatigue. Our finding is important because it is necessary investigate methods to enhance the gains made by rehabilitation, especially when considering a short period of rehabilitation in different health services. The increase in mBDNF level can lead to an enhancement of neuroplasticity and facilitate the improvement of motor performance. No effect on proBDNF level could be explained, as this precursor molecule is cleaved by intracellular or extracellular enzymes.
Collapse
Affiliation(s)
| | | | | | - Natalia Pessoa Rocha
- Neuropsychiatry Program, Department of Psychiatry and Behavioral Sciences, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, TX, United States
| | - Antônio Lúcio Teixeira
- Neuropsychiatry Program, Department of Psychiatry and Behavioral Sciences, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, TX, United States
| | - Paulo Pereira Christo
- Department of Neurology and Neurosurgery, Santa Casa de Belo Horizonte Hospital, Belo Horizonte, Brazil
| | - Victor Rodrigues Santos
- Laboratory of Neurobiology, Department of Morphology, Institute of Biological Sciences, Federal University of Minas Gerais, Belo Horizonte, Brazil
| | - Paula Luciana Scalzo
- Laboratory of Neurobiology, Department of Morphology, Institute of Biological Sciences, Federal University of Minas Gerais, Belo Horizonte, Brazil
| |
Collapse
|
27
|
Khan A, Johnson R, Wittmer C, Maile M, Tatsukawa K, Wong JL, Gill MB, Stocking EM, Natala SR, Paulino AD, Bowden-Verhoek JK, Wrasidlo W, Masliah E, Bonhaus DW, Price DL. NPT520-34 improves neuropathology and motor deficits in a transgenic mouse model of Parkinson's disease. Brain 2021; 144:3692-3709. [PMID: 34117864 DOI: 10.1093/brain/awab214] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2021] [Revised: 04/12/2021] [Accepted: 05/11/2021] [Indexed: 12/09/2022] Open
Abstract
NPT520-34 is a clinical-stage, small molecule being developed for the treatment of Parkinson's disease and other neurodegenerative disorders. The therapeutic potential of NPT520-34 was first suggested by findings from cell-based assays of alpha-synuclein (ASYN) clearance. As reported here, NPT520-34 was subsequently evaluated for therapeutically relevant actions in a transgenic animal model of Parkinson's disease that overexpresses human ASYN and in an acute lipopolysaccharide (LPS)-challenge model using wild-type mice. Daily administration of NPT520-34 to mThy1-ASYN (Line 61) transgenic mice for one or three months resulted in reduced ASYN pathology, reduced expression of markers of neuroinflammation, and improvements in multiple indices of motor function. In an LPS-challenge model using wild-type mice, a single-dose of NPT520-34 reduced LPS-evoked increases in the expression of several pro-inflammatory cytokines in plasma. These findings demonstrate the beneficial effects of NPT520-34 on both inflammation and protein-pathology endpoints, with consequent improvements in motor function in an animal model of Parkinson's disease. These findings further suggest that NPT520-34 may have two complementary actions: (1) to increase the clearance of neurotoxic protein aggregates and (2) to directly attenuate inflammation. NPT520-34 treatment may thereby address two of the predominate underlying pathophysiological aspects of neurodegenerative disorders such as Parkinson's disease.
Collapse
Affiliation(s)
- Asma Khan
- Neuropore Therapies, Inc., 10835 Road to the Cure, Suite 230, San Diego, CA 92121, USA
| | - Robert Johnson
- Neuropore Therapies, Inc., 10835 Road to the Cure, Suite 230, San Diego, CA 92121, USA
| | - Carrie Wittmer
- Neuropore Therapies, Inc., 10835 Road to the Cure, Suite 230, San Diego, CA 92121, USA
| | - Michelle Maile
- Neuropore Therapies, Inc., 10835 Road to the Cure, Suite 230, San Diego, CA 92121, USA
| | - Keith Tatsukawa
- Neuropore Therapies, Inc., 10835 Road to the Cure, Suite 230, San Diego, CA 92121, USA
| | - Julian L Wong
- Neuropore Therapies, Inc., 10835 Road to the Cure, Suite 230, San Diego, CA 92121, USA
| | - Martin B Gill
- Neuropore Therapies, Inc., 10835 Road to the Cure, Suite 230, San Diego, CA 92121, USA
| | - Emily M Stocking
- Neuropore Therapies, Inc., 10835 Road to the Cure, Suite 230, San Diego, CA 92121, USA
| | - Srinivasa R Natala
- Neuropore Therapies, Inc., 10835 Road to the Cure, Suite 230, San Diego, CA 92121, USA
| | - Amy D Paulino
- Neuropore Therapies, Inc., 10835 Road to the Cure, Suite 230, San Diego, CA 92121, USA
| | - Jon K Bowden-Verhoek
- Neuropore Therapies, Inc., 10835 Road to the Cure, Suite 230, San Diego, CA 92121, USA
| | - Wolfgang Wrasidlo
- Neuropore Therapies, Inc., 10835 Road to the Cure, Suite 230, San Diego, CA 92121, USA
| | - Eliezer Masliah
- Departments of Neuroscience and Pathology, University of California, San Diego, La Jolla, CA 92093, USA
| | - Douglas W Bonhaus
- Neuropore Therapies, Inc., 10835 Road to the Cure, Suite 230, San Diego, CA 92121, USA
| | - Diana L Price
- Neuropore Therapies, Inc., 10835 Road to the Cure, Suite 230, San Diego, CA 92121, USA
| |
Collapse
|
28
|
Atif M, Alsrhani A, Naz F, Imran M, Imran M, Ullah MI, Alameen AAM, Gondal TA, Raza Q. Targeting Adenosine Receptors in Neurological Diseases. Cell Reprogram 2021; 23:57-72. [PMID: 33861641 DOI: 10.1089/cell.2020.0087] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Adenosine plays a significant role in neurotransmission process by controlling the blood pressure, while adenosine triphosphate (ATP) acts as a neuromodulator and neurotransmitter and by activation of P2 receptors, regulates the contractility of the heart. Adenosine signaling is essential in the process of regeneration by regulating proliferation, differentiation, and apoptosis of stem cells. In this review, we have selected neurological disorders (Alzheimer's disease, Parkinson's disease, amyotrophic lateral sclerosis, multiple sclerosis, and epilepsy) with clinical trials using antagonists and epigenetic tools targeting adenosine receptor as a therapeutic approach in the treatment of these disorders. Promising results have been reported from many clinical trials. It has been found that higher expression levels of A2A and P2X7 receptors in neurological disorders further complicate the disease condition. Therefore, modulations of these receptors by using antagonists of these receptors or SAM (S-adenosylmethionine) therapy as an epigenetic tool could be useful in reversing the complications of these disorders. Finally, we suggest that modulation of adenosine receptors in neurological disorders can increase the regenerative phase by increasing the rate of proliferation and differentiation in the damaged tissues.
Collapse
Affiliation(s)
- Muhmmad Atif
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, Jouf University, Sakaka, Saudi Arabia
| | - Abdullah Alsrhani
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, Jouf University, Sakaka, Saudi Arabia
| | - Farrah Naz
- Department of Microbiology, Government College University, Faisalabad, Pakistan
| | - Muhammad Imran
- University Institute of Diet and Nutritional Sciences, Faculty of Allied Health Sciences, The University of Lahore, Lahore, Pakistan
| | - Muhammad Imran
- Department of Microbiology, University of Health Sciences, Lahore, Pakistan
| | - Muhammad Ikram Ullah
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, Jouf University, Sakaka, Saudi Arabia
| | - Ayman A M Alameen
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, Jouf University, Sakaka, Saudi Arabia.,Department of Chemical Pathology, Faculty of Medical Laboratory Sciences, University of Khartoum, Khartoum, Sudan
| | - Tanweer Aslam Gondal
- School of Exercise and Nutrition, Faculty of Health, Deakin University, Victoria, Australia
| | - Qaisar Raza
- Department of Clinical Nutrition, NUR International University, Lahore, Pakistan
| |
Collapse
|
29
|
Di Vico IA, Cirillo G, Tessitore A, Siciliano M, Venturelli M, Falup-Pecurariu C, Tedeschi G, Morgante F, Tinazzi M. Fatigue in hypokinetic, hyperkinetic, and functional movement disorders. Parkinsonism Relat Disord 2021; 86:114-123. [PMID: 33839028 DOI: 10.1016/j.parkreldis.2021.03.018] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/18/2020] [Revised: 02/25/2021] [Accepted: 03/19/2021] [Indexed: 12/20/2022]
Abstract
The emerging science of fatigue has soundly endorsed the need for its unified definition, shared terminology and increased recognition in neurological illnesses. Nevertheless, the real impact of fatigue remains under-recognized. Fatigue describes a sense of tiredness, lack of energy or need for increased effort often perceived as overwhelming, pervasive, and disabling. It is a common feature of chronic medical conditions and neurological diseases, including Parkinson's disease (PD) and other hypokinetic, hyperkinetic, and functional movement disorders (FMD). While there is solid evidence for the burden of fatigue in PD, knowledge of fatigue in other movement disorders (MDS) is still limited. Lack of consensus definition, rigorous measures and the high prevalence of potential confounders such as apathy, depression and sleepiness are the main obstacles in studying fatigue in MDS. This review of the prevalence, impact, and clinical correlates of fatigue in common MDS summarizes current hypotheses for the pathophysiological mechanisms underlying fatigue and gives a brief overview of treatment options. Fatigue is a prevalent, disabling, primary non-motor symptom (NMS) in MDS, including atypical and secondary parkinsonisms, dystonia, essential tremor (ET) and a hallmark feature of FMD. We report the hypothesis that fatigue is a perceptual disorder of the sensorimotor system. Given the relevance of this burdensome symptom, fatigue deserves greater clinical and research attention to better understand its manifestation and pathophysiology and to improve diagnosis and treatment.
Collapse
Affiliation(s)
- Ilaria Antonella Di Vico
- Department of Neurosciences, Biomedicine and Movement Sciences, University of Verona, Verona, Italy.
| | - Giovanni Cirillo
- Department of Neurosciences, Biomedicine and Movement Sciences, University of Verona, Verona, Italy; Division of Human Anatomy - Neuronal Networks Morphology Lab, University of Campania "Luigi Vanvitelli", Naples, Italy; I Division of Neurology and Neurophysiopathology, Department of Medical and Surgical Sciences, University of Campania "Luigi Vanvitelli", Naples, Italy
| | - Alessandro Tessitore
- I Division of Neurology and Neurophysiopathology, Department of Medical and Surgical Sciences, University of Campania "Luigi Vanvitelli", Naples, Italy
| | - Mattia Siciliano
- I Division of Neurology and Neurophysiopathology, Department of Medical and Surgical Sciences, University of Campania "Luigi Vanvitelli", Naples, Italy; Department of Psychology, University of Campania "Luigi Vanvitelli", Caserta, Italy
| | - Massimo Venturelli
- Department of Neurosciences, Biomedicine and Movement Sciences, University of Verona, Verona, Italy
| | | | - Gioacchino Tedeschi
- I Division of Neurology and Neurophysiopathology, Department of Medical and Surgical Sciences, University of Campania "Luigi Vanvitelli", Naples, Italy
| | - Francesca Morgante
- Institute of Molecular and Clinical Sciences, St George's University of London, London, UK; Department of Clinical and Experimental Medicine, University of Messina, Italy
| | - Michele Tinazzi
- Department of Neurosciences, Biomedicine and Movement Sciences, University of Verona, Verona, Italy.
| |
Collapse
|
30
|
Pons-Espinal M, Blasco-Agell L, Consiglio A. Dissecting the non-neuronal cell contribution to Parkinson's disease pathogenesis using induced pluripotent stem cells. Cell Mol Life Sci 2021; 78:2081-2094. [PMID: 33210214 PMCID: PMC7966189 DOI: 10.1007/s00018-020-03700-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2019] [Revised: 10/10/2020] [Accepted: 10/31/2020] [Indexed: 01/02/2023]
Abstract
Parkinson's disease (PD) is an incurable age-linked neurodegenerative disease with characteristic movement impairments that are caused by the progressive loss of dopamine-containing neurons (DAn) within the substantia nigra pars compacta. It has been suggested that misfolded protein aggregates together with neuroinflammation and glial reactivity, may impact nerve cell function, leading to neurodegeneration and diseases, such as PD. However, not many studies have been able to examine the role of human glial cells in the pathogenesis of PD. With the advent of induced pluripotent stem cell (iPSC) technology, it is now possible to reprogram human somatic cells to pluripotency and to generate viable human patient-specific DA neurons and glial cells, providing a tremendous opportunity for dissecting cellular and molecular pathological mechanisms occurring at early stages of PD. This reviews will report on recent work using human iPSC and 3D brain organoid models showing that iPSC technology can be used to recapitulate PD-relevant disease-associated phenotypes, including protein aggregation, cell death or loss of neurite complexity and deficient autophagic vacuoles clearance and focus on the recent co-culture systems that are revealing new insights into the complex interactions that occur between different brain cell types during neurodegeneration. Consequently, such advances are the key to improve our understanding of PD pathology and generate potential targets for new therapies aimed at curing PD patients.
Collapse
Affiliation(s)
- Meritxell Pons-Espinal
- Department of Pathology and Experimental Therapeutics, Bellvitge University Hospital-IDIBELL, 08908, Hospitalet de Llobregat, Spain.
- Institute of Biomedicine (IBUB) of the University of Barcelona (UB), 08028, Barcelona, Spain.
| | - Lucas Blasco-Agell
- Department of Pathology and Experimental Therapeutics, Bellvitge University Hospital-IDIBELL, 08908, Hospitalet de Llobregat, Spain
- Institute of Biomedicine (IBUB) of the University of Barcelona (UB), 08028, Barcelona, Spain
| | - Antonella Consiglio
- Department of Pathology and Experimental Therapeutics, Bellvitge University Hospital-IDIBELL, 08908, Hospitalet de Llobregat, Spain.
- Institute of Biomedicine (IBUB) of the University of Barcelona (UB), 08028, Barcelona, Spain.
- Department of Molecular and Translational Medicine, University of Brescia, Piazza del Mercato, 15, 25121, Brescia, BS, Italy.
| |
Collapse
|
31
|
Jing S, Wang Z, Zhang J, Li X, Huang R. Neuroprotective effect of neferine, an alkaloid against the 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine induced Parkinson's disease mouse model. Pharmacogn Mag 2021. [DOI: 10.4103/pm.pm_291_19] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022] Open
|
32
|
Izco M, Blesa J, Verona G, Cooper JM, Alvarez-Erviti L. Glial activation precedes alpha-synuclein pathology in a mouse model of Parkinson's disease. Neurosci Res 2020; 170:330-340. [PMID: 33316306 DOI: 10.1016/j.neures.2020.11.004] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2020] [Revised: 10/29/2020] [Accepted: 11/03/2020] [Indexed: 12/19/2022]
Abstract
Neuroinflammation is increasingly recognized as an important feature in the pathogenesis of Parkinson's disease (PD). However, it remains unclear whether neuroinflammation contributes to nigral degeneration in PD or is merely a secondary marker of neurodegeneration. We aimed to investigate the temporal relationship between synucleopathy, neuroinflammation and nigrostriatal degeneration in a mouse model of PD. Mice received unilateral intrastriatal injection of alpha-synuclein pre-formed fibrils, alpha-synuclein monomer or vehicle and were sacrificed at 15, 30 and 90 days post-injection. Intrastriatal inoculation of alpha-synuclein fibrils led to significant alpha-synuclein aggregation in the substantia nigra peaking at 30 days after injection while the significant increase in Iba-1 cells, GFAP cells and IL-1β expression peaked earlier at 15 days. At 90 days, the striatal dopaminergic denervation was associated with astroglial activation. Alpha-synuclein monomer did not result in long-term glia activation or increase in inflammatory markers. The spread of alpha-synuclein aggregates into the cortex was not associated with any changes to neuroinflammatory markers. Our results demonstrate that in the substantia nigra glial activation is an early event that precedes alpha-synuclein inclusion formation, suggesting neuroinflammation could play an important early role in the pathogenesis of PD.
Collapse
Affiliation(s)
- Maria Izco
- Laboratory of Molecular Neurobiology, Center for Biomedical Research of La Rioja (CIBIR), Piqueras 98, 3(th)floor, 26006, Logroño, Spain.
| | - Javier Blesa
- HM CINAC, Hospital Universitario HM Puerta del Sur, Av. Carlos V, 70, 28938, Móstoles, Madrid, Spain
| | - Guglielmo Verona
- Wolfson Drug Discovery Unit, Centre for Amyloidosis and Acute Phase Proteins, UCL, Gower Street, London, United Kingdom
| | - J Mark Cooper
- Department of Clinical Neuroscience, Institute of Neurology, UCL, Gower Street, London, United Kingdom.
| | - Lydia Alvarez-Erviti
- Laboratory of Molecular Neurobiology, Center for Biomedical Research of La Rioja (CIBIR), Piqueras 98, 3(th)floor, 26006, Logroño, Spain.
| |
Collapse
|
33
|
Yeh FC, Chen HC, Chou YC, Lin CL, Kao CH, Lo HY, Liu FC, Yang TY. Positive association of Parkinson's disease with ankylosing spondylitis: a nationwide population-based study. J Transl Med 2020; 18:455. [PMID: 33256841 PMCID: PMC7708134 DOI: 10.1186/s12967-020-02629-w] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2020] [Accepted: 11/20/2020] [Indexed: 12/15/2022] Open
Abstract
Background Ankylosing spondylitis (AS) is characterized by excessive production of inflammatory cytokines. Recent evidence suggests that inflammation underlies the neurodegenerative process of Parkinson’s disease (PD). Whether AS has an influence on the development of PD is unclear. We aimed to examine a relationship, if any exists between AS and PD. Methods A population-based matched cohort study was performed using data from the 2000–2010 Taiwan National Health Insurance database. 6440 patients with AS and 25,760 randomly selected, age- and sex-matched controls were included in this study. The risk of PD in the AS cohort was evaluated by using a Cox model. Results This study revealed a positive association between AS and the risk of PD regardless of sex and age (aHR 1.75, p < .001). Particularly, AS cohort to non-AS cohort relative risk of PD significantly increased for the patients aged below 49 and above 65 years (aHR 4.70, p < .001; aHR 1.69, p < .001, respectively) and the patients with and without comorbidities (aHR 1.61, p < .001; aHR 2.71, p < .001, respectively). Furthermore, NSAID use was associated with lower risk of PD (aHR 0.69, p < .05). However, the risk of PD was higher (aHR 2.40, p < .01) in patients with AS receiving immunosuppressants than in those not receiving (aHR 1.70, p < .001). Conclusions Patients with AS had an increased risk of PD which might be related to underlying chronic inflammation. Further research is required to elucidate the underlying mechanism.
Collapse
Affiliation(s)
- Fu-Chiang Yeh
- Division of Rheumatology, Immunology, and Allergy, Department of Internal Medicine, Tri-Service General Hospital, National Defense Medical Center, Taipei, Taiwan
| | - Hsiang-Cheng Chen
- Division of Rheumatology, Immunology, and Allergy, Department of Internal Medicine, Tri-Service General Hospital, National Defense Medical Center, Taipei, Taiwan
| | - Yu-Ching Chou
- Department of Health Promotion and Health Education, National Defense Medical Center, Taipei, Taiwan
| | - Cheng-Li Lin
- School of Medicine, China Medical University, Taichung, Taiwan.,Management Office for Health Data, China Medical University Hospital, Taichung, Taiwan
| | - Chia-Hung Kao
- Graduate Institute of Biomedical Sciences, School of Medicine, College of Medicine, China Medical University, Taichung, Taiwan.,Department of Nuclear Medicine and PET Center, China Medical University Hospital, Taichung, Taiwan.,Department of Bioinformatics and Medical Engineering, Asia University, Taichung, Taiwan.,Center of Augmented Intelligence in Healthcare, China Medical University Hospital, Taichung, Taiwan
| | - Hsin-Yi Lo
- Graduate Institute of Chinese Medicine, China Medical University, Taichung, Taiwan
| | - Feng-Cheng Liu
- Division of Rheumatology, Immunology, and Allergy, Department of Internal Medicine, Tri-Service General Hospital, National Defense Medical Center, Taipei, Taiwan.
| | - Tse-Yen Yang
- Center of Augmented Intelligence in Healthcare, China Medical University Hospital, Taichung, Taiwan. .,Molecular and Genomic Epidemiology Center and Department of Medical Research, China Medical University Hospital, Taichung, Taiwan. .,Center for General Education & Master Program of Digital Health Innovation, College of Humanities and Sciences, China Medical University, Taichung, Taiwan. .,Department of Medical Laboratory and Biotechnology, Asia University, Taichung, Taiwan.
| |
Collapse
|
34
|
Martin-Bastida A, Tilley BS, Bansal S, Gentleman SM, Dexter DT, Ward RJ. Iron and inflammation: in vivo and post-mortem studies in Parkinson's disease. J Neural Transm (Vienna) 2020; 128:15-25. [PMID: 33079260 DOI: 10.1007/s00702-020-02271-2] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2020] [Accepted: 10/09/2020] [Indexed: 12/21/2022]
Abstract
In these present studies, in vivo and and post-mortem studies have investigated the association between iron and inflammation. Early-stage Parkinson's disease (PD) patients, of less than 5 years disease duration, showed associations of plasmatic ferritin concentrations with both proinflammatory cytokine interleukin-6 and hepcidin, a regulator of iron metabolism as well as clinical measures. In addition ratios of plasmatic ferritin and iron accumulation in deep grey matter nuclei assessed with relaxometry T2* inversely correlated with disease severity and duration of PD. On the hand, post-mortem material of the substantia nigra compacta (SNc) divided according to Braak and Braak scores, III-IV and V-VI staging, exhibited comparable microgliosis, with a variety of phenotypes present. There was an association between the intensity of microgliosis and iron accumulation as assayed by Perl's staining in the SNc sections. In conclusion, markers of inflammation and iron metabolism in both systemic and brain systems are closely linked in PD, thus offering a potential biomarker for progression of the disease.
Collapse
Affiliation(s)
- Antonio Martin-Bastida
- Centre for Neurodegeneration and Neuroinflammation, Division of Brain Sciences, Department of Medicine, Imperial College London, London, UK.
- Department of Neurology and Neurosciences, Clínica Universidad de Navarra, Pamplona-Madrid, Spain.
| | - Bension Shlomo Tilley
- Centre for Neurodegeneration and Neuroinflammation, Division of Brain Sciences, Department of Medicine, Imperial College London, London, UK
| | - Sukhi Bansal
- Institute of Pharmaceutical Sciences, King's College London, London, UK
| | - Steve M Gentleman
- Centre for Neurodegeneration and Neuroinflammation, Division of Brain Sciences, Department of Medicine, Imperial College London, London, UK
| | - David T Dexter
- Centre for Neurodegeneration and Neuroinflammation, Division of Brain Sciences, Department of Medicine, Imperial College London, London, UK
| | - Roberta J Ward
- Centre for Neurodegeneration and Neuroinflammation, Division of Brain Sciences, Department of Medicine, Imperial College London, London, UK
| |
Collapse
|
35
|
Söderbom G, Zeng BY. The NLRP3 inflammasome as a bridge between neuro-inflammation in metabolic and neurodegenerative diseases. INTERNATIONAL REVIEW OF NEUROBIOLOGY 2020; 154:345-391. [PMID: 32739011 DOI: 10.1016/bs.irn.2020.03.023] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Evidence increasingly suggests that type 2 diabetes mellitus (T2DM) is a risk factor for neurodegenerative diseases (NDDs), such as Alzheimer's disease (AD) and Parkinson's disease (PD). These diseases share many pathological processes, including oxidative stress, local inflammation/neuroinflammation and chronic, low-grade (systemic) inflammation, which are exacerbated by aging, a common risk factor for T2DM and NDDs. Here, we focus on the link between chronic inflammation driven by peripheral metabolic disease and how this may impact neurodegeneration in AD and PD. We review the relationship between these common pathological processes in AD and PD from the perspective of the "pro-inflammatory" signaling of the nucleotide-binding oligomerization domain (NOD)-, leucine-rich repeat- (LRR)-, and pyrin domain-containing protein 3 (NLRP3) inflammasome complex. Since the need for effective disease-modifying therapies in T2DM, AD and PD is significant, the relationship between these diseases is important as a positive clinical impact on one may benefit the others. We briefly consider how novel strategies may target neuro-inflammation and provide potential therapies for AD and PD.
Collapse
Affiliation(s)
| | - Bai-Yun Zeng
- Institute of Pharmaceutical Science, Faculty of Life Sciences & Medicine, King's College London, London, United Kingdom
| |
Collapse
|
36
|
Lazcano-Ocampo C, Wan YM, van Wamelen DJ, Batzu L, Boura I, Titova N, Leta V, Qamar M, Martinez-Martin P, Ray Chaudhuri K. Identifying and responding to fatigue and apathy in Parkinson’s disease: a review of current practice. Expert Rev Neurother 2020; 20:477-495. [DOI: 10.1080/14737175.2020.1752669] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Claudia Lazcano-Ocampo
- King’s College London, Department of Neurosciences, Institute of Psychiatry, Psychology & Neuroscience, De Crespigny Park, London, UK
- Parkinson’s Foundation Centre of Excellence, King’s College Hospital, Denmark Hill, London, UK
- Department of Neurology, Hospital Sotero Del Rio, Santiago, Chile
| | - Yi Min Wan
- King’s College London, Department of Neurosciences, Institute of Psychiatry, Psychology & Neuroscience, De Crespigny Park, London, UK
- Parkinson’s Foundation Centre of Excellence, King’s College Hospital, Denmark Hill, London, UK
- Department of Psychiatry, Ng Teng Fong General Hospital, Singapore
| | - Daniel J van Wamelen
- King’s College London, Department of Neurosciences, Institute of Psychiatry, Psychology & Neuroscience, De Crespigny Park, London, UK
- Parkinson’s Foundation Centre of Excellence, King’s College Hospital, Denmark Hill, London, UK
- Cognition and Behaviour; Department of Neurology; Nijmegen, Radboud University Medical Centre; Donders Institute for Brain, The Netherlands
| | - Lucia Batzu
- King’s College London, Department of Neurosciences, Institute of Psychiatry, Psychology & Neuroscience, De Crespigny Park, London, UK
- Parkinson’s Foundation Centre of Excellence, King’s College Hospital, Denmark Hill, London, UK
| | - Iro Boura
- King’s College London, Department of Neurosciences, Institute of Psychiatry, Psychology & Neuroscience, De Crespigny Park, London, UK
- Parkinson’s Foundation Centre of Excellence, King’s College Hospital, Denmark Hill, London, UK
| | - Nataliya Titova
- Department of Neurology, Neurosurgery and Medical Genetics, Federal State Budgetary Educational Institution of Higher Education «N.I. Pirogov Russian National Research Medical University» of the Ministry of Healthcare of the Russian Federation, Moscow, Russia
| | - Valentina Leta
- King’s College London, Department of Neurosciences, Institute of Psychiatry, Psychology & Neuroscience, De Crespigny Park, London, UK
- Parkinson’s Foundation Centre of Excellence, King’s College Hospital, Denmark Hill, London, UK
| | - Mubasher Qamar
- King’s College London, Department of Neurosciences, Institute of Psychiatry, Psychology & Neuroscience, De Crespigny Park, London, UK
- Parkinson’s Foundation Centre of Excellence, King’s College Hospital, Denmark Hill, London, UK
- Queen Elizabeth the Queen Mother Hospital, East Kent Hospitals University NHS Foundation Trust, Margate, UK
| | - Pablo Martinez-Martin
- Center for Networked Biomedical Research in Neurodegenerative Diseases (CIBERNED), Carlos III Institute of Health. Madrid, Spain
| | - K Ray Chaudhuri
- King’s College London, Department of Neurosciences, Institute of Psychiatry, Psychology & Neuroscience, De Crespigny Park, London, UK
- Parkinson’s Foundation Centre of Excellence, King’s College Hospital, Denmark Hill, London, UK
| |
Collapse
|
37
|
Carvalho DV, Santos RMS, Magalhães HCD, Souza MSD, Christo PP, Almeida-Leite CMD, Scalzo PL. Can fatigue predict walking capacity of patients with Parkinson's disease? ARQUIVOS DE NEURO-PSIQUIATRIA 2020; 78:70-75. [PMID: 32159720 DOI: 10.1590/0004-282x20190136] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/30/2019] [Accepted: 09/09/2019] [Indexed: 11/22/2022]
Abstract
Although fatigue is an expressive symptom of Parkinson's disease (PD), few studies have investigated the association between fatigue, mobility and walking capacity of these patients. OBJECTIVE To investigate whether fatigue is an independent factor associated with mobility and the walking capacity in patients with PD. METHODS Forty-eight patients with PD (22 with fatigue) were tested for mobility and their walking capacity: Timed Up and Go (TUG), 10-Meter Walk Test (10MWT) at usual and fastest speed, and 6-Minute Walk Test (6MWT). Fatigue was measured with Parkinson's Fatigue Scale (PFS-16). Linear regression analysis was used to investigate if fatigue is an independent factor contributing to variance in mobility and walking capacity. RESULTS There was a positive correlation between PFS-16 and TUG (rs=0.385; p=0.007). There was a negative correlation between PFS-16 and 10MWT at comfortable (r=-0.385; p=0.007) and fast speeds (r=-0.396; p=0.005), and 6MWT (r=-0.472; p=0.001). Linear regression analysis revealed that fatigue did not explain the variance of TUG and 10MWT. PFS-16, age and section III of UPDRS explained 49.6% (adjusted R2; p<0.001) variance in the 6MWT, and fatigue was the most significant predictor (F=-32.1; p=0.022). CONCLUSIONS Fatigue is an independent factor contributing to the distance covered during 6MWT in patients with PD. Our results highlight the importance of recognition and management of this symptom.
Collapse
Affiliation(s)
- Davi Vilela Carvalho
- Universidade Federal de Minas Gerais, Programa de Pós-Graduação em Neurociências, Belo Horizonte MG, Brazil
| | - Renata Maria Silva Santos
- Universidade Federal de Minas Gerais, Programa de Pós-Graduação em Patologia, Belo Horizonte MG, Brazil
| | | | | | - Paulo Pereira Christo
- Santa Casa de Belo Horizonte, Centro de Especialidades Médicas, Belo Horizonte MG, Brazil
| | | | - Paula Luciana Scalzo
- Instituto de Ciências Biológicas, Departamento de Morfologia, Belo Horizonte MG, Brazil
| |
Collapse
|
38
|
Innate Immunity: A Common Denominator between Neurodegenerative and Neuropsychiatric Diseases. Int J Mol Sci 2020; 21:ijms21031115. [PMID: 32046139 PMCID: PMC7036760 DOI: 10.3390/ijms21031115] [Citation(s) in RCA: 53] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2020] [Revised: 02/05/2020] [Accepted: 02/05/2020] [Indexed: 02/06/2023] Open
Abstract
The intricate relationships between innate immunity and brain diseases raise increased interest across the wide spectrum of neurodegenerative and neuropsychiatric disorders. Barriers, such as the blood–brain barrier, and innate immunity cells such as microglia, astrocytes, macrophages, and mast cells are involved in triggering disease events in these groups, through the action of many different cytokines. Chronic inflammation can lead to dysfunctions in large-scale brain networks. Neurodegenerative diseases, such as Alzheimer’s disease, Parkinson’s disease, Huntington’s disease, amyotrophic lateral sclerosis, and frontotemporal dementia, are associated with a substrate of dysregulated immune responses that impair the central nervous system balance. Recent evidence suggests that similar phenomena are involved in psychiatric diseases, such as depression, schizophrenia, autism spectrum disorders, and post-traumatic stress disorder. The present review summarizes and discusses the main evidence linking the innate immunological response in neurodegenerative and psychiatric diseases, thus providing insights into how the responses of innate immunity represent a common denominator between diseases belonging to the neurological and psychiatric sphere. Improved knowledge of such immunological aspects could provide the framework for the future development of new diagnostic and therapeutic approaches.
Collapse
|
39
|
Andrejew R, Glaser T, Oliveira-Giacomelli Á, Ribeiro D, Godoy M, Granato A, Ulrich H. Targeting Purinergic Signaling and Cell Therapy in Cardiovascular and Neurodegenerative Diseases. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2020; 1201:275-353. [PMID: 31898792 DOI: 10.1007/978-3-030-31206-0_14] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Extracellular purines exert several functions in physiological and pathophysiological mechanisms. ATP acts through P2 receptors as a neurotransmitter and neuromodulator and modulates heart contractility, while adenosine participates in neurotransmission, blood pressure, and many other mechanisms. Because of their capability to differentiate into mature cell types, they provide a unique therapeutic strategy for regenerating damaged tissue, such as in cardiovascular and neurodegenerative diseases. Purinergic signaling is pivotal for controlling stem cell differentiation and phenotype determination. Proliferation, differentiation, and apoptosis of stem cells of various origins are regulated by purinergic receptors. In this chapter, we selected neurodegenerative and cardiovascular diseases with clinical trials using cell therapy and purinergic receptor targeting. We discuss these approaches as therapeutic alternatives to neurodegenerative and cardiovascular diseases. For instance, promising results were demonstrated in the utilization of mesenchymal stem cells and bone marrow mononuclear cells in vascular regeneration. Regarding neurodegenerative diseases, in general, P2X7 and A2A receptors mostly worsen the degenerative state. Stem cell-based therapy, mainly through mesenchymal and hematopoietic stem cells, showed promising results in improving symptoms caused by neurodegeneration. We propose that purinergic receptor activity regulation combined with stem cells could enhance proliferative and differentiation rates as well as cell engraftment.
Collapse
Affiliation(s)
- Roberta Andrejew
- Neuroscience Laboratory, Institute of Chemistry, Department of Biochemistry, University of São Paulo, São Paulo, Brazil
| | - Talita Glaser
- Neuroscience Laboratory, Institute of Chemistry, Department of Biochemistry, University of São Paulo, São Paulo, Brazil
| | - Ágatha Oliveira-Giacomelli
- Neuroscience Laboratory, Institute of Chemistry, Department of Biochemistry, University of São Paulo, São Paulo, Brazil
| | - Deidiane Ribeiro
- Neuroscience Laboratory, Institute of Chemistry, Department of Biochemistry, University of São Paulo, São Paulo, Brazil
| | - Mariana Godoy
- Neuroscience Laboratory, Institute of Chemistry, Department of Biochemistry, University of São Paulo, São Paulo, Brazil.,Laboratory of Neurodegenerative Diseases, Institute of Biophysics Carlos Chagas Filho, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Alessandro Granato
- Neuroscience Laboratory, Institute of Chemistry, Department of Biochemistry, University of São Paulo, São Paulo, Brazil
| | - Henning Ulrich
- Neuroscience Laboratory, Institute of Chemistry, Department of Biochemistry, University of São Paulo, São Paulo, Brazil.
| |
Collapse
|
40
|
Xue J, Liu T, Liu Y, Jiang Y, Seshadri VDD, Mohan SK, Ling L. Neuroprotective effect of biosynthesised gold nanoparticles synthesised from root extract of Paeonia moutan against Parkinson disease - In vitro &In vivo model. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY B-BIOLOGY 2019; 200:111635. [PMID: 31671372 DOI: 10.1016/j.jphotobiol.2019.111635] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/27/2019] [Revised: 09/10/2019] [Accepted: 09/18/2019] [Indexed: 12/11/2022]
Abstract
Parkinson disease is one of the most common neurological movement disorders affecting geriatric population. Biosynthesized gold nanoparticles are the ideal alternatives spotlighted by many researchers to treat various diseases. In the present study we synthesized gold nanoparticles using the root extract of Paeonia mountan, woody trees which are used in traditional Chinese medicine to be prescribed for diverse diseases. The synthesis of gold nanoparticles was confirmed with UV-Vis spectroscopic analysis and characterized using FTIR, HR-TEM, EDAX and XRD analysis. The cytotoxicity property of synthesized gold nanoparticles was assessed using MTT assay in the murine microglial BV2 cells. The neuroprotective effect of synthesized gold nanoparticles in inflammatory agent lipopolysaccharides triggered murine microglial BV2 cells was evaluated using nitric oxide, prostaglandin E2 and inflammatory cytokines assays such as IL-6&IL-1β. Further to confirm in vivo effect of synthesized nanoparticles, the nanoparticles were treated to Parkinson induced C57BL/6 mice. Behavioral, biochemical and molecular analysis were performed to estimate the potency of synthesized gold nanoparticles against the Parkinson induction in mice model. Our characterization results prove the gold nanoparticles synthesized using Paeonia mountan fulfills the requirement of ideal nanodrug and it potentially inhibited the inflammation in in vitro murine microglial BV2. The results of in vivo experiments authentically confirm gold nanoparticles synthesized using Paeonia mountan alleviates the neuroinflammation and improves the motor coordination in Parkinson induced mice.
Collapse
Affiliation(s)
- Jinwei Xue
- Department of Orthopedics, Affiliated Hospital of Hebei University, Baoding city, Hebei province 071000, China
| | - Tongtong Liu
- Department of Neurology, Affiliated Hospital of Hebei University, Baoding city, Hebei province 071000, China
| | - Yongdan Liu
- Department of Neurology, Heilongjiang Hospital, Harbin city, Heilongjiang province 150000, China
| | - Ye Jiang
- Department of Neurology, Affiliated Hospital of Hebei University, Baoding city, Hebei province 071000, China
| | | | - Surapaneni Krishna Mohan
- Department of Medical Biochemistry, College of Applied Medical Sciences - Jubail (CAMSJ), Imam Abdulrahman Bin Faisal University, P.O.Box 4030, Al Ansar Rd, Deffi, Jubail Industrial City, Al Jubail 35816, Saudi Arabia
| | - Li Ling
- Department of Neurology, Affiliated Hospital of Hebei University, Baoding city, Hebei province 071000, China.
| |
Collapse
|
41
|
Sun C, Yu W, Zhao Z, Song C, Liu Y, Jia G, Wang X, Liu Y. Peripheral Humoral Immune Response Is Associated With the Non-motor Symptoms of Parkinson's Disease. Front Neurosci 2019; 13:1057. [PMID: 31649497 PMCID: PMC6795918 DOI: 10.3389/fnins.2019.01057] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2019] [Accepted: 09/19/2019] [Indexed: 12/20/2022] Open
Abstract
Background Non-motor symptoms are common in Parkinson’s disease (PD) and can even be used as part of the supportive criteria for diagnosis. Chronic inflammation is involved in every stage of PD. Disorders of the immune system affect the peripheral blood. Whether the humoral immune response is associated with the non-motor symptoms of PD remains unknown. Methods Mann–Whitney tests and Bonferroni correction were used to compare the serum levels of IgG, IgA, IgM, C3, and C4 between 180 sporadic PD patients and 187 healthy controls. Multiple regression models were conducted to assess the associations among these indicators of humoral immunity and the clinical features of PD patients. Results Male PD patients had lower levels of C3 and C4 than healthy controls [0.87 (0.22) vs. 0.96 (0.19); 0.19 (0.06) vs. 0.22 (0.07), respectively, Pc < 0.01] and lower levels of C3 than female PD patients [0.87 (0.22) vs. 1.02 (0.23), Pc < 0.01]. Patients suffering from attention/memory problems had significantly lower levels of IgA and C3 than those without these problems [1.92 (1.21) vs. 2.57 (0.76); 0.89 (0.24) vs. 0.97 (0.24), respectively, Pc < 0.04]. In addition, serum IgG levels were negatively associated with mood/cognition problem scores and were positively associated with gastrointestinal tract problem scores (adjusted R2 = 0.063, F = 1.805, p = 0.038). Serum C3 levels were negatively associated with being male, age, and sleep/fatigue problem scores (adjusted R2 = 0.123, F = 2.678, p = 0.001). Conclusion The peripheral humoral immune response might be correlated with the non-motor symptoms of PD.
Collapse
Affiliation(s)
- Congcong Sun
- Department of Neurology, Qilu Hospital, Shandong University, Jinan, China
| | - Wenfei Yu
- Department of Neurology, Qilu Hospital, Shandong University, Jinan, China
| | - Zhenxiang Zhao
- Department of Neurology, Henan Provincial People's Hospital, People's Hospital of Zhengzhou University, Zhengzhou, China
| | - Chengyuan Song
- Department of Neurology, Qilu Hospital, Shandong University, Jinan, China
| | - Ying Liu
- Department of Neurology, Qilu Hospital, Shandong University, Jinan, China
| | - Guoyong Jia
- Department of Neurology, Qilu Hospital, Shandong University, Jinan, China
| | - Xingbang Wang
- Department of Neurology, Qilu Hospital, Shandong University, Jinan, China
| | - Yiming Liu
- Department of Neurology, Qilu Hospital, Shandong University, Jinan, China
| |
Collapse
|
42
|
Assessment of the Levels of Level of Biomarkers of Bone Matrix Glycoproteins and Inflammatory Cytokines from Saudi Parkinson Patients. BIOMED RESEARCH INTERNATIONAL 2019; 2019:2690205. [PMID: 31205938 PMCID: PMC6530158 DOI: 10.1155/2019/2690205] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/27/2019] [Accepted: 04/15/2019] [Indexed: 01/02/2023]
Abstract
Background. Parkinson's disease (PD) is the second most commonly neurodegenerative disease after Alzheimer's disease which occurs to nearly 1% of the population > 50 years old. Inflammatory and bone biomarkers have both become valuable tools for PD diagnosis and prognosis. However, no studies have examined these markers in Saudi patients diagnosed with PD. Objectives. To assess the biomarkers and proinflammatory cytokines from blood with PD in serum. Methods. In our study, we included 26 patients with PD and 24 controls. Blood samples were withdrawn from subjects with PD and their matched controls. Biomarkers multiplex assay from Milliplex was used to assess the levels of IL-1B, IL-6, TNF-α, osteoprotegerin (OPG), osteopontin (OPN), and PTH (parathyroid hormone). Data was analyzed using the Statistical Package, GraphPad Prism. Results. We found that IL-1ß cytokine is significantly higher in patients with PD (p value = 0.0014). However, there are no statistically significant variances found among the two studied groups with regard to the IL-6 and TNF-α cytokines levels. We also found that levels of PTH are decreased in the PD subjects than the age-matched controls (p value= 0.003). Also, the bone matrix glycoproteins, including osteoprotegerin (OPG) and osteopontin (OPN), are significantly upregulated (p value= 0.04 for OPG and p value= 0.003 for OPN), as compared to the controls. Conclusions. Our findings are reliable with the possibility that inflammatory and bone markers can be used as biomarkers in PD prognosis. However, to clarify the natural role and consequence of these markers in PD pathology, further larger cohort studies are needed.
Collapse
|
43
|
Dal Ben M, Bongiovanni R, Tuniz S, Fioriti E, Tiribelli C, Moretti R, Gazzin S. Earliest Mechanisms of Dopaminergic Neurons Sufferance in a Novel Slow Progressing Ex Vivo Model of Parkinson Disease in Rat Organotypic Cultures of Substantia Nigra. Int J Mol Sci 2019; 20:E2224. [PMID: 31064126 PMCID: PMC6539377 DOI: 10.3390/ijms20092224] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2019] [Revised: 04/30/2019] [Accepted: 05/03/2019] [Indexed: 12/17/2022] Open
Abstract
The current treatments of Parkinson disease (PD) are ineffective mainly due to the poor understanding of the early events causing the decline of dopaminergic neurons (DOPAn). To overcome this problem, slow progressively degenerating models of PD allowing the study of the pre-clinical phase are crucial. We recreated in a short ex vivo time scale (96 h) all the features of human PD (needing dozens of years) by challenging organotypic culture of rat substantia nigra with low doses of rotenone. Thus, taking advantage of the existent knowledge, the model was used to perform a time-dependent comparative study of the principal possible causative molecular mechanisms undergoing DOPAn demise. Alteration in the redox state and inflammation started at 3 h, preceding the reduction in DOPAn number (pre-diagnosis phase). The number of DOPAn declined to levels compatible with diagnosis only at 12 h. The decline was accompanied by a persistent inflammation and redox imbalance. Significant microglia activation, apoptosis, a reduction in dopamine vesicle transporters, and the ubiquitination of misfolded protein clearance pathways were late (96 h, consequential) events. The work suggests inflammation and redox imbalance as simultaneous early mechanisms undergoing DOPAn sufferance, to be targeted for a causative treatment aimed to stop/delay PD.
Collapse
Affiliation(s)
- Matteo Dal Ben
- Department of Medical, Surgical, and Health Sciences, University of Trieste, 34100 Trieste, Italy.
- Fondazione Italiana Fegato, AREA Science Park, 34149 Trieste, Italy.
| | | | - Simone Tuniz
- Fondazione Italiana Fegato, AREA Science Park, 34149 Trieste, Italy.
| | - Emanuela Fioriti
- Fondazione Italiana Fegato, AREA Science Park, 34149 Trieste, Italy.
| | - Claudio Tiribelli
- Fondazione Italiana Fegato, AREA Science Park, 34149 Trieste, Italy.
| | - Rita Moretti
- Neurology Clinic, Department of Medical, Surgical, and Health Sciences, University of Trieste, 34100 Trieste, Italy.
| | - Silvia Gazzin
- Fondazione Italiana Fegato, AREA Science Park, 34149 Trieste, Italy.
| |
Collapse
|
44
|
Lian TH, Guo P, Zuo LJ, Hu Y, Yu SY, Yu QJ, Jin Z, Wang RD, Li LX, Zhang W. Tremor-Dominant in Parkinson Disease: The Relevance to Iron Metabolism and Inflammation. Front Neurosci 2019; 13:255. [PMID: 30971879 PMCID: PMC6445850 DOI: 10.3389/fnins.2019.00255] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2018] [Accepted: 03/04/2019] [Indexed: 12/11/2022] Open
Abstract
Background: Tremor is one of the most predominant symptoms of patients with Parkinson disease (PD), but the underlying mechanisms for tremor relating to iron and its metabolism-related proteins and the inflammatory factors in cerebrospinal fluid (CSF) and serum have not been fully elucidated. Methods: A total of 135 PD patients were divided into a tremor-dominant (PD-TD) group (N = 74) and a postural instability and gait difficulty-dominant (PD-PIGD) group (N = 39) based on the ratio of mean tremor score to the mean bradykinesia/rigid score of the Unified Parkinson's Disease Rating Scale (UPDRS) III. Age and sex-matched healthy controls were recruited (N = 35). Demographic variables were evaluated; iron and its metabolism-related proteins and the inflammatory mediators in both CSF and serum were measured in these groups. The relevance of iron metabolism, inflammation and PD-TD were analyzed. Results: (1) The PD-TD group had significantly decreased L-ferritin, increased iron levels in CSF and increased ferritin levels in the serum compared with the PD-PIGD and control groups (P < 0.05). (2) The PD-TD group had significantly enhanced IL-6 levels in both CSF and serum compared with the PD-PIGD and control groups (P < 0.05). (3) In CSF, the IL-6 level was increased as the iron level was elevated in the PD-TD group (r = 0.308, P = 0.022). In serum, the IL-6 level was increased as the ferritin level was elevated in the PD-TD group (r = 0.410, P = 0.004). Conclusion: The interplay between disturbed iron metabolism and relevant inflammation might modulate clinical phenotypes of PD.
Collapse
Affiliation(s)
- Teng-Hong Lian
- Department of Neurology, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Peng Guo
- Department of Neurology, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Li-Jun Zuo
- Department of Neurology, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Yang Hu
- Department of Neurology, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Shu-Yang Yu
- Department of Neurology, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Qiu-Jin Yu
- Department of Neurology, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Zhao Jin
- Department of Neurology, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Rui-Dan Wang
- Department of Neurology, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Li-Xia Li
- Department of Internal Medicine, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Wei Zhang
- Center for Cognitive Neurology, Department of Neurology, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
- China National Clinical Research Center for Neurological Diseases, Beijing, China
- Key Laboratory for Neurodegenerative Disorders of the Ministry of Education, Capital Medical University, Beijing, China
- Center of Parkinson’s Disease, Beijing Institute for Brain Disorders, Beijing, China
- Beijing Key Laboratory on Parkinson’s Disease, Beijing, China
| |
Collapse
|
45
|
Prell T, Witte OW, Grosskreutz J. Biomarkers for Dementia, Fatigue, and Depression in Parkinson's Disease. Front Neurol 2019; 10:195. [PMID: 30906277 PMCID: PMC6418014 DOI: 10.3389/fneur.2019.00195] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2018] [Accepted: 02/15/2019] [Indexed: 12/26/2022] Open
Abstract
Parkinson's disease is a common multisystem neurodegenerative disorder characterized by typical motor and non-motor symptoms. There is an urgent need for biomarkers for assessment of disease severity, complications and prognosis. In addition, biomarkers reporting the underlying pathophysiology assist in understanding the disease and developing neuroprotective therapies. Ultimately, biomarkers could be used to develop a more efficient personalized approach for clinical trials and treatment strategies. With the goal to improve quality of life in Parkinson's disease it is essential to understand and objectively monitor non-motor symptoms. This narrative review provides an overview of recent developments of biomarkers (biofluid samples and imaging) for three common neuropsychological syndromes in Parkinson's disease: dementia, fatigue, and depression.
Collapse
Affiliation(s)
- Tino Prell
- Department of Neurology, Jena University Hospital, Jena, Germany.,Center for Healthy Ageing, Jena University Hospital, Jena, Germany
| | - Otto W Witte
- Department of Neurology, Jena University Hospital, Jena, Germany.,Center for Healthy Ageing, Jena University Hospital, Jena, Germany
| | - Julian Grosskreutz
- Department of Neurology, Jena University Hospital, Jena, Germany.,Center for Healthy Ageing, Jena University Hospital, Jena, Germany
| |
Collapse
|
46
|
Herlofson K, Heijnen CJ, Lange J, Alves G, Tysnes OB, Friedman JH, Fagundes CP. Inflammation and fatigue in early, untreated Parkinson's Disease. Acta Neurol Scand 2018; 138:394-399. [PMID: 29947088 DOI: 10.1111/ane.12977] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/03/2018] [Indexed: 12/16/2022]
Abstract
OBJECTIVES Parkinson's disease (PD)-related fatigue is a significant clinical problem, and the pathological processes that cause fatigue remain unknown. The aim of the present study was to explore the possible association of peripheral inflammation markers and fatigue in PD. MATERIALS & METHODS We included 47 drug naïve, newly diagnosed PD patients with low (≤3.0) or high (>5.5) fatigue levels as evaluated by the Fatigue Severity Scale (FSS). Strict diagnostic criteria were applied for inclusion. Patients with possible confounding causes for fatigue were excluded. Serum concentrations of a panel of inflammatory markers (IL-8, TNF-α, MCP1, MIP-1β, IL-6, IL-6R, p-selectin, E-selectin-1, ICAM, VCAM-1, CCL5, IL1-Ra, and TNFR1) were measured using ELISA technology in PD patients with and without fatigue to assess the potential relationships of fatigue in newly diagnosed, treatment-naïve patients. RESULTS Fatigued PD patients had significantly higher levels of the IL-1 receptor antagonist (IL1-Ra) (1790 pg/mL (SD1007) vs 1262 pg/mL (SD379)) and of the adhesion molecule VCAM 1 (1071 ng/mL (SD276) vs 895 ng/mL (SD229)) than non-fatigued patients. A binary logistic regression model, including high or low FSS score as the dependent variable and UPDRS motor score, MADRS, MMSE, ESS, and IL1-Ra/VCAM-1 as independent variables, showed a significant effect both for IL1-Ra and VCAM-1. CONCLUSIONS Higher serum levels of the inflammatory molecules IL1-Ra and VCAM-1 were associated with higher fatigue levels in patients with newly diagnosed, drug-naïve PD. These findings highlight an altered immune response as a potential contributor to PD-related fatigue, from the earliest clinical stages of the disease.
Collapse
Affiliation(s)
- K. Herlofson
- Department of Neurology; Sorlandet Hospital; Arendal Norway
| | - C. J. Heijnen
- Department of Symptom Research; M. D. Anderson Cancer Center; Houston TX USA
| | - J. Lange
- The Norwegian Centre for Movement Disorders; Stavanger University Hospital; Stavanger Norway
| | - G. Alves
- The Norwegian Centre for Movement Disorders; Stavanger University Hospital; Stavanger Norway
- Department of Mathematics and Natural Sciences; University of Stavanger; Stavanger Norway
| | - O.-B. Tysnes
- Department of Neurology; Haukeland University Hospital; Department of Clinical Medicine; Bergen Norway
- Department of Clinical Medicine; Haukeland University Hospital; Bergen Norway
| | - J. H. Friedman
- Butler Hospital; Warren Alpert Medical School of Brown University; Providence RI USA
| | - C. P. Fagundes
- Department of Psychology; Rice University and MD Anderson Cancer Center; Houston TX USA
- Department of Behavioral Science; Rice University and MD Anderson Cancer Center; Houston TX USA
| |
Collapse
|
47
|
Ilyechova EY, Miliukhina IV, Orlov IA, Muruzheva ZM, Puchkova LV, Karpenko MN. A low blood copper concentration is a co-morbidity burden factor in Parkinson’s disease development. Neurosci Res 2018; 135:54-62. [DOI: 10.1016/j.neures.2017.11.011] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2017] [Revised: 11/15/2017] [Accepted: 11/30/2017] [Indexed: 01/21/2023]
|
48
|
Siciliano M, Trojano L, Santangelo G, De Micco R, Tedeschi G, Tessitore A. Fatigue in Parkinson's disease: A systematic review and meta-analysis. Mov Disord 2018; 33:1712-1723. [PMID: 30264539 DOI: 10.1002/mds.27461] [Citation(s) in RCA: 140] [Impact Index Per Article: 23.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2018] [Revised: 05/15/2018] [Accepted: 05/17/2018] [Indexed: 01/04/2023] Open
Abstract
We conducted a systematic review and meta-analysis aimed at establishing robust prevalence estimates and identifying clinical correlates of fatigue in PD. From 2,459 titles and abstracts, we selected 44 relevant studies (n = 7427 patients). Overall, the meta-analysis showed a prevalence of fatigue of 50% in PD. This prevalence estimate, however, was significantly moderated by study heterogeneity in measurement scales and cut-off thresholds. In contrast, demographic features, disease severity, cognitive impairment, and depression did not moderate prevalence estimates. Moreover, fatigue prevalence did not differ between de novo and treated PD patients. Compared to nonfatigued patients, fatigued patients had sligthly higher age (1.44 years), disease duration (0.93 years), l-dopa equivalent daily dose (50.89 units), UPDRS-III (4.99 points), and H & Y (0.33 points), as well as risk of comorbid depression (risk ratio = 1.89) and had a little lower MMSE score (-0.66 points). Fatigue was moderately associated with apathy (Hedges' g = 0.55), anxiety (Hedges' g = 0.67), daytime somnolence (Hedges' g = 0.43), sleep disturbances (Hedges' g = 0.66), and poorer quality of life (Hedges' g = 1.23). Our analyses suggest that fatigue is a frequent, independent nonmotor symptom in PD appearing early and persisting throughout the disease course, and that establishing uniform diagnostic criteria for PD-related fatigue is critical. In addition, several nonmotor symptoms appear to be associated with fatigue and negatively impact quality of life. Pharmacological and nonpharmacological interventions targeting fatigue and associated symptoms may improve quality of life in patients with PD. © 2018 International Parkinson and Movement Disorder Society.
Collapse
Affiliation(s)
- Mattia Siciliano
- Department of Medical, Surgical, Neurological, Metabolic and Aging Sciences, MRI Research Center SUN-FISM, University of Campania "Luigi Vanvitelli", Naples, Italy.,Department of Psychology, University of Campania "Luigi Vanvitelli", Caserta, Italy
| | - Luigi Trojano
- Department of Psychology, University of Campania "Luigi Vanvitelli", Caserta, Italy.,ICS Maugeri, Scientific Institute of Telese, Telese, Italy
| | - Gabriella Santangelo
- Department of Psychology, University of Campania "Luigi Vanvitelli", Caserta, Italy
| | - Rosa De Micco
- Department of Medical, Surgical, Neurological, Metabolic and Aging Sciences, MRI Research Center SUN-FISM, University of Campania "Luigi Vanvitelli", Naples, Italy
| | - Gioacchino Tedeschi
- Department of Medical, Surgical, Neurological, Metabolic and Aging Sciences, MRI Research Center SUN-FISM, University of Campania "Luigi Vanvitelli", Naples, Italy
| | - Alessandro Tessitore
- Department of Medical, Surgical, Neurological, Metabolic and Aging Sciences, MRI Research Center SUN-FISM, University of Campania "Luigi Vanvitelli", Naples, Italy
| |
Collapse
|
49
|
Bok E, Chung YC, Kim KS, Baik HH, Shin WH, Jin BK. Modulation of M1/M2 polarization by capsaicin contributes to the survival of dopaminergic neurons in the lipopolysaccharide-lesioned substantia nigra in vivo. Exp Mol Med 2018; 50:1-14. [PMID: 29968707 PMCID: PMC6030094 DOI: 10.1038/s12276-018-0111-4] [Citation(s) in RCA: 77] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2017] [Revised: 01/18/2018] [Accepted: 04/09/2018] [Indexed: 12/16/2022] Open
Abstract
The present study examined the neuroprotective effects of capsaicin (CAP) and explored their underlying mechanisms in a lipopolysaccharide (LPS)-lesioned inflammatory rat model of Parkinson’s dieases (PD). LPS was unilaterally injected into the substantia nigra (SN) in the absence or presence of CAP or capsazepine (CZP, a TRPV1 antagonist). The SN tissues were prepared for immunohistochemical staining, reverse transcriptase-polymerase chain reaction (RT-PCR) analysis, western blot analysis, blood–brain barrier (BBB) permeability evaluation, and reactive oxygen species (ROS) detection. We found that CAP prevented the degeneration of nigral dopamine neurons in a dose-dependent manner and inhibited the expression of proinflammatory mediators in the LPS-lesioned SN. CAP shifted the proinflammatory M1 microglia/macrophage population to an anti-inflammatory M2 state as demonstrated by decreased expression of M1 markers (i.e., inducible nitric oxide synthase; iNOS and interleukin-6) and elevated expression of M2 markers (i.e., arginase 1 and CD206) in the SN. RT-PCR, western blotting, and immunohistochemical analysis demonstrated decreased iNOS expression and increased arginase 1 expression in the CAP-treated LPS-lesioned SN. Peroxynitrate production, reactive oxygen species levels and oxidative damage were reduced in the CAP-treated LPS-lesioned SN. The beneficial effects of CAP were blocked by CZP, indicating TRPV1 involvement. The present data indicate that CAP regulated the M1 and M2 activation states of microglia/macrophage in the LPS-lesioned SN, which resulted in the survival of dopamine neurons. It is therefore likely that TRPV1 activation by CAP has therapeutic potential for treating neurodegenerative diseases, that are associated with neuroinflammation and oxidative stress, such as PD. A drug that activates a neuron-protecting protein in the brain may help treat Parkinson’s disease (PD). Scientists believe neurons die during PD because of an over-activation of proinflammatory markers within immune cell populations, such as the microglia and macrophage cells found in the central nervous system and the brain. Now, Byung Kwan Jin at Kyung Hee University in Seoul and Won-Ho Shin at the Korea Institute of Toxicology in Daejeon and co-workers have demonstrated that a proinflammatory state can be reversed in rat PD models by administering capsaicin, an analgesic drug. Capsaicin activates a receptor protein that is highly expressed in neurons, microglia and astrocytes, and may play a role in neuronal function and motor control. The protein activation reversed the inflammatory state of the immune cells, providing a more protective environment for neurons.
Collapse
Affiliation(s)
- Eugene Bok
- Predictive Model Research Center, Korea Institute of Toxicology, Daejeon, 34114, Korea
| | - Young Cheul Chung
- Department of Biochemistry and Molecular Biology, School of Medicine Kyung Hee University, Seoul, 02447, Korea
| | - Ki-Suk Kim
- Predictive Model Research Center, Korea Institute of Toxicology, Daejeon, 34114, Korea.,Department of Human and Environmental Toxicology, University of Science and Technology, Daejeon, 34113, Korea
| | - Hyung Hwan Baik
- Department of Biochemistry and Molecular Biology, School of Medicine Kyung Hee University, Seoul, 02447, Korea
| | - Won-Ho Shin
- Predictive Model Research Center, Korea Institute of Toxicology, Daejeon, 34114, Korea.
| | - Byung Kwan Jin
- Department of Biochemistry and Molecular Biology, School of Medicine Kyung Hee University, Seoul, 02447, Korea.
| |
Collapse
|
50
|
Linking Neuroinflammation and Neurodegeneration in Parkinson's Disease. J Immunol Res 2018; 2018:4784268. [PMID: 29850629 PMCID: PMC5926497 DOI: 10.1155/2018/4784268] [Citation(s) in RCA: 294] [Impact Index Per Article: 49.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2018] [Accepted: 03/28/2018] [Indexed: 11/30/2022] Open
Abstract
Neurodegenerative diseases such as Parkinson's disease (PD) and Alzheimer's disease (AD) impose a pressing burden on our developed and consequently aging society. Misfolded protein aggregates are a critical aspect of several neurodegenerative diseases. Nevertheless, several questions remain unanswered regarding the role of misfolded protein aggregates and the cause of neuronal cell death. Recently, it has been postulated that neuroinflammatory processes might play a crucial role in the pathogenesis of PD. Numerous postmortem, brain imaging, epidemiological, and animal studies have documented the involvement of the innate and adaptive immunity in neurodegeneration. Whether these inflammatory processes are directly involved in the etiology of PD or represent secondary consequences of nigrostriatal pathway injury is the subject of intensive research. Immune alterations in response to extracellular α-synuclein may play a critical role in modulating Parkinson's disease progression. In this review, we address the current concept of neuroinflammation and its involvement in PD-associated neurodegeneration.
Collapse
|