1
|
Harahap IA, Kuligowski M, Cieslak A, Kołodziejski PA, Suliburska J. Effect of Tempeh and Daidzein on Calcium Status, Calcium Transporters, and Bone Metabolism Biomarkers in Ovariectomized Rats. Nutrients 2024; 16:651. [PMID: 38474779 DOI: 10.3390/nu16050651] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2024] [Revised: 02/22/2024] [Accepted: 02/24/2024] [Indexed: 03/14/2024] Open
Abstract
Menopause marks a critical life stage characterized by hormonal changes that significantly impact bone health, leading to a heightened susceptibility to bone fractures. This research seeks to elucidate the impact of daidzein and tempeh on calcium status, calcium transporters, and bone metabolism in an ovariectomized rat model. Forty female Wistar rats, aged 3 months, participated in a two-phase experiment. The initial phase involved inducing a calcium deficit, while the second phase comprised dietary interventions across five groups: Sham (S) and Ovariectomy (O) with a standard diet, O with bisphosphonate (OB), O with pure daidzein (OD), and O with tempeh (OT). Multiple parameters, encompassing calcium levels, calcium transporters, bone histopathology, and serum bone metabolism markers, were evaluated. The findings revealed that the OT group showcased heightened levels of bone turnover markers, such as pyridinoline, C-telopeptide of type I collagen, bone alkaline phosphatase, and procollagen type I N-terminal propeptide, in contrast to S and O groups, with statistical significance (p < 0.05). Histopathologically, both the OD and OT groups exhibited effects akin to the OB group, indicating a decrease in the surface area occupied by adipocytes in the femoral bone structure, although statistically non-equivalent, supporting the directionally similar trends. Although TRPV5 and TRPV6 mRNA expression levels in the jejunum and duodenum did not display statistically significant differences (p > 0.05), the OD and OT groups exhibited increased expression compared to the O group. We hypothesized that obtained results may be related to the effect of isoflavones on estrogen pathways because of their structurally similar to endogenous estrogen and weak estrogenic properties. In conclusion, the daily consumption of pure daidzein and tempeh could potentially improve and reinstate calcium status, calcium transport, and bone metabolism in ovariectomized rats. Additionally, isoflavone products demonstrate effects similar to bisphosphonate drugs on these parameters in ovariectomized rats.
Collapse
Affiliation(s)
- Iskandar Azmy Harahap
- Department of Human Nutrition and Dietetics, Faculty of Food Science and Nutrition, Poznan University of Life Sciences, 60-624 Poznan, Poland
| | - Maciej Kuligowski
- Department of Food Technology of Plant Origin, Faculty of Food Science and Nutrition, Poznan University of Life Sciences, 60-624 Poznan, Poland
| | - Adam Cieslak
- Department of Animal Nutrition, Faculty of Veterinary Medicine and Animal Science, Poznan University of Life Sciences, 60-637 Poznan, Poland
| | - Paweł A Kołodziejski
- Department of Animal Physiology, Biochemistry and Biostructure, Faculty of Veterinary Medicine and Animal Science, Poznan University of Life Sciences, 60-637 Poznan, Poland
| | - Joanna Suliburska
- Department of Human Nutrition and Dietetics, Faculty of Food Science and Nutrition, Poznan University of Life Sciences, 60-624 Poznan, Poland
| |
Collapse
|
2
|
Harahap IA, Kuligowski M, Schmidt M, Kołodziejski PA, Suliburska J. Effects of isoflavone and probiotic intake on calcium transport and bone metabolism biomarkers in female rats. Food Sci Nutr 2023; 11:6324-6335. [PMID: 37823105 PMCID: PMC10563734 DOI: 10.1002/fsn3.3571] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Revised: 06/15/2023] [Accepted: 07/09/2023] [Indexed: 10/13/2023] Open
Abstract
Calcium is essential for maintaining bone health as it contributes to bone formation, remodeling, strength, and density. This study investigated the effect of isoflavones and probiotics on calcium transporters' gene expression, serum calcium levels, and bone metabolism biomarkers in healthy female rats. Forty-eight female Wistar rats were classified into six groups. Bone metabolism biomarkers (pyridinoline, deoxypyridinoline, parathyroid hormone, and osteocalcin) and serum calcium levels were measured by enzyme-linked immunosorbent assay (ELISA) and atomic absorption spectroscopy (AAS), respectively. Gene expression of calcium transporters (Trpv5 and Trpv6) was evaluated in duodenum and jejunum tissue samples using quantitative polymerase chain reaction (qPCR). Trpv5 and Trpv6, epithelial calcium channels, play a crucial role in calcium transport and homeostasis in the body. The study consisted of a1-week adaptation period for the rats to adjust to the controlled conditions, followed by an 8-week intervention phase. The daidzein and genistein group showed a significant increase in the gene expression of the Trpv6 transporter in the duodenum and a marked decrease in serum pyridinoline levels compared to the control group. The tempeh and soybean groups showed a significant decrease in the gene expression of the Trpv5 calcium transporter in the jejunum. However, no significant influence of the Lactobacillus acidophilus diet on calcium transport and bone metabolism biomarkers was observed in the L. acidophilus group. The correlation analysis showed a significant positive relationship between serum calcium, bone metabolism biomarkers, and calcium transporters. In conclusion, our study demonstrates that the daidzein and genistein diet improves calcium transport in the duodenum and reduces pyridinoline serum concentrations, while tempeh and soybean diets reduce calcium transport in the jejunum. However, the combination of daidzein, genistein, and L. acidophilus did not demonstrate a synergistic effect on calcium transport and bone metabolism, suggesting that further investigations are needed to elucidate their potential interactions.
Collapse
Affiliation(s)
- Iskandar Azmy Harahap
- Department of Human Nutrition and Dietetics, Faculty of Food Science and NutritionPoznan University of Life SciencesPoznanPoland
| | - Maciej Kuligowski
- Department of Food Technology of Plant Origin, Faculty of Food Science and NutritionPoznan University of Life SciencesPoznanPoland
| | - Marcin Schmidt
- Department of Biotechnology and Food Microbiology, Faculty of Food Science and NutritionPoznan University of Life SciencesPoznanPoland
| | - Paweł A. Kołodziejski
- Department of Animal Physiology, Biochemistry and Biostructure, Faculty of Veterinary Medicine and Animal SciencePoznań University of Life SciencesPoznanPoland
| | - Joanna Suliburska
- Department of Human Nutrition and Dietetics, Faculty of Food Science and NutritionPoznan University of Life SciencesPoznanPoland
| |
Collapse
|
3
|
Abdel-Baky ES, Radwan SA, Ibrahim MF, Abdel-Rahman ON. Influence of omega- 3 fatty acids, soya isoflavones and their combination for abrogating carbon tetrachloride hazards in male rats. BRAZ J BIOL 2023; 84:e266024. [PMID: 36790295 DOI: 10.1590/1519-6984.266024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2022] [Accepted: 09/05/2022] [Indexed: 02/12/2023] Open
Abstract
Studies have shown that carbon tetrachloride (CCl4) induces hepatic and renal damage arising from oxidative stress. The present study was undertaken to examine the effect of omega-3 fatty acids and/or soya isoflavones on CCl4 induced toxicity in male albino rat liver and kidney. For this purpose, 42 rats were divided as follows: group 1, rats serves as the control without any treatment; group 2, rats were administered a single dose of CCl4 intraperitoneally (1 mg/kg b. wt.); group 3, rats were supplemented daily with omega-300 orally (400 mg/kg b. wt.); group 4, rats were supplemented daily with pro-S orally (50 mg/kg b. wt.); group 5, rats were supplemented daily with omega-300 orally for four weeks, then after 24 hours treated with a single dose of CCl4 at the same tested doses. group 6, rats were supplemented daily with pro- S orally for four weeks, then after 24 hours treated with a single dose of CCl4 at the same tested doses; group 7, rats were supplemented daily with an oral combination of omega-300 and pro-S orally for four weeks, then after 24 hours treated with a single dose of CCl4 at the same tested doses. Results showed that CCl4 administration induces hepatic damage indicated by a significant increase in the activities of alkaline phosphatase (ALP), aspartate aminotransferase (AST) and Aalanine aminotransferase (ALT) enzymes and glucose level, with a significant increase in malondialdehyde (MDA) and nitric oxide (NO) levels and a significant decrease of reduced glutathione (GSH) level in liver tissue. Also, CCl4 toxicity induce renal damage manifested in a significant increase in serum urea, creatinine, uric acid, and oxidative stress of kidney tissue reflected by increase of MDA, NO and the decrease of GSH levels. The pre-treatment with omega-3 fatty acids and/or soya isoflavones revealed ameliorative effect against deleterious effects of CCl4 toxicity on hepatic and renal tissues and all tested parameters. Results of the current study revealed also that the pre-treatment with omega-3 fatty acids and/or soya isoflavones to rats improved liver and kidney function and produced high antioxidant activity.
Collapse
Affiliation(s)
- E S Abdel-Baky
- Ain Shams University, Faculty of Education, Department of Biological and Geological Sciences, Cairo, Egypt
| | - S A Radwan
- Ain Shams University, Faculty of Education, Department of Biological and Geological Sciences, Cairo, Egypt
| | - M F Ibrahim
- Ain Shams University, Faculty of Education, Department of Biological and Geological Sciences, Cairo, Egypt
| | - O N Abdel-Rahman
- Ain Shams University, Faculty of Education, Department of Biological and Geological Sciences, Cairo, Egypt
| |
Collapse
|
4
|
Hasanpour A, Babajafari S, Mazloomi SM, Shams M. The effects of soymilk plus probiotics supplementation on cardiovascular risk factors in patients with type 2 diabetes mellitus: a randomized clinical trial. BMC Endocr Disord 2023; 23:36. [PMID: 36759798 PMCID: PMC9912676 DOI: 10.1186/s12902-023-01290-w] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/03/2022] [Accepted: 02/01/2023] [Indexed: 02/11/2023] Open
Abstract
OBJECTIVE Type 2 diabetes mellitus (T2DM) is associated with an increased risk of cardiovascular diseases. This study aimed to assess the effects of soymilk plus probiotics co-administration on cardiovascular risk factors in T2DM patients. METHODS One hundred patients with T2DM (aged 40-75 years old) were randomly assigned into 4 groups (soymilk + probiotics supplement, soymilk + placebo, conventional milk + placebo, and probiotics supplement) for 6 weeks. Standard protocols were followed for the collection of fasting blood samples, dietary intakes, and anthropometric measurements. RESULTS It was shown that soymilk + probiotics consumption significantly decreased diastolic blood pressure (DBP) (p = 0.001), triglycerides (TG) (P < 0.001), total cholesterol (TC) (p < 0.01), and insulin (P < 0.003) levels and significantly increased high-density lipoprotein cholesterol (HDL-C) (P = 0.002) levels. Soymilk + placebo administration significantly decreased DBP (p = 0.01), insulin (p = 0.006), and TG (p = 0.001) levels and significantly increased HDL-C (p = 0.03) levels. A significant decrease in insulin (p = 0.003) and systolic blood pressure (SBP) (p = 0.01) levels and an increase in HDL-C (p = 0.04) levels were observed after supplementation with probiotics. Findings from between-group comparisons showed a significant decrease in SBP levels in the probiotics supplement group compared to conventional milk group (p < 0.05). CONCLUSION Soymilk and probiotics consumption might improve some cardiovascular risk factors in patients with T2DM. However, possible synergic effects while consumption of soymilk plus probiotics supplement didn't show in this study which warranted further research.
Collapse
Affiliation(s)
- Azimeh Hasanpour
- Department of Nutrition, School and Research Center of Nutrition and Food Sciences, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Siavash Babajafari
- Department of Nutrition, School and Research Center of Nutrition and Food Sciences, Shiraz University of Medical Sciences, Shiraz, Iran.
| | - Seyed Mohammad Mazloomi
- Department of Food Hygiene and Quality Control, School and Research Center of Nutrition and Food Sciences, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Mesbah Shams
- Department of Internal Medicine, Namazi Hospital, Shiraz University of Medical Sciences, Shiraz, Iran
| |
Collapse
|
5
|
Dai Z, Liu J, Yao X, Wang A, Liu Y, Strappe P, Huang W, Zhou Z. Association of gut microbiota characteristics and metabolites reveals the regulation mechanisms under cadmium consumption circumstance. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2022; 102:6737-6748. [PMID: 35621360 DOI: 10.1002/jsfa.12041] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/28/2021] [Revised: 04/24/2022] [Accepted: 05/27/2022] [Indexed: 06/15/2023]
Abstract
BACKGROUND Cadmium is a non-biodegradable heavy metal with a long biological half-life. Although its negative impact on human health has been previously reported, the association of cadmium consumption overdose with changes in the gut microbiota and its corresponding metabolites has not been fully elucidated so far. RESULTS Cadmium consumption overdose led to a reduced body weight gain accompanied by an enhanced level of the proinflammatory cytokine tumor necrosis factor-α, interleukin-6, and histamine in the serum of the rats in comparison with normal rats. Furthermore, hepatotoxicity was also observed to be induced by cadmium, which was consistent with abnormal hepatic activities of alkaline phosphatase, alanine aminotransferase, and aspartate aminotransferase and oxidative stress. In contrast, Lactobacillus rhamnosus-fermented Ganoderma lucidum (FGL) slice supplementation improved the aforementioned physiological properties. More importantly, microbiome and metabolites analysis indicated cadmium exposure significantly reduced the generation of short-chain fatty acids in the gut, particularly butyrate. However, rats in the FGL group had the highest level of butyrate in the feces, characterized with significantly enriched probiotics (Lactobacillus, Bifidobacterium) and butyrate-producing bacteria (Roseburia). CONCLUSION The targeted regulation of the gut microbial community and its metabolites might be the essential association for attenuating body dysfunction induced by cadmium. The supplementation of FGL, as evidenced in this study, might highlight a novel approach to this field. © 2022 Society of Chemical Industry.
Collapse
Affiliation(s)
- Zhen Dai
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, China
- College of Food Science and Engineering, Tianjin University of Science and Technology, Tianjin, China
| | - Jinguang Liu
- College of Food Science and Engineering, Tianjin University of Science and Technology, Tianjin, China
| | - Xuan Yao
- College of Food Science and Engineering, Tianjin University of Science and Technology, Tianjin, China
| | - Anqi Wang
- College of Food Science and Engineering, Tianjin University of Science and Technology, Tianjin, China
| | - Yuqian Liu
- College of Food Science and Engineering, Tianjin University of Science and Technology, Tianjin, China
| | - Padraig Strappe
- School of Medical and Applied Sciences, Central Queensland University, Rockhampton, QLD, Australia
| | - Weining Huang
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, China
| | - Zhongkai Zhou
- College of Food Science and Engineering, Tianjin University of Science and Technology, Tianjin, China
- ARC Functional Grains Centre, Charles Sturt University, Wagga Wagga, NSW, Australia
| |
Collapse
|
6
|
Long X, Liao S, Li E, Pang D, Li Q, Liu S, Hu T, Zou Y. The hypoglycemic effect of freeze-dried fermented mulberry mixed with soybean on type 2 diabetes mellitus. Food Sci Nutr 2021; 9:3641-3654. [PMID: 34262724 PMCID: PMC8269569 DOI: 10.1002/fsn3.2321] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2020] [Accepted: 04/21/2021] [Indexed: 01/04/2023] Open
Abstract
Mulberry has significant hypoglycemic effect and can be used as an auxiliary food for people with type 2 diabetes. However, it is rich in carbohydrate and cannot be consumed directly by diabetic patients. In the study, we fermented the mulberry to reduce the content of glucose and fructose, and added the soybean to reduce the loss of probiotics during fermentation and then determined its hypoglycemic effect. We induced type 2 diabetes mellitus (T2DM) mice by streptozotocin and measured its blood glucose, serum biochemistry, hepatic and pancreatic histopathology, and the diversity of the gut microbiota. After 5 weeks of oral DFMS administration, the glucose tolerance was improved significantly in T2DM mice. Furthermore, there were also significant increases in superoxide dismutase activity and glutathione concentration, and marked reductions in the concentrations of malondialdehyde and free fatty acids. Moreover, DFMS also prevented histopathological changes and the increases in the activities of alanine transaminase and aspartate transaminase. DFMS treatment also markedly increased the richness of the gut microbial community. The abundance of Bacteroidetes was increased, and those of Proteobacteria, Escherichia-Shigella, and Lactobacillus were reduced. In summary, DFMS has a clear hypoglycemic effect in mice with T2DM.
Collapse
Affiliation(s)
- Xiao‐Shan Long
- Guangdong Academy of Agricultural Sciences/Key Laboratory of Functional FoodsMinistry of Agriculture and Rural Affairs/Guangdong Key Laboratory of Agricultural Products ProcessingSericultural & Agri‐Food Research InstituteGuangzhouChina
- College of Food Science and TechnologyKey Laboratory of Advanced Processing of Aquatic Products of Guangdong Higher Education InstitutionGuangdong Provincial Key Laboratory of Aquatic Product Processing and SafetyGuangdong Ocean UniversityZhanjiangChina
| | - Sen‐Tai Liao
- Guangdong Academy of Agricultural Sciences/Key Laboratory of Functional FoodsMinistry of Agriculture and Rural Affairs/Guangdong Key Laboratory of Agricultural Products ProcessingSericultural & Agri‐Food Research InstituteGuangzhouChina
| | - Er‐Na Li
- Guangdong Academy of Agricultural Sciences/Key Laboratory of Functional FoodsMinistry of Agriculture and Rural Affairs/Guangdong Key Laboratory of Agricultural Products ProcessingSericultural & Agri‐Food Research InstituteGuangzhouChina
| | - Dao‐Rui Pang
- Guangdong Academy of Agricultural Sciences/Key Laboratory of Functional FoodsMinistry of Agriculture and Rural Affairs/Guangdong Key Laboratory of Agricultural Products ProcessingSericultural & Agri‐Food Research InstituteGuangzhouChina
| | - Qian Li
- Guangdong Academy of Agricultural Sciences/Key Laboratory of Functional FoodsMinistry of Agriculture and Rural Affairs/Guangdong Key Laboratory of Agricultural Products ProcessingSericultural & Agri‐Food Research InstituteGuangzhouChina
| | - Shu‐Cheng Liu
- College of Food Science and TechnologyKey Laboratory of Advanced Processing of Aquatic Products of Guangdong Higher Education InstitutionGuangdong Provincial Key Laboratory of Aquatic Product Processing and SafetyGuangdong Ocean UniversityZhanjiangChina
| | - Teng‐Gen Hu
- Guangdong Academy of Agricultural Sciences/Key Laboratory of Functional FoodsMinistry of Agriculture and Rural Affairs/Guangdong Key Laboratory of Agricultural Products ProcessingSericultural & Agri‐Food Research InstituteGuangzhouChina
- South China University of Technology/Guangdong Province Key Laboratory for Green Processing of Natural Products and Product SafetySchool of Food Science and EngineeringGuangzhouChina
| | - Yu‐Xiao Zou
- Guangdong Academy of Agricultural Sciences/Key Laboratory of Functional FoodsMinistry of Agriculture and Rural Affairs/Guangdong Key Laboratory of Agricultural Products ProcessingSericultural & Agri‐Food Research InstituteGuangzhouChina
| |
Collapse
|
7
|
Khosravi A, Razavi SH. Therapeutic effects of polyphenols in fermented soybean and black soybean products. J Funct Foods 2021. [DOI: 10.1016/j.jff.2021.104467] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
|
8
|
Effects of Soybean Isoflavone and Astragalus Polysaccharide Mixture on Colostrum Components, Serum Antioxidant, Immune and Hormone Levels of Lactating Sows. Animals (Basel) 2021; 11:ani11010132. [PMID: 33435531 PMCID: PMC7826888 DOI: 10.3390/ani11010132] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2020] [Revised: 01/06/2021] [Accepted: 01/06/2021] [Indexed: 12/20/2022] Open
Abstract
The objectives of this study were to investigate the effects of soybean isoflavone (SI) and astragalus polysaccharide (APS) mixture on the colostrum components, serum antioxidant, immune and hormone levels of lactating sows. A total of 72 healthy Yorkshire × Landrace lactating sows, were randomly divided into four treatments with six replicates and three lactating sows for each replicate. The control group was fed the basal diet, while the experimental groups were fed the basal diet with 100, 200 and 300 mg/kg SI and APS mixture in the form of powder, respectively. Compared with the control group, (a) the total lactation yield of the 200 mg/kg group was significantly higher (p < 0.05) at 21 days, (b) there was no significant difference in colostrum composition, (c) TG, CHO and MDA content in each treatment group were significantly decreased (p < 0.05), (d) IgA, GH, IGF-1, TNF-α and SOD contents in the 200 mg/kg group were significantly increased (p < 0.05). The SI and APS mixture could improve the average daily feed intake, lactation yield, serum antioxidant activities, immune function, and hormone levels of lactating sows, and the optimum dosage in this study was 200 mg/kg.
Collapse
|
9
|
Zarei A, Stasi C, Mahmoodi M, Masoumi SJ, Zare M, Jalali M. Effect of soy consumption on liver enzymes, lipid profile, anthropometry indices, and oxidative stress in patients with non-alcoholic fatty liver disease: A systematic review and meta-analysis of clinical trials. IRANIAN JOURNAL OF BASIC MEDICAL SCIENCES 2020; 23:1245-1250. [PMID: 33149855 PMCID: PMC7585529 DOI: 10.22038/ijbms.2020.46854.10797] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/28/2020] [Accepted: 06/08/2020] [Indexed: 11/06/2022]
Abstract
The present systematic review and meta-analysis was conducted to investigate the effects of soy intake on liver enzymes, lipid profile, anthropometry indices, and oxidative stress in non-alcoholic fatty liver disease (NAFLD). A systematic search was undertaken in PubMed, Embase, Scopus, Web of Science, and Cochrane Library covering up to 10 January 2020. A fixed-effect or random-effects models were applied to pool mean difference (MD) and its 95 % confidence intervals (CI). Four clinical trials comprising 234 participants were included in the meta-analysis. Compared to the controls, alanine aminotransferase (ALT) levels (MD=-7.53, 95% CI=[-11.98, -3.08], P=0.001, I2=0.0 %), body weight (MD=-0.77, 95 % CI=[-1.38, -0.16], P=0.01, I2=36.9%), and the concentration of serum Malondialdehyde (MDA) (MD=-0.75, 95% CI=[-1.29, -0.21], P=0.007, I2=63.6%) were significantly changed following soy intake. Lipid profile was not significantly affected by soy intake. Moreover, no evidence of a significant publication bias was found. The present study suggests lowering effects for soy intake on ALT levels, body weight, and MDA in nonalcoholic liver patients. Therefore, further large-scale and well-designed clinical trials are needed to find conclusive findings.
Collapse
Affiliation(s)
- Aida Zarei
- Student Research Committee, Shiraz University of Medical Sciences, Shiraz, Iran
- Nutrition Research Center, School of Nutrition and Food Sciences, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Cristina Stasi
- Interdepartmental Hepatology Center MASVE, Department of Experimental and Clinical Medicine, Careggi University Hospital, Florence, Italy
| | - Marzieh Mahmoodi
- Student Research Committee, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Seyed Jalil Masoumi
- Nutrition Research Center, School of Nutrition and Food Sciences, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Morteza Zare
- Nutrition Research Center, School of Nutrition and Food Sciences, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Mohammad Jalali
- Student Research Committee, Shiraz University of Medical Sciences, Shiraz, Iran
- Nutrition Research Center, School of Nutrition and Food Sciences, Shiraz University of Medical Sciences, Shiraz, Iran
| |
Collapse
|
10
|
Green M, Arora K, Prakash S. Microbial Medicine: Prebiotic and Probiotic Functional Foods to Target Obesity and Metabolic Syndrome. Int J Mol Sci 2020; 21:ijms21082890. [PMID: 32326175 PMCID: PMC7215979 DOI: 10.3390/ijms21082890] [Citation(s) in RCA: 113] [Impact Index Per Article: 28.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2020] [Revised: 04/09/2020] [Accepted: 04/17/2020] [Indexed: 12/14/2022] Open
Abstract
Obesity has become a global epidemic and a public health crisis in the Western World, experiencing a threefold increase in prevalence since 1975. High-caloric diets and sedentary lifestyles have been identified as significant contributors to this widespread issue, although the role of genetic, social, and environmental factors in obesity's pathogenesis remain incompletely understood. In recent years, much attention has been drawn to the contribution of the gut microbiota in the development of obesity. Indeed, research has shown that in contrast to their healthier counterparts the microbiomes of obese individuals are structurally and functionally distinct, strongly suggesting microbiome as a potential target for obesity therapeutics. In particular, pre and probiotics have emerged as effective and integrative means of modulating the microbiome, in order to reverse the microbial dysbiosis associated with an obese phenotype. The following review brings forth animal and human research supporting the myriad of mechanisms by which the microbiome affects obesity, as well as the strengths and limitations of probiotic or prebiotic supplementation for the prevention and treatment of obesity. Finally, we set forth a roadmap for the comprehensive development of functional food solutions in combatting obesity, to capitalize on the potential of pre/probiotic therapies in optimizing host health.
Collapse
Affiliation(s)
- Miranda Green
- Biomedical Technology and Cell Therapy Research Laboratory, Department of Biomedical Engineering, Faculty of Medicine, McGill University, 3775 University Street, Montreal, QC H3A 2B4, Canada; (M.G.); (K.A.)
| | - Karan Arora
- Biomedical Technology and Cell Therapy Research Laboratory, Department of Biomedical Engineering, Faculty of Medicine, McGill University, 3775 University Street, Montreal, QC H3A 2B4, Canada; (M.G.); (K.A.)
- Department of Bioengineering, Faculty of Engineering, McGill University, 3775 University Street, Montreal, QC H3A 2B4, Canada
- Biena Inc., 2955 Rue Cartier, Saint-Hyacinthe, QC J2S 1L4, Canada
| | - Satya Prakash
- Biomedical Technology and Cell Therapy Research Laboratory, Department of Biomedical Engineering, Faculty of Medicine, McGill University, 3775 University Street, Montreal, QC H3A 2B4, Canada; (M.G.); (K.A.)
- Correspondence:
| |
Collapse
|
11
|
Zhu T, Corraze G, Plagnes-Juan E, Skiba-Cassy S. Cholesterol metabolism regulation mediated by SREBP-2, LXRα and miR-33a in rainbow trout (Oncorhynchus mykiss) both in vivo and in vitro. PLoS One 2020; 15:e0223813. [PMID: 32109243 PMCID: PMC7048274 DOI: 10.1371/journal.pone.0223813] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2019] [Accepted: 02/08/2020] [Indexed: 12/20/2022] Open
Abstract
Cholesterol metabolism is greatly affected in fish fed plant-based diet. The regulation of cholesterol metabolism is mediated by both transcriptional factors such as sterol regulatory element-binding proteins (SREBPs) and liver X receptors (LXRs), and posttranscriptional factors including miRNAs. In mammals, SREBP-2 and LXRα are involved in the transcriptional regulation of cholesterol synthesis and elimination, respectively. In mammals, miR-33a is reported to directly target genes involved in cholesterol catabolism. The present study aims to investigate the regulation of cholesterol metabolism by SREBP-2 and LXRα and miR-33a in rainbow trout using in vivo and in vitro approaches. In vivo, juvenile rainbow trout of ~72 g initial body weight were fed a total plant-based diet (V) or a marine diet (M) containing fishmeal and fish oil. In vitro, primary cell culture hepatocytes were stimulated by graded concentrations of 25-hydroxycholesterol (25-HC). The hepatic expression of cholesterol synthetic genes, srebp-2 and miR-33a as well as miR-33a level in plasma were increased in fish fed the plant-based diet, reversely, their expression in hepatocytes were inhibited with the increasing 25-HC in vitro. However, lxrα was not affected neither in vivo nor in vitro. Our results suggest that SREBP-2 and miR-33a synergistically enhance the expression of cholesterol synthetic genes but do not support the involvement of LXRα in the regulation of cholesterol elimination. As plasma level of miR-33a appears as potential indicator of cholesterol synthetic capacities, this study also highlights circulating miRNAs as promising noninvasive biomarker in aquaculture.
Collapse
Affiliation(s)
- Tengfei Zhu
- INRA, Univ Pau & Pays Adour, E2S UPPA, UMR 1419, Nutrition Métabolisme Aquaculture, Saint Pée sur Nivelle, France
| | - Geneviève Corraze
- INRA, Univ Pau & Pays Adour, E2S UPPA, UMR 1419, Nutrition Métabolisme Aquaculture, Saint Pée sur Nivelle, France
| | - Elisabeth Plagnes-Juan
- INRA, Univ Pau & Pays Adour, E2S UPPA, UMR 1419, Nutrition Métabolisme Aquaculture, Saint Pée sur Nivelle, France
| | - Sandrine Skiba-Cassy
- INRA, Univ Pau & Pays Adour, E2S UPPA, UMR 1419, Nutrition Métabolisme Aquaculture, Saint Pée sur Nivelle, France
- * E-mail:
| |
Collapse
|
12
|
Comparative effects of genistein and antibiotics on performance, meat oxidative stability, jejunal morphology, and ileal microbial community in broiler chicks. Anim Feed Sci Technol 2019. [DOI: 10.1016/j.anifeedsci.2019.03.005] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
13
|
de Camargo AC, Favero BT, Morzelle MC, Franchin M, Alvarez-Parrilla E, de la Rosa LA, Geraldi MV, Maróstica Júnior MR, Shahidi F, Schwember AR. Is Chickpea a Potential Substitute for Soybean? Phenolic Bioactives and Potential Health Benefits. Int J Mol Sci 2019; 20:E2644. [PMID: 31146372 PMCID: PMC6600242 DOI: 10.3390/ijms20112644] [Citation(s) in RCA: 58] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2019] [Revised: 05/18/2019] [Accepted: 05/22/2019] [Indexed: 01/07/2023] Open
Abstract
Legume seeds are rich sources of protein, fiber, and minerals. In addition, their phenolic compounds as secondary metabolites render health benefits beyond basic nutrition. Lowering apolipoprotein B secretion from HepG2 cells and decreasing the level of low-density lipoprotein (LDL)-cholesterol oxidation are mechanisms related to the prevention of cardiovascular diseases (CVD). Likewise, low-level chronic inflammation and related disorders of the immune system are clinical predictors of cardiovascular pathology. Furthermore, DNA-damage signaling and repair are crucial pathways to the etiology of human cancers. Along CVD and cancer, the prevalence of obesity and diabetes is constantly increasing. Screening the ability of polyphenols in inactivating digestive enzymes is a good option in pre-clinical studies. In addition, in vivo studies support the role of polyphenols in the prevention and/or management of diabetes and obesity. Soybean, a well-recognized source of phenolic isoflavones, exerts health benefits by decreasing oxidative stress and inflammation related to the above-mentioned chronic ailments. Similar to soybeans, chickpeas are good sources of nutrients and phenolic compounds, especially isoflavones. This review summarizes the potential of chickpea as a substitute for soybean in terms of health beneficial outcomes. Therefore, this contribution may guide the industry in manufacturing functional foods and/or ingredients by using an undervalued feedstock.
Collapse
Affiliation(s)
- Adriano Costa de Camargo
- Departamento de Ciencias Vegetales, Facultad de Agronomía e Ingeniería Forestal, Pontificia Universidad Católica de Chile, Casilla 306-22, Santiago, Chile.
| | - Bruno Trevenzoli Favero
- University of Copenhagen, Department of Plant and Environmental Sciences, 2630 Taastrup, Denmark.
| | - Maressa Caldeira Morzelle
- Department of Food and Nutrition, Faculty of Nutrition, Federal University of Mato Grosso, Fernando Correa Avenue, P.O. box 2367, Cuiabá, MT 78060-900, Brazil.
| | - Marcelo Franchin
- Department of Physiological Sciences, Piracicaba Dental School, University of Campinas, Piracicaba, SP 13414-903, Brazil.
| | - Emilio Alvarez-Parrilla
- Department of Chemical Biological Sciences, Universidad Autónoma de Ciudad Juárez, Anillo Envolvente del Pronaf y Estocolmo, s/n, Cd, Juárez, Chihuahua 32310, México.
| | - Laura A de la Rosa
- Department of Chemical Biological Sciences, Universidad Autónoma de Ciudad Juárez, Anillo Envolvente del Pronaf y Estocolmo, s/n, Cd, Juárez, Chihuahua 32310, México.
| | - Marina Vilar Geraldi
- Department of Food and Nutrition, University of Campinas-UNICAMP, Campinas, SP 13083-862, Brazil.
| | | | - Fereidoon Shahidi
- Department of Biochemistry, Memorial University of Newfoundland, St. John's, NL A1B 3X9, Canada.
| | - Andrés R Schwember
- Departamento de Ciencias Vegetales, Facultad de Agronomía e Ingeniería Forestal, Pontificia Universidad Católica de Chile, Casilla 306-22, Santiago, Chile.
| |
Collapse
|
14
|
|
15
|
Cerdó T, García-Santos JA, G Bermúdez M, Campoy C. The Role of Probiotics and Prebiotics in the Prevention and Treatment of Obesity. Nutrients 2019; 11:E635. [PMID: 30875987 PMCID: PMC6470608 DOI: 10.3390/nu11030635] [Citation(s) in RCA: 195] [Impact Index Per Article: 39.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2019] [Revised: 03/06/2019] [Accepted: 03/11/2019] [Indexed: 02/06/2023] Open
Abstract
Obesity is a global pandemic complex to treat due to its multifactorial pathogenesis-an unhealthy lifestyle, neuronal and hormonal mechanisms, and genetic and epigenetic factors are involved. Scientific evidence supports the idea that obesity and metabolic consequences are strongly related to changes in both the function and composition of gut microbiota, which exert an essential role in modulating energy metabolism. Modifications of gut microbiota composition have been associated with variations in body weight and body mass index. Lifestyle modifications remain as primary therapy for obesity and related metabolic disorders. New therapeutic strategies to treat/prevent obesity have been proposed, based on pre- and/or probiotic modulation of gut microbiota to mimic that found in healthy non-obese subjects. Based on human and animal studies, this review aimed to discuss mechanisms through which gut microbiota could act as a key modifier of obesity and related metabolic complications. Evidence from animal studies and human clinical trials suggesting potential beneficial effects of prebiotic and various probiotic strains on those physical, biochemical, and metabolic parameters related to obesity is presented. As a conclusion, a deeper knowledge about pre-/probiotic mechanisms of action, in combination with adequately powered, randomized controlled follow-up studies, will facilitate the clinical application and development of personalized healthcare strategies.
Collapse
Affiliation(s)
- Tomás Cerdó
- Department of Pediatrics, School of Medicine, University of Granada, Avda. Investigación 11, 18016 Granada, Spain.
- EURISTIKOS Excellence Centre for Paediatric Research, Biomedical Research Centre, University of Granada, 18016 Granada, Spain.
- Instituto de Investigación Biosanitaria ibs, GRANADA, Health Sciences Technological Park, 18012 Granada, Spain.
| | - José Antonio García-Santos
- Department of Pediatrics, School of Medicine, University of Granada, Avda. Investigación 11, 18016 Granada, Spain.
- EURISTIKOS Excellence Centre for Paediatric Research, Biomedical Research Centre, University of Granada, 18016 Granada, Spain.
- Instituto de Investigación Biosanitaria ibs, GRANADA, Health Sciences Technological Park, 18012 Granada, Spain.
| | - Mercedes G Bermúdez
- Department of Pediatrics, School of Medicine, University of Granada, Avda. Investigación 11, 18016 Granada, Spain.
- EURISTIKOS Excellence Centre for Paediatric Research, Biomedical Research Centre, University of Granada, 18016 Granada, Spain.
- Instituto de Investigación Biosanitaria ibs, GRANADA, Health Sciences Technological Park, 18012 Granada, Spain.
| | - Cristina Campoy
- Department of Pediatrics, School of Medicine, University of Granada, Avda. Investigación 11, 18016 Granada, Spain.
- EURISTIKOS Excellence Centre for Paediatric Research, Biomedical Research Centre, University of Granada, 18016 Granada, Spain.
- Instituto de Investigación Biosanitaria ibs, GRANADA, Health Sciences Technological Park, 18012 Granada, Spain.
- Spanish Network of Biomedical Research in Epidemiology and Public Health (CIBERESP), Granada's node, Carlos III Health Institute of Health Carlos III, 28029 Madrid, Spain.
| |
Collapse
|
16
|
Ejtahed HS, Angoorani P, Soroush AR, Atlasi R, Hasani-Ranjbar S, Mortazavian AM, Larijani B. Probiotics supplementation for the obesity management; A systematic review of animal studies and clinical trials. J Funct Foods 2019. [DOI: 10.1016/j.jff.2018.10.039] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
|
17
|
Repressive effects of red bean, Phaseolus angularis, extracts on obesity of mouse induced with high-fat diet via downregulation of adipocyte differentiation and modulating lipid metabolism. Food Sci Biotechnol 2018; 27:1811-1821. [PMID: 30483446 DOI: 10.1007/s10068-018-0421-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2018] [Revised: 06/07/2018] [Accepted: 06/21/2018] [Indexed: 10/28/2022] Open
Abstract
Obesity is generally caused by quantitative changes in adipocyte differentiation and fat metabolism. Only a few studies have been determined the effect of red beans extract on obesity and plasma cholesterol concentration. We have been studied the functional activities of red-bean extracts including anti-oxidative effect against DNA and cell damages. Histological study including micro CT analysis showed that the accumulation of fat in hepatocytes and intestines was significantly decreased in red bean extract treated group. In addition, plasma cholesterol and triglyceride levels were decreased in blood samples. In addition, it was confirmed that the red bean extract inhibited the expression of PPARγ, Fabp4 and RETN genes, which regulate total adipocyte differentiation and lipid metabolism. Red bean extract inhibits the expressions of transcription factors associated with adipocyte differentiation in a dose-dependent manner, thereby inhibiting fat accumulation and decreasing blood lipid levels in obese mice induced by high fat diet.
Collapse
|
18
|
Yadav R, Dey DK, Vij R, Meena S, Kapila R, Kapila S. Evaluation of anti-diabetic attributes of Lactobacillus rhamnosus MTCC: 5957, Lactobacillus rhamnosus MTCC: 5897 and Lactobacillus fermentum MTCC: 5898 in streptozotocin induced diabetic rats. Microb Pathog 2018; 125:454-462. [PMID: 30316007 DOI: 10.1016/j.micpath.2018.10.015] [Citation(s) in RCA: 42] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2018] [Revised: 10/09/2018] [Accepted: 10/10/2018] [Indexed: 12/11/2022]
Abstract
Interest in probiotics has grown significantly in the last decades due to their reported nutritional and health promoting effects. The aim of this study is to investigate the therapeutic potential of probiotic fermented milk (PFM) prepared using three different probiotic strains i.e. Lactobacillus rhamnosus MTCC: 5957, Lactobacillus rhamnosus MTCC: 5897 and Lactobacillus fermentum MTCC: 5898; independently or in combination, for treating streptozotocin induced type-1 diabetes in male Wistar rats. Diabetic rats were fed with PFM preparations for 6 weeks and then analyzed for the various biochemical parameters associated. The results indicated that feeding of PFM significantly improved glucose metabolism (fasting blood glucose, glycated hemoglobin, serum insulin), serum inflammation status (tumor necrosis factor-α, and serum interleukin-6), oxidative stress (thiobarbituric acid reactive substance, catalase, superoxide dismutase and glutathione peroxidase activities in liver and kidney), serum lipid profile (total cholesterol, low density lipoprotein-cholesterol, very low density lipoprotein-cholesterol, triglycerides) in diabetic rats. In addition, feeding of PFM has significantly reduced mRNA expression of pepck and g6pase genes that code the key enzymes of gluconeogenesis pathway. The results of this study showed that daily consumption of PFM can be effective in combating of type -1 diabetes and its complications.
Collapse
Affiliation(s)
- Radha Yadav
- Animal Biochemistry Division, ICAR-National Dairy Research Institute, Karnal, Haryana, 132001, India.
| | - Debpriyo Kumar Dey
- Animal Biochemistry Division, ICAR-National Dairy Research Institute, Karnal, Haryana, 132001, India.
| | - Rishika Vij
- Animal Biochemistry Division, ICAR-National Dairy Research Institute, Karnal, Haryana, 132001, India.
| | - Sunita Meena
- Animal Biochemistry Division, ICAR-National Dairy Research Institute, Karnal, Haryana, 132001, India.
| | - Rajeev Kapila
- Animal Biochemistry Division, ICAR-National Dairy Research Institute, Karnal, Haryana, 132001, India.
| | - Suman Kapila
- Animal Biochemistry Division, ICAR-National Dairy Research Institute, Karnal, Haryana, 132001, India.
| |
Collapse
|
19
|
Merlanti R, Lucatello L, De Jesus Inacio L, Pastore MR, Laverda S, Capolongo F. Isoflavones quantification in rainbow trout muscle by QuEChERS tecnique and liquid chromatography coupled with mass spectrometry. J Food Compost Anal 2018. [DOI: 10.1016/j.jfca.2018.04.009] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
20
|
Min M, Bunt CR, Mason SL, Hussain MA. Non-dairy probiotic food products: An emerging group of functional foods. Crit Rev Food Sci Nutr 2018; 59:2626-2641. [DOI: 10.1080/10408398.2018.1462760] [Citation(s) in RCA: 69] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Affiliation(s)
- Min Min
- The Department of Wine, Food and Molecular Biosciences, Lincoln University, Lincoln, Canterbury, New Zealand
| | - Craig R. Bunt
- The Department of Agriculture Sciences, Lincoln University, Lincoln, Canterbury, New Zealand
| | - Susan L. Mason
- The Department of Wine, Food and Molecular Biosciences, Lincoln University, Lincoln, Canterbury, New Zealand
| | - Malik A. Hussain
- The Department of Wine, Food and Molecular Biosciences, Lincoln University, Lincoln, Canterbury, New Zealand
| |
Collapse
|
21
|
Effect of Different Lebanese Probiotics on the Growth and Some Biochemical Parameters of the Experimental Rats. JOURNAL OF PURE AND APPLIED MICROBIOLOGY 2018. [DOI: 10.22207/jpam.12.1.47] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
|
22
|
Clark JL, Taylor CG, Zahradka P. Rebelling against the (Insulin) Resistance: A Review of the Proposed Insulin-Sensitizing Actions of Soybeans, Chickpeas, and Their Bioactive Compounds. Nutrients 2018; 10:E434. [PMID: 29601521 PMCID: PMC5946219 DOI: 10.3390/nu10040434] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2018] [Revised: 03/25/2018] [Accepted: 03/28/2018] [Indexed: 12/24/2022] Open
Abstract
Insulin resistance is a major risk factor for diseases such as type 2 diabetes and metabolic syndrome. Current methods for management of insulin resistance include pharmacological therapies and lifestyle modifications. Several clinical studies have shown that leguminous plants such as soybeans and pulses (dried beans, dried peas, chickpeas, lentils) are able to reduce insulin resistance and related type 2 diabetes parameters. However, to date, no one has summarized the evidence supporting a mechanism of action for soybeans and pulses that explains their ability to lower insulin resistance. While it is commonly assumed that the biological activities of soybeans and pulses are due to their antioxidant activities, these bioactive compounds may operate independent of their antioxidant properties and, thus, their ability to potentially improve insulin sensitivity via alternative mechanisms needs to be acknowledged. Based on published studies using in vivo and in vitro models representing insulin resistant states, the proposed mechanisms of action for insulin-sensitizing actions of soybeans, chickpeas, and their bioactive compounds include increasing glucose transporter-4 levels, inhibiting adipogenesis by down-regulating peroxisome proliferator-activated receptor-γ, reducing adiposity, positively affecting adipokines, and increasing short-chain fatty acid-producing bacteria in the gut. Therefore, this review will discuss the current evidence surrounding the proposed mechanisms of action for soybeans and certain pulses, and their bioactive compounds, to effectively reduce insulin resistance.
Collapse
Affiliation(s)
- Jaime L Clark
- Canadian Centre for Agri-Food Research in Health and Medicine, St. Boniface Hospital Albrechtsen Research Centre, Winnipeg, MB R2H 2A6, Canada.
- Department of Food and Human Nutritional Sciences, University of Manitoba, Winnipeg, MB R3T 2N2, Canada.
| | - Carla G Taylor
- Canadian Centre for Agri-Food Research in Health and Medicine, St. Boniface Hospital Albrechtsen Research Centre, Winnipeg, MB R2H 2A6, Canada.
- Department of Food and Human Nutritional Sciences, University of Manitoba, Winnipeg, MB R3T 2N2, Canada.
- Department of Physiology and Pathophysiology, University of Manitoba, Winnipeg, MB R3E 0T5, Canada.
| | - Peter Zahradka
- Canadian Centre for Agri-Food Research in Health and Medicine, St. Boniface Hospital Albrechtsen Research Centre, Winnipeg, MB R2H 2A6, Canada.
- Department of Food and Human Nutritional Sciences, University of Manitoba, Winnipeg, MB R3T 2N2, Canada.
- Department of Physiology and Pathophysiology, University of Manitoba, Winnipeg, MB R3E 0T5, Canada.
| |
Collapse
|
23
|
Wang S, Wang Y, Pan MH, Ho CT. Anti-obesity molecular mechanism of soy isoflavones: weaving the way to new therapeutic routes. Food Funct 2017; 8:3831-3846. [PMID: 29043346 DOI: 10.1039/c7fo01094j] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Obesity is ringing alarm bells globally. Advances in food science and nutrition research have been devoted to identifying food components that exert anti-obesity effects, as well as investigating the molecular mechanisms by which they modulate the progression of obesity. Soy foods have attracted much interest as high-protein components of the human diet and as unique sources of isoflavones. As they have similar chemical structures to endogenous estrogens, isoflavones are believed to interact with intracellular estrogen receptors, which results in reductions in the accumulation of lipids and the distribution of adipose tissue. Both in vitro and in vivo studies have revealed other signaling pathways in which isoflavones are involved in the inhibition of adipogenesis and lipogenesis by interacting with various transcription factors and upstream signaling molecules. Although the biological mechanisms that cause the biphasic effects of isoflavones and various controversial results remain unknown, it is noteworthy that isoflavones exhibit pleiotropic effects in the human body to regulate metabolism and balance, which may potentially prevent and treat obesity.
Collapse
Affiliation(s)
- Siyu Wang
- Department of Food Science, Rutgers University, New Brunswick, NJ 08901, USA.
| | | | | | | |
Collapse
|
24
|
Abstract
Pheochromocytomas are rare endocrine tumors that can have a significant impact on a variety of organ systems, including the cardiovascular system. Although the pathophysiology is not completely understood, pheochromocytomas exert their effects through high levels of catecholamines, mainly epinephrine and norepinephrine, which stimulate adrenergic receptors, including those within the cardiovascular system. Although the most common cardiovascular manifestation is hypertension, patients with pheochromocytoma can present with arrhythmia, hypotension, shock, myocardial ischemia, cardiomyopathy, aortic dissection, and peripheral ischemia. The medical management of the cardiovascular effects of pheochromocytoma is via blockade of adrenergic receptors, usually through the use of alpha blockers, with the addition of beta blockers if needed. However, only surgical resection of the pheochromocytoma is potentially curative, and this tumor requires unique management perioperatively. Because of the variability of presentation and the significant morbidity and mortality of patients with an undiagnosed pheochromocytoma, this entity should not be overlooked in the evaluation of patients with a wide variety of cardiovascular disorders.
Collapse
|
25
|
Jia L, Li D, Feng N, Shamoon M, Sun Z, Ding L, Zhang H, Chen W, Sun J, Chen YQ. Anti-diabetic Effects of Clostridium butyricum CGMCC0313.1 through Promoting the Growth of Gut Butyrate-producing Bacteria in Type 2 Diabetic Mice. Sci Rep 2017; 7:7046. [PMID: 28765642 PMCID: PMC5539151 DOI: 10.1038/s41598-017-07335-0] [Citation(s) in RCA: 108] [Impact Index Per Article: 15.4] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2017] [Accepted: 06/28/2017] [Indexed: 12/11/2022] Open
Abstract
Patients with type 2 diabetes (T2D) have decreased butyrate-producing bacteria. We hypothesized that supplementation with butyrate-producing bacteria may exert beneficial effects on T2D. The current study investigated the effects of well-characterized butyrate-producing bacteria Clostridium butyricum CGMCC0313.1 (CB0313.1) on hyperglycemia and associated metabolic dysfunction in two diabetic mouse models. CB0313.1 was administered daily by oral gavage to leptindb/db mice for 5 weeks starting from 3 weeks of age, and to HF diabetic mice induced by high fat diet (HFD) plus streptozotocin (STZ) in C57BL/6J mice for 13 weeks starting from 4 weeks of age. CB0313.1 improved diabetic markers (fasting glucose, glucose tolerance, insulin tolerance, GLP-1 and insulin secretion), and decreased blood lipids and inflammatory tone. Furthermore, CB0313.1 reversed hypohepatias and reduced glucose output. We also found that CB0313.1 modulated gut microbiota composition, characterized by a decreased ratio of Firmicutes to Bacteroidetes, reduced Allobaculum bacteria that were abundant in HF diabetic mice and increased butyrate-producing bacteria. Changes in gut microbiota following CB0313.1 treatment were associated with enhanced peroxisome proliferator–activated receptor-γ (PPARγ), insulin signaling molecules and mitochondrial function markers. Together, our study suggests that CB0313.1 may act as a beneficial probiotic for the prevention and treatment of hyperglycemia and associated metabolic dysfunction.
Collapse
Affiliation(s)
- Lingling Jia
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Jiangnan University, Wuxi, 214122, P. R. China.,Wuxi School of Medicine, Jiangnan University, Wuxi, 214122, Jiangsu, P. R. China
| | - Dongyao Li
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Jiangnan University, Wuxi, 214122, P. R. China
| | - Ninghan Feng
- Wuxi School of Medicine, Jiangnan University, Wuxi, 214122, Jiangsu, P. R. China.,Wuxi No. 2 Hospital, Jiangsu, P. R. China
| | - Muhammad Shamoon
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Jiangnan University, Wuxi, 214122, P. R. China
| | - Zhenghua Sun
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Jiangnan University, Wuxi, 214122, P. R. China
| | - Lei Ding
- Department of Biology and Chemistry, University Bremen. Leobener Str., NW 2, 28359, Bremen, Germany
| | - Hao Zhang
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Jiangnan University, Wuxi, 214122, P. R. China
| | - Wei Chen
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Jiangnan University, Wuxi, 214122, P. R. China
| | - Jia Sun
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Jiangnan University, Wuxi, 214122, P. R. China. .,Wuxi School of Medicine, Jiangnan University, Wuxi, 214122, Jiangsu, P. R. China.
| | - Yong Q Chen
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Jiangnan University, Wuxi, 214122, P. R. China. .,Wuxi School of Medicine, Jiangnan University, Wuxi, 214122, Jiangsu, P. R. China. .,Department of Cancer Biology, Wake Forest School of Medicine, Winston-Salem, NC, 27157, USA.
| |
Collapse
|
26
|
Geng T, Stojšin D, Liu K, Schaalje B, Postin C, Ward J, Wang Y, Liu ZL, Li B, Glenn K. Natural Variability of Allergen Levels in Conventional Soybeans: Assessing Variation across North and South America from Five Production Years. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2017; 65:463-472. [PMID: 27997188 DOI: 10.1021/acs.jafc.6b04542] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
Soybean (Glycine max L. Merrill) is one of eight major allergenic foods with endogenous proteins identified as allergens. To better understand the natural variability of five soybean allergens (Gly m 4, Gly m 5, Gly m 6, Gly m Bd 28k, and Gly m Bd 30k), validated enzyme-linked immunosorbent assays (ELISAs) were developed. These ELISAs measured allergens in 604 soybean samples collected from locations in North and South America over five growing seasons (2009-2013/2014) and including 37 conventional varieties. Levels of these five allergens varied 5-19-fold. Multivariate statistical analyses and pairwise comparisons show that environmental factors have a larger effect on allergen levels than genetic factors. Therefore, from year to year, consumers are exposed to highly variable levels of allergens in soy-based foods, bringing into question whether quantitative comparison of endogenous allergen levels of new genetically modified soybean adds meaningful information to their overall safety risk assessment.
Collapse
Affiliation(s)
- Tao Geng
- Monsanto Company, 800 North Lindbergh Boulevard, St. Louis, Missouri 63167, United States
| | - Duška Stojšin
- Monsanto Company, 800 North Lindbergh Boulevard, St. Louis, Missouri 63167, United States
| | - Kang Liu
- Monsanto Company, 800 North Lindbergh Boulevard, St. Louis, Missouri 63167, United States
| | - Bruce Schaalje
- Monsanto Company, 800 North Lindbergh Boulevard, St. Louis, Missouri 63167, United States
| | - Cody Postin
- Monsanto Company, 800 North Lindbergh Boulevard, St. Louis, Missouri 63167, United States
| | - Jason Ward
- Monsanto Company, 800 North Lindbergh Boulevard, St. Louis, Missouri 63167, United States
| | - Yongcheng Wang
- Monsanto Company, 800 North Lindbergh Boulevard, St. Louis, Missouri 63167, United States
| | - Zi Lucy Liu
- Monsanto Company, 800 North Lindbergh Boulevard, St. Louis, Missouri 63167, United States
| | - Bin Li
- Monsanto Company, 800 North Lindbergh Boulevard, St. Louis, Missouri 63167, United States
| | - Kevin Glenn
- Monsanto Company, 800 North Lindbergh Boulevard, St. Louis, Missouri 63167, United States
| |
Collapse
|
27
|
Mazidi M, Rezaie P, Ferns GA, Vatanparast H. Impact of Probiotic Administration on Serum C-Reactive Protein Concentrations: Systematic Review and Meta-Analysis of Randomized Control Trials. Nutrients 2017; 9:E20. [PMID: 28054937 PMCID: PMC5295064 DOI: 10.3390/nu9010020] [Citation(s) in RCA: 61] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2016] [Revised: 10/15/2016] [Accepted: 12/15/2016] [Indexed: 12/24/2022] Open
Abstract
We conducted this systematic review and meta-analysis of prospective studies to determine the effect of probiotic administration on serum C-reactive protein (CRP) concentrations. We searched PubMed-Medline, Web of Science, the Cochrane, and Google Scholar databases (until May 2016) to identify prospective studies evaluating the impact of probiotic administration on CRP. We used a random effects models and generic inverse variance methods to synthesize quantitative data, followed by a leave-one-out method for sensitivity analysis. The systematic review registration number was: CRD42016039457. From a total of 425 entries identified via searches, 20 studies were included in the final analysis. The meta-analysis indicated a significant reduction in serum CRP following probiotic administration with a weighted mean difference (WMD) of -1.35 mg/L, (95% confidence interval (CI) -2.15 to -0.55, I² 65.1%). The WMDs for interleukin 10 (IL10) was -1.65 pg/dL, (95% CI -3.45 to 0.14, I² 3.1%), and -0.45 pg/mL, (95% CI -1.38 to 0.48, I² 10.2%) for tumor necrosis factor alpha (TNF-α). These findings were robust in sensitivity analyses. This meta-analysis suggests that probiotic administration may significantly reduce serum CRP while having no significant effect on serum IL10 and TNF-α.
Collapse
Affiliation(s)
- Mohsen Mazidi
- Key State Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China.
- Institute of Genetics and Developmental Biology, International College, University of Chinese Academy of Science, Beijing 100101, China.
| | - Peyman Rezaie
- Biochemistry and Nutrition Research Centre, School of Medicine, Mashhad University of Medical Science, Mashhad 42536, Iran.
| | - Gordon A Ferns
- Division of Medical Education, Brighton and Sussex Medical School, Rm 342, Mayfield House, University of Brighton, Brighton BN1 9PH, UK.
| | - Hassan Vatanparast
- College of Pharmacy and Nutrition, University of Saskatchewan, Health Sciences E-Wing, 104 Clinic Place, Saskatoon, SK S7N 2Z4, Canada.
| |
Collapse
|
28
|
Sosić-Jurjević B, Filipović B, Ajdzanović V, Brkić D, Ristić N, Stojanoski MM, Nestorović N, Trifunović S, Sekulić M. A BRIEF COMMUNICATION. Exp Biol Med (Maywood) 2016; 232:1222-7. [PMID: 17895530 DOI: 10.3181/0703-bc-82] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Nutritional supplements containing soybean phytoestrogens, the isoflavones genistein (G) and daidzein (D), are increasingly used as alternative therapy for osteoporosis, cancer, and cardiovascular and other diseases with a frequency that increases with advancing age. In this study we examined the effects of subcutaneous administration of either G or D on serum lipid levels in orchidectomized (Orx) and intact (IA) middle-aged male rats, which are experimental models of andropause. Sixteen-month-old Wistar rats were treated with 10 mg/kg and 30mg/kg of either G or D. The control groups received testosterone, estradiol, or vehicle for 3 weeks, after which the total serum cholesterol (TC), low-density lipoprotein (LDL-C), high-density lipoprotein (HDL-C), and total triglycerides (TT) were measured. Compared with the matching vehicle-treated controls, the higher doses of G and D and testosterone treatment significantly ( P < 0.05) lowered the TC and lipoprotein cholesterol levels. The greatest effect was observed regarding LDL-C in both Orx and IA males after G and D treatments, in which LDL-C decreased by more than 30%. The lower isoflavone doses induced a significant cholesterol-lowering effect ( P < 0.05) only in the Orx group. Like the estradiol treatment, the higher doses of G and D increased the TT levels in both rat models by more than 50% ( P < 0.05). The lower doses of isoflavones increased TT only in the Orx group. In male middle-aged rats, injections of higher doses of G and D decreased the serum cholesterol levels, as did testosterone injection, and brought about an increase in serum triglycerides similar to that observed after estradiol treatment.
Collapse
|
29
|
Kumari S, Chang SKC. Effect of Cooking on Isoflavones, Phenolic Acids, and Antioxidant Activity in Sprouts of Prosoy Soybean (Glycine max). J Food Sci 2016; 81:C1679-91. [PMID: 27258930 DOI: 10.1111/1750-3841.13351] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2016] [Revised: 04/11/2016] [Accepted: 04/25/2016] [Indexed: 11/28/2022]
Abstract
Soy sprouts possess health benefits and is required to be cooked before consumption. The effects of cooking on the phenolic components and antioxidant properties of soy sprouts with different germination days were investigated. A food-grade cultivar Prosoy with a high protein content was germinated for 1, 2, 3, 5, and 7 d and cooked till palatable for 20, 20, 5, 5, and 7 min, respectively. Total phenolic content (TPC), total flavonoids content (TFC), condensed tannins content (CTC), individual phenolic acids, isoflavones, DPPH, ferric-reducing antioxidant power (FRAP), and oxygen radical absorbance capacity (ORAC) of raw and cooked sprouts were measured. Cooking caused significant losses in phenolic content and antioxidant activities, and maximum loss was on day 3 > 5 > 7, including TPC (32%, 23%, and 15%), TFC (50%, 44%, and 20%), CTC (73%, 47%, and 12%), DPPH (31%, 15%, and 5%), FRAP (34%, 25%, and 1%), and ORAC (34%, 22%, 32%), respectively. Cooking caused significant losses in most individual phenolic acid, benzoic group, cinnamic group, total phenolic composition, individual isoflavones, and total isoflavones. The losses of phenolic acids such as gallic, protocatechuic, hydroxybenzoic, syringic, chlorogenic, or sinapic acids during cooking were not compensated by the increases in trihydroxybenzoic, vanillic or coumaric acids on certain days of germination. Cooking caused minimal changes in phenolic acid composition of day 1 and 2 sprouts compared to 3, 5, and 7 d sprouts.
Collapse
Affiliation(s)
- Shweta Kumari
- Dept. of Food Science, Nutrition and Health Promotion, Mississippi State Univ, Miss., 39762, U.S.A
| | - Sam K C Chang
- Dept. of Food Science, Nutrition and Health Promotion, Mississippi State Univ, Miss., 39762, U.S.A
| |
Collapse
|
30
|
Mazidi M, Rezaie P, Kengne AP, Mobarhan MG, Ferns GA. Gut microbiome and metabolic syndrome. Diabetes Metab Syndr 2016; 10:S150-S157. [PMID: 26916014 DOI: 10.1016/j.dsx.2016.01.024] [Citation(s) in RCA: 115] [Impact Index Per Article: 14.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/30/2015] [Accepted: 01/09/2016] [Indexed: 02/06/2023]
Abstract
The gut microbiome contributes approximately 2kg of the whole body weight, and recent studies suggest that gut microbiota has a profound effect on human metabolism, potentially contributing to several features of the metabolic syndrome. Metabolic syndrome is defined by a clustering of metabolic disorders that include central adiposity with visceral fat accumulation, dyslipidemia, insulin resistance, dysglycemia and non-optimal blood pressure levels. Metabolic syndrome is associated with an increased risk of cardiovascular diseases and type 2 diabetes. It is estimated that around 20-25 percent of the world's adult population has metabolic syndrome. In this manuscript, we have reviewed the existing data linking gut microbiome with metabolic syndrome. Existing evidence from studies both in animals and humans support a link between gut microbiome and various components of metabolic syndrome. Possible pathways include involvement with energy homeostasis and metabolic processes, modulation of inflammatory signaling pathways, interferences with the immune system, and interference with the renin-angiotensin system. Modification of gut microbiota via prebiotics, probiotics or other dietary interventions has provided evidence to support a possible beneficial effect of interventions targeting gut microbiota modulation to treat components or complications of metabolic syndrome.
Collapse
Affiliation(s)
- Mohsen Mazidi
- Key State Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Chaoyang, Beijing, China; Institute of Genetics and Developmental Biology, International College, University of Chinese Academy of Science (IC-UCAS), West Beichen Road, Chaoyang, China
| | - Peyman Rezaie
- Biochemistry and Nutrition Research Center, School of Medicine, Mashhad University of Medical Science, Mashhad, Iran
| | - Andre Pascal Kengne
- Non-Communicable Disease Research Unit, South African Medical Research Council and University of Cape Town, Cape Town, South Africa
| | - Majid Ghayour Mobarhan
- Biochemistry and Nutrition Research Center, School of Medicine, Mashhad University of Medical Science, Mashhad, Iran; Cardiovascular Research Center, Mashhad University of Medical Sciences (MUMS), Mashhad, Iran.
| | - Gordon A Ferns
- Brighton & Sussex Medical School, Division of Medical Education, Rm 342, Mayfield House, University of Brighton, BN1 9PH, UK
| |
Collapse
|
31
|
Kumar V, Rani A, Rawal R, Mourya V. Marker assisted accelerated introgression of null allele of kunitz trypsin inhibitor in soybean. BREEDING SCIENCE 2015; 65:447-452. [PMID: 26719748 PMCID: PMC4671706 DOI: 10.1270/jsbbs.65.447] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/31/2015] [Accepted: 08/10/2015] [Indexed: 05/29/2023]
Abstract
Development of kunitz trypsin inhibitor (KTI)-free soybean is crucial for soy-food industry as the heat inactivation employed to inactivate the anti-nutritional factor in regular soybean incurs extra cost and affects protein solubility. In the presented work, a null allele of KTI from PI542044 was introgressed into cultivar 'JS97-52' (recurrent parent) through marker assisted backcrossing. Foreground selection in BC1F2, BC2F2 and BC3F2 was carried out using the null allele-specific marker in tandem with SSR marker Satt228, tightly linked with a trypsin inhibitor Ti locus. Background selection in null allele-carrying plants through 106 polymorphic SSR markers across the genome led to the identification of 9 KTI-free lines exhibiting 98.6% average recurrent parent genome content (RPGC) after three backcrosses, which otherwise had required 5-6 backcrosses through conventional method. Introgressed lines (ILs) were free from KTI and yielded at par with recurrent parent. Reduction of 68.8-83.5% in trypsin inhibitor content (TIC) in ILs compared to the recurrent parent ('JS97-52') was attributed to the elimination of KTI.
Collapse
|
32
|
Rababah TM, Awaisheh SS, Al-Tamimi HJ, Brewer S. The hypocholesterolemic and hormone modulation effects of isoflavones alone or co-fermented with probiotic bacteria in hypercholesterolemic rats model. Int J Food Sci Nutr 2015; 66:546-52. [DOI: 10.3109/09637486.2015.1028908] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|
33
|
Qiao Y, Sun J, Xia S, Li L, Li Y, Wang P, Shi Y, Le G. Effects of different Lactobacillus reuteri on inflammatory and fat storage in high-fat diet-induced obesity mice model. J Funct Foods 2015. [DOI: 10.1016/j.jff.2015.02.013] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
|
34
|
Chen P, Zhang Q, Dang H, Liu X, Tian F, Zhao J, Chen Y, Zhang H, Chen W. Oral administration of Lactobacillus rhamnosus CCFM0528 improves glucose tolerance and cytokine secretion in high-fat-fed, streptozotocin-induced type 2 diabetic mice. J Funct Foods 2014. [DOI: 10.1016/j.jff.2014.06.014] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
|
35
|
López-Gutiérrez N, Romero-González R, Garrido Frenich A, Martínez Vidal JL. Identification and quantification of the main isoflavones and other phytochemicals in soy based nutraceutical products by liquid chromatography-orbitrap high resolution mass spectrometry. J Chromatogr A 2014; 1348:125-36. [PMID: 24835762 DOI: 10.1016/j.chroma.2014.04.090] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2014] [Revised: 04/11/2014] [Accepted: 04/28/2014] [Indexed: 11/24/2022]
Abstract
The specific phytochemicals composition of soy nutritional supplements is usually not labelled. Hence, 12 dietary supplements were analyzed in order to detect and identify the main phytochemicals present in these samples, using a database containing 60 compounds. Ultra-high performance liquid chromatography coupled to single-stage Orbitrap high resolution mass spectrometry (UHPLC-Orbitrap-MS) has been used. Two consecutive extractions, using as extraction solvent a mixture of methanol:water (80:20, v/v), were employed, followed by two dilutions (10 or 100 times depending on the concentration of the components in the sample) with a mixture of an aqueous solution of ammonium acetate 30mM:methanol (50:50, v/v). The method was validated, obtaining adequate recovery and precision values. Limits of detection (LODs) and quantification (LOQs) were calculated, ranging from 2 to 150μgL(-1). Isoflavones were the predominant components present in the analyzed supplements with values higher than 93% of the total amount of phytochemicals in all cases. The aglycones (genistein, daidzein, glycitein and biochanin A) as well as their three conjugated forms, β-glucosides (genistin, daizin and glycitin) were detected and quantified, being daidzein the isoflavone detected at higher concentration in 8 out of 12 samples reported, with values ranging from 684 to 35,970mgkg(-1), whereas biochanin A was detected at very low concentrations, ranging from 18 to 50mgkg(-1). Moreover, other phytochemicals as flavones, flavonols, flavanones and phenolic acids were also detected and quantified.
Collapse
Affiliation(s)
- Noelia López-Gutiérrez
- Department of Chemistry and Physics (Analytical Chemistry Area), Research Centre for Agricultural and Food Biotechnology (BITAL), University of Almería, Agrifood Campus of International Excellence, ceiA3, Carretera de Sacramento s/n, E-04120 Almería, Spain
| | - Roberto Romero-González
- Department of Chemistry and Physics (Analytical Chemistry Area), Research Centre for Agricultural and Food Biotechnology (BITAL), University of Almería, Agrifood Campus of International Excellence, ceiA3, Carretera de Sacramento s/n, E-04120 Almería, Spain
| | - Antonia Garrido Frenich
- Department of Chemistry and Physics (Analytical Chemistry Area), Research Centre for Agricultural and Food Biotechnology (BITAL), University of Almería, Agrifood Campus of International Excellence, ceiA3, Carretera de Sacramento s/n, E-04120 Almería, Spain.
| | - José Luis Martínez Vidal
- Department of Chemistry and Physics (Analytical Chemistry Area), Research Centre for Agricultural and Food Biotechnology (BITAL), University of Almería, Agrifood Campus of International Excellence, ceiA3, Carretera de Sacramento s/n, E-04120 Almería, Spain
| |
Collapse
|
36
|
Ebel B, Lemetais G, Beney L, Cachon R, Sokol H, Langella P, Gervais P. Impact of probiotics on risk factors for cardiovascular diseases. A review. Crit Rev Food Sci Nutr 2014; 54:175-89. [PMID: 24188267 DOI: 10.1080/10408398.2011.579361] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Probiotic microorganisms have historically been used to rebalance disturbed intestinal microbiota and to diminish gastrointestinal disorders, such as diarrhea or inflammatory bowel diseases (e.g., Crohn's disease and ulcerative colitis). Recent studies explore the potential for expanded uses of probiotics on medical disorders that increase the risk of developing cardiovascular diseases and diabetes, such as obesity, hypercholesterolemia, arterial hypertension, and metabolic disturbances such as hyperhomocysteinemia and oxidative stress. This review aims at summarizing the proposed molecular and cellular mechanisms involved in probiotic-host interactions and to identify the nature of the resulting beneficial effects. Specific probiotic strains can act by modulating immune response, by producing particular molecules or releasing biopeptides, and by modulating nervous system activity. To date, the majority of studies have been conducted in animal models. New investigations on the related mechanisms in humans need to be carried out to better enable targeted and effective use of the broad variety of probiotic strains.
Collapse
Affiliation(s)
- Bruno Ebel
- a Unité Procédés Alimentaires et Microbiologiques, UMR A 02.102, AgroSup Dijon/Université de Bourgogne , 1 esplanade Erasme , Dijon , France
| | | | | | | | | | | | | |
Collapse
|
37
|
Peluso I, Romanelli L, Palmery M. Interactions between prebiotics, probiotics, polyunsaturated fatty acids and polyphenols: diet or supplementation for metabolic syndrome prevention? Int J Food Sci Nutr 2014; 65:259-67. [PMID: 24467635 DOI: 10.3109/09637486.2014.880670] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
The metabolic syndrome can be prevented by the Mediterranean diet, characterized by fiber, omega-3 polyunsaturated fatty acids and polyphenols. However, the composition of the Mediterranean diet, which can be viewed as a natural multiple supplement, is poorly controlled, and its beneficial effects poorly predictable. The metabolic syndrome is associated with intestinal dysbiosis and the gut microbioma seems to be the main target and player in the interactions occurring between probiotics, prebiotics, omega 3 polyunsaturated fatty acids, and polyphenols. From the reviewed evidence, it is reasonable to manage growth and metabolism of gut microflora with specific prebiotics and polyphenols. Even though the healthy properties of functional foods and nutraceuticals still need to be fully elucidated, available data suggest that well-designed supplements, containing the better ratio of omega-3 polyunsaturated fatty acids and antioxidants, specific probiotic strains, and selected polyphenols and prebiotics, could be useful in metabolic syndrome prevention and treatment.
Collapse
Affiliation(s)
- Ilaria Peluso
- Department of Physiology and Pharmacology "V. Erspamer", "Sapienza" University of Rome , Rome , Italy
| | | | | |
Collapse
|
38
|
Ghoneim MA, Moselhy SS. Antioxidant status and hormonal profile reflected by experimental feeding of probiotics. Toxicol Ind Health 2013; 32:741-50. [PMID: 24258289 DOI: 10.1177/0748233713506768] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Excessive production of free radicals can result in tissue damage, which mainly involves generation of hydroxyl radical and other oxidants. Such free radical-induced cell damage appears to play a major role in the pathogenesis of many diseases. Probiotics have been used therapeutically to modulate immunity, improve digestive processes, lower cholesterol, treat rheumatoid arthritis, and prevent cancer. The proposed research was designed to evaluate the changes in oxidative and antioxidative profile in addition to metabolic-related hormones of living animal model, which may generally affect the health status. Two groups of rabbits (10 animals each) were allocated in hygienic cages of controlled animal house. Control group received standard diet, and the other group received the same diet containing one probiotic for 30 days. Lactate dehydrogenase (LDH) activity in leukocytes, blood glucose, reduced glutathione (GSH), superoxide dismutase (SOD), and glutathione peroxidase (GSH-Px) were estimated in different tissues. Malondialdehyde (MDA) and total proteins were also determined in different tissues. Certain hormones related to metabolism and growth were also evaluated. Leukocytic LDH activity was significantly increased along with nonsignificant increase of blood glucose in probiotics-fed animals. Results showed significant decreases in the levels of triiodothyronine and thyroid-stimulating hormone but showed significant elevations in thyroxine, insulin, growth hormone, and testosterone levels in animals fed with probiotics. Total proteins content was highly significantly elevated in liver, kidneys, and muscles of probiotic-administered animals. Microsomal GSH level was significantly decreased only in skeletal muscles of probiotic-treated animals. MDA was significantly lowered in animal tissues fed with probiotics. GSH-Px activity was elevated in hepatic and muscular microsomes of probiotic-supplemented animals while it was nonsignificantly increased in renal microsomes. Microsomal SOD activity was elevated in liver, kidneys, and skeletal muscles of probiotics-administrated animals. It is concluded that supplementation of probiotic may enhance antioxidant efficacy and scavenge free radicals and thus may be used as a preventive measure for protection against free radicals-induced disorders.
Collapse
Affiliation(s)
- Magdy A Ghoneim
- Department of Biochemistry, Faculty of Science, King Abdulaziz University, Jeddah, Kingdom of Saudi Arabia Faculty of Veterinary Medicine, Cairo University, Giza, Egypt
| | - Said S Moselhy
- Department of Biochemistry, Faculty of Science, King Abdulaziz University, Jeddah, Kingdom of Saudi Arabia Faculty of Science, Ain Shams University, Cairo, Egypt
| |
Collapse
|
39
|
Soymilk fermented with Lactobacillus rhamnosus CRL981 ameliorates hyperglycemia, lipid profiles and increases antioxidant enzyme activities in diabetic mice. J Funct Foods 2013. [DOI: 10.1016/j.jff.2013.09.005] [Citation(s) in RCA: 50] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
|
40
|
Legette LL, Luna AYM, Reed RL, Miranda CL, Bobe G, Proteau RR, Stevens JF. Xanthohumol lowers body weight and fasting plasma glucose in obese male Zucker fa/fa rats. PHYTOCHEMISTRY 2013; 91:236-241. [PMID: 22640929 DOI: 10.1016/j.phytochem.2012.04.018] [Citation(s) in RCA: 71] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/08/2011] [Revised: 04/04/2012] [Accepted: 04/30/2012] [Indexed: 06/01/2023]
Abstract
Obesity contributes to increased risk for several chronic diseases including cardiovascular disease and type 2 diabetes. Xanthohumol, a prenylated flavonoid from hops (Humulus lupulus), was tested for efficacy on biomarkers of metabolic syndrome in 4 week old Zucker fa/fa rats, a rodent model of obesity. Rats received daily oral doses of xanthohumol at 0, 1.86, 5.64, and 16.9 mg/kg BW for 6 weeks. All rats were maintained on a high fat (60% kcal) AIN-93G diet for 3 weeks to induce severe obesity followed by a normal AIN-93G (15% kcal fat) diet for the last 3 weeks of the study. Weekly food intake and body weight were recorded. Plasma cholesterol, glucose, insulin, triglyceride, and monocyte chemoattractant protein-1 (MCP-1) levels were assessed using commercial assay kits. Plasma and liver tissue levels of XN and its metabolites were determined by liquid-chromatography tandem mass spectrometry. Plasma and liver tissue levels of xanthohumol were similar between low and medium dose groups and significantly (p<0.05) elevated in the highest dose group. There was a dose-dependent effect on body weight and plasma glucose levels. The highest dose group (n=6) had significantly lower plasma glucose levels compared to the control group (n=6) in male but not female rats. There was also a significant decrease in body weight for male rats in the highest dose group (16.9 mg/kg BW) compared to rats that received no xanthohumol, which was also not seen for female rats. Plasma cholesterol, insulin, triglycerides, and MCP-1 as well as food intake were not affected by treatment. The findings suggest that xanthohumol has beneficial effects on markers of metabolic syndrome.
Collapse
Affiliation(s)
- Leecole L Legette
- Linus Pauling Institute, Oregon State University, Corvallis, OR 97331, USA
| | | | | | | | | | | | | |
Collapse
|
41
|
Awaisheh SS, Khalifeh MS, Al-Ruwaili MA, Khalil OM, Al-Ameri OH, Al-Groom R. Effect of supplementation of probiotics and phytosterols alone or in combination on serum and hepatic lipid profiles and thyroid hormones of hypercholesterolemic rats. J Dairy Sci 2012. [PMID: 23182355 DOI: 10.3168/jds.2012-5442] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Probiotic bacteria and phytosterols are natural hypocholesterolemic agents with potential cardiovascular benefits. Accordingly, the present study was conducted to evaluate the effect of supplementation of probiotics and phytosterols alone or in combination on serum and hepatic lipid profiles and thyroid hormones of hypercholesterolemic rats. Mixed probiotics treatment consisted of 8 probiotic strains: 2 strains of each of Lactobacillus acidophilus, Lactobacillus casei, Lactobacillus gasseri, and Lactobacillus reuteri. The rats were fed for 8 wk with the given treatments in addition to a high-fat-high-cholesterol basal diet to induce hypercholesterolemia. Results showed that supplementation significantly reduced serum total cholesterol, low-density-lipoprotein cholesterol (LDL-C), high-density-lipoprotein cholesterol, and triglycerides compared with the controls. The symbiotic treatment was more effective in lowering LDL-C, whereas mixed probiotics treatment more effectively lowered serum total cholesterol and LDL-C than the phytosterol-containing treatment. The phytosterol-containing treatments induced the increased activity of thyroid glands, as evident by elevated levels of serum total thyroxine, total triiodothyronine, and free triiodothyronine. In conclusion, the lipid profile can effectively be reduced to lower the incidence of cardiovascular disease using combinations of Lactobacillus-based probiotics and phytosterols in functional foods.
Collapse
Affiliation(s)
- S S Awaisheh
- Department of Food Science, Al-Balqa Applied University, 19117, Salt, Jordan.
| | | | | | | | | | | |
Collapse
|
42
|
Vernaza MG, Dia VP, de Mejia EG, Chang YK. Antioxidant and antiinflammatory properties of germinated and hydrolysed Brazilian soybean flours. Food Chem 2012; 134:2217-25. [PMID: 23442677 DOI: 10.1016/j.foodchem.2012.04.037] [Citation(s) in RCA: 76] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2011] [Revised: 03/18/2012] [Accepted: 04/09/2012] [Indexed: 12/01/2022]
Abstract
The effect of germination in combination with Alcalase hydrolysis of Brazilian soybean cultivar BRS 133 on the production of soybean flours with bioactive peptides as modulators of oxidative stress and markers of inflammation was monitored. The electrophoretic profile showed a weak protein breakdown during germination. However, a strong breakdown of the proteins can be observed after the first hour of hydrolysis with Alcalase. MALDI-TOF-MS analysis of the protein extracts showed differences in the intensity and profile of peptide mass fingerprint due to germination and hydrolysis. Germinated flour showed higher soluble protein concentration and antioxidant capacity. All soybean protein extracts and protein hydrolysates produced (G0, G18 and G72) showed a significant (p<0.05) inhibition on inflammatory markers such as nitric oxide (20.5-69.3%), iNOS (22.8-93.6%), PGE(2) (64.0-88.3%), COX-2 (36.2-76.7%), and TNF-α (93.9-99.5%) in LPS-induced RAW 264.7 macrophages. However, protein extracts of flours with 18 h of germination were more potent in inhibiting pro-inflammatory responses when compared to 72 h. It can be concluded that a combination of 72 h of soybean BRS 133 germination and 1h Alcalase hydrolysis resulted in the formation of bioactive compounds with more potent antioxidant activity, and improvement in the reduction of some of the markers of inflammation.
Collapse
Affiliation(s)
- Maria Gabriela Vernaza
- Department of Food Technology, School of Food Engineering, University of Campinas (UNICAMP), Campinas, Brazil
| | | | | | | |
Collapse
|
43
|
Delgado-Zamarreño M, Pérez-Martín L, Bustamante-Rangel M, Carabias-Martínez R. A modified QuEChERS method as sample treatment before the determination of isoflavones in foods by ultra-performance liquid chromatography–triple quadrupole mass spectrometry. Talanta 2012; 100:320-8. [DOI: 10.1016/j.talanta.2012.07.070] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2012] [Revised: 07/24/2012] [Accepted: 07/27/2012] [Indexed: 11/16/2022]
|
44
|
|
45
|
Comparative study of isoflavones in wild and cultivated soybeans as well as bean products by high-performance liquid chromatography coupled with mass spectrometry and chemometric techniques. Eur Food Res Technol 2011. [DOI: 10.1007/s00217-011-1564-z] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
|
46
|
Szkudelska K, Nogowski L, Szkudelski T. Resveratrol and genistein as adenosine triphosphate-depleting agents in fat cells. Metabolism 2011; 60:720-9. [PMID: 20850159 DOI: 10.1016/j.metabol.2010.07.006] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/18/2010] [Revised: 07/02/2010] [Accepted: 07/08/2010] [Indexed: 12/23/2022]
Abstract
Resveratrol and genistein are plant-derived compounds known to exert pleiotropic effects in many cell types, including adipocytes. However, the effects of these compounds on the energetic status of fat cells are unknown. The present study aimed to determine whether resveratrol and genistein influence adenosine triphosphate (ATP) levels in freshly isolated rat adipocytes. To determine the effects of resveratrol and genistein on adipocyte ATP content, cells were exposed to insulin and glucose or insulin and alanine without tested compounds or with 6.25 to 50 μmol/L resveratrol or genistein. Resveratrol substantially reduced glucose- and alanine-derived ATP in adipocytes. This was not due to the inhibition of glucose transport because the influence of the test compound on insulin-stimulated glucose uptake by adipocytes appeared to be stimulatory. Moreover, resveratrol reduced both alanine oxidation and mitochondrial membrane hyperpolarization. It was also demonstrated that preincubation of cells with resveratrol slightly diminished ATP levels despite the withdrawal of the tested compound from the buffer. The genistein effect was accompanied by attenuation of the mitochondrial membrane hyperpolarization. The compound failed to significantly affect insulin-stimulated glucose uptake by fat cells. Similarly to resveratrol, preincubation of adipocytes with genistein slightly reduced ATP in cells exposed to glucose and insulin. Results of the present study revealed the potent ability of resveratrol to reduce ATP in rat adipocytes, whereas genistein appeared to be less effective. It is suggested that both tested compounds diminish adipocyte ATP via attenuation of the metabolic activity of mitochondria. Because numerous cellular events are strongly ATP dependent, the ATP-depleting effects of resveratrol and genistein may have pleiotropic consequences for adipocyte functions.
Collapse
Affiliation(s)
- Katarzyna Szkudelska
- Department of Animal Physiology and Biochemistry, Poznan University of Life Sciences, Wolynska 35, 60-637 Poznan, Poland
| | | | | |
Collapse
|
47
|
Choi JY, Jeon JE, Jang SY, Jeong YJ, Jeon SM, Park HJ, Choi MS. Differential effects of powdered whole soy milk and its hydrolysate on antiobesity and antihyperlipidemic response to high-fat treatment in C57BL/6N mice. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2011; 59:2584-2591. [PMID: 21271724 DOI: 10.1021/jf1027944] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/30/2023]
Abstract
This study was performed to investigate the beneficial effects of powdered whole soy milk and its hydrolysate, compared to the processed soy milk and its hydrolysate, on the alteration of lipid metabolism and their possible effects on antiobesity in C57BL/6N mice fed a high-fat and -cholesterol diet. The mice were divided into a control group (20% casein) and four test groups for 5 weeks: soy milk (SM, 20% soy milk protein), soy milk hydrolysate (SMH, 20% hydrolyzed soy milk protein), whole soy milk (WSM, 20% whole soy milk protein), and whole soy milk hydrolysate (WSMH, 20% whole soy milk hydrolysate protein). The body weight and adipose tissue weights were significantly lowered in SMH, WSM, and WSMH groups compared to the control group despite providing an isoenergetic diet. Plasma lipid concentrations and hepatic fatty acid synthase (FAS) and glucose-6-phosphate dehydrogenase (G6PD) activities were significantly lowered in all soy milk groups; however, the hepatic lipid contents and malic enzyme (ME) activity were only significantly lowered in the WSM and WSMH groups, compared to the control group. Data suggest that powdered WSM or WSMH appears to be more beneficial than SM or SMH in overall antiobesity and antihyperlipidemic properties following in the order WSMH/WSM, SMH, SM, and casein.
Collapse
Affiliation(s)
- Ji-Young Choi
- Department of Food Science and Nutrition, Kyungpook National University, Daegu 702-701, Republic of Korea
| | | | | | | | | | | | | |
Collapse
|
48
|
Lee DW, Shin JH, Park JM, Song JC, Suh HJ, Chang UJ, An BK, Kang CW, Kim JM. Growth Performance and Meat Quality of Broiler Chicks Fed Germinated and Fermented Soybeans. Korean J Food Sci Anim Resour 2010. [DOI: 10.5851/kosfa.2010.30.6.938] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
|
49
|
Kim MH, Kang KS, Lee YS. The inhibitory effect of genistein on hepatic steatosis is linked to visceral adipocyte metabolism in mice with diet-induced non-alcoholic fatty liver disease. Br J Nutr 2010; 104:1333-42. [PMID: 20687969 DOI: 10.1017/s0007114510002266] [Citation(s) in RCA: 64] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Non-alcoholic fatty liver disease (NAFLD) has been deeply associated with visceral adiposity, adipose tissue inflammation and a variety of adipocytokines. We reported previously that genistein inhibited NAFLD by enhancing fatty acid catabolism. However, this molecular approach focused on hepatic metabolism. Thus, we have attempted to determine whether this anti-steatotic effect of genistein is linked to visceral adipocyte metabolism. C57BL/6J mice were fed on normal-fat (NF) diet, high-fat (HF) diet and HF diet supplemented with genistein (1, 2 and 4 g/kg diet) for 12 weeks. Mice fed on the HF diet gained body weight, exhibited increased visceral fat mass and elevated levels of serum and liver lipids, and developed NAFLD, unlike what was observed in mice fed on the NF diet. However, genistein supplementation (2 and 4 g/kg diet) normalised these alternations. In the linear regression analysis, visceral fat (R 0·77) and TNFα (R 0·62) were strongly correlated with NAFLD among other NAFLD-related parameters. Genistein supplementation suppressed the hypertrophy of adipocytes via the up-regulation of genes involved in fatty acid β-oxidation, including PPARα, 5'-AMP-activated protein kinase and very long-chain acyl CoA dehydrogenase, as well as through the down-regulation of genes associated with adipogenesis or lipogenesis, including liver X receptor-α, sterol-regulatory element-binding protein-1c, PPARγ, retinoid X receptor-α and acetyl CoA carboxylase 2. Moreover, genistein supplementation augmented an anti-steatohepatitic adiponectin TNF and reduced a steatohepatitic TNFα. Collectively, these findings show that genistein may prevent NAFLD via the regulation of visceral adipocyte metabolism and adipocytokines.
Collapse
Affiliation(s)
- Mi-Hyun Kim
- Department of Food and Nutrition, College of Human Ecology, Seoul National University, 599 Gwanangno, Gwanak-gu, Seoul 151-742, South Korea
| | | | | |
Collapse
|
50
|
Daleprane JB, Chagas MA, Vellarde GC, Ramos CF, Boaventura GT. The impact of non- and genetically modified soybean diets in aorta wall remodeling. J Food Sci 2010; 75:T126-31. [PMID: 21535576 DOI: 10.1111/j.1750-3841.2010.01773.x] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
The aim of this study was to evaluate the influence of nongenetically modified soybean (non-GMS) and genetically modified soybean (GMS) meal on growth and cardiometabolic parameters in rats. Thirty male Wistar rats were divided into 3 groups (n= 10): non-GMS, GMS, and control group (CG). All animals received water and an isocaloric diet ad libitum for 455 d. Blood was drawn by cardiac puncture, and serum was separated for subsequent biochemical analyses (total cholesterol, triacylglycerols, insulin, glucose, and testosterone). The aorta was quickly harvested and fixed; the body fat mass was removed and weighed. Non-GMS and GMS had a growth index (GI) similar to CG but with a lower body weight (P < 0.05) and a lower amount of body fat mass (P < 0.05). Total cholesterol, triacylglycerol, glucose concentrations, and aortic tunics were reduced (P < 0.05) in non-GMS and GMS compared to CG. Non-GMS and GMS are able to reduced serum cholesterol, triacylglycerols, glucose, and aortic remodeling in aged rats. No differences were observed between non-GMS and GMS in all parameters.
Collapse
Affiliation(s)
- Julio B Daleprane
- Dept. of Nutrition and Dietetics, Experimental Nutrition Laboratory, College of Nutrition, Federal Fluminense Univ., 24020-140, 30/5th floor, Rio de Janeiro, Brazil.
| | | | | | | | | |
Collapse
|