1
|
Yaeger MJ, Leuenberger L, Shaikh SR, Gowdy KM. Omega-3 Fatty Acids and Chronic Lung Diseases: A Narrative Review of Impacts from Womb to Tomb. J Nutr 2025; 155:453-464. [PMID: 39424068 DOI: 10.1016/j.tjnut.2024.10.028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Revised: 08/16/2024] [Accepted: 10/11/2024] [Indexed: 10/21/2024] Open
Abstract
The lungs are a mucosal organ constantly exposed to potentially harmful compounds and pathogens. Beyond their role in gas exchange, they must perform a well-orchestrated protective response against foreign invaders. The lungs identify these foreign compounds, respond to them by eliciting an inflammatory response, and restore tissue homeostasis after inflammation to ensure the lungs continue to function. In addition, lung function can be affected by genetics, environmental exposures, and age, leading to pulmonary diseases that infringe on quality of life. Recent studies indicate that diet can influence pulmonary health including the incidence and/or severity of lung diseases. Specifically, long-chain omega-3 polyunsaturated fatty acids (n-3 PUFAs) have gained attention because of their potential to reduce inflammation and promote resolution of inflammation. Docosahexaenoic acid and eicosapentaenoic acid are 2 potentially beneficial n-3 PUFAs primarily acquired through dietary intake. Here we review current literature examining the role of n-3 PUFAs and the biological mechanisms by which these fatty acids alter the incidence and pathologies of chronic lung diseases including asthma, chronic obstructive pulmonary disease, and interstitial lung disease. We also highlight the role of n-3 PUFAs in vulnerable populations such as pre/postnatal children, those with obesity, and the elderly. Lastly, we review the impact of n-3 PUFA intake and supplementation to evaluate if increasing consumption can mitigate mechanisms driving chronic lung diseases.
Collapse
Affiliation(s)
- Michael J Yaeger
- Division of Pulmonary, Critical Care and Sleep Medicine, The Ohio State University, Columbus, OH, United States.
| | - Laura Leuenberger
- Division of Pulmonary, Critical Care and Sleep Medicine, The Ohio State University, Columbus, OH, United States
| | - Saame Raza Shaikh
- Department of Nutrition, Gillings School of Global Public Health and School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
| | - Kymberly M Gowdy
- Division of Pulmonary, Critical Care and Sleep Medicine, The Ohio State University, Columbus, OH, United States.
| |
Collapse
|
2
|
Koutsaliaris IK, Pantazi D, Tsouka AN, Argyropoulou O, Tellis CC, Tselepis AD. Differential Effect of Omega-3 Fatty Acids on Platelet Inhibition by Antiplatelet Drugs In Vitro. Int J Mol Sci 2024; 25:10136. [PMID: 39337620 PMCID: PMC11432081 DOI: 10.3390/ijms251810136] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2024] [Revised: 09/16/2024] [Accepted: 09/18/2024] [Indexed: 09/30/2024] Open
Abstract
The omega-3 polyunsaturated fatty acids (PUFAs) Docosahexaenoic acid (DHA) and Eicosapentaenoic acid (EPA) exert multiple cardioprotective effects, influencing inflammation, platelet activation, endothelial function and lipid metabolism, besides their well-established triglyceride lowering properties. It is not uncommon for omega-3 PUFAs to be prescribed for hypertriglyceridemia, alongside antiplatelet therapy in cardiovascular disease (CVD) patients. In this regard, we studied the effect of EPA and DHA, in combination with antiplatelet drugs, in platelet aggregation and P-selectin and αIIbβ3 membrane expression. The antiplatelet drugs aspirin and triflusal, inhibitors of cyclooxygenase-1 (COX-1); ticagrelor, an inhibitor of the receptor P2Y12; vorapaxar, an inhibitor of the PAR-1 receptor, were combined with DHA or EPA and evaluated against in vitro platelet aggregation induced by agonists arachidonic acid (AA), adenosine diphosphate (ADP) and TRAP-6. We further investigated procaspase-activating compound 1 (PAC-1) binding and P-selectin membrane expression in platelets stimulated with ADP and TRAP-6. Both DHA and EPA displayed a dose-dependent inhibitory effect on platelet aggregation induced by AA, ADP and TRAP-6. In platelet aggregation induced by AA, DHA significantly improved acetylsalicylic acid (ASA) and triflusal's inhibitory activity, while EPA enhanced the inhibitory effect of ASA. In combination with EPA, ASA and ticagrelor expressed an increased inhibitory effect towards ADP-induced platelet activation. Both fatty acids could not improve the inhibitory effect of vorapaxar on AA- and ADP-induced platelet aggregation. In the presence of EPA, all antiplatelet drugs displayed a stronger inhibitory effect towards TRAP-6-induced platelet activation. Both omega-3 PUFAs inhibited the membrane expression of αIIbβ3, though they had no effect on P-selectin expression induced by ADP or TRAP-6. The antiplatelet drugs exhibited heterogeneity regarding their effect on P-selectin and αIIbβ3 membrane expression, while both omega-3 PUFAs inhibited the membrane expression of αIIbβ3, though had no effect on P-selectin expression induced by ADP or TRAP-6. The combinatory effect of DHA and EPA with the antiplatelet drugs did not result in enhanced inhibitory activity compared to the sum of the individual effects of each component.
Collapse
Affiliation(s)
| | | | | | | | | | - Alexandros D. Tselepis
- Atherothrombosis Research Centre/Laboratory of Biochemistry, Department of Chemistry, University of Ioannina, 45100 Ioannina, Greece; (I.K.K.); (D.P.); (A.N.T.); (O.A.); (C.C.T.)
| |
Collapse
|
3
|
Longarzo ML, Vázquez RF, Bellini MJ, Zamora RA, Redondo-Morata L, Giannotti MI, Oliveira Jr ON, Fanani ML, Maté SM. Understanding the effects of omega-3 fatty acid supplementation on the physical properties of brain lipid membranes. iScience 2024; 27:110362. [PMID: 39071883 PMCID: PMC11277689 DOI: 10.1016/j.isci.2024.110362] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Revised: 03/24/2024] [Accepted: 06/21/2024] [Indexed: 07/30/2024] Open
Abstract
A deficiency in omega-3 fatty acids (ω3 FAs) in the brain has been correlated with cognitive impairment, learning deficiencies, and behavioral changes. In this study, we provided ω3 FAs as a supplement to spontaneously hypertensive rats (SHR+ ω3). Our focus was on examining the impact of dietary supplementation on the physicochemical properties of the brain-cell membranes. Significant increases in ω3 levels in the cerebral cortex of SHR+ ω3 were observed, leading to alterations in brain lipid membranes molecular packing, elasticity, and lipid miscibility, resulting in an augmented phase disparity. Results from synthetic lipid mixtures confirmed the disordering effect introduced by ω3 lipids, showing its consequences on the hydration levels of the monolayers and the organization of the membrane domains. These findings suggest that dietary ω3 FAs influence the organization of brain membranes, providing insight into a potential mechanism for the broad effects of dietary fat on brain health and disease.
Collapse
Affiliation(s)
- María L. Longarzo
- Instituto de Investigaciones Bioquímicas de La Plata (INIBIOLP), CCT- La Plata, CONICET, Facultad de Ciencias Médicas, Universidad Nacional de La Plata, 60 y 120, (1900), La Plata, Argentina
| | - Romina F. Vázquez
- Instituto de Investigaciones Bioquímicas de La Plata (INIBIOLP), CCT- La Plata, CONICET, Facultad de Ciencias Médicas, Universidad Nacional de La Plata, 60 y 120, (1900), La Plata, Argentina
| | - María J. Bellini
- Instituto de Investigaciones Bioquímicas de La Plata (INIBIOLP), CCT- La Plata, CONICET, Facultad de Ciencias Médicas, Universidad Nacional de La Plata, 60 y 120, (1900), La Plata, Argentina
| | - Ricardo A. Zamora
- Institute for Bioengineering of Catalonia (IBEC), The Barcelona Institute of Science and Technology, 08028 Barcelona, Spain
- Instituto de Investigación Interdisciplinaria (I³), Vicerrectoría Académica, and Centro de Bioinformática, Simulación y Modelado (CBSM), Facultad de Ingeniería, Universidad de Talca, Campus Lircay, Talca 3460000, Chile
| | - Lorena Redondo-Morata
- Université de Lille, CNRS, INSERM, CHU Lille, Institut Pasteur de Lille, U1019-UMR9017, CIIL—Center for Infection and Immunity of Lille, F-59000 Lille, France
| | - Marina I. Giannotti
- Institute for Bioengineering of Catalonia (IBEC), The Barcelona Institute of Science and Technology, 08028 Barcelona, Spain
- CIBER-BBN, ISCIII, 08028 Barcelona, Spain
- Department of Materials Science and Physical Chemistry, University of Barcelona, 08028 Barcelona, Spain
| | - Osvaldo N. Oliveira Jr
- São Carlos Institute of Physics (IFSC-USP), University of São Paulo, 13566-590 São Carlos, São Paulo, Brazil
| | - María L. Fanani
- Centro de Investigaciones en Química Biológica de Córdoba (CIQUIBIC), CONICET, Cordoba, Argentina
- Departamento de Química Biológica Raquel Caputto, Facultad de Cs. Químicas, Universidad Nacional de Córdoba. Haya de la Torre y Medina Allende, Ciudad Universitaria, Córdoba, Argentina
| | - Sabina M. Maté
- Instituto de Investigaciones Bioquímicas de La Plata (INIBIOLP), CCT- La Plata, CONICET, Facultad de Ciencias Médicas, Universidad Nacional de La Plata, 60 y 120, (1900), La Plata, Argentina
| |
Collapse
|
4
|
Schuchardt JP, Kräter M, Schlögel M, Guck J, van Oirschot-Hermans BA, Bos J, van Wijk R, Tintle NL, Westra J, Kerlikowsky F, Hahn A, Harris WS. Omega-3 supplementation changes the physical properties of leukocytes but not erythrocytes in healthy individuals: An exploratory trial. Prostaglandins Leukot Essent Fatty Acids 2024; 202:102636. [PMID: 39159530 DOI: 10.1016/j.plefa.2024.102636] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/28/2024] [Revised: 08/02/2024] [Accepted: 08/06/2024] [Indexed: 08/21/2024]
Abstract
n3-PUFA impact health in several ways, including cardiovascular protection and anti-inflammatory effects, but the underlying mechanisms are not fully understood. In this exploratory study involving 31 healthy subjects, we aimed to investigate the effects of 12 weeks of fish-oil supplementation (1500 mg EPA+DHA/day) on the physical properties of multiple blood cell types. We used deformability cytometry (DC) for all cell types and Laser-assisted Optical Rotational Red Cell Analysis (Lorrca) to assess red blood cell (RBC) deformability. We also investigated the correlation between changes in the physical properties of blood cells and changes in the Omega-3 Index (O3I), defined as the relative content of EPA+DHA in RBCs. Following supplementation, the mean±SD O3I increased from 5.3 %±1.5 % to 8.3 %±1.4 % (p < 0.001). No significant changes in RBC properties were found by both techniques. However, by DC we observed a consistent pattern of physical changes in lymphocytes, neutrophils and monocytes. Among these were significant increases in metrics correlated with the cells' deformability resulting in less stiff cells. The results suggest that leukocytes become softer and have an increased ability to deform under induced short-term physical stress such as hydrodynamic force in the circulation. These changes could impact immune function since softer leukocytes can potentially circulate more easily and could facilitate a more rapid response to systemic inflammation or infection. In conclusion, fish-oil supplementation modulates some physical properties of leukocyte-subfractions, potentially enhancing their biological function. Further studies are warranted to explore the impact of n3-PUFA on blood cell biology, particularly in disease states associated with leukocyte dysregulation.
Collapse
Affiliation(s)
- Jan Philipp Schuchardt
- Institute of Food and One Health, Leibniz University Hannover, Hannover, Germany; The Fatty Acid Research Institute, Sioux Falls, SD, USA.
| | - Martin Kräter
- Max Planck Institute for the Science of Light & Max-Planck-Zentrum für Physik und Medizin, Erlangen, Germany
| | - Maximilian Schlögel
- Max Planck Institute for the Science of Light & Max-Planck-Zentrum für Physik und Medizin, Erlangen, Germany
| | - Jochen Guck
- Max Planck Institute for the Science of Light & Max-Planck-Zentrum für Physik und Medizin, Erlangen, Germany; Department of Physics, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Erlangen, Germany
| | - Brigitte A van Oirschot-Hermans
- Central Diagnostic Laboratory - Red Blood Cell Research Group, University Medical Center Utrecht, Utrecht University, Utrecht, Netherlands
| | - Jennifer Bos
- Central Diagnostic Laboratory - Red Blood Cell Research Group, University Medical Center Utrecht, Utrecht University, Utrecht, Netherlands
| | - Richard van Wijk
- Central Diagnostic Laboratory - Red Blood Cell Research Group, University Medical Center Utrecht, Utrecht University, Utrecht, Netherlands
| | - Nathan L Tintle
- The Fatty Acid Research Institute, Sioux Falls, SD, USA; Department of Population Health Nursing Science, College of Nursing, University of Illinois - Chicago, Chicago, IL, USA
| | - Jason Westra
- The Fatty Acid Research Institute, Sioux Falls, SD, USA
| | - Felix Kerlikowsky
- Institute of Food and One Health, Leibniz University Hannover, Hannover, Germany
| | - Andreas Hahn
- Institute of Food and One Health, Leibniz University Hannover, Hannover, Germany
| | - William S Harris
- The Fatty Acid Research Institute, Sioux Falls, SD, USA; Department of Internal Medicine, Sanford School of Medicine, University of South Dakota, Sioux Falls, SD, USA
| |
Collapse
|
5
|
Sherratt SCR, Mason RP, Libby P, Steg PG, Bhatt DL. Do patients benefit from omega-3 fatty acids? Cardiovasc Res 2024; 119:2884-2901. [PMID: 38252923 PMCID: PMC10874279 DOI: 10.1093/cvr/cvad188] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/01/2023] [Revised: 08/11/2023] [Accepted: 09/26/2023] [Indexed: 01/24/2024] Open
Abstract
Omega-3 fatty acids (O3FAs) possess beneficial properties for cardiovascular (CV) health and elevated O3FA levels are associated with lower incident risk for CV disease (CVD.) Yet, treatment of at-risk patients with various O3FA formulations has produced disparate results in large, well-controlled and well-conducted clinical trials. Prescription formulations and fish oil supplements containing low-dose mixtures of eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA) have routinely failed to prevent CV events in primary and secondary prevention settings when added to contemporary care, as shown most recently in the STRENGTH and OMEMI trials. However, as observed in JELIS, REDUCE-IT, and RESPECT-EPA, EPA-only formulations significantly reduce CVD events in high-risk patients. The CV mechanism of action of EPA, while certainly multifaceted, does not depend solely on reductions of circulating lipids, including triglycerides (TG) and LDL, and event reduction appears related to achieved EPA levels suggesting that the particular chemical and biological properties of EPA, as compared to DHA and other O3FAs, may contribute to its distinct clinical efficacy. In vitro and in vivo studies have shown different effects of EPA compared with DHA alone or EPA/DHA combination treatments, on atherosclerotic plaque morphology, LDL and membrane oxidation, cholesterol distribution, membrane lipid dynamics, glucose homeostasis, endothelial function, and downstream lipid metabolite function. These findings indicate that prescription-grade, EPA-only formulations provide greater benefit than other O3FAs formulations tested. This review summarizes the clinical findings associated with various O3FA formulations, their efficacy in treating CV disease, and their underlying mechanisms of action.
Collapse
Affiliation(s)
- Samuel C R Sherratt
- Department of Molecular, Cellular, and Biomedical Sciences, University of New Hampshire, Durham, NH, USA
- Elucida Research LLC, Beverly, MA, USA
| | - R Preston Mason
- Elucida Research LLC, Beverly, MA, USA
- Department of Medicine, Cardiovascular Division, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA, USA
| | - Peter Libby
- Department of Medicine, Cardiovascular Division, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA, USA
| | - Ph Gabriel Steg
- Université Paris-Cité, INSERM_UMR1148/LVTS, FACT (French Alliance for Cardiovascular Trials), Assistance Publique–Hôpitaux de Paris, Hôpital Bichat, Paris, France
| | - Deepak L Bhatt
- Mount Sinai Fuster Heart Hospital, Icahn School of Medicine at Mount Sinai, 1 Gustave L. Levy Place, NewYork 10029-5674, NY, USA
| |
Collapse
|
6
|
Balakrishnan M, Kenworthy AK. Lipid Peroxidation Drives Liquid-Liquid Phase Separation and Disrupts Raft Protein Partitioning in Biological Membranes. J Am Chem Soc 2024; 146:1374-1387. [PMID: 38171000 PMCID: PMC10797634 DOI: 10.1021/jacs.3c10132] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2023] [Revised: 12/06/2023] [Accepted: 12/07/2023] [Indexed: 01/05/2024]
Abstract
The peroxidation of membrane lipids by free radicals contributes to aging, numerous diseases, and ferroptosis, an iron-dependent form of cell death. Peroxidation changes the structure and physicochemical properties of lipids, leading to bilayer thinning, altered fluidity, and increased permeability of membranes in model systems. Whether and how lipid peroxidation impacts the lateral organization of proteins and lipids in biological membranes, however, remains poorly understood. Here, we employ cell-derived giant plasma membrane vesicles (GPMVs) as a model to investigate the impact of lipid peroxidation on ordered membrane domains, often termed membrane rafts. We show that lipid peroxidation induced by the Fenton reaction dramatically enhances the phase separation propensity of GPMVs into coexisting liquid-ordered (Lo) and liquid-disordered (Ld) domains and increases the relative abundance of the disordered phase. Peroxidation also leads to preferential accumulation of peroxidized lipids and 4-hydroxynonenal (4-HNE) adducts in the disordered phase, decreased lipid packing in both Lo and Ld domains, and translocation of multiple classes of raft proteins out of ordered domains. These findings indicate that the peroxidation of plasma membrane lipids disturbs many aspects of membrane rafts, including their stability, abundance, packing, and protein and lipid composition. We propose that these disruptions contribute to the pathological consequences of lipid peroxidation during aging and disease and thus serve as potential targets for therapeutic intervention.
Collapse
Affiliation(s)
- Muthuraj Balakrishnan
- Center
for Membrane and Cell Physiology, University
of Virginia, Charlottesville, Virginia 22903, United States
- Department
of Molecular Physiology and Biological Physics, University of Virginia School of Medicine, Charlottesville, Virginia 22903, United States
| | - Anne K. Kenworthy
- Center
for Membrane and Cell Physiology, University
of Virginia, Charlottesville, Virginia 22903, United States
- Department
of Molecular Physiology and Biological Physics, University of Virginia School of Medicine, Charlottesville, Virginia 22903, United States
| |
Collapse
|
7
|
Balakrishnan M, Kenworthy AK. Lipid peroxidation drives liquid-liquid phase separation and disrupts raft protein partitioning in biological membranes. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.09.12.557355. [PMID: 37745342 PMCID: PMC10515805 DOI: 10.1101/2023.09.12.557355] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/26/2023]
Abstract
The peroxidation of membrane lipids by free radicals contributes to aging, numerous diseases, and ferroptosis, an iron-dependent form of cell death. Peroxidation changes the structure, conformation and physicochemical properties of lipids, leading to major membrane alterations including bilayer thinning, altered fluidity, and increased permeability. Whether and how lipid peroxidation impacts the lateral organization of proteins and lipids in biological membranes, however, remains poorly understood. Here, we employ cell-derived giant plasma membrane vesicles (GPMVs) as a model to investigate the impact of lipid peroxidation on ordered membrane domains, often termed membrane rafts. We show that lipid peroxidation induced by the Fenton reaction dramatically enhances phase separation propensity of GPMVs into co-existing liquid ordered (raft) and liquid disordered (non-raft) domains and increases the relative abundance of the disordered, non-raft phase. Peroxidation also leads to preferential accumulation of peroxidized lipids and 4-hydroxynonenal (4-HNE) adducts in the disordered phase, decreased lipid packing in both raft and non-raft domains, and translocation of multiple classes of proteins out of rafts. These findings indicate that peroxidation of plasma membrane lipids disturbs many aspects of membrane rafts, including their stability, abundance, packing, and protein and lipid composition. We propose that these disruptions contribute to the pathological consequences of lipid peroxidation during aging and disease, and thus serve as potential targets for therapeutic intervention.
Collapse
Affiliation(s)
- Muthuraj Balakrishnan
- Center for Membrane and Cell Physiology, University of Virginia, Charlottesville, VA USA
- Department of Molecular Physiology and Biological Physics, University of Virginia School of Medicine, Charlottesville, VA, USA
| | - Anne K. Kenworthy
- Center for Membrane and Cell Physiology, University of Virginia, Charlottesville, VA USA
- Department of Molecular Physiology and Biological Physics, University of Virginia School of Medicine, Charlottesville, VA, USA
| |
Collapse
|
8
|
Cruz MA, Gonzalez Y, Vélez Toro JA, Karimzadeh M, Rubbo A, Morris L, Medam R, Splawn T, Archer M, Fernandes RJ, Dennis JE, Kean TJ. Micronutrient optimization for tissue engineered articular cartilage production of type II collagen. Front Bioeng Biotechnol 2023; 11:1179332. [PMID: 37346792 PMCID: PMC10280293 DOI: 10.3389/fbioe.2023.1179332] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Accepted: 05/23/2023] [Indexed: 06/23/2023] Open
Abstract
Tissue Engineering of cartilage has been hampered by the inability of engineered tissue to express native levels of type II collagen in vitro. Inadequate levels of type II collagen are, in part, due to a failure to recapitulate the physiological environment in culture. In this study, we engineered primary rabbit chondrocytes to express a secreted reporter, Gaussia Luciferase, driven by the type II collagen promoter, and applied a Design of Experiments approach to assess chondrogenic differentiation in micronutrient-supplemented medium. Using a Response Surface Model, 240 combinations of micronutrients absent in standard chondrogenic differentiation medium, were screened and assessed for type II collagen promoter-driven Gaussia luciferase expression. While the target of this study was to establish a combination of all micronutrients, alpha-linolenic acid, copper, cobalt, chromium, manganese, molybdenum, vitamins A, E, D and B7 were all found to have a significant effect on type II collagen promoter activity. Five conditions containing all micronutrients predicted to produce the greatest luciferase expression were selected for further study. Validation of these conditions in 3D aggregates identified an optimal condition for type II collagen promoter activity. Engineered cartilage grown in this condition, showed a 170% increase in type II collagen expression (Day 22 Luminescence) and in Young's tensile modulus compared to engineered cartilage in basal media alone.Collagen cross-linking analysis confirmed formation of type II-type II collagen and type II-type IX collagen cross-linked heteropolymeric fibrils, characteristic of mature native cartilage. Combining a Design of Experiments approach and secreted reporter cells in 3D aggregate culture enabled a high-throughput platform that can be used to identify more optimal physiological culture parameters for chondrogenesis.
Collapse
Affiliation(s)
- Maria A. Cruz
- Biionix Cluster, Internal Medicine, University of Central Florida College of Medicine, Orlando, FL, United States
| | - Yamilet Gonzalez
- Biionix Cluster, Internal Medicine, University of Central Florida College of Medicine, Orlando, FL, United States
| | - Javier A. Vélez Toro
- Biionix Cluster, Internal Medicine, University of Central Florida College of Medicine, Orlando, FL, United States
| | - Makan Karimzadeh
- Biionix Cluster, Internal Medicine, University of Central Florida College of Medicine, Orlando, FL, United States
| | - Anthony Rubbo
- Biionix Cluster, Internal Medicine, University of Central Florida College of Medicine, Orlando, FL, United States
| | - Lauren Morris
- Biionix Cluster, Internal Medicine, University of Central Florida College of Medicine, Orlando, FL, United States
| | - Ramapaada Medam
- Biionix Cluster, Internal Medicine, University of Central Florida College of Medicine, Orlando, FL, United States
| | - Taylor Splawn
- Baylor College of Medicine, Houston, TX, United States
| | - Marilyn Archer
- Department of Orthopaedics and Sports Medicine, University of Washington, Seattle, WA, United States
| | - Russell J. Fernandes
- Department of Orthopaedics and Sports Medicine, University of Washington, Seattle, WA, United States
| | | | - Thomas J. Kean
- Biionix Cluster, Internal Medicine, University of Central Florida College of Medicine, Orlando, FL, United States
- Baylor College of Medicine, Houston, TX, United States
| |
Collapse
|
9
|
Zhao YC, Wang CC, Yang JY, Li XY, Yanagita T, Xue CH, Zhang TT, Wang YM. N-3 PUFA Deficiency from Early Life to Adulthood Exacerbated Susceptibility to Reactive Oxygen Species-Induced Testicular Dysfunction in Adult Mice. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2023; 71:6908-6919. [PMID: 37098125 DOI: 10.1021/acs.jafc.2c07328] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/11/2023]
Abstract
Homeostasis of reactive oxygen species is required to maintain sperm maturation and capacitation. Docosahexaenoic acid (DHA) is accumulated in testicles and spermatozoa and has the ability to manipulate the redox status. The effects of dietary n-3 polyunsaturated fatty acid (n-3 PUFA) deficiency from early life to adulthood on the physiological and functional properties of males under the redox imbalance of testicular tissue deserve attention. The consecutive injection of hydrogen peroxide (H2O2) and tert-butyl hydroperoxide (t-BHP) for 15 days to induce oxidative stress in testicular tissue was used to elucidate the consequences of testicular n-3 PUFA deficiency. The results indicated that reactive oxygen species treatment in adult male mice with DHA deficiency in the testis could reduce spermatogenesis and disrupt sex hormone production, as well as trigger testicular lipid peroxidation and tissue damage. N-3 PUFA deficiency from early life to adulthood resulted in higher susceptibility to testicular dysfunction in the germinal function of supplying germ cells and the endocrine role of secreting hormones through the mechanism of aggravating mitochondria-mediated apoptosis and destruction of blood testicular barrier under oxidative stress, which might provide a basis for humans to reduce susceptibility to chronic disease and maintain reproductive health in adulthood through dietary interventions of n-3 PUFAs.
Collapse
Affiliation(s)
- Ying-Cai Zhao
- College of Food Science and Engineering, Ocean University of China, Qingdao 266003, Shandong, P. R. China
| | - Cheng-Cheng Wang
- College of Food Science and Engineering, Ocean University of China, Qingdao 266003, Shandong, P. R. China
| | - Jin-Yue Yang
- College of Food Science and Engineering, Ocean University of China, Qingdao 266003, Shandong, P. R. China
| | - Xiao-Yue Li
- College of Food Science and Engineering, Ocean University of China, Qingdao 266003, Shandong, P. R. China
| | - Teruyoshi Yanagita
- Laboratory of Nutrition Biochemistry, Department of Applied Biochemistry and Food Science, Saga University, Saga 840-8502, Japan
| | - Chang-Hu Xue
- College of Food Science and Engineering, Ocean University of China, Qingdao 266003, Shandong, P. R. China
- Laboratory for Marine Drugs and Bioproducts, Pilot National Laboratory for Marine Science and Technology (Qingdao), Qingdao 266237 Shandong Province, P. R. China
| | - Tian-Tian Zhang
- College of Food Science and Engineering, Ocean University of China, Qingdao 266003, Shandong, P. R. China
| | - Yu-Ming Wang
- College of Food Science and Engineering, Ocean University of China, Qingdao 266003, Shandong, P. R. China
- Laboratory for Marine Drugs and Bioproducts, Pilot National Laboratory for Marine Science and Technology (Qingdao), Qingdao 266237 Shandong Province, P. R. China
| |
Collapse
|
10
|
Bhat S, Sarkar S, Zaffar D, Dandona P, Kalyani RR. Omega-3 Fatty Acids in Cardiovascular Disease and Diabetes: a Review of Recent Evidence. Curr Cardiol Rep 2023; 25:51-65. [PMID: 36729217 DOI: 10.1007/s11886-022-01831-0] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 11/08/2022] [Indexed: 02/03/2023]
Abstract
PURPOSE OF REVIEW Omega-3 fatty acids (n-3 FA) lower triglycerides, have anti-inflammatory properties, and improve metabolism. Clinical evidence of cardiovascular benefit with omega-3 fatty acids is mixed. We discuss mechanisms providing biological plausibility of benefit of omega-3 fatty acids in cardiovascular risk reduction and review clinical trials investigating the benefits of prescription omega-3 fatty acids in dyslipidemia, atherosclerotic cardiovascular disease (ASCVD), and diabetes. RECENT FINDINGS Although early trials showed no benefit of omega-3 fatty acids in ASCVD, the REDUCE-IT trial noted significant risk reduction in ASCVD events with highly purified EPA (icosapent ethyl) use which has changed the landscape for currently available therapeutic options. However, other large trials like STRENGTH and VITAL, which used different formulations of prescription omega-3 fatty acids, did not note significant cardiovascular risk reduction. Thus the effectiveness of omega-3 fatty acids for cardiovascular disease prevention is an ongoing topic of debate. A relative paucity of studies examining benefits for glycemic outcomes in persons with diabetes exists; however, few studies have suggested lack of benefit to date. Significant residual cardiovascular risk exists for individuals with hypertriglyceridemia. Prescription omega-3 fatty acids are more commonly used for CV risk reduction in these patients. Clinical guideline statements now recommend icosapent ethyl use for selected individuals with hypertriglyceridemia to reduce cardiovascular events given recent evidence from the REDUCE-IT trial. Nonetheless, data from other large scale trials has been mixed, and future research is needed to better understand how different preparations of omega-3 may differ in their cardiovascular and metabolic effects, and the mechanisms for their benefit.
Collapse
Affiliation(s)
- Salman Bhat
- Division of Endocrinology, Diabetes and Metabolism, Department of Medicine, The Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Sudipa Sarkar
- Division of Endocrinology, Diabetes and Metabolism, Department of Medicine, The Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Duha Zaffar
- Department of Internal Medicine, University of Maryland Midtown Campus, Baltimore, MD, USA
| | - Paresh Dandona
- Division of Endocrinology, Diabetes and Metabolism, University at Buffalo, Buffalo, NY, USA
| | - Rita R Kalyani
- Division of Endocrinology, Diabetes and Metabolism, Department of Medicine, The Johns Hopkins University School of Medicine, Baltimore, MD, USA.
| |
Collapse
|
11
|
Polyunsaturated ω3 fatty acids prevent the cardiac hypertrophy in hypertensive rats. Biochim Biophys Acta Gen Subj 2023; 1867:130278. [PMID: 36410610 DOI: 10.1016/j.bbagen.2022.130278] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2022] [Revised: 10/10/2022] [Accepted: 11/08/2022] [Indexed: 11/22/2022]
Abstract
It has been demonstrated that supplementation with the two main omega 3 polyunsaturated fatty acids (ω3 FAs), docosahexaenoic acid (DHA), and eicosapentaenoic acid (EPA), leads to modifications in the cardiac physiology. ω3 FAs can affect the membrane's lipid composition, as well as proteins' location and/or function. The Na+/H+ exchanger (NHE1) is an integral membrane protein involved in the maintenance of intracellular pH and its hyperactivity has been associated with the development of various cardiovascular diseases such as cardiac hypertrophy. Our aim was to determine the effect of ω3 FAs on systolic blood pressure (SBP), lipid profiles, NHE1 activity, and cardiac function in spontaneously hypertensive rats (SHR) using Wistar rats (W) as normotensive control. After weaning, the rats received orally ω3 FAs (200 mg/kg body mass/day/ 4 months). We measured SBP, lipid profiles, and different echocardiography parameters, which were used to calculate cardiac hypertrophy index, systolic function, and ventricular geometry. The rats were sacrificed, and ventricular cardiomyocytes were obtained to measure NHE1 activity. While the treatment with ω3 FAs did not affect the SBP, lipid analysis of plasma revealed a significant decrease in omega-6/omega-3 ratio, correlated with a significant reduction in left ventricular mass index in SHR. The NHE1 activity was significantly higher in SHR compared with W. While in W the NHE1 activity was similar in both groups, a significant decrease in NHE1 activity was detected in SHRs supplemented with ω3 FAs, reaching values comparable with W. Altogether, these findings revealed that diet supplementation with ω3 FAs since early age prevents the development of cardiac hypertrophy in SHR, perhaps by decreasing NHE1 activity, without altering hemodynamic overload.
Collapse
|
12
|
Role of Omega-3 Fatty Acids in Cardiovascular Disease: the Debate Continues. Curr Atheroscler Rep 2023; 25:1-17. [PMID: 36580204 PMCID: PMC9834373 DOI: 10.1007/s11883-022-01075-x] [Citation(s) in RCA: 48] [Impact Index Per Article: 24.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/15/2022] [Indexed: 12/30/2022]
Abstract
PURPOSE OF REVIEW The omega-3 fatty acids (n3-FAs), eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA), have recently undergone testing for their ability to reduce residual cardiovascular (CV) risk among statin-treated subjects. The outcome trials have yielded highly inconsistent results, perhaps attributable to variations in dosage, formulation, and composition. In particular, CV trials using icosapent ethyl (IPE), a highly purified ethyl ester of EPA, reproducibly reduced CV events and progression of atherosclerosis compared with mixed EPA/DHA treatments. This review summarizes the mechanistic evidence for differences among n3-FAs on the development and manifestations of atherothrombotic disease. RECENT FINDINGS Large randomized clinical trials with n3-FAs have produced discordant outcomes despite similar patient profiles, doses, and triglyceride (TG)-lowering effects. A large, randomized trial with IPE, a prescription EPA only formulation, showed robust reduction in CV events in statin treated patients in a manner proportional to achieved blood EPA concentrations. Multiple trials using mixed EPA/DHA formulations have not shown such benefits, despite similar TG lowering. These inconsistencies have inspired investigations into mechanistic differences among n3-FAs, as EPA and DHA have distinct membrane interactions, metabolic products, effects on cholesterol efflux, antioxidant properties, and tissue distribution. EPA maintains normal membrane cholesterol distribution, enhances endothelial function, and in combination with statins improves features implicated in plaque stability and reduces lipid content of plaques. Insights into reductions in residual CV risk have emerged from clinical trials using different formulations of n3-FAs. Among high-risk patients on contemporary care, mixed n3-FA formulations showed no reduction in CV events. The distinct benefits of IPE in multiple trials may arise from pleiotropic actions that correlate with on-treatment EPA levels beyond TG-lowering. These effects include altered platelet function, inflammation, cholesterol distribution, and endothelial dysfunction. Elucidating such mechanisms of vascular protection for EPA may lead to new interventions for atherosclerosis, a disease that continues to expand worldwide.
Collapse
|
13
|
Heras A, Gomi R, Young M, Chang CL, Wasserman E, Sharma A, Wu W, Gu J, Balaji U, White R, Permaul P, Janahi I, Worgall TS, Worgall S. Dietary long-chain omega 3 fatty acids modify sphingolipid metabolism to facilitate airway hyperreactivity. Sci Rep 2022; 12:19735. [PMID: 36396956 PMCID: PMC9672127 DOI: 10.1038/s41598-022-21083-w] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2022] [Accepted: 09/22/2022] [Indexed: 11/19/2022] Open
Abstract
Omega-3 polyunsaturated fatty acids (n-3 PUFAs) are essential nutrients that can affect inflammatory responses. While n-3 PUFAs are generally considered beneficial for cardiovascular disease and obesity, the effects on asthma, the most common inflammatory lung disease are unclear. While prenatal dietary n-3 PUFAs decrease the risk for childhood wheezing, postnatal dietary n-3 PUFAs can worsen allergic airway inflammation. Sphingolipid metabolism is also affected by dietary n-3 PUFAs. Decreased sphingolipid synthesis leads to airway hyperreactivity, besides inflammation, a cardinal feature of asthma, and common genetic asthma risk alleles lead to lower sphingolipid synthesis. We investigated the effect of dietary n-3 PUFAs on sphingolipid metabolism and airway reactivity. Comparing a fish-oil diet with a high n-3 PUFA content (FO) to an isocaloric coconut oil-enriched diet (CO), we found an n-3 PUFA-dependent effect on increased airway reactivity, that was not accompanied by inflammation. Lung and whole blood content of dihydroceramides, ceramides, sphingomyelins, and glucosylceramides were lower in mice fed the n-3 PUFA enriched diet consistent with lower sphingolipid synthesis. In contrast, phosphorylated long chain bases such as sphingosine 1-phosphate were increased. These findings suggest that dietary n-3 PUFAs affect pulmonary sphingolipid composition to favor innate airway hyperreactivity, independent of inflammation, and point to an important role of n-3 PUFAs in sphingolipid metabolism.
Collapse
Affiliation(s)
- Andrea Heras
- Department of Pediatrics, Weill Cornell Medicine, 413 East 69th Street, Room 1200, New York, NY, 10021, USA
| | - Rika Gomi
- Department of Pediatrics, Weill Cornell Medicine, 413 East 69th Street, Room 1200, New York, NY, 10021, USA
| | - Madeline Young
- Department of Pediatrics, Weill Cornell Medicine, 413 East 69th Street, Room 1200, New York, NY, 10021, USA
| | - Chuchun L Chang
- Institute of Human Nutrition/Department of Pediatrics, Columbia University Medical Center, New York, NY, USA
| | - Emily Wasserman
- Department of Pediatrics, Weill Cornell Medicine, 413 East 69th Street, Room 1200, New York, NY, 10021, USA
- Weill Cornell Medicine, Drukier Institute for Children's Health, New York, USA
| | - Anurag Sharma
- Department of Pediatrics, Weill Cornell Medicine, 413 East 69th Street, Room 1200, New York, NY, 10021, USA
| | - Wenzhu Wu
- Department of Pediatrics, Weill Cornell Medicine, 413 East 69th Street, Room 1200, New York, NY, 10021, USA
| | - Jinghua Gu
- Weill Cornell Medicine, Drukier Institute for Children's Health, New York, USA
| | - Uthra Balaji
- Weill Cornell Medicine, Drukier Institute for Children's Health, New York, USA
| | - Rachel White
- Department of Pediatrics, Weill Cornell Medicine, 413 East 69th Street, Room 1200, New York, NY, 10021, USA
| | - Perdita Permaul
- Department of Pediatrics, Weill Cornell Medicine, 413 East 69th Street, Room 1200, New York, NY, 10021, USA
| | | | - Tilla S Worgall
- Department of Pathology and Cell Biology, Columbia University Medical Center, New York, USA
| | - Stefan Worgall
- Department of Pediatrics, Weill Cornell Medicine, 413 East 69th Street, Room 1200, New York, NY, 10021, USA.
- Weill Cornell Medicine, Drukier Institute for Children's Health, New York, USA.
- Department of Genetic Medicine, Weill Cornell Medicine, New York, USA.
| |
Collapse
|
14
|
Sherratt SCR, Libby P, Bhatt DL, Mason RP. A biological rationale for the disparate effects of omega-3 fatty acids on cardiovascular disease outcomes. Prostaglandins Leukot Essent Fatty Acids 2022; 182:102450. [PMID: 35690002 DOI: 10.1016/j.plefa.2022.102450] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/01/2022] [Revised: 05/09/2022] [Accepted: 05/19/2022] [Indexed: 12/29/2022]
Abstract
The omega-3 fatty acids (n3-FAs) eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA) rapidly incorporate into cell membranes where they modulate signal transduction pathways, lipid raft formation, and cholesterol distribution. Membrane n3-FAs also form specialized pro-resolving mediators and other intracellular oxylipins that modulate inflammatory pathways, including T-cell differentiation and gene expression. Cardiovascular (CV) trials have shown that EPA, administered as icosapent ethyl (IPE), reduces composite CV events, along with plaque volume, in statin-treated, high-risk patients. Mixed EPA/DHA regimens have not shown these benefits, perhaps as the result of differences in formulation, dosage, or potential counter-regulatory actions of DHA. Indeed, EPA and DHA have distinct, tissue-specific effects on membrane structural organization and cell function. This review summarizes: (1) results of clinical outcome and imaging trials using n3-FA formulations; (2) membrane interactions of n3-FAs; (3) effects of n3-FAs on membrane oxidative stress and cholesterol crystalline domain formation during hyperglycemia; (4) n3-FA effects on endothelial function; (5) role of n3-FA-generated metabolites in inflammation; and (6) ongoing and future clinical investigations exploring treatment targets for n3-FAs, including COVID-19.
Collapse
Affiliation(s)
- Samuel C R Sherratt
- Department of Molecular, Cellular, and Biomedical Sciences, University of New Hampshire, Durham, NH 03823, USA; Elucida Research LLC, Beverly, MA 01915-0091, USA
| | - Peter Libby
- Department of Medicine, Cardiovascular Division, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115-6110, USA
| | - Deepak L Bhatt
- Department of Medicine, Cardiovascular Division, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115-6110, USA
| | - R Preston Mason
- Department of Medicine, Cardiovascular Division, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115-6110, USA; Elucida Research LLC, Beverly, MA 01915-0091, USA.
| |
Collapse
|
15
|
Wang L, Wiedmann TS, Kandimalla KK. Modulating insulin signaling and trafficking at the blood-brain barrier endothelium using lipid based nanoemulsions. Int J Pharm 2022; 622:121823. [PMID: 35605891 PMCID: PMC9881744 DOI: 10.1016/j.ijpharm.2022.121823] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2021] [Revised: 05/01/2022] [Accepted: 05/08/2022] [Indexed: 01/31/2023]
Abstract
The compositionally distinct lipid rafts present in the plasma membrane regulate the restrictive trafficking and signal transduction in the blood-brain barrier (BBB) endothelium. Several metabolic and neurodegenerative diseases are associated with lipid homeostasis disruption within the BBB endothelium. Here, we hypothesized that the delivery of lipid triglyceride based nanoemulsions containing unsaturated fatty acids (UFAs) provides a novel non-pharmacological approach to modulate lipid raft integrity and rectify the aberrant trafficking and signal transduction. The current study has shown that soybean oil nanoemulsions (SNEs) altered the morphology of lipid rafts that are stained by Alex Fluor 647 labelled cholera toxin (AF647-CTX) in polarized human cerebral microvascular endothelial (hCMEC/D3) cell monolayers. Moreover, western blot and flow cytometry analysis showed that SNEs containing polyunsaturated fatty acids (PUFAs) increased phospo-AKT (p-AKT) expression, a marker for the stimulation of metabolic arm of insulin signaling, and insulin uptake in hCMEC/D3 monolayers. However, olive oil nanoemulsions (ONEs) containing monounsaturated fatty acids (MUFAs) had no detectable impact on lipid raft integrity, AKT phosphorylation, or insulin uptake. These findings provided direct evidence that SNEs containing PUFAs can upregulate insulin-pAKT pathway, facilitate insulin trafficking at the BBB, and potentially address cerebrovascular dysfunction in metabolic and neurodegenerative diseases.
Collapse
Affiliation(s)
- Lushan Wang
- Department of Pharmaceutics, University of Minnesota, College of Pharmacy, Minneapolis, MN 55455, United States,Brain Barriers Research Center, University of Minnesota, College of Pharmacy, Minneapolis, MN 55455, United States
| | - Timothy S. Wiedmann
- Department of Pharmaceutics, University of Minnesota, College of Pharmacy, Minneapolis, MN 55455, United States
| | - Karunya K. Kandimalla
- Department of Pharmaceutics, University of Minnesota, College of Pharmacy, Minneapolis, MN 55455, United States,Brain Barriers Research Center, University of Minnesota, College of Pharmacy, Minneapolis, MN 55455, United States,Corresponding author. (K.K. Kandimalla)
| |
Collapse
|
16
|
Zhang BH, Yin F, Qiao YN, Guo SD. Triglyceride and Triglyceride-Rich Lipoproteins in Atherosclerosis. Front Mol Biosci 2022; 9:909151. [PMID: 35693558 PMCID: PMC9174947 DOI: 10.3389/fmolb.2022.909151] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Accepted: 05/06/2022] [Indexed: 12/11/2022] Open
Abstract
Cardiovascular disease (CVD) is still the leading cause of death globally, and atherosclerosis is the main pathological basis of CVDs. Low-density lipoprotein cholesterol (LDL-C) is a strong causal factor of atherosclerosis. However, the first-line lipid-lowering drugs, statins, only reduce approximately 30% of the CVD risk. Of note, atherosclerotic CVD (ASCVD) cannot be eliminated in a great number of patients even their LDL-C levels meet the recommended clinical goals. Previously, whether the elevated plasma level of triglyceride is causally associated with ASCVD has been controversial. Recent genetic and epidemiological studies have demonstrated that triglyceride and triglyceride-rich lipoprotein (TGRL) are the main causal risk factors of the residual ASCVD. TGRLs and their metabolites can promote atherosclerosis via modulating inflammation, oxidative stress, and formation of foam cells. In this article, we will make a short review of TG and TGRL metabolism, display evidence of association between TG and ASCVD, summarize the atherogenic factors of TGRLs and their metabolites, and discuss the current findings and advances in TG-lowering therapies. This review provides information useful for the researchers in the field of CVD as well as for pharmacologists and clinicians.
Collapse
Affiliation(s)
| | | | - Ya-Nan Qiao
- Institute of Lipid Metabolism and Atherosclerosis, Innovative Drug Research Centre, School of Pharmacy, Weifang Medical University, Weifang, China
| | - Shou-Dong Guo
- Institute of Lipid Metabolism and Atherosclerosis, Innovative Drug Research Centre, School of Pharmacy, Weifang Medical University, Weifang, China
| |
Collapse
|
17
|
Parnova RG. Critical Role of Endothelial Lysophosphatidylcholine Transporter Mfsd2a in Maintaining Blood–Brain Barrier Integrity and Delivering Omega 3 PUFA to the Brain. J EVOL BIOCHEM PHYS+ 2022. [DOI: 10.1134/s0022093022030103] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
18
|
Tadokoro Y, Hirao A. The Role of Nutrients in Maintaining Hematopoietic Stem Cells and Healthy Hematopoiesis for Life. Int J Mol Sci 2022; 23:1574. [PMID: 35163498 PMCID: PMC8836201 DOI: 10.3390/ijms23031574] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2021] [Revised: 01/26/2022] [Accepted: 01/26/2022] [Indexed: 02/04/2023] Open
Abstract
Nutrients are converted by the body to smaller molecules, which are utilized for both anabolic and catabolic metabolic reactions. Cooperative regulation of these processes is critical for life-sustaining activities. In this review, we focus on how the regulation of nutrient-driven metabolism maintains healthy hematopoietic stem cells (HSCs). For this purpose, we have examined the metabolic regulation of HSCs from two perspectives: (1) the control of intracellular metabolism by the balance of anabolic and catabolic reactions; and (2) the control of organismal metabolic status and hematopoiesis by dietary intake of nutrients. Critical roles of catabolic regulators in stem cell homeostasis are conserved in several types of tissues, including hematopoiesis. These catabolic signals are also major regulators of organismal lifespan in multiple species. In parallel, changes to nutrients via alterations to dietary intake affect not only an organism's metabolic state but also the behavior of its stem cells. While the molecular mechanisms involved in these two aspects of nutrient function may not necessarily overlap, a deeper understanding of these phenomena will point to new avenues of medical research and may furnish new agents for improving human health care.
Collapse
Affiliation(s)
- Yuko Tadokoro
- Division of Molecular Genetics, Cancer Research Institute, Kanazawa University, Kakuma-machi, Kanazawa 920-1192, Japan;
| | - Atsushi Hirao
- Division of Molecular Genetics, Cancer Research Institute, Kanazawa University, Kakuma-machi, Kanazawa 920-1192, Japan;
- WPI Nano Life Science Institute (WPI-Nano LSI), Kanazawa University, Kakuma-machi, Kanazawa 920-1192, Japan
| |
Collapse
|
19
|
Canner SW, Feller SE, Wassall SR. Molecular Organization of a Raft-like Domain in a Polyunsaturated Phospholipid Bilayer: A Supervised Machine Learning Analysis of Molecular Dynamics Simulations. J Phys Chem B 2021; 125:13158-13167. [PMID: 34812629 DOI: 10.1021/acs.jpcb.1c06511] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Numerous health benefits are associated with omega-3 polyunsaturated fatty acids (n-3 PUFA) consumed in fish oils. An understanding of the mechanism remains elusive. The plasma membrane as a site of action is the focus in this study. With large-scale all-atom MD simulations run on a model membrane (1050 lipid molecules), we observed the evolution over time (6 μs) of a circular (raft-like) domain composed of N-palmitoylsphingomyelin (PSM) and cholesterol embedded into a surrounding (non-raft) patch composed of polyunsaturated 1-palmitoyl-2-docosahexaenoylphosphatylcholine (PDPC) (1:1:1 mol). A supervised machine learning algorithm was developed to characterize the migration of each lipid based on molecular conformation and the local environment. PDPC molecules were seen to infiltrate the ordered raft-like domain in a small amount, while a small concentration of PSM and cholesterol molecules was seen to migrate into the disordered non-raft region. Enclosing the raft-like domain, a narrow (∼2 nm in width) interfacial zone composed of PDPC, PSM, and cholesterol that buffers the substantial difference in order (ΔSCD ≈ 0.12) between raft-like and non-raft environments was seen to form. Our results suggest that n-3 PUFA regulate the architecture of lipid rafts enriched in sphingolipids and cholesterol with a minimal effect on order within their interior in membranes.
Collapse
Affiliation(s)
- Samuel W Canner
- Department of Physics, IUPUI, Indianapolis, Indiana 46202-3273, United States.,Department of Computer and Information Science, IUPUI, Indianapolis, Indiana 46202-5132, United States
| | - Scott E Feller
- Department of Chemistry, Wabash College, Crawfordsville, Indiana 47933, United States
| | - Stephen R Wassall
- Department of Physics, IUPUI, Indianapolis, Indiana 46202-3273, United States
| |
Collapse
|
20
|
Newly marketed seed oils. What we can learn from the current status of authentication of edible oils. Food Control 2021. [DOI: 10.1016/j.foodcont.2021.108349] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
21
|
Welboren AC, Hatew B, Renaud JB, Leal LN, Martín-Tereso J, Steele MA. Intestinal adaptations to energy source of milk replacer in neonatal dairy calves. J Dairy Sci 2021; 104:12079-12093. [PMID: 34454754 DOI: 10.3168/jds.2021-20516] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2021] [Accepted: 07/07/2021] [Indexed: 11/19/2022]
Abstract
Most milk replacers (MR) contain more lactose compared with whole milk, which, when fed at a large meal size, could influence gut barrier function in calves. This study evaluated how replacing lactose in MR with fat (on a wt/wt basis) affects intestinal histomorphology and permeability in neonatal dairy calves. Thirty-four Holstein-Friesian bull calves were blocked by dam parity and randomly assigned to 1 of 2 treatments (n = 17): a high-lactose (46.1% lactose, 18.0% crude fat, and 23.9% crude protein of dry matter) or a high-fat MR (HF; 39.9% lactose, 24.6% crude fat, and 24.0% crude protein of dry matter). Calves were individually housed and fed pooled colostrum at 1.5 h and 12 h postnatally, at 18 and 9% of metabolic body weight (BW0.75), respectively. From 24 h postnatally until the end of the study (d 7), calves were transitioned to be fed MR (prepared at 15% solids) at 18% of BW0.75 twice daily at 0700 and 1900 h. During postprandial sampling on d 6, intestinal permeability was assessed by mixing lactulose (1.03 g/kg of BW0.75) and d-mannitol (0.31 g/kg of BW0.75) into the morning meal without altering total meal volume. Sequential blood samples were collected via jugular catheter, and total urine was collected for 12 h to measure the marker content. Calves were euthanized 3 h after the morning meal on d 7, and gastrointestinal tract tissues and digesta were collected for analysis of histomorphology, digesta osmolality, and gene expression. The empty gastrointestinal tracts of HF calves were heavier, although length did not differ and differences in histomorphology were minor. Digesta osmolality changed along the tract without differences between treatments. Plasma lactulose was greater in HF, although plasma d-mannitol and the recovery of both markers in urine were unaffected. No significant differences were detected in gene expression, although HF calves tended to have lower expression of TJP1 and CLDN2 and higher expression of proinflammatory cytokine IL1B in ileum tissue. In conclusion, partially replacing lactose in MR with fat resulted in a heavier and more permeable gut, with minor histomorphological differences.
Collapse
Affiliation(s)
- A C Welboren
- Department of Animal Biosciences, University of Guelph, Guelph, ON, Canada, N1G 2W1
| | - B Hatew
- Department of Agricultural, Food and Nutritional Science, University of Alberta, Edmonton, AB, Canada, T6G 2P5
| | - J B Renaud
- London Research and Development Centre, Agriculture and Agri-Food Canada, London, ON, Canada, N5V 4T3
| | - L N Leal
- Trouw Nutrition Research and Development, PO Box 299, 3800 AG, Amersfoort, the Netherlands
| | - J Martín-Tereso
- Trouw Nutrition Research and Development, PO Box 299, 3800 AG, Amersfoort, the Netherlands
| | - M A Steele
- Department of Animal Biosciences, University of Guelph, Guelph, ON, Canada, N1G 2W1; Department of Agricultural, Food and Nutritional Science, University of Alberta, Edmonton, AB, Canada, T6G 2P5.
| |
Collapse
|
22
|
Sherratt SCR, Juliano RA, Copland C, Bhatt DL, Libby P, Mason RP. EPA and DHA containing phospholipids have contrasting effects on membrane structure. J Lipid Res 2021; 62:100106. [PMID: 34400132 PMCID: PMC8430377 DOI: 10.1016/j.jlr.2021.100106] [Citation(s) in RCA: 40] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2021] [Revised: 07/21/2021] [Accepted: 07/30/2021] [Indexed: 11/26/2022] Open
Abstract
Omega-3 FAs EPA and DHA influence membrane fluidity, lipid rafts, and signal transduction. A clinical trial, Reduction of Cardiovascular Events with Icosapent Ethyl-Intervention Trial, demonstrated that high-dose EPA (4 g/d icosapent ethyl) reduced composite cardiovascular events in statin-treated high-risk patients. EPA benefits correlated with on-treatment levels, but similar trials using DHA-containing formulations did not show event reduction. We hypothesized that differences in clinical efficacy of various omega-3 FA preparations could result from differential effects on membrane structure. To test this, we used small-angle X-ray diffraction to compare 1-palmitoyl-2-eicosapentaenoyl-sn-glycero-3-phosphocholine (PL-EPA), 1-palmitoyl-2-docosahexaenoyl-sn-glycero-3-phosphocholine (PL-DHA), and 1-palmitoyl-2-arachidonoyl-sn-glycero-3-phosphocholine (PL-AA) in membranes with and without 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphocholine (POPC) and cholesterol. Electron density profiles (electrons/Å3 vs. Å) were used to determine membrane structure, including membrane width (d-space). PL-EPA and PL-DHA had similar membrane structures without POPC and/or cholesterol but had contrasting effects in the presence of POPC and cholesterol. PL-EPA increased membrane hydrocarbon core electron density over an area of ±0-10 Å from the center, indicating an extended orientation. PL-DHA increased electron density in the phospholipid head group region, concomitant with disordering in the hydrocarbon core and a similar d-space (58 Å). Adding equimolar amounts of PL-EPA and PL-DHA produced changes that were attenuated compared with their separate effects. PL-AA increased electron density centered ±12 Å from the membrane center. The contrasting effects of PL-EPA, PL-DHA, and PL-AA on membrane structure may contribute to differences observed in the biological activities and clinical actions of various omega-3 FAs.
Collapse
Affiliation(s)
- Samuel C R Sherratt
- Elucida Research LLC, Beverly, MA, USA; Department of Molecular, Cellular, and Biomedical Sciences, University of New Hampshire, Durham, NH, USA
| | | | | | - Deepak L Bhatt
- Department of Medicine, Cardiovascular Division, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Peter Libby
- Department of Medicine, Cardiovascular Division, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - R Preston Mason
- Elucida Research LLC, Beverly, MA, USA; Department of Medicine, Cardiovascular Division, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
23
|
Yasuzawa T, Nakamura T, Ueshima S, Mima A. Protective Effects of Eicosapentaenoic Acid on the Glomerular Endothelium via Inhibition of EndMT in Diabetes. J Diabetes Res 2021; 2021:2182225. [PMID: 34977254 PMCID: PMC8720008 DOI: 10.1155/2021/2182225] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Revised: 11/29/2021] [Accepted: 11/30/2021] [Indexed: 12/11/2022] Open
Abstract
Diabetes-induced endothelial pathologies are hypothesized to lead to the progression of diabetic kidney disease (DKD). The endothelial to mesenchymal transition (EndMT) possibly induces fibrosis, leading to glomerulosclerosis in the kidney. Furthermore, this could lead to albuminuria in diabetic nephropathy due to glomerular endothelial dysfunction. Eicosapentaenoic acid (EPA), purified from fish oil, decreases inflammatory cytokine levels in glomerulonephritis. Here, we aimed at finding whether ethyl eicosapentaenoate (EPA-E) exerts renal protective effects via EndMT inhibition. To find out whether EPA inhibits EndMT in vitro, the changes in CD31 expression were studied in cultured mouse endothelial cells. The addition of the conditioned medium from the adipocyte culture significantly decreased the protein levels of CD31, while the addition of EPA-E partially reversed this inhibition. Further, EndMT inhibition by EPA-E treatment might occur via the inhibition of the protein kinase Cβ (PKCβ)/transforming growth factor-β (TGF-β)/plasminogen activator inhibitor-1 (PAI-1) signaling and not via microRNAs. Streptozotocin-induced diabetic mice fed a high-fat diet (60% from fat) exhibited mesangial expansion and albuminuria. Induction of EPA-E ameliorated the mesangial expansion and decreased albuminuria without affecting blood pressure, triglyceride and free fatty acid levels, and intraperitoneal glucose. These findings suggest that EPA-E exerts renal protective effects on endothelial cells, by normalizing EndMT followed by the PKCβ/TGF-β/PAI-1 signaling. Thus, EPA-E has the potential for imparting renal protection by regulating EndMT in DKD.
Collapse
Affiliation(s)
- Toshinori Yasuzawa
- Department of Nephrology, Osaka Medical and Pharmaceutical University, Osaka, Japan
- Department of Food Science and Nutrition, Faculty of Agriculture, Kindai University, Nara, Japan
- Department of Health and Nutrition, Faculty of Health Science, Kio University, Nara, Japan
| | - Tomomi Nakamura
- Department of Food Science and Nutrition, Faculty of Agriculture, Kindai University, Nara, Japan
| | - Shigeru Ueshima
- Department of Food Science and Nutrition, Faculty of Agriculture, Kindai University, Nara, Japan
| | - Akira Mima
- Department of Nephrology, Osaka Medical and Pharmaceutical University, Osaka, Japan
| |
Collapse
|
24
|
Kakhlon O, Escriba PV, Akman HO, Weil M. Editorial: Using Small Molecules to Treat Macromolecule Storage Disorders. Front Cell Dev Biol 2020; 8:623613. [PMID: 33330518 PMCID: PMC7729068 DOI: 10.3389/fcell.2020.623613] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2020] [Accepted: 11/12/2020] [Indexed: 11/13/2022] Open
Affiliation(s)
- Or Kakhlon
- Department of Neurology, Hadassah-Hebrew University Medical Center, Jerusalem, Israel
| | - Pablo V Escriba
- Laboratory of Molecular Cell Biomedicine, Department of Biology, University of the Balearic Islands, Palma de Mallorca, Spain
| | - Hasan O Akman
- Department of Neurology, Columbia University Medical Center, New York, NY, United States
| | - Miguel Weil
- Laboratory for Neurodegenerative Diseases and Personalized Medicine, The Shmunis Schools of Biomedicine and Cancer Research, The George S. Wise Faculty for Life Sciences, Sagol School of Neurosciences, Tel Aviv University, Tel Aviv, Israel
| |
Collapse
|
25
|
Katsnelson G, Ceddia RB. Docosahexaenoic and eicosapentaenoic fatty acids differentially regulate glucose and fatty acid metabolism in L6 rat skeletal muscle cells. Am J Physiol Cell Physiol 2020; 319:C1120-C1129. [PMID: 32966124 DOI: 10.1152/ajpcell.00304.2020] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The objective of this study was to investigate whether the n-3 polyunsaturated fatty acids (PUFAs) docosahexaenoic acid (DHA) and eicosapentaenoic acid (EPA) can directly regulate glucose and fat metabolism in skeletal muscle besides exerting anti-inflammatory effects. To accomplish this, L6 skeletal muscle cells were treated with 50 µM of either DHA or EPA for 1, 3, and 5 days. Here, we report that basal and insulin-stimulated rates of glucose uptake, glycogen synthesis, protein kinase B (AKT), and glycogen synthase kinase 3 (GSK3) phosphorylation were not affected by DHA or EPA. However, glucose and palmitate oxidation were consistently elevated by DHA treatment, whereas EPA only increased this variable transiently. Similarly, only DHA caused significant and sustained increases in AMP-activated protein kinase (AMPK) phosphorylation and protein levels of carnitine-palmitoyl transferase-1b (CPT1b) and peroxisome proliferator-activated receptor gamma coactivator-1α (PGC-1α) in skeletal muscle cells. DHA also caused a larger anti-inflammatory effect than EPA in these cells. In conclusion, besides exerting anti-inflammatory effects, DHA and EPA directly regulated glucose and fat metabolism in skeletal muscle cells, although DHA was more effective in doing so than EPA. Thus, by directly enhancing glucose and fat oxidation, DHA may increase glucose disposal and reduce intramyocellular lipid accumulation.
Collapse
Affiliation(s)
- Glen Katsnelson
- Muscle Health Research Center, School of Kinesiology and Health Science, York University, Toronto, Ontario, Canada
| | - Rolando B Ceddia
- Muscle Health Research Center, School of Kinesiology and Health Science, York University, Toronto, Ontario, Canada
| |
Collapse
|
26
|
Acharya P, Uppin V, Zarei M, Talahalli RR. Role of n-3 Fatty Acids on Bile Acid Metabolism and Transport in Dyslipidemia: A Review. Lipids 2020; 56:125-139. [PMID: 33074554 DOI: 10.1002/lipd.12289] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2019] [Revised: 05/19/2020] [Accepted: 09/22/2020] [Indexed: 11/06/2022]
Abstract
Dietary n-3 fatty acids, especially of marine origin, eicosapentaenoic acid (20:5n-3) and docosahexaenoic acid (22:6n-3), have always been lauded for their profound effects on regulating the risk factors for major metabolic disorders. Yet, their consumption rate is poor compared to n-6 fatty acids [linoleic acid (18:2n-6)], which are predominantly consumed. Hence, the skewed n-6 to n-3 fatty acid ratio may have a bearing on the risk factors of various diseases, including dyslipidemia. Dyslipidemia and other lifestyle diseases associated with it, such as diabetes, obesity, hypertension, are a growing concern in both developed and developing countries. A common strategy for addressing dyslipidemia involves bile acid (BA) sequestration, to interrupt the enterohepatic circulation of BA, resulting in the modulation of lipid absorption in the intestine, thereby normalizing the levels of circulating lipids. The BA homeostasis is under the tight control of hepatic and enteric BA transporters. Many investigations have reported the effects of dietary constituents, including certain fatty acids on the reabsorption and transport of BA. However, a critical review of the effects of n-3 fatty acids on BA metabolism and transport is not available. The present review attempts to explore certain unmapped facets of the n-3 fatty acids on BA metabolism and transport in dyslipidemia, and their interplay with biological processes involving lipid rafts and gut microbiome.
Collapse
Affiliation(s)
- Pooja Acharya
- Department of Biochemistry, CSIR-Central Food Technological Research Institute, KRS Road, Mysore, Karnataka, 570020, India.,Academy of Scientific and Innovative Research (AcSIR), Kamla Nehru Nagar, Ghaziabad, Uttar Pradesh, 201002, India
| | - Vinayak Uppin
- Department of Biochemistry, CSIR-Central Food Technological Research Institute, KRS Road, Mysore, Karnataka, 570020, India.,Academy of Scientific and Innovative Research (AcSIR), Kamla Nehru Nagar, Ghaziabad, Uttar Pradesh, 201002, India
| | - Mehrdad Zarei
- Department of Biochemistry, CSIR-Central Food Technological Research Institute, KRS Road, Mysore, Karnataka, 570020, India
| | - Ramaprasad R Talahalli
- Department of Biochemistry, CSIR-Central Food Technological Research Institute, KRS Road, Mysore, Karnataka, 570020, India.,Academy of Scientific and Innovative Research (AcSIR), Kamla Nehru Nagar, Ghaziabad, Uttar Pradesh, 201002, India
| |
Collapse
|
27
|
O'Connell TD, Mason RP, Budoff MJ, Navar AM, Shearer GC. Mechanistic insights into cardiovascular protection for omega-3 fatty acids and their bioactive lipid metabolites. Eur Heart J Suppl 2020; 22:J3-J20. [PMID: 33061864 PMCID: PMC7537803 DOI: 10.1093/eurheartj/suaa115] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Patients with well-controlled low-density lipoprotein cholesterol levels, but persistent high triglycerides, remain at increased risk for cardiovascular events as evidenced by multiple genetic and epidemiologic studies, as well as recent clinical outcome trials. While many trials of low-dose ω3-polyunsaturated fatty acids (ω3-PUFAs), eicosapentaenoic acid (EPA), and docosahexaenoic acid (DHA) have shown mixed results to reduce cardiovascular events, recent trials with high-dose ω3-PUFAs have reignited interest in ω3-PUFAs, particularly EPA, in cardiovascular disease (CVD). REDUCE-IT demonstrated that high-dose EPA (4 g/day icosapent-ethyl) reduced a composite of clinical events by 25% in statin-treated patients with established CVD or diabetes and other cardiovascular risk factors. Outcome trials in similar statin-treated patients using DHA-containing high-dose ω3 formulations have not yet shown the benefits of EPA alone. However, there are data to show that high-dose ω3-PUFAs in patients with acute myocardial infarction had reduced left ventricular remodelling, non-infarct myocardial fibrosis, and systemic inflammation. ω3-polyunsaturated fatty acids, along with their metabolites, such as oxylipins and other lipid mediators, have complex effects on the cardiovascular system. Together they target free fatty acid receptors and peroxisome proliferator-activated receptors in various tissues to modulate inflammation and lipid metabolism. Here, we review these multifactorial mechanisms of ω3-PUFAs in view of recent clinical findings. These findings indicate physico-chemical and biological diversity among ω3-PUFAs that influence tissue distributions as well as disparate effects on membrane organization, rates of lipid oxidation, as well as various receptor-mediated signal transduction pathways and effects on gene expression.
Collapse
Affiliation(s)
- Timothy D O'Connell
- Department of Integrative Biology and Physiology, University of Minnesota, 3-141 CCRB, 2231 6th Street SE, Minneapolis, MN 55414, USA
| | - Richard Preston Mason
- Cardiovascular Division, Department of Medicine, Brigham and Women's Hospital, Boston, MA, USA
| | - Matthew J Budoff
- Cardiovascular Division, Department of Medicine, University of California Los Angeles, Los Angeles, CA, USA
| | - Ann Marie Navar
- Cardiovascular Division, Duke Clinical Research Institute, Duke University, Durham, NC, USA
| | - Gregory C Shearer
- Department of Nutritional Sciences, The Pennsylvania State University, 110 Chandlee Laboratory, University Park, PA 16802, USA
| |
Collapse
|
28
|
Kinnun JJ, Bolmatov D, Lavrentovich MO, Katsaras J. Lateral heterogeneity and domain formation in cellular membranes. Chem Phys Lipids 2020; 232:104976. [PMID: 32946808 PMCID: PMC7491465 DOI: 10.1016/j.chemphyslip.2020.104976] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2020] [Revised: 09/11/2020] [Accepted: 09/12/2020] [Indexed: 12/17/2022]
Abstract
As early as the development of the fluid mosaic model for cellular membranes, researchers began observing the telltale signs of lateral heterogeneity. Over the decades this has led to the development of the lipid raft hypothesis and the ensuing controversy that has unfolded, as a result. Here, we review the physical concepts behind domain formation in lipid membranes, both of their structural and dynamic origins. This, then leads into a discussion of coarse-grained, phenomenological approaches that describe the wide range of phases associated with lipid lateral heterogeneity. We use these physical concepts to describe the interaction between raft-lipid species, such as long-chain saturated lipids, sphingomyelin, and cholesterol, and non-raft forming lipids, such as those with short acyl chains or unsaturated fatty acids. While debate has persisted on the biological relevance of lipid domains, recent research, described here, continues to identify biological roles for rafts and new experimental approaches have revealed the existence of lipid domains in living systems. Given the recent progress on both the biological and structural aspects of raft formation, the research area of membrane lateral heterogeneity will not only expand, but will continue to produce exciting results.
Collapse
Affiliation(s)
- Jacob J Kinnun
- Large Scale Structures Group, Neutron Scattering Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831, United States; Shull-Wollan Center, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831, United States.
| | - Dima Bolmatov
- Large Scale Structures Group, Neutron Scattering Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831, United States; Shull-Wollan Center, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831, United States; Department of Physics and Astronomy, University of Tennessee, Knoxville, TN 37996, United States.
| | - Maxim O Lavrentovich
- Shull-Wollan Center, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831, United States; Department of Physics and Astronomy, University of Tennessee, Knoxville, TN 37996, United States.
| | - John Katsaras
- Shull-Wollan Center, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831, United States; Department of Physics and Astronomy, University of Tennessee, Knoxville, TN 37996, United States; Sample Environment Group, Neutron Scattering Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831, United States.
| |
Collapse
|
29
|
Cavazos AT, Kinnun JJ, Williams JA, Wassall SR. Vitamin E - phosphatidylethanolamine interactions in mixed membranes with sphingomyelin: Studies by 2H NMR. Chem Phys Lipids 2020; 231:104910. [PMID: 32492380 DOI: 10.1016/j.chemphyslip.2020.104910] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2020] [Revised: 03/14/2020] [Accepted: 03/21/2020] [Indexed: 01/13/2023]
Abstract
Among the structurally diverse collection of lipids that comprise the membrane lipidome, polyunsaturated phospholipids are particularly vulnerable to oxidation. The role of α-tocopherol (vitamin E) is to protect this influential class of membrane phospholipid from oxidative damage. Whether lipid-lipid interactions play a role in supporting this function is an unanswered question. Here, we compare the molecular organization of polyunsaturated 1-[2H31]palmitoyl-2-docosahexaenoylphosphatidylethanolamine (PDPE-d31) and, as a control, monounsaturated 1-[2H31]palmitoyl-2-oleoylphosphatidylethanolamine (POPE-d31) mixed with sphingomyelin (SM) and α-tocopherol (α-toc) (2:2:1 mol) by solid-state 2H NMR spectroscopy. In both cases the effect of α-toc appears similar. Spectral moments reveal that the main chain melting transition of POPE-d31 and PDPE-d31 is broadened beyond detection. A spectral component attributed to the formation of inverted hexagonal HII phase in coexistence with lamellar Lα phase by POPE-d31 (20 %) and PDPE-d31 (18 %) is resolved following the addition of α-toc. Order parameters in the remaining Lα phase are increased slightly more for POPE-d31 (7%) than PDPE-d31 (4%). Preferential interaction with polyunsaturated phospholipid is not apparent in these results. The propensity for α-toc to form phase structure with negative curvature that is more tightly packed at the membrane surface, nevertheless, may restrict the contact of free radicals with lipid chains on phosphatidylethanolamine molecules that accumulate polyunsaturated fatty acids.
Collapse
Affiliation(s)
- Andres T Cavazos
- Department of Physics, Indiana University-Purdue University, Indianapolis, IN, 46202, United States
| | - Jacob J Kinnun
- Department of Physics, Indiana University-Purdue University, Indianapolis, IN, 46202, United States
| | - Justin A Williams
- Department of Physics, Indiana University-Purdue University, Indianapolis, IN, 46202, United States
| | - Stephen R Wassall
- Department of Physics, Indiana University-Purdue University, Indianapolis, IN, 46202, United States.
| |
Collapse
|
30
|
Omega-3 PUFA Responders and Non-Responders and the Prevention of Lipid Dysmetabolism and Related Diseases. Nutrients 2020; 12:nu12051363. [PMID: 32397619 PMCID: PMC7284582 DOI: 10.3390/nu12051363] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2020] [Revised: 05/01/2020] [Accepted: 05/07/2020] [Indexed: 02/07/2023] Open
Abstract
The long-chain omega-3 polyunsaturated fatty acids (LC-omega-3 PUFAs) eicosapentaenoic acid and docosahexaenoic acid are the most popular dietary supplements recommended for the prevention/management of lipid dysmetabolisms and related diseases. However, remarkable inconsistencies exist among the outcomes of the human intervention studies in this field, which contrast with the impressive homogeneity of positive results of most of the preclinical studies. In the present review, we will firstly examine a series of factors-such as background diet composition, gut microbiota and genetic/epigenetic variants, which may lie beneath these inconsistencies. Moreover, we will discuss the recent advance in the knowledge of possible specific biomarkers (genetic-, epigenetic- and microbiota-related) that are being investigated with the goal to apply them in a personalized supplementation with omega-3 PUFAs. We will also consider the possibility of using already available parameters (Omega-3 index, Omega-6 PUFA/Omega-3 PUFA ratio) able to predict the individual responsiveness to these fatty acids and will discuss the optimal timing for their use. Finally, we will critically examine the results of those human studies that have already adopted the distinction of the subjects into omega-3 PUFA responders and non-responders and will discuss the advantage of using such an approach.
Collapse
|
31
|
Mason RP, Libby P, Bhatt DL. Emerging Mechanisms of Cardiovascular Protection for the Omega-3 Fatty Acid Eicosapentaenoic Acid. Arterioscler Thromb Vasc Biol 2020; 40:1135-1147. [PMID: 32212849 PMCID: PMC7176343 DOI: 10.1161/atvbaha.119.313286] [Citation(s) in RCA: 248] [Impact Index Per Article: 49.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2019] [Accepted: 03/03/2020] [Indexed: 02/07/2023]
Abstract
Patients with well-controlled LDL (low-density lipoprotein) levels still have residual cardiovascular risk associated with elevated triglycerides. Epidemiological studies have shown that elevated fasting triglyceride levels associate independently with incident cardiovascular events, and abundant recent human genetic data support the causality of TGRLs (triglyceride-rich lipoproteins) in atherothrombosis. Omega-3 fatty acids, such as eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA), lower blood triglyceride concentrations but likely exert additional atheroprotective properties at higher doses. Omega-3 fatty acids modulate T-cell differentiation and give rise to various prostaglandins and specialized proresolving lipid mediators that promote resolution of tissue injury and inflammation. The REDUCE-IT (Reduction of Cardiovascular Events with Icosapent Ethyl-Intervention Trial) with an EPA-only formulation lowered a composite of cardiovascular events by 25% in patients with established cardiovascular disease or diabetes mellitus and other cardiovascular risk factors. This clinical benefit likely arises from multiple molecular mechanisms discussed in this review. Indeed, human plaques readily incorporate EPA, which may render them less likely to trigger clinical events. EPA and DHA differ in their effects on membrane structure, rates of lipid oxidation, inflammatory biomarkers, and endothelial function as well as tissue distributions. Trials that have evaluated DHA-containing high-dose omega-3 fatty acids have thus far not shown the benefits of EPA alone demonstrated in REDUCE-IT. This review will consider the mechanistic evidence that helps to understand the potential mechanisms of benefit of EPA.
Collapse
Affiliation(s)
- R. Preston Mason
- From the Cardiovascular Division, Department of Medicine, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA (R.P.M., P.L., D.L.B.)
- Elucida Research LLC, Beverly, MA (R.P.M.)
| | - Peter Libby
- From the Cardiovascular Division, Department of Medicine, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA (R.P.M., P.L., D.L.B.)
| | - Deepak L. Bhatt
- From the Cardiovascular Division, Department of Medicine, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA (R.P.M., P.L., D.L.B.)
| |
Collapse
|
32
|
Di Miceli M, Bosch-Bouju C, Layé S. PUFA and their derivatives in neurotransmission and synapses: a new hallmark of synaptopathies. Proc Nutr Soc 2020; 79:1-16. [PMID: 32299516 DOI: 10.1017/s0029665120000129] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
PUFA of the n-3 and n-6 families are present in high concentration in the brain where they are major components of cell membranes. The main forms found in the brain are DHA (22 :6, n-3) and arachidonic acid (20:4, n-6). In the past century, several studies pinpointed that modifications of n-3 and n-6 PUFA levels in the brain through dietary supply or genetic means are linked to the alterations of synaptic function. Yet, synaptopathies emerge as a common characteristic of neurodevelopmental disorders, neuropsychiatric diseases and some neurodegenerative diseases. Understanding the mechanisms of action underlying the activity of PUFA at the level of synapses is thus of high interest. In this frame, dietary supplementation in PUFA aiming at restoring or promoting the optimal function of synapses appears as a promising strategy to treat synaptopathies. This paper reviews the link between dietary PUFA, synapse formation and the role of PUFA and their metabolites in synaptic functions.
Collapse
Affiliation(s)
- Mathieu Di Miceli
- INRAE, University of Bordeaux, Bordeaux INP, NutriNeuro, UMR 1286, F-33000, Bordeaux, France
| | - Clémentine Bosch-Bouju
- INRAE, University of Bordeaux, Bordeaux INP, NutriNeuro, UMR 1286, F-33000, Bordeaux, France
| | - Sophie Layé
- INRAE, University of Bordeaux, Bordeaux INP, NutriNeuro, UMR 1286, F-33000, Bordeaux, France
| |
Collapse
|
33
|
Saxena N, Chandra NC. Cholesterol: A Prelate in Cell Nucleus and its Serendipity. Curr Mol Med 2020; 20:692-707. [PMID: 32282300 DOI: 10.2174/1566524020666200413112030] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2019] [Revised: 03/16/2020] [Accepted: 03/17/2020] [Indexed: 11/22/2022]
Abstract
Cholesterol is a chameleon bio-molecule in cellular multiplex. It acts as a prelate in almost every cellular compartment with its site specific characteristics viz. regulation of structural veracity and scaffold fluidity of bio-membranes, insulation of electrical transmission in nerves, controlling of genes by making steroid endocrines, acting as precursors of metabolic regulators and many more with its emerging prophecy in the cell nucleus to drive new cell formation. Besides the crucial legacy in cellular functionality, cholesterol is ostracized as a member of LDL particle, which has been proved responsible to clog blood vessels. LDL particles get deposited in the blood vessels because of their poor clearance owing to the non-functioning LDL receptor on the vessel wall and surrounding tissues. Blocking of blood vessel promotes heart attack and stroke. On the other hand, cholesterol has been targeted as pro-cancerous molecule. At this phase again cholesterol is biphasic. Although cholesterol is essential to construct nuclear membrane and its lipid-rafts; in cancer tumour cells, cholesterol is not under the control of intracellular feedback regulation and gets accumulated within cell nucleus by crossing nuclear membrane and promoting cell proliferation. In precancerous stage, the immune cells also die because of the lack of requisite concentration of intracellular and intranuclear cholesterol pool. The existence of cholesterol within the cell nucleus has been found in the nuclear membrane, epichromosomal location and nucleoplasm. The existence of cholesterol in the microdomain of nuclear raft has been reported to be linked with gene transcription, cell proliferation and apoptosis. Hydrolysis of cholesterol esters in chromosomal domain is linked with new cell generation. Apparently, Cholesterol is now a prelate in cell nucleus too ------ A serendipity in cellular haven.
Collapse
Affiliation(s)
- Nimisha Saxena
- Department of Biochemistry, KDMCH & Research Center, Akbarpur, Mathura - 281406, India
| | - Nimai Chand Chandra
- Department of Biochemistry, All India Institute of Medical Sciences, Phulwarisharif, Patna - 801507, India
| |
Collapse
|
34
|
Wu H, Xu L, Ballantyne CM. Dietary and Pharmacological Fatty Acids and Cardiovascular Health. J Clin Endocrinol Metab 2020; 105:dgz174. [PMID: 31678992 PMCID: PMC7174038 DOI: 10.1210/clinem/dgz174] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/20/2019] [Accepted: 11/01/2019] [Indexed: 12/30/2022]
Abstract
CONTEXT The effects of dietary intake of different fatty acids and pharmacological use of fatty acids, specifically long-chain n-3 polyunsaturated fatty acids (LC n-3 PUFAs), on cardiovascular health and atherosclerotic cardiovascular disease (ASCVD) prevention have been examined in a large number of observational studies and clinical trials. This review summarizes recent data and discusses potential mechanisms. EVIDENCE ACQUISITION The review is based on the authors' knowledge of the field supplemented by a PubMed search using the terms seafood, fish oil, saturated fatty acids, omega-3 fatty acids, eicosapentaenoic acid, docosahexaenoic acid, polyunsaturated fatty acids, monounsaturated fatty acids, and ASCVD. EVIDENCE SYNTHESIS We mainly discuss the recent clinical trials that examine the effects of different types of dietary fatty acids and pharmacological use of n-3 PUFA products on ASCVD prevention and the potential mechanisms. CONCLUSIONS While replacement of dietary saturated fat with unsaturated fat, polyunsaturated fat in particular, or intake of LC n-3 PUFA-rich seafood has generally shown benefit for ASCVD prevention and is recommended for cardiovascular benefits, data on effects of n-3 PUFA products on ASCVD health are inconsistent. However, recent clinical trials support benefits of prescription EPA in ASCVD prevention. n-3 PUFAs may contribute to ASCVD prevention through multiple mechanisms, including lowering plasma triglyceride levels, anti-inflammatory effects, antithrombotic effects, and effects on endothelial function.
Collapse
Affiliation(s)
- Huaizhu Wu
- Department of Medicine, Baylor College of Medicine, Houston, Texas
| | - Lu Xu
- Department of Medicine, Baylor College of Medicine, Houston, Texas
| | | |
Collapse
|
35
|
Parets S, Irigoyen Á, Ordinas M, Cabot J, Miralles M, Arbona L, Péter M, Balogh G, Fernández-García P, Busquets X, Lladó V, Escribá PV, Torres M. 2-Hydroxy-Docosahexaenoic Acid Is Converted Into Heneicosapentaenoic Acid via α-Oxidation: Implications for Alzheimer's Disease Therapy. Front Cell Dev Biol 2020; 8:164. [PMID: 32292781 PMCID: PMC7122748 DOI: 10.3389/fcell.2020.00164] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2019] [Accepted: 02/28/2020] [Indexed: 12/22/2022] Open
Abstract
Alzheimer’s disease (AD) is a neurodegenerative disease with as yet no efficient therapies, the pathophysiology of which is still largely unclear. Many drugs and therapies have been designed and developed in the past decade to stop or slow down this neurodegenerative process, although none has successfully terminated a phase-III clinical trial in humans. Most therapies have been inspired by the amyloid cascade hypothesis, which has more recently come under question due to the almost complete failure of clinical trials of anti-amyloid/tau therapies to date. To shift the perspective for the design of new AD therapies, membrane lipid therapy has been tested, which assumes that brain lipid alterations lie upstream in the pathophysiology of AD. A hydroxylated derivative of docosahexaenoic acid was used, 2-hydroxy-docosahexaenoic acid (DHA-H), which has been tested in a number of animal models and has shown efficacy against hallmarks of AD pathology. Here, for the first time, DHA-H is shown to undergo α-oxidation to generate the heneicosapentaenoic acid (HPA, C21:5, n-3) metabolite, an odd-chain omega-3 polyunsaturated fatty acid that accumulates in cell cultures, mouse blood plasma and brain tissue upon DHA-H treatment, reaching higher concentrations than those of DHA-H itself. Interestingly, DHA-H does not share metabolic routes with its natural analog DHA (C22:6, n-3) but rather, DHA-H and DHA accumulate distinctly, both having different effects on cell fatty acid composition. This is partly explained because DHA-H α-hydroxyl group provokes steric hindrance on fatty acid carbon 1, which in turn leads to diminished incorporation into cell lipids and accumulation as free fatty acid in cell membranes. Finally, DHA-H administration to mice elevated the brain HPA levels, which was directly and positively correlated with cognitive spatial scores in AD mice, apparently in the absence of DHA-H and without any significant change in brain DHA levels. Thus, the evidence presented in this work suggest that the metabolic conversion of DHA-H into HPA could represent a key event in the therapeutic effects of DHA-H against AD.
Collapse
Affiliation(s)
- Sebastià Parets
- Laboratory of Molecular Cell Biomedicine, Department of Biology, University of the Balearic Islands, Palma de Mallorca, Spain.,Department of Neurosciences and Neurology, Laminar Pharmaceuticals SL, Palma de Mallorca, Spain
| | - Ángel Irigoyen
- Instrumental Techniques Laboratory, DDUNAV-Drug Development Unit-University of Navarra, Pamplona, Spain
| | - Margarita Ordinas
- Laboratory of Molecular Cell Biomedicine, Department of Biology, University of the Balearic Islands, Palma de Mallorca, Spain
| | - Joan Cabot
- Department of Neurosciences and Neurology, Laminar Pharmaceuticals SL, Palma de Mallorca, Spain
| | - Marc Miralles
- Laboratory of Molecular Cell Biomedicine, Department of Biology, University of the Balearic Islands, Palma de Mallorca, Spain.,Department of Neurosciences and Neurology, Laminar Pharmaceuticals SL, Palma de Mallorca, Spain
| | - Laura Arbona
- Laboratory of Molecular Cell Biomedicine, Department of Biology, University of the Balearic Islands, Palma de Mallorca, Spain
| | - Mária Péter
- Institute of Biochemistry, Biological Research Centre, Szeged, Hungary
| | - Gábor Balogh
- Institute of Biochemistry, Biological Research Centre, Szeged, Hungary
| | - Paula Fernández-García
- Laboratory of Molecular Cell Biomedicine, Department of Biology, University of the Balearic Islands, Palma de Mallorca, Spain.,Department of Neurosciences and Neurology, Laminar Pharmaceuticals SL, Palma de Mallorca, Spain
| | - Xavier Busquets
- Laboratory of Molecular Cell Biomedicine, Department of Biology, University of the Balearic Islands, Palma de Mallorca, Spain
| | - Victoria Lladó
- Laboratory of Molecular Cell Biomedicine, Department of Biology, University of the Balearic Islands, Palma de Mallorca, Spain.,Department of Neurosciences and Neurology, Laminar Pharmaceuticals SL, Palma de Mallorca, Spain
| | - Pablo V Escribá
- Laboratory of Molecular Cell Biomedicine, Department of Biology, University of the Balearic Islands, Palma de Mallorca, Spain.,Department of Neurosciences and Neurology, Laminar Pharmaceuticals SL, Palma de Mallorca, Spain
| | - Manuel Torres
- Laboratory of Molecular Cell Biomedicine, Department of Biology, University of the Balearic Islands, Palma de Mallorca, Spain.,Department of Neurosciences and Neurology, Laminar Pharmaceuticals SL, Palma de Mallorca, Spain
| |
Collapse
|
36
|
Sherratt SCR, Juliano RA, Mason RP. Eicosapentaenoic acid (EPA) has optimal chain length and degree of unsaturation to inhibit oxidation of small dense LDL and membrane cholesterol domains as compared to related fatty acids in vitro. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2020; 1862:183254. [PMID: 32135144 DOI: 10.1016/j.bbamem.2020.183254] [Citation(s) in RCA: 43] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/18/2019] [Revised: 02/14/2020] [Accepted: 02/29/2020] [Indexed: 11/25/2022]
Abstract
BACKGROUND Oxidation of small dense low-density lipoprotein (sdLDL) and membranes is causally related to atherosclerosis. The omega-3 fatty acid (FA) eicosapentaenoic acid (EPA, 20:5, ω-3) significantly reduced oxidized LDL in patients with hypertriglyceridemia by unknown mechanisms. We compared EPA effects to related FAs of varying chain length and unsaturation on oxidation of sdLDL and model membranes, and on cholesterol crystal domains. We compared EPA to the FAs: stearic (SA, 18:0), oleic (OA, 18:1, ω-9), linoleic (LA, 18:2, ω-6), alpha-linolenic (ALA, 18:3, ω-3), eicosanoic (EA, 20:0), eicosatrienoic (ETE, 20:3, ω-3), arachidonic (AA, 20:4, ω-6), docosapentaenoic (DPA, 22:5, ω-3), and docosahexaenoic (DHA, 22:6, ω-3). METHODS Human sdLDL or model membranes of cholesterol and 1,2-Dilinoleoyl-sn-glycero-3-phosphocholine [18:2(cis)PC or DLPC] were preincubated with FAs followed by copper-induced oxidation. Malondialdehyde (MDA) or lipid hydroperoxides (LOOH) levels measured oxidation; small-angle X-ray diffraction assessed cholesterol domain formation. RESULTS After 40 min, EPA reduced MDA levels 70% compared to vehicle (p < 0.001). Lesser inhibition was observed with DHA, DPA, ETE, and ALA (33%, 34%, 32%, and 16%, respectively; all p < 0.001 versus vehicle). Similar relative FA effects were observed in model membranes where EPA more substantially inhibited cholesterol crystal domain formation. CONCLUSION We observed relationships between hydrocarbon length and unsaturation with antioxidant activity and membrane cholesterol domain formation. EPA had the most favorable molecular structure, likely contributing to membrane stability, improved lipoprotein clearance, and reduced inflammation. GENERAL SIGNIFICANCE Insight is provided into FA hydrocarbon length and unsaturation relationships with antioxidant activity in lipoproteins and membranes, and cholesterol crystal domains formation.
Collapse
Affiliation(s)
| | | | - R Preston Mason
- Elucida Research LLC, Beverly, MA 01915-0091, USA; Department of Medicine, Cardiovascular Division, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115-6110, USA.
| |
Collapse
|
37
|
Kinnun JJ, Bittman R, Shaikh SR, Wassall SR. DHA Modifies the Size and Composition of Raftlike Domains: A Solid-State 2H NMR Study. Biophys J 2019; 114:380-391. [PMID: 29401435 DOI: 10.1016/j.bpj.2017.11.023] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2017] [Revised: 11/14/2017] [Accepted: 11/17/2017] [Indexed: 01/22/2023] Open
Abstract
Docosahexaenoic acid is an omega-3 polyunsaturated fatty acid that relieves the symptoms of a wide variety of chronic inflammatory disorders. The structural mechanism is not yet completely understood. Our focus here is on the plasma membrane as a site of action. We examined the molecular organization of [2H31]-N-palmitoylsphingomyelin (PSM-d31) mixed with 1-palmitoyl-2-docosahexaenoylphosphatylcholine (PDPC) or 1-palmitoyl-2-oleoylphosphatidylcholine (POPC), as a monounsaturated control, and cholesterol (chol) (1:1:1 mol) in a model membrane by solid-state 2H NMR. The spectra were analyzed in terms of segregation into ordered SM-rich/chol-rich (raftlike) and disordered PC-rich/chol-poor (nonraft) domains that are nanoscale in size. An increase in the size of domains is revealed when POPC was replaced by PDPC. Spectra that are single-component, attributed to fast exchange between domains (<45 nm), for PSM-d31 mixed with POPC and chol become two-component, attributed to slow exchange between domains (r > 30 nm), for PSM-d31 mixed with PDPC and chol. The resolution of separate signals from PSM-d31, and correspondingly from [3α-2H1]cholesterol (chol-d1) and 1-[2H31]palmitoyl-2-docosahexaenoylphosphatidylcholine (PDPC-d31), in raftlike and nonraft domains enabled us to determine the composition of the domains in the PDPC-containing membrane. Most of the lipid (28% SM, 29% chol, and 23% PDPC with respect to total lipid at 30°C) was found in the raftlike domain. Despite substantial infiltration of PDPC into raftlike domains, there appears to be minimal effect on the order of SM, implying the existence of internal structure that limits contact between SM and PDPC. Our results suggest a significant refinement to the model by which DHA regulates the architecture of ordered, sphingolipid-chol-enriched domains (rafts) in membranes.
Collapse
Affiliation(s)
- Jacob J Kinnun
- Department of Physics, Indiana University-Purdue University, Indianapolis, Indiana
| | - Robert Bittman
- Department of Chemistry and Biochemistry, Queens College of CUNY, Flushing, New York
| | - Saame Raza Shaikh
- Department of Nutrition, Gillings School of Global Public Health and School of Medicine, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina
| | - Stephen R Wassall
- Department of Physics, Indiana University-Purdue University, Indianapolis, Indiana.
| |
Collapse
|
38
|
Pakiet A, Kobiela J, Stepnowski P, Sledzinski T, Mika A. Changes in lipids composition and metabolism in colorectal cancer: a review. Lipids Health Dis 2019; 18:29. [PMID: 30684960 PMCID: PMC6347819 DOI: 10.1186/s12944-019-0977-8] [Citation(s) in RCA: 201] [Impact Index Per Article: 33.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2018] [Accepted: 01/16/2019] [Indexed: 02/06/2023] Open
Abstract
Altered metabolism of lipids is currently considered a hallmark characteristic of many malignancies, including colorectal cancer (CRC). Lipids are a large group of metabolites that differ in terms of their fatty acid composition. This review summarizes recent evidence, documenting many alterations in the content and composition of fatty acids, polar lipids, oxylipins and triacylglycerols in CRC patients' sera, tumor tissues and adipose tissue. Some of altered lipid molecules may be potential biomarkers of CRC risk, development and progression. Owing to a significant role of many lipids in cancer cell metabolism, some of lipid metabolism pathways may also constitute specific targets for anti-CRC therapy.
Collapse
Affiliation(s)
- Alicja Pakiet
- Department of Environmental Analysis, Faculty of Chemistry, University of Gdansk, Gdansk, Poland
- Department of Pharmaceutical Biochemistry, Faculty of Pharmacy, Medical University of Gdansk, Dębinki 1, 80-211, Gdansk, Poland
| | - Jarosław Kobiela
- Department of General, Endocrine and Transplant Surgery, Faculty of Medicine, Medical University of Gdansk, Gdansk, Poland
| | - Piotr Stepnowski
- Department of Environmental Analysis, Faculty of Chemistry, University of Gdansk, Gdansk, Poland
| | - Tomasz Sledzinski
- Department of Pharmaceutical Biochemistry, Faculty of Pharmacy, Medical University of Gdansk, Dębinki 1, 80-211, Gdansk, Poland.
| | - Adriana Mika
- Department of Environmental Analysis, Faculty of Chemistry, University of Gdansk, Gdansk, Poland
- Department of Pharmaceutical Biochemistry, Faculty of Pharmacy, Medical University of Gdansk, Dębinki 1, 80-211, Gdansk, Poland
| |
Collapse
|
39
|
Preston Mason R. New Insights into Mechanisms of Action for Omega-3 Fatty Acids in Atherothrombotic Cardiovascular Disease. Curr Atheroscler Rep 2019; 21:2. [PMID: 30637567 PMCID: PMC6330561 DOI: 10.1007/s11883-019-0762-1] [Citation(s) in RCA: 82] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
PURPOSE OF REVIEW Treatment of hypercholesterolemia with statins results in significant reductions in cardiovascular risk; however, individuals with well-controlled low-density lipoprotein cholesterol (LDL-C) levels, but persistent high triglycerides (TG), remain at increased risk. Genetic and epidemiologic studies have shown that elevated fasting TG levels are associated with incident cardiovascular events. At effective doses, omega-3 fatty acids, such as eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA), lower TG levels but may have additional atheroprotective properties compared to other TG-lowering therapies such as niacin and fibrates. The purpose of this review is to evaluate mechanisms related to the potential benefits of omega-3 fatty acids in atherothrombotic disease. RECENT FINDINGS Large randomized clinical trials are currently under way to test the cardiovascular benefits of omega-3 fatty acids at a pharmacologic dosage (4 g/day). A large randomized trial with a prescription EPA-only formulation was shown to reduce a composite of cardiovascular events by 25% in statin-treated patients with established cardiovascular disease or diabetes and other CV risk factors. EPA and DHA have distinct tissue distributions as well as disparate effects on membrane structure and lipid dynamics, rates of lipid oxidation, and signal transduction pathways. Compared to other TG-lowering therapies, EPA has been found to inhibit cholesterol crystal formation, inflammation, and oxidative modification of atherogenic lipoprotein particles. The anti-inflammatory and endothelial benefits of EPA are enhanced in combination with a statin. Omega-3 fatty acids like EPA only at a pharmacologic dose reduce fasting TG and interfere with mechanisms of atherosclerosis that results in reduced cardiovascular events. Additional mechanistic trials will provide further insights into their role in reducing cardiovascular risk in subjects with well-managed LDL-C but elevated TG levels.
Collapse
Affiliation(s)
- R Preston Mason
- Cardiovascular Division, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, 02115, USA.
- Elucida Research LLC, Beverly, MA, 01915, USA.
| |
Collapse
|
40
|
Pazderka CW, Oliver B, Murray M, Rawling T. Omega-3 Polyunsaturated Fatty Acid Derived Lipid Mediators and their Application in Drug Discovery. Curr Med Chem 2018; 27:1670-1689. [PMID: 30259807 DOI: 10.2174/0929867325666180927100120] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2018] [Revised: 08/08/2018] [Accepted: 08/27/2018] [Indexed: 12/31/2022]
Abstract
Omega-3 (n-3) and omega-6 (n-6) polyunsaturated fatty acids (PUFAs) play crucial and often opposing regulatory roles in health and in pathological conditions. n-3 and n-6 PUFA undergo biotransformation to parallel series of lipid mediators that are potent modulators of many cellular processes. A wide range of biological actions have been attributed to lipid mediators derived from n-6 PUFA, and these mediators have served as lead compounds in the development of numerous clinically approved drugs, including latanoprost (Xalatan: Pfizer), which is listed on the WHO Model List of Essential Medicines. n-3 PUFA-derived mediators have received less attention, in part because early studies suggested that n-3 PUFA act simply as competitive substrates for biotransformation enzymes and decrease the formation of n-6 PUFA-derived lipid mediators. However, more recent studies suggest that n-3 PUFA-derived mediators are biologically important in their own right. It is now emerging that many n-3 PUFA-derived lipid mediators have potent and diverse activities that are distinct from their n-6 counterparts. These findings provide new opportunities for drug discovery. Herein, we review the biosynthesis of n-3 PUFA-derived lipid mediators and highlight their biological actions that may be exploited for drug development. Lastly, we provide examples of medicinal chemistry research that has utilized n-3 PUFA-derived lipid mediators as novel lead compounds in drug design.
Collapse
Affiliation(s)
- Curtis W Pazderka
- School of Mathematical and Physical Sciences, Faculty of Science, University of Technology Sydney, Ultimo NSW 2007, Australia
| | - Brian Oliver
- School of Life Sciences, Faculty of Science, University of Technology Sydney, Ultimo NSW 2007, Australia
| | - Michael Murray
- Discipline of Pharmacology, School of Medical Sciences, Sydney Medical School, The University of Sydney, Sydney NSW 2006, Australia
| | - Tristan Rawling
- School of Mathematical and Physical Sciences, Faculty of Science, University of Technology Sydney, Ultimo NSW 2007, Australia
| |
Collapse
|
41
|
Leng X, Zhu F, Wassall SR. Vitamin E Has Reduced Affinity for a Polyunsaturated Phospholipid: An Umbrella Sampling Molecular Dynamics Simulations Study. J Phys Chem B 2018; 122:8351-8358. [PMID: 30111105 DOI: 10.1021/acs.jpcb.8b05016] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Vitamin E is an essential micronutrient. The primary function of this lipid-soluble antioxidant is to protect membrane phospholipids from oxidation. Whether vitamin E preferentially interacts with polyunsaturated phospholipids to optimize protection of the lipid species most vulnerable to oxidative attack has been an unanswered question for a long time. In this work, we compared the binding of α-tocopherol (αtoc), the form of vitamin E retained by the human body, in bilayers composed of polyunsaturated 1-stearoyl-2-docosahexaenoylphosphatidylcholine (SDPC, 18:0-22:6PC) and, as a control, monounsaturated 1-stearoyl-2-oleoylphosphatidylcholine (SOPC, 18:0-18:1PC) by umbrella sampling molecular dynamics simulations. From the potential of mean force as a function depth within the bilayer, we find that the binding energy of αtoc is less in SDPC (Δ Gbind = 16.7 ± 0.3 kcal/mol) than that in SOPC (Δ Gbind = 18.3 ± 0.4 kcal/mol). The lower value in SDPC is ascribed to the high disorder of polyunsaturated fatty acids that produces a less tightly packed arrangement. Deformation of the bilayer is observed during desorption, indicating that phosphatidylcholine (PC)-PC and αtoc-PC interactions contribute to the binding energy. Our results do not support the proposal that vitamin E interacts more favorably with polyunsaturated phospholipids.
Collapse
Affiliation(s)
- Xiaoling Leng
- Department of Physics , IUPUI , Indianapolis , Indiana 46202-3273 , United States
| | - Fangqiang Zhu
- Department of Physics , IUPUI , Indianapolis , Indiana 46202-3273 , United States
| | - Stephen R Wassall
- Department of Physics , IUPUI , Indianapolis , Indiana 46202-3273 , United States
| |
Collapse
|
42
|
Zarezadeh R, Mehdizadeh A, Leroy JLMR, Nouri M, Fayezi S, Darabi M. Action mechanisms of n-3 polyunsaturated fatty acids on the oocyte maturation and developmental competence: Potential advantages and disadvantages. J Cell Physiol 2018; 234:1016-1029. [PMID: 30073662 DOI: 10.1002/jcp.27101] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2017] [Accepted: 06/28/2018] [Indexed: 12/18/2022]
Abstract
Infertility is a growing problem worldwide. Currently, in vitro fertilization (IVF) is widely performed to treat infertility. However, a high percentage of IVF cycles fails, due to the poor developmental potential of the retrieved oocyte to generate viable embryos. Fatty acid content of the follicular microenvironment can affect oocyte maturation and the subsequent developmental competence. Saturated and monounsaturated fatty acids are mainly used by follicle components as primary energy sources whereas polyunsaturated fatty acids (PUFAs) play a wide range of roles. A large body of evidence supports the beneficial effects of n-3 PUFAs in prevention, treatment, and amelioration of some pathophysiological conditions including heart diseases, cancer, diabetes, and psychological disorders. Nevertheless, current findings regarding the effects of n-3 PUFAs on reproductive outcomes in general and on oocyte quality more specifically are inconsistent. This review attempts to provide a comprehensive overview of potential molecular mechanisms by which n-3 PUFAs affect oocyte maturation and developmental competence, particularly in the setting of IVF and thereby aims to elucidate the reasons behind current discrepancies around this topic.
Collapse
Affiliation(s)
- Reza Zarezadeh
- Women's Reproductive Health Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.,Department of Biochemistry and Clinical Laboratories, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Amir Mehdizadeh
- Endocrine Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Jo L M R Leroy
- Department of Veterinary Sciences, Gamete Research Center, Veterinary Physiology and Biochemistry, University of Antwerp, Wilrijk, Belgium
| | - Mohammad Nouri
- Stem Cell and Regenerative Medicine Institute, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Shabnam Fayezi
- Infertility and Reproductive Health Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran.,Université de Nice Sophia Antipolis, Inserm U1091 - CNRS U7277, Nice 06034, France
| | - Masoud Darabi
- Women's Reproductive Health Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| |
Collapse
|
43
|
Mason RP, Dawoud H, Jacob RF, Sherratt SCR, Malinski T. Eicosapentaenoic acid improves endothelial function and nitric oxide bioavailability in a manner that is enhanced in combination with a statin. Biomed Pharmacother 2018; 103:1231-1237. [PMID: 29864903 DOI: 10.1016/j.biopha.2018.04.118] [Citation(s) in RCA: 62] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2018] [Revised: 04/04/2018] [Accepted: 04/16/2018] [Indexed: 11/27/2022] Open
Abstract
The endothelium exerts many vasoprotective effects that are largely mediated by release of nitric oxide (NO). Endothelial dysfunction represents an early but reversible step in atherosclerosis and is characterized by a reduction in the bioavailability of NO. Previous studies have shown that eicosapentaenoic acid (EPA), an omega-3 fatty acid (O3FA), and statins individually improve endothelial cell function, but their effects in combination have not been tested. Through a series of in vitro experiments, this study evaluated the effects of a combined treatment of EPA and the active metabolite of atorvastatin (ATM) on endothelial cell function under conditions of oxidative stress. Specifically, the comparative and time-dependent effects of these agents on endothelial dysfunction were examined by measuring the levels of NO and peroxynitrite (ONOO-) released from human umbilical vein endothelial cells (HUVECs). The data suggest that combined treatment with EPA and ATM is beneficial to endothelial function and was unique to EPA and ATM since similar improvements could not be recapitulated by substituting another O3FA docosahexaenoic acid (DHA) or other TG-lowering agents such as fenofibrate, niacin, or gemfibrozil. Comparable beneficial effects were observed when HUVECs were pretreated with EPA and ATM before exposure to oxidative stress. Interestingly, the kinetics of EPA-based protection of endothelial function in response to oxidation were found to be significantly different than those of DHA. Lastly, the beneficial effects on endothelial function generated by combined treatment of EPA and ATM were reproduced when this study was expanded to an ex vivo model utilizing rat glomerular endothelial cells. Taken together, these findings suggest that a combined treatment of EPA and ATM can inhibit endothelial dysfunction that occurs in response to conditions such as hyperglycemia, oxidative stress, and dyslipidemia.
Collapse
Affiliation(s)
- R Preston Mason
- Elucida Research LLC, Beverly, MA, 01915, United States; Cardiovascular Division, Department of Medicine, Brigham & Women's Hospital, Harvard Medical School, Boston, MA 02115, United States.
| | - Hazem Dawoud
- Nanomedical Research Laboratory, Ohio University, Athens, OH, 45701, United States
| | | | | | - Tadeusz Malinski
- Nanomedical Research Laboratory, Ohio University, Athens, OH, 45701, United States
| |
Collapse
|
44
|
Leng X, Kinnun JJ, Cavazos AT, Canner SW, Shaikh SR, Feller SE, Wassall SR. All n-3 PUFA are not the same: MD simulations reveal differences in membrane organization for EPA, DHA and DPA. BIOCHIMICA ET BIOPHYSICA ACTA. BIOMEMBRANES 2018; 1860:1125-1134. [PMID: 29305832 PMCID: PMC5963985 DOI: 10.1016/j.bbamem.2018.01.002] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/12/2017] [Revised: 12/19/2017] [Accepted: 01/01/2018] [Indexed: 01/01/2023]
Abstract
Eicosapentaenoic (EPA, 20:5), docosahexaenoic (DHA, 22:6) and docosapentaenoic (DPA, 22:5) acids are omega-3 polyunsaturated fatty acids (n-3 PUFA) obtained from dietary consumption of fish oils that potentially alleviate the symptoms of a range of chronic diseases. We focus here on the plasma membrane as a site of action and investigate how they affect molecular organization when taken up into a phospholipid. All atom MD simulations were performed to compare 1-stearoyl-2-eicosapentaenoylphosphatylcholine (EPA-PC, 18:0-20:5PC), 1-stearoyl-2-docosahexaenoylphosphatylcholine (DHA-PC, 18:0-22:6PC), 1-stearoyl-2-docosapentaenoylphosphatylcholine (DPA-PC, 18:0-22:5PC) and, as a monounsaturated control, 1-stearoyl-2-oleoylphosphatidylcholine (OA-PC, 18:0-18:1PC) bilayers. They were run in the absence and presence of 20mol% cholesterol. Multiple double bonds confer high disorder on all three n-3 PUFA. The different number of double bonds and chain length for each n-3 PUFA moderates the reduction in membrane order exerted (compared to OA-PC, S¯CD=0.152). EPA-PC (S¯CD=0.131) is most disordered, while DPA-PC (S¯CD=0.140) is least disordered. DHA-PC (S¯CD=0.139) is, within uncertainty, the same as DPA-PC. Following the addition of cholesterol, order in EPA-PC (S¯CD=0.169), DHA-PC (S¯CD=0.178) and DPA-PC (S¯CD=0.182) is increased less than in OA-PC (S¯CD=0.214). The high disorder of n-3 PUFA is responsible, preventing the n-3 PUFA-containing phospholipids from packing as close to the rigid sterol as the monounsaturated control. Our findings establish that EPA, DHA and DPA are not equivalent in their interactions within membranes, which possibly contributes to differences in clinical efficacy.
Collapse
Affiliation(s)
- Xiaoling Leng
- Department of Physics, IUPUI, Indianapolis, IN 46202-3273, United States
| | - Jacob J Kinnun
- Department of Physics, IUPUI, Indianapolis, IN 46202-3273, United States
| | - Andres T Cavazos
- Department of Physics, IUPUI, Indianapolis, IN 46202-3273, United States
| | - Samuel W Canner
- Department of Physics, IUPUI, Indianapolis, IN 46202-3273, United States; Department of Computer Science and Information Science, IUPUI, Indianapolis, IN 46202-5132, United States
| | - Saame Raza Shaikh
- Department of Nutrition, Gillings School of Global Public Health and School of Medicine, The University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, United States
| | - Scott E Feller
- Department of Chemistry, Wabash College, Crawfordsville, IN 47933, United States
| | - Stephen R Wassall
- Department of Physics, IUPUI, Indianapolis, IN 46202-3273, United States.
| |
Collapse
|
45
|
Sullivan EM, Pennington ER, Green WD, Beck MA, Brown DA, Shaikh SR. Mechanisms by Which Dietary Fatty Acids Regulate Mitochondrial Structure-Function in Health and Disease. Adv Nutr 2018; 9:247-262. [PMID: 29767698 PMCID: PMC5952932 DOI: 10.1093/advances/nmy007] [Citation(s) in RCA: 55] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2017] [Revised: 01/02/2018] [Accepted: 01/30/2018] [Indexed: 02/06/2023] Open
Abstract
Mitochondria are the energy-producing organelles within a cell. Furthermore, mitochondria have a role in maintaining cellular homeostasis and proper calcium concentrations, building critical components of hormones and other signaling molecules, and controlling apoptosis. Structurally, mitochondria are unique because they have 2 membranes that allow for compartmentalization. The composition and molecular organization of these membranes are crucial to the maintenance and function of mitochondria. In this review, we first present a general overview of mitochondrial membrane biochemistry and biophysics followed by the role of different dietary saturated and unsaturated fatty acids in modulating mitochondrial membrane structure-function. We focus extensively on long-chain n-3 (ω-3) polyunsaturated fatty acids and their underlying mechanisms of action. Finally, we discuss implications of understanding molecular mechanisms by which dietary n-3 fatty acids target mitochondrial structure-function in metabolic diseases such as obesity, cardiac-ischemia reperfusion injury, obesity, type 2 diabetes, nonalcoholic fatty liver disease, and select cancers.
Collapse
Affiliation(s)
- E Madison Sullivan
- Department of Biochemistry and Molecular Biology and
- East Carolina Diabetes and Obesity Institute, Brody School of Medicine, East Carolina University, Greenville, NC
| | - Edward Ross Pennington
- Department of Biochemistry and Molecular Biology and
- East Carolina Diabetes and Obesity Institute, Brody School of Medicine, East Carolina University, Greenville, NC
- Department of Nutrition, The University of North Carolina at Chapel Hill, Gillings School of Global Public Health and School of Medicine, Chapel Hill, NC
| | - William D Green
- Department of Nutrition, The University of North Carolina at Chapel Hill, Gillings School of Global Public Health and School of Medicine, Chapel Hill, NC
| | - Melinda A Beck
- Department of Nutrition, The University of North Carolina at Chapel Hill, Gillings School of Global Public Health and School of Medicine, Chapel Hill, NC
| | - David A Brown
- Department of Human Nutrition, Foods, and Exercise, Virginia Tech Corporate Research Center, Blacksburg, VA
| | - Saame Raza Shaikh
- Department of Nutrition, The University of North Carolina at Chapel Hill, Gillings School of Global Public Health and School of Medicine, Chapel Hill, NC
| |
Collapse
|
46
|
Maillard V, Desmarchais A, Durcin M, Uzbekova S, Elis S. Docosahexaenoic acid (DHA) effects on proliferation and steroidogenesis of bovine granulosa cells. Reprod Biol Endocrinol 2018; 16:40. [PMID: 29699561 PMCID: PMC5918968 DOI: 10.1186/s12958-018-0357-7] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/09/2018] [Accepted: 04/18/2018] [Indexed: 01/22/2023] Open
Abstract
BACKGROUND Docosahexaenoic acid (DHA) is a n-3 polyunsaturated fatty acid (PUFA) belonging to a family of biologically active fatty acids (FA), which are known to have numerous health benefits. N-3 PUFAs affect reproduction in cattle, and notably directly affect follicular cells. In terms of reproduction in cattle, n-3 PUFA-enriched diets lead to increased follicle size or numbers. METHODS The objective of the present study was to analyze the effects of DHA (1, 10, 20 and 50 μM) on proliferation and steroidogenesis (parametric and/or non parametric (permutational) ANOVA) of bovine granulosa cells in vitro and mechanisms of action through protein expression (Kruskal-Wallis) and signaling pathways (non parametric ANOVA) and to investigate whether DHA could exert part of its action through the free fatty acid receptor 4 (FFAR4). RESULTS DHA (10 and 50 μM) increased granulosa cell proliferation and DHA 10 μM led to a corresponding increase in proliferating cell nuclear antigen (PCNA) expression level. DHA also increased progesterone secretion at 1, 20 and 50 μM, and estradiol secretion at 1, 10 and 20 μM. Consistent increases in protein levels were also reported for the steroidogenic enzymes, cytochrome P450 family 11 subfamily A member 1 (CYP11A1) and hydroxy-delta-5-steroid dehydrogenase, 3 beta- and steroid delta-isomerase 1 (HSD3B1), and of the cholesterol transporter steroidogenic acute regulatory protein (StAR), which are necessary for production of progesterone or androstenedione. FFAR4 was expressed in all cellular types of bovine ovarian follicles, and in granulosa cells it was localized close to the cellular membrane. TUG-891 treatment (1 and 50 μM), a FFAR4 agonist, increased granulosa cell proliferation and MAPK14 phosphorylation in a similar way to that observed with DHA treatment. However, TUG-891 treatment (1, 10 and 50 μM) showed no effect on progesterone or estradiol secretion. CONCLUSIONS These data show that DHA stimulated proliferation and steroidogenesis of bovine granulosa cells and led to MAPK14 phosphorylation. FFAR4 involvement in DHA effects requires further investigation, even if our data might suggest FFAR4 role in DHA effects on granulosa cell proliferation. Other mechanisms of DHA action should be investigated as the steroidogenic effects seemed to be independent of FFAR4 activation.
Collapse
Affiliation(s)
- Virginie Maillard
- 0000 0001 2182 6141grid.12366.30UMR PRC, CNRS, IFCE, INRA, Université de Tours, 37380 Nouzilly, France
- 0000 0004 0385 4036grid.464126.3INRA Centre Val de Loire, Physiologie de la Reproduction et des Comportements, 37380 Nouzilly, France
| | - Alice Desmarchais
- 0000 0001 2182 6141grid.12366.30UMR PRC, CNRS, IFCE, INRA, Université de Tours, 37380 Nouzilly, France
| | - Maeva Durcin
- 0000 0001 2182 6141grid.12366.30UMR PRC, CNRS, IFCE, INRA, Université de Tours, 37380 Nouzilly, France
| | - Svetlana Uzbekova
- 0000 0001 2182 6141grid.12366.30UMR PRC, CNRS, IFCE, INRA, Université de Tours, 37380 Nouzilly, France
| | - Sebastien Elis
- 0000 0001 2182 6141grid.12366.30UMR PRC, CNRS, IFCE, INRA, Université de Tours, 37380 Nouzilly, France
| |
Collapse
|
47
|
Adjepong M, Yakah W, Harris WS, Annan RA, Pontifex MB, Fenton JI. Whole blood n-3 fatty acids are associated with executive function in 2-6-year-old Northern Ghanaian children. J Nutr Biochem 2018; 57:287-293. [PMID: 29852451 DOI: 10.1016/j.jnutbio.2018.03.019] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2017] [Revised: 02/06/2018] [Accepted: 03/20/2018] [Indexed: 11/16/2022]
Abstract
Several studies demonstrate the importance of essential fatty acids (EFAs), and the long chain polyunsaturated FA docosahexaenoic acid (DHA), on cognition and brain development. The objective of this study was to investigate the relationship between whole-blood FAs and executive function in children from Northern Ghana. A total of 307, 2-to-6-year-old children attempted the dimensional change card sort (DCCS) task to assess executive function, and dried blood spot samples were collected and analyzed for FA content. Significant differences in mean % total whole-blood fatty acids were observed between children who could not follow directions on the DCCS test (49.8% of the sample) and those who could (50.2% of the sample). Positive associations with DCCS performance were observed for DHA (β=0.25, P=.06), total n-3 (β=0.17, P=.06) and dihomo-gamma-linolenic acid (DGLA; β=0.60, P=.06). Children with the highest levels of total n-3 and DHA were three and four times, respectively, more likely to pass at least one condition of the DCCS test of executive function than those with the lowest DHA levels. The results of this study indicate an association between n-3 FAs and high-level cognitive processes in children two to six years of age, providing impetus for further studies into possible interventions to improve EFA status of children in developing countries.
Collapse
Affiliation(s)
- Mary Adjepong
- Department of Food Science and Human Nutrition, Michigan State University, East Lansing, MI
| | - William Yakah
- Department of Food Science and Human Nutrition, Michigan State University, East Lansing, MI
| | - William S Harris
- Sanford School of Medicine, University of South Dakota and Omega Quant Analytics, LLC, Sioux Falls, SD
| | - Reginald A Annan
- Kwame Nkrumah University of Science and Technology, Kumasi, Ghana
| | | | - Jenifer I Fenton
- Department of Food Science and Human Nutrition, Michigan State University, East Lansing, MI.
| |
Collapse
|
48
|
Angelova A, Drechsler M, Garamus VM, Angelov B. Liquid Crystalline Nanostructures as PEGylated Reservoirs of Omega-3 Polyunsaturated Fatty Acids: Structural Insights toward Delivery Formulations against Neurodegenerative Disorders. ACS OMEGA 2018; 3:3235-3247. [PMID: 30023865 PMCID: PMC6044969 DOI: 10.1021/acsomega.7b01935] [Citation(s) in RCA: 54] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/05/2017] [Accepted: 03/06/2018] [Indexed: 06/01/2023]
Abstract
Omega-3 polyunsaturated fatty acids (ω-3 PUFAs) are bioactive lipids with considerable impact in medicine and nutrition. These compounds exert structuring effects on the cellular membrane organization, regulate the gene expression, and modulate various signaling cascades and metabolic processes. The purpose of the present work is to demonstrate the structural features of ω-3 PUFA-containing three-dimensional supramolecular lipid assemblies suitable for pharmaceutical applications that require soft porous carriers. We investigate the liquid crystalline structures formed upon mixing of eicosapentaenoic acid (EPA, 20:5) with the lyotropic nonlamellar lipid monoolein and the formation of multicompartment assemblies. Starting with the monoolein-based lipid cubic phase, double membrane vesicles, cubosome precursors, sponge-type particles (spongosomes), mixed intermediate nonlamellar structures, and multicompartment assemblies are obtained through self-assembly at different amphiphilic compositions. The dispersions containing spongosomes as well as nanocarriers with oil and vesicular compartments are stabilized by PEGylation of the lipid/water interfaces using a phospholipid with a poly(ethylene glycol) chain. The microstructures of the bulk mixtures were examined by cross-polarized light optical microscopy. The dispersed liquid crystalline structures and intermediate states were studied by small-angle X-ray scattering, cryogenic transmission electron microscopy, and quasielastic light scattering techniques. They established that PUFA influences the phase type and the sizes of the aqueous compartments of the liquid crystalline carriers. The resulting multicompartment systems and stealth nanosponges may serve as mesoporous reservoirs for coencapsulation of ω-3 PUFA (e.g., EPA) with water-insoluble drugs and hydrophilic macromolecules toward development of combination treatment strategies of neurodegenerative and other diseases.
Collapse
Affiliation(s)
- Angelina Angelova
- Institut
Galien Paris-Sud, LabEx LERMIT, CNRS UMR
8612, Univ. Paris-Sud, Université Paris-Saclay, F-92290 Châtenay-Malabry Cedex, France
| | - Markus Drechsler
- Key
Lab “Electron and Optical Microscopy”, Bavarian Polymer
Institute (BPI), University of Bayreuth, D-95440 Bayreuth, Germany
| | - Vasil M. Garamus
- Helmholtz-Zentrum
Geesthacht: Centre for Materials and Coastal Research, D-21502 Geesthacht, Germany
| | - Borislav Angelov
- Institute
of Physics, ELI Beamlines, Academy of Sciences
of the Czech Republic, Na Slovance 2, CZ-18221 Prague, Czech Republic
| |
Collapse
|
49
|
Burger HM, Abel S, Gelderblom WCA. Modulation of key lipid raft constituents in primary rat hepatocytes by fumonisin B 1 - Implications for cancer promotion in the liver. Food Chem Toxicol 2018; 115:34-41. [PMID: 29510220 DOI: 10.1016/j.fct.2018.03.004] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2017] [Revised: 02/07/2018] [Accepted: 03/02/2018] [Indexed: 01/15/2023]
Abstract
Fumonisin B1 (FB1), a group 2B natural occurring carcinogenic mycotoxin, modulated lipid and fatty acid (FA) constituents of lipid rafts isolated from primary hepatocytes following exposure to a cytotoxic concentration of FB1 (250 μM). The major effects observed in rafts, included a significant (p < 0.05) increase in raft cholesterol (CHOL) and glycerophospholipid such as phosphatidylethanolamine (PE), whereas sphingomyelin (SM) decreased (p < 0.05). Changes in lipid constituents resulted in the disruption of important membrane fluidity parameters represented as a decreased (p < 0.05) in the phosphatidylcholine (PC)/PE and PC/(PE+SM) ratios and an increase (p < 0.05) in the CHOL/PL (PL=PC+PE) ratio, suggesting the preservation of lipid raft rigidity and integrity. Observed FA changes in the raft PE fraction included a significant (p < 0.05) increase in C18:2ω-6, C20:3ω-6, C20:4ω-6, C22:4ω-6, C22:5ω-3 and C22:6ω-3, with an increase in total ω-6 and ω-3 polyunsaturated fatty acids (PUFAs). Modulation of the FA content in PE, specifically the C20:4ω-6 PC/PE ratio and PUFA levels, together with changes in CHOL and SM are key determinants regulating the integrity and function of lipid rafts. In primary hepatocytes these changes are associated with the inhibition of cell proliferation and induction of apoptosis. A lipogenic mechanism is proposed whereby FB1 modulates lipid rafts and differentially target cell survival indices of normal and preneoplastic hepatocytes during cancer promotion in the liver.
Collapse
Affiliation(s)
- H-M Burger
- Institute of Biomedical and Microbial Biotechnology, Cape Peninsula University of Technology, PO Box 1906, Bellville 7535, South Africa.
| | - S Abel
- Institute of Biomedical and Microbial Biotechnology, Cape Peninsula University of Technology, PO Box 1906, Bellville 7535, South Africa.
| | - W C A Gelderblom
- Institute of Biomedical and Microbial Biotechnology, Cape Peninsula University of Technology, PO Box 1906, Bellville 7535, South Africa; Department of Biochemistry, University of Stellenbosch, Private Bag X1, Matieland 7602, South Africa.
| |
Collapse
|
50
|
Torres-Vergara P, Penny J. Pro-inflammatory and anti-inflammatory compounds exert similar effects on P-glycoprotein in blood–brain barrier endothelial cells. J Pharm Pharmacol 2018; 70:713-722. [DOI: 10.1111/jphp.12893] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2017] [Accepted: 01/12/2018] [Indexed: 12/13/2022]
Abstract
Abstract
Objectives
The effects of anti-inflammatory glucocorticoids dexamethasone (DX) and hydrocortisone (HC), pro-inflammatory cytokine interleukin-1β (IL-1β) and dietary long-chain polyunsaturated fatty acids (PUFAs) on expression and activity of the ATP-binding cassette transporter P-glycoprotein (P-GP) were studied in porcine brain endothelial cells (PBECs).
Methods
Primary PBECs were treated for 24 h with glucocorticoids, IL-1β and long-chain PUFAs. P-GP activity was determined by measuring intracellular calcein accumulation and P-GP expression by Western blotting. The effect of PUFAs on membrane fluidity was assessed by fluorescence recovery after photobleaching (FRAP).
Key findings
Dexamethasone, HC and IL-1β significantly increased P-GP expression and activity. The effect of IL-1β was attenuated by the IL-1 receptor antagonist (IL-1RA). This is the first report of the combined actions of IL-1β and IL-1RA on P-GP expression and the first evidence of glucocorticoid-mediated P-GP up-regulation in PBECs. Arachidonic acid (AA), docosahexaenoic acid (DHA) and eicosapentenoic acid (EPA) significantly decreased P-GP activity without affecting expression or membrane fluidity. AA, DHA and EPA counteracted IL-1β-mediated increases in P-GP activity, while AA and EPA, but not DHA, counteracted glucocorticoid-mediated increase in P-GP activity.
Conclusions
While glucocorticoids and IL-1β possess opposing actions in inflammation, they demonstrate functional consistency by increasing P-GP expression and activity in PBECs.
Collapse
Affiliation(s)
- Pablo Torres-Vergara
- Division of Pharmacy and Optometry, School of Health Sciences, Faculty of Medicine, Biology and Health, University of Manchester, Manchester, UK
- Department of Pharmacy, Faculty of Pharmacy, University of Concepción, Concepción, Chile
| | - Jeffrey Penny
- Division of Pharmacy and Optometry, School of Health Sciences, Faculty of Medicine, Biology and Health, University of Manchester, Manchester, UK
| |
Collapse
|