1
|
Zhang Q, Zhu H, Wang R, He J, Ritzoulis C, Liu W, Tang W, Liu J. Fish oil emulsions stabilized by enzymatic hydrolysis, glycation, and fibrillation of β-Lg: Stability and EPA/DHA bioaccessibility. Food Chem 2024; 469:142550. [PMID: 39709919 DOI: 10.1016/j.foodchem.2024.142550] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2024] [Revised: 12/13/2024] [Accepted: 12/15/2024] [Indexed: 12/24/2024]
Abstract
This study investigated the stabilization mechanism, storage stability, and in vitro digestion characteristics of oil-in-water fish oil emulsions stabilized by β-Lg modified through enzymatic hydrolysis, glycation, and fibrillation. The stabilization mechanism was elucidated by comparing droplet size, ζ-potential, interfacial protein thickness, and microstructure. Results showed that β-Lg modified through these combined processes formed a three-dimensional network, providing superior stabilization, while other modified proteins stabilized emulsions via surface adsorption. Emulsion stabilized by combined modified β-Lg maintained z-average particle sizes below 550 nm, delayed the peroxide value peak by 3 days, reduced TBARS content by 0.5 μg/mL, and remained unstratified for up to 50 days. During simulated in vitro digestion, emulsions exhibited greater stability in the gastric phase but destabilized in the intestinal phase, leading to 10.46 % higher EPA/DHA bioaccessibility than those emulsions stabilized by untreated β-Lg.
Collapse
Affiliation(s)
- Qingchun Zhang
- College of Food Science and Technology, Zhejiang University of Technology, Hangzhou, 310014, PR China
| | - Hao Zhu
- College of Food Science and Technology, Zhejiang University of Technology, Hangzhou, 310014, PR China
| | - Rui Wang
- College of Food Science and Technology, Zhejiang University of Technology, Hangzhou, 310014, PR China
| | - Jianfei He
- College of Food Science and Technology, Zhejiang University of Technology, Hangzhou, 310014, PR China
| | - Christos Ritzoulis
- Department of Food Science and Technology, International Hellenic University, Alexander Campus, Thessaloniki, 57400, Greece
| | - Weilin Liu
- School of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou, 310018, PR China
| | - Wei Tang
- College of Food Science and Technology, Zhejiang University of Technology, Hangzhou, 310014, PR China
| | - Jianhua Liu
- College of Food Science and Technology, Zhejiang University of Technology, Hangzhou, 310014, PR China.
| |
Collapse
|
2
|
Rodrigues Junior CF, Murata GM, Gerlinger-Romero F, Nachbar RT, Marzuca-Nassr GN, Gorjão R, Vitzel KF, Hirabara SM, Pithon-Curi TC, Curi R. Changes in Skeletal Muscle Protein Metabolism Signaling Induced by Glutamine Supplementation and Exercise. Nutrients 2023; 15:4711. [PMID: 38004105 PMCID: PMC10674901 DOI: 10.3390/nu15224711] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2023] [Revised: 10/30/2023] [Accepted: 11/01/2023] [Indexed: 11/26/2023] Open
Abstract
AIM To evaluate the effects of resistance exercise training (RET) and/or glutamine supplementation (GS) on signaling protein synthesis in adult rat skeletal muscles. METHODS The following groups were studied: (1) control, no exercise (C); (2) exercise, hypertrophy resistance exercise training protocol (T); (3) no exercise, supplemented with glutamine (G); and (4) exercise and supplemented with glutamine (GT). The rats performed hypertrophic training, climbing a vertical ladder with a height of 1.1 m at an 80° incline relative to the horizontal with extra weights tied to their tails. The RET was performed three days a week for five weeks. Each training session consisted of six ladder climbs. The extra weight load was progressively increased for each animal during each training session. The G groups received daily L-glutamine by gavage (one g per kilogram of body weight per day) for five weeks. The C group received the same volume of water during the same period. The rats were euthanized, and the extensor digitorum longus (EDL) muscles from both hind limbs were removed and immediately weighed. Glutamine and glutamate concentrations were measured, and histological, signaling protein contents, and mRNA expression analyses were performed. RESULTS Supplementation with free L-glutamine increased the glutamine concentration in the EDL muscle in the C group. The glutamate concentration was augmented in the EDL muscles from T rats. The EDL muscle mass did not change, but a significant rise was reported in the cross-sectional area (CSA) of the fibers in the three experimental groups. The levels of the phosphorylated proteins (pAkt/Akt, pp70S6K/p70S6K, p4E-BP1/4E-BP1, and pS6/S6 ratios) were significantly increased in EDL muscles of G rats, and the activation of p4E-BP1 was present in T rats. The fiber CSAs of the EDL muscles in T, G, and GT rats were increased compared to the C group. These changes were accompanied by a reduction in the 26 proteasome activity of EDL muscles from T rats. CONCLUSION Five weeks of GS and/or RET induced muscle hypertrophy, as indicated by the increased CSAs of the EDL muscle fibers. The increase in CSA was mediated via the upregulated phosphorylation of Akt, 4E-BP1, p70S6k, and S6 in G animals and 4E-BP1 in T animals. In the EDL muscles from T animals, a decrease in proteasome activity, favoring a further increase in the CSA of the muscle fibers, was reported.
Collapse
Affiliation(s)
- Carlos Flores Rodrigues Junior
- Department of Physiology and Biophysics, Institute of Biomedical Sciences, University of São Paulo, São Paulo 05508-220, Brazil; (C.F.R.J.); (T.C.P.-C.); (R.C.)
| | - Gilson Masahiro Murata
- Divisions of Nephrology and Molecular Medicine, LIM-29, Department of Medicine, University of São Paulo, São Paulo 05508-220, Brazil;
| | | | - Renato Tadeu Nachbar
- Department of Physiology and Biophysics, Institute of Biomedical Sciences, University of São Paulo, São Paulo 05508-220, Brazil; (C.F.R.J.); (T.C.P.-C.); (R.C.)
| | - Gabriel Nasri Marzuca-Nassr
- Departamento de Ciencias de la Rehabilitación, Facultad de Medicina, Universidad de La Frontera, Temuco 4811230, Chile;
- Interuniversity Center for Healthy Aging (Code RED21993), Talca 3460000, Chile
| | - Renata Gorjão
- Interdisciplinary Post-graduate Program in Health Sciences, Universidade Cruzeiro do Sul, São Paulo 01506-000, Brazil;
| | - Kaio Fernando Vitzel
- School of Health Sciences, Massey University (University of New Zealand), Auckland 0745, New Zealand;
| | - Sandro Massao Hirabara
- Interdisciplinary Post-graduate Program in Health Sciences, Universidade Cruzeiro do Sul, São Paulo 01506-000, Brazil;
| | - Tania Cristina Pithon-Curi
- Department of Physiology and Biophysics, Institute of Biomedical Sciences, University of São Paulo, São Paulo 05508-220, Brazil; (C.F.R.J.); (T.C.P.-C.); (R.C.)
- Interdisciplinary Post-graduate Program in Health Sciences, Universidade Cruzeiro do Sul, São Paulo 01506-000, Brazil;
| | - Rui Curi
- Department of Physiology and Biophysics, Institute of Biomedical Sciences, University of São Paulo, São Paulo 05508-220, Brazil; (C.F.R.J.); (T.C.P.-C.); (R.C.)
- Interdisciplinary Post-graduate Program in Health Sciences, Universidade Cruzeiro do Sul, São Paulo 01506-000, Brazil;
- Butantan Institute, São Paulo 05585-000, Brazil
| |
Collapse
|
3
|
Aldamarany W, Taocui H, Liling D, Wanfu Y, Zhong G. Oral Supplementation with Three Vegetable Oils Differing in Fatty Acid Composition Alleviates High-Fat Diet-Induced Obesity in Mice by Regulating Inflammation and Lipid Metabolism. POL J FOOD NUTR SCI 2023. [DOI: 10.31883/pjfns/160186] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/04/2023] Open
|
4
|
Hirabara SM, Gorjao R, Curi R, Leandro CG, Marzuca-Nassr GN. Editorial: Nutritional modulation of inflammation and insulin resistance. Front Nutr 2023; 10:1181809. [PMID: 37032773 PMCID: PMC10076822 DOI: 10.3389/fnut.2023.1181809] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2023] [Accepted: 03/13/2023] [Indexed: 04/11/2023] Open
Affiliation(s)
- Sandro Massao Hirabara
- Interdisciplinary Post-graduate Program in Health Sciences, Cruzeiro do Sul University, São Paulo, Brazil
- *Correspondence: Sandro Massao Hirabara
| | - Renata Gorjao
- Interdisciplinary Post-graduate Program in Health Sciences, Cruzeiro do Sul University, São Paulo, Brazil
| | - Rui Curi
- Interdisciplinary Post-graduate Program in Health Sciences, Cruzeiro do Sul University, São Paulo, Brazil
- Immunobiological Production Section, Bioindustrial Center, Butantan Institute, São Paulo, Brazil
| | - Carol Gois Leandro
- Department of Nutrition, Centro Acadêmico de Vitória, Federal University of Pernambuco, Recife, Brazil
| | - Gabriel Nasri Marzuca-Nassr
- Universidad de La Frontera, Faculdad de Medicina, Departamento de Ciencias de La Rehabilitación, Temuco, Chile
| |
Collapse
|
5
|
Dias BV, Gomes SV, da Cruz Castro ML, Carvalho LCF, Breguez GS, de Souza DMS, de Oliveira Ramos C, Sant'Ana MR, Nakandakari SCBR, Araujo CM, Grabe-Guimarães A, Talvani A, Carneiro CM, Cintra DEC, Costa DC. EPA/DHA AND LINSEED OIL HAVE DIFFERENT EFFECTS ON LIVER AND ADIPOSE TISSUE IN RATS FED WITH A HIGH-FAT DIET. Prostaglandins Other Lipid Mediat 2022; 159:106622. [DOI: 10.1016/j.prostaglandins.2022.106622] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2021] [Revised: 12/20/2021] [Accepted: 01/21/2022] [Indexed: 02/07/2023]
|
6
|
One-Week High-Intensity Interval Training Increases Hippocampal Plasticity and Mitochondrial Content without Changes in Redox State. Antioxidants (Basel) 2020; 9:antiox9050445. [PMID: 32455608 PMCID: PMC7278594 DOI: 10.3390/antiox9050445] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2020] [Revised: 04/24/2020] [Accepted: 04/25/2020] [Indexed: 12/20/2022] Open
Abstract
Evidence suggests that physical exercise has effects on neuronal plasticity as well as overall brain health. This effect has been linked to exercise capacity in modulating the antioxidant status, when the oxidative stress is usually linked to the neuronal damage. Although high-intensity interval training (HIIT) is the training-trend worldwide, its effect on brain function is still unclear. Thus, we aimed to assess the neuroplasticity, mitochondrial, and redox status after one-week HIIT training. Male (C57Bl/6) mice were assigned to non-trained or HIIT groups. The HIIT protocol consisted of three days with short bouts at 130% of maximum speed (Vmax), intercalated with moderate-intensity continuous exercise sessions of 30 min at 60% Vmax. The mass spectrometry analyses showed that one-week of HIIT increased minichromosome maintenance complex component 2 (MCM2), brain derived neutrophic factor (BDNF), doublecortin (DCX) and voltage-dependent anion-selective channel protein 2 (VDAC), and decreased mitochondrial superoxide dismutase 2 (SOD 2) in the hippocampus. In addition, one-week of HIIT promoted no changes in H2O2 production and carbonylated protein concentration in the hippocampus as well as in superoxide anion production in the dentate gyrus. In conclusion, our one-week HIIT protocol increased neuroplasticity and mitochondrial content regardless of changes in redox status, adding new insights into the neuronal modulation induced by new training models.
Collapse
|
7
|
Ramírez-Alarcón K, Sánchez-Agurto Á, Lamperti L, Martorell M. Epigenetics, Maternal Diet and Metabolic Programming. ACTA ACUST UNITED AC 2019. [DOI: 10.2174/1874196701907010045] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Background:
The maternal environment influences embryonic and fetal life. Nutritional deficits or excesses alter the trajectory of fetus/offspring’s development. The concept of “developmental programming” and “developmental origins of health and disease” consists of the idea that maternal diet may remodel the genome and lead to epigenetic changes. These changes are induced during early life, permanently altering the phenotype in the posterior adult stage, favoring the development of metabolic diseases such as obesity, dyslipidemia, hypertension, hyperinsulinemia, and metabolic syndrome. In this review, it is aimed to overview epigenetics, maternal diet and metabolic programming factors and determine which of these might affect future generations.
Scope and Approach:
Nutrients interfere with the epigenome by influencing the supply and use of methyl groups through DNA transmethylation and demethylation mechanisms. They also influence the remodeling of chromatin and arginine or lysine residues at the N-terminal tails of histone, thus altering miRNA expression. Fats, proteins, B vitamins and folates act as important cofactors in methylation processes. The metabolism of carbon in the methyl groups of choline, folic acid and methionine to S-Adenosyl Methionine (SAM), acts as methyl donors to methyl DNA, RNA, and proteins. B-complex vitamins are important since they act as coenzymes during this process.
Key Findings and Conclusion:
Nutrients, during pregnancy, potentially influence susceptibility to diseases in adulthood. Additionally, the deficit or excess of nutrients alter the epigenetic machinery, affecting genes and influencing the genome of the offspring and therefore, predisposing the development of chronic diseases in adults.
Collapse
|
8
|
Ghnaimawi S, Shelby S, Baum J, Huang Y. Effects of eicosapentaenoic acid and docosahexaenoic acid on C2C12 cell adipogenesis and inhibition of myotube formation. Anim Cells Syst (Seoul) 2019; 23:355-364. [PMID: 31700701 PMCID: PMC6830227 DOI: 10.1080/19768354.2019.1661282] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2019] [Revised: 08/08/2019] [Accepted: 08/22/2019] [Indexed: 12/14/2022] Open
Abstract
Eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA) modulate cellular metabolic functions and gene expression. This study investigated the impacts of EPA and DHA on gene expression and morphological changes during adipogenic inducement in C2C12 myoblasts. Cells were cultured and treated with differentiation medium with and without 50 μM EPA and DHA. Cells treated with fatty acids had noticeable lipid droplets, but no formation of myotubes compared to control group cells. The expression levels of key genes relevant to adipogenesis and inflammation were significantly higher (P < 0.05) in cells treated with fatty acids. Genes associated with myogenesis and mitochondrial biosynthesis and function had lower (P < 0.05) expression with fatty acids supplementation. Moreover, fatty acid treatment reduced (P < 0.05) oxygen consumption rate in the differentiated cells. This suggested blocking myotube formation through supplementation with EPA and DHA drove myoblasts to enter the quiescent state and enabled adipogenic trans-differentiation of the myoblasts. Data also suggested that overdosage of EPA and DHA during gestation may drive fetal mesenchymal stem cell differentiation to the fate of adipogenesis and have a long-term effect on childhood obesity.
Collapse
Affiliation(s)
- Saeed Ghnaimawi
- Department of Animal Science, Division of Agriculture, University of Arkansas, Fayetteville AR, USA
| | - Sarah Shelby
- Department of Animal Science, Division of Agriculture, University of Arkansas, Fayetteville AR, USA
| | - Jamie Baum
- Department of Food Science, Division of Agriculture, University of Arkansas, Fayetteville AR, USA
| | - Yan Huang
- Department of Animal Science, Division of Agriculture, University of Arkansas, Fayetteville AR, USA
| |
Collapse
|
9
|
Yamada L, Souza C, Branco I, Andrade I, Deak F, Bastos G, Silva J, Amoris J, Yamada L, Goiozo P, Cremasco C, Gabriel Filho L, Chacur M. Efeito do ômega 3 e da vitamina B12 no espermograma, na histomorfometria dos órgãos reprodutivos e nas temperaturas do corpo com termografia infravermelha em ratos Wistar. ARQ BRAS MED VET ZOO 2019. [DOI: 10.1590/1678-4162-10129] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
RESUMO Objetivou-se estudar o efeito do ômega 3 e da vitamina B12 no espermograma, na histomorfometria dos órgãos reprodutivos e na temperaturas do corpo com termografia infravermelha em ratos Wistar. Utilizaram-se 16 ratos, em quatro grupos (n=4), que receberam injeções diárias por 30 dias, sendo: grupo controle - solução salina; grupo ômega 3 - óleo de peixe 1g/kg; grupo B12 - vitamina B12 3µg; e grupo ômega 3 + B12 - óleo de peixe 1g/kg e vitamina B12 3µg. Imagens termográficas de áreas do corpo foram obtidas. No 30º dia, os ratos foram sacrificados e realizaram-se as análises de morfologia espermática e histomorfometria. Os dados foram submetidos à análise de variância e ao teste de Tukey a 5%. A temperatura da superfície do escroto foi superior no grupo B12 (P<0,05). Não houve diferenças entre grupos (P>0,05) para temperaturas do globo ocular. Houve correlação entre temperatura da superfície do escroto e porcentagem de gota citoplasmática distal (P=0,678). A elevação da temperatura do escroto resulta no aumento da porcentagem de gotas citoplasmáticas distais. A temperatura do globo ocular não sofre influência significativa do ômega 3 e da vitamina B12. O ômega 3 reduz o epitélio seminífero, e a vitamina B12 minimiza esse efeito.
Collapse
|
10
|
Amos D, Cook C, Santanam N. Omega 3 rich diet modulates energy metabolism via GPR120-Nrf2 crosstalk in a novel antioxidant mouse model. Biochim Biophys Acta Mol Cell Biol Lipids 2019; 1864:466-488. [PMID: 30658097 DOI: 10.1016/j.bbalip.2019.01.002] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2018] [Revised: 12/12/2018] [Accepted: 01/07/2019] [Indexed: 02/08/2023]
Abstract
With obesity rates reaching epidemic proportions, more studies concentrated on reducing the risk and treating this epidemic are vital. Redox stress is an important metabolic regulator involved in the pathophysiology of cardiovascular disease, Type 2 diabetes, and obesity. Oxygen and nitrogen-derived free radicals alter glucose and lipid homeostasis in key metabolic tissues, leading to increases in risk of developing metabolic syndrome. Oxidants derived from dietary fat differ in their metabolic regulation, with numerous studies showing benefits from a high omega 3 rich diet compared to the frequently consumed "western diet" rich in saturated fat. Omega 3 (OM3) fatty acids improve lipid profile, lower inflammation, and ameliorate insulin resistance, possibly through maintaining redox homeostasis. This study is based on the hypothesis that altering endogenous antioxidant production and/or increasing OM3 rich diet consumption will improve energy metabolism and maintain insulin sensitivity. We tested the comparative metabolic effects of a diet rich in saturated fat (HFD) and an omega 3-enriched diet (OM3) in the newly developed 'stress-less' mice model that overexpresses the endogenous antioxidant catalase. Eight weeks of dietary intervention showed that mice overexpressing endogenous catalase compared to their wild-type controls when fed an OM3 enriched diet, in contrast to HFD, activated GPR120-Nrf2 cross-talk to maintain balanced energy metabolism, normal circadian rhythm, and insulin sensitivity. These findings suggest that redox regulation of GPR120/FFAR4 might be an important target in reducing risk of metabolic syndrome and associated diseases.
Collapse
Affiliation(s)
- Deborah Amos
- Department of Biomedical Sciences, Joan C. Edwards School of Medicine, Marshall University, 1700 3rd Ave, Huntington, WV 25755-0001, United States
| | - Carla Cook
- Department of Biomedical Sciences, Joan C. Edwards School of Medicine, Marshall University, 1700 3rd Ave, Huntington, WV 25755-0001, United States
| | - Nalini Santanam
- Department of Biomedical Sciences, Joan C. Edwards School of Medicine, Marshall University, 1700 3rd Ave, Huntington, WV 25755-0001, United States.
| |
Collapse
|
11
|
Martins AR, Crisma AR, Masi LN, Amaral CL, Marzuca-Nassr GN, Bomfim LH, Teodoro BG, Queiroz AL, Serdan TD, Torres RP, Mancini-Filho J, Rodrigues AC, Alba-Loureiro TC, Pithon-Curi TC, Gorjao R, Silveira LR, Curi R, Newsholme P, Hirabara SM. Attenuation of obesity and insulin resistance by fish oil supplementation is associated with improved skeletal muscle mitochondrial function in mice fed a high-fat diet. J Nutr Biochem 2018; 55:76-88. [DOI: 10.1016/j.jnutbio.2017.11.012] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2017] [Revised: 09/28/2017] [Accepted: 11/14/2017] [Indexed: 12/14/2022]
|
12
|
Kuwabara WMT, Panveloski-Costa AC, Yokota CNF, Pereira JNB, Filho JM, Torres RP, Hirabara SM, Curi R, Alba-Loureiro TC. Comparison of Goto-Kakizaki rats and high fat diet-induced obese rats: Are they reliable models to study Type 2 Diabetes mellitus? PLoS One 2017; 12:e0189622. [PMID: 29220408 PMCID: PMC5722336 DOI: 10.1371/journal.pone.0189622] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2017] [Accepted: 11/29/2017] [Indexed: 02/07/2023] Open
Abstract
Type 2 Diabetes mellitus (T2DM) is an evident growing disease that affects different cultures throughout the world. T2DM occurs under the influence of three main factors: the genetic background, environmental and behavioral components. Obesity is strongly associated to the development of T2DM in the occident, while in the orient most of the diabetic patients are considered lean. Genetics may be a key factor in the development of T2DM in societies where obesity is not a recurrent public health problem. Herein, two different models of rats were used to understand their differences and reliability as experimental models to study the pathophysiology of T2DM, in two different approaches: the genetic (GK rats) and the environmental (HFD-induced obese rats) influences. GK rats were resistant to weight gain even though food/energy consumption (relative to body weight) was higher in this group. HFD, on the other hand, induced obesity in Wistar rats. White adipose tissue (WAT) expansion in this group was accompanied by immune cells infiltration, inflammation and insulin resistance. GK rats also presented WAT inflammation and insulin resistance; however, no immune cells infiltration was observed in the WAT of this group. Liver of HFD group presented fat accumulation without differences in inflammatory cytokines content, while liver of GK rats didn't present fat accumulation, but showed an increase of IL-6 and IL-10 content and glycogen. Also, GK rats showed increased plasma GOT and GPT. Soleus muscle of HFD presented normal insulin signaling, contrary to GK rats, which presented higher content of basal phosphorylation of GSK-3β. Our results demonstrated that HFD developed a mild insulin resistance in Wistar rats, but was not sufficient to develop T2DM. In contrast, GK rats presented all the typical hallmarks of T2DM, such as insulin resistance, defective insulin production, fasting hyperglycemia/hyperinsulinemia and lipid plasma alteration. Thus, on the given time point of this study, we may conclude that only GK rats shown to be a reliable model to study T2DM.
Collapse
Affiliation(s)
| | - Ana Carolina Panveloski-Costa
- Department of Physiology and Biophysics, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil
| | | | - Joice Naiara Bertaglia Pereira
- Department of Physiology and Biophysics, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil
- Cruzeiro do Sul University, São Paulo, Brazil
| | - Jorge Mancini Filho
- Faculty of Pharmaceutical Sciences, University of São Paulo, São Paulo, Brazil
| | | | | | - Rui Curi
- Department of Physiology and Biophysics, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil
- Cruzeiro do Sul University, São Paulo, Brazil
| | | |
Collapse
|
13
|
Indrio F, Martini S, Francavilla R, Corvaglia L, Cristofori F, Mastrolia SA, Neu J, Rautava S, Russo Spena G, Raimondi F, Loverro G. Epigenetic Matters: The Link between Early Nutrition, Microbiome, and Long-term Health Development. Front Pediatr 2017; 5:178. [PMID: 28879172 PMCID: PMC5572264 DOI: 10.3389/fped.2017.00178] [Citation(s) in RCA: 118] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/08/2017] [Accepted: 08/07/2017] [Indexed: 12/18/2022] Open
Abstract
Epigenetic modifications are among the most important mechanisms by which environmental factors can influence early cellular differentiation and create new phenotypic traits during pregnancy and within the neonatal period without altering the deoxyribonucleic acid sequence. A number of antenatal and postnatal factors, such as maternal and neonatal nutrition, pollutant exposure, and the composition of microbiota, contribute to the establishment of epigenetic changes that can not only modulate the individual adaptation to the environment but also have an influence on lifelong health and disease by modifying inflammatory molecular pathways and the immune response. Postnatal intestinal colonization, in turn determined by maternal flora, mode of delivery, early skin-to-skin contact and neonatal diet, leads to specific epigenetic signatures that can affect the barrier properties of gut mucosa and their protective role against later insults, thus potentially predisposing to the development of late-onset inflammatory diseases. The aim of this review is to outline the epigenetic mechanisms of programming and development acting within early-life stages and to examine in detail the role of maternal and neonatal nutrition, microbiota composition, and other environmental factors in determining epigenetic changes and their short- and long-term effects.
Collapse
Affiliation(s)
- Flavia Indrio
- Department of Pediatrics, Aldo Moro University, Bari, Italy
| | - Silvia Martini
- Neonatology and Neonatal Intensive Care Unit, St. Orsola-Malpighi Hospital, Department of Medical and Surgical Sciences, University of Bologna, Bologna, Italy
| | | | - Luigi Corvaglia
- Neonatology and Neonatal Intensive Care Unit, St. Orsola-Malpighi Hospital, Department of Medical and Surgical Sciences, University of Bologna, Bologna, Italy
| | | | - Salvatore Andrea Mastrolia
- Department of Biomedical Science and Human Oncology, Section of Obstetrics and Gynecology, Aldo Moro University, Bari, Italy
| | - Josef Neu
- Division of Neonatology, Department of Pediatrics, University of Florida, Gainesville, FL, United States
| | - Samuli Rautava
- Department of Pediatrics, University of Turku, Turku University Hospital, Turku, Finland
| | - Giovanna Russo Spena
- Division of Neonatology, Department of Translational Medical Sciences, University "Federico II" di Napoli, Naples, Italy
| | - Francesco Raimondi
- Division of Neonatology, Department of Translational Medical Sciences, University "Federico II" di Napoli, Naples, Italy
| | - Giuseppe Loverro
- Department of Biomedical Science and Human Oncology, Section of Obstetrics and Gynecology, Aldo Moro University, Bari, Italy
| |
Collapse
|
14
|
Deval C, Capel F, Laillet B, Polge C, Béchet D, Taillandier D, Attaix D, Combaret L. Docosahexaenoic acid-supplementation prior to fasting prevents muscle atrophy in mice. J Cachexia Sarcopenia Muscle 2016; 7:587-603. [PMID: 27239420 PMCID: PMC4864105 DOI: 10.1002/jcsm.12103] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/20/2015] [Revised: 11/13/2015] [Accepted: 01/11/2016] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND Muscle wasting prevails in numerous diseases (e.g. diabetes, cardiovascular and kidney diseases, COPD,…) and increases healthcare costs. A major clinical issue is to devise new strategies preventing muscle wasting. We hypothesized that 8-week docosahexaenoic acid (DHA) supplementation prior to fasting may preserve muscle mass in vivo. METHODS Six-week-old C57BL/6 mice were fed a DHA-enriched or a control diet for 8 weeks and then fasted for 48 h. RESULTS Feeding mice a DHA-enriched diet prior to fasting elevated muscle glycogen contents, reduced muscle wasting, blocked the 55% decrease in Akt phosphorylation, and reduced by 30-40% the activation of AMPK, ubiquitination, or autophagy. The DHA-enriched diet fully abolished the fasting induced-messenger RNA (mRNA) over-expression of the endocannabinoid receptor-1. Finally, DHA prevented or modulated the fasting-dependent increase in muscle mRNA levels for Rab18, PLD1, and perilipins, which determine the formation and fate of lipid droplets, in parallel with muscle sparing. CONCLUSIONS These data suggest that 8-week DHA supplementation increased energy stores that can be efficiently mobilized, and thus preserved muscle mass in response to fasting through the regulation of Akt- and AMPK-dependent signalling pathways for reducing proteolysis activation. Whether a nutritional strategy aiming at increasing energy status may shorten recovery periods in clinical settings remains to be tested.
Collapse
Affiliation(s)
- Christiane Deval
- INRA, UMR 1019 UNH, CRNHF-63000 Auvergne Clermont-Ferrand France; Clermont Université, Université d'Auvergne Unité de Nutrition Humaine BP 10448 F-63000 Clermont-Ferrand France
| | - Frédéric Capel
- INRA, UMR 1019 UNH, CRNHF-63000 Auvergne Clermont-Ferrand France; Clermont Université, Université d'Auvergne Unité de Nutrition Humaine BP 10448 F-63000 Clermont-Ferrand France
| | - Brigitte Laillet
- INRA, UMR 1019 UNH, CRNHF-63000 Auvergne Clermont-Ferrand France; Clermont Université, Université d'Auvergne Unité de Nutrition Humaine BP 10448 F-63000 Clermont-Ferrand France
| | - Cécile Polge
- INRA, UMR 1019 UNH, CRNHF-63000 Auvergne Clermont-Ferrand France; Clermont Université, Université d'Auvergne Unité de Nutrition Humaine BP 10448 F-63000 Clermont-Ferrand France
| | - Daniel Béchet
- INRA, UMR 1019 UNH, CRNHF-63000 Auvergne Clermont-Ferrand France; Clermont Université, Université d'Auvergne Unité de Nutrition Humaine BP 10448 F-63000 Clermont-Ferrand France
| | - Daniel Taillandier
- INRA, UMR 1019 UNH, CRNHF-63000 Auvergne Clermont-Ferrand France; Clermont Université, Université d'Auvergne Unité de Nutrition Humaine BP 10448 F-63000 Clermont-Ferrand France
| | - Didier Attaix
- INRA, UMR 1019 UNH, CRNHF-63000 Auvergne Clermont-Ferrand France; Clermont Université, Université d'Auvergne Unité de Nutrition Humaine BP 10448 F-63000 Clermont-Ferrand France
| | - Lydie Combaret
- INRA, UMR 1019 UNH, CRNHF-63000 Auvergne Clermont-Ferrand France; Clermont Université, Université d'Auvergne Unité de Nutrition Humaine BP 10448 F-63000 Clermont-Ferrand France
| |
Collapse
|
15
|
Abreu P, Pinheiro CHJ, Vitzel KF, Vasconcelos DAA, Torres RP, Fortes MS, Marzuca-Nassr GN, Mancini-Filho J, Hirabara SM, Curi R. Contractile function recovery in severely injured gastrocnemius muscle of rats treated with either oleic or linoleic acid. Exp Physiol 2016; 101:1392-1405. [PMID: 27579497 DOI: 10.1113/ep085899] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2016] [Accepted: 08/18/2016] [Indexed: 12/31/2022]
Abstract
NEW FINDINGS What is the central question of this study? Oleic and linoleic acids modulate fibroblast proliferation and myogenic differentiation in vitro. However, their in vivo effects on muscle regeneration have not yet been examined. We investigated the effects of either oleic or linoleic acid on a well-established model of muscle regeneration after severe laceration. What is the main finding and its importance? We found that linoleic acid increases fibrous tissue deposition and impairs muscle regeneration and recovery of contractile function, whereas oleic acid has the opposite effects in severely injured gastrocnemius muscle, suggesting that linoleic acid has a harmful effect and oleic acid a potential therapeutic effect on muscle regeneration. Oleic and linoleic acids control fibroblast proliferation and myogenic differentiation in vitro; however, there was no study in skeletal muscle in vivo. The aim of this study was to evaluate the effects of either oleic or linoleic acid on the fibrous tissue content (collagen deposition) of muscle and recovery of contractile function in rat gastrocnemius muscle after being severely injured by laceration. Rats were supplemented with either oleic or linoleic acid for 4 weeks after laceration [0.44 g (kg body weight)-1 day-1 ]. Muscle injury led to an increase in oleic-to-stearic acid and palmitoleic-to-palmitic acid ratios, suggesting an increase in Δ9 desaturase activity. Increased fibrous tissue deposition and reduced isotonic and tetanic specific forces and resistance to fatigue were observed in the injured muscle. Supplementation with linoleic acid increased the content of eicosadienoic (20:2, n-6) and arachidonic (20:4, n-6) acids, reduced muscle mass and fibre cross-sectional areas, increased fibrous tissue deposition and further reduced the isotonic and tetanic specific forces and resistance to fatigue induced by laceration. Supplementation with oleic acid increased the content of docosahexaenoic acid (22:6, n-3) and abolished the increase in fibrous tissue area and the decrease in isotonic and tetanic specific forces and resistance to fatigue induced by muscle injury. We concluded that supplementation with linoleic acid impairs muscle regeneration and increases fibrous tissue deposition, resulting in impaired recovery of contractile function. Oleic acid supplementation reduced fibrous tissue deposition and improved recovery of contractile function, attenuating the tissue damage caused by muscle injury.
Collapse
Affiliation(s)
- Phablo Abreu
- Institute of Biomedical Sciences, University of São Paulo, São Paulo, SP, Brazil
| | - Carlos H J Pinheiro
- Institute of Biomedical Sciences, University of São Paulo, São Paulo, SP, Brazil
| | - Kaio F Vitzel
- Institute of Biomedical Sciences, University of São Paulo, São Paulo, SP, Brazil
| | | | - Rosângela P Torres
- Faculty of Pharmaceutical Sciences, University of São Paulo, São Paulo, SP, Brazil
| | - Marco S Fortes
- Institute of Biomedical Sciences, University of São Paulo, São Paulo, SP, Brazil
| | | | - Jorge Mancini-Filho
- Faculty of Pharmaceutical Sciences, University of São Paulo, São Paulo, SP, Brazil
| | - Sandro M Hirabara
- Institute of Biomedical Sciences, University of São Paulo, São Paulo, SP, Brazil.,Institute of Physical Activity Sciences and Sports, Cruzeiro do Sul University, São Paulo, SP, Brazil
| | - Rui Curi
- Institute of Biomedical Sciences, University of São Paulo, São Paulo, SP, Brazil.
| |
Collapse
|
16
|
de Sá RDCDC, Crisma AR, Cruz MM, Martins AR, Masi LN, do Amaral CL, Curi R, Alonso-Vale MIC. Fish oil prevents changes induced by a high-fat diet on metabolism and adipokine secretion in mice subcutaneous and visceral adipocytes. J Physiol 2016; 594:6301-6317. [PMID: 27558442 DOI: 10.1113/jp272541] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2016] [Accepted: 06/22/2016] [Indexed: 12/13/2022] Open
Abstract
KEY POINTS Fish oil (FO), rich in omega-3 polyunsaturated fatty acids, has beneficial effects on changes induced by obesity and partially prevents associated comorbidities. The effects of FO on adipocytes from different adipose tissue depots in high-fat (HF) diet induced obese mice have not been uninvestigated. This is the first study to examine the effects of FO on changes in metabolism and adipokine production in adipocytes from s.c. (inguinal; ING) or visceral (retroperitoneal; RP) white adipose depots in a HF diet-induced obese mice. Unlike most studies performed previously, FO supplementation was initiated 4 weeks before the induction of obesity. HF diet caused marked changes in ING (glucose uptake and secretion of adiponectin, tumour necrosis factor-α and interleukin-6 in ING) and RP (lipolysis, de novo lipogenesis and secretion of pro-inflammatory cytokines) adipose depots. Previous and concomitant FO administration prevented the changes in ING and RP adipocytes induced by the HF diet. ABSTRACT In the present study, we investigated the effect of fish oil (FO) on metabolism and adipokine production by adipocytes from s.c. (inguinal; ING) and visceral (retroperitoneal; RP) white adipose depots in high-fat (HF) diet-induced obese mice. Mice were divided into CO (control diet), CO+FO, HF and HF+FO groups. The HF group presented higher body weight, glucose intolerance, insulin resistance, higher plasma total and low-density lipoprotein cholesterol levels, and greater weights of ING and RP adipose depots accompanied by hypertrophy of the adipocytes. FO exerted anti-obesogenic effects associated with beneficial effects on dyslipidaemia and insulin resistance in mice fed a HF diet (HF+FO group). HF raised RP adipocyte lipolysis and the production of pro-inflammatory cytokines and reduced de novo synthesis of fatty acids, whereas, in ING adipocytes, it decreased glucose uptake and adiponectin secretion but did not change lipolysis. Therefore, the adipose depots play different roles in HF diet-induced insulin resistance according to their location in the body. Concerning cytokine secretion, adipocytes per se in addition to white adopise tissue infiltrated leukocytes have to be considered in the aetiology of the comorbidities associated with obesity. Evidence is presented showing that previous and concomitant administration of FO can prevent changes in metabolism and the secretion of hormones and cytokines in ING and RP adipocytes induced by HF.
Collapse
Affiliation(s)
- Roberta D C da Cunha de Sá
- Department of Biological Sciences, Institute of Environmental Sciences, Chemical and Pharmaceutical, Federal University of São Paulo, Diadema, Brazil
| | - Amanda R Crisma
- Department of Physiology and Biophysics, Institute of Biomedical Sciences, University of Sao Paulo, Sao Paulo, Brazil
| | - Maysa M Cruz
- Department of Biological Sciences, Institute of Environmental Sciences, Chemical and Pharmaceutical, Federal University of São Paulo, Diadema, Brazil
| | - Amanda R Martins
- Department of Physiology and Biophysics, Institute of Biomedical Sciences, University of Sao Paulo, Sao Paulo, Brazil
| | - Laureane N Masi
- Department of Physiology and Biophysics, Institute of Biomedical Sciences, University of Sao Paulo, Sao Paulo, Brazil
| | - Catia L do Amaral
- Campus of Exact Science and Technology, State University of Goias, Anapolis, Brazil
| | - R Curi
- Department of Physiology and Biophysics, Institute of Biomedical Sciences, University of Sao Paulo, Sao Paulo, Brazil
| | - Maria I C Alonso-Vale
- Department of Biological Sciences, Institute of Environmental Sciences, Chemical and Pharmaceutical, Federal University of São Paulo, Diadema, Brazil.
| |
Collapse
|
17
|
Rivas E, Wooten JS, Newmire DE, Ben-Ezra V. Omega-3 fatty acid supplementation combined with acute aerobic exercise does not alter the improved post-exercise insulin response in normoglycemic, inactive and overweight men. Eur J Appl Physiol 2016; 116:1255-65. [PMID: 27155848 DOI: 10.1007/s00421-016-3387-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2015] [Accepted: 05/01/2016] [Indexed: 12/16/2022]
Abstract
PURPOSE The aim of this study was to determine if omega-3 (n-3) supplementation combined with acute aerobic exercise would improve glucose and insulin responses in normoglycemic, inactive, overweight men. METHODS In a random order, ten inactive and normoglycemic men (30.6 ± 10 years, 85.4 ± 11 kg, 26.7 ± 4 BMI) completed a rest (R) and exercise trial (EX) without n-3 supplementation. Following 42 days of n-3 supplementation, participants again completed a rest (R + n-3) and exercise trial (EX + n-3) with continued n-3 supplementation. The exercise trial consisted of 3 days of ~70 % VO2peak for 60 min/session. N-3 supplementation entailed 4.55 g/day of n-3 (EPA 2.45 g, DHA 1.61 g). A 75 g oral glucose tolerance (OGTT) test was administered 14-16 h after each trial. RESULTS Relative to R (35,278 ± 9169 pmol/L), EX without n-3 reduced the incremental area under the curve for insulin (iAUCinsulin) during an OGTT by 21.3 % (27765 ± 4925 pmol/L, p = 0.018) and 20.6 % after the EX + n-3 trial (27,999 ± 8370 pmol/L; p = 0.007). In addition, EX (96 ± 21 pmol/L; p = 0.006) reduced C-peptide by 13.5 % when compared to R (111 ± 26 pmol/L). No difference was observed between R and n-3 trials for iAUCinsulin and iAUCC-peptide. Only EX improved insulin sensitivity index by 5.6 % (p = 0.02) when compared to R. CONCLUSIONS These data suggest that n-3 supplementation does not add any additional benefit beyond the exercise induced insulin responses in inactive men. Furthermore, n-3 supplementation alone does not appear to impair insulin action in normoglycemic, inactive, overweight men.
Collapse
Affiliation(s)
- Eric Rivas
- Exercise Physiology and Biochemistry Laboratory, Department of Kinesiology, Texas Woman's University, Denton, TX, USA. .,Institute for Clinical and Translational Science & Department of Pediatrics, The University of California, Irvine, CA, USA.
| | - Joshua S Wooten
- Department of Kinesiology and Health Education, Southern Illinois University Edwardsville, Edwardsville, IL, USA
| | - Daniel E Newmire
- Exercise Physiology and Biochemistry Laboratory, Department of Kinesiology, Texas Woman's University, Denton, TX, USA
| | - Vic Ben-Ezra
- Exercise Physiology and Biochemistry Laboratory, Department of Kinesiology, Texas Woman's University, Denton, TX, USA
| |
Collapse
|
18
|
Vansant G. Effect of Maternal and Paternal Nutrition on DNA Methylation in the Offspring: A Systematic Review of Human and Animal Studies. ACTA ACUST UNITED AC 2016. [DOI: 10.15406/aowmc.2016.04.00093] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
19
|
Barbosa AM, Francisco PDC, Motta K, Chagas TR, Dos Santos C, Rafacho A, Nunes EA. Fish oil supplementation attenuates changes in plasma lipids caused by dexamethasone treatment in rats. Appl Physiol Nutr Metab 2015; 41:382-90. [PMID: 26939043 DOI: 10.1139/apnm-2015-0487] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Dexamethasone is an anti-inflammatory glucocorticoid that may alter glucose and lipid homeostasis when administered in high doses or for long periods of time. Omega-3 fatty acids, present in fish oil (FO), can be used as potential modulators of intermediary glucose and lipid metabolism. Herein, we evaluate the effects of FO supplementation (1 g·kg(-1) body weight (BW)) on glucose and lipid metabolism in rats treated with dexamethasone (0.5 mg·kg(-1) BW) for 15 days. Adult male Wistar rats were distributed among 4 groups: control (saline, 1 mL·kg(-1) BW and mineral oil, 1 g·kg(-1) BW), DEX (dexamethasone and mineral oil), FO (fish oil and saline), and DFO (fish oil and dexamethasone). Dexamethasone and saline were administered intraperitoneally, and fish oil and mineral oil were administered by gavage. We evaluated functional and molecular parameters of lipid and glycemic profiles at 8 days and at the end of treatment. FO supplementation increased hepatic docosahexaenoic acid (DEX: 5.6% ± 0.7%; DFO: 10.5% ± 0.8%) and eicosapentaenoic acid (DEX: 0.3% ± 0.0%; DFO: 1.3% ± 0.1%) contents and attenuated the increase of plasma triacylglycerol, total cholesterol, and non-high-density lipoprotein cholesterol concentrations in DFO rats compared with DEX rats. These effects seem not to depend on hepatic expression of insulin receptor substrate 1, protein kinase B, peroxisome proliferator-activated receptor γ coactivator 1-α, and peroxisome proliferator-activated receptor γ. There was no effect of supplementation on body weight loss, fasting glycemia, and glucose tolerance in rats treated with dexamethasone. In conclusion, we show that FO supplementation for 15 days attenuates the dyslipidemia induced by dexamethasone treatment.
Collapse
Affiliation(s)
- Amanda Marreiro Barbosa
- a Laboratory of Investigation in Chronic Diseases, Department of Physiological Sciences, Center of Biological Sciences, Federal University of Santa Catarina (UFSC), Florianópolis, Brazil.,b Multicenter Graduate Program in Physiological Sciences, Graduate Program in Nutrition, Center of Health Sciences, UFSC, Florianópolis, Brazil
| | - Priscila de Cássia Francisco
- a Laboratory of Investigation in Chronic Diseases, Department of Physiological Sciences, Center of Biological Sciences, Federal University of Santa Catarina (UFSC), Florianópolis, Brazil
| | - Katia Motta
- a Laboratory of Investigation in Chronic Diseases, Department of Physiological Sciences, Center of Biological Sciences, Federal University of Santa Catarina (UFSC), Florianópolis, Brazil
| | - Thayz Rodrigues Chagas
- a Laboratory of Investigation in Chronic Diseases, Department of Physiological Sciences, Center of Biological Sciences, Federal University of Santa Catarina (UFSC), Florianópolis, Brazil
| | - Cristiane Dos Santos
- a Laboratory of Investigation in Chronic Diseases, Department of Physiological Sciences, Center of Biological Sciences, Federal University of Santa Catarina (UFSC), Florianópolis, Brazil
| | - Alex Rafacho
- a Laboratory of Investigation in Chronic Diseases, Department of Physiological Sciences, Center of Biological Sciences, Federal University of Santa Catarina (UFSC), Florianópolis, Brazil
| | - Everson Araújo Nunes
- a Laboratory of Investigation in Chronic Diseases, Department of Physiological Sciences, Center of Biological Sciences, Federal University of Santa Catarina (UFSC), Florianópolis, Brazil.,b Multicenter Graduate Program in Physiological Sciences, Graduate Program in Nutrition, Center of Health Sciences, UFSC, Florianópolis, Brazil
| |
Collapse
|
20
|
Mori Y, Kitamura T, Kawamura G, Sato K, Sato R, Araki Y, Yamada Y. Effects of preoperative and intraoperative glucose administration on glucose use and fat catabolism during laparotomy under sevoflurane anesthesia in fasted rats. J Physiol Sci 2015; 65:523-30. [PMID: 26280893 PMCID: PMC10717368 DOI: 10.1007/s12576-015-0390-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2015] [Accepted: 08/02/2015] [Indexed: 11/25/2022]
Abstract
Preoperative fasting as well as surgical stress significantly modifies metabolisms. Recent studies reported the possible advantageous effects of glucose administration on perioperative metabolisms; however, the underlying mechanisms have not been fully elucidated. Rats were allocated to three groups. During the fasting period, groups A and B were administered water, but group C was administered glucose. During laparotomy and the insulin tolerance test (ITT) under sevoflurane anesthesia, group A was administered saline, but groups B and C were administered glucose. During laparotomy, group C showed higher glucose levels and lower β-hydroxybutyrate (β-OHB) levels than group A, and group B showed more decreases in β-OHB levels than group A without differences in changes in glucose levels. Insulin levels and insulin sensitivity during laparotomy were similar among the three groups. No significant difference in insulin sensitivity was also confirmed in ITT. In conclusion, perioperative glucose administration suppresses lipolysis without affecting insulin secretion and sensitivity.
Collapse
Affiliation(s)
- Yoshiteru Mori
- Department of Anesthesiology, Faculty of Medicine, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-8655, Japan
| | - Takayuki Kitamura
- Department of Anesthesiology, Toho University Sakura Medical Center, Sakura, Chiba, Japan
| | - Gaku Kawamura
- Department of Anesthesiology, Faculty of Medicine, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-8655, Japan.
| | - Kanako Sato
- Department of Anesthesiology, Toho University Sakura Medical Center, Sakura, Chiba, Japan
| | - Rui Sato
- Department of Anesthesiology, Faculty of Medicine, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-8655, Japan
| | - Yuko Araki
- Department of Anesthesiology, Faculty of Medicine, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-8655, Japan
| | - Yoshitsugu Yamada
- Department of Anesthesiology, Faculty of Medicine, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-8655, Japan
| |
Collapse
|
21
|
Lind MV, Martino D, Harsløf LBS, Kyjovska ZO, Kristensen M, Lauritzen L. Genome-wide identification of mononuclear cell DNA methylation sites potentially affected by fish oil supplementation in young infants: A pilot study. Prostaglandins Leukot Essent Fatty Acids 2015; 101:1-7. [PMID: 26254087 DOI: 10.1016/j.plefa.2015.07.003] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/18/2015] [Revised: 06/30/2015] [Accepted: 07/08/2015] [Indexed: 11/26/2022]
Abstract
Recent evidence suggests that the effects of n-3LCPUFA might be mediated through epigenetic mechanisms, especially DNA-methylation, during pregnancy and early life. A randomized trial was conducted in 133 9-mo-old, infants who received 3.8g/day of fish oil (FO) or sunflower oil (SO) for 9 mo. In a subset of 12 children, buffy-coat DNA was extracted before and after intervention and analyzed on Illumina-Human-Methylation 450-arrays to explore genome-wide differences between the FO and SO groups. Genome-wide-methylation analysis did not reveal significant differences between groups after adjustment for multiple testing. However, analysis of the top-ranked CpG-sites revealed 43 CpG׳s that appear modified with an absolute difference in methylation of ≥10%. Methylation levels at these sites were associated with phenotypic changes mainly in blood pressure. In conclusion, our analyses suggest potential epigenome effects that might be associated with functional outcomes, yet the effect sizes were small and should be verified by additional investigation.
Collapse
Affiliation(s)
- M V Lind
- Department of Nutrition, Exercise and Sports, Faculty of Science, University of Copenhagen, Frederiksberg, Denmark
| | - D Martino
- Murdoch Childrens Research Institute, Royal Children׳s Hospital, University of Melbourne, Australia
| | - L B S Harsløf
- Department of Nutrition, Exercise and Sports, Faculty of Science, University of Copenhagen, Frederiksberg, Denmark
| | - Z O Kyjovska
- National Research Centre for the Working Environment, Copenhagen, Denmark
| | - M Kristensen
- Department of Nutrition, Exercise and Sports, Faculty of Science, University of Copenhagen, Frederiksberg, Denmark
| | - L Lauritzen
- Department of Nutrition, Exercise and Sports, Faculty of Science, University of Copenhagen, Frederiksberg, Denmark.
| |
Collapse
|
22
|
Deletion of Kinin B2 Receptor Alters Muscle Metabolism and Exercise Performance. PLoS One 2015; 10:e0134844. [PMID: 26302153 PMCID: PMC4547798 DOI: 10.1371/journal.pone.0134844] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2015] [Accepted: 07/15/2015] [Indexed: 01/06/2023] Open
Abstract
Metabolic syndrome is a cluster of metabolic risk factors such as obesity, diabetes and cardiovascular diseases. Mitochondria is the main site of ATP production and its dysfunction leads to decreased oxidative phosphorylation, resulting in lipid accumulation and insulin resistance. Our group has demonstrated that kinins can modulate glucose and lipid metabolism as well as skeletal muscle mass. By using B2 receptor knockout mice (B2R-/-) we investigated whether kinin action affects weight gain and physical performance of the animals. Our results show that B2R-/- mice are resistant to high fat diet-induced obesity, have higher glucose tolerance as well as increased mitochondrial mass. These features are accompanied by higher energy expenditure and a lower feed efficiency associated with an increase in the proportion of type I fibers and intermediary fibers characterized by higher mitochondrial content and increased expression of genes related to oxidative metabolism. Additionally, the increased percentage of oxidative skeletal muscle fibers and mitochondrial apparatus in B2R-/- mice is coupled with a higher aerobic exercise performance. Taken together, our data give support to the involvement of kinins in skeletal muscle fiber type distribution and muscle metabolism, which ultimately protects against fat-induced obesity and improves aerobic exercise performance.
Collapse
|
23
|
Ould Hamouda H, Delplanque B, Benomar Y, Crépin D, Riffault L, LeRuyet P, Bonhomme C, Taouis M. Milk-soluble formula increases food intake and reduces Il6 expression in elderly rat hypothalami. J Endocrinol 2015; 226:67-80. [PMID: 25994005 DOI: 10.1530/joe-15-0076] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 05/20/2015] [Indexed: 01/17/2023]
Abstract
Malnutrition in the elderly is accompanied by several metabolic dysfunctions, especially alterations in energy homeostasis regulation and a loss of insulin responsiveness. Nutritional recommendations aim to enrich food with high protein and energy supplements, and protein composition and lipid quality have been widely studied. Despite the numerous studies that have examined attempts to overcome malnutrition in the elderly through such nutritional supplementation, it is still necessary to study the effects of a combination of protein, lipids, and vitamin D (VitD). This can be done in animal models of elderly malnutrition. In the present study, we investigated the effects of several diet formulae on insulin responsiveness, inflammation, and the hypothalamic expression of key genes that are involved in energy homeostasis control. To mimic elderly malnutrition in humans, elderly Wistar rats were food restricted (R, -50%) for 12 weeks and then refed for 4 weeks with one of four different isocaloric diets: a control diet; a diet where milk soluble protein (MSP) replaced casein; a blend of milk fat, rapeseed, and DHA (MRD); or a full formula (FF) diet that combined MSP and a blend of MRD (FF). All of the refeeding diets contained VitD. We concluded that: (i) food restriction led to the upregulation of insulin receptor in liver and adipose tissue accompanied by increased Tnfα in the hypothalamus; (ii) in all of the refed groups, refeeding led to similar body weight gain during the refeeding period; and (iii) refeeding with MSP and MRD diets induced higher food intake on the fourth week of refeeding, and this increase was associated with reduced hypothalamic interleukin 6 expression.
Collapse
Affiliation(s)
- Hassina Ould Hamouda
- Neuroendocrinologie Moléculaire de la Prise AlimentaireUniversity of Paris-Sud, UMR 8195, F-91405 Orsay, FranceNeuroendocrinologie Moléculaire de la Prise AlimentaireCNRS, Centre de Neurosciences Paris-Sud, UMR 8195, F-91405 Orsay, FranceService NutritionLactalis Recherche et Développement, 8 Fromy, CS 60082, 35240 Retiers, FranceLactalis Nutrition Parc d'Activité de Torcé-secteur Est35370 Torcé, France Neuroendocrinologie Moléculaire de la Prise AlimentaireUniversity of Paris-Sud, UMR 8195, F-91405 Orsay, FranceNeuroendocrinologie Moléculaire de la Prise AlimentaireCNRS, Centre de Neurosciences Paris-Sud, UMR 8195, F-91405 Orsay, FranceService NutritionLactalis Recherche et Développement, 8 Fromy, CS 60082, 35240 Retiers, FranceLactalis Nutrition Parc d'Activité de Torcé-secteur Est35370 Torcé, France
| | - Bernadette Delplanque
- Neuroendocrinologie Moléculaire de la Prise AlimentaireUniversity of Paris-Sud, UMR 8195, F-91405 Orsay, FranceNeuroendocrinologie Moléculaire de la Prise AlimentaireCNRS, Centre de Neurosciences Paris-Sud, UMR 8195, F-91405 Orsay, FranceService NutritionLactalis Recherche et Développement, 8 Fromy, CS 60082, 35240 Retiers, FranceLactalis Nutrition Parc d'Activité de Torcé-secteur Est35370 Torcé, France Neuroendocrinologie Moléculaire de la Prise AlimentaireUniversity of Paris-Sud, UMR 8195, F-91405 Orsay, FranceNeuroendocrinologie Moléculaire de la Prise AlimentaireCNRS, Centre de Neurosciences Paris-Sud, UMR 8195, F-91405 Orsay, FranceService NutritionLactalis Recherche et Développement, 8 Fromy, CS 60082, 35240 Retiers, FranceLactalis Nutrition Parc d'Activité de Torcé-secteur Est35370 Torcé, France
| | - Yacir Benomar
- Neuroendocrinologie Moléculaire de la Prise AlimentaireUniversity of Paris-Sud, UMR 8195, F-91405 Orsay, FranceNeuroendocrinologie Moléculaire de la Prise AlimentaireCNRS, Centre de Neurosciences Paris-Sud, UMR 8195, F-91405 Orsay, FranceService NutritionLactalis Recherche et Développement, 8 Fromy, CS 60082, 35240 Retiers, FranceLactalis Nutrition Parc d'Activité de Torcé-secteur Est35370 Torcé, France Neuroendocrinologie Moléculaire de la Prise AlimentaireUniversity of Paris-Sud, UMR 8195, F-91405 Orsay, FranceNeuroendocrinologie Moléculaire de la Prise AlimentaireCNRS, Centre de Neurosciences Paris-Sud, UMR 8195, F-91405 Orsay, FranceService NutritionLactalis Recherche et Développement, 8 Fromy, CS 60082, 35240 Retiers, FranceLactalis Nutrition Parc d'Activité de Torcé-secteur Est35370 Torcé, France
| | - Delphine Crépin
- Neuroendocrinologie Moléculaire de la Prise AlimentaireUniversity of Paris-Sud, UMR 8195, F-91405 Orsay, FranceNeuroendocrinologie Moléculaire de la Prise AlimentaireCNRS, Centre de Neurosciences Paris-Sud, UMR 8195, F-91405 Orsay, FranceService NutritionLactalis Recherche et Développement, 8 Fromy, CS 60082, 35240 Retiers, FranceLactalis Nutrition Parc d'Activité de Torcé-secteur Est35370 Torcé, France Neuroendocrinologie Moléculaire de la Prise AlimentaireUniversity of Paris-Sud, UMR 8195, F-91405 Orsay, FranceNeuroendocrinologie Moléculaire de la Prise AlimentaireCNRS, Centre de Neurosciences Paris-Sud, UMR 8195, F-91405 Orsay, FranceService NutritionLactalis Recherche et Développement, 8 Fromy, CS 60082, 35240 Retiers, FranceLactalis Nutrition Parc d'Activité de Torcé-secteur Est35370 Torcé, France
| | - Laure Riffault
- Neuroendocrinologie Moléculaire de la Prise AlimentaireUniversity of Paris-Sud, UMR 8195, F-91405 Orsay, FranceNeuroendocrinologie Moléculaire de la Prise AlimentaireCNRS, Centre de Neurosciences Paris-Sud, UMR 8195, F-91405 Orsay, FranceService NutritionLactalis Recherche et Développement, 8 Fromy, CS 60082, 35240 Retiers, FranceLactalis Nutrition Parc d'Activité de Torcé-secteur Est35370 Torcé, France Neuroendocrinologie Moléculaire de la Prise AlimentaireUniversity of Paris-Sud, UMR 8195, F-91405 Orsay, FranceNeuroendocrinologie Moléculaire de la Prise AlimentaireCNRS, Centre de Neurosciences Paris-Sud, UMR 8195, F-91405 Orsay, FranceService NutritionLactalis Recherche et Développement, 8 Fromy, CS 60082, 35240 Retiers, FranceLactalis Nutrition Parc d'Activité de Torcé-secteur Est35370 Torcé, France
| | - Pascale LeRuyet
- Neuroendocrinologie Moléculaire de la Prise AlimentaireUniversity of Paris-Sud, UMR 8195, F-91405 Orsay, FranceNeuroendocrinologie Moléculaire de la Prise AlimentaireCNRS, Centre de Neurosciences Paris-Sud, UMR 8195, F-91405 Orsay, FranceService NutritionLactalis Recherche et Développement, 8 Fromy, CS 60082, 35240 Retiers, FranceLactalis Nutrition Parc d'Activité de Torcé-secteur Est35370 Torcé, France
| | - Cécile Bonhomme
- Neuroendocrinologie Moléculaire de la Prise AlimentaireUniversity of Paris-Sud, UMR 8195, F-91405 Orsay, FranceNeuroendocrinologie Moléculaire de la Prise AlimentaireCNRS, Centre de Neurosciences Paris-Sud, UMR 8195, F-91405 Orsay, FranceService NutritionLactalis Recherche et Développement, 8 Fromy, CS 60082, 35240 Retiers, FranceLactalis Nutrition Parc d'Activité de Torcé-secteur Est35370 Torcé, France
| | - Mohammed Taouis
- Neuroendocrinologie Moléculaire de la Prise AlimentaireUniversity of Paris-Sud, UMR 8195, F-91405 Orsay, FranceNeuroendocrinologie Moléculaire de la Prise AlimentaireCNRS, Centre de Neurosciences Paris-Sud, UMR 8195, F-91405 Orsay, FranceService NutritionLactalis Recherche et Développement, 8 Fromy, CS 60082, 35240 Retiers, FranceLactalis Nutrition Parc d'Activité de Torcé-secteur Est35370 Torcé, France Neuroendocrinologie Moléculaire de la Prise AlimentaireUniversity of Paris-Sud, UMR 8195, F-91405 Orsay, FranceNeuroendocrinologie Moléculaire de la Prise AlimentaireCNRS, Centre de Neurosciences Paris-Sud, UMR 8195, F-91405 Orsay, FranceService NutritionLactalis Recherche et Développement, 8 Fromy, CS 60082, 35240 Retiers, FranceLactalis Nutrition Parc d'Activité de Torcé-secteur Est35370 Torcé, France
| |
Collapse
|
24
|
Rathod RS, Khaire AA, Kale AA, Joshi SR. Beneficial effects of omega-3 fatty acids and vitamin B12 supplementation on brain docosahexaenoic acid, brain derived neurotrophic factor, and cognitive performance in the second-generation Wistar rats. Biofactors 2015; 41:261-72. [PMID: 26249019 DOI: 10.1002/biof.1222] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/03/2015] [Accepted: 06/17/2015] [Indexed: 12/31/2022]
Abstract
In vegetarian population, vitamin B12 deficiency coexists with suboptimal levels of omega-3 fatty acids. Studies indicate a need for supplementation/fortification of vitamin B12 and omega-3 fatty acids to reduce the risk of brain disorders. We have described the effects of vitamin B12 and omega-3 fatty acid supplementation on brain development in F1 generation animals. The current study investigates the effects of vitamin B12 and omega-3 fatty acids supplementation on brain function and cognition. Pregnant Wistar rats were assigned the following groups: control, vitamin B12 deficient (BD), vitamin B12 deficient + omega-3 fatty acid (BDO), vitamin B12 supplemented (BS), vitamin B12 supplemented + omega-3 fatty acid (BSO). The same diets were continued for two generations. BDO group showed higher (P < 0.05) levels of BDNF (brain derived neurotrophic factor) and DHA (docosahexaenoic acid) in the cortex and hippocampus as compared with the BD group. The cognitive performance was also normalized in this group. BS showed comparable levels of DHA, BDNF (protein and mRNA), and CREB mRNA (cAMP response element-binding protein) to that of control group while Tropomyosin receptor kinase mRNA levels were higher. The combined vitamin B12 and omega-3 fatty acid supplementation further enhanced the levels of DHA (P < 0.05) and BDNF (P < 0.05) in the hippocampus and CREB mRNA (P < 0.01) in the cortex as compared with BS group. The cognitive performance of these animals was higher (P < 0.05) as compared with BS group. Our data indicates the beneficial effects of vitamin B12 and omega-3 fatty acid supplementation across two generations on brain development and function.
Collapse
Affiliation(s)
- Richa S Rathod
- Department of Nutritional Medicine, Interactive Research School for Health Affairs, Bharati Vidyapeeth Deemed University, Pune, India
| | - Amrita A Khaire
- Department of Nutritional Medicine, Interactive Research School for Health Affairs, Bharati Vidyapeeth Deemed University, Pune, India
| | - Anvita A Kale
- Department of Nutritional Medicine, Interactive Research School for Health Affairs, Bharati Vidyapeeth Deemed University, Pune, India
| | - Sadhana R Joshi
- Department of Nutritional Medicine, Interactive Research School for Health Affairs, Bharati Vidyapeeth Deemed University, Pune, India
| |
Collapse
|
25
|
Amaral CL, Crisma AR, Masi LN, Martins AR, Hirabara SM, Curi R. DNA Methylation Changes Induced by a High-Fat Diet and Fish Oil Supplementation in the Skeletal Muscle of Mice. JOURNAL OF NUTRIGENETICS AND NUTRIGENOMICS 2015; 7:314-26. [PMID: 26022801 DOI: 10.1159/000381777] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/18/2014] [Accepted: 03/17/2015] [Indexed: 11/19/2022]
Abstract
BACKGROUND/AIMS To investigate the global changes in DNA methylation and methylation of the promoter region of the peroxisome proliferator-activated receptor gamma transcript variant 2 (Pparg2) gene resulting from a high-fat diet (HFD) and/or fish oil supplementation. METHODS Fish oil, rich in omega-3 polyunsaturated fatty acids, or water was orally administered to male mice for 12 weeks. After the first 4 weeks, the animals were fed a control diet or an HFD until the end of the experimental protocol, when the epididymal fat, gastrocnemius muscle and liver were excised. RESULTS Pparg2 mRNA expression was upregulated by obesity and downregulated by fish oil supplementation in the liver. In the gastrocnemius muscle, diet-induced obesity increased global DNA methylation. Fish oil prevented the decrease in Pparg2 promoter methylation induced by obesity in the gastrocnemius muscle. Regardless of the diet given, fish oil supplementation increased Pparg2 promoter methylation at CpG-263 in muscle and adipose tissue. CONCLUSION HFD and fish oil modified global and Pparg2 promoter DNA methylation in a tissue-specific manner. Fish oil supplementation attenuated body weight gain, abolished the increase in Pparg2 expression in the liver and prevented the decrease in Pparg2 promoter methylation in the muscle induced by the HFD.
Collapse
Affiliation(s)
- Catia L Amaral
- Department of Physiology and Biophysics, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil
| | | | | | | | | | | |
Collapse
|
26
|
Takagi H, Kobayashi Y, Taguchi O, Takei Y, Sumida Y. Influence of dietary intake of fish oil, magnesium, and zinc on metabolic parameters among individuals tested for diabetes. Nutrition 2015; 31:988-93. [PMID: 26059373 DOI: 10.1016/j.nut.2015.02.019] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2014] [Revised: 02/20/2015] [Accepted: 02/28/2015] [Indexed: 12/15/2022]
Abstract
OBJECTIVE The aim of this study was to assess the significance and degree of correlation between the intake of fish oil, magnesium (Mg), and zinc (Zn) and metabolic parameters. METHODS Correlation coefficients among nutrient intake and physical and laboratory parameters were determined using Spearman's rho (ρ) test or a multiple regression model among Japanese individuals (male:female, 37:66; median age, 55 y) who completed a semiquantitative food questionnaire and underwent testing for diabetes. Individuals with diabetes were excluded. RESULTS Spearman's test revealed several weak but significant correlations between intake of fish oil including ω-3 polyunsaturated fatty acids (PUFAs) and various metabolic parameters. The test showed that Zn intake in women significantly correlated with reduced systolic blood pressure (SBP), alanine aminotransferase (ALT), γ-glutamyl transpeptidase (γ-GPT), and homeostasis model assessment-insulin resistance (HOMA-IR). Multivariate analysis revealed that intake of fish oil, eicosapentaenoic acid (EPA), and Zn was significantly associated with increased serum levels of high-density lipoprotein cholesterol (HDL-C; fish oil versus HDL-C, P = 0.0438; 95% confidence interval [CI], 0.0055-0.3724; EPA versus HDL-C, P = 0.0439; 95% CI, 0.0053-0.3724; Zn versus HDL-C, P = 0.0041; 95% CI, 0.0890-0.4609). Multivariate analysis revealed that ω-3 PUFAs were associated with decreased serum ALT levels (P = 0.0240; 95% CI, -5.000 to -0.0367) and that Zn correlated with SBP (P = 0.0239; 95% CI, -0.5149 to -0.0377) in women. CONCLUSION Intake of fish oil, Mg, and Zn was associated with some metabolic parameters. Abundant intake of fish oil including ω-3 PUFAs and Zn can exert antiarteriosclerotic effects through increasing serum levels of HDL-C. ω-3 PUFAs can reduce liver inflammation and Zn can reduce SBP in women.
Collapse
Affiliation(s)
- Hisayo Takagi
- Faculty of Health Science, Suzuka University of Medical Science, Suzuka, Japan
| | - Yoshinao Kobayashi
- Center for Physical and Mental Health, Mie University Graduate School of Medicine, Tsu, Japan; Department of Gastroenterology and Hepatology, Mie University Graduate School of Medicine, Tsu, Japan.
| | - Osamu Taguchi
- Center for Physical and Mental Health, Mie University Graduate School of Medicine, Tsu, Japan
| | - Yoshiyuki Takei
- Department of Gastroenterology and Hepatology, Mie University Graduate School of Medicine, Tsu, Japan
| | - Yasuhiro Sumida
- Center for Physical and Mental Health, Mie University Graduate School of Medicine, Tsu, Japan; Yokkaichi-Hazu Medical Center, Japan Community Healthcare Organization, Yokkaichi, Japan
| |
Collapse
|
27
|
Li X, Kitamura T, Kawamura G, Mori Y, Sato K, Araki Y, Sato R, Yamada Y. Comparison of mechanisms underlying changes in glucose utilization in fasted rats anesthetized with propofol or sevoflurane: Hyperinsulinemia is exaggerated by propofol with concomitant insulin resistance induced by an acute lipid load. Biosci Trends 2015; 8:155-62. [PMID: 25030850 DOI: 10.5582/bst.2014.01060] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
The effects of anesthesia with sevoflurane and with propofol on glucose utilization in rats were investigated. Sevoflurane significantly impairs glucose utilization whereas propofol does not. Both insulin secretion and sensitivity affect glucose utilization. Propofol is hydrophobic, and anesthesia with this agent is always accompanied by an acute lipid load, which can exaggerate insulin resistance. The role of the acute lipid load in the effects of anesthesia with sevoflurane and propofol on glucose utilization in fasted rats was investigated. Rats were allocated to groups anesthetized with sevoflurane and infused with physiological saline (group S) or 10% w/v lipid (group SL), or those anesthetized with propofol (group P). Intravenous glucose tolerance tests and insulin tolerance tests were then performed to measure glucose utilization, and blood glucose, plasma insulin, and plasma TNF-α levels were measured. In the intravenous glucose tolerance test, groups SL and P showed significantly higher plasma insulin levels than group S, and group P showed significantly higher plasma insulin levels than group SL. In the insulin tolerance test, groups SL and P showed insulin resistance compared to group S, but no significant difference was observed between groups SL and P. In summary, propofol anesthesia enhances insulin secretion and concomitantly exaggerates insulin resistance, compared with sevoflurane anesthesia. Propofol appears to be the main cause of hyperinsulinemia, and the acute lipid load exaggerates insulin resistance.
Collapse
Affiliation(s)
- Xiang Li
- Department of Anesthesiology, Graduate School of Medicine, The University of Tokyo
| | | | | | | | | | | | | | | |
Collapse
|
28
|
Abstract
OBJECTIVES The aim of the study was to evaluate the potential changes induced by fish oil (FO) supplementation on the redox status of pancreatic islets from healthy rats. To test whether these effects were due to eicosapentaenoic acid and docosahexaenoic acid (ω-3), in vitro experiments were performed. METHODS Rats were supplemented with FO, and pancreatic islets were obtained. Islets were also treated in vitro with palmitate (P) or eicosapentaenoic acid + docosahexaenoic acid (ω-3). Insulin secretion (GSIS), glucose oxidation, protein expression, and superoxide content were analyzed. RESULTS The FO group showed a reduction in superoxide content. Moreover, FO reduced the expression of NAD(P)H oxidase subunits and increased superoxide dismutase, without altering β-cell function. Palmitate increased β-cell reactive oxygen species (ROS) production, apoptosis, and impaired GSIS. Under these conditions, ω-3 triggered a parallel reduction in ROS production and β-cell apoptosis induced by P and protected against the impairment in GSIS. There was no difference in mitochondrial ROS production. CONCLUSIONS Our results show that ω-3 protect pancreatic islets from alterations induced by P. In vivo FO supplementation modulates the redox state of pancreatic β-cell. Considering that in vitro effects do not involve mitochondrial superoxide production, we can speculate that this protection might involve NAD(P)H oxidase activity.
Collapse
|
29
|
Khaire A, Rathod R, Kemse N, Kale A, Joshi S. Supplementation with omega-3 fatty acids during gestation and lactation to a vitamin B12-deficient or -supplemented diet improves pregnancy outcome and metabolic variables in Wistar rats. Reprod Fertil Dev 2015; 27:341-50. [DOI: 10.1071/rd13306] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2013] [Accepted: 10/17/2013] [Indexed: 11/23/2022] Open
Abstract
Maternal vitamin B12 deficiency leads to an adverse pregnancy outcome and increases the risk for developing diabetes and metabolic syndrome in mothers in later life. Our earlier studies have demonstrated that vitamin B12 and n-3 polyunsaturated fatty acids (PUFA) are interlinked in the one carbon cycle. The present study for the first time examines the effect of maternal n-3 PUFA supplementation to vitamin B12 deficient or supplemented diets on pregnancy outcome, fatty-acid status and metabolic variables in Wistar rats. Pregnant dams were assigned to one of the following groups: control, vitamin B12 deficient, vitamin B12 supplemented, vitamin B12 deficient + n-3 PUFA or vitamin B12 supplemented + n-3 PUFA. The amount of vitamin B12 in the supplemented group was 0.50 μg kg–1 diet and n-3 PUFA was alpha linolenic acid (ALA) 1.68, eicosapentaenoic acid 5.64, docosahexaenoic acid (DHA) 3.15 (g per 100 g fatty acids per kg diet). Our findings indicate that maternal vitamin B12 supplementation did not affect the weight gain of dams during pregnancy but reduced litter size and weight and was ameliorated by n-3 PUFA supplementation. Vitamin B12 deficiency or supplementation resulted in a low percentage distribution of plasma arachidonic acid and DHA. n-3 PUFA supplementation to these diets improved the fatty-acid status. Vitamin B12 deficiency resulted in higher homocysteine and insulin levels, which were normalised by supplementation with either vitamin B12 or n-3 PUFA. Our study suggests that maternal vitamin B12 status is critical in determining pregnancy outcome and metabolic variables in dams and that supplementation with n-3 PUFA is beneficial.
Collapse
|
30
|
Jacometo CB, Schmitt E, Pfeifer LFM, Schneider A, Bado F, da Rosa FT, Halfen S, Del Pino FAB, Loor JJ, Corrêa MN, Dionello NJL. Linoleic and α-linolenic fatty acid consumption over three generations exert cumulative regulation of hepatic expression of genes related to lipid metabolism. GENES AND NUTRITION 2014; 9:405. [PMID: 24842071 DOI: 10.1007/s12263-014-0405-7] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/22/2014] [Accepted: 05/05/2014] [Indexed: 12/20/2022]
Abstract
The essential fatty acids, omega-3 and omega-6, consumed during pregnancy can benefit maternal and offspring health. For instance, they could activate a network of genes related to the nuclear receptor peroxisome proliferator-activated receptor α (Ppara) and sterol regulatory element binding transcription factor 1 (Srebf1), which play a role in fatty acid oxidation and lipogenesis. The present study aimed to investigate the effects of diets with different omega-3/omega-6 ratio consumed over three generations on blood biochemical parameters and hepatic expression of Ppara- and Srebf1-related genes. During three consecutive generations adult Wistar rats were evaluated in the postpartum period (21 days after parturition). Regardless of prenatal dietary omega-3/omega-6 ratio, an upregulation in liver tissue was observed for Rxra, Lxra and Srebf1 and a downregulation for Fasn in all the evaluated generations. The diet with higher omega-3/omega-6 ratio decreased triacylglycerol serum levels and resulted in a constant non-esterified fatty acid level. Our results indicated that the PUFAs effect on the modulation of genes related to fatty acid oxidation and lipogenesis is cumulative through generations.
Collapse
Affiliation(s)
- Carolina B Jacometo
- Department of Animal Science, Agronomy College, Federal University of Pelotas, Campus Universitário, Pelotas, RS, CEP 96010-900, Brazil,
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
31
|
Romanatto T, Fiamoncini J, Wang B, Curi R, Kang JX. Elevated tissue omega-3 fatty acid status prevents age-related glucose intolerance in fat-1 transgenic mice. Biochim Biophys Acta Mol Basis Dis 2013; 1842:186-91. [PMID: 24211484 DOI: 10.1016/j.bbadis.2013.10.017] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2013] [Revised: 10/05/2013] [Accepted: 10/21/2013] [Indexed: 11/28/2022]
Abstract
The objective of this study was to investigate the impact of elevated tissue omega-3 (n-3) polyunsaturated fatty acids (PUFA) status on age-related glucose intolerance utilizing the fat-1 transgenic mouse model, which can endogenously synthesize n-3 PUFA from omega-6 (n-6) PUFA. Fat-1 and wild-type mice, maintained on the same dietary regime of a 10% corn oil diet, were tested at two different ages (2 months old and 8 months old) for various glucose homeostasis parameters and related gene expression. The older wild-type mice exhibited significantly increased levels of blood insulin, fasting blood glucose, liver triglycerides, and glucose intolerance, compared to the younger mice, indicating an age-related impairment of glucose homeostasis. In contrast, these age-related changes in glucose metabolism were largely prevented in the older fat-1 mice. Compared to the older wild-type mice, the older fat-1 mice also displayed a lower capacity for gluconeogenesis, as measured by pyruvate tolerance testing (PTT) and hepatic gene expression of phosphoenolpyruvate carboxykinase (PEPCK) and glucose 6 phosphatase (G6Pase). Furthermore, the older fat-1 mice showed a significant decrease in body weight, epididymal fat mass, inflammatory activity (NFκ-B and p-IκB expression), and hepatic lipogenesis (acetyl-CoA carboxylase (ACC) and fatty acid synthase (FAS) expression), as well as increased peroxisomal activity (70-kDa peroxisomal membrane protein (PMP70) and acyl-CoA oxidase1 (ACOX1) expression). Altogether, the older fat-1 mice exhibit improved glucose homeostasis in comparison to the older wild-type mice. These findings support the beneficial effects of elevated tissue n-3 fatty acid status in the prevention and treatment of age-related chronic metabolic diseases.
Collapse
Affiliation(s)
- Talita Romanatto
- Laboratory for Lipid Medicine and Technology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA; Department of Physiology and Biophysics, Institute of Biomedical Sciences, University of Sao Paulo, Sao Paulo, Brazil
| | - Jarlei Fiamoncini
- Department of Physiology and Biophysics, Institute of Biomedical Sciences, University of Sao Paulo, Sao Paulo, Brazil
| | - Bin Wang
- Laboratory for Lipid Medicine and Technology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| | - Rui Curi
- Department of Physiology and Biophysics, Institute of Biomedical Sciences, University of Sao Paulo, Sao Paulo, Brazil
| | - Jing X Kang
- Laboratory for Lipid Medicine and Technology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA.
| |
Collapse
|