1
|
Tao L, Zhang Q, Liu L, Wang K, Liu X, Li J, Zhao P. Magnolol preserves the integrity of the intestinal epithelial barrier and mitigates intestinal injury through activation of PPAR γ in COPD rat. JOURNAL OF ETHNOPHARMACOLOGY 2025; 338:119068. [PMID: 39522848 DOI: 10.1016/j.jep.2024.119068] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/26/2024] [Revised: 11/05/2024] [Accepted: 11/07/2024] [Indexed: 11/16/2024]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Magnolia officinalis Rehder & E.H. Wilson is traditionally used in the treatment of gastrointestinal disorders, diarrhea, and cough. Its main active ingredient, magnolol, exhibits protective effects on the lungs and gastrointestinal tract, including the inhibition of inflammation in these organs. AIM OF THE STUDY This work aims to explore the molecular mechanism by which magnolol suppressed Chronic obstructive pulmonary disease (COPD) intestinal damage by improving the intestinal epithelial barrier. MATERIALS AND METHODS The study focused on investigating the mitigation effect of magnolol on intestinal injury and epithelial barrier in a COPD rat. Caco-2 cells were induced with TNF-α or IL-1β to establish the barrier injury model in order to explore the direct protective effect of magnolol on the intestinal barrier and elucidate the molecular mechanism by which it activates peroxisome proliferators-activated receptors-γ (PPARγ). RESULTS Magnolol significantly improves pulmonary function and tissue damage in COPD rats by inhibiting inflammation, protease imbalance, and oxidative stress. It also suppresses colon tissue damage and inflammation, and protects colon epithelial barrier function by suppressing the decline of tight junction proteins, reducing colon epithelial permeability. In Caco-2 cells, magnolol directly reduces monolayer permeability, increases TEER, and upregulates tight junction protein expression induced by TNF-α or IL-1β. Drug Affinity Responsive Target Stability (DARTS) and thermal shift assays show that magnolol effectively binds to SRC, activating PPARγ signaling in Caco-2 cells and colon tissues of COPD rats. Furthermore, magnolol enhances the binding of PPARγ and RXRα, promoting their activation and entry into the nucleus. The PPARγ inhibitor GW9662 can reverse the effects of magnolol on PPARγ activation and tight junction protein upregulation in IL-1β or TNF-α induced Caco-2 cells. CONCLUSIONS This work demonstrates that magnolol enhances lung and intestinal functions in COPD rats, and elucidates its mechanism of action in protecting the intestinal epithelial barrier by activating PPARγ.
Collapse
Affiliation(s)
- Liuying Tao
- Henan Key Laboratory of Chinese Medicine for Respiratory Disease, Henan University of Chinese Medicine, Zhengzhou, 450046, Henan Province, China; Collaborative Innovation Center for Chinese Medicine and Respiratory Diseases co-constructed by Henan Province & Education Ministry of PR China, Zhengzhou, 450046, Henan Province, China; Department of Respiratory Diseases, The First Affiliated Hospital of Henan University of Chinese Medicine, Zhengzhou, 450000, China
| | - Qin Zhang
- Henan Key Laboratory of Chinese Medicine for Respiratory Disease, Henan University of Chinese Medicine, Zhengzhou, 450046, Henan Province, China; Collaborative Innovation Center for Chinese Medicine and Respiratory Diseases co-constructed by Henan Province & Education Ministry of PR China, Zhengzhou, 450046, Henan Province, China; Department of Respiratory Diseases, The First Affiliated Hospital of Henan University of Chinese Medicine, Zhengzhou, 450000, China; Academy of Chinese Medical Sciences, Henan University of Chinese Medicine, Zhengzhou, 450000, China
| | - Lan Liu
- Henan Key Laboratory of Chinese Medicine for Respiratory Disease, Henan University of Chinese Medicine, Zhengzhou, 450046, Henan Province, China; Collaborative Innovation Center for Chinese Medicine and Respiratory Diseases co-constructed by Henan Province & Education Ministry of PR China, Zhengzhou, 450046, Henan Province, China; Department of Respiratory Diseases, The First Affiliated Hospital of Henan University of Chinese Medicine, Zhengzhou, 450000, China
| | - Kun Wang
- Henan Key Laboratory of Chinese Medicine for Respiratory Disease, Henan University of Chinese Medicine, Zhengzhou, 450046, Henan Province, China; Collaborative Innovation Center for Chinese Medicine and Respiratory Diseases co-constructed by Henan Province & Education Ministry of PR China, Zhengzhou, 450046, Henan Province, China; Department of Respiratory Diseases, The First Affiliated Hospital of Henan University of Chinese Medicine, Zhengzhou, 450000, China
| | - Xuefang Liu
- Henan Key Laboratory of Chinese Medicine for Respiratory Disease, Henan University of Chinese Medicine, Zhengzhou, 450046, Henan Province, China; Collaborative Innovation Center for Chinese Medicine and Respiratory Diseases co-constructed by Henan Province & Education Ministry of PR China, Zhengzhou, 450046, Henan Province, China; Department of Respiratory Diseases, The First Affiliated Hospital of Henan University of Chinese Medicine, Zhengzhou, 450000, China
| | - Jiansheng Li
- Henan Key Laboratory of Chinese Medicine for Respiratory Disease, Henan University of Chinese Medicine, Zhengzhou, 450046, Henan Province, China; Collaborative Innovation Center for Chinese Medicine and Respiratory Diseases co-constructed by Henan Province & Education Ministry of PR China, Zhengzhou, 450046, Henan Province, China; Department of Respiratory Diseases, The First Affiliated Hospital of Henan University of Chinese Medicine, Zhengzhou, 450000, China; Academy of Chinese Medical Sciences, Henan University of Chinese Medicine, Zhengzhou, 450000, China
| | - Peng Zhao
- Henan Key Laboratory of Chinese Medicine for Respiratory Disease, Henan University of Chinese Medicine, Zhengzhou, 450046, Henan Province, China; Collaborative Innovation Center for Chinese Medicine and Respiratory Diseases co-constructed by Henan Province & Education Ministry of PR China, Zhengzhou, 450046, Henan Province, China; Department of Respiratory Diseases, The First Affiliated Hospital of Henan University of Chinese Medicine, Zhengzhou, 450000, China; Academy of Chinese Medical Sciences, Henan University of Chinese Medicine, Zhengzhou, 450000, China.
| |
Collapse
|
2
|
Zhang Y, Cao P, Qin D, Zhao Y, Chen X, Ma P. Anti-inflammatory, anti-colitis, and antioxidant effects of columbianadin against DSS-induced ulcerative colitis in rats via alteration of HO-1/Nrf2 and TLR4-NF-κB signaling pathway. Inflammopharmacology 2025:10.1007/s10787-024-01630-9. [PMID: 39757276 DOI: 10.1007/s10787-024-01630-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2024] [Accepted: 12/04/2024] [Indexed: 01/07/2025]
Abstract
BACKGROUND Ulcerative colitis (UC) is a significant inflammatory bowel disease (IBD) that typically arises from chronic inflammation of the intestinal tract. Report suggest that anti-inflammatory drug plays a crucial role in the protection of UC. The recent study demonstrated that columbianadin has a protective effect against UC induced by dextran sulfate sodium (DSS) in rats through the modulation of HO-1/Nrf2 and TLR4-NF-κB signaling pathways. MATERIAL AND METHODS In this study, Swiss Wistar rats were utilized, and UC was induced using 2% DSS. The treatment regimen included oral administration of columbianadin (5, 10 and 15 mg/kg) and sulfasalazine to the rats. The body weight, spleen index, disease activity index (DAI), colon length, food and water intake were estimated. Moreover, antioxidant, cytokines, inflammatory and apoptosis parameters were determined. mRNA expression levels were also quantitatively analyzed. RESULTS Columbianadin treatment significantly (P < 0.001) boosted the body weight and suppressed the DAI. Columbianadin significantly (P < 0.001) enhanced the colon length and repressed the spleen index along with enhanced food and water intake. Columbianadin significantly (P < 0.001) suppressed the level of lactate dehydrogenase (LDH), myeloperoxidase (MPO) and altered the level of oxidative stress parameters such as catalase (CAT), superoxide dismutase (SOD), glutathione reductase (GR), glutathione peroxidase (GPx), malonaldehyde (MDA), nitric oxide (NO), SA; cytokines level such as interleukin (IL)-1, 1β, 6, 10, 17, 18, TNF-α; inflammatory parameters viz., cyclooxygenase-2 (COX-2), prostaglandin (PGE2), inducible nitric oxide synthetase (iNOS), nuclear factor kappa B (NF-κB), transforming growth factor (TGF-β); apoptosis parameters include Bax, Bcl-2, Bcl-2/Bax ratio, caspase-1 and A-caspase-3 activity, respectively. Columbianadin significantly altered the mRNA expression of IFN-γ, IL-6, IL-1β, IL-8, TNF-α, NF-κB, TLR4, Bcl-2, caspase-9, Bax, p38, ASC, MCP-1, ZO-1, and Ocln. While this study focused on COX-2 modulation as a marker of inflammatory response, no direct measurements or inferences were made regarding leukotriene activity, which involves a separate lipoxygenase pathway. CONCLUSION Columbianadin exhibited the protective effect against DSS-induced UC via alteration of HO-1/Nrf2 and TLR4-NF-κB signaling pathway.
Collapse
Affiliation(s)
- Yanping Zhang
- Department of Gastroenterology, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Third Hospital of Shanxi Medical University, Tongji Shanxi Hospital, No.99 Longcheng street, Xiao dian District, Taiyuan, 030032, China
- Faculty of Graduate Studies, Shanxi Medical University, NO.56 Road, NO. Xinjiannan Yingze District, Taiyuan, 030000, China
| | - Ping Cao
- Department of Gastroenterology, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Third Hospital of Shanxi Medical University, Tongji Shanxi Hospital, No.99 Longcheng street, Xiao dian District, Taiyuan, 030032, China
| | - Dongyuan Qin
- Department of Gastroenterology, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Third Hospital of Shanxi Medical University, Tongji Shanxi Hospital, No.99 Longcheng street, Xiao dian District, Taiyuan, 030032, China
| | - Ying Zhao
- Department of Gastroenterology, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Third Hospital of Shanxi Medical University, Tongji Shanxi Hospital, No.99 Longcheng street, Xiao dian District, Taiyuan, 030032, China
| | - Xing Chen
- Early Gastrointestinal Cancer Diagnosis and Treatment Research Center, First Hospital of Shanxi Medical University, NO.85 Xinjian nan Road, Yingze District, Taiyuan, 030000, China.
- Department of Gastroenterology, First Hospital of Shanxi Medical University, NO.56 Jiefangnan Road, Taiyuan, 030000, China.
| | - Peng Ma
- General Surgery Department, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Tongji Shanxi Hospital, Third Hospital of Shanxi Medical University, Taiyuan, 030032, China.
- Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China.
| |
Collapse
|
3
|
Tao L, Zhang Q, Liu L, Wang K, Wang J, Liu X, Zhao P, Li J. Inhibition of AhR disrupts intestinal epithelial barrier and induces intestinal injury by activating NF-κB in COPD. FASEB J 2024; 38:e70256. [PMID: 39679871 DOI: 10.1096/fj.202402320r] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2024] [Revised: 11/25/2024] [Accepted: 12/05/2024] [Indexed: 12/17/2024]
Abstract
Chronic obstructive pulmonary disease (COPD) is frequently associated with intestinal comorbidities. Damage to the intestinal barrier plays a crucial role in these disorders, leading to increased intestinal and systemic inflammation, and thereby promoting the progression of COPD. This study aims to investigate the mechanism of intestinal epithelial barrier damage, focusing on the roles of the Aryl hydrocarbon Receptor (AhR) and NF-κB in COPD-related intestinal damage. A COPD rat model was induced by cigarette smoke and bacterial infection, while Caco-2/HT29 intestinal epithelial cells were treated with TNF-α or IL-1β to assess intestinal disorder and the underlying mechanisms of barrier damage. COPD rats exhibited significant lung function decline, pathological damage, and inflammatory response in lung tissues. Additionally, significant intestinal injury was observed, accompanied by pronounced colonic pathological damage, an enhanced inflammatory response, and intestinal barrier disruption. This was evidenced by decreased expression of apical junction proteins and elevated serum diamine oxidase levels. Pro-inflammatory cytokines TNF-α or IL-1β significantly downregulated the expression of apical junction proteins in Caco-2/HT29 cells, reduced transepithelial electrical resistance of Caco-2 cells, and increased FD-4 permeability. Moreover, TNF-α or IL-1β induction activated NF-κB in Caco-2/HT29 cells, with a similar activation observed in the colonic tissues of COPD rats. The NF-κB inhibitor PDTC suppressed this activation and protected against intestinal epithelial barrier damage. Furthermore, AhR inhibition was observed both in vitro and in vivo. The AhR activator FICZ inhibited NF-κB activation and mitigated intestinal epithelial barrier damage, whereas the AhR inhibitor CH223191 inhibited AhR and exacerbated intestinal epithelial barrier damage by facilitating NF-κB activation. However, the NF-κB inhibitor PDTC did not significantly affect AhR. Additionally, TNF-α/IL-1β inhibited the binding of AhR and p-NF-κB. Consequently, AhR inhibition can downregulate the expression of apical junction proteins, probably through activation of NF-κB signaling leading to intestinal epithelial barrier damage. This study confirmed the presence of lesions in the lungs and intestines of COPD rats, as well as the associated damage to the intestinal epithelial barrier. The inhibition of AhR followed by the activation of NF-κB has been identified as a critical mechanism underlying the injury to the intestinal epithelial barrier.
Collapse
Affiliation(s)
- Liuying Tao
- Henan Key Laboratory of Chinese Medicine for Respiratory Disease, Henan University of Chinese Medicine, Zhengzhou, Henan, China
- Collaborative Innovation Center for Chinese Medicine and Respiratory Diseases Co-Constructed by Henan province & Education Ministry of P.R. China, Zhengzhou, Henan, China
- Department of Respiratory Diseases, The First Affiliated Hospital of Henan University of Chinese Medicine, Zhengzhou, Henan, China
| | - Qin Zhang
- Henan Key Laboratory of Chinese Medicine for Respiratory Disease, Henan University of Chinese Medicine, Zhengzhou, Henan, China
- Collaborative Innovation Center for Chinese Medicine and Respiratory Diseases Co-Constructed by Henan province & Education Ministry of P.R. China, Zhengzhou, Henan, China
- Department of Respiratory Diseases, The First Affiliated Hospital of Henan University of Chinese Medicine, Zhengzhou, Henan, China
- Academy of Chinese Medical Sciences, Henan University of Chinese Medicine, Zhengzhou, Henan, China
| | - Lan Liu
- Henan Key Laboratory of Chinese Medicine for Respiratory Disease, Henan University of Chinese Medicine, Zhengzhou, Henan, China
- Collaborative Innovation Center for Chinese Medicine and Respiratory Diseases Co-Constructed by Henan province & Education Ministry of P.R. China, Zhengzhou, Henan, China
- Department of Respiratory Diseases, The First Affiliated Hospital of Henan University of Chinese Medicine, Zhengzhou, Henan, China
| | - Kun Wang
- Henan Key Laboratory of Chinese Medicine for Respiratory Disease, Henan University of Chinese Medicine, Zhengzhou, Henan, China
- Collaborative Innovation Center for Chinese Medicine and Respiratory Diseases Co-Constructed by Henan province & Education Ministry of P.R. China, Zhengzhou, Henan, China
- Department of Respiratory Diseases, The First Affiliated Hospital of Henan University of Chinese Medicine, Zhengzhou, Henan, China
| | - Juanhui Wang
- Henan Key Laboratory of Chinese Medicine for Respiratory Disease, Henan University of Chinese Medicine, Zhengzhou, Henan, China
- Collaborative Innovation Center for Chinese Medicine and Respiratory Diseases Co-Constructed by Henan province & Education Ministry of P.R. China, Zhengzhou, Henan, China
- Department of Respiratory Diseases, The First Affiliated Hospital of Henan University of Chinese Medicine, Zhengzhou, Henan, China
| | - Xuefang Liu
- Henan Key Laboratory of Chinese Medicine for Respiratory Disease, Henan University of Chinese Medicine, Zhengzhou, Henan, China
- Collaborative Innovation Center for Chinese Medicine and Respiratory Diseases Co-Constructed by Henan province & Education Ministry of P.R. China, Zhengzhou, Henan, China
- Department of Respiratory Diseases, The First Affiliated Hospital of Henan University of Chinese Medicine, Zhengzhou, Henan, China
| | - Peng Zhao
- Henan Key Laboratory of Chinese Medicine for Respiratory Disease, Henan University of Chinese Medicine, Zhengzhou, Henan, China
- Collaborative Innovation Center for Chinese Medicine and Respiratory Diseases Co-Constructed by Henan province & Education Ministry of P.R. China, Zhengzhou, Henan, China
- Department of Respiratory Diseases, The First Affiliated Hospital of Henan University of Chinese Medicine, Zhengzhou, Henan, China
- Academy of Chinese Medical Sciences, Henan University of Chinese Medicine, Zhengzhou, Henan, China
| | - Jiansheng Li
- Henan Key Laboratory of Chinese Medicine for Respiratory Disease, Henan University of Chinese Medicine, Zhengzhou, Henan, China
- Collaborative Innovation Center for Chinese Medicine and Respiratory Diseases Co-Constructed by Henan province & Education Ministry of P.R. China, Zhengzhou, Henan, China
- Department of Respiratory Diseases, The First Affiliated Hospital of Henan University of Chinese Medicine, Zhengzhou, Henan, China
- Academy of Chinese Medical Sciences, Henan University of Chinese Medicine, Zhengzhou, Henan, China
| |
Collapse
|
4
|
Touny AA, Venkataraman B, Ojha S, Pessia M, Subramanian VS, Hariharagowdru SN, Subramanya SB. Phytochemical Compounds as Promising Therapeutics for Intestinal Fibrosis in Inflammatory Bowel Disease: A Critical Review. Nutrients 2024; 16:3633. [PMID: 39519465 PMCID: PMC11547603 DOI: 10.3390/nu16213633] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2024] [Revised: 10/20/2024] [Accepted: 10/22/2024] [Indexed: 11/16/2024] Open
Abstract
BACKGROUND/OBJECTIVE Intestinal fibrosis, a prominent consequence of inflammatory bowel disease (IBD), presents considerable difficulty owing to the absence of licensed antifibrotic therapies. This review assesses the therapeutic potential of phytochemicals as alternate methods for controlling intestinal fibrosis. Phytochemicals, bioactive molecules originating from plants, exhibit potential antifibrotic, anti-inflammatory, and antioxidant activities, targeting pathways associated with inflammation and fibrosis. Compounds such as Asperuloside, Berberine, and olive phenols have demonstrated potential in preclinical models by regulating critical signaling pathways, including TGF-β/Smad and NFκB, which are integral to advancing fibrosis. RESULTS The main findings suggest that these phytochemicals significantly reduce fibrotic markers, collagen deposition, and inflammation in various experimental models of IBD. These phytochemicals may function as supplementary medicines to standard treatments, perhaps enhancing patient outcomes while mitigating the adverse effects of prolonged immunosuppressive usage. Nonetheless, additional clinical trials are necessary to validate their safety, effectiveness, and bioavailability in human subjects. CONCLUSIONS Therefore, investigating phytochemicals may lead to crucial advances in the formulation of innovative treatment approaches for fibrosis associated with IBD, offering a promising avenue for future therapeutic development.
Collapse
Affiliation(s)
- Aya A. Touny
- Department of Physiology, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain P.O. Box 15551, United Arab Emirates; (A.A.T.); (B.V.); (M.P.); (S.N.H.)
- Department of Clinical Pharmacy and Pharmacy Practice, Faculty of Pharmacy, Ahram Canadian University, Giza 12581, Egypt
| | - Balaji Venkataraman
- Department of Physiology, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain P.O. Box 15551, United Arab Emirates; (A.A.T.); (B.V.); (M.P.); (S.N.H.)
| | - Shreesh Ojha
- Department of Pharmacology and Therapeutics, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain P.O. Box 15551, United Arab Emirates;
| | - Mauro Pessia
- Department of Physiology, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain P.O. Box 15551, United Arab Emirates; (A.A.T.); (B.V.); (M.P.); (S.N.H.)
| | | | - Shamanth Neralagundi Hariharagowdru
- Department of Physiology, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain P.O. Box 15551, United Arab Emirates; (A.A.T.); (B.V.); (M.P.); (S.N.H.)
- Zayed Bin Sultan Center for Health Sciences, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain P.O. Box 15551, United Arab Emirates
| | - Sandeep B. Subramanya
- Department of Physiology, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain P.O. Box 15551, United Arab Emirates; (A.A.T.); (B.V.); (M.P.); (S.N.H.)
- Zayed Bin Sultan Center for Health Sciences, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain P.O. Box 15551, United Arab Emirates
| |
Collapse
|
5
|
Seidita A, Cusimano A, Giuliano A, Meli M, Carroccio A, Soresi M, Giannitrapani L. Oxidative Stress as a Target for Non-Pharmacological Intervention in MAFLD: Could There Be a Role for EVOO? Antioxidants (Basel) 2024; 13:731. [PMID: 38929170 PMCID: PMC11201095 DOI: 10.3390/antiox13060731] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2024] [Revised: 06/11/2024] [Accepted: 06/13/2024] [Indexed: 06/28/2024] Open
Abstract
Oxidative stress plays a central role in most chronic liver diseases and, in particular, in metabolic dysfunction-associated fatty liver disease (MAFLD), the new definition of an old condition known as non-alcoholic fatty liver disease (NAFLD). The mechanisms leading to hepatocellular fat accumulation in genetically predisposed individuals who adopt a sedentary lifestyle and consume an obesogenic diet progress through mitochondrial and endoplasmic reticulum dysfunction, which amplifies reactive oxygen species (ROS) production, lipid peroxidation, malondialdehyde (MDA) formation, and influence the release of chronic inflammation and liver damage biomarkers, such as pro-inflammatory cytokines. This close pathogenetic link has been a key stimulus in the search for therapeutic approaches targeting oxidative stress to treat steatosis, and a number of clinical trials have been conducted to date on subjects with NAFLD using drugs as well as supplements or nutraceutical products. Vitamin E, Vitamin D, and Silybin are the most studied substances, but several non-pharmacological approaches have also been explored, especially lifestyle and diet modifications. Among the dietary approaches, the Mediterranean Diet (MD) seems to be the most reliable for affecting liver steatosis, probably with the added value of the presence of extra virgin olive oil (EVOO), a healthy food with a high content of monounsaturated fatty acids, especially oleic acid, and variable concentrations of phenols (oleocanthal) and phenolic alcohols, such as hydroxytyrosol (HT) and tyrosol (Tyr). In this review, we focus on non-pharmacological interventions in MAFLD treatment that target oxidative stress and, in particular, on the role of EVOO as one of the main antioxidant components of the MD.
Collapse
Affiliation(s)
- Aurelio Seidita
- Unit of Internal Medicine, “V. Cervello” Hospital, Ospedali Riuniti “Villa Sofia-Cervello”, Department of Health Promotion Sciences, Maternal and Infant Care, Internal Medicine and Medical Specialties (PROMISE), University of Palermo, 90146 Palermo, Italy; (A.S.); (A.G.); (M.M.); (A.C.)
- Institute for Biomedical Research and Innovation (IRIB), National Research Council (CNR), 90146 Palermo, Italy;
| | - Alessandra Cusimano
- Institute for Biomedical Research and Innovation (IRIB), National Research Council (CNR), 90146 Palermo, Italy;
| | - Alessandra Giuliano
- Unit of Internal Medicine, “V. Cervello” Hospital, Ospedali Riuniti “Villa Sofia-Cervello”, Department of Health Promotion Sciences, Maternal and Infant Care, Internal Medicine and Medical Specialties (PROMISE), University of Palermo, 90146 Palermo, Italy; (A.S.); (A.G.); (M.M.); (A.C.)
| | - Maria Meli
- Unit of Internal Medicine, “V. Cervello” Hospital, Ospedali Riuniti “Villa Sofia-Cervello”, Department of Health Promotion Sciences, Maternal and Infant Care, Internal Medicine and Medical Specialties (PROMISE), University of Palermo, 90146 Palermo, Italy; (A.S.); (A.G.); (M.M.); (A.C.)
| | - Antonio Carroccio
- Unit of Internal Medicine, “V. Cervello” Hospital, Ospedali Riuniti “Villa Sofia-Cervello”, Department of Health Promotion Sciences, Maternal and Infant Care, Internal Medicine and Medical Specialties (PROMISE), University of Palermo, 90146 Palermo, Italy; (A.S.); (A.G.); (M.M.); (A.C.)
| | - Maurizio Soresi
- Unit of Internal Medicine, University Hospital “P. Giaccone”, Department of Health Promotion Sciences, Maternal and Infant Care, Internal Medicine and Medical Specialties (PROMISE), University of Palermo, 90127 Palermo, Italy;
| | - Lydia Giannitrapani
- Institute for Biomedical Research and Innovation (IRIB), National Research Council (CNR), 90146 Palermo, Italy;
- Unit of Internal Medicine, University Hospital “P. Giaccone”, Department of Health Promotion Sciences, Maternal and Infant Care, Internal Medicine and Medical Specialties (PROMISE), University of Palermo, 90127 Palermo, Italy;
| |
Collapse
|
6
|
Tuşat M, Eroz R, Bölükbaş F, Özkan E, Erdal H. Evaluation of the protective and therapeutic effects of extra virgin olive oil rich in phenol in experimental model of neonatal necrotizing enterocolitis by clinical disease score, ınflammation, apoptosis, and oxidative stress markers. Pediatr Surg Int 2024; 40:80. [PMID: 38493431 DOI: 10.1007/s00383-024-05669-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 02/29/2024] [Indexed: 03/19/2024]
Abstract
BACKGROUND AND AIM Necrotizing Enterocolitis (NEC) is an inflammation-associated ischemic necrosis of the intestine. To investigate the effects of extra virgin olive oil (EVOO) on inflammation, oxidative stress, apoptosis, and histological changes in NEC-induced newborn rats. MATERIALS AND METHODS 24 rats were randomly divided into three groups: control, NEC and NEC + EVOO. NEC induction was performed using hypoxia-hyperoxia, formula feeding, and cold stress. The NEC + EVOO group received 2 ml/kg EVOO with high phenolic content by gavage twice a day for 3 days. 3 cm of bowel including terminal ileum, cecum, and proximal colon was excised. RESULTS Weight gain and clinical disease scores were significantly higher in the NEC + EVOO group than in the NEC group (p < 0.001). EVOO treatment caused significant decreases in IL1β, IL6 levels (p = 0.016, p = 0.029 respectively) and EGF, MDA levels (p = 0.032, p = 0.013 respectively) compared to NEC group. Significant decreases were observed in IL6 gene expression in the NEC + EVOO group compared to the NEC group (p = 0.002). In the group NEC + EVOO, the number of Caspase-3 positive cells was found to be significantly reduced (p < 0.001) and histopathological examination revealed minimal changes and significantly lower histopathological scores (p < 0.001). CONCLUSION Phenol-rich EVOO prevents intestinal damage caused by NEC by inhibiting inflammation, oxidative stress, apoptosis.
Collapse
Affiliation(s)
- Mustafa Tuşat
- Department of Pediatric Surgery, Aksaray University Medical Faculty, Aksaray, Turkey.
| | - Recep Eroz
- Department of Medical Genetics, Aksaray University Medical Faculty, Aksaray, Turkey
| | - Ferhan Bölükbaş
- Department of Histology and Embryology, Aksaray University Medical Faculty, Aksaray, Turkey
| | - Erkan Özkan
- Faculty of Veterinary Medicine, Department of Parasitology, Aksaray University, Aksaray, Turkey
| | - Hüseyin Erdal
- Department of Medical Genetics, Aksaray University Medical Faculty, Aksaray, Turkey
| |
Collapse
|
7
|
Gao R, Ren Y, Xue P, Sheng Y, Yang Q, Dai Y, Zhang X, Lin Z, Liu T, Geng Y, Xue Y. Protective Effect of the Polyphenol Ligustroside on Colitis Induced with Dextran Sulfate Sodium in Mice. Nutrients 2024; 16:522. [PMID: 38398846 PMCID: PMC10891938 DOI: 10.3390/nu16040522] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2024] [Revised: 02/05/2024] [Accepted: 02/07/2024] [Indexed: 02/25/2024] Open
Abstract
Dietary polyphenols are reported to alleviate colitis by interacting with gut microbiota which plays an important role in maintaining the integrity of the intestinal barrier. As a type of dietary polyphenol, whether ligustroside (Lig) could alleviate colitis has not been explored yet. Here, we aimed to determine if supplementation of ligustroside could improve colitis. We explored the influence of ligustroside intake with different dosages on colitis induced with dextran sulfate sodium (DSS). Compared to the DSS group, supplementation of ligustroside could reduce body weight (BW) loss, decrease disease activity indices (DAI), and relieve colon damage in colitis mice. Furthermore, ligustroside intake with 2 mg/kg could decrease proinflammatory cytokine concentrations in serum and increase immunoglobulin content and antioxidant enzymes in colon tissue. In addition, supplementation of ligustroside (2 mg/kg) could reduce mucus secretion and prevent cell apoptosis. Also, changes were revealed in the bacterial community composition, microbiota functional profiles, and intestinal metabolite composition following ligustroside supplementation with 2 mg/kg using 16S rRNA sequencing and non-targeted lipidomics analysis. In conclusion, the results showed that ligustroside was very effective in preventing colitis through reduction in inflammation and the enhancement of the intestinal barrier. Furthermore, supplementation with ligustroside altered the gut microbiota and lipid composition of colitis mice.
Collapse
Affiliation(s)
- Ruonan Gao
- Department of Gastroenterology, Affiliated Hospital of Jiangnan University, Wuxi 214122, China
- Wuxi School of Medicine, Jiangnan University, Wuxi 214122, China
| | - Yilin Ren
- Department of Gastroenterology, Affiliated Hospital of Jiangnan University, Wuxi 214122, China
- Wuxi School of Medicine, Jiangnan University, Wuxi 214122, China
- Key Laboratory of Industrial Biotechnology of Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi 214122, China
| | - Peng Xue
- School of Medicine, Nantong University, Nantong 226001, China
| | - Yingyue Sheng
- Department of Gastroenterology, Affiliated Hospital of Jiangnan University, Wuxi 214122, China
| | - Qin Yang
- Wuxi School of Medicine, Jiangnan University, Wuxi 214122, China
| | - Yuanyuan Dai
- Department of Gastroenterology, Affiliated Hospital of Jiangnan University, Wuxi 214122, China
| | - Xiaoyue Zhang
- Department of Gastroenterology, Affiliated Hospital of Jiangnan University, Wuxi 214122, China
- Wuxi School of Medicine, Jiangnan University, Wuxi 214122, China
| | - Ziming Lin
- Department of Gastroenterology, Affiliated Hospital of Jiangnan University, Wuxi 214122, China
- Wuxi School of Medicine, Jiangnan University, Wuxi 214122, China
| | - Tianhao Liu
- Department of Gastroenterology, Affiliated Hospital of Jiangnan University, Wuxi 214122, China
| | - Yan Geng
- School of Life Science and Health Engineering, Jiangnan University, Wuxi 214122, China;
| | - Yuzheng Xue
- Department of Gastroenterology, Affiliated Hospital of Jiangnan University, Wuxi 214122, China
| |
Collapse
|
8
|
Ibrahim MA, Khalifa AM, Abd El-Fadeal NM, Abdel-Karim RI, Elsharawy AF, Ellawindy A, Galal HM, Nadwa EH, Abdel-Shafee MA, Galhom RA. Alleviation of doxorubicin-induced cardiotoxicity in rat by mesenchymal stem cells and olive leaf extract via MAPK/ TNF-α pathway: Preclinical, experimental and bioinformatics enrichment study. Tissue Cell 2023; 85:102239. [PMID: 37865037 DOI: 10.1016/j.tice.2023.102239] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Revised: 08/31/2023] [Accepted: 10/06/2023] [Indexed: 10/23/2023]
Abstract
BACKGROUND Toxic cardiomyopathies were a potentially fatal adverse effect of anthracycline therapy. AIM This study was conducted to demonstrate the pathogenetic, morphologic, and toxicologic effects of doxorubicin on the heart and to investigate how the MAPK /TNF-α pathway can be modulated to improve doxorubicin-Induced cardiac lesions using bone marrow-derived mesenchymal stem cells (BM-MSCs) and olive leaf extract (OLE). METHODS During the study, 40 adult male rats were used. Ten were used to donate MSCs, and the other 30 were split into 5 equal groups: Group I was the negative control, Group II obtained oral OLE, Group III obtained an intraperitoneal cumulative dose of DOX (12 mg/kg) in 6 equal doses of 2 mg/kg every 48 h for 12 days, Group IV obtained intraperitoneal DOX and oral OLE at the same time, and Group V obtained intraperitoneal DOX and BM-MSCs through the tail vein at the same time for 12 days. Four weeks after their last dose of DOX, the rats were euthanized. By checking the bioinformatic databases, a molecularly targeted path was selected. Then the histological, immunohistochemistry, and gene expression of ERK, JNK, NF-κB, IL-6, and TNF-α were done. RESULTS Myocardial immunohistochemistry revealed severe fibrosis, cell degeneration, increased vimentin, and decreased CD-31 expression in the DOX-treated group, along with a marked shift in morphometric measurements, a disordered ultrastructure, and overexpression of inflammatory genes (ERK, NF-κB, IL-6, and TNF-α), oxidative stress markers, and cardiac biomarkers. Both groups IV and V displayed reduced cardiac fibrosis or inflammation, restoration of the microstructure and ultrastructure of the myocardium, downregulation of inflammatory genes, markers of oxidative stress, and cardiac biomarkers, a notable decline in vimentin, and an uptick in CD-31 expression. In contrast to group IV, group V showed a considerable beneficial effect. CONCLUSION Both OLE and BM-MSCs showed an ameliorating effect in rat models of DOX-induced cardiotoxicity, with BM-MSCs showing a greater influence than OLE.
Collapse
Affiliation(s)
- Mahrous A Ibrahim
- Department of Internal Medicine (Forensic Medicine and Clinical Toxicology division), College of Medicine, Jouf University, Aljouf 72341, Saudi Arabia.
| | - Athar M Khalifa
- Pathology Department, College of Medicine, Jouf University, Aljouf, Saudi Arabia
| | - Noha M Abd El-Fadeal
- Medical Biochemistry and Molecular Biology Department, Faculty of Medicine, Suez Canal University, Ismailia 41522, Egypt; Center of Excellence in Molecular and Cellular Medicine, Faculty of Medicine, Suez Canal University, Ismailia 41522, Egypt; Oncology Diagnostic Unit, Faculty of Medicine, Suez Canal University, Ismailia 41522, Egypt
| | - Rehab I Abdel-Karim
- Forensic Medicine and Clinical Toxicology Department, Faculty of Medicine, Suez Canal University, Ismailia 41522, Egypt
| | - Ayman F Elsharawy
- Histology Department, Faculty of Medicine Al-Azhar University, Cairo, Egypt; Histology Department, College of Medicine, Shaqra University, Shaqra, Saudi Arabia
| | - Alia Ellawindy
- Medical Genetics Unit, Department of Histology and Cell Biology, Faculty of Medicine, Suez Canal University, Ismailia, Egypt
| | - Heba M Galal
- Department of Medical Physiology, College of Medicine, Jouf University, Sakaka, Saudi Arabia; Department of Medical Physiology, Faculty of Medicine, Assiut University, Assiut, Egypt
| | - Eman H Nadwa
- Department of Pharmacology and Therapeutics, College of Medicine, Jouf University, Sakaka 72345, Saudi Arabia; Department of Medical Pharmacology, Faculty of Medicine, Cairo University, Giza 12613, Egypt
| | - Mohamed A Abdel-Shafee
- Department of Cardiovascular Medicine, Faculty of Medicine, Suez Canal University, Ismailia 41522, Egypt
| | - Rania A Galhom
- Center of Excellence in Molecular and Cellular Medicine, Faculty of Medicine, Suez Canal University, Ismailia 41522, Egypt; Human Anatomy and Embryology Department, Faculty of Medicine, Suez Canal University, Ismailia 41522, Egypt; Human Anatomy and Embryology Department, Faculty of Medicine, Badr University in Cairo (BUC), Cairo 11829, Egypt
| |
Collapse
|
9
|
Garnevi-Fávero A, Nascimento-da Silva K, Rodrigues-Ribeiro W, Marcantonio-Ferreira C, Sartorelli P, Cardili L, De Cássia-Sinigaglia R, Bertaglia-Pereira JN, Aparecido-da Silva M, Vilegas W, Dias-Silva MJ, Ribeiro-Paiotti AP. Effects of Mimosa caesalpiniifolia pre-formulation on the intestinal barrier during sodium dextran sulfate-induced colitis in Wistar rats. BIOMEDICA : REVISTA DEL INSTITUTO NACIONAL DE SALUD 2023; 43:282-295. [PMID: 37433169 PMCID: PMC10552606 DOI: 10.7705/biomedica.6611] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Accepted: 06/09/2023] [Indexed: 07/13/2023]
Abstract
INTRODUCTION Anti-inflammatories, immunosuppressants, and immunobiological are commonly used in the treatment of inflammatory bowel disease. However, some patients do not present an adequate response or lose effective response during the treatment. A recent study found a potential anti-inflammatory effect of the hydroalcoholic extract of Mimosa caesalpiniifolia on trinitrobenzene sulfonic acid-induced colitis in Wistar rats. OBJECTIVE To evaluate the effects of M. caesalpiniifolia pre-formulation on the intestinal barrier using dextran sulfate sodium-induced colitis model. MATERIALS AND METHODS Leaf extracts were prepared in 70% ethanol and dried with a Buchi B19 Mini-spray dryer using 20% Aerosil® solution. Thirty-two male Wistar rats were randomized into four groups: basal control, untreated colitis, pre-formulation control (125 mg/kg/day), and colitis treated with pre-formulation (125 mg/kg/day). Clinical activity index was recorded daily and all rats were euthanized on the ninth day. Colon fragments were fixed and processed for histological and ultrastructural analyses. Stool samples were collected and processed for analysis of the short-chain fatty acid. RESULTS Treatment with the pre-formulation decreased the clinical activity (bloody diarrhea), inflammatory infiltrate, and the ulcers. Pre-formulation did not repair the epithelial barrier and there were no significant differences in the goblet cells index. There was a significant difference in butyrate levels in the rats treated with the pre-formulation. CONCLUSIONS The pre-formulation minimized the clinical symptoms of colitis and intestinal inflammation, but did not minimize damage to the intestinal barrier.
Collapse
Affiliation(s)
- Aline Garnevi-Fávero
- Laboratory of Hepatology Molecular Applied, Discipline of Gastroenterology, Universidade Federal de São Paulo, São Paulo, Brazil.
| | - Karina Nascimento-da Silva
- Laboratory of Hepatology Molecular Applied, Discipline of Gastroenterology, Universidade Federal de São Paulo, São Paulo, Brazil.
| | - Willian Rodrigues-Ribeiro
- Institute of Environmental, Chemistry and Pharmaceutical Sciences, Department of Pharmaceutics Sciences, Universidade Federal de São Paulo, Diadema, Brazil.
| | - Caroline Marcantonio-Ferreira
- Institute of Environmental, Chemistry and Pharmaceutical Sciences, Department of Pharmaceutics Sciences, Universidade Federal de São Paulo, Diadema, Brazil.
| | - Patrícia Sartorelli
- Institute of Environmental, Chemistry and Pharmaceutical Sciences, Department of Pharmaceutics Sciences, Universidade Federal de São Paulo, Diadema, Brazil.
| | - Leonardo Cardili
- Laboratory of Experimental and Molecular Pathology, Department of Pathology, Universidade Federal de São Paulo, São Paulo, Brazil.
| | | | | | | | - Wagner Vilegas
- Institute of Biosciences, São Paulo State University, São Vicente, São Paulo, Brazil .
| | | | - Ana Paula Ribeiro-Paiotti
- Laboratory of Hepatology Molecular Applied, Discipline of Gastroenterology, Universidade Federal de São Paulo, São Paulo, Brazil.
| |
Collapse
|
10
|
Chen J, Pan M, Wang J, Zhang M, Feng M, Chai X, Zhang Q, Sun Y. Hydroxysafflor yellow A protects against colitis in mice by suppressing pyroptosis via inhibiting HK1/NLRP3/GSDMD and modulating gut microbiota. Toxicol Appl Pharmacol 2023; 467:116494. [PMID: 37001609 DOI: 10.1016/j.taap.2023.116494] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2022] [Revised: 03/14/2023] [Accepted: 03/26/2023] [Indexed: 03/31/2023]
Abstract
Hydroxysafflor yellow A (HSYA), a chalcone glycoside, is a component of Carthamus tinctorius L. and exerts anti-inflammatory and antioxidative effects. However, the therapeutic effect and the underlying mechanism of HSYA on ulcerative colitis is unclear. This study aimed to investigate the unexplored protective effects and underlying mechanisms of HSYA on UC. In vitro analyses showed that HSYA reduced the secretion of interleukin (IL)-1β, tumor necrosis factor (TNF)-α, and IL-6 and inhibited nucleotide-binding and oligomerization domain-like receptor protein 3 (NLRP3)/gasdermin D (GSDMD)-mediated pyroptosis in lipopolysaccharide/ adenosine-5'-triphosphate (LPS/ATP)-stimulated macrophages. Gas chromatography-mass spectrometry (GC-MS) profiling of intracellular metabolites showed that HSYA reduced the increased levels of glucose, glucose 6-phosphate, and lactic acid, and inhibited the increased hexokinase 1 (HK1) expression caused by LPS/ATP stimulation. HK1 shRNA transfection further confirmed that HSYA inhibited the NLRP3/GSDMD-mediated pyroptosis via HK1 downregulation. In vivo analyses showed that HSYA drastically attenuated UC symptoms by relieving body weight loss, a decline in colon length, and inflammatory infiltration in colonic tissues induced by dextran sulfate sodium (DSS). HSYA also reduced the secretion of pro-inflammatory cytokines including IL-1β, IL-6, TNF-α, and IL-18. Moreover, HSYA inhibited HK1/NLRP3/GSDMD-mediated pyroptosis in DSS-induced colitis mice. Finally, 16S rRNA sequencing analyses of gut microbiota revealed that HSYA reversed gut microbiota dysbiosis by reducing the abundance of Proteobacteria and increasing that of Bacteroidetes. This study demonstrated that HSYA not only exerted anti-inflammatory effects by inhibiting HK1/NLRP3/GSDMD and suppressing pyroptosis but also regulated gut microbiota in mice with DSS-induced colitis. Our findings provide new experimental evidence that HSYA might be a potential candidate for treating inflammatory bowel diseases.
Collapse
Affiliation(s)
- Jiaxi Chen
- School of Pharmaceutical Sciences, Nanjing Tech University (NanjingTech), 30 South Puzhu Road, Nanjing 211816, People's Republic of China; College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University (NanjingTech), 30 South Puzhu Road, Nanjing 211816, People's Republic of China
| | - Mengyue Pan
- School of Pharmaceutical Sciences, Nanjing Tech University (NanjingTech), 30 South Puzhu Road, Nanjing 211816, People's Republic of China
| | - Jingjie Wang
- School of Pharmaceutical Sciences, Nanjing Tech University (NanjingTech), 30 South Puzhu Road, Nanjing 211816, People's Republic of China
| | - Mengling Zhang
- School of Pharmaceutical Sciences, Nanjing Tech University (NanjingTech), 30 South Puzhu Road, Nanjing 211816, People's Republic of China
| | - Mingmei Feng
- School of Pharmaceutical Sciences, Nanjing Tech University (NanjingTech), 30 South Puzhu Road, Nanjing 211816, People's Republic of China
| | - Xiaoming Chai
- School of Pharmaceutical Sciences, Nanjing Tech University (NanjingTech), 30 South Puzhu Road, Nanjing 211816, People's Republic of China
| | - Qi Zhang
- School of Pharmaceutical Sciences, Nanjing Tech University (NanjingTech), 30 South Puzhu Road, Nanjing 211816, People's Republic of China; College of Food Science and Light Industry, Nanjing Tech University (NanjingTech), 30 South Puzhu Road, Nanjing 211816, People's Republic of China.
| | - Yang Sun
- School of Pharmaceutical Sciences, Nanjing Tech University (NanjingTech), 30 South Puzhu Road, Nanjing 211816, People's Republic of China.
| |
Collapse
|
11
|
de Oliveira ECS, Dalmau LM, de Almeida Costa CAR, de Almeida Junior LD, Ballard CR, Maróstica Junior MR, Stahl MA, Grimaldi R, Witaicenis A, Di Stasi LC. Dietary intervention with avocado (Persea americana Mill.) ameliorates intestinal inflammation induced by TNBS in rats. Inflammopharmacology 2023; 31:485-498. [PMID: 36586042 DOI: 10.1007/s10787-022-01128-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2022] [Accepted: 12/15/2022] [Indexed: 01/01/2023]
Abstract
Nutritional interventions have been shown to be an interesting approach for the treatment of chronic diseases, including inflammatory bowel disease (IBD). Persea americana Mill. (avocado), is a potential food to be used for the prevention or treatment of intestinal inflammation, due to its nutritional value and pharmacological effects. In this study we evaluated if the dietary intervention with avocado fruit pulp could as an intestinal anti-inflammatory diet using a trinitrobenzenesulfonic acid (TNBS) model of intestinal inflammation in rats. For this purpose, 5, 10 or 20% of avocado fruit pulp was incorporated in the diet of rats, for 21 days before and 7 days after TNBS-induced intestinal inflammation. Dietary intervention with avocado fruit pulp (20%) decreased the extension of colonic lesions (1.38 ± 0.99 vs. 2.67 ± 0.76 cm), weight/length colon ratio (151.03 ± 31.45 vs. 197.39 ± 49.48 cm), inhibited myeloperoxidase activity (891.2 ± 243.2 vs 1603 ± 158.2 U/g), reduced tumor necrosis factor-α (53.94 ± 6.45 vs. 114.9 ± 6.21 pg/mg), interleukin-1β (583.6 ± 106.2 vs. 1259 ± 81.68 pg/mg) and interferon gamma (27.95 ± 2.97 vs. 47.79 ± 3.51 pg/mg) levels and prevented colonic glutathione depletion (2585 ± 77.2 vs 1778 ± 167.2 nmol/g). The consumption of enriched diet with 20% avocado pulp by 28 days did not promote any alterations in the biochemical or behavioral parameters evaluated. Avocado showed intestinal anti-inflammatory activity, modulating immune response, and acting as antioxidant. The dietary intervention with avocado was safe, suggesting its potential as a complementary treatment in intestinal inflammation.
Collapse
Affiliation(s)
- Ellen Cristina Souza de Oliveira
- Laboratory of Phytomedicines, Pharmacology and Biotechnology, Department of Biophysics and Pharmacology, Institute of Biosciences, São Paulo State University, UNESP, Botucatu, SP, CEP 18618-689, Brazil.
| | - Lesvi Moya Dalmau
- Laboratory of Phytomedicines, Pharmacology and Biotechnology, Department of Biophysics and Pharmacology, Institute of Biosciences, São Paulo State University, UNESP, Botucatu, SP, CEP 18618-689, Brazil
| | - Celso Acácio Rodrigues de Almeida Costa
- Laboratory of Phytomedicines, Pharmacology and Biotechnology, Department of Biophysics and Pharmacology, Institute of Biosciences, São Paulo State University, UNESP, Botucatu, SP, CEP 18618-689, Brazil
| | - Luiz Domingues de Almeida Junior
- Laboratory of Phytomedicines, Pharmacology and Biotechnology, Department of Biophysics and Pharmacology, Institute of Biosciences, São Paulo State University, UNESP, Botucatu, SP, CEP 18618-689, Brazil
| | - Cíntia Reis Ballard
- Department of Food Science and Nutrition, School of Food Engineering, University of Campinas-UNICAMP, Campinas, SP, CEP 13083-862, Brazil
| | - Mário Roberto Maróstica Junior
- Department of Food Science and Nutrition, School of Food Engineering, University of Campinas-UNICAMP, Campinas, SP, CEP 13083-862, Brazil
| | - Marcella Aparecida Stahl
- Fats and Oils Laboratory, School of Food Engineering, University of Campinas-UNICAMP, Campinas, SP, CEP 13083-861, Brazil
| | - Renato Grimaldi
- Fats and Oils Laboratory, School of Food Engineering, University of Campinas-UNICAMP, Campinas, SP, CEP 13083-861, Brazil
| | - Aline Witaicenis
- Laboratory of Phytomedicines, Pharmacology and Biotechnology, Department of Biophysics and Pharmacology, Institute of Biosciences, São Paulo State University, UNESP, Botucatu, SP, CEP 18618-689, Brazil
| | - Luiz Claudio Di Stasi
- Laboratory of Phytomedicines, Pharmacology and Biotechnology, Department of Biophysics and Pharmacology, Institute of Biosciences, São Paulo State University, UNESP, Botucatu, SP, CEP 18618-689, Brazil
| |
Collapse
|
12
|
Nascimento da Silva K, Fávero AG, Ribeiro W, Ferreira CM, Sartorelli P, Cardili L, Bogsan CS, Bertaglia Pereira JN, de Cássia Sinigaglia R, Cristina de Moraes Malinverni A, Ribeiro Paiotti AP, Miszputen SJ, Ambrogini-Júnior O. Effects of kefir fermented milk beverage on sodium dextran sulfate (DSS)-induced colitis in rats. Heliyon 2022; 9:e12707. [PMID: 36685418 PMCID: PMC9852935 DOI: 10.1016/j.heliyon.2022.e12707] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2022] [Revised: 11/14/2022] [Accepted: 12/22/2022] [Indexed: 12/29/2022] Open
Abstract
Background and aim The etiopathogenesis of inflammatory bowel disease (IBD) is associated with different factors such as genetic, infectious, immunological, and environmental, including modification of the gut microbiota. IBD's conventional pharmacological therapeutic approaches have become a challenge due to side effects, complications from prolonged use, and higher costs. Kefir fermented milk beverage is a functional food that has demonstrated multiple beneficial effects including anti-inflammatory and antioxidant activity. Alternative therapeutic strategies have been used for IBD as more natural products with low-cost and easy acquisition. The aim of this study is to evaluate the anti-inflammatory effects of kefir fermented milk beverage on sodium dextran sulfate (DSS)-induced colitis in rats. Methods We used 4 groups to perform this study: baseline control (BC), kefir control (KC), 5% untreated DSS-induced colitis (DSS), and 5% DSS-induced colitis treated with kefir (DSSK). The animals received fermented kefir milk beverage ad libitum for six days and the disease activity index was recorded daily. Colon samples were processed for Transmission Electron Microscopy and histopathological evaluation. We analyzed short fatty chain acids through the fecal sample using gas chromatography. Results Kefir supplementation was able to reduce the clinical activity index and inflammatory process evidenced by decreased neutrophil accumulation, decreased reticulum edema, and increased autophagosomes. Also, showed a trend to increase the levels of acetate and propionate. Conclusions Our results suggest that kefir fermented milk beverage may have an anti-inflammatory effect minimizing the intestinal damage of DSS-induced colitis.
Collapse
Affiliation(s)
- Karina Nascimento da Silva
- Division of Gastroenterology, Universidade Federal de São Paulo – Escola Paulista de Medicina, UNIFESP, SP, Brazil
| | - Aline Garnevi Fávero
- Division of Gastroenterology, Universidade Federal de São Paulo – Escola Paulista de Medicina, UNIFESP, SP, Brazil
| | - William Ribeiro
- Institute of Environmental, Chemistry and Pharmaceutical Sciences, Department of Pharmaceutics Sciences - Universidade Federal de São Paulo, Diadema, SP, Brazil
| | - Caroline Marcantonio Ferreira
- Institute of Environmental, Chemistry and Pharmaceutical Sciences, Department of Pharmaceutics Sciences - Universidade Federal de São Paulo, Diadema, SP, Brazil
| | - Patrícia Sartorelli
- Institute of Environmental, Chemistry and Pharmaceutical Sciences, Department of Pharmaceutics Sciences - Universidade Federal de São Paulo, Diadema, SP, Brazil
| | - Leonardo Cardili
- Laboratory of Experimental and Molecular Pathology, Department of Pathology - Universidade Federal de São Paulo, São Paulo, SP, Brazil
| | - Cristina Stewart Bogsan
- Laboratory of Fermented Foods of the Faculty of Pharmaceutical Sciences – University of São Paulo
| | | | | | | | - Ana Paula Ribeiro Paiotti
- Division of Gastroenterology, Universidade Federal de São Paulo – Escola Paulista de Medicina, UNIFESP, SP, Brazil,Corresponding author.
| | - Sender Jankiel Miszputen
- Division of Gastroenterology, Universidade Federal de São Paulo – Escola Paulista de Medicina, UNIFESP, SP, Brazil
| | - Orlando Ambrogini-Júnior
- Division of Gastroenterology, Universidade Federal de São Paulo – Escola Paulista de Medicina, UNIFESP, SP, Brazil
| |
Collapse
|
13
|
Abstract
The diet and gut microbiota have been extensively interrogated as a fuel for gut inflammation in inflammatory bowel diseases (IBDs) in the last few years. Here, we review how specific nutrients, typically enriched in a Western diet, instigate or deteriorate experimental gut inflammation in a genetically susceptible host and we discuss microbiota-dependent and independent mechanisms. We depict the study landscape of nutritional trials in paediatric and adult IBD and delineate common grounds for dietary advice. Conclusively, the diet reflects a critical rheostat of microbial dysbiosis and gut inflammation in IBD. Dietary restriction by exclusive enteral nutrition, with or without a specific exclusion diet, is effectively treating paediatric Crohn's disease, while adult IBD trials are less conclusive. Insights into molecular mechanisms of nutritional therapy will change the perception of IBD and will allow us to enter the era of precision nutrition. To achieve this, we discuss the need for carefully designed nutritional trials with scientific rigour comparable to medical trials, which also requires action from stake holders. Establishing evidence-based dietary therapy for IBD does not only hold promise to avoid long-term immunosuppression, but to provide a widely accessible therapy at low cost. Identification of dietary culprits disturbing gut health also bears the potential to prevent IBD and allows informed decision making in food politics.
Collapse
Affiliation(s)
- Timon E Adolph
- Department of Medicine I, Gastroenterology, Hepatology & Metabolism, Medical University Innsbruck, Innsbruck, Austria
| | - Jingwan Zhang
- Department of Medicine & Therapeutics, The Chinese University of Hong Kong, Hong Kong, Hong Kong
| |
Collapse
|
14
|
Lê A, Mantel M, Marchix J, Bodinier M, Jan G, Rolli-Derkinderen M. Inflammatory bowel disease therapeutic strategies by modulation of the microbiota: how and when to introduce pre-, pro-, syn-, or postbiotics? Am J Physiol Gastrointest Liver Physiol 2022; 323:G523-G553. [PMID: 36165557 DOI: 10.1152/ajpgi.00002.2022] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Inflammatory bowel diseases (IBD), a heterogeneous group of inflammatory conditions that encompass both ulcerative colitis and Crohn's disease, represent a major public health concern. The etiology of IBD is not yet fully understood and no cure is available, with current treatments only showing long-term effectiveness in a minority of patients. A need to increase our knowledge on IBD pathophysiology is growing, to define preventive measures, to improve disease outcome, and to develop new effective and lasting treatments. IBD pathogenesis is sustained by aberrant immune responses, associated with alterations of the intestinal epithelial barrier (IEB), modifications of the enteric nervous system, and changes in microbiota composition. Currently, most of the treatments target the inflammation and the immune system, but holistic approaches targeting lifestyle and diet improvements are emerging. As dysbiosis is involved in IBD pathogenesis, pre-, pro-, syn-, and postbiotics are used/tested to reduce the inflammation or strengthen the IEB. The present review will resume these works, pointing out the stage of life, the duration, and the environmental conditions that should go along with microbiota or microbiota-derived treatments.
Collapse
Affiliation(s)
- Amélie Lê
- The Enteric Nervous System in Gut and Brain Disorders, Institut des Maladies de l'Appareil Digestif, Nantes Université, Institut National pour la Santé et la Recherche Médicale, Nantes, France
| | - Marine Mantel
- The Enteric Nervous System in Gut and Brain Disorders, Institut des Maladies de l'Appareil Digestif, Nantes Université, Institut National pour la Santé et la Recherche Médicale, Nantes, France
- Unité Mixte de Recherche Science et Technologie du Lait et de l'Oeuf, Agrocampus Ouest, Institut Agro, Institut National de Recherche pour l'Agriculture, l'Alimentation et l'Environnement, Rennes, France
| | - Justine Marchix
- The Enteric Nervous System in Gut and Brain Disorders, Institut des Maladies de l'Appareil Digestif, Nantes Université, Institut National pour la Santé et la Recherche Médicale, Nantes, France
| | - Marie Bodinier
- Unité de Recherche 1268 Biopolymères Interactions Assemblages, I Institut National de Recherche pour l'Agriculture, l'Alimentation et l'Environnement, Pays de la Loire, Nantes, France
| | - Gwénaël Jan
- Unité Mixte de Recherche Science et Technologie du Lait et de l'Oeuf, Agrocampus Ouest, Institut Agro, Institut National de Recherche pour l'Agriculture, l'Alimentation et l'Environnement, Rennes, France
| | - Malvyne Rolli-Derkinderen
- The Enteric Nervous System in Gut and Brain Disorders, Institut des Maladies de l'Appareil Digestif, Nantes Université, Institut National pour la Santé et la Recherche Médicale, Nantes, France
| |
Collapse
|
15
|
Khan A, Khan A, Shal B, Aziz A, Ahmad S, Amin MU, Ahmed MN, Zia-Ur-Rehman, Khan S. Ameliorative effect of two structurally divergent hydrazide derivatives against DSS-induced colitis by targeting Nrf2 and NF-κB signaling in mice. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2022; 395:1167-1188. [PMID: 35851927 DOI: 10.1007/s00210-022-02272-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/27/2022] [Accepted: 07/08/2022] [Indexed: 11/27/2022]
Abstract
The environmental factors and genetic vulnerability trigger the inflammatory bowel diseases (IBDs) such as ulcerative colitis and Crohn's disease. Furthermore, the oxidative stress and inflammatory cytokines have been implicated in the aggravation of the IBDs. The aim of the present study was to investigate the effect of N-(benzylidene)-2-((2-hydroxynaphthalen-1-yl)diazenyl)benzohydrazides (NCHDH and NTHDH) compounds against the DSS-induced colitis in mice. The colitis was induced by 5% dextran sulfate sodium (DSS) dissolved in normal saline for 5 days. The effect of the NCHDH and NTHDH on the behavioral, biochemical, histological, and immunohistological parameters was assessed. The NCHDH and NTHDH treatment improved the behavioral parameters such as food intake, disease activity index, and diarrhea score significantly compared to DSS control. The NCHDH and NTHDH treatments significantly increased the antioxidant enzymes, whereas oxidative stress markers were markedly reduced. Similarly, the NCHDH and NTHDH treatments significantly suppressed the activity of nitric oxide (NO), myeloperoxidase (MPO), and eosinophil peroxidase (EPO). The histological studies showed a significant reduction in inflammation, immune cell infiltration, and fibrosis in the NCHDH- and NTHDH-treated groups. The immunohistochemical results demonstrated that NCHDH and NTHDH treatments markedly increase the expression level of Nrf2, HO-1 (hemeoxygenase-1), TRX (thioredoxin reductase), and IκB compared to the DSS-induced group. In the same way, the NCHDH and NTHDH significantly reduced the NF-κB and COX-2 (cyclooxygenase-2) expression levels. The NCHDH and NTHDH treatment significantly improved the symptoms associated with colitis via inducing antioxidants and attenuating oxidative stress markers.
Collapse
Affiliation(s)
- Ashrafullah Khan
- Pharmacological Sciences Research Laboratory, Department of Pharmacy, Faculty of Biological Sciences, Quaid-I-Azam University, Islamabad, 45320, Pakistan
- Faculty of Pharmaceutical Sciences, Abasyn University, Peshawar, 25000, KPK, Pakistan
| | - Adnan Khan
- Pharmacological Sciences Research Laboratory, Department of Pharmacy, Faculty of Biological Sciences, Quaid-I-Azam University, Islamabad, 45320, Pakistan
| | - Bushra Shal
- Pharmacological Sciences Research Laboratory, Department of Pharmacy, Faculty of Biological Sciences, Quaid-I-Azam University, Islamabad, 45320, Pakistan
| | - Abdul Aziz
- Department of Chemistry, The University of Azad Jammu and Kashmir, Muzaffarabad, 13100, Pakistan
| | - Sajjad Ahmad
- Department of Health and Biological Sciences, Abasyn University, Peshawar, 25000, Pakistan
| | - Muhammad Usman Amin
- Faculty of Pharmaceutical Sciences, Abasyn University, Peshawar, 25000, KPK, Pakistan
| | - Muhammad Naeem Ahmed
- Department of Chemistry, The University of Azad Jammu and Kashmir, Muzaffarabad, 13100, Pakistan
| | - Zia-Ur-Rehman
- Department of Chemistry, Quaid-I-Azam University, Islamabad, Pakistan
| | - Salman Khan
- Pharmacological Sciences Research Laboratory, Department of Pharmacy, Faculty of Biological Sciences, Quaid-I-Azam University, Islamabad, 45320, Pakistan.
| |
Collapse
|
16
|
Li YR, Li Y, Jin Y, Xu M, Fan HW, Zhang Q, Tan GH, Chen J, Li YQ. Involvement of nitrergic neurons in colonic motility in a rat model of ulcerative colitis. World J Gastroenterol 2022; 28:3854-3868. [PMID: 36157548 PMCID: PMC9367233 DOI: 10.3748/wjg.v28.i29.3854] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/16/2021] [Revised: 04/27/2022] [Accepted: 07/06/2022] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND The mechanisms underlying gastrointestinal (GI) dysmotility with ulcerative colitis (UC) have not been fully elucidated. The enteric nervous system (ENS) plays an essential role in the GI motility. As a vital neurotransmitter in the ENS, the gas neurotransmitter nitric oxide (NO) may impact the colonic motility. In this study, dextran sulfate sodium (DSS)-induced UC rat model was used for investigating the effects of NO by examining the effects of rate-limiting enzyme nitric oxide synthase (NOS) changes on the colonic motility as well as the role of the ENS in the colonic motility during UC. AIM To reveal the relationship between the effects of NOS expression changes in NOS-containing nitrergic neurons and the colonic motility in a rat UC model. METHODS Male rats (n = 8/each group) were randomly divided into a control (CG), a UC group (EG1), a UC + thrombin derived polypeptide 508 trifluoroacetic acid (TP508TFA; an NOS agonist) group (EG2), and a UC + NG-monomethyl-L-arginine monoacetate (L-NMMA; an NOS inhibitor) group (EG3). UC was induced by administering 5.5% DSS in drinking water without any other treatment (EG1), while the EG2 and EG3 were gavaged with TP508 TFA and L-NMMA, respectively. The disease activity index (DAI) and histological assessment were recorded for each group, whereas the changes in the proportion of colonic nitrergic neurons were counted using immunofluorescence histochemical staining, Western blot, and enzyme linked immunosorbent assay, respectively. In addition, the contractile tension changes in the circular and longitudinal muscles of the rat colon were investigated in vitro using an organ bath system. RESULTS The proportion of NOS-positive neurons within the colonic myenteric plexus (MP), the relative expression of NOS, and the NOS concentration in serum and colonic tissues were significantly elevated in EG1, EG2, and EG3 compared with CG rats. In UC rats, stimulation with agonists and inhibitors led to variable degrees of increase or decrease for each indicator in the EG2 and EG3. When the rats in EGs developed UC, the mean contraction tension of the colonic smooth muscle detected in vitro was higher in the EG1, EG2, and EG3 than in the CG group. Compared with the EG1, the contraction amplitude and mean contraction tension of the circular and longitudinal muscles of the colon in the EG2 and EG3 were enhanced and attenuated, respectively. Thus, during UC, regulation of the expression of NOS within the MP improved the intestinal motility, thereby favoring the recovery of intestinal functions. CONCLUSION In UC rats, an increased number of nitrergic neurons in the colonic MP leads to the attenuation of colonic motor function. To intervene NOS activity might modulate the function of nitrergic neurons in the colonic MP and prevent colonic motor dysfunction. These results might provide clues for a novel approach to alleviate diarrhea symptoms of UC patients.
Collapse
Affiliation(s)
- Yan-Rong Li
- Department of Human Anatomy, Basic Medical College, Guangxi Medical University, Nanning 530000, Guangxi Zhuang Autonomous Region, China
- Department of Gastroenterology, The First Affiliated Hospital of Jinzhou Medical University, Jinzhou 121000, Liaoning Province, China
| | - Yan Li
- Department of Human Anatomy, Basic Medical College, Zunyi Medical University, Zunyi 563006, Guizhou Province, China
| | - Yuan Jin
- Department of Human Anatomy, Basic Medical College, Zunyi Medical University, Zunyi 563006, Guizhou Province, China
| | - Mang Xu
- Department of Anatomy, Basic Medical College, Dali University, Dali 671000, Yunnan Province, China
| | - Hong-Wei Fan
- Department of Anatomy, Histology and Embryology, Xuzhou Medical University, Xuzhou 221000, Jiangsu Province, China
| | - Qian Zhang
- Department of Human Anatomy, Basic Medical College, Zunyi Medical University, Zunyi 563006, Guizhou Province, China
| | - Guo-He Tan
- Key Lab of Longevity and Aging-related Diseases of Chinese Ministry of Education, Guangxi Medical University, Nanning 530000, Guangxi Zhuang Autonomous Region, China
- School of Basic Medical Sciences and Center for Translational Medicine, Guangxi Medical University, Nanning 530000, Guangxi Zhuang Autonomous Region, China
| | - Jing Chen
- Department of Anatomy, Histology and Embryology and K. K. Leung Brain Research Centre, The Fourth Military Medical University, Xi'an 710032, Shaanxi Province, China
| | - Yun-Qing Li
- Department of Human Anatomy, Basic Medical College, Guangxi Medical University, Nanning 530000, Guangxi Zhuang Autonomous Region, China
- Department of Human Anatomy, Basic Medical College, Zunyi Medical University, Zunyi 563006, Guizhou Province, China
- Department of Anatomy, Histology and Embryology and K. K. Leung Brain Research Centre, The Fourth Military Medical University, Xi'an 710032, Shaanxi Province, China
- Department of Human Anatomy, College of Preclinical Medical Sciences, Zhengzhou University, Zhengzhou 450001, Henan Province, China
- Key Laboratory of Brain Science Research and Transformation in Tropical Environment of Hainan Province, Hainan Medical University, Haikou 571199, Hainan Province, China
| |
Collapse
|
17
|
Combining the HSP90 inhibitor TAS-116 with metformin effectively degrades the NLRP3 and attenuates inflammasome activation in rats: A new management paradigm for ulcerative colitis. Biomed Pharmacother 2022; 153:113247. [PMID: 35724510 DOI: 10.1016/j.biopha.2022.113247] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2022] [Revised: 05/20/2022] [Accepted: 06/02/2022] [Indexed: 11/22/2022] Open
Abstract
Ulcerative colitis (UC) is a prevalent type of inflammatory bowel diseases that may predispose patients to acquire colitis-related cancer if treatment was not effective. Despite the presence of an array of established treatment options, current modalities are not successful for a substanial number of patients. The activation of the NLRP3 inflammasome is critical in the development of inflammatory processes in the colon. Additionally, the regulation of NLRP3 via HSP90 inhibition is a potential target to treat UC. Moreover, during inflammation, autophagy allows the turnover of malfunctioning proteins and therefore stands as a viable strategy for inactivating NLRP3 inflammasomes and halting hyperinflammation. Herein, we evaluated the effect of autophagy induction using metformin in the context of HSP90 inhibition by TAS-116 in the dextran sodium sulfate (DSS)-induced UC in rats. We revealed that TAS-116-induced interruption of the protein complex containing HSP90 and NLRP3 might hamper and delay the start of the inflammatory cascade ensued by the NLRP3 inflammasome oligomerization. In such circumstances, the unprotected NLRP3 is subjected to autophagic degradation in an environment of metformin-promoted autophagic signaling. As a result, such dynamic synergy was efficient in combating colon damage and immune-cell infiltration. This was confirmed by the macroscopic and microscopic investigations. Further, biochemical analysis revealed subdued inflammation cascade and oxidative injury. Therefore, simultaneous administration of TAS-116 and metformin is a new management paradigm aimed at inducing malfunction in the NLRP3 followed by augmenting its autophagic degradation, respectively. However, further studies should be conducted to assess the reliability and consistency of this novel approach.
Collapse
|
18
|
He P, Yu L, Tian F, Zhang H, Chen W, Zhai Q. Dietary Patterns and Gut Microbiota: The Crucial Actors in Inflammatory Bowel Disease. Adv Nutr 2022; 13:1628-1651. [PMID: 35348593 PMCID: PMC9526834 DOI: 10.1093/advances/nmac029] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2021] [Revised: 02/25/2022] [Accepted: 03/22/2022] [Indexed: 02/06/2023] Open
Abstract
It is widely believed that diet and the gut microbiota are strongly related to the occurrence and progression of inflammatory bowel disease (IBD), but the effects of the interaction between dietary patterns and the gut microbiota on IBD have not been well elucidated. In this article, we aim to explore the complex relation between dietary patterns, gut microbiota, and IBD. We first comprehensively summarized the dietary patterns associated with IBD and found that dietary patterns can modulate the occurrence and progression of IBD through various signaling pathways, including mammalian target of rapamycin (mTOR), mitogen-activated protein kinases (MAPKs), signal transducer and activator of transcription 3 (STAT3), and NF-κB. Besides, the gut microbiota performs a vital role in the progression of IBD, which can affect the expression of IBD susceptibility genes, such as dual oxidase 2 (DUOX2) and APOA-1 , the intestinal barrier (in particular, the expression of tight junction proteins), immune function (especially the homeostasis between effector and regulatory T cells) and the physiological metabolism, in particular, SCFAs, bile acids (BAs), and tryptophan metabolism. Finally, we reviewed the current knowledge on the interaction between dietary patterns and the gut microbiota in IBD and found that dietary patterns modulate the onset and progression of IBD, which is partly attributed to the regulation of the gut microbiota (especially SCFAs-producing bacteria and Escherichia coli). Faecalibacteria as "microbiomarkers" of IBD could be used as a target for dietary interventions to alleviate IBD. A comprehensive understanding of the interplay between dietary intake, gut microbiota, and IBD will facilitate the development of personalized dietary strategies based on the regulation of the gut microbiota in IBD and expedite the era of precision nutritional interventions for IBD.
Collapse
Affiliation(s)
- Pandi He
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, China,School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, China
| | - Leilei Yu
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, China,School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, China
| | - Fengwei Tian
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, China,School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, China
| | - Hao Zhang
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, China,School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, China,National Engineering Research Center for Functional Food, Jiangnan University, Wuxi, Jiangsu, China,Wuxi Translational Medicine Research Center, Jiangsu Translational Medicine Research Institute Wuxi Branch, Wuxi, Jiangsu, China
| | - Wei Chen
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, China,School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, China,National Engineering Research Center for Functional Food, Jiangnan University, Wuxi, Jiangsu, China
| | | |
Collapse
|
19
|
Jianpi Qingchang Decoction Ameliorates Chronic Colitis in Piroxicam-Induced IL-10 Knockout Mice by Inhibiting Endoplasmic Reticulum Stress. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2022; 2022:7378807. [PMID: 35186102 PMCID: PMC8849791 DOI: 10.1155/2022/7378807] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/18/2021] [Revised: 01/06/2022] [Accepted: 01/17/2022] [Indexed: 02/07/2023]
Abstract
Background Excessive endoplasmic reticulum (ER) stress in intestinal epithelial cells (IEC) may lead to impaired intestinal mucosal barrier function and then participate in the pathogenesis of ulcerative colitis (UC). Jianpi Qingchang decoction (JPQCD) has been shown to have protective effects on UC. However, further studies are needed to determine whether JPQCD regulates PERK/eIF2α/ATF4/CHOP pathways to play a role in treating UC. Methods IL-10−/− mice were randomly assigned into five groups: control, model, low-dose JPQCD (JPQCD L), middle-dose JPQCD (JPQCD M), and high-dose JPQCD (JPQCD H). All groups except for the control group were given model feed containing 200 ppm piroxicam for 10 d to induce colitis. As a comparison, we used wild-type mice that were the progeny of IL-10+/− matings, bred in the same facility. The control group and wild-type mice were fed with common feed. At the same time, mice in each group were given corresponding drugs by gavage for 14 d. The disease activity index of mice in each group was evaluated daily. Colon tissues of mice were collected, colon length was measured, and pathological changes and ultrastructure of colon epithelial cells were observed. The effects of JPQCD on the PERK/eIF2α/ATF4/CHOP pathways were evaluated by western blotting and reverse transcription-polymerase chain reaction (RT-PCR). The expression of CHOP in colon tissue was detected by tissue immunofluorescence assay. The expression of NF-κB, p-NF-κB p65 protein was analyzed by western blotting; the level of IL-17 in colon tissue was detected by enzyme-linked immunosorbent assay (ELISA) and verified by examining NF-κB and IL-17 mRNA levels by RT-PCR. Results Compared with the control group, the model group showed significant colitis symptoms and severe colonic tissue damage. The results showed that JPQCD significantly reduced body weight loss, ameliorated disease activity index, and restored colon length in IL-10−/− mice with piroxicam-induced colitis. Western blotting and RT-PCR showed that the PERK/eIF2α/ATF4/CHOP pathway was activated in colon tissue of model mice, suggesting that the pathway is involved in the pathogenesis of ulcerative colitis (UC) and could become a potential therapeutic target. The JPQCD treatment inhibited the activation of the PERK/eIF2α/ATF4/CHOP pathway, alleviated the ER stress, and played a role in preventing and treating UC. In addition, JPQCD can also downregulate the protein of NF-κB, p-NF-κB p65, downregulate the mRNA expression of NF-κB, and reduce the content of IL-17 and its mRNA expression in colon tissues. Conclusion JPQCD may play a protective role in UC by regulating the PERK/eIF2α/ATF4/CHOP signaling pathway and relieving endoplasmic reticulum stress.
Collapse
|
20
|
Effects of Olive Oil and Its Components on Intestinal Inflammation and Inflammatory Bowel Disease. Nutrients 2022; 14:nu14040757. [PMID: 35215407 PMCID: PMC8875923 DOI: 10.3390/nu14040757] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2022] [Revised: 02/07/2022] [Accepted: 02/09/2022] [Indexed: 12/14/2022] Open
Abstract
With the rising global burden of inflammatory bowel disease (IBD) and the rising costs of novel biological drugs, there is an increasing need for dietary approaches and functional foods that could modulate the course of IBD. The Mediterranean diet has proven to be efficacious in managing chronic inflammatory diseases, and recent studies have also shown its benefits in the setting of IBD. Since olive oil and its compounds have been shown to provide a considerable anti-inflammatory effect, in this review, we aim to discuss the latest evidence concerning the impact of olive oil and its bioactive compounds on IBD. Numerous preclinical studies have exhibited solid evidence on the mechanisms by which polyphenol-rich extra-virgin olive oil (EVOO) or specific polyphenols like hydroxytyrosol (HT) provide their anti-inflammatory, antioxidative, antitumour, and microbiota-modulation effects. Accordingly, several human studies that explored the effects of olive oil on patients with IBD further confirmed the evidence brought forward by preclinical studies. Nevertheless, there is a need for larger-scale, multicentric, randomized control trials that would finally elucidate olive oil’s level of efficacy in modulating the course of IBD.
Collapse
|
21
|
Guo X, Xu Y, Geng R, Qiu J, He X. Curcumin Alleviates Dextran Sulfate Sodium-induced Colitis in Mice Through Regulating Gut Microbiota. Mol Nutr Food Res 2022; 66:e2100943. [PMID: 35106903 DOI: 10.1002/mnfr.202100943] [Citation(s) in RCA: 37] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2021] [Revised: 01/03/2022] [Indexed: 11/10/2022]
Abstract
SCOPE Curcumin is a natural polyphenol compound with multiple pharmacologic activities. The present study aims to explore the potential therapeutic properties of curcumin on intestinal inflammatory diseases, including its anti-inflammatory, anti-oxidant, and anti-apoptotic properties, as well as their associations with altered intestinal microbiome. METHODS AND RESULTS DSS, i.e., Dextran Sulfate Sodium, (3%) was administered to C57BL/6J mice in the drinking water daily for 6 days in DSS and curcumin groups. Then mice in curcumin groups were orally administered with 50 or 150 mg/kg curcumin for 7 days. On day 13, mice were sacrificed. Results showed that oral administration with curcumin relieved macroscopic pathological manifestations, e.g. colon length and histological change. Moreover, it enhanced intestinal barrier via increasing expression of tight junction proteins, e.g. occludin, ZO-1, claudin-3; alleviated DSS-induced intestinal apoptosis via suppressing caspase-3 pathway; mitigated intestinal inflammation via inhibiting the MAPK/NFκB/STAT3 pathway. We also noticed that curcumin is beneficial for modulating abundance of some specific bacteria, including Akkermansia, Coprococcus, Roseburia, and Turicibacter, as well as families such as F16, Enterococcaceae, and Aerococcaceae. Most of the altered bacteria by curcumin are highly correlated with colitis-associated parameters. CONCLUSION curcumin shows therapeutic potential against colitis. It may be served as alternative medicine or adjuvant therapy in the treatment of colitis. This article is protected by copyright. All rights reserved.
Collapse
Affiliation(s)
- Xiaoxuan Guo
- Institute of Quality Standard and Testing Technology for Agro-products, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Ye Xu
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, 100083, China
| | - Ruixuan Geng
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, 100083, China
| | - Jing Qiu
- Institute of Quality Standard and Testing Technology for Agro-products, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Xiaoyun He
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, 100083, China
| |
Collapse
|
22
|
Vetuschi A, Battista N, Pompili S, Cappariello A, Prete R, Taticchi A, Selvaggini R, Latella G G, Corsetti A, Sferra R. The antiinflammatory and antifibrotic effect of olive phenols and Lactiplantibacillus plantarum IMC513 in dextran sodium sulfate-induced chronic colitis. Nutrition 2022; 94:111511. [PMID: 34813981 DOI: 10.1016/j.nut.2021.111511] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2021] [Revised: 09/17/2021] [Accepted: 10/03/2021] [Indexed: 12/19/2022]
Abstract
OBJECTIVES After a chronic intestinal injury, several intestinal cells switch their phenotype to activated myofibroblasts, which in turn release an abnormal amount of extracellular matrix proteins, leading to the onset of the fibrotic process. To date, no resolutive pharmacological treatments are available, and the identification of new therapeutic approaches represents a crucial goal to achieve. The onset, maintenance, and progression of inflammatory bowel disease are related to abnormal intestinal immune responses to environmental factors, including diet and intestinal microflora components. This study aimed to evaluate the potential antiinflammatory and antifibrotic effect of a biologically debittered olive cream and its probiotic oral administration in an experimental model of dextran sodium sulfate (DSS)-induced chronic colitis. METHODS Chronic colitis was induced in mice by three cycles of oral administration of 2.5% DSS (5 d of DSS followed by 7 d of tap water). Mice were randomly divided into five groups: 10 control mice fed with standard diet (SD), 20 mice receiving SD and DSS (SD+DSS), 20 mice receiving an enriched diet (ED) with olive cream and DSS (ED+DSS), 20 mice receiving SD plus probiotics (PB; Lactiplantibacillus plantarum IMC513) and DSS (SD+PB+DSS), and 20 mice receiving ED plus PB and DSS (ED+ PB+DSS). Clinical features and large bowel macroscopic, histologic, and immunohistochemical findings were evaluated. RESULTS The simultaneous administration of ED and PB induced a significant reduction in macroscopic and microscopic colitis scores compared with the other DSS-treated groups. In addition, ED and PB led to a significant decrease in the expression of inflammatory cytokines and profibrotic molecules. CONCLUSIONS The concomitant oral administration of a diet enriched with biologically debittered olive cream and a specific probiotic strain (Lactiplantibacillus plantarum IMC513) can exert synergistic antiinflammatory and antifibrotic action in DSS-induced chronic colitis. Further studies are needed to define the cellular and molecular mechanisms modulated by olive cream compounds and by Lactiplantibacillus plantarum IMC513.
Collapse
Affiliation(s)
- Antonella Vetuschi
- Department of Biotechnological and Applied Clinical Sciences, University of L'Aquila, L'Aquila, Italy
| | - Natalia Battista
- Faculty of Bioscience and Technology for Food, Agriculture and Environment, University of Teramo, Teramo, Italy
| | - Simona Pompili
- Department of Biotechnological and Applied Clinical Sciences, University of L'Aquila, L'Aquila, Italy.
| | - Alfredo Cappariello
- Department of Biotechnological and Applied Clinical Sciences, University of L'Aquila, L'Aquila, Italy
| | - Roberta Prete
- Faculty of Bioscience and Technology for Food, Agriculture and Environment, University of Teramo, Teramo, Italy
| | - Agnese Taticchi
- Department of Agricultural, Food and Environmental Sciences, University of Perugia, Perugia, Italy
| | - Roberto Selvaggini
- Department of Agricultural, Food and Environmental Sciences, University of Perugia, Perugia, Italy
| | - Giovanni Latella G
- Department of Life, Health and Environmental Sciences-Gastroenterology, Hepatology and Nutrition Division, University of L'Aquila, L'Aquila, Italy
| | - Aldo Corsetti
- Faculty of Bioscience and Technology for Food, Agriculture and Environment, University of Teramo, Teramo, Italy
| | - Roberta Sferra
- Department of Biotechnological and Applied Clinical Sciences, University of L'Aquila, L'Aquila, Italy
| |
Collapse
|
23
|
Mao SH, Feng DD, Wang X, Zhi YH, Lei S, Xing X, Jiang RL, Wu JN. Magnolol protects against acute gastrointestinal injury in sepsis by down-regulating regulated on activation, normal T-cell expressed and secreted. World J Clin Cases 2021; 9:10451-10463. [PMID: 35004977 PMCID: PMC8686136 DOI: 10.12998/wjcc.v9.i34.10451] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/20/2021] [Revised: 08/24/2021] [Accepted: 10/18/2021] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND Sepsis is a major medical challenge. Magnolol is an active constituent of Houpu that improves tissue function and exerts strong anti-endotoxin and anti-inflammatory effects, but the mechanism by which it reduces intestinal inflammation in sepsis is yet unclear.
AIM To assess the protective effect of magnolol on intestinal mucosal epithelial cells in sepsis and elucidate the underlying mechanisms.
METHODS Enzyme-linked immunosorbent assay was used to measure tumor necrosis factor-α (TNF-α), interleukin-1β (IL-1β), IL-6, and regulated on activation, normal T-cell expressed and secreted (RANTES) levels in serum and ileal tissue in animal studies. The histopathological changes of the ileal mucosa in different groups were observed under a microscope. Cell Counting Kit-8 and cell permeability assays were used to determine the concentration of drug-containing serum that did not affect the activity of Caco2 cells but inhibited lipopolysaccharide (LPS)-induced decrease in permeability. Immunofluorescence and Western blot assays were used to detect the levels of RANTES, inhibitor of nuclear factor kappa-B kinase β (IKKβ), phosphorylated IKKβ (p-IKKβ), inhibitor of nuclear factor kappa-B kinase α (IκBα), p65, and p-p65 proteins in different groups in vitro.
RESULTS In rats treated with LPS by intravenous tail injection in the presence or absence of magnolol, magnolol inhibited the expression of proinflammatory cytokines, IL-1β, IL-6, and TNF-α in a dose-dependent manner. In addition, magnolol suppressed the production of RANTES in LPS-stimulated sepsis rats. Moreover, in vitro studies suggested that magnolol inhibited the increase of p65 nucleation, thereby markedly downregulating the production of the phosphorylated form of IKKβ in LPS-treated Caco2 cells. Specifically, magnolol inhibited the translocation of the transcription factor nuclear factor-kappa B (NF-κB) from the cytosol into the nucleus and down-regulated the expression level of the chemokine RANTES in LPS-stimulated Caco2 cells.
CONCLUSION Magnolol down-regulates RANTES levels by inhibiting the LPS/NF-κB signaling pathways, thereby suppressing IL-1β, IL-6, and TNF-α expression to alleviate the mucosal barrier dysfunction in sepsis.
Collapse
Affiliation(s)
- Shi-Hao Mao
- Department of Intensive Care Unit, The First Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou 310006, Zhejiang Province, China
| | - Dan-Dan Feng
- Department of Intensive Care Unit, The First Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou 310006, Zhejiang Province, China
| | - Xi Wang
- Key Laboratory of Digestive Pathophysiology of Zhejiang Province, The First Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou 310053, Zhejiang Province, China
| | - Yi-Hui Zhi
- Department of Intensive Care Unit, The First Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou 310006, Zhejiang Province, China
| | - Shu Lei
- Department of Intensive Care Unit, The First Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou 310006, Zhejiang Province, China
| | - Xi Xing
- Department of Intensive Care Unit, The First Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou 310006, Zhejiang Province, China
| | - Rong-Lin Jiang
- Department of Intensive Care Unit, The First Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou 310006, Zhejiang Province, China
| | - Jian-Nong Wu
- Department of Intensive Care Unit, The First Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou 310006, Zhejiang Province, China
| |
Collapse
|
24
|
Extra Virgin Olive Oil consumption from Mild Cognitive Impairment patients attenuates oxidative and nitrative stress reflecting on the reduction of the PARP levels and DNA damage. Exp Gerontol 2021; 156:111621. [PMID: 34748951 DOI: 10.1016/j.exger.2021.111621] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2021] [Revised: 10/24/2021] [Accepted: 11/01/2021] [Indexed: 11/23/2022]
Abstract
Oxidative/nitrative stress that results from the unbalance of the overproduction/clearance of reactive oxygen/nitrogen species (ROS/NOS), originated from a variety of endo- and/or exo-genous sources, can have detrimental effects on DNA and is involved in Alzheimer's disease (AD) pathology. An excellent marker of oxidative DNA lesions is 8-hydroxy-2'-deoxyguanosine (8-OHdG) while of nitrative stress the enzyme NOS2 (Nitric oxide synthase 2). Under massive oxidative stress, poly(ADP-ribose)polymerase 1 (PARP-1) enzyme activity, responsible for restoration of DNA damage, is augmented, DNA repair enzymes are recruited, and cell survival/or death is ensued through PARP-1 activation, which is correlated positively with neurodegenerative diseases. In this biochemical study the levels of PARP-1, 8-oxo-dG, and NOS2, Aβ1-42, and p-tau in their sera determined using Enzyme-Linked Immunosorbent Assay (ELISA). Patients diagnosed with Mild Cognitive Impairment participated in MICOIL clinical trial, were daily administered with 50 ml Extra Virgin Olive Oil (EVOO) for one year. All MCI patients' biomarkers that had consumed EVOO were tantamount to those of healthy participants, contrary to MCI patients who were not administered. EVOO administration in MCI patients resulted in the restoration of DNA damage and of the well-established "hallmarks" AD biomarkers, thanks probably to its antioxidant properties exhibiting a therapeutic potentiality against AD. Molecular docking simulations of the EVOO constituents on the crystal structure of PARP-1 and NOS-2 target enzymes were also employed, to study in silico the ability of the compounds to bind to these enzymes and explain the observed in vitro activity. In silico analysis has proved the binding of EVOO constituents on PARP-1and NOS-2 enzymes and their interaction with crucial amino acids of the active sites. CLINICAL TRIAL REGISTRATION: https://clinicaltrials.gov/ct2/show/NCT03362996. MICOIL GOV IDENTIFIER: NCT03362996.
Collapse
|
25
|
Jin J, Zhong Y, Long J, Wu T, Jiang Q, Wang H, Ge W, Zhao H, Liu D. Ginsenoside Rg1 relieves experimental colitis by regulating balanced differentiation of Tfh/Treg cells. Int Immunopharmacol 2021; 100:108133. [PMID: 34543978 DOI: 10.1016/j.intimp.2021.108133] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2021] [Revised: 08/21/2021] [Accepted: 09/02/2021] [Indexed: 10/20/2022]
Abstract
Inflammatory bowel disease (IBD) is typically characterized by the dysregulation of Tfh cell differentiation. we sought to explore the potential mechanism of Ginsenoside Rg1 (G-Rg1) treated IBD by observing the level of the Tfh/Treg cells and the activation of PI3K/Akt signaling pathway in the colitis mice. In the present study, G-Rg1 significantly inhibited the inflammatory response to mice colitis induced by dextran sodium sulfate (DSS), as evidenced by increased body weight and colon length, decreased colon weight, reduced colon weight index and histopathological scores, lower levels of IL-6 and TNF-α, and increased IL-10 levels. Significantly, G-Rg1 effectively decreased the amounts of CD4+CXCR5+IL-9+(Tfh9), CD4+ CXCR5+IL-17+(Tfh17), and increased CD4+CXCR5+Foxp3+(Tfr) and CD4+CD25+ Foxp3+(Treg) cells. Furthermore, G-Rg1 markedly down-regulated PI3K and p-Akt level, and upregulated PTEN expression. These results indicated that G-Rg1 could effectively regulate the balance of Tfh/Treg cells to relieve experimental colitis, which could be potentially related to PI3K/Akt signaling pathway inhibition.
Collapse
Affiliation(s)
- Jing Jin
- Graduate School, Jiangxi University of Chinese Medicine, Nanchang 330004, Jiangxi Province, China
| | - Youbao Zhong
- Graduate School, Jiangxi University of Chinese Medicine, Nanchang 330004, Jiangxi Province, China
| | - Jian Long
- Graduate School, Jiangxi University of Chinese Medicine, Nanchang 330004, Jiangxi Province, China
| | - Tiantian Wu
- Graduate School, Jiangxi University of Chinese Medicine, Nanchang 330004, Jiangxi Province, China
| | - Qingqing Jiang
- Graduate School, Jiangxi University of Chinese Medicine, Nanchang 330004, Jiangxi Province, China
| | - Haiyan Wang
- Party and School Office, Jiangxi University of Chinese Medicine, Nanchang 330004, Jiangxi Province, China
| | - Wei Ge
- Affiliated Hospital of Jiangxi University of Chinese Medicine, Nanchang 330006, Jiangxi Province, China
| | - Haimei Zhao
- College of Traditional Chinese Medicine, Jiangxi University of Chinese Medicine, Nanchang 330004, Jiangxi Province, China.
| | - Duanyong Liu
- Science and Technology College, Jiangxi University of Chinese Medicine, Nanchang 330004, Jiangxi Province, China.
| |
Collapse
|
26
|
Yu Y, Zheng C, Lu X, Deng C, Xu Q, Guo W, Wu Q, Wang Q, Liu C, Huang X, Song J. GB1a Ameliorates Ulcerative Colitis via Regulation of the NF-κB and Nrf2 Signaling Pathways in an Experimental Model. Front Med (Lausanne) 2021; 8:654867. [PMID: 34557497 PMCID: PMC8452853 DOI: 10.3389/fmed.2021.654867] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2021] [Accepted: 08/09/2021] [Indexed: 11/13/2022] Open
Abstract
Ulcerative colitis (UC) is an inflammatory bowel disease. The intake of African Garcinia Kola nuts has been reported as a therapy for diarrhea and dysentery in the African population. However, the mechanism of action through which Garcinia Kola nuts act to ameliorates UC remains unknown. GB1a is the main active component of Garcinia Kola nuts. In this study, we explored the therapeutic effects and underlying mechanism of GB1a on dextran sodium sulfate (DSS)-induced UC. Human Colonic Epithelial Cells (HCoEpic) were challenged with TNF-α to test the effects of GB1a in protecting against oxidative stress and inflammation in vitro. Our data showed that GB1a significantly attenuated DSS-induced colonic inflammatory injury manifested as reversed loss of body weight and disease activity index (DAI) scores in UC mice. We also showed that GB1a improved the permeability of the intestinal epithelium by modulating the expression of tight junction proteins (ZO-1, Occludin). Mechanistically, GB1a may activate the Nrf2 antioxidant signaling pathway and suppress the nuclear translocation of NF-κB in reduced oxidative stress and expression of inflammatory genes induced by TNF-α in HCoEpic cells. Our study suggests that GB1a alleviates inflammation, oxidative stress and the permeability of the colonic epithelial mucosa in UC mice via the repression of NF-κB and activation of Nrf2 signaling pathway.
Collapse
Affiliation(s)
- Yuanyuan Yu
- Artemisinin Research Center, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Congmin Zheng
- Artemisinin Research Center, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Xu Lu
- Artemisinin Research Center, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Changsheng Deng
- Artemisinin Research Center, Guangzhou University of Chinese Medicine, Guangzhou, China.,The First Affiliated Hospital and The First Clinical Medical School, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Qin Xu
- Artemisinin Research Center, Guangzhou University of Chinese Medicine, Guangzhou, China.,The First Affiliated Hospital and The First Clinical Medical School, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Wenfeng Guo
- Artemisinin Research Center, Guangzhou University of Chinese Medicine, Guangzhou, China.,The First Affiliated Hospital and The First Clinical Medical School, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Qingye Wu
- Artemisinin Research Center, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Qi Wang
- Artemisinin Research Center, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Changhui Liu
- School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Xinan Huang
- Artemisinin Research Center, Guangzhou University of Chinese Medicine, Guangzhou, China.,The First Affiliated Hospital and The First Clinical Medical School, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Jianping Song
- Artemisinin Research Center, Guangzhou University of Chinese Medicine, Guangzhou, China.,The First Affiliated Hospital and The First Clinical Medical School, Guangzhou University of Chinese Medicine, Guangzhou, China
| |
Collapse
|
27
|
Wani TA, Masoodi F, Dar MM, Akhter R, Sharma O. Subcritical treatment of olive oil: Minor phenolic composition and antioxidant properties of the solvent extracts. Lebensm Wiss Technol 2021. [DOI: 10.1016/j.lwt.2021.111584] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
|
28
|
Effects of olives and their constituents on the expression of ulcerative colitis: a systematic review of randomised controlled trials. Br J Nutr 2021; 127:1153-1171. [PMID: 34100354 DOI: 10.1017/s0007114521001999] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Extra virgin olive oil is often associated with anti-inflammatory and antioxidant properties. Its effects on inflammatory conditions such as ulcerative colitis (UC), however, have yet to be defined. As such, we aimed to conduct a systematic review and meta-analysis of studies investigating olive-based interventions in UC. A comprehensive database search for randomised controlled trials was performed between 9 July 2018 and 16 August 2018. Studies identified from search alerts were included up to 22 June 2020. Both individuals living with UC at any disease stage and murine models of UC were included in this review. No human trials meeting the eligibility criteria were identified, while nineteen animal studies comprised 849 murine models of UC were included in this review. Pooling of the data could not be performed due to heterogeneous outcomes; however, general trends favouring olive-based interventions were identified. Milder disease expression including weight maintenance, reduced rectal bleeding and well-formed stools favouring olive-based interventions was statistically significant in 16/19 studies, with moderate-to-large effect sizes (-0·66 (95 % CI -1·56, 0·24) to -12·70 (95 % CI -16·8, -8·7)). Olive-based interventions did not prevent the development of colitis-like pathologies in any study. In conclusion, effects of olive-based interventions on murine models of UC appear promising, with milder disease outcomes favouring the intervention in most trials and effect sizes suggesting potential clinical relevance. However, the lack of published randomised controlled human trials warrants further investigation to determine if these effects would translate to individuals living with UC.
Collapse
|
29
|
Millman JF, Okamoto S, Teruya T, Uema T, Ikematsu S, Shimabukuro M, Masuzaki H. Extra-virgin olive oil and the gut-brain axis: influence on gut microbiota, mucosal immunity, and cardiometabolic and cognitive health. Nutr Rev 2021; 79:1362-1374. [PMID: 33576418 PMCID: PMC8581649 DOI: 10.1093/nutrit/nuaa148] [Citation(s) in RCA: 51] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Extra-virgin olive oil (EVOO), a popular functional food and major source of fat in the Mediterranean diet, possesses a variety of healthful components, including monounsaturated fatty acids and bioactive phenolic compounds that, individually and collectively, exert beneficial effects on cardiometabolic markers of health and act as neuroprotective agents through their anti-inflammatory and antioxidant activities. The gut microbiota and health of the intestinal environment are now considered important factors in the development of obesity, metabolic disease, and even certain neurodegenerative conditions via the gut-brain axis. Recently, data are emerging which demonstrate that the health-promoting benefits of EVOO may also extend to the gut microbiota. In this review, we aimed to examine findings from recent studies regarding the impact of EVOO on gut microbiota and intestinal health and explore how modulations in composition of gut microbiota, production of microbially produced products, and activity and functioning of the mucosal immune system may lead to favorable outcomes in cardiovascular, metabolic, and cognitive health.
Collapse
Affiliation(s)
- Jasmine F Millman
- J.F. Millman, S. Okamoto, T. Taiki, T. Uema, and H. Masuzaki are with the Division of Endocrinology, Diabetes and Metabolism, Hematology, Rheumatology (Second Department of Internal Medicine), Graduate School of Medicine, University of the Ryukyus, Okinawa, Japan. S. Ikematsu is with the Department of Bioresources Engineering, National Institute of Technology, Okinawa College, Okinawa, Japan. M. Shimabukuro is with the Department of Diabetes, Endocrinology and Metabolism, Fukushima Medical University, Fukushima, Japan
| | - Shiki Okamoto
- J.F. Millman, S. Okamoto, T. Taiki, T. Uema, and H. Masuzaki are with the Division of Endocrinology, Diabetes and Metabolism, Hematology, Rheumatology (Second Department of Internal Medicine), Graduate School of Medicine, University of the Ryukyus, Okinawa, Japan. S. Ikematsu is with the Department of Bioresources Engineering, National Institute of Technology, Okinawa College, Okinawa, Japan. M. Shimabukuro is with the Department of Diabetes, Endocrinology and Metabolism, Fukushima Medical University, Fukushima, Japan
| | - Taiki Teruya
- J.F. Millman, S. Okamoto, T. Taiki, T. Uema, and H. Masuzaki are with the Division of Endocrinology, Diabetes and Metabolism, Hematology, Rheumatology (Second Department of Internal Medicine), Graduate School of Medicine, University of the Ryukyus, Okinawa, Japan. S. Ikematsu is with the Department of Bioresources Engineering, National Institute of Technology, Okinawa College, Okinawa, Japan. M. Shimabukuro is with the Department of Diabetes, Endocrinology and Metabolism, Fukushima Medical University, Fukushima, Japan
| | - Tsugumi Uema
- J.F. Millman, S. Okamoto, T. Taiki, T. Uema, and H. Masuzaki are with the Division of Endocrinology, Diabetes and Metabolism, Hematology, Rheumatology (Second Department of Internal Medicine), Graduate School of Medicine, University of the Ryukyus, Okinawa, Japan. S. Ikematsu is with the Department of Bioresources Engineering, National Institute of Technology, Okinawa College, Okinawa, Japan. M. Shimabukuro is with the Department of Diabetes, Endocrinology and Metabolism, Fukushima Medical University, Fukushima, Japan
| | - Shinya Ikematsu
- J.F. Millman, S. Okamoto, T. Taiki, T. Uema, and H. Masuzaki are with the Division of Endocrinology, Diabetes and Metabolism, Hematology, Rheumatology (Second Department of Internal Medicine), Graduate School of Medicine, University of the Ryukyus, Okinawa, Japan. S. Ikematsu is with the Department of Bioresources Engineering, National Institute of Technology, Okinawa College, Okinawa, Japan. M. Shimabukuro is with the Department of Diabetes, Endocrinology and Metabolism, Fukushima Medical University, Fukushima, Japan
| | - Michio Shimabukuro
- J.F. Millman, S. Okamoto, T. Taiki, T. Uema, and H. Masuzaki are with the Division of Endocrinology, Diabetes and Metabolism, Hematology, Rheumatology (Second Department of Internal Medicine), Graduate School of Medicine, University of the Ryukyus, Okinawa, Japan. S. Ikematsu is with the Department of Bioresources Engineering, National Institute of Technology, Okinawa College, Okinawa, Japan. M. Shimabukuro is with the Department of Diabetes, Endocrinology and Metabolism, Fukushima Medical University, Fukushima, Japan
| | - Hiroaki Masuzaki
- J.F. Millman, S. Okamoto, T. Taiki, T. Uema, and H. Masuzaki are with the Division of Endocrinology, Diabetes and Metabolism, Hematology, Rheumatology (Second Department of Internal Medicine), Graduate School of Medicine, University of the Ryukyus, Okinawa, Japan. S. Ikematsu is with the Department of Bioresources Engineering, National Institute of Technology, Okinawa College, Okinawa, Japan. M. Shimabukuro is with the Department of Diabetes, Endocrinology and Metabolism, Fukushima Medical University, Fukushima, Japan
| |
Collapse
|
30
|
Wanes D, Toutounji M, Sebai H, Rizk S, Naim HY. Rosa canina L. Can Restore Endoplasmic Reticulum Alterations, Protein Trafficking and Membrane Integrity in a Dextran Sulfate Sodium-Induced Inflammatory Bowel Disease Phenotype. Nutrients 2021; 13:nu13020441. [PMID: 33572926 PMCID: PMC7911736 DOI: 10.3390/nu13020441] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2020] [Revised: 01/21/2021] [Accepted: 01/26/2021] [Indexed: 12/22/2022] Open
Abstract
Rosa canina L. is a natural polyphenol-rich medicinal plant that exhibits antioxidant and anti-inflammatory activities. Recent in vivo studies have demonstrated that a methanol extract of Rosa canina L. (RCME) has reversed an inflammatory bowel disease (IBD)-like phenotype that has been triggered by dextran sulfate sodium (DSS) in mice. In the current study, we investigated the effects of RCME on perturbations of cellular mechanisms induced by DSS-treatment of intestinal Caco-2 cells, including stress response in the endoplasmic reticulum (ER), protein trafficking and sorting as well as lipid rafts integrity and functional capacities of an intestinal enzyme. 6 days post-confluent cells were treated for 24 h with DSS (3%) or simultaneously with DSS (3%) and RCME (100 µg/mL) or exclusively with RCME (100 µg/mL) or not treated. The results obtained demonstrate the ability of RCME to counteract the substantial increase in the expression levels of several ER stress markers in DSS-treated cells. Concomitantly, the delayed trafficking of intestinal membrane glycoproteins sucrase-isomaltase (SI) and dipeptidyl peptidase 4 (DPP4) induced by DSS between the ER and the Golgi has been compromised by RCME. Furthermore, RCME restored the partially impaired polarized sorting of SI and DPP4 to the brush border membrane. An efficient sorting mechanism of SI and DPP4 is tightly associated with intact lipid rafts structures in the trans-Golgi network (TGN), which have been distorted by DSS and normalized by RCME. Finally, the enzymatic activities of SI are enhanced in the presence of RCME. Altogether, DSS treatment has triggered ER stress, impaired trafficking and function of membrane glycoproteins and distorted lipid rafts, all of which can be compromised by RCME. These findings indicate that the antioxidants in RCME act at two major sites in Caco-2 cells, the ER and the TGN and are thus capable of maintaining the membrane integrity by correcting the sorting of membrane-associated proteins.
Collapse
Affiliation(s)
- Dalanda Wanes
- Department of Biochemistry, University of Veterinary Medicine Hannover, Bünteweg 17, 30559 Hannover, Germany; (D.W.); (M.T.)
- Laboratory of Functional Physiology and Valorization of Bioresources, Higher Institute of Biotechnology of Beja, University of Jendouba, Beja 7800, Tunisia;
- Faculty of Sciences of Bizerte, University of Carthage, Zarzouna 7021, Tunisia
| | - Mohamad Toutounji
- Department of Biochemistry, University of Veterinary Medicine Hannover, Bünteweg 17, 30559 Hannover, Germany; (D.W.); (M.T.)
| | - Hichem Sebai
- Laboratory of Functional Physiology and Valorization of Bioresources, Higher Institute of Biotechnology of Beja, University of Jendouba, Beja 7800, Tunisia;
| | - Sandra Rizk
- Department of Natural Sciences, Lebanese American University, Beirut 1102-2801, Lebanon;
| | - Hassan Y. Naim
- Department of Biochemistry, University of Veterinary Medicine Hannover, Bünteweg 17, 30559 Hannover, Germany; (D.W.); (M.T.)
- Correspondence: ; Tel.: +49-511-953-8780 or +49-511-953-8781
| |
Collapse
|
31
|
Zobeiri M, Momtaz S, Parvizi F, Tewari D, Farzaei MH, Nabavi SM. Targeting Mitogen-Activated Protein Kinases by Natural Products: A Novel Therapeutic Approach for Inflammatory Bowel Diseases. Curr Pharm Biotechnol 2020; 21:1342-1353. [PMID: 31840607 DOI: 10.2174/1389201021666191216122555] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2019] [Revised: 08/01/2019] [Accepted: 11/21/2019] [Indexed: 12/11/2022]
Abstract
An increase in the prevalence of Inflammatory Bowel Diseases (IBD) as a multifactorial intestinal chronic inflammation as well as the absence of a certain cure, has created an innovative era in the management of IBD by molecule/pathway-based anti-inflammatory approaches. There are credible documentations that demonstrate Mitogen-Activated Protein Kinases (MAPK) acts as IBD regulator. Upon the activation of MAPK signalling pathway, the transcription and expression of various encoding inflammatory molecules implicated in IBD are altered, thereby exacerbating the inflammation development. The current pharmacological management of IBD, including drug and biological therapies are expensive, possess temporary relief and some adverse effects. In this context, a variety of dietary fruits or medicinal herbs have received worldwide attention versus the development of IBD. Infact, natural ingredients, such as Flavaglines, Fisetin, Myricitrin, Cardamonin, Curcumin, Octacosanol and Mangiferin possess protective and therapeutic effects against IBD via modulation of different segments of MAPK signaling pathway. This review paper calls attention to the role of MAPK signaling triggered by natural products in the prevention and treatment of IBD.
Collapse
Affiliation(s)
- Mehdi Zobeiri
- Internal Medicine Department, Imam Reza Hospital, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Saeideh Momtaz
- Medicinal Plants Research Center, Institute of Medicinal Plants, ACECR, Karaj, Iran,Toxicology and Diseases Group (TDG), Pharmaceutical Sciences Research Center (PSRC), The Institute of Pharmaceutical Sciences (TIPS), and Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran,Gastrointestinal Pharmacology Interest Group (GPIG), Universal Scientific Education and Research Network (USERN), Tehran, Iran
| | - Fatemeh Parvizi
- Pharmaceutical Sciences Research Center, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Devesh Tewari
- School of Pharmaceutical Sciences, Lovely Professional University, Phagwara, Punjab 144 411, India
| | - Mohammad H Farzaei
- Pharmaceutical Sciences Research Center, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Seyed M Nabavi
- Applied Biotechnology Research Center, Baqiyatallah University of Medical Sciences, Tehran, Iran
| |
Collapse
|
32
|
Kim E, Kim Y, Lee J, Shin JH, Seok PR, Kim Y, Yoo SH. Leucrose, a natural sucrose isomer, suppresses dextran sulfate sodium (DSS)-induced colitis in mice by regulating macrophage polarization via JAK1/STAT6 signaling. J Funct Foods 2020. [DOI: 10.1016/j.jff.2020.104156] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
|
33
|
Naeem M, Lee J, Oshi MA, Cao J, Hlaing SP, Im E, Jung Y, Yoo JW. Colitis-targeted hybrid nanoparticles-in-microparticles system for the treatment of ulcerative colitis. Acta Biomater 2020; 116:368-382. [PMID: 32937207 DOI: 10.1016/j.actbio.2020.09.017] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2020] [Revised: 09/07/2020] [Accepted: 09/08/2020] [Indexed: 12/26/2022]
Abstract
Nanoparticle (NP)-based drug delivery systems accumulate in the disrupted epithelium of inflamed colon tissue in ulcerative colitis. However, premature early drug release and uptake or degradation of NPs during their passage through the harsh gastric or intestinal environment compromise their therapeutic outcomes. This study aimed to develop an advanced colitis-targeted hybrid nanoparticles-in-microparticles (NPsinMPs) drug delivery system to overcome the aforementioned challenges. First, sustained drug releasing poly(lactic-co-glycolic acid) NPs were generated and further encapsulated in pH-sensitive Eudragit FS30D MPs to ensure complete drug protection in a gastric-like pH and for selective delivery of NPs to the colon. SEM and confocal microscopy for the NPsinMPs revealed successful NP encapsulation. NPsinMPs prevented drug release in an acidic gastric-like and intestinal-like pH and presented a sustained release thereafter at an ileal and colonic pH, indicating the degradation of the outer pH-sensitive MPs and release of NPs. Furthermore, in vivo imaging of gastrointestinal tract of a colitis mouse orally administered with fluorescent NPsinMPs revealed higher fluorescence intensities selectively in the colon, demonstrating the release of loaded NPs and their concomitant accumulation at the site of colon inflammation. NPsinMPs markedly mitigated experimental colitis in mice indicated by improved histopathological analysis, decreased myeloperoxidase activity, neutrophils and macrophage infiltration, and expression of proinflammatory cytokines in colonic tissues compared with NP-treated mice. The present results show the successful formulation of an NPsinMP-based drug delivery system and provide a platform to improve NP-based colon-targeted drug delivery through improved protection of encapsulated NPs and their payload in the early small intestine.
Collapse
Affiliation(s)
- Muhammad Naeem
- College of Pharmacy, Pusan National University, Busan609-735, South Korea; Department of Biological Sciences, National University of Medical Sciences, Rawalpindi, Punjab, Pakistan
| | - Juho Lee
- College of Pharmacy, Pusan National University, Busan609-735, South Korea
| | - Murtada A Oshi
- College of Pharmacy, Pusan National University, Busan609-735, South Korea
| | - Jiafu Cao
- College of Pharmacy, Pusan National University, Busan609-735, South Korea
| | - Shwe Phyu Hlaing
- College of Pharmacy, Pusan National University, Busan609-735, South Korea
| | - Eunok Im
- College of Pharmacy, Pusan National University, Busan609-735, South Korea
| | - Yunjin Jung
- College of Pharmacy, Pusan National University, Busan609-735, South Korea
| | - Jin-Wook Yoo
- College of Pharmacy, Pusan National University, Busan609-735, South Korea.
| |
Collapse
|
34
|
Nascimento RDPD, Machado APDF, Galvez J, Cazarin CBB, Maróstica Junior MR. Ulcerative colitis: Gut microbiota, immunopathogenesis and application of natural products in animal models. Life Sci 2020; 258:118129. [PMID: 32717271 DOI: 10.1016/j.lfs.2020.118129] [Citation(s) in RCA: 60] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2020] [Revised: 07/02/2020] [Accepted: 07/19/2020] [Indexed: 12/13/2022]
Abstract
Ulcerative colitis (UC) is an inflammatory bowel disease with increasing incidence in the world, especially in developing countries. Although knowledge of its pathogenesis has progressed over the last years, some details require clarification. Studies have highlighted the role of microbial dysbiosis and immune dysfunction as essential factors that may initiate the typical high-grade inflammatory outcome. In order to better understand the immunopathophysiological aspects of UC, experimental murine models are valuable tools. Some of the most commonly used chemicals to induce colitis are trinitrobenzene sulfonic acid, oxazolone and dextran sodium sulfate. These may also be used to investigate new ways of preventing or treating UC and therefore improving targeting in human studies. The use of functional foods or bioactive compounds from plants may constitute an innovative direction towards the future of alternative medicine. Considering the above, this review focused on updated information regarding the 1. gut microbiota and immunopathogenesis of UC; 2. the most utilized animal models of the disease and their relevance; and 3. experimental application of natural products, not yet tested in clinical trials.
Collapse
Affiliation(s)
- Roberto de Paula do Nascimento
- Universidade Estadual de Campinas (UNICAMP), Faculdade de Engenharia de Alimentos (FEA), Monteiro Lobato street, 80, 13083-862, Campinas, São Paulo, Brazil
| | - Ana Paula da Fonseca Machado
- Universidade Estadual de Campinas (UNICAMP), Faculdade de Engenharia de Alimentos (FEA), Monteiro Lobato street, 80, 13083-862, Campinas, São Paulo, Brazil
| | - Julio Galvez
- Universidad de Granada (UGR), Instituto de Investigación Biosanitaria de Granada (ibs.GRANADA), Centro de Investigación Biomédica, Departamento de Farmacología, 18071 Andaluzia, Granada, Spain.
| | - Cinthia Baú Betim Cazarin
- Universidade Estadual de Campinas (UNICAMP), Faculdade de Engenharia de Alimentos (FEA), Monteiro Lobato street, 80, 13083-862, Campinas, São Paulo, Brazil.
| | - Mario Roberto Maróstica Junior
- Universidade Estadual de Campinas (UNICAMP), Faculdade de Engenharia de Alimentos (FEA), Monteiro Lobato street, 80, 13083-862, Campinas, São Paulo, Brazil.
| |
Collapse
|
35
|
Rondanelli M, Lamburghini S, Faliva MA, Peroni G, Riva A, Allegrini P, Spadaccini D, Gasparri C, Iannello G, Infantino V, Alalwan TA, Perna S, Miccono A. A food pyramid, based on a review of the emerging literature, for subjects with inflammatory bowel disease. ACTA ACUST UNITED AC 2020; 68:17-46. [PMID: 32499202 DOI: 10.1016/j.endinu.2020.01.004] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2019] [Revised: 12/14/2019] [Accepted: 01/08/2020] [Indexed: 02/07/2023]
Abstract
Emerging literature suggests that diet plays an important modulatory role in inflammatory bowel disease (IBD) through the management of inflammation and oxidative stress. The aim of this narrative review is to evaluate the evidence collected up till now regarding optimum diet therapy for IBD and to design a food pyramid for these patients. The pyramid shows that carbohydrates should be consumed every day (3 portions), together with tolerated fruits and vegetables (5 portions), yogurt (125ml), and extra virgin olive oil; weekly, fish (4 portions), white meat (3 portions), eggs (3 portions), pureed legumes (2 portions), seasoned cheeses (2 portions), and red or processed meats (once a week). At the top of the pyramid, there are two pennants: the red one means that subjects with IBD need some personalized supplementation and the black one means that there are some foods that are banned. The food pyramid makes it easier for patients to decide what they should eat.
Collapse
Affiliation(s)
- Mariangela Rondanelli
- IRCCS Mondino Foundation, Pavia, Department of Public Health, Experimental and Forensic Medicine, Unit of Human and Clinical Nutrition, University of Pavia, Pavia 27100, Italy
| | - Silvia Lamburghini
- University of Pavia, Department of Public Health, Experimental and Forensic Medicine, Section of Human Nutrition, Endocrinology and Nutrition Unit, Azienda di Servizi alla Persona, Pavia 27100, Italy
| | - Milena A Faliva
- University of Pavia, Department of Public Health, Experimental and Forensic Medicine, Section of Human Nutrition, Endocrinology and Nutrition Unit, Azienda di Servizi alla Persona, Pavia 27100, Italy
| | - Gabriella Peroni
- University of Pavia, Department of Public Health, Experimental and Forensic Medicine, Section of Human Nutrition, Endocrinology and Nutrition Unit, Azienda di Servizi alla Persona, Pavia 27100, Italy
| | - Antonella Riva
- Research and Development Unit, Indena, Milan 20146, Italy
| | | | - Daniele Spadaccini
- University of Pavia, Department of Public Health, Experimental and Forensic Medicine, Section of Human Nutrition, Endocrinology and Nutrition Unit, Azienda di Servizi alla Persona, Pavia 27100, Italy
| | - Clara Gasparri
- University of Pavia, Department of Public Health, Experimental and Forensic Medicine, Section of Human Nutrition, Endocrinology and Nutrition Unit, Azienda di Servizi alla Persona, Pavia 27100, Italy
| | - Giancarlo Iannello
- General Management, Azienda di Servizi alla Persona "Istituto Santa Margherita", Pavia 27100, Italy
| | - Vittoria Infantino
- University of Bari Aldo Moro, Department of Biomedical Science and Human Oncology, Section of Human Nutrition, Endocrinology and Nutrition Unit, Azienda di Servizi alla Persona, Pavia 27100, Italy.
| | - Tariq A Alalwan
- Department of Biology, College of Science, University of Bahrain, Sakhir Campus, P.O. Box 32038, Bahrain
| | - Simone Perna
- Department of Biology, College of Science, University of Bahrain, Sakhir Campus, P.O. Box 32038, Bahrain
| | - Alessandra Miccono
- University of Pavia, Department of Public Health, Experimental and Forensic Medicine, Section of Human Nutrition, Endocrinology and Nutrition Unit, Azienda di Servizi alla Persona, Pavia 27100, Italy
| |
Collapse
|
36
|
Extra-Virgin Olive Oil from Apulian Cultivars and Intestinal Inflammation. Nutrients 2020; 12:nu12041084. [PMID: 32295122 PMCID: PMC7230776 DOI: 10.3390/nu12041084] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2020] [Revised: 04/07/2020] [Accepted: 04/11/2020] [Indexed: 12/19/2022] Open
Abstract
Inflammatory bowel disease (IBD) is a multifactorial intestinal disorder characterized by chronic intestinal inflammation. The etiology of IBD is still unclear, although genetic, environmental and host factors have been associated to the disease. Extra-virgin olive oil (EVO) is a central component of the Mediterranean diet and it decreases chronic inflammation by interfering with arachidonic acid and NF-κB signaling pathways. Specifically, the different components of EVO are able to confer advantages in terms of health in their site of action. For instance, oleic acid displays a protective effect in liver dysfunction and gut inflammation, whereas phenolic compounds protect colon cells against oxidative damage and improve the symptoms of chronic inflammation in IBD. Given the biological properties of EVO, we investigated whether its administration is able to confer protection in a mouse model of dextrane sodium sulfate (DSS)-induced colitis. Four EVO cultivars from the Apulian Region of Italy, namely Ogliarola (Cima di Bitonto), Coratina, Peranzana and Cima di Mola, respectively, were used. Administration of EVO resulted in reduced body weight loss in our colitis model. Furthermore, mice treated with Ogliarola, Coratina and Cima di Mola EVO displayed a reduction of rectal bleeding and IL-1β, TGFβ, IL-6 gene expression levels. Furthermore, Ogliarola, Coratina and Peranzana EVO administration ameliorated intestinal permeability and histopathological features of inflammation. Our data further validate the well-known positive effects of EVO supplementation in promoting human health and suggest the bona fide contribution of EVO in preventing onset and reducing progression of intestinal inflammation.
Collapse
|
37
|
Güvenç M, Cellat M, Özkan H, Tekeli İO, Uyar A, Gökçek İ, İşler CT, Yakan A. Protective Effects of Tyrosol Against DSS-Induced Ulcerative Colitis in Rats. Inflammation 2020; 42:1680-1691. [PMID: 31115770 DOI: 10.1007/s10753-019-01028-8] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
In this study, the effects of tyrosol were investigated in DSS-induced experimental ulcerative colitis model. For this purpose, rats were divided into five groups of seven rats in each: control group, colitis group (DSS-4%), tyrosol group (tyrosol 20 mg/kg), sulfasalazine (sulfasalazine+DSS 100 mg/kg), and treatment group (tyrosol+DSS 20 mg/kg). In the study, the active substances were administered to all animals for a period of 21 days. At the end of the study, malondialdehyde (MDA) levels increased (p < 0.001); GSH level (p < 0.05) along with GSH.Px (p < 0.01) and CAT (p < 0.001) activities decreased in the DSS-induced colitis group. However, with the administration of tyrosol, MDA and GSH levels along with GSH.Px and CAT activities came to the same levels as the control group. In the colitis group, an increase occurred in IL-6, COX-2, and NF-κB parameters, which created a significant difference compared to the control group (p < 0.001). Similarly, TNF-α levels also significantly increased with the administration of DSS (p < 0.05) which created a significant difference compared to the control group, while there was no difference among the other groups. As for the Nrf-2 data, it decreased with the administration of DSS which created a significant difference compared to the control group (p < 0.05), while there was no difference in other groups. In the colitis-induced group, IL-6, COX-2, and NF-κB gene expression levels also similarly increased but returned to the normal levels with the administration of tyrosol. In the histopathological scoring, the negativity that increased with the administration of DSS returned to the normal levels with the administration of tyrosol+DSS. In conclusion, according to the data obtained, tyrosol fixed the destruction picture in the DSS-induced colitis model, giving rise to thought that it has a protective effect.
Collapse
Affiliation(s)
- Mehmet Güvenç
- Faculty of Veterinary Medicine, Department of Physiology, Hatay Mustafa Kemal University, Hatay, Turkey.
| | - Mustafa Cellat
- Faculty of Veterinary Medicine, Department of Physiology, Hatay Mustafa Kemal University, Hatay, Turkey
| | - Hüseyin Özkan
- Faculty of Veterinary Medicine, Department of Genetics, Hatay Mustafa Kemal University, Hatay, Turkey
| | - İbrahim Ozan Tekeli
- Faculty of Veterinary Medicine, Department of Pharmacology and Toxicology, Hatay Mustafa Kemal University, Hatay, Turkey
| | - Ahmet Uyar
- Faculty of Veterinary Medicine, Department of Pathology, Hatay Mustafa Kemal University, Hatay, Turkey
| | - İshak Gökçek
- Faculty of Veterinary Medicine, Department of Physiology, Hatay Mustafa Kemal University, Hatay, Turkey
| | - Cafer Tayer İşler
- Faculty of Veterinary Medicine, Department of Surgery, Hatay Mustafa Kemal University, Hatay, Turkey
| | - Akın Yakan
- Faculty of Veterinary Medicine, Department of Zootechnics, Erciyes University, Kayseri, Turkey
| |
Collapse
|
38
|
Extra Virgin Olive Oil Polyphenols: Modulation of Cellular Pathways Related to Oxidant Species and Inflammation in Aging. Cells 2020; 9:cells9020478. [PMID: 32093046 PMCID: PMC7072812 DOI: 10.3390/cells9020478] [Citation(s) in RCA: 70] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2020] [Revised: 02/18/2020] [Accepted: 02/18/2020] [Indexed: 01/18/2023] Open
Abstract
The olive-oil-centered Mediterranean diet has been associated with extended life expectancy and a reduction in the risk of age-related degenerative diseases. Extra virgin olive oil (EVOO) itself has been proposed to promote a "successful aging", being able to virtually modulate all the features of the aging process, because of its great monounsaturated fatty acids content and its minor bioactive compounds, the polyphenols above all. Polyphenols are mostly antioxidant and anti-inflammatory compounds, able to modulate abnormal cellular signaling induced by pro-inflammatory stimuli and oxidative stress, as that related to NF-E2-related factor 2 (Nrf-2) and nuclear factor kappa-light-chain-enhancer of activated B cells (NF-κB), which have been identified as important modulators of age-related disorders and aging itself. This review summarizes existing literature about the interaction between EVOO polyphenols and NF-κB and Nrf-2 signaling pathways. Reported studies show the ability of EVOO phenolics, mainly hydroxytyrosol and tyrosol, to activate Nrf-2 signaling, inducing a cellular defense response and to prevent NF-κB activation, thus suppressing the induction of a pro-inflammatory phenotype. Literature data, although not exhaustive, indicate as a whole that EVOO polyphenols may significantly help to modulate the aging process, so tightly connected to oxidative stress and chronic inflammation.
Collapse
|
39
|
Muscadine grapes (Vitis rotundifolia) and dealcoholized muscadine wine alleviated symptoms of colitis and protected against dysbiosis in mice exposed to dextran sulfate sodium. J Funct Foods 2020. [DOI: 10.1016/j.jff.2019.103746] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
|
40
|
Idebenone Protects against Acute Murine Colitis via Antioxidant and Anti-Inflammatory Mechanisms. Int J Mol Sci 2020; 21:ijms21020484. [PMID: 31940911 PMCID: PMC7013829 DOI: 10.3390/ijms21020484] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2019] [Revised: 01/09/2020] [Accepted: 01/09/2020] [Indexed: 12/24/2022] Open
Abstract
Oxidative stress is a key player of the inflammatory cascade responsible for the initiation of ulcerative colitis (UC). Although the short chain quinone idebenone is considered a potent antioxidant and a mitochondrial electron donor, emerging evidence suggests that idebenone also displays anti-inflammatory activity. This study evaluated the impact of idebenone in the widely used dextran sodium sulphate (DSS)-induced mouse model of acute colitis. Acute colitis was induced in C57BL/6J mice via continuous exposure to 2.5% DSS over 7 days. Idebenone was co-administered orally at a dose of 200 mg/kg body weight. Idebenone significantly prevented body weight loss and improved the disease activity index (DAI), colon length, and histopathological score. Consistent with its reported antioxidant function, idebenone significantly reduced the colonic levels of malondialdehyde (MDA) and nitric oxide (NO), and increased the expression of the redox factor NAD(P)H (nicotinamide adenine dinucleotide phosphate) dehydrogenase quinone-1 (NQO-1) in DSS-exposed mice. Immunohistochemistry revealed a significantly increased expression of tight junction proteins, which protect and maintain paracellular intestinal permeability. In support of an anti-inflammatory activity, idebenone significantly attenuated the elevated levels of pro-inflammatory cytokines in colon tissue. These results suggest that idebenone could represent a promising therapeutic strategy to interfere with disease pathology in UC by simultaneously inducing antioxidative and anti-inflammatory pathways.
Collapse
|
41
|
The effects of extra virgin olive oil and canola oil on inflammatory markers and gastrointestinal symptoms in patients with ulcerative colitis. Eur J Clin Nutr 2020; 74:891-899. [PMID: 31901082 DOI: 10.1038/s41430-019-0549-z] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2019] [Revised: 12/07/2019] [Accepted: 12/17/2019] [Indexed: 12/11/2022]
Abstract
BACKGROUND/OBJECTIVES Ulcerative colitis (UC) is an immune-mediated disease that causes inflammation in the gastrointestinal tract. Diet has an important role in the treatment of UC. This study aimed to compare the effects of extra virgin olive oil (EVOO), as a functional food, with canola oil in the treatment of UC. SUBJECTS/METHODS Forty patients were participating in this crossover clinical trial. Thirty two patients completed two intervention rounds. Blood samples were taken before and after 20 days intervention. Disease activity score and gastrointestinal symptoms were evaluated using the Mayo score and gastrointestinal symptom rating scale (GSRS) respectively. RESULTS Erythrocyte sedimentation rate (p = 0.03) and high-sensitivity C-reactive protein (p < 0.001) were decreased significantly after EVOO consumption. Bloating, constipation, fecal urgency, incomplete defecation, and final GSRS were reduced significantly after EVOO consumption (p < 0.05). CONCLUSIONS Intake of EVOO decreased the inflammatory markers and improved gastrointestinal symptoms in UC patients. It seems this functional food can be beneficial in the treatment of UC as a complementary medicine.
Collapse
|
42
|
Tanideh N, Sadeghi F, Amanat S, Firoozi D, Noorafshan A, Iraji A, Koohi-Hosseinabadi O. Protection by pure and genistein fortified extra virgin olive oil, canola oil, and rice bran oil against acetic acid-induced ulcerative colitis in rats. Food Funct 2020; 11:860-870. [DOI: 10.1039/c9fo01951k] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Conjugation of genistein and dietary oils improves the anti-inflammatory and antioxidant effects of genistein on colitis in rats.
Collapse
Affiliation(s)
- Nader Tanideh
- Colorectal Research Center and Department of Pharmacology
- School of Medicine
- Shiraz University of Medical Sciences
- Shiraz
- Iran
| | - Fatemeh Sadeghi
- School of Nutrition and Food Sciences
- Shiraz University of Medical Sciences
- Shiraz
- Iran
| | - Sasan Amanat
- Student Research Committee
- Larestan University of Medical Sciences
- Larestan
- Iran
| | - Donya Firoozi
- School of Nutrition and Food Sciences
- Shiraz University of Medical Sciences
- Shiraz
- Iran
| | - Ali Noorafshan
- Histomorphometry and Stereology Research Centre
- Shiraz University of Medical Sciences
- Shiraz
- Iran
| | - Aida Iraji
- Central Research Laboratory
- Shiraz University of Medical Sciences
- Shiraz
- Iran
| | | |
Collapse
|
43
|
Lin Z, Wu H, Fu Y, Dai S. Application of Herbaceous Medications for Inflammatory Bowel Disease as a Complementary and Alternative Therapy. Inflamm Bowel Dis 2019; 25:1886-1895. [PMID: 31504527 DOI: 10.1093/ibd/izz190] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/24/2019] [Indexed: 12/14/2022]
Abstract
BACKGROUND Conventional medicine for the treatment of IBD is prevailingly composed of sulfadiazine, 5-aminosalicylic acid, glucocorticoid, and immunosuppressants, which have the merits of alleviating intestine inflammation, but long-term use of these drugs may cause toxic side effects; additionally, these drugs may be expensive. In the pursuit of novel and more economic therapies, patients may increasingly look at complementary and alternative medicine (CAM). Recently, CAM is increasingly favored by the general public on account of its safety, low toxicity, and effectiveness. As a branch of CAM, herbal plants and their extracts have a significant effect on the treatment of IBD. Treatment of IBD with herbaceous plants has been reported, but specific mechanisms and effects have not yet been elaborated. METHODS English abstracts were identified in PubMed and Science Direct by multiple search terms, such as "herbal," "CAM," "IBD," "ulcerative colitis," "abdominal pain," and so on. Full-length articles were selected for review. RESULTS Herbaceous plants and their extracts have been shown to be effective against IBD in many studies, and herbaceous plants may be effective in treating symptoms such as abdominal pain, diarrhea, mucus, and bloody stools. CONCLUSIONS Herbal medications could be used as a complementary and alternative treatment for IBD, but they require more rigorous scientific testing.
Collapse
Affiliation(s)
- Zili Lin
- Second School of Clinical Medicine, Southern Medical University, Guangzhou, Guangdong, China
| | - Huiyi Wu
- Second School of Clinical Medicine, Southern Medical University, Guangzhou, Guangdong, China
| | - Yiming Fu
- First School of Clinical Medicine, Southern Medical University, Guangzhou, Guangdong, China
| | - Shixue Dai
- Department of Gastroenterology, South China University of Technology, Guangzhou, Guangdong, China.,Guangdong Geriatrics Institute, Guangdong Provincial People's Hospital and Guangdong Academy of Medical Sciences, South China University of Technology, Guangzhou, Guangdong, China
| |
Collapse
|
44
|
Gaforio JJ, Visioli F, Alarcón-de-la-Lastra C, Castañer O, Delgado-Rodríguez M, Fitó M, Hernández AF, Huertas JR, Martínez-González MA, Menendez JA, Osada JDL, Papadaki A, Parrón T, Pereira JE, Rosillo MA, Sánchez-Quesada C, Schwingshackl L, Toledo E, Tsatsakis AM. Virgin Olive Oil and Health: Summary of the III International Conference on Virgin Olive Oil and Health Consensus Report, JAEN (Spain) 2018. Nutrients 2019; 11:E2039. [PMID: 31480506 PMCID: PMC6770785 DOI: 10.3390/nu11092039] [Citation(s) in RCA: 107] [Impact Index Per Article: 17.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2019] [Revised: 08/21/2019] [Accepted: 08/28/2019] [Indexed: 12/21/2022] Open
Abstract
The Mediterranean diet is considered as the foremost dietary regimen and its adoption is associated with the prevention of degenerative diseases and an extended longevity. The preeminent features of the Mediterranean diet have been agreed upon and the consumption of olive oil stands out as the most peculiar one. Indeed, the use of olive oil as the nearly exclusive dietary fat is what mostly characterizes the Mediterranean area. Plenty of epidemiological studies have correlated that the consumption of olive oil was associated with better overall health. Indeed, extra virgin olive oil contains (poly)phenolic compounds that are being actively investigated for their purported biological and pharma-nutritional properties. On 18 and 19 May 2018, several experts convened in Jaen (Spain) to discuss the most recent research on the benefits of olive oil and its components. We reported a summary of that meeting (reviewing several topics related to olive oil, not limited to health) and concluded that substantial evidence is accruing to support the widespread opinion that extra virgin olive oil should, indeed, be the fat of choice when it comes to human health and sustainable agronomy.
Collapse
Affiliation(s)
- José J Gaforio
- Center for Advanced Studies in Olive Grove and Olive Oils, University of Jaen, 23071 Jaén, Spain.
- Department of Health Sciences, Faculty of Experimental Sciences, University of Jaén, 23071 Jaén, Spain.
- Agri-Food Campus of International Excellence (ceiA3), 14071 Córdoba, Spain.
- CIBER Epidemiología y Salud Pública (CIBER-ESP), Instituto de Salud Carlos III, 28029 Madrid, Spain.
| | - Francesco Visioli
- Department of Molecular Medicine, University of Padova, 35121 Padova, Italy
- Laboratory of Functional Foods, Instituto Madrileño de Estudios Avanzados (IMDEA)-Alimentación, CEI UAM + CSIC, 28049 Madrid, Spain
| | | | - Olga Castañer
- Cardiovascular Risk and Nutrition Research Group (CARIN), Hospital del Mar Medical Research Institute (IMIM), 08003 Barcelona, Spain
- CIBER Obesity and Nutrition (CIBER-OBN), Instituto de Salud Carlos III, 28029 Madrid, Spain
| | - Miguel Delgado-Rodríguez
- Center for Advanced Studies in Olive Grove and Olive Oils, University of Jaen, 23071 Jaén, Spain
- Department of Health Sciences, Faculty of Experimental Sciences, University of Jaén, 23071 Jaén, Spain
- CIBER Epidemiología y Salud Pública (CIBER-ESP), Instituto de Salud Carlos III, 28029 Madrid, Spain
| | - Monserrat Fitó
- Cardiovascular Risk and Nutrition Research Group (CARIN), Hospital del Mar Medical Research Institute (IMIM), 08003 Barcelona, Spain
- CIBER Obesity and Nutrition (CIBER-OBN), Instituto de Salud Carlos III, 28029 Madrid, Spain
| | - Antonio F Hernández
- Department of Legal Medicine and Toxicology, University of Granada School of Medicine, 18016 Granada, Spain
| | - Jesús R Huertas
- Institute of Nutrition and Food Technology, Biomedical Research Centre, Department of Physiology, Faculty of Sport Sciences, University of Granada, 18071 Granada, Spain
| | - Miguel A Martínez-González
- CIBER Obesity and Nutrition (CIBER-OBN), Instituto de Salud Carlos III, 28029 Madrid, Spain
- Department of Preventive Medicine and Public Health-IdiSNA, University of Navarra, 31008 Pamplona, Spain
- Department of Nutrition, Harvard TH Chan School of Public Health, Boston, MA 02115, USA
| | - Javier A Menendez
- ProCURE (Program Against Cancer Therapeutic Resistance), Metabolism and Cancer Group, Catalan Institute of Oncology, 17007 Girona, Spain
- Girona Biomedical Research Institute (IDIBGI), 17190 Girona, Spain
| | - Jesús de la Osada
- CIBER Obesity and Nutrition (CIBER-OBN), Instituto de Salud Carlos III, 28029 Madrid, Spain
- Department of Biochemistry, Molecular and Cellular Biology, Veterinary Faculty, University of Zaragoza, 50013 Zaragoza, Spain
| | - Angeliki Papadaki
- Centre for Exercise, Nutrition and Health Sciences, School for Policy Studies, University of Bristol, Bristol BS8 1TZ, UK
| | - Tesifón Parrón
- Departamento de Enfermería, Fisioterapia y Medicina, Universidad de Almería, 04120 Almería, Spain
| | - Jorge E Pereira
- Facultad de Agronomía, Universidad de la República, 12900 Montevideo, Uruguay
| | - María A Rosillo
- Department of Pharmacology, Faculty of Pharmacy, University of Seville, 41012 Sevilla, Spain
| | - Cristina Sánchez-Quesada
- Center for Advanced Studies in Olive Grove and Olive Oils, University of Jaen, 23071 Jaén, Spain
- Department of Health Sciences, Faculty of Experimental Sciences, University of Jaén, 23071 Jaén, Spain
| | - Lukas Schwingshackl
- Institute for Evidence in Medicine, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, 79110 Freiburg, Germany
| | - Estefanía Toledo
- CIBER Obesity and Nutrition (CIBER-OBN), Instituto de Salud Carlos III, 28029 Madrid, Spain
- Department of Preventive Medicine and Public Health-IdiSNA, University of Navarra, 31008 Pamplona, Spain
| | - Aristidis M Tsatsakis
- Laboratory of Toxicology, Medical School, University of Crete, 71003 Heraklion, Crete, Greece
| |
Collapse
|
45
|
Martin ME, Millan-Linares MC, Naranjo MC, Toscano R, Abia R, Muriana FJG, Bermudez B, Montserrat-de la Paz S. Minor compounds from virgin olive oil attenuate LPS-induced inflammation via visfatin-related gene modulation on primary human monocytes. J Food Biochem 2019; 43:e12941. [PMID: 31368572 DOI: 10.1111/jfbc.12941] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2019] [Revised: 05/07/2019] [Accepted: 05/13/2019] [Indexed: 01/27/2023]
Abstract
We have analyzed the effects of minor compounds found in the unsaponifiable fraction (UF) and in the phenolic fraction (PF) of virgin olive oil (VOO) on LPS-induced inflammatory response via visfatin modulation in human monocytes. For this purpose, monocytes were incubated with UF and PF at different concentrations and the pro-inflammatory stimulus LPS for 24 hr; squalene (SQ) and hydroxytyrosol (HTyr), the main components in UF and PF, respectively, were also used. The relative expression of both pro-inflammatory and anti-inflammatory genes, as well as other genes related to the NAD+-biosynthetic pathway was evaluated by RT-qPCR; and the secretion of some of these markers was assessed by ELISA procedures. We found that UF, SQ, PF, and HTyr prevented from LPS-induced dysfunctional gene expression and secretion via visfatin-related gene modulation in human monocytes. These findings unveil a potential beneficial role for minor compounds of VOO in the prevention of inflammatory-disorders. PRACTICAL APPLICATION: In this project, potential health benefits of VOO micronutrients (unsaponifiable and phenolic compounds) were confirmed through anti-inflammatory assays. Our results reveal new interesting researching goals concerning nutrition by considering the role of bioactive VOO compounds in the prevention and progress of diseases related to inflammation.
Collapse
Affiliation(s)
- Maria E Martin
- Faculty of Biology, Department of Cell Biology, Universidad de Sevilla, Seville, Spain
| | - Maria C Millan-Linares
- Cell Biology Unit, Instituto de la Grasa, CSIC, Seville, Spain.,Instituto de la Grasa, CSIC, Seville, Spain
| | | | - Rocío Toscano
- Instituto de la Grasa, CSIC, Seville, Spain.,Department of Medical Biochemistry, Molecular Biology and Immunology, School of Medicine, Universidad de Sevilla, Seville, Spain
| | - Rocio Abia
- Instituto de la Grasa, CSIC, Seville, Spain
| | | | - Beatriz Bermudez
- Faculty of Biology, Department of Cell Biology, Universidad de Sevilla, Seville, Spain
| | - Sergio Montserrat-de la Paz
- Department of Medical Biochemistry, Molecular Biology and Immunology, School of Medicine, Universidad de Sevilla, Seville, Spain
| |
Collapse
|
46
|
Peluso I, Yarla NS, Ambra R, Pastore G, Perry G. MAPK signalling pathway in cancers: Olive products as cancer preventive and therapeutic agents. Semin Cancer Biol 2019; 56:185-195. [DOI: 10.1016/j.semcancer.2017.09.002] [Citation(s) in RCA: 94] [Impact Index Per Article: 15.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2017] [Revised: 09/07/2017] [Accepted: 09/09/2017] [Indexed: 12/11/2022]
|
47
|
Zhang P, Jiao H, Wang C, Lin Y, You S. Chlorogenic Acid Ameliorates Colitis and Alters Colonic Microbiota in a Mouse Model of Dextran Sulfate Sodium-Induced Colitis. Front Physiol 2019; 10:325. [PMID: 30971953 PMCID: PMC6446884 DOI: 10.3389/fphys.2019.00325] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2019] [Accepted: 03/11/2019] [Indexed: 12/16/2022] Open
Abstract
This study evaluated the mitigating effects of dietary chlorogenic acid (CGA) on colon damage and the bacterial profile in a mouse model of dextran sulfate sodium (DSS)-induced colitis. C57BL/6J mice were randomly assigned to receive one of the following treatments: (i) basal diet; (ii) basal diet with 2% CGA; (iii) basal diet with 2.5% DSS or (iv) basal diet with 2% CGA and 2.5% DSS. Following a 2-week pre-treatment period, mice in the DSS and CGA-DSS groups received 2.5% DSS in drinking water for 5 days, while the other two groups received sterile water. Compared to DSS alone, CGA was found to reduce the disease activity index, myeloperoxidase activity and tumor necrosis factor-α levels in colon tissues (P < 0.05). CGA also ameliorated DSS-induced inflammatory responses, reduced colon shortening and decreased the histological scores (P < 0.05). In an evaluation of the relative abundances of bacteria in the fecal microbiota, we found that CGA reversed the decrease in diversity caused by DSS and improved the relative abundance of organisms in the genus Lactobacillus (P < 0.05). These results indicate that CGA maintains intestinal health and reduces DSS-induced colon injury by decreasing the production of pro-inflammatory cytokines and restoring intestinal microbial diversity.
Collapse
Affiliation(s)
- Peng Zhang
- Department of General Surgery, Tianjin Medical University General Hospital, Tianjin, China
| | - Huanli Jiao
- Department of General Surgery, Tianjin Medical University General Hospital, Tianjin, China
| | - Chunli Wang
- Department of General Surgery, Tianjin Medical University General Hospital, Tianjin, China
| | - Yuanbang Lin
- Department of General Surgery, Tianjin Medical University General Hospital, Tianjin, China
| | - Shengyi You
- Department of General Surgery, Tianjin Medical University General Hospital, Tianjin, China
| |
Collapse
|
48
|
Larussa T, Imeneo M, Luzza F. Olive Tree Biophenols in Inflammatory Bowel Disease: When Bitter is Better. Int J Mol Sci 2019; 20:ijms20061390. [PMID: 30897691 PMCID: PMC6471980 DOI: 10.3390/ijms20061390] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2019] [Revised: 03/15/2019] [Accepted: 03/15/2019] [Indexed: 12/19/2022] Open
Abstract
The current therapeutic scenario for inflammatory bowel diseases (IBD) involves aminosalicylates, corticosteroids, and immunomodulators, but concerns regarding their safety profiles and high costs heavily impact their widespread use. In recent years, the beneficial effects thatbiophenols—from fruit and vegetables—have on human health have been investigated. The antioxidant and anti-inflammatory properties of phenolic fraction, from olive leaves and fruits, have been suggested, and a potential application in gut inflammation has been supported by in vitro and IBD-animal models studies. In the present review, we first introduced the potential therapeutic role of olive tree biophenolsin chronic inflammatory disease. Then, we aimed to describe their most interesting application for gut inflammation, as the results of basic science studies and animal experimental models. Finally, the potential role of olive tree biophenols in the setting of human IBD is discussed.
Collapse
Affiliation(s)
- Tiziana Larussa
- Department of Health Sciences, University of Catanzaro "Magna Graecia", Viale Europa, 88100 Catanzaro, Italy.
| | - Maria Imeneo
- Department of Health Sciences, University of Catanzaro "Magna Graecia", Viale Europa, 88100 Catanzaro, Italy.
| | - Francesco Luzza
- Department of Health Sciences, University of Catanzaro "Magna Graecia", Viale Europa, 88100 Catanzaro, Italy.
| |
Collapse
|
49
|
Safaeian R, Howarth GS, Lawrance IC, Trinder D, Mashtoub S. Emu Oil reduces disease severity in a mouse model of chronic ulcerative colitis. Scand J Gastroenterol 2019; 54:273-280. [PMID: 30907169 DOI: 10.1080/00365521.2019.1581253] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Objective: Ulcerative colitis (UC) is characterized by mucosal inflammation and ulceration of the large intestine. Emu Oil (EO) has been reported to protect the intestine against mucositis, NSAID-enteropathy, UC-associated colorectal cancer and acute UC. We aimed to determine whether EO could reduce the severity chronic UC in mice. Methods: Female C57BL/6 mice (n = 10/group) were orally administered (gavage) water (Groups 1-2) or EO (Groups 3: low dose-80 µl and 4: high dose-160 µl), thrice weekly. Group 1 mice consumed plain drinking water throughout the trial. Groups 2-4 mice underwent two cycles [each consisting of seven days dextran sulfate sodium (DSS; 2% w/v) and 14 days water], followed by a third DSS week. All mice were euthanized two days later (day 51). Bodyweight, disease activity index (DAI), burrowing activity, myeloperoxidase activity, crypt depth and histologically assessed damage severity were assessed. p < .05 was considered significant. Results: DSS decreased bodyweight and increased DAI compared to normal controls (p < .05), which was partially attenuated by both EO doses (p < .05). Burrowing activity was impaired in DSS-controls compared to normal controls (days 27 and 40); an effect prevented by both EO doses (p < .05). DSS increased colonic myeloperoxidase activity and crypt depth compared to controls (p < .05), with no significant EO effect. Moreover, DSS increased colonic damage severity compared to normal controls (p < .001). Importantly, both EO doses decreased distal colonic damage severity compared to DSS-controls (p < .001). Conclusions: Emu Oil attenuated clinically- and histologically-assessed disease severity in a mouse model of chronic UC. Emu Oil demonstrates promise as an adjunct to conventional treatment options for UC management.
Collapse
Affiliation(s)
- Romina Safaeian
- a Discipline of Physiology, Adelaide Medical School , The University of Adelaide , Adelaide , South Australia.,b Gastroenterology Department , Women's and Children's Hospital , North Adelaide , South Australia
| | - Gordon S Howarth
- a Discipline of Physiology, Adelaide Medical School , The University of Adelaide , Adelaide , South Australia.,b Gastroenterology Department , Women's and Children's Hospital , North Adelaide , South Australia.,c School of Animal and Veterinary Sciences , The University of Adelaide , Roseworthy , South Australia
| | - Ian C Lawrance
- d School of Medicine , The University of Western Australia , Fiona Stanley Hospital, Murdoch , Western Australia.,e Centre for Inflammatory Bowel Diseases , Saint John of God Hospital , Subiaco , Western Australia
| | - Debbie Trinder
- d School of Medicine , The University of Western Australia , Fiona Stanley Hospital, Murdoch , Western Australia.,f Harry Perkins Institute of Medical Research , Murdoch , Western Australia
| | - Suzanne Mashtoub
- a Discipline of Physiology, Adelaide Medical School , The University of Adelaide , Adelaide , South Australia.,b Gastroenterology Department , Women's and Children's Hospital , North Adelaide , South Australia.,d School of Medicine , The University of Western Australia , Fiona Stanley Hospital, Murdoch , Western Australia
| |
Collapse
|
50
|
Bigagli E, Toti S, Lodovici M, Giovannelli L, Cinci L, D'Ambrosio M, Luceri C. Dietary Extra-Virgin Olive Oil Polyphenols Do Not Attenuate Colon Inflammation in Transgenic HLAB-27 Rats but Exert Hypocholesterolemic Effects through the Modulation of HMGCR and PPAR-α Gene Expression in the Liver. Lifestyle Genom 2019; 11:99-108. [PMID: 30630166 DOI: 10.1159/000495516] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2018] [Accepted: 11/15/2018] [Indexed: 11/19/2022] Open
Abstract
BACKGROUND Human studies have demonstrated that olive oil phenolic compounds reduce inflammatory markers associated with chronic diseases. OBJECTIVES To explore the anti-inflammatory effects of extra-virgin olive oil polyphenols in an experimental model of inflammatory bowel disease (IBD). METHODS HLA-B27 transgenic rats were fed an AIN-76 diet containing 10% corn oil (CO) or extra-virgin olive oil with high (EVOO) or low phenolic content (ROO) for 3 months. Wild-type rats (WT) were fed the CO diet. RESULTS CO-fed HLA-B27 animals developed intestinal inflammation characterized by diarrhea, increased myeloperoxidase activity, and mucosal injury. None of these parameters were influenced by EVOO. Gene expression profiling indicated that proinflammatory pathways were upregulated in the colon mucosa of CO-fed HLA-B27 rats compared to WT, and this was further confirmed by RT-PCR for the iNOS, TNFα, and IL1β genes. EVOO significantly reduced TNFα gene expression in the colon mucosa and decreased total cholesterol blood levels compared to CO HLA-B27 rats (89.43 ± 3.66 vs. 111.5 ± 8.10 mg/dL, p < 0.05). This latter effect with EVOO was associated with reduced HMGCR and increased PPAR-α hepatic gene expression, compared to ROO. CONCLUSION These data indicate that olive oil polyphenols do not control colon inflammation in HLA-B27 transgenic rats but exert a positive effect on blood lipids by reducing total cholesterol levels. This preliminary result suggests the need to explore the efficacy of EVOO rich in polyphenols as a complementary strategy for managing hypercholesterolemia and to potentially limit statin-associated myotoxicity.
Collapse
Affiliation(s)
- Elisabetta Bigagli
- Section of Pharmacology and Toxicology, Department of Neuroscience, Psychology, Drug Research, and Child Health - NEUROFARBA, University of Florence, Florence, Italy
| | | | - Maura Lodovici
- Section of Pharmacology and Toxicology, Department of Neuroscience, Psychology, Drug Research, and Child Health - NEUROFARBA, University of Florence, Florence, Italy
| | - Lisa Giovannelli
- Section of Pharmacology and Toxicology, Department of Neuroscience, Psychology, Drug Research, and Child Health - NEUROFARBA, University of Florence, Florence, Italy
| | - Lorenzo Cinci
- Section of Pharmacology and Toxicology, Department of Neuroscience, Psychology, Drug Research, and Child Health - NEUROFARBA, University of Florence, Florence, Italy
| | - Mario D'Ambrosio
- Section of Pharmacology and Toxicology, Department of Neuroscience, Psychology, Drug Research, and Child Health - NEUROFARBA, University of Florence, Florence, Italy
| | - Cristina Luceri
- Section of Pharmacology and Toxicology, Department of Neuroscience, Psychology, Drug Research, and Child Health - NEUROFARBA, University of Florence, Florence, Italy,
| |
Collapse
|