1
|
Sánchez-Ramírez E, Ung TPL, Stringari C, Aguilar-Arnal L. Emerging Functional Connections Between Metabolism and Epigenetic Remodeling in Neural Differentiation. Mol Neurobiol 2024; 61:6688-6707. [PMID: 38340204 PMCID: PMC11339152 DOI: 10.1007/s12035-024-04006-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Accepted: 01/30/2024] [Indexed: 02/12/2024]
Abstract
Stem cells possess extraordinary capacities for self-renewal and differentiation, making them highly valuable in regenerative medicine. Among these, neural stem cells (NSCs) play a fundamental role in neural development and repair processes. NSC characteristics and fate are intricately regulated by the microenvironment and intracellular signaling. Interestingly, metabolism plays a pivotal role in orchestrating the epigenome dynamics during neural differentiation, facilitating the transition from undifferentiated NSC to specialized neuronal and glial cell types. This intricate interplay between metabolism and the epigenome is essential for precisely regulating gene expression patterns and ensuring proper neural development. This review highlights the mechanisms behind metabolic regulation of NSC fate and their connections with epigenetic regulation to shape transcriptional programs of stemness and neural differentiation. A comprehensive understanding of these molecular gears appears fundamental for translational applications in regenerative medicine and personalized therapies for neurological conditions.
Collapse
Affiliation(s)
- Edgar Sánchez-Ramírez
- Departamento de Biología Celular y Fisiología, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Mexico City, Mexico
| | - Thi Phuong Lien Ung
- Laboratory for Optics and Biosciences, Ecole Polytechnique, CNRS, INSERM, Institut Polytechnique de Paris, Palaiseau, France
| | - Chiara Stringari
- Laboratory for Optics and Biosciences, Ecole Polytechnique, CNRS, INSERM, Institut Polytechnique de Paris, Palaiseau, France
| | - Lorena Aguilar-Arnal
- Departamento de Biología Celular y Fisiología, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Mexico City, Mexico.
| |
Collapse
|
2
|
Nasiri M, Esmaeili J, Tebyani A, Basati H. A review about the role of additives in nerve tissue engineering: growth factors, vitamins, and drugs. Growth Factors 2023; 41:101-113. [PMID: 37343121 DOI: 10.1080/08977194.2023.2226938] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Accepted: 05/08/2023] [Indexed: 06/23/2023]
Abstract
Notably the integration of additives such as growth factors, vitamins, and drugs with scaffolds promoted nerve tissue engineering. This study tried to provide a concise review of all these additives that facilitates nerve regeneration. An attempt was first made to provide information on the main principle of nerve tissue engineering, and then to shed light on the effectiveness of these additives on nerve tissue engineering. Our research has shown that growth factors accelerate cell proliferation and survival, while vitamins play an effective role in cell signalling, differentiation, and tissue growth. They can also act as hormones, antioxidants, and mediators. Drugs also have an excellent and necessary effect on this process by reducing inflammation and immune responses. This review shows that growth factors were more effective than vitamins and drugs in nerve tissue engineering. Nevertheless, vitamins were the most commonly used additive in the production of nerve tissue.
Collapse
Affiliation(s)
- Mehrsa Nasiri
- Tissue Engineering Department, TISSUEHUB Co, Tehran, Iran
- Department of Biomedical Engineering, Islamic Azad University Science and Research Branch, Tehran, Iran
| | - Javad Esmaeili
- Tissue Engineering Department, TISSUEHUB Co, Tehran, Iran
- Department of Chemical Engineering, Faculty of Engineering, Arak University, Arak, Iran
| | - Amir Tebyani
- Tissue Engineering Department, TISSUEHUB Co, Tehran, Iran
- Department of Chemical Engineering, Faculty of Engineering, Tehran University, Tehran, Iran
| | - Hojat Basati
- Tissue Engineering Department, TISSUEHUB Co, Tehran, Iran
- Department of Chemical Engineering, Faculty of Engineering, Tehran University, Tehran, Iran
| |
Collapse
|
3
|
Huang M, Wu Y, Cheng L, Fu L, Yan H, Ru H, Mo X, Yan L, Su Z. Multi-omics analyses of glucose metabolic reprogramming in colorectal cancer. Front Immunol 2023; 14:1179699. [PMID: 37475862 PMCID: PMC10354426 DOI: 10.3389/fimmu.2023.1179699] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2023] [Accepted: 06/12/2023] [Indexed: 07/22/2023] Open
Abstract
Background Glucose metabolic reprogramming (GMR) is a cardinal feature of carcinogenesis and metastasis. However, the underlying mechanisms have not been fully elucidated. The aim of this study was to profile the metabolic signature of primary tumor and circulating tumor cells from metastatic colorectal cancer (mCRC) patients using integrated omics analysis. Methods PET-CT imaging, serum metabolomics, genomics and proteomics data of 325 high 18F-fluorinated deoxyglucose (FDGhigh) mCRC patients were analyzed. The para-tumor, primary tumor and liver metastatic tissues of mCRC patients were used for proteomics analysis. Results The glucose uptake in tumor tissues as per the PET/CT images was correlated to serum levels of glutamic-pyruvic transaminase (ALT), total bilirubin (TBIL), creatinine (CRE). Proteomics analysis indicated that several differentially expressed proteins were enriched in both GMR and epithelial-mesenchymal transition (EMT)-related pathways. Using a tissue-optimized proteomic workflow, we identified novel proteomic markers (e.g. CCND1, EPCAM, RPS6), a novel PCK1-CDK6-INSR protein axis, and a potential role for FOLR (FR) in GMR/EMT of CRC cells. Finally, CEA/blood glucose (CSR) was defined as a new index, which can be used to jointly diagnose liver metastasis of colorectal cancer. Conclusions GMR in CRC cells is closely associated with the EMT pathway, and this network is a promising source of potential therapeutic targets.
Collapse
Affiliation(s)
- Maosen Huang
- Guangxi Clinical Research Center for Colorectal Cancer, Guangxi Medical University Cancer Hospital, Nanning, Guangxi Zhuang Autonomous Region, China
| | - Yancen Wu
- Guangxi Clinical Research Center for Colorectal Cancer, Guangxi Medical University Cancer Hospital, Nanning, Guangxi Zhuang Autonomous Region, China
| | - Linyao Cheng
- Guangxi Clinical Research Center for Colorectal Cancer, Guangxi Medical University Cancer Hospital, Nanning, Guangxi Zhuang Autonomous Region, China
| | - Lihua Fu
- Guangxi Clinical Research Center for Colorectal Cancer, Guangxi Medical University Cancer Hospital, Nanning, Guangxi Zhuang Autonomous Region, China
| | - Haochao Yan
- Guangxi Clinical Research Center for Colorectal Cancer, Guangxi Medical University Cancer Hospital, Nanning, Guangxi Zhuang Autonomous Region, China
| | - Haiming Ru
- Guangxi Clinical Research Center for Colorectal Cancer, Guangxi Medical University Cancer Hospital, Nanning, Guangxi Zhuang Autonomous Region, China
- Department of Gastrointestinal Surgery, Guangxi Medical University Cancer Hospital, Nanning, Guangxi Zhuang Autonomous Region, China
| | - Xianwei Mo
- Guangxi Clinical Research Center for Colorectal Cancer, Guangxi Medical University Cancer Hospital, Nanning, Guangxi Zhuang Autonomous Region, China
- Department of Gastrointestinal Surgery, Guangxi Medical University Cancer Hospital, Nanning, Guangxi Zhuang Autonomous Region, China
| | - Linhai Yan
- Guangxi Clinical Research Center for Colorectal Cancer, Guangxi Medical University Cancer Hospital, Nanning, Guangxi Zhuang Autonomous Region, China
- Department of Gastrointestinal Surgery, Guangxi Medical University Cancer Hospital, Nanning, Guangxi Zhuang Autonomous Region, China
| | - Zijie Su
- Guangxi Clinical Research Center for Colorectal Cancer, Guangxi Medical University Cancer Hospital, Nanning, Guangxi Zhuang Autonomous Region, China
- Department of Research, Guangxi Medical University Cancer Hospital, Nanning, Guangxi Zhuang Autonomous Region, China
| |
Collapse
|
4
|
Xu X, Johnson Z, Wang A, Padget RL, Smyth JW, Xie H. Folate regulates RNA m 5C modification and translation in neural stem cells. BMC Biol 2022; 20:261. [PMID: 36424632 PMCID: PMC9686110 DOI: 10.1186/s12915-022-01467-0] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2022] [Accepted: 11/16/2022] [Indexed: 11/25/2022] Open
Abstract
BACKGROUND Folate is an essential B-group vitamin and a key methyl donor with important biological functions including DNA methylation regulation. Normal neurodevelopment and physiology are sensitive to the cellular folate levels. Either deficiency or excess of folate may lead to neurological disorders. Recently, folate has been linked to tRNA cytosine-5 methylation (m5C) and translation in mammalian mitochondria. However, the influence of folate intake on neuronal mRNA m5C modification and translation remains largely unknown. Here, we provide transcriptome-wide landscapes of m5C modification in poly(A)-enriched RNAs together with mRNA transcription and translation profiles for mouse neural stem cells (NSCs) cultured in three different concentrations of folate. RESULTS NSCs cultured in three different concentrations of folate showed distinct mRNA methylation profiles. Despite uncovering only a few differentially expressed genes, hundreds of differentially translated genes were identified in NSCs with folate deficiency or supplementation. The differentially translated genes induced by low folate are associated with cytoplasmic translation and mitochondrial function, while the differentially translated genes induced by high folate are associated with increased neural stem cell proliferation. Interestingly, compared to total mRNAs, polysome mRNAs contained high levels of m5C. Furthermore, an integrative analysis indicated a transcript-specific relationship between RNA m5C methylation and mRNA translation efficiency. CONCLUSIONS Altogether, our study reports a transcriptome-wide influence of folate on mRNA m5C methylation and translation in NSCs and reveals a potential link between mRNA m5C methylation and mRNA translation.
Collapse
Affiliation(s)
- Xiguang Xu
- Epigenomics and Computational Biology Lab, Fralin Life Sciences Institute, Virginia Tech, Blacksburg, VA, 24061, USA
- Department of Biological Sciences, College of Science, Virginia Tech, Blacksburg, VA, 24061, USA
- Department of Biomedical Sciences and Pathobiology, Virginia-Maryland College of Veterinary Medicine, Virginia Tech, Blacksburg, VA, 24061, USA
| | - Zachary Johnson
- Epigenomics and Computational Biology Lab, Fralin Life Sciences Institute, Virginia Tech, Blacksburg, VA, 24061, USA
- Genetics, Bioinformatics and Computational Biology Program, Virginia Tech, Blacksburg, VA, 24061, USA
| | - Amanda Wang
- Epigenomics and Computational Biology Lab, Fralin Life Sciences Institute, Virginia Tech, Blacksburg, VA, 24061, USA
| | - Rachel L Padget
- Graduate Program in Translational Biology, Medicine, and Health, Virginia Tech, Blacksburg, VA, 24061, USA
- Fralin Biomedical Research Institute at VTC, Virginia Tech, Roanoke, VA, 24016, USA
| | - James W Smyth
- Department of Biological Sciences, College of Science, Virginia Tech, Blacksburg, VA, 24061, USA
- Graduate Program in Translational Biology, Medicine, and Health, Virginia Tech, Blacksburg, VA, 24061, USA
- Fralin Biomedical Research Institute at VTC, Virginia Tech, Roanoke, VA, 24016, USA
- Virginia Tech Carilion School of Medicine, Roanoke, VA, 24016, USA
| | - Hehuang Xie
- Epigenomics and Computational Biology Lab, Fralin Life Sciences Institute, Virginia Tech, Blacksburg, VA, 24061, USA.
- Department of Biological Sciences, College of Science, Virginia Tech, Blacksburg, VA, 24061, USA.
- Department of Biomedical Sciences and Pathobiology, Virginia-Maryland College of Veterinary Medicine, Virginia Tech, Blacksburg, VA, 24061, USA.
- Genetics, Bioinformatics and Computational Biology Program, Virginia Tech, Blacksburg, VA, 24061, USA.
- Graduate Program in Translational Biology, Medicine, and Health, Virginia Tech, Blacksburg, VA, 24061, USA.
| |
Collapse
|
5
|
Guan Z, Liang Y, Wang X, Zhu Z, Yang A, Li S, Yu J, Niu B, Wang J. Unraveling the Mechanisms of Clinical Drugs-Induced Neural Tube Defects Based on Network Pharmacology and Molecular Docking Analysis. Neurochem Res 2022; 47:3709-3722. [PMID: 35960485 DOI: 10.1007/s11064-022-03717-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2022] [Revised: 07/23/2022] [Accepted: 07/31/2022] [Indexed: 11/30/2022]
Abstract
Chemotherapeutic agents such as methotrexate (MTX), raltitrexed (RTX), 5-fluorouracil (5-FU), hydroxyurea (HU), and retinoic acid (RA), and valproic acid (VPA), an antiepileptic drug, all can cause malformations in the developing central nervous system (CNS), such as neural tube defects (NTDs). However, the common pathogenic mechanisms remain unclear. This study aimed to explore the mechanisms of NTDs caused by MTX, RTX, 5-FU, HU, RA, and VPA (MRFHRV), based on network pharmacology and molecular biology experiments. The MRFHRV targets were integrated with disease targets, to find the potential molecules related to MRFHRV-induced NTDs. Protein-protein interaction analysis and molecular docking were performed to analyze these common targets. Utilizing the kyoto encyclopedia of genes and genomes (KEGG) signaling pathways, we analyzed and searched the possible causative pathogenic mechanisms by crucial targets and the signaling pathway. Results showed that MRFHRV induced NTDs through several key targets (including TP53, MAPK1, HSP90AA1, ESR1, GRB2, HDAC1, EGFR, PIK3CA, RXRA, and FYN) and multiple signaling pathways such as PI3K/Akt pathway, suggesting that abnormal proliferation and differentiation could be critical pathogenic contributors in NTDs induced by MRFHRV. These results were further validated by CCK8 assay in mouse embryonic stem cells and GFAP staining in embryonic brain tissue. This study indicated that chemotherapeutic and antiepileptic agents induced NTDs might through predicted targets TP53, MAPK1, GRB2, HDAC1, EGFR, PIK3CA, RXRA, and FYN and multiple signaling pathways. More caution was required for the clinical administration for women with childbearing potential and pregnant.
Collapse
Affiliation(s)
- Zhen Guan
- Beijing Municipal Key Laboratory of Child Development and Nutriomics, Translational Medicine Laboratory, Capital Institute of Pediatrics, Beijing, 100020, China
| | - Yingchao Liang
- Beijing Municipal Key Laboratory of Child Development and Nutriomics, Translational Medicine Laboratory, Capital Institute of Pediatrics, Beijing, 100020, China
| | - Xiuwei Wang
- Beijing Municipal Key Laboratory of Child Development and Nutriomics, Translational Medicine Laboratory, Capital Institute of Pediatrics, Beijing, 100020, China
| | - Zhiqiang Zhu
- Beijing Municipal Key Laboratory of Child Development and Nutriomics, Translational Medicine Laboratory, Capital Institute of Pediatrics, Beijing, 100020, China
| | - Aiyun Yang
- Beijing Municipal Key Laboratory of Child Development and Nutriomics, Translational Medicine Laboratory, Capital Institute of Pediatrics, Beijing, 100020, China
| | - Shen Li
- Beijing Municipal Key Laboratory of Child Development and Nutriomics, Translational Medicine Laboratory, Capital Institute of Pediatrics, Beijing, 100020, China
| | - Jialu Yu
- Beijing Municipal Key Laboratory of Child Development and Nutriomics, Translational Medicine Laboratory, Capital Institute of Pediatrics, Beijing, 100020, China
| | - Bo Niu
- Beijing Municipal Key Laboratory of Child Development and Nutriomics, Translational Medicine Laboratory, Capital Institute of Pediatrics, Beijing, 100020, China.
| | - Jianhua Wang
- Beijing Municipal Key Laboratory of Child Development and Nutriomics, Translational Medicine Laboratory, Capital Institute of Pediatrics, Beijing, 100020, China.
| |
Collapse
|
6
|
Huang X, Yang Q, Yan Z, Wang P, Shi H, Li J, Shang X, Gun S. Combined Analysis of RRBS DNA Methylome and Transcriptome Reveal Novel Candidate Genes Related to Porcine Clostridium perfringens Type C-Induced Diarrhea. Front Genet 2022; 13:803477. [PMID: 35401691 PMCID: PMC8990837 DOI: 10.3389/fgene.2022.803477] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2021] [Accepted: 02/24/2022] [Indexed: 11/29/2022] Open
Abstract
Clostridium perfringens type C (Cp) is one of the principal microorganisms responsible for bacterial diarrhea in neonatal and pre-weaning piglets. To better understand the molecular effects of Cp infection, we performed a genome-wide comparison of the changes in DNA methylation and gene expression in Cp infected resistant and susceptible piglets. We characterized the pattern of changes in methylation and found 6485, 5968, and 6472 differentially methylated regions (DMRs) of piglets infected with Cp in IR vs. IC, IS vs. IC, and IS vs. IR groups, respectively. These methylation changes for genes mainly involved in immune and inflammatory responses, cell adhesion, and activation of transcription factors. Gene ontology and KEGG pathway analyses showed that the differentially methylated genes (DMGs) were associated with negative regulation of transcription, apoptotic processes, protein binding, and kinase activity. In addition, they were enriched in immunity-related pathways, such as MAPK signaling pathway, Toll-like receptor signaling pathway, and NF-kappa B signaling pathway. Integrative analysis identified 168, 198, and 7 mRNAs showing inverse correlations between methylation and expression with Cp infection. Altered DNA methylation and expression of various genes suggested their roles and potential functional interactions upon Cp infection, 14 immune-associated mRNAs with differential methylation and transcriptional repression were identified in IS vs. IR, commonly revealing that the differentially expressed genes (DEGs) LBP, TBX21, and LCN2 were likely involved in the piglets against Cp infection. The present results provide further insight into the DNA methylation epigenetic alterations of C. perfringens type C infected piglet ileum tissues, and may advance the identification of biomarkers and drug targets for predicting susceptibility to and controlling C. perfringens type C-induced piglet diarrhea.
Collapse
Affiliation(s)
- Xiaoyu Huang
- College of Animal Science and Technology, Gansu Agricultural University, Lanzhou, China
| | - Qiaoli Yang
- College of Animal Science and Technology, Gansu Agricultural University, Lanzhou, China
| | - Zunqiang Yan
- College of Animal Science and Technology, Gansu Agricultural University, Lanzhou, China
| | - Pengfei Wang
- College of Animal Science and Technology, Gansu Agricultural University, Lanzhou, China
| | - Hairen Shi
- Tibet Academy of Agricultural and Animal Husbandry Science, Lasa, China
| | - Jie Li
- College of Animal Science and Technology, Gansu Agricultural University, Lanzhou, China
| | - Xuefeng Shang
- College of Animal Science and Technology, Gansu Agricultural University, Lanzhou, China
| | - Shuangbao Gun
- College of Animal Science and Technology, Gansu Agricultural University, Lanzhou, China
- Gansu Research Center for Swine Production Engineering and Technology, Lanzhou, China
- *Correspondence: Shuangbao Gun,
| |
Collapse
|
7
|
Zhou S, Zeng H, Huang J, Lei L, Tong X, Li S, Zhou Y, Guo H, Khan M, Luo L, Xiao R, Chen J, Zeng Q. Epigenetic regulation of melanogenesis. Ageing Res Rev 2021; 69:101349. [PMID: 33984527 DOI: 10.1016/j.arr.2021.101349] [Citation(s) in RCA: 58] [Impact Index Per Article: 19.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2020] [Revised: 04/19/2021] [Accepted: 04/26/2021] [Indexed: 02/07/2023]
Abstract
Melanogenesis is a complex process in which melanin is synthesized in melanocytes and transported to keratinocytes, which involves multiple genes and signaling pathways. Epigenetics refers to the potential genetic changes that affect gene expression without involving changes in the original sequence of DNA nucleotides. DNA methylation regulates the expression of key genes such as tyrosinase (TYR), tyrosinase-related protein 1 (TYRP1), dopachrome tautomerase (DCT) and microphthalmia-associated transcription factor (MITF), as well as paracrine factors such as stem cell factor (SCF) and endothelin-1 (ET-1) in melanogenesis. Potential DNA methylation sites are present in the genes of melanogenesis-related signaling pathways such as "Wnt", "PI3K/Akt/CREB" and "MAPK". H3K27 acetylation is abundant in melanogenesis-related genes. Both the upstream activation and downstream regulation of MITF depend on histone acetyltransferase CBP/p300, and pH-induced H3K27 acetylation may be the amplifying mechanism of MITF's effect. HDAC1 and HDAC10 catalyze histone deacetylation of melanogenesis-related gene promoters. Chromatin remodelers SWI/SNF complex and ISWI complex use the energy of ATP hydrolysis to rearrange nucleosomes, while their active subunits BRG1, BRM and BPTF, act as activators and cofactors of MITF. MicroRNAs (miRNAs) can directly target a large number of melanogenesis-related genes, while long noncoding RNAs (lncRNAs) and circular RNAs (circRNAs) regulate melanogenesis in a variety of ways. Interactions exist among the epigenetic mechanisms of melanogenesis. For example, the methyl CpG binding domain protein 2 (MeCP2) links DNA methylation, histone deacetylation, and histone methylation. Epigenetic-based therapy provides novel opportunities for treating dermatoses that are caused by pigmentation disturbances. This review summarizes the epigenetic regulation mechanisms of melanogenesis, and examines the pathogenesis and treatment of epigenetics in pigmentation disorders.
Collapse
|
8
|
Kakumoto M, Shimokawa K, Ueshima S, Hira D, Okano T. Effects of antiepileptic drugs' administration during pregnancy on the nerve cell proliferation and axonal outgrowth of human neuroblastoma SH-SY5Y nerve cells. Biochem Biophys Res Commun 2021; 554:151-157. [PMID: 33798941 DOI: 10.1016/j.bbrc.2021.03.107] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2021] [Accepted: 03/19/2021] [Indexed: 11/18/2022]
Abstract
It has been suggested that the intelligence quotient of children born to pregnant women taking 1000 mg or more of valproic acid per day is lower than that of children born to pregnant women taking other antiepileptic drugs. However, the mechanism whereby intelligence quotient is decreased in children exposed to valproic acid during the fetal period has not yet been elucidated. Therefore, we used the human neuroblastoma cell line SH-SY5Y to evaluate the effects of antiepileptic drugs containing valproic acid on nerve cells. We assessed the anti-proliferative effects of drugs in these cells via WST-8 colorimetric assay, using the Cell Counting Kit-8. We also quantified drug effects on axonal elongation from images using ImageJ software. We also evaluated drug effects on mRNA expression levels on molecules implicated in nervous system development and folic acid uptake using real-time PCR. We observed that carbamazepine and lamotrigen were toxic to SH-SY5Y cells at concentrations >500 μM. In contrast, phenytoin and valproic acid were not toxic to these cells. Carbamazepine, lamotrigen, phenytoin, and valproic acid did not affect axonal outgrowth in SH-SY5Y cells. Sodium channel neuronal type 1a (SCN1A) mRNA expression-level ratios increased when valproic acid was supplemented to cells. The overexpression of SCN1A mRNA due to high valproic acid concentrations during the fetal period may affect neurodevelopment. However, since detailed mechanisms have not yet been elucidated, it is necessary to evaluate it by comparing cell axon elongation and SCN1A protein expression due to high-concentration valproic acid exposure.
Collapse
Affiliation(s)
- Mikio Kakumoto
- Laboratory of Clinical Pharmacy, College of Pharmaceutical Sciences, Ritsumeikan University, Noji-higashi 1-1-1, Kusatsu, Shiga, 525-8577, Japan.
| | - Kosuke Shimokawa
- Laboratory of Clinical Pharmacy, College of Pharmaceutical Sciences, Ritsumeikan University, Noji-higashi 1-1-1, Kusatsu, Shiga, 525-8577, Japan
| | - Satoshi Ueshima
- Laboratory of Clinical Pharmacy, College of Pharmaceutical Sciences, Ritsumeikan University, Noji-higashi 1-1-1, Kusatsu, Shiga, 525-8577, Japan
| | - Daiki Hira
- Laboratory of Clinical Pharmacy, College of Pharmaceutical Sciences, Ritsumeikan University, Noji-higashi 1-1-1, Kusatsu, Shiga, 525-8577, Japan
| | - Tomonobu Okano
- Laboratory of Clinical Pharmacy, College of Pharmaceutical Sciences, Ritsumeikan University, Noji-higashi 1-1-1, Kusatsu, Shiga, 525-8577, Japan
| |
Collapse
|
9
|
Yang X, Ye T, Liu H, Lv P, Duan C, Wu X, Jiang K, Lu H, Xia D, Peng E, Chen Z, Tang K, Ye Z. Expression profiles, biological functions and clinical significance of circRNAs in bladder cancer. Mol Cancer 2021; 20:4. [PMID: 33397425 PMCID: PMC7780637 DOI: 10.1186/s12943-020-01300-8] [Citation(s) in RCA: 107] [Impact Index Per Article: 35.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2020] [Accepted: 12/21/2020] [Indexed: 02/06/2023] Open
Abstract
Circular RNAs (circRNAs), which are single-stranded closed-loop RNA molecules lacking terminal 5′ caps and 3′ poly(A) tails, are attracting increasing scientific attention for their crucial regulatory roles in the occurrence and development of various diseases. With the rapid development of high-throughput sequencing technologies, increasing numbers of differentially expressed circRNAs have been identified in bladder cancer (BCa) via exploration of the expression profiles of BCa and normal tissues and cell lines. CircRNAs are critically involved in BCa biological behaviours, including cell proliferation, tumour growth suppression, cell cycle arrest, apoptosis, invasion, migration, metastasis, angiogenesis, and cisplatin chemoresistance. Most of the studied circRNAs in BCa regulate cancer biological behaviours via miRNA sponging regulatory mechanisms. CircRNAs have been reported to be significantly associated with many clinicopathologic characteristics of BCa, including tumour size, grade, differentiation, and stage; lymph node metastasis; tumour numbers; distant metastasis; invasion; and recurrence. Moreover, circRNA expression levels can be used to predict BCa patients’ survival parameters, such as overall survival (OS), disease-free survival (DFS), and progression-free survival (PFS). The abundance, conservation, stability, specificity and detectability of circRNAs render them potential diagnostic and prognostic biomarkers for BCa. Additionally, circRNAs play crucial regulatory roles upstream of various signalling pathways related to BCa carcinogenesis and progression, reflecting their potential as therapeutic targets for BCa. Herein, we briefly summarize the expression profiles, biological functions and mechanisms of circRNAs and the potential clinical applications of these molecules for BCa diagnosis, prognosis, and targeted therapy.
Collapse
Affiliation(s)
- Xiaoqi Yang
- Department of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Tao Ye
- Department of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Haoran Liu
- Department of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Peng Lv
- Department of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Chen Duan
- Department of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Xiaoliang Wu
- Department of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Kehua Jiang
- Department of Urology, Guizhou Provincial People's Hospital, Guiyang, China
| | - Hongyan Lu
- Department of Urology, The Third Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Ding Xia
- Department of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Ejun Peng
- Department of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Zhiqiang Chen
- Department of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Kun Tang
- Department of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.
| | - Zhangqun Ye
- Department of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
10
|
Wang X, Li W, Li Z, Ma Y, Yan J, Wilson JX, Huang G. Maternal Folic Acid Supplementation During Pregnancy Promotes Neurogenesis and Synaptogenesis in Neonatal Rat Offspring. Cereb Cortex 2020; 29:3390-3397. [PMID: 30137237 DOI: 10.1093/cercor/bhy207] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2018] [Revised: 07/08/2018] [Indexed: 12/25/2022] Open
Abstract
Maternal folic acid supplementation during pregnancy is associated with improved cognitive performances in offspring. However, the effect of supplementation on offspring's neurogenesis and synaptogenesis is unknown, and whether supplementation should be continued throughout pregnancy is controversial. In present study, 3 groups of female rats were fed a folate-normal diet, folate-deficient diet, or folate-supplemented diet from 1 week before mating until the end of pregnancy. A fourth group fed folate-normal diet from 1 week before mating until mating, then fed folate-supplemented diet for 10 consecutive days, then fed folate-normal diet until the end of pregnancy. Offspring were sacrificed on postnatal day 0 for measurement of neurogenesis and synaptogenesis by immunofluorescence and western blot. Additionally neural stem cells (NSCs) were cultured from offspring's hippocampus for immunocytochemical measurement of their rates of proliferation and neuronal differentiation. The results demonstrated that maternal folic acid supplementation stimulated hippocampal neurogenesis by increasing proliferation and neuronal differentiation of NSCs, and also enhanced synaptogenesis in cerebral cortex of neonatal offspring. Hippocampal neurogenesis was stimulated more when supplementation was continued throughout pregnancy instead of being limited to the periconceptional period. In conclusion, maternal folic acid supplementation, especially if continued throughout pregnancy, improves neurogenesis and synaptogenesis in neonatal offspring.
Collapse
Affiliation(s)
- Xinyan Wang
- Department of Nutrition and Food Science, School of Public Health, Tianjin Medical University, Tianjin, China
| | - Wen Li
- Department of Nutrition and Food Science, School of Public Health, Tianjin Medical University, Tianjin, China
| | - Zhenshu Li
- Department of Nutrition and Food Science, School of Public Health, Tianjin Medical University, Tianjin, China
| | - Yue Ma
- Department of Nutrition and Food Science, School of Public Health, Tianjin Medical University, Tianjin, China
| | - Jing Yan
- Department of Social Medicine and Health Administration, School of Public Health, Tianjin Medical University, Tianjin, China
| | - John X Wilson
- Department of Exercise and Nutrition Sciences, School of Public Health and Health Professions, University at Buffalo, Buffalo, NY, USA
| | - Guowei Huang
- Department of Nutrition and Food Science, School of Public Health, Tianjin Medical University, Tianjin, China
| |
Collapse
|
11
|
Wang W, Zhou C, Tang H, Yu Y, Zhang Q. Combined Analysis of DNA Methylome and Transcriptome Reveal Novel Candidate Genes Related to Porcine Escherichia coli F4ab/ac-Induced Diarrhea. Front Cell Infect Microbiol 2020; 10:250. [PMID: 32547963 PMCID: PMC7272597 DOI: 10.3389/fcimb.2020.00250] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2019] [Accepted: 04/29/2020] [Indexed: 12/13/2022] Open
Abstract
Enterotoxigenic Escherichia coli (ETEC) that express F4 (K88) fimbriae are the principal microorganisms responsible for bacterial diarrhea in neonatal and pre-weaning piglets. To better understand the molecular effects of ETEC F4ab/ac infection, we performed a genome-wide comparison of the changes in DNA methylation and gene expression in ETEC F4ab/ac infected porcine intestinal epithelial cells. We characterized the pattern of changes in methylation and found 3297 and 1593 differentially methylated regions in cells infected with F4ab and F4ac, respectively. Moreover, 606 and 780 differentially expressed genes (DEGs) in ETEC F4ab and F4ac infected cells were detected and these genes were highly enriched in immune/defense response related pathways. Integrative analysis identified 27 and 10 genes showing inverse correlations between promoter methylation and expression with ETEC F4ab/ac infection. Altered DNA methylation and expression of various genes suggested their roles and potential functional interactions upon ETEC F4ab/ac infection. Further functional analyses revealed that three DEGs (S100A9, SGO1, and ESPL1) in F4ab infected cells and three DEGs (MAP3K21, PAK6, and MPZL1) in F4ac infected cells are likely involved in the host cells response to ETEC infection. Our data provides further insight into the epigenetic and transcriptomic alterations of ETEC F4ab/ac infected porcine intestinal epithelial cells, and may advance the identification of biomarkers and drug targets for predicting susceptibility to and controlling ETEC F4ab/ac induced diarrhea.
Collapse
Affiliation(s)
- Wenwen Wang
- Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, Shandong Agricultural University, Taian, China
| | - Chuanli Zhou
- College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Hui Tang
- Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, Shandong Agricultural University, Taian, China
| | - Ying Yu
- College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Qin Zhang
- Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, Shandong Agricultural University, Taian, China.,College of Animal Science and Technology, China Agricultural University, Beijing, China
| |
Collapse
|
12
|
Zhou Z, Dun L, Wei B, Gan Y, Liao Z, Lin X, Lu J, Liu G, Xu H, Lu C, An H. Musk Ketone Induces Neural Stem Cell Proliferation and Differentiation in Cerebral Ischemia via Activation of the PI3K/Akt Signaling Pathway. Neuroscience 2020; 435:1-9. [DOI: 10.1016/j.neuroscience.2020.02.031] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2019] [Revised: 02/17/2020] [Accepted: 02/18/2020] [Indexed: 12/19/2022]
|
13
|
Khan R, Raza SHA, Junjvlieke Z, Wang H, Cheng G, Smith SB, Jiang Z, Li A, Zan L. RNA-seq reveal role of bovine TORC2 in the regulation of adipogenesis. Arch Biochem Biophys 2019; 680:108236. [PMID: 31893525 DOI: 10.1016/j.abb.2019.108236] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2019] [Revised: 12/05/2019] [Accepted: 12/20/2019] [Indexed: 12/18/2022]
Abstract
Low intramuscular adipose tissue (marbling) continues to be challenge for improving beef quality in Chinese cattle. Highly marbled meat is very desirable; hence, methods to increase IMF content have become a key aspect of improving meat quality. Therefore, research on the mechanism of adipogenesis provides invaluable information for the improvement of meat quality. This study investigated the effect of TORC2 and its underlying mechanism on lipid metabolism in bovine adipocytes. The TORC2 gene was downregulated in bovine adipocytes by siRNA, and RNA sequencing was performed. Downregulation of TORC2 negatively affected bovine adipocyte differentiation. In addition, a total of 577 DEGs were found, containing 146 up-regulated and 376 down-regulated genes. KEGG pathway analysis revealed that the DEGs were linked with neuroactive ligand-receptor interaction pathway, calcium signaling pathway, cAMP pathway, chemokine signaling pathway and Wnt signaling pathway. Gene Ontology (GO) term analysis of the DEGs showed that down-regulation of TORC2 gene significantly suppressed the genes regulating important GO terms of adipogenesis-related processes in bovine adipocytes, especially regulation of biological activity, regulation of primary metabolic process, regulation of multicellular organismal process, cell adhesion, lipid metabolic process, secretion, chemical homeostasis, regulation of transport, cell-cell signaling, cAMP metabolic process, cellular calcium ion homeostasis, fat cell differentiation, and cell maturation. In conclusion, our results suggest that TORC2 at least in part regulates lipid metabolism in bovine adipocytes. The results of this study provide a basis for studying the function and molecular mechanism of the TORC2 gene in regulating adipogenesis.
Collapse
Affiliation(s)
- Rajwali Khan
- College of Animal Science and Technology, Northwest A&F University, Yangling, 712100, China.
| | - Sayed Haidar Abbas Raza
- College of Animal Science and Technology, Northwest A&F University, Yangling, 712100, China.
| | - Zainaguli Junjvlieke
- College of Animal Science and Technology, Northwest A&F University, Yangling, 712100, China
| | - Hongbao Wang
- College of Animal Science and Technology, Northwest A&F University, Yangling, 712100, China
| | - Gong Cheng
- College of Animal Science and Technology, Northwest A&F University, Yangling, 712100, China
| | - Stephen B Smith
- Department of Animal Science, Texas A&M University, College Station, TX, 77843, USA
| | - Zhongliang Jiang
- College of Animal Science and Technology, Northwest A&F University, Yangling, 712100, China
| | - Anning Li
- College of Animal Science and Technology, Northwest A&F University, Yangling, 712100, China
| | - Linsen Zan
- College of Animal Science and Technology, Northwest A&F University, Yangling, 712100, China; National Beef Cattle Improvement Center, Northwest A&F University, Yangling, 712100, China.
| |
Collapse
|
14
|
Desai M, Han G, Li T, Ross MG. Programmed Epigenetic DNA Methylation-Mediated Reduced Neuroprogenitor Cell Proliferation and Differentiation in Small-for-Gestational-Age Offspring. Neuroscience 2019; 412:60-71. [PMID: 31153962 DOI: 10.1016/j.neuroscience.2019.05.044] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2018] [Revised: 05/01/2019] [Accepted: 05/22/2019] [Indexed: 12/28/2022]
Abstract
Small-for-gestational age (SGA) human newborns have an increased risk of hyperphagia and obesity, as well as a spectrum of neurologic and neurobehavioral abnormalities. We have shown that the SGA hypothalamic (appetite regulatory site) neuroprogenitor cells (NPCs) exhibit reduced proliferation and neuronal differentiation. DNA methylation (DNA methyltransferase; DNMT1) regulates neurogenesis by maintaining NPC proliferation and suppressing premature differentiation. Once differentiation ensues, DNMT1 preferentially promotes neuronal and inhibits astroglial fate. We hypothesized that the programmed dysfunction of NPC proliferation and differentiation in SGA offspring is epigenetically mediated via DNMT1. Pregnant rats received either ad libitum food (Control) or were 50% food-restricted to create SGA offspring. Primary hypothalamic NPCs from 1 day old SGA and Controls newborns were cultured and transfected with nonspecific or DNMT1-specific siRNA. NPC proliferation and protein expression of specific markers of NPC (nestin), neuroproliferative transcription factor (Hes1), neurons (Tuj1) and astrocytes (GFAP) were determined. Under basal conditions, SGA NPCs exhibited decreased DNMT1 and reduced proliferation and differentiation, as compared to Controls. In both SGA and Controls, DNMT1 siRNA in complete media inhibited NPC proliferation, consistent with reduced expression of nestin and Hes1. In differentiation media, DNMT1 siRNA decreased expression of Tuj1 but increased GFAP. In vivo data replicated these findings. In SGA offspring, impaired neurogenesis is epigenetically mediated, in part, via reduction in DNMT1 expression and suppression of Hes1 resulting in NPC differentiation. It is likely that the maturation of regions beyond the hypothalamus (e.g., cerebral cortex, hippocampus) may be impacted, contributing to poor cognitive and neurobehavioral competency in SGA offspring.
Collapse
Affiliation(s)
- Mina Desai
- Perinatal Research Laboratory, Los Angeles Biomedical Research Institute at Harbor-UCLA Medical Center, Department of Obstetrics and Gynecology, Torrance, CA, USA; Department of Obstetrics and Gynecology, David Geffen School of Medicine, University of California, Los Angeles, CA, USA.
| | - Guang Han
- Perinatal Research Laboratory, Los Angeles Biomedical Research Institute at Harbor-UCLA Medical Center, Department of Obstetrics and Gynecology, Torrance, CA, USA
| | - Tie Li
- Perinatal Research Laboratory, Los Angeles Biomedical Research Institute at Harbor-UCLA Medical Center, Department of Obstetrics and Gynecology, Torrance, CA, USA
| | - Michael G Ross
- Perinatal Research Laboratory, Los Angeles Biomedical Research Institute at Harbor-UCLA Medical Center, Department of Obstetrics and Gynecology, Torrance, CA, USA; Department of Obstetrics and Gynecology, David Geffen School of Medicine, University of California, Los Angeles, CA, USA; Department of Obstetrics and Gynecology, Charles R. Drew University, Los Angeles, CA, USA
| |
Collapse
|
15
|
Effects of maternal folic acid supplementation during pregnancy on infant neurodevelopment at 1 month of age: a birth cohort study in China. Eur J Nutr 2019; 59:1345-1356. [PMID: 31098661 DOI: 10.1007/s00394-019-01986-7] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2019] [Accepted: 05/03/2019] [Indexed: 12/28/2022]
Abstract
PURPOSE This study aimed to explore effects of maternal folic acid (FA) supplementation during pregnancy on neurodevelopment in 1-month-old infants and to determine whether effects may be related to maternal circulating inflammatory cytokine concentrations. METHODS This birth cohort study recruited 1186 mother-infant pairs in Tianjin, China, between July 2015 and July 2017. The women completed interviewer-administered questionnaires on their lifestyles and FA supplementation during pregnancy. Neurodevelopment was assessed in 1-month-old infants using a standard neuropsychological examination table. In 192 women, serum homocysteine (Hcy) and inflammatory cytokine concentrations were measured at 16-18 weeks of gestation. RESULTS The infants whose mothers took FA supplements during pregnancy had a significantly higher development quotient (DQ) compared with those whose mothers were non-users (P < 0.05). After adjustment for maternal characteristics, supplementary FA use for 1-3 months, 3-6 months, and > 6 months were associated with the increases of 7.7, 11.0, and 7.4 units in the scale of infant DQ score compared with women reporting no supplement use, respectively (P < 0.05). FA supplementation was associated with a decreased serum concentration of Hcy (β = [Formula: see text] 0.19), which was correlated with women's serum inflammatory cytokine concentrations at 16-18 weeks of gestation (β = 0.57). Serum inflammatory cytokine concentrations were inversely related to DQ score in the 1-months-old offspring (β = [Formula: see text] 0.22). CONCLUSIONS Maternal FA supplementation during pregnancy favors neurodevelopment in the offspring at 1-month-old. This association may be mediated by changes in serum Hcy and inflammatory cytokine concentrations throughout pregnancy.
Collapse
|
16
|
Dong ZY, Pei Z, Wang YL, Li Z, Khan A, Meng XT. Ascl1 Regulates Electric Field-Induced Neuronal Differentiation Through PI3K/Akt Pathway. Neuroscience 2019; 404:141-152. [PMID: 30771509 DOI: 10.1016/j.neuroscience.2019.02.004] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2018] [Revised: 01/31/2019] [Accepted: 02/04/2019] [Indexed: 12/14/2022]
Abstract
Directing differentiation of neural stem/progenitor cells (NSCs/NPCs) to produce functional neurons is one of the greatest challenges in regenerative medicine. Our previous paper has confirmed that electrical stimulation has a high efficiency of triggering neuronal differentiation by using isolated filum terminale (FT)-derived NPCs. To further clarify the intrinsic molecular mechanisms, protein-protein interaction (PPI) network analysis was applied to pinpoints novel hubs in electric field (EF)-induced neuronal differentiation. In this study, siRNA transfection of Achaete-scute homolog 1 (Ascl1) in NPCs or NPCs was followed by direct current stimulation at 150 mV/mm. Neuronal differentiation rate and protein expression level were analyzed after 7 or 14 days of electrical stimulation. The data showed that the expression level of Ascl1 was enhanced by electrical stimulation and positively correlated to EF strength. Moreover, we identified that the expression of Ascl1 positively regulated neuronal differentiation of NPCs and can be up-regulated by EF-stimulation through the activation of phosphatidylinositol 3-kinase/protein kinase B (PI3K/Akt) pathway. Therefore, this study provides new insights into the role of Ascl1 and its relevant PI3K/Akt pathway in regulating of EF-induced neuronal differentiation and pointed out that continuous expression of Ascl1 in NPCs is required for EF-induced neuronal differentiation.
Collapse
Affiliation(s)
- Zhi-Yong Dong
- Department of Histology & Embryology, College of Basic Medical Sciences, Jilin University, Changchun 130021, PR China.
| | - Zhe Pei
- Department of Neuroscience and Pediatric, GSRB1 Duke University, Durham 27710, USA
| | - Yan-Ling Wang
- Laboratory Teaching Center of Basic Medicine, College of Basic Medical Sciences, Jilin University, Changchun 130021, PR China.
| | - Zhe Li
- Laboratory Teaching Center of Basic Medicine, College of Basic Medical Sciences, Jilin University, Changchun 130021, PR China.
| | - Amber Khan
- The Graduate Center and CUNY School of Medicine, CUNY, 85 St Nicholas Terrace, New York, NY 10027, USA.
| | - Xiao-Ting Meng
- Department of Histology & Embryology, College of Basic Medical Sciences, Jilin University, Changchun 130021, PR China.
| |
Collapse
|
17
|
Kang WB, Chen YJ, Lu DY, Yan JZ. Folic acid contributes to peripheral nerve injury repair by promoting Schwann cell proliferation, migration, and secretion of nerve growth factor. Neural Regen Res 2019; 14:132-139. [PMID: 30531087 PMCID: PMC6263007 DOI: 10.4103/1673-5374.243718] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
After peripheral nerve injury, intraperitoneal injection of folic acid improves axon quantity, increases axon density and improves electromyography results. However, the mechanisms for this remain unclear. This study explored whether folic acid promotes peripheral nerve injury repair by affecting Schwann cell function. Primary Schwann cells were obtained from rats by in vitro separation and culture. Cell proliferation, assayed using the Cell Counting Kit-8 assay, was higher in cells cultured for 72 hours with 100 mg/L folic acid compared with the control group. Cell proliferation was also higher in the 50, 100, 150, and 200 mg/L folic acid groups compared with the control group after culture for 96 hours. Proliferation was markedly higher in the 100 mg/L folic acid group compared with the 50 mg/L folic acid group and the 40 ng/L nerve growth factor group. In Transwell assays, the number of migrated Schwann cells dramatically increased after culture with 100 and 150 mg/L folic acid compared with the control group. In nerve growth factor enzyme-linked immunosorbent assays, treatment of Schwann cell cultures with 50, 100, and 150 mg/L folic acid increased levels of nerve growth factor in the culture medium compared with the control group at 3 days. The nerve growth factor concentration of Schwann cell cultures treated with 100 mg/L folic acid group was remarkably higher than that in the 50 and 150 mg/L folic acid groups at 3 days. Nerve growth factor concentration in the 10, 50, and 100 mg/L folic acid groups was higher than that in the control group at 7 days. The nerve growth factor concentration in the 50 mg/L folic acid group was remarkably higher than that in the 10 and 100 mg/L folic acid groups at 7 days. In vivo, 80 μg/kg folic acid was intraperitoneally administrated for 7 consecutive days after sciatic nerve injury. Immunohistochemical staining showed that the number of Schwann cells in the folic acid group was greater than that in the control group. We suggest that folic acid may play a role in improving the repair of peripheral nerve injury by promoting the proliferation and migration of Schwann cells and the secretion of nerve growth factors.
Collapse
Affiliation(s)
- Wei-Bo Kang
- Department of Orthopedic Surgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Yong-Jie Chen
- Department of Orthopedic Surgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Du-Yi Lu
- Department of Orthopedic Surgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Jia-Zhi Yan
- Department of Orthopedic Surgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| |
Collapse
|
18
|
Fernández-Villa D, Jiménez Gómez-Lavín M, Abradelo C, San Román J, Rojo L. Tissue Engineering Therapies Based on Folic Acid and Other Vitamin B Derivatives. Functional Mechanisms and Current Applications in Regenerative Medicine. Int J Mol Sci 2018; 19:E4068. [PMID: 30558349 PMCID: PMC6321107 DOI: 10.3390/ijms19124068] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2018] [Revised: 12/12/2018] [Accepted: 12/13/2018] [Indexed: 12/30/2022] Open
Abstract
B-vitamins are a group of soluble vitamins which are cofactors of some of the enzymes involved in the metabolic pathways of carbohydrates, fats and proteins. These compounds participate in a number of functions as cardiovascular, brain or nervous systems. Folic acid is described as an accessible and multifunctional niche component that can be used safely, even combined with other compounds, which gives it high versatility. Also, due to its non-toxicity and great stability, folic acid has attracted much attention from researchers in the biomedical and bioengineering area, with an increasing number of works directed at using folic acid and its derivatives in tissue engineering therapies as well as regenerative medicine. Thus, this review provides an updated discussion about the most relevant advances achieved during the last five years, where folic acid and other vitamins B have been used as key bioactive compounds for enhancing the effectiveness of biomaterials' performance and biological functions for the regeneration of tissues and organs.
Collapse
Affiliation(s)
- Daniel Fernández-Villa
- Instituto de Ciencia y Tecnología de Polímeros, Consejo Superior de Investigaciones Científicas, CSIC, 28006 Madrid, Spain.
- Consorcio Centro de Investigación Biomédica en Red de Bioingeniería, Biomateriales y Nanomedicina, 28029 Madrid, Spain.
| | - Mirta Jiménez Gómez-Lavín
- Departamento de Química y Bioquímica. Facultad de Farmacia Universidad CEU San Pablo, 28668 Madrid, Spain.
| | - Cristina Abradelo
- Departamento de Química y Bioquímica. Facultad de Farmacia Universidad CEU San Pablo, 28668 Madrid, Spain.
| | - Julio San Román
- Instituto de Ciencia y Tecnología de Polímeros, Consejo Superior de Investigaciones Científicas, CSIC, 28006 Madrid, Spain.
- Consorcio Centro de Investigación Biomédica en Red de Bioingeniería, Biomateriales y Nanomedicina, 28029 Madrid, Spain.
| | - Luis Rojo
- Instituto de Ciencia y Tecnología de Polímeros, Consejo Superior de Investigaciones Científicas, CSIC, 28006 Madrid, Spain.
- Consorcio Centro de Investigación Biomédica en Red de Bioingeniería, Biomateriales y Nanomedicina, 28029 Madrid, Spain.
| |
Collapse
|
19
|
Perez-Aguirre B, Soto-Barreras U, Loyola-Rodriguez JP, Reyes-Macias JF, Santos-Diaz MA, Loyola-Leyva A, Garcia-Cortes O. Oral findings and its association with prenatal and perinatal factors in newborns. KOREAN JOURNAL OF PEDIATRICS 2018; 61:279-284. [PMID: 30274505 PMCID: PMC6172521 DOI: 10.3345/kjp.2017.06177] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/18/2017] [Accepted: 03/12/2018] [Indexed: 01/02/2023]
Abstract
Purpose This study aimed to determine the frequency of abnormalities in the newborn oral cavity and to evaluate the association with prenatal and perinatal factors. Methods This cross-sectional study evaluated 2,216 newborns. Oral findings were assessed in the first 24 hours of life using visual examination. Sex, weight, length, gestational age, and medical disorders at birth were recorded. Maternal demographic and medical information was also obtained. Results The most common oral findings were Bohn’s nodules, Epstein’s pearls, and dental lamina cysts. Other intraoral findings included odontogenic cysts, ankyloglossia, and natal teeth, among others. In logistic regression analyses, folic acid consumption during pregnancy was significantly associated with Bohn’s nodules (odds ratio [OR], 1.79; 95% confidence interval [CI], 1.23–2.55; P=0.002), Epstein’s pearls (OR, 1.63; 95% CI, 1.14–2.33; P=0.007), and dental lamina cysts (OR, 1.45; 95% CI, 1.02–2.05; P=0.038). Moreover, preterm births were negatively associated with prevalence of Bohn’s nodules (OR, 0.63; 95% CI, 0.50–0.80; P≤0.0001). Comparison between newborns with and without oral inclusion cysts showed that maternal folic acid and iron intake were significantly different (P<0.05). Conclusion Maternal folic acid and iron intake were associated with the prevalence of oral inclusion cysts.
Collapse
Affiliation(s)
| | | | - Juan Pablo Loyola-Rodriguez
- Escuela Superior de Odontología y Doctorado en Ciencias Biomédicas, Universidad Autónoma de Guerrero, Acapulco, México
| | | | | | - Alejandra Loyola-Leyva
- Doctorado en Ciencias Biomédicas Básicas, San Luis Potosi University, San Luis Potosi, México
| | - Obed Garcia-Cortes
- Faculty of Dentistry at San Luis Potosi University, San Luis Potosi, México
| |
Collapse
|
20
|
Bathina S, Das UN. Dysregulation of PI3K-Akt-mTOR pathway in brain of streptozotocin-induced type 2 diabetes mellitus in Wistar rats. Lipids Health Dis 2018; 17:168. [PMID: 30041644 PMCID: PMC6058366 DOI: 10.1186/s12944-018-0809-2] [Citation(s) in RCA: 66] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2017] [Accepted: 07/02/2018] [Indexed: 01/27/2023] Open
Abstract
BACKGROUND Proteins of the insulin signaling pathway are needed for cell proliferation and development and glucose homeostasis. It is not known whether insulin signalling markers (Foxo1, Gsk3β) can be correlated with the expression on PI3K-Akt-mTOR pathway, which are needed for cell survival and maintenance of glucose homeostasis. In the present study, we studied the expression of Foxo1, Gsk3β and PI3K-Akt-mTOR in the brain of streptozotocin-induced type 2 diabetes mellitus Wistar rats. METHODS The study was performed both in vitro (RIN5F cells) and in vivo (male Wistar rats). Gene expression of Nf-kB, IkB, Bax, Bcl-2 and Pdx1 gene was studied invitro by qRT-PCR in RIN5F cells. In STZ (65 mg/kg i.p.)-induced type 2 DM Wistar rats, blood glucose and insulin levels, iNOS, Foxo1, NF-κB, pGsk3β and PPAR-γ1 levels along with PI3k-Akt-mTOR were measured in brain tissue. RESULTS RIN5F cells treated with STZ showed increase in the expression of NF-kB and Bax and decrease in IkB, Bcl-2 and PDX1. Brain tissue of STZ-induced type 2 DM animals showed a significant reduction in secondary messengers of insulin signalling (Foxo1) (P < 0.001) and Gsk3β (P < 0.01) and a significant alteration in the expression of phosphorylated-Akt (P < 0.001) mTOR (P < 0.01) and PI3K. CONCLUSION These results suggest that STZ induces pancreatic β cell apoptosis by enhancing inflammation. Significant alterations in the expression brain insulin signaling and cell survival pathways seen in brain of STZ-treated animals implies that alterations neuronal apoptosis may have a role in altered glucose homeostasis seen in type 2 DM that may also explain the increased incidence of cognitive dysfunction seen in them.
Collapse
Affiliation(s)
- Siresha Bathina
- BioScience Research Centre, Department of Medicine, Gayatri Vidya Parishad Hospital, GVP College of Engineering Campus, Visakhapatnam, 530048 India
| | - Undurti N. Das
- BioScience Research Centre, Department of Medicine, Gayatri Vidya Parishad Hospital, GVP College of Engineering Campus, Visakhapatnam, 530048 India
- UND Life Sciences, 2221, NW 5th St, Battle Ground, WA 98604 USA
| |
Collapse
|
21
|
Li W, Li Z, Li S, Wang X, Wilson JX, Huang G. Periconceptional Folic Acid Supplementation Benefit to Development of Early Sensory-Motor Function through Increase DNA Methylation in Rat Offspring. Nutrients 2018; 10:nu10030292. [PMID: 29494536 PMCID: PMC5872710 DOI: 10.3390/nu10030292] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2018] [Revised: 02/27/2018] [Accepted: 02/27/2018] [Indexed: 01/21/2023] Open
Abstract
Periconceptional maternal folate levels may alter DNA methylation patterns and health outcomes in offspring. We hypothesized that maternal folic acid supplementation alters fetal neural development through DNA methylation in the fetal brain. Twenty-eight rats were randomly assigned to four groups: three groups of the female rats were fed folate-normal, folate-deficient or folate-supplemented diets from seven days before mating to delivery. In another group, folic acid supplementation diet short-period group was fed a folate-normal diet, except for 10 days (begin mating) when this group was fed a folate-supplemented diet. After delivery, the diets were changed to folate-normal diet for all four groups. The cliff avoidance and forelimb grip tests were used to assess sensory motor function of rat offspring. The results indicate that maternal folic acid supplementation improved the early development of sensory-motor function in offspring. Maternal folic acid supplementation increased the methylation potential, global DNA methylation (5-mC) and DNA methyltransferase expression and activity in the brains of the offspring. In conclusion, maternal folic acid supplementation increases DNA methylation pattern in offspring brain and improves the early development of sensory-motor function.
Collapse
Affiliation(s)
- Wen Li
- Department of Nutrition and Food Science, School of Public Health, Tianjin Medical University, 22 Qixiangtai Road, Heping District, Tianjin 300070, China.
| | - Zhenshu Li
- Department of Nutrition and Food Science, School of Public Health, Tianjin Medical University, 22 Qixiangtai Road, Heping District, Tianjin 300070, China.
| | - Shou Li
- Department of Nutrition and Food Science, School of Public Health, Tianjin Medical University, 22 Qixiangtai Road, Heping District, Tianjin 300070, China.
| | - Xinyan Wang
- Department of Nutrition and Food Science, School of Public Health, Tianjin Medical University, 22 Qixiangtai Road, Heping District, Tianjin 300070, China.
| | - John X Wilson
- Department of Exercise and Nutrition Sciences, School of Public Health and Health Professions, University at Buffalo, Buffalo, NY 14214-8028, USA.
| | - Guowei Huang
- Department of Nutrition and Food Science, School of Public Health, Tianjin Medical University, 22 Qixiangtai Road, Heping District, Tianjin 300070, China.
| |
Collapse
|
22
|
Sahakyan V, Duelen R, Tam WL, Roberts SJ, Grosemans H, Berckmans P, Ceccarelli G, Pelizzo G, Broccoli V, Deprest J, Luyten FP, Verfaillie CM, Sampaolesi M. Folic Acid Exposure Rescues Spina Bifida Aperta Phenotypes in Human Induced Pluripotent Stem Cell Model. Sci Rep 2018; 8:2942. [PMID: 29440666 PMCID: PMC5811493 DOI: 10.1038/s41598-018-21103-8] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2017] [Accepted: 01/30/2018] [Indexed: 12/30/2022] Open
Abstract
Neural tube defects (NTDs) are severe congenital abnormalities, caused by failed closure of neural tube during early embryonic development. Periconceptional folic acid (FA) supplementation greatly reduces the risk of NTDs. However, the molecular mechanisms behind NTDs and the preventive role of FA remain unclear. Here, we use human induced pluripotent stem cells (iPSCs) derived from fetuses with spina bifida aperta (SBA) to study the pathophysiology of NTDs and explore the effects of FA exposure. We report that FA exposure in SBA model is necessary for the proper formation and maturation of neural tube structures and robust differentiation of mesodermal derivatives. Additionally, we show that the folate antagonist methotrexate dramatically affects the formation of neural tube structures and FA partially reverts this aberrant phenotype. In conclusion, we present a novel model for human NTDs and provide evidence that it is a powerful tool to investigate the molecular mechanisms underlying NTDs, test drugs for therapeutic approaches.
Collapse
Affiliation(s)
- Vardine Sahakyan
- Translational Cardiomyology Laboratory, Stem Cell Biology and Embryology Unit, Stem Cell Institute, Department of Development and Regeneration, KU Leuven, Leuven, Belgium
| | - Robin Duelen
- Translational Cardiomyology Laboratory, Stem Cell Biology and Embryology Unit, Stem Cell Institute, Department of Development and Regeneration, KU Leuven, Leuven, Belgium
| | - Wai Long Tam
- Tissue Engineering Laboratory, Skeletal Biology and Engineering Research Center, and Prometheus, Division of Skeletal Tissue Engineering, KU Leuven, Leuven, Belgium
| | - Scott J Roberts
- Tissue Engineering Laboratory, Skeletal Biology and Engineering Research Center, and Prometheus, Division of Skeletal Tissue Engineering, KU Leuven, Leuven, Belgium
- Institute of Orthopaedics and Musculoskeletal Science, Division of Surgery and Interventional Science, University College London, The Royal National Orthopaedic Hospital, London, UK
| | - Hanne Grosemans
- Translational Cardiomyology Laboratory, Stem Cell Biology and Embryology Unit, Stem Cell Institute, Department of Development and Regeneration, KU Leuven, Leuven, Belgium
| | - Pieter Berckmans
- Stem Cell Institute and Stem Cell Biology and Embryology Unit, Department Development and Regeneration, KU Leuven, Leuven, Belgium
| | - Gabriele Ceccarelli
- Human Anatomy Unit, Department of Public Health, Experimental and Forensic Medicine, University of Pavia, Pavia, Italy
| | - Gloria Pelizzo
- Pediatric Surgery Department, Istituto Mediterraneo di Eccellenza Pediatrica (ISMEP), Children's Hospital "G di Cristina", Palermo, Italy
| | - Vania Broccoli
- Stem Cell and Neurogenesis Unit, Division of Neuroscience, San Raffaele Scientific Institute, Milan, Italy
- CNR-Institute of Neuroscience, Milan, Italy
| | - Jan Deprest
- Department of Obstetrics and Gynecology, Division Woman and Child, Fetal Medicine Unit, University Hospitals KU Leuven, Leuven, Belgium
- Institute for Women's Health (IWH), University College London, London, United Kingdom
| | - Frank P Luyten
- Tissue Engineering Laboratory, Skeletal Biology and Engineering Research Center, and Prometheus, Division of Skeletal Tissue Engineering, KU Leuven, Leuven, Belgium
| | - Catherine M Verfaillie
- Stem Cell Institute and Stem Cell Biology and Embryology Unit, Department Development and Regeneration, KU Leuven, Leuven, Belgium
| | - Maurilio Sampaolesi
- Translational Cardiomyology Laboratory, Stem Cell Biology and Embryology Unit, Stem Cell Institute, Department of Development and Regeneration, KU Leuven, Leuven, Belgium.
- Human Anatomy Unit, Department of Public Health, Experimental and Forensic Medicine, University of Pavia, Pavia, Italy.
| |
Collapse
|
23
|
Lin KH, Chiu CH, Kuo WW, Ju DT, Shen CY, Chen RJ, Lin CC, Viswanadha VP, Liu JS, Huang RFS, Huang CY. The preventive effects of edible folic acid on cardiomyocyte apoptosis and survival in early onset triple-transgenic Alzheimer's disease model mice. ENVIRONMENTAL TOXICOLOGY 2018; 33:83-92. [PMID: 29068127 DOI: 10.1002/tox.22498] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/12/2017] [Revised: 09/28/2017] [Accepted: 10/06/2017] [Indexed: 06/07/2023]
Abstract
In recent years, neuropathological and epidemiological studies have indicated an association between Alzheimer's disease (AD) and several cardiovascular risk factors. In this study, the cardio-protective effects of folic acid (FA) in early stage AD was elucidated using a triple-transgenic (3xTg) Alzheimer's mouse model. Eleven-month-old C57BL/6 mice and 3xTg mice were assigned to five groups. During the four-month treatment period, the low-FA treatment group received FA through their diet, and the high-FA treatment groups received 3 mg/dl folate in drinking water and were also gastric-fed 1.2 mg/kg folate every day. In the C57B1/6J mice, treatment with high doses of FA (HFA) did not show any considerable effect compared to the control group or the low-dose dietary FA treatment group. However, Alzheimer's mice treated with HFA showed enhanced cardio-protection. Western blot analysis revealed that FA treatment restored SIRT1 expression, which was suppressed in 3xTg mice, through enhanced AMPK expression. FA significantly enhanced the IGF1 receptor survival mechanism in the hearts of the 3xTg mice and suppressed the expression-intrinsic and extrinsic apoptosis-associated proteins. The results suggest that FA intake may significantly alleviate cellular pathological events in the heart associated with AD.
Collapse
Affiliation(s)
- Kuan-Ho Lin
- College of Medicine, China Medical University, Taichung, Taiwan
- Department of Emergency Medicine, China Medical University Hospital, Taichung, Taiwan
| | - Chih-Hao Chiu
- Graduate Institute of Basic Medical Science, China Medical University, Taichung, Taiwan
| | - Wei-Wen Kuo
- Department of Biological Science and Technology, China Medical University, Taichung, Taiwan
| | - Da-Tong Ju
- Department of Neurological Surgery, Tri-Service General Hospital, National Defense Medical Center, Taipei, Taiwan
| | - Chia-Yao Shen
- Department of Nursing, Meiho University, Pingtung, Taiwan
| | - Ray-Jade Chen
- Department of Surgery, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan
| | - Chien-Chung Lin
- Orthopaedic Department, Armed Forces General Hospital, Taichung, Taiwan
| | | | - Jian-Sheng Liu
- Division of Pulmonary and Critical Care Medicine, China Medical University Beigang Hospital, Yunlin County, Taiwan
- Department of Internal Medicine, China Medical University Beigang Hospital, Yunlin County, Taiwan
| | - Rwei-Fen S Huang
- Department of Nutritional Science, , Graduate Institute of Nutrition and Food Science, Fu Jen University, Taipei, Taiwan
| | - Chih-Yang Huang
- Graduate Institute of Basic Medical Science, China Medical University, Taichung, Taiwan
- Graduate Institute of Chinese Medical Science, China Medical University, Taichung, Taiwan
- Department of Health and Nutrition Biotechnology, Asia University, Taichung, Taiwan
| |
Collapse
|
24
|
Liu T, Wang B, Li Q, Dong XL, Han X, Zhang S. Retracted
: Effects of microRNA‐206 and its target gene IGF‐1 on sevoflurane‐induced activation of hippocampal astrocytes in aged rats through the PI3K/AKT/CREB signaling pathway. J Cell Physiol 2017; 233:4294-4306. [DOI: 10.1002/jcp.26248] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2017] [Accepted: 10/13/2017] [Indexed: 12/16/2022]
Affiliation(s)
- Tie‐Jun Liu
- Department of AnesthesiologyNorth China University of Science and Technology Affiliated HospitalTangshanP.R. China
| | - Bin Wang
- Department of PaediatricsNorth China University of Science and Technology Affiliated HospitalTangshanP.R. China
| | - Qun‐Xi Li
- Department of NeurosurgeryNorth China University of Science and Technology Affiliated HospitalTangshanP.R. China
| | - Xiao‐ Liu Dong
- Department of NeurologyTangshan People's HospitalTangshanP.R. China
| | - Xiao‐Liang Han
- Department of AnesthesiologyNorth China University of Science and Technology Affiliated HospitalTangshanP.R. China
| | - Shu‐Bo Zhang
- Department of AnesthesiologyNorth China University of Science and Technology Affiliated HospitalTangshanP.R. China
| |
Collapse
|
25
|
Methotrexate and Valproic Acid Affect Early Neurogenesis of Human Amniotic Fluid Stem Cells from Myelomeningocele. Stem Cells Int 2017; 2017:6101609. [PMID: 29056972 PMCID: PMC5615990 DOI: 10.1155/2017/6101609] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2017] [Revised: 07/18/2017] [Accepted: 08/01/2017] [Indexed: 11/18/2022] Open
Abstract
Myelomeningocele (MMC) is a severe type of neural tube defect (NTD), in which the backbone and spinal canal do not close completely during early embryonic development. This condition results in serious morbidity and increased mortality after birth. Folic acid significantly reduces, and conversely, folate antagonist methotrexate (MTX) and valproic acid (VPA) increase the occurrence of NTDs, including MMC. How these pharmacological agents exactly influence the early neurulation process is still largely unclear. Here, we characterized human amniotic fluid-derived stem cells (AFSCs) from prenatally diagnosed MMC and observed an effect of MTX and VPA administration on the early neural differentiation process. We found that MMC-derived AFSCs highly expressed early neural and radial glial genes that were negatively affected by MTX and VPA exposure. In conclusion, we setup a human cell model of MMC to study early neurogenesis and for drug screening purposes. We also proposed the detection of early neural gene expression in AFSCs as an additional MMC diagnostic tool.
Collapse
|
26
|
Cantarella CD, Ragusa D, Giammanco M, Tosi S. Folate deficiency as predisposing factor for childhood leukaemia: a review of the literature. GENES & NUTRITION 2017; 12:14. [PMID: 28588742 PMCID: PMC5455200 DOI: 10.1186/s12263-017-0560-8] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/31/2017] [Accepted: 04/05/2017] [Indexed: 12/14/2022]
Abstract
BACKGROUND Folic acid and its derivates, known as folates, are chemoprotective micronutrients of great interest because of their essential role in the maintenance of health and genomic integrity. The supplementation of folic acid during pregnancy has long been known to reduce the risk of neural tube defects (NTDs) in the foetus. Folate metabolism can be altered by many factors, including adequate intake through diet. Folate deficiency can compromise the synthesis, repair and methylation of DNA, with deleterious consequences on genomic stability and gene expression. These processes are known to be altered in chronic diseases, including cancer and cardiovascular diseases. MAIN BODY This review focuses on the association between folate intake and the risk of childhood leukaemia. Having compiled and analysed studies from the literature, we show the documented effects of folates on the genome and their role in cancer prevention and progression with particular emphasis on DNA methylation modifications. These changes are of crucial importance during pregnancy, as maternal diet has a profound impact on the metabolic and physiological functions of the foetus and the susceptibility to disease in later life. Folate deficiency is capable of modifying the methylation status of certain genes at birth in both animals and humans, with potential pathogenic and tumorigenic effects on the progeny. Pre-existing genetic polymorphisms can modify the metabolic network of folates and influence the risk of cancer, including childhood leukaemias. The protective effects of folic acid might be dose dependent, as excessive folic acid could have the adverse effect of nourishing certain types of tumours. CONCLUSION Overall, maternal folic acid supplementation before and during pregnancy seems to confer protection against the risk of childhood leukaemia in the offspring. The optimal folic acid requirements and supplementation doses need to be established, especially in conjunction with other vitamins in order to determine the most successful combinations of nutrients to maintain genomic health and wellbeing. Further research is therefore needed to uncover the role of maternal diet as a whole, as it represents a main factor capable of inducing permanent changes in the foetus.
Collapse
Affiliation(s)
- Catia Daniela Cantarella
- Department of Experimental Biomedicine and Clinical Neurosciences, University of Palermo, Palermo, Italy
| | - Denise Ragusa
- Division of Biosciences, College of Health and Life Sciences, Institute of Environment, Health and Societies, Brunel University London, Uxbridge, UK
| | - Marco Giammanco
- Department of Experimental Biomedicine and Clinical Neurosciences, University of Palermo, Palermo, Italy
| | - Sabrina Tosi
- Division of Biosciences, College of Health and Life Sciences, Institute of Environment, Health and Societies, Brunel University London, Uxbridge, UK
| |
Collapse
|
27
|
MARK2/Par1b Insufficiency Attenuates DVL Gene Transcription via Histone Deacetylation in Lumbosacral Spina Bifida. Mol Neurobiol 2016; 54:6304-6316. [PMID: 27714636 DOI: 10.1007/s12035-016-0164-0] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2016] [Accepted: 09/27/2016] [Indexed: 10/20/2022]
Abstract
Dishevelled (DVL/Dvl) genes play roles in canonical and noncanonical Wnt signaling, both of which are essential in neural tube closing and are involved in balancing neural progenitor growth and differentiation, or neuroepithelial cell polarity, respectively. In mouse Dvl haploinsufficiency leads to neural tube defects (NTDs), which represent the second most common birth defects. However, DVL genes' genetic contributions in human NTDs are modest. We sought to explore the molecular impact on such genes in human NTDs in a Han Chinese cohort. In 47 cases with NTDs and 61 matched controls, in brain tissues, the DVL1/2 mRNA levels were correlated with the levels of a serine/threonine protein kinase MARK2, and in 20 cases with lumbosacral spina bifida, the mRNA levels of DVL1 and MARK2 were significantly decreased; by contrast, only an intronic rare variant was found. Moreover, in an extended population, we found merely three novel rare missense variants in 1 % of individuals with NTDs. In cell-based assays, Mark2 depletion indeed reduces Dvl gene expression and interrupts neural stem cell (NSCs) growth and differentiation, which are likely to be mediated through a decrease in class IIa HDAC phosphorylation and reduced H3K4ac and H3K27ac occupancies at the Dvl1/2 promoters. Finally, the detections of folate concentration in human brain tissue and NSCs and MEF cells indicates that folate deficiency contributes to the observed decreases in Mark2 and Dvl1 expression. Our present study raises a potential common pathogenicity mechanism in human lumbosacral spina bifida about DVL genes rather than their genetic pathogenic role.
Collapse
|
28
|
Wang Y, Zhang J, Han M, Liu B, Gao Y, Ma P, Zhang S, Zheng Q, Song X. SMND-309 promotes neuron survival through the activation of the PI3K/Akt/CREB-signalling pathway. PHARMACEUTICAL BIOLOGY 2016; 54:1982-1990. [PMID: 26911316 DOI: 10.3109/13880209.2015.1137951] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
Context In clinical practice, the promotion of neuron survival is necessary to recover neurological functions after the onset of stroke. Objective This study aimed to investigate the post-ischaemic neuroprotective effect of SMND-309, a novel metabolite of salvianolic acid, on differentiated SH-SY5Y cells. Materials and methods SH-SY5Y cells were differentiated by pre-treating with 5 μM all-trans-retinoic acid for 6 d. The differentiated SH-SY5Y cells were exposed to oxygen-glucose deprivation (OGD) for 2 h and reperfusion (R) for 24 h to induce OGD/R injury. After OGD injury, differentiated SH-SY5Y cells were treated with or without SMND-309 (5, 10, 20 μM) for another 24 h. Cell viability was detected through Cell counting kit-8 assay and lactate dehydrogenase leakage assay. Apoptosis was evaluated through flow cytometry, caspase-3 activity assay. Changes in protein levels were assessed through Western blot. Results SMND-309 ameliorated the degree of injury in the differentiated SH-SY5Y cells by increasing cell viabilities (5 μM, 65.4% ± 4.1%; 10 μM, 69.8% ± 3.7%; 20 μM, 75.3% ± 5.1%) and by reducing LDH activity (20 μM, 2.5 fold) upon OGD/R stimulation. Annexin V-fluorescein isothiocyanate/propidium iodide staining results suggested that apoptotic rate of differentiated SH-SY5Y cells decreased from 43.8% induced by OGD/R injury to 19.2% when the cells were treated with 20 μM SMND-309. SMND-309 significantly increased the Bcl-2 level of the injured differentiated SH-SY5Y cells but decreased the caspase-3 activity of these cells by 1.6-fold. In contrast, SMND-309 did not affect the Bax level of these cells. SMND-309 evidently increased the protein expression of BDNF when Akt and CREB were activated. This function was antagonized by the addition of LY294002. Conclusion SMND-309 can prevent neuronal cell death in vitro. This process may be related to the activation of the PI3K/Akt/CREB-signalling pathway.
Collapse
Affiliation(s)
- Youlei Wang
- a School of Special Education , Binzhou Medical University , Yantai , PR China
| | - Jinjin Zhang
- a School of Special Education , Binzhou Medical University , Yantai , PR China
| | - Meng Han
- b Zibo Occupational Disease Hospital , Zibo , PR China
| | - Bo Liu
- a School of Special Education , Binzhou Medical University , Yantai , PR China
| | - Yulin Gao
- a School of Special Education , Binzhou Medical University , Yantai , PR China
| | - Peng Ma
- a School of Special Education , Binzhou Medical University , Yantai , PR China
| | - Songzi Zhang
- c School of Pharmacy , Taishan Medical College , Taian , PR China
| | - Qingyin Zheng
- a School of Special Education , Binzhou Medical University , Yantai , PR China
- d Department of Otolaryngology - HNS , Case Western Reserve University , Cleveland , OH , USA
| | - Xiaodong Song
- a School of Special Education , Binzhou Medical University , Yantai , PR China
| |
Collapse
|
29
|
Liu X, Yao Z. Chronic over-nutrition and dysregulation of GSK3 in diseases. Nutr Metab (Lond) 2016; 13:49. [PMID: 27493677 PMCID: PMC4972972 DOI: 10.1186/s12986-016-0108-8] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2016] [Accepted: 07/21/2016] [Indexed: 12/16/2022] Open
Abstract
Loss of cellular response to hormonal regulation in maintaining metabolic homeostasis is common in the process of aging. Chronic over-nutrition may render cells insensitive to such a hormonal regulation owing to overstimulation of certain signaling pathways, thus accelerating aging and causing diseases. The glycogen synthase kinase 3 (GSK3) plays a pivotal role in relaying various extracellular and intracellular regulatory signals critical to cell growth, survival, regeneration, or death. The main signaling pathway regulating GSK3 activity through serine-phosphorylation is the phosphoinositide 3-kinase (PI3K)/phosphoinositide-dependent kinase-1 (PDK1)/Akt relay that catalyzes serine-phosphorylation and thus inactivation of GSK3. In addition, perilipin 2 (PLIN2) has recently been shown to regulate GSK3 activation through direct association with GSK3. This review summarizes current understanding on environmental and nutritional factors contributing to GSK3 regulation (or dysregulation) through the PI3K/PDK1/Akt/GSK3 axis, and highlights the newly discovered role that PLIN2 plays in regulating GSK3 activity and GSK3 downstream pathways.
Collapse
Affiliation(s)
- Xunxian Liu
- Department of Biochemistry, Microbiology and Immunology, Ottawa Institute of Systems Biology, University of Ottawa, 451 Smyth Road, Ottawa, ON K1H 8M5 Canada
| | - Zemin Yao
- Department of Biochemistry, Microbiology and Immunology, Ottawa Institute of Systems Biology, University of Ottawa, 451 Smyth Road, Ottawa, ON K1H 8M5 Canada
| |
Collapse
|
30
|
Combined analysis of DNA methylome and transcriptome reveal novel candidate genes with susceptibility to bovine Staphylococcus aureus subclinical mastitis. Sci Rep 2016; 6:29390. [PMID: 27411928 PMCID: PMC4944166 DOI: 10.1038/srep29390] [Citation(s) in RCA: 44] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2016] [Accepted: 06/16/2016] [Indexed: 12/22/2022] Open
Abstract
Subclinical mastitis is a widely spread disease of lactating cows. Its major pathogen is Staphylococcus aureus (S. aureus). In this study, we performed genome-wide integrative analysis of DNA methylation and transcriptional expression to identify candidate genes and pathways relevant to bovine S. aureus subclinical mastitis. The genome-scale DNA methylation profiles of peripheral blood lymphocytes in cows with S. aureus subclinical mastitis (SA group) and healthy controls (CK) were generated by methylated DNA immunoprecipitation combined with microarrays. We identified 1078 differentially methylated genes in SA cows compared with the controls. By integrating DNA methylation and transcriptome data, 58 differentially methylated genes were shared with differently expressed genes, in which 20.7% distinctly hypermethylated genes showed down-regulated expression in SA versus CK, whereas 14.3% dramatically hypomethylated genes showed up-regulated expression. Integrated pathway analysis suggested that these genes were related to inflammation, ErbB signalling pathway and mismatch repair. Further functional analysis revealed that three genes, NRG1, MST1 and NAT9, were strongly correlated with the progression of S. aureus subclinical mastitis and could be used as powerful biomarkers for the improvement of bovine mastitis resistance. Our studies lay the groundwork for epigenetic modification and mechanistic studies on susceptibility of bovine mastitis.
Collapse
|
31
|
Zhang YH, Zhang J, Song JN, Xu X, Cai JS, Zhou Y, Gao JG. The PI3K-AKT-mTOR pathway activates recovery from general anesthesia. Oncotarget 2016; 7:40939-40952. [PMID: 27340771 PMCID: PMC5173033 DOI: 10.18632/oncotarget.10172] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2016] [Accepted: 05/16/2016] [Indexed: 12/29/2022] Open
Abstract
We investigated roles of PI3K-AKT-mTOR pathway in recovery from general anesthesia. Sprague-Dawley rats divided into five groups: saline+artificial cerebrospinal fluid (ACSF; Group A), ketamine+ACSF (Group B), ketamine+IGF-1 (Group C), ketamine+PI3K inhibitor (Group D), and PI3K/Akt agonists (Group E). Proportion of δ waves on ECoGs was recorded. Rats were tested for duration of loss of righting reflex (LORR), ataxic period and behavior in Morris water maze. mRNA and protein expression of members of PI3K-AKT-mTOR pathway were measured by RT-qPCR and Western blots. Histopathologic changes in hippocampal tissues observed by HE staining. We found that the proportion of δ waves decreased in Group C, while increased in Group D compared with Group B; the durations of LORR and ataxic period were shorter in Group C, but longer in Group D. In Morris water maze, escape latency (EL) and duration and frequency of staying on platform was shorter in Group C and longer in Group D than in Group B. Group A exhibited low expression of proteins in PI3K-AKT-mTOR pathway, while p-AKT, p-mTOR and p-P70S6K expression increased in cerebral cortex, brain stem, and thalamus in Group C. By contrast, expression of those proteins was lower in Group D than Group B. Those proteins expressions were higher in Group E than in Group A. HE staining showed that anesthesia may induce cell apoptosis in rat hippocampal CA1 areas, and PI3K/Akt agonists could inhibit apoptosis. Our results suggest that activation of PI3K-AKT-mTOR pathway may promote recovery from general anesthesia and enhance spatial learning and memory.
Collapse
Affiliation(s)
- Yun-Hui Zhang
- Department of Anesthesia, the Second Hospital of Hebei Medical University, Shijiazhuang, P. R. China
| | - Jin Zhang
- Department of Anesthesia, Shijiazhuang Obstetrics and Gynecology Hospital, Shijiazhuang, P. R. China
| | - Jian-Nan Song
- Department of Anesthesia, Chifeng Municipal Hospital, Chifeng, P. R. China
| | - Xue Xu
- Department of Anesthesia, the Second Hospital of Hebei Medical University, Shijiazhuang, P. R. China
| | - Jin-Song Cai
- Department of Anesthesia, the Second Hospital of Hebei Medical University, Shijiazhuang, P. R. China
| | - Yang Zhou
- Department of Anesthesia, Hebei Medical University, Shijiazhuang, P. R. China
| | - Jin-Gui Gao
- Department of Anesthesia, the Second Hospital of Hebei Medical University, Shijiazhuang, P. R. China
| |
Collapse
|
32
|
Zhu M, Li B, Ma X, Huang C, Wu R, Zhu W, Li X, Liang Z, Deng F, Zhu J, Xie W, Yang X, Jiang Y, Wang S, Wu J, Geng S, Xie C, Zhong C, Liu H. Folic Acid Protected Neural Cells Against Aluminum-Maltolate-Induced Apoptosis by Preventing miR-19 Downregulation. Neurochem Res 2016; 41:2110-8. [DOI: 10.1007/s11064-016-1926-9] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2015] [Revised: 03/17/2016] [Accepted: 04/18/2016] [Indexed: 12/27/2022]
|
33
|
Fei Z, Gao Y, Qiu M, Qi X, Dai Y, Wang S, Quan Z, Liu Y, Ou J. Down-regulation of dihydrofolate reductase inhibits the growth of endothelial EA.hy926 cell through induction of G1 cell cycle arrest via up-regulating p53 and p21(waf1/cip1) expression. J Clin Biochem Nutr 2016; 58:105-13. [PMID: 27013776 PMCID: PMC4788405 DOI: 10.3164/jcbn.15-64] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2015] [Accepted: 09/15/2015] [Indexed: 01/10/2023] Open
Abstract
Folic acid supplementation may meliorate cardiovascular disease risk by improving vascular endothelial structure and function. However, the underlying mechanisms are still lack of a global understanding. To be used, folic acid must be converted to 7,8-dihydrofolate by dihydrofolate reductase to generate one-carbon derivatives serving as important cellular cofactors in the synthesis of nucleotides and amino acids required for cell growth. Therefore, this study explored the effect of dihydrofolate reductase knockdown on endothelial EA.hy926 cell growth and the mechanism involved. We found that down-regulation of dihydrofolate reductase inhibited EA.hy926 cell proliferation, and induced G1 phase arrest. Meanwhile, the expression of regulators necessary for G1/S phase transition, such as cyclin-dependent kinases CDK2, CDK4 and CDK6, were remarkably down-regulated; by contrast, the cell cycle inhibitors p21waf/cip1, p27Kip1 and p53 were significantly up-regulated after dihydrofolate reductase knockdown. Furthermore, supplementation of 5-methyltetrahydrofolate to the dihydrofolate reductase knockdown cells could weaken the inhibitory effect of dihydrofolate reductase knockdown on cell proliferation, simultaneously, inducing the expression of p53 and p21waf/cip1 falling back moderately. Our findings suggest that attenuating dihydrofolate reductase may cause imbalanced expression of cell cycle regulators, especially up-regulation of p53-p21waf/cip1 pathway, leading to G1 cell cycle arrest, thereby inhibiting the growth of endothelial EA.hy926 cells.
Collapse
Affiliation(s)
- Zhewei Fei
- Department of General Surgery, Xinhua Hospital (Chong Ming) affiliated to Shanghai Jiaotong University School of Medicine, Shanghai 202150, China
| | - Yong Gao
- Department of Vascular Surgery, The First Affiliated Hospital of Bengbu Medical College, An Hui Province 233003, China
| | - Mingke Qiu
- Department of General Surgery, Xinhua Hospital affiliated to Shanghai Jiaotong University School of Medicine, Shanghai 200092, China
| | - Xianqin Qi
- Department of General Surgery, Xinhua Hospital affiliated to Shanghai Jiaotong University School of Medicine, Shanghai 200092, China
| | - Yuxin Dai
- Department of General Surgery, Xinhua Hospital affiliated to Shanghai Jiaotong University School of Medicine, Shanghai 200092, China
| | - Shuqing Wang
- Department of General Surgery, Xinhua Hospital affiliated to Shanghai Jiaotong University School of Medicine, Shanghai 200092, China
| | - Zhiwei Quan
- Department of General Surgery, Xinhua Hospital affiliated to Shanghai Jiaotong University School of Medicine, Shanghai 200092, China
| | - Yingbin Liu
- Department of General Surgery, Xinhua Hospital affiliated to Shanghai Jiaotong University School of Medicine, Shanghai 200092, China
| | - Jingmin Ou
- Department of General Surgery, Xinhua Hospital affiliated to Shanghai Jiaotong University School of Medicine, Shanghai 200092, China
| |
Collapse
|
34
|
Li W, Liu H, Yu M, Zhang X, Zhang Y, Liu H, Wilson JX, Huang G. Folic Acid Alters Methylation Profile of JAK-STAT and Long-Term Depression Signaling Pathways in Alzheimer's Disease Models. Mol Neurobiol 2015; 53:6548-6556. [PMID: 26627706 DOI: 10.1007/s12035-015-9556-9] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2015] [Accepted: 11/19/2015] [Indexed: 01/15/2023]
Abstract
Dementia has emerged as a major societal issue because of the worldwide aging population and the absence of any effective treatment. DNA methylation is an epigenetic mechanism that evidently plays a role in Alzheimer's disease (AD). Folate acts through one-carbon metabolism to support the methylation of multiple substrates including DNA. We aimed to test the hypothesis that folic acid supplementation alters DNA methylation profiles in AD models. Mouse Neuro-2a cells expressing human APP695 (N2a-APP cells) were incubated with folic acid (2.8-20 μmol/L). AD transgenic mice were fed either folate-deficient or control diets and gavaged daily with water or folic acid (600 μg/kg). Gene methylation profiles were determined by methylated DNA immunoprecipitation-DNA microarray (MeDIP-chip). Differentially methylated regions (DMRs) were determined by Quantitative Differentially Methylated Regions analysis, and differentially methylated genes (DMGs) carrying at least three DMRs were selected for pathway analysis. Folic acid up-regulated DNA methylation levels in N2a-APP cells and AD transgenic mouse brains. Functional network analysis of folic acid-induced DMGs in these AD models revealed subnetworks composed of 24 focus genes in the janus kinase-signal transducer and activator of transcription (JAK-STAT) signaling pathway and 12 focus genes in the long-term depression (LTD) signaling pathway. In conclusion, these results revealed a role for folic acid in the JAK-STAT and LTD signaling pathways which may be relevant to AD pathogenesis. This novel finding may stimulate reinvestigation of folic acid supplementation as a prophylactic or therapeutic treatment for AD.
Collapse
Affiliation(s)
- Wen Li
- Department of Nutrition and Food Science, School of Public Health, Tianjin Medical University, 22 Qixiangtai Road, Heping District, Tianjin, 300070, China
| | - Huan Liu
- Department of Nutrition and Food Science, School of Public Health, Tianjin Medical University, 22 Qixiangtai Road, Heping District, Tianjin, 300070, China
| | - Min Yu
- Department of Nutrition and Food Science, School of Public Health, Tianjin Medical University, 22 Qixiangtai Road, Heping District, Tianjin, 300070, China
| | - Xumei Zhang
- Department of Nutrition and Food Science, School of Public Health, Tianjin Medical University, 22 Qixiangtai Road, Heping District, Tianjin, 300070, China
| | - Yan Zhang
- School of Bioinformatics Science and Technology, Harbin Medical University, Harbin, 150081, China
| | - Hongbo Liu
- School of Bioinformatics Science and Technology, Harbin Medical University, Harbin, 150081, China
| | - John X Wilson
- Department of Exercise and Nutrition Sciences, School of Public Health and Health Professions, University at Buffalo, Buffalo, NY, USA
| | - Guowei Huang
- Department of Nutrition and Food Science, School of Public Health, Tianjin Medical University, 22 Qixiangtai Road, Heping District, Tianjin, 300070, China.
| |
Collapse
|
35
|
Castellani CA, Melka MG, Diehl EJ, Laufer BI, O'Reilly RL, Singh SM. DNA methylation in psychosis: insights into etiology and treatment. Epigenomics 2015; 7:67-74. [PMID: 25687467 DOI: 10.2217/epi.14.66] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Evidence for involvement of DNA methylation in psychosis forms the focus of this perspective. Of interest are results from two independent sets of experiments including rats treated with antipsychotic drugs and monozygotic twins discordant for schizophrenia. The results show that DNA methylation is increased in rats treated with antipsychotic drugs, reflecting the global effect of the drugs. Some of these changes are also seen in affected schizophrenic twins that were treated with antipsychotics. The genes and pathways identified in the unrelated experiments are relevant to neurodevelopment and psychiatric disorders. The common cause is hypothesized to be aberrations resulting from medication use. However, this needs to be established by future studies that address the origin of methylation changes in psychosis.
Collapse
|
36
|
Farias N, Ho N, Butler S, Delaney L, Morrison J, Shahrzad S, Coomber BL. The effects of folic acid on global DNA methylation and colonosphere formation in colon cancer cell lines. J Nutr Biochem 2015; 26:818-26. [PMID: 25804133 DOI: 10.1016/j.jnutbio.2015.02.002] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2014] [Revised: 02/18/2015] [Accepted: 02/20/2015] [Indexed: 02/07/2023]
Abstract
Folate and its synthetic form, folic acid (FA), are essential vitamins for the regeneration of S-adenosyl methionine molecules, thereby maintaining adequate cellular methylation. The deregulation of DNA methylation is a contributing factor to carcinogenesis, as alterations in genetic methylation may contribute to stem cell reprogramming and dedifferentiation processes that lead to a cancer stem cell (CSC) phenotype. Here, we investigate the potential effects of FA exposure on DNA methylation and colonosphere formation in cultured human colorectal cancer (CRC) cell lines. We show for the first time that HCT116, LS174T, and SW480 cells grown without adequate FA demonstrate significantly impaired colonosphere forming ability with limited changes in CD133, CD166, and EpCAM surface expression. These differences were accompanied by concomitant changes to DNA methyltransferase (DNMT) enzyme expression and DNA methylation levels, which varied depending on cell line. Taken together, these results demonstrate an interaction between FA metabolism and CSC phenotype in vitro and help elucidate a connection between supplemental FA intake and CRC development.
Collapse
Affiliation(s)
- Nathan Farias
- Department of Biomedical Sciences, University of Guelph, Guelph, ON, Canada N1G 2W1.
| | - Nelson Ho
- Department of Biomedical Sciences, University of Guelph, Guelph, ON, Canada N1G 2W1.
| | - Stacey Butler
- Department of Biomedical Sciences, University of Guelph, Guelph, ON, Canada N1G 2W1.
| | - Leanne Delaney
- Department of Biomedical Sciences, University of Guelph, Guelph, ON, Canada N1G 2W1.
| | - Jodi Morrison
- Department of Biomedical Sciences, University of Guelph, Guelph, ON, Canada N1G 2W1.
| | | | - Brenda L Coomber
- Department of Biomedical Sciences, University of Guelph, Guelph, ON, Canada N1G 2W1.
| |
Collapse
|
37
|
Melka MG, Castellani CA, O'Reilly R, Singh SM. Insights into the origin of DNA methylation differences between monozygotic twins discordant for schizophrenia. J Mol Psychiatry 2015; 3:7. [PMID: 26137221 PMCID: PMC4487197 DOI: 10.1186/s40303-015-0013-5] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2015] [Accepted: 06/15/2015] [Indexed: 12/22/2022] Open
Abstract
Background DNA methylation differences between monozygotic twins discordant for schizophrenia have been previously reported. However, the origin of methylation differences between monozygotic twins discordant for schizophrenia is not clear. The findings here argue that all DNA methylation differences may not necessarily represent the cause of the disease; rather some may result from the effect of antipsychotics. Methods Methylation differences in rat brain regions and also in two pairs of unrelated monozygotic twins discordant for schizophrenia have been studied using genome-wide DNA methylation arrays at Arraystar Inc. (Rockville, Maryland, USA). The identified gene promoters showing significant alterations to DNA methylation were then further characterized using ingenuity pathway analysis (Ingenuity System Inc, CA, USA). Results Pathway analysis of the most significant gene promoter hyper/hypomethylation revealed a significant enrichment of DNA methylation changes in biological networks and pathways directly relevant to neural development and psychiatric disorders. These included HIPPO signaling (p = 3.93E-03) and MAPK signaling (p = 4.27E-03) pathways involving hypermethylated genes in schizophrenia-affected patients as compared to their unaffected co-twins. Also, a number of significant pathways and networks involving genes with hypomethylated gene promoters have been identified. These included CREB signaling in neurons (p = 1.53E-02), Dopamine-DARPP32 feedback in cAMP signaling (p = 7.43E-03) and Ephrin receptors (p = 1.13E-02). Further, there was significant enrichment for pathways involved in nervous system development and function (p = 1.71E-03-4.28E-02). Conclusion The findings highlight the significance of antipsychotic drugs on DNA methylation in schizophrenia patients. The unique pathways affected by DNA methylation in the two pairs of monozygotic twins suggest that patient-specific pathways are responsible for the disease; suggesting that patient-specific treatment strategies may be necessary in treating the disorder. The study reflects the need for developing personalized medicine approaches that take into consideration epigenetic variations between patients. Electronic supplementary material The online version of this article (doi:10.1186/s40303-015-0013-5) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Melkaye G Melka
- Molecular Genetics Unit, Western Science Centre, Department of Biology, The University of Western Ontario, London, Ontario N6A 5B7 Canada
| | - Christina A Castellani
- Molecular Genetics Unit, Western Science Centre, Department of Biology, The University of Western Ontario, London, Ontario N6A 5B7 Canada
| | - Richard O'Reilly
- Department of Psychiatry, The University of Western Ontario, London, Ontario N6A 5B7 Canada
| | - Shiva M Singh
- Molecular Genetics Unit, Western Science Centre, Department of Biology, The University of Western Ontario, London, Ontario N6A 5B7 Canada
| |
Collapse
|
38
|
Li W, Liu H, Yu M, Zhang X, Zhang M, Wilson JX, Huang G. Folic acid administration inhibits amyloid β-peptide accumulation in APP/PS1 transgenic mice. J Nutr Biochem 2015; 26:883-91. [PMID: 25959374 DOI: 10.1016/j.jnutbio.2015.03.009] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2014] [Revised: 02/24/2015] [Accepted: 03/31/2015] [Indexed: 10/23/2022]
Abstract
Alzheimer's disease (AD) is associated with malnutrition, altered one-carbon metabolism and increased hippocampal amyloid-β peptide (Aβ) accumulation. Aberrant DNA methylation may be an epigenetic mechanism that underlies AD pathogenesis. We hypothesized that folic acid acts through an epigenetic gene silencing mechanism to lower Aβ levels in the APP/PS1 transgenic mouse model of AD. APP/PS1 mice were fed either folate-deficient or control diets and gavaged daily with 120 μg/kg folic acid, 13.3mg/kg S-adenosylmethionine (SAM) or both. Examination of the mice after 60 days of treatment showed that serum folate concentration increased with intake of folic acid but not SAM. Folate deficiency lowered endogenous SAM concentration, whereas neither intervention altered S-adenosylhomocysteine concentration. DNA methyltransferase (DNMT) activity increased with intake of folic acid raised DNMT activity in folate-deficient mice. DNA methylation rate was stimulated by folic acid in the amyloid precursor protein (APP) promoter and in the presenilin 1 (PS1) promoter. Folate deficiency elevated hippocampal APP, PS1 and Aβ protein levels, and these rises were prevented by folic acid. In conclusion, these findings are consistent with a mechanism in which folic acid increases methylation potential and DNMT activity, modifies DNA methylation and ultimately decreases APP, PS1 and Aβ protein levels.
Collapse
Affiliation(s)
- Wen Li
- Department of Nutrition and Food Science, School of Public Health, Tianjin Medical University, Tianjin, China
| | - Huan Liu
- Department of Nutrition and Food Science, School of Public Health, Tianjin Medical University, Tianjin, China
| | - Min Yu
- Department of Nutrition and Food Science, School of Public Health, Tianjin Medical University, Tianjin, China
| | - Xumei Zhang
- Department of Nutrition and Food Science, School of Public Health, Tianjin Medical University, Tianjin, China
| | - Meilin Zhang
- Department of Nutrition and Food Science, School of Public Health, Tianjin Medical University, Tianjin, China
| | - John X Wilson
- Department of Exercise and Nutrition Sciences, School of Public Health and Health Professions, University at Buffalo, Buffalo, NY, USA
| | - Guowei Huang
- Department of Nutrition and Food Science, School of Public Health, Tianjin Medical University, Tianjin, China.
| |
Collapse
|
39
|
The p38 MAPK-regulated PKD1/CREB/Bcl-2 pathway contributes to selenite-induced colorectal cancer cell apoptosis in vitro and in vivo. Cancer Lett 2014; 354:189-99. [DOI: 10.1016/j.canlet.2014.08.009] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2014] [Revised: 08/05/2014] [Accepted: 08/06/2014] [Indexed: 12/20/2022]
|