1
|
Carlberg C, Mycko MP. Linking Mechanisms of Vitamin D Signaling with Multiple Sclerosis. Cells 2023; 12:2391. [PMID: 37830605 PMCID: PMC10571821 DOI: 10.3390/cells12192391] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2023] [Revised: 09/18/2023] [Accepted: 09/28/2023] [Indexed: 10/14/2023] Open
Abstract
Environmental triggers often work via signal transduction cascades that modulate the epigenome and transcriptome of cell types involved in the disease process. Multiple sclerosis (MS) is an autoimmune disease affecting the central nervous system being characterized by a combination of recurring inflammation, demyelination and progressive loss of axons. The mechanisms of MS onset are not fully understood and genetic variants may explain only some 20% of the disease susceptibility. From the environmental factors being involved in disease development low vitamin D levels have been shown to significantly contribute to MS susceptibility. The pro-hormone vitamin D3 acts via its metabolite 1α,25-dihydroxyvitamin D3 (1,25(OH)2D3) as a high affinity ligand to the transcription factor VDR (vitamin D receptor) and is a potent modulator of the epigenome at thousands of genomic regions and the transcriptome of hundreds of genes. A major target tissue of the effects of 1,25(OH)2D3 and VDR are cells of innate and adaptive immunity, such as monocytes, dendritic cells as well as B and T cells. Vitamin D induces immunological tolerance in T cells and reduces inflammatory reactions of various types of immune cells, all of which are implicated in MS pathogenesis. The immunomodulatory effects of 1,25(OH)2D3 contribute to the prevention of MS. However, the strength of the responses to vitamin D3 supplementation is highly variegated between individuals. This review will relate mechanisms of individual's vitamin D responsiveness to MS susceptibility and discuss the prospect of vitamin D3 supplementation as a way to extinguish the autoimmunity in MS.
Collapse
Affiliation(s)
- Carsten Carlberg
- Institute of Animal Reproduction and Food Research, Polish Academy of Sciences, 10-748 Olsztyn, Poland
- Institute of Biomedicine, School of Medicine, University of Eastern Finland, 70211 Kuopio, Finland
| | - Marcin P. Mycko
- Department of Neurology, Laboratory of Neuroimmunology, University of Warmia and Mazury in Olsztyn, Warszawska 30, 10-082 Olsztyn, Poland;
| |
Collapse
|
2
|
Gospodarska E, Ghosh Dastidar R, Carlberg C. Intervention Approaches in Studying the Response to Vitamin D 3 Supplementation. Nutrients 2023; 15:3382. [PMID: 37571318 PMCID: PMC10420637 DOI: 10.3390/nu15153382] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Revised: 07/20/2023] [Accepted: 07/28/2023] [Indexed: 08/13/2023] Open
Abstract
Vitamin D intervention studies are designed to evaluate the impact of the micronutrient vitamin D3 on health and disease. The appropriate design of studies is essential for their quality, successful execution, and interpretation. Randomized controlled trials (RCTs) are considered the "gold standard" for intervention studies. However, the most recent large-scale (up to 25,000 participants), long-term RCTs involving vitamin D3 did not provide any statistically significant primary results. This may be because they are designed similarly to RCTs of a therapeutic drug but not of a nutritional compound and that only a limited set of parameters per individual were determined. We propose an alternative concept using the segregation of study participants into different groups of responsiveness to vitamin D3 supplementation and in parallel measuring a larger set of genome-wide parameters over multiple time points. This is in accordance with recently developed mechanistic modeling approaches that do not require a large number of study participants, as in the case of statistical modeling of the results of a RCT. Our experience is based on the vitamin D intervention trials VitDmet, VitDbol, and VitDHiD, which allowed us to distinguish the study participants into high, mid, and low vitamin D responders. In particular, investigating the vulnerable group of low vitamin D responders will provide future studies with more conclusive results both on the clinical and molecular benefits of vitamin D3 supplementation. In conclusion, our approach suggests a paradigm shift towards detailed investigations of transcriptome and epigenome-wide parameters of a limited set of individuals, who, due to a longitudinal design, can act as their own controls.
Collapse
Affiliation(s)
- Emilia Gospodarska
- Institute of Animal Reproduction and Food Research, Polish Academy of Sciences, PL-10-748 Olsztyn, Poland; (E.G.); (R.G.D.)
| | - Ranjini Ghosh Dastidar
- Institute of Animal Reproduction and Food Research, Polish Academy of Sciences, PL-10-748 Olsztyn, Poland; (E.G.); (R.G.D.)
| | - Carsten Carlberg
- Institute of Animal Reproduction and Food Research, Polish Academy of Sciences, PL-10-748 Olsztyn, Poland; (E.G.); (R.G.D.)
- School of Medicine, Institute of Biomedicine, University of Eastern Finland, FI-70211 Kuopio, Finland
| |
Collapse
|
3
|
Forouhari A, Heidari-Beni M, Veisi S, Poursafa P, Kelishadi R. Effect of epigenetics on vitamin D levels: a systematic review until December 2020. Arch Public Health 2023; 81:106. [PMID: 37322552 DOI: 10.1186/s13690-023-01122-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2022] [Accepted: 05/30/2023] [Indexed: 06/17/2023] Open
Abstract
BACKGROUND The association between epigenetic modification of the genes involved in the vitamin D metabolic pathway and vitamin D metabolites' status has been elucidated incompletely. This study aims to review the studies on the mentioned association and create a brighter view of this topic. METHODS A systematic literature search was conducted in Medline database (PubMed), Scopus, and Web of Science up to the end of November 2020. Original articles which reported the effect of epigenetic alteration-methylation level or its changes-of genes involved in vitamin D regulation on the vitamin D metabolites serum level or its changes were included. The National Institutes of Health (NIH) checklist was used to assess the quality of included articles. RESULTS Among 2566 records, nine reports were included in the systematic review according to the inclusion and exclusion criteria. Studies discussed the contribution of methylation status of members of the cytochrome P450 family (CYP2R1, CYP27B1, CYP24A1), and Vitamin D Receptor (VDR) genes to vitamin D level variance. CYP2R1 methylation status could regulate the contributing factors affecting the vitamin D serum level and predict response to vitamin D supplementation. Studies revealed that impaired methylation of CYP24A1 occurs in response to an increase in serum level of 25-hydroxyvitamin D (25(OH)D). It is reported that the association between methylation levels of CYP2R1, CYP24A1, and VDR genes and 25(OH)D level is not affected by the methyl-donors bioavailability. CONCLUSIONS The epigenetic modification of the vitamin D-related genes could explain the vitamin D levels variation among populations. Large-scale clinical trials in various ethnicities are suggested to find the effect of epigenetics on vitamin D response variation. REGISTRATION The systematic review protocol was registered on PROSPERO (registration number: CRD42022306327).
Collapse
Affiliation(s)
- Ali Forouhari
- Isfahan Eye Research Center, Department of Ophthalmology, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Motahar Heidari-Beni
- Department of Nutrition, Child Growth and Development Research Center, Research Institute for Primordial Prevention of Non-Communicable Disease, Isfahan University of Medical Sciences, Isfahan, Iran.
| | - Shaahin Veisi
- School of medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Parnian Poursafa
- Interdisciplinary Neuroscience, Interdisciplinary Center for Neuroscience, Goethe University, Frankfurt, Germany
| | - Roya Kelishadi
- Department of Pediatrics, Child Growth and Development Research Center, Research Institute for Primordial Prevention of Non-Communicable Disease, Isfahan University of Medical Sciences, Isfahan, Iran
| |
Collapse
|
4
|
Carlberg C, Raczyk M, Zawrotna N. Vitamin D: A master example of nutrigenomics. Redox Biol 2023; 62:102695. [PMID: 37043983 PMCID: PMC10119805 DOI: 10.1016/j.redox.2023.102695] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2023] [Accepted: 04/03/2023] [Indexed: 04/08/2023] Open
Abstract
Nutrigenomics attempts to characterize and integrate the relation between dietary molecules and gene expression on a genome-wide level. One of the biologically active nutritional compounds is vitamin D3, which activates via its metabolite 1α,25-dihydroxyvitamin D3 (1,25(OH)2D3) the nuclear receptor VDR (vitamin D receptor). Vitamin D3 can be synthesized endogenously in our skin, but since we spend long times indoors and often live at higher latitudes where for many winter months UV-B radiation is too low, it became a true vitamin. The ligand-inducible transcription factor VDR is expressed in the majority of human tissues and cell types, where it modulates the epigenome at thousands of genomic sites. In a tissue-specific fashion this results in the up- and downregulation of primary vitamin D target genes, some of which are involved in attenuating oxidative stress. Vitamin D affects a wide range of physiological functions including the control of metabolism, bone formation and immunity. In this review, we will discuss how the epigenome- and transcriptome-wide effects of 1,25(OH)2D3 and its receptor VDR serve as a master example in nutrigenomics. In this context, we will outline the basis of a mechanistic understanding for personalized nutrition with vitamin D3.
Collapse
|
5
|
Aita R, Aldea D, Hassan S, Hur J, Pellon-Cardenas O, Cohen E, Chen L, Shroyer N, Christakos S, Verzi MP, Fleet JC. Genomic analysis of 1,25-dihydroxyvitamin D 3 action in mouse intestine reveals compartment and segment-specific gene regulatory effects. J Biol Chem 2022; 298:102213. [PMID: 35779631 PMCID: PMC9358460 DOI: 10.1016/j.jbc.2022.102213] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2022] [Revised: 06/24/2022] [Accepted: 06/25/2022] [Indexed: 01/01/2023] Open
Abstract
1,25-dihydroxyvitamin D (VD) regulates intestinal calcium absorption in the small intestine (SI) and also reduces risk of colonic inflammation and cancer. However, the intestine compartment-specific target genes of VD signaling are unknown. Here, we examined VD action across three functional compartments of the intestine using RNA-seq to measure VD-induced changes in gene expression and Chromatin Immunoprecipitation with next generation sequencing to measure vitamin D receptor (VDR) genomic binding. We found that VD regulated the expression of 55 shared transcripts in the SI crypt, SI villi, and in the colon, including Cyp24a1, S100g, Trpv6, and Slc30a10. Other VD-regulated transcripts were unique to the SI crypt (162 up, 210 down), villi (199 up, 63 down), or colon (102 up, 28 down), but this did not correlate with mRNA levels of the VDR. Furthermore, bioinformatic analysis identified unique VD-regulated biological functions in each compartment. VDR-binding sites were found in 70% of upregulated genes from the colon and SI villi but were less common in upregulated genes from the SI crypt and among downregulated genes, suggesting some transcript-level VD effects are likely indirect. Consistent with this, we show that VD regulated the expression of other transcription factors and their downstream targets. Finally, we demonstrate that compartment-specific VD-mediated gene expression was associated with compartment-specific VDR-binding sites (<30% of targets) and enrichment of intestinal transcription factor-binding motifs within VDR-binding peaks. Taken together, our data reveal unique spatial patterns of VD action in the intestine and suggest novel mechanisms that could account for compartment-specific functions of this hormone.
Collapse
Affiliation(s)
- Rohit Aita
- Department of Genetics, Human Genetics Institute of New Jersey, Rutgers Cancer Institute of New Jersey, Institute of Food, Nutrition, and Health, EOHSI, Rutgers University, New Jersey, USA
| | - Dennis Aldea
- Department of Genetics, Human Genetics Institute of New Jersey, Rutgers Cancer Institute of New Jersey, Institute of Food, Nutrition, and Health, EOHSI, Rutgers University, New Jersey, USA
| | - Sohaib Hassan
- Department of Genetics, Human Genetics Institute of New Jersey, Rutgers Cancer Institute of New Jersey, Institute of Food, Nutrition, and Health, EOHSI, Rutgers University, New Jersey, USA
| | - Joseph Hur
- Department of Genetics, Human Genetics Institute of New Jersey, Rutgers Cancer Institute of New Jersey, Institute of Food, Nutrition, and Health, EOHSI, Rutgers University, New Jersey, USA
| | - Oscar Pellon-Cardenas
- Department of Genetics, Human Genetics Institute of New Jersey, Rutgers Cancer Institute of New Jersey, Institute of Food, Nutrition, and Health, EOHSI, Rutgers University, New Jersey, USA
| | - Evan Cohen
- Department of Genetics, Human Genetics Institute of New Jersey, Rutgers Cancer Institute of New Jersey, Institute of Food, Nutrition, and Health, EOHSI, Rutgers University, New Jersey, USA
| | - Lei Chen
- Department of Genetics, Human Genetics Institute of New Jersey, Rutgers Cancer Institute of New Jersey, Institute of Food, Nutrition, and Health, EOHSI, Rutgers University, New Jersey, USA
| | - Noah Shroyer
- Department of Medicine, Section of Gastroenterology and Hepatology, Baylor College of Medicine, Houston, Texas, USA
| | - Sylvia Christakos
- Department of Microbiology, Biochemistry, and Molecular Genetics, Rutgers, The State University of New Jersey, New Jersey Medical School, Newark, New Jersey, USA.
| | - Michael P Verzi
- Department of Genetics, Human Genetics Institute of New Jersey, Rutgers Cancer Institute of New Jersey, Institute of Food, Nutrition, and Health, EOHSI, Rutgers University, New Jersey, USA.
| | - James C Fleet
- Department of Nutritional Science, University of Texas, Austin, Texas, USA.
| |
Collapse
|
6
|
Mikhaylova AV, McHugh CP, Polfus LM, Raffield LM, Boorgula MP, Blackwell TW, Brody JA, Broome J, Chami N, Chen MH, Conomos MP, Cox C, Curran JE, Daya M, Ekunwe L, Glahn DC, Heard-Costa N, Highland HM, Hobbs BD, Ilboudo Y, Jain D, Lange LA, Miller-Fleming TW, Min N, Moon JY, Preuss MH, Rosen J, Ryan K, Smith AV, Sun Q, Surendran P, de Vries PS, Walter K, Wang Z, Wheeler M, Yanek LR, Zhong X, Abecasis GR, Almasy L, Barnes KC, Beaty TH, Becker LC, Blangero J, Boerwinkle E, Butterworth AS, Chavan S, Cho MH, Choquet H, Correa A, Cox N, DeMeo DL, Faraday N, Fornage M, Gerszten RE, Hou L, Johnson AD, Jorgenson E, Kaplan R, Kooperberg C, Kundu K, Laurie CA, Lettre G, Lewis JP, Li B, Li Y, Lloyd-Jones DM, Loos RJF, Manichaikul A, Meyers DA, Mitchell BD, Morrison AC, Ngo D, Nickerson DA, Nongmaithem S, North KE, O'Connell JR, Ortega VE, Pankratz N, Perry JA, Psaty BM, Rich SS, Soranzo N, Rotter JI, Silverman EK, Smith NL, Tang H, Tracy RP, Thornton TA, Vasan RS, Zein J, Mathias RA, Reiner AP, Auer PL. Whole-genome sequencing in diverse subjects identifies genetic correlates of leukocyte traits: The NHLBI TOPMed program. Am J Hum Genet 2021; 108:1836-1851. [PMID: 34582791 PMCID: PMC8546043 DOI: 10.1016/j.ajhg.2021.08.007] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2021] [Accepted: 08/11/2021] [Indexed: 12/15/2022] Open
Abstract
Many common and rare variants associated with hematologic traits have been discovered through imputation on large-scale reference panels. However, the majority of genome-wide association studies (GWASs) have been conducted in Europeans, and determining causal variants has proved challenging. We performed a GWAS of total leukocyte, neutrophil, lymphocyte, monocyte, eosinophil, and basophil counts generated from 109,563,748 variants in the autosomes and the X chromosome in the Trans-Omics for Precision Medicine (TOPMed) program, which included data from 61,802 individuals of diverse ancestry. We discovered and replicated 7 leukocyte trait associations, including (1) the association between a chromosome X, pseudo-autosomal region (PAR), noncoding variant located between cytokine receptor genes (CSF2RA and CLRF2) and lower eosinophil count; and (2) associations between single variants found predominantly among African Americans at the S1PR3 (9q22.1) and HBB (11p15.4) loci and monocyte and lymphocyte counts, respectively. We further provide evidence indicating that the newly discovered eosinophil-lowering chromosome X PAR variant might be associated with reduced susceptibility to common allergic diseases such as atopic dermatitis and asthma. Additionally, we found a burden of very rare FLT3 (13q12.2) variants associated with monocyte counts. Together, these results emphasize the utility of whole-genome sequencing in diverse samples in identifying associations missed by European-ancestry-driven GWASs.
Collapse
MESH Headings
- Asthma/epidemiology
- Asthma/genetics
- Asthma/metabolism
- Asthma/pathology
- Biomarkers/metabolism
- Dermatitis, Atopic/epidemiology
- Dermatitis, Atopic/genetics
- Dermatitis, Atopic/metabolism
- Dermatitis, Atopic/pathology
- Genetic Predisposition to Disease
- Genome, Human
- Genome-Wide Association Study
- Humans
- Leukocytes/pathology
- National Heart, Lung, and Blood Institute (U.S.)
- Phenotype
- Polymorphism, Single Nucleotide
- Prognosis
- Proteome/analysis
- Proteome/metabolism
- Pulmonary Disease, Chronic Obstructive/epidemiology
- Pulmonary Disease, Chronic Obstructive/genetics
- Pulmonary Disease, Chronic Obstructive/metabolism
- Pulmonary Disease, Chronic Obstructive/pathology
- Quantitative Trait Loci
- United Kingdom/epidemiology
- United States/epidemiology
- Whole Genome Sequencing
Collapse
Affiliation(s)
- Anna V Mikhaylova
- Department of Biostatistics, University of Washington, Seattle, WA 98105, USA
| | - Caitlin P McHugh
- Department of Biostatistics, University of Washington, Seattle, WA 98105, USA
| | - Linda M Polfus
- Keck School of Medicine, University of Southern California, Los Angeles, CA 90033, USA
| | - Laura M Raffield
- Department of Genetics, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Meher Preethi Boorgula
- Division of Biomedical Informatics and Personalized Medicine, School of Medicine, University of Colorado, Anschutz Medical Campus, Aurora, CO 80045, USA
| | - Thomas W Blackwell
- TOPMed Informatics Research Center, Department of Biostatistics, University of Michigan, Ann Arbor, MI 48109, USA
| | - Jennifer A Brody
- Cardiovascular Health Research Unit, Department of Medicine, University of Washington, Seattle, WA 98105, USA
| | - Jai Broome
- Department of Biostatistics, University of Washington, Seattle, WA 98105, USA
| | - Nathalie Chami
- The Charles Bronfman Institute for Personalized Medicine, Icahn School of Medicine at Mount Sinai, New York City, NY 10029, USA
| | - Ming-Huei Chen
- Population Sciences Branch, Division of Intramural Research, National Heart, Lung and Blood Institute, Bethesda, MD 20892, USA; National Heart, Lung and Blood Institute's and Boston University's Framingham Heart Study, Framingham, MA 01701, USA
| | - Matthew P Conomos
- Department of Biostatistics, University of Washington, Seattle, WA 98105, USA
| | - Corey Cox
- Division of Biomedical Informatics and Personalized Medicine, School of Medicine, University of Colorado, Anschutz Medical Campus, Aurora, CO 80045, USA
| | - Joanne E Curran
- Department of Human Genetics and South Texas Diabetes and Obesity Institute, University of Texas Rio Grande Valley School of Medicine, Brownsville, TX 78539, USA
| | - Michelle Daya
- Division of Biomedical Informatics and Personalized Medicine, School of Medicine, University of Colorado, Anschutz Medical Campus, Aurora, CO 80045, USA
| | - Lynette Ekunwe
- Department of Medicine, University of Mississippi Medical Center, Jackson, MS 39216, USA
| | - David C Glahn
- Department of Psychiatry, Boston Children's Hospital and Harvard Medical School, Boston, MA 02155, USA
| | - Nancy Heard-Costa
- National Heart, Lung and Blood Institute's and Boston University's Framingham Heart Study, Framingham, MA 01701, USA; Department of Neurology, Boston University School of Medicine, Boston, MA 02118, USA
| | - Heather M Highland
- Department of Epidemiology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Brian D Hobbs
- Channing Division of Network Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA 02115, USA; Division of Pulmonary and Critical Care Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA 02115, USA
| | - Yann Ilboudo
- Montréal Heart Institute, Montréal, Québec H1T 1C8, Canada; Faculté de Médecine, Université de Montréal, Montréal, Québec H1T 1C8, Canada
| | - Deepti Jain
- Department of Biostatistics, University of Washington, Seattle, WA 98105, USA
| | - Leslie A Lange
- Division of Biomedical Informatics and Personalized Medicine, School of Medicine, University of Colorado, Anschutz Medical Campus, Aurora, CO 80045, USA
| | - Tyne W Miller-Fleming
- Division of Genetic Medicine, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN 37240, USA
| | - Nancy Min
- Department of Medicine, University of Mississippi Medical Center, Jackson, MS 39216, USA
| | - Jee-Young Moon
- Department of Epidemiology and Population Health, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| | - Michael H Preuss
- The Charles Bronfman Institute for Personalized Medicine, Icahn School of Medicine at Mount Sinai, New York City, NY 10029, USA
| | - Jonathon Rosen
- Department of Biostatistics, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Kathleen Ryan
- Department of Medicine, Division of Endocrinology, Diabetes, and Nutrition, University of Maryland School of Medicine, Baltimore, MD 21201, USA
| | - Albert V Smith
- TOPMed Informatics Research Center, Department of Biostatistics, University of Michigan, Ann Arbor, MI 48109, USA
| | - Quan Sun
- Department of Biostatistics, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Praveen Surendran
- British Heart Foundation Cardiovascular Epidemiology Unit, Department of Public Health and Primary Care, University of Cambridge, Cambridge CB1 8RN, UK; British Heart Foundation Centre of Research Excellence, University of Cambridge, Cambridge CB1 8RN, UK; Health Data Research UK Cambridge, Wellcome Genome Campus and University of Cambridge, Cambridge CB1 8RN, UK; Rutherford Fund Fellow, Department of Public Health and Primary Care, University of Cambridge, Cambridge CB1 8RN, UK
| | - Paul S de Vries
- Human Genetics Center, Department of Epidemiology, Human Genetics, and Environmental Sciences, School of Public Health, The University of Texas Health Science Center at Houston, Houston, TX 77030, USA
| | - Klaudia Walter
- Department of Human Genetics, Wellcome Sanger Institute, Hinxton, CB10 1SA, UK
| | - Zhe Wang
- The Charles Bronfman Institute for Personalized Medicine, Icahn School of Medicine at Mount Sinai, New York City, NY 10029, USA
| | - Marsha Wheeler
- Department of Genome Sciences, University of Washington, Seattle, WA 98105, USA
| | - Lisa R Yanek
- Division of General Internal Medicine, Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Xue Zhong
- Division of Genetic Medicine, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN 37240, USA
| | - Goncalo R Abecasis
- TOPMed Informatics Research Center, Department of Biostatistics, University of Michigan, Ann Arbor, MI 48109, USA
| | - Laura Almasy
- Department of Biomedical and Health Informatics, the Children's Hospital of Philadelphia, Philadelphia, PA 19104, USA; Department of Genetics, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104, USA
| | - Kathleen C Barnes
- Division of Biomedical Informatics and Personalized Medicine, School of Medicine, University of Colorado, Anschutz Medical Campus, Aurora, CO 80045, USA
| | - Terri H Beaty
- School of Public Health, John Hopkins University, Baltimore, MD 21205, USA
| | - Lewis C Becker
- Division of Cardiology, Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - John Blangero
- Department of Human Genetics and South Texas Diabetes and Obesity Institute, University of Texas Rio Grande Valley School of Medicine, Brownsville, TX 78539, USA
| | - Eric Boerwinkle
- Human Genetics Center, Department of Epidemiology, Human Genetics, and Environmental Sciences, School of Public Health, The University of Texas Health Science Center at Houston, Houston, TX 77030, USA
| | - Adam S Butterworth
- British Heart Foundation Cardiovascular Epidemiology Unit, Department of Public Health and Primary Care, University of Cambridge, Cambridge CB1 8RN, UK; British Heart Foundation Centre of Research Excellence, University of Cambridge, Cambridge CB1 8RN, UK; Health Data Research UK Cambridge, Wellcome Genome Campus and University of Cambridge, Cambridge CB1 8RN, UK; National Institute for Health Research Blood and Transplant Research Unit in Donor Health and Genomics, University of Cambridge, Cambridge CB1 8RN, UK; National Institute for Health Research Cambridge Biomedical Research Centre, University of Cambridge and Cambridge University Hospitals, Cambridge CB1 8RN, UK
| | - Sameer Chavan
- Division of Biomedical Informatics and Personalized Medicine, School of Medicine, University of Colorado, Anschutz Medical Campus, Aurora, CO 80045, USA
| | - Michael H Cho
- Channing Division of Network Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA 02115, USA
| | - Hélène Choquet
- Division of Research, Kaiser Permanente Northern California, Oakland, CA 94601, USA
| | - Adolfo Correa
- Department of Medicine, University of Mississippi Medical Center, Jackson, MS 39216, USA
| | - Nancy Cox
- Division of Genetic Medicine, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN 37240, USA
| | - Dawn L DeMeo
- Channing Division of Network Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA 02115, USA; Division of Pulmonary and Critical Care Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA 02115, USA
| | - Nauder Faraday
- Department of Anesthesiology and Critical Care Medicine, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Myriam Fornage
- University of Texas Health Science Center at Houston, Houston, TX 77030, USA
| | - Robert E Gerszten
- Division of Cardiovascular Medicine, Beth Israel Deaconess Medical Center, Boston, MA 02215, USA; Broad Institute of Harvard and MIT, Cambridge, MA 02142, USA
| | - Lifang Hou
- Institute for Public Health and Medicine, Northwestern University, Chicago, IL 60661, USA
| | - Andrew D Johnson
- Population Sciences Branch, Division of Intramural Research, National Heart, Lung and Blood Institute, Bethesda, MD 20892, USA; National Heart, Lung and Blood Institute's and Boston University's Framingham Heart Study, Framingham, MA 01701, USA
| | | | - Robert Kaplan
- Department of Epidemiology and Population Health, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| | - Charles Kooperberg
- Public Health Sciences Division, Fred Hutchinson Cancer Research Center, Seattle, WA 98109, USA
| | - Kousik Kundu
- Department of Human Genetics, Wellcome Sanger Institute, Hinxton, CB10 1SA, UK; Department of Haematology, University of Cambridge, Cambridge CB1 8RN, UK
| | - Cecelia A Laurie
- Department of Biostatistics, University of Washington, Seattle, WA 98105, USA
| | - Guillaume Lettre
- Montréal Heart Institute, Montréal, Québec H1T 1C8, Canada; Faculté de Médecine, Université de Montréal, Montréal, Québec H1T 1C8, Canada
| | - Joshua P Lewis
- Department of Medicine, Division of Endocrinology, Diabetes, and Nutrition, University of Maryland School of Medicine, Baltimore, MD 21201, USA
| | - Bingshan Li
- Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, TN 37232, USA
| | - Yun Li
- Departments of Biostatistics, Genetics, and Computer Science, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Donald M Lloyd-Jones
- Division of Cardiology, Department of Medicine, Feinberg School of Medicine, Northwestern University, Chicago, IL 60661, USA; Department of Preventive Medicine, Feinberg School of Medicine, Northwestern University, Chicago, IL 60661, USA
| | - Ruth J F Loos
- The Charles Bronfman Institute for Personalized Medicine, Icahn School of Medicine at Mount Sinai, New York City, NY 10029, USA
| | - Ani Manichaikul
- Center for Public Health Genomics, Department of Public Health Sciences, University of Virginia School of Medicine, Charlottesville, VA 22908, USA
| | - Deborah A Meyers
- Division of Genetics, Genomics and Precision Medicine, Department of Medicine, University of Arizona, Tucson, AZ 85724, USA
| | - Braxton D Mitchell
- Department of Medicine, Division of Endocrinology, Diabetes, and Nutrition, University of Maryland School of Medicine, Baltimore, MD 21201, USA; Geriatrics Research and Education Clinical Center, Baltimore Veterans Administration Medical Center, Baltimore, MD 21201, USA
| | - Alanna C Morrison
- Human Genetics Center, Department of Epidemiology, Human Genetics, and Environmental Sciences, School of Public Health, The University of Texas Health Science Center at Houston, Houston, TX 77030, USA
| | - Debby Ngo
- Broad Institute of Harvard and MIT, Cambridge, MA 02142, USA
| | - Deborah A Nickerson
- Department of Genome Sciences, University of Washington, Seattle, WA 98105, USA
| | - Suraj Nongmaithem
- Department of Human Genetics, Wellcome Sanger Institute, Hinxton, CB10 1SA, UK
| | - Kari E North
- Department of Epidemiology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Jeffrey R O'Connell
- Department of Medicine, Division of Endocrinology, Diabetes, and Nutrition, University of Maryland School of Medicine, Baltimore, MD 21201, USA
| | - Victor E Ortega
- Department of Internal Medicine, Center for Precision Medicine, Wake Forest School of Medicine, Winston-Salem, NC 27101, USA
| | - Nathan Pankratz
- Department of Laboratory Medicine and Pathology, University of Minnesota Medical School, Minneapolis, MN 55455, USA
| | - James A Perry
- Department of Medicine, University of Maryland School of Medicine, Baltimore, MD 21201, USA
| | - Bruce M Psaty
- Department of Epidemiology, University of Washington, Seattle, WA 98105, USA; Department of Health Service, University of Washington, Seattle, WA 98105, USA; Department of Medicine, University of Washington, Seattle, WA 98105, USA
| | - Stephen S Rich
- Center for Public Health Genomics, Department of Public Health Sciences, University of Virginia School of Medicine, Charlottesville, VA 22908, USA
| | - Nicole Soranzo
- Department of Human Genetics, Wellcome Sanger Institute, Hinxton, CB10 1SA, UK; National Institute for Health Research Blood and Transplant Research Unit in Donor Health and Genomics, University of Cambridge, Cambridge CB1 8RN, UK; Department of Haematology, University of Cambridge, Cambridge CB1 8RN, UK; British Heart Foundation Centre of Excellence, Division of Cardiovascular Medicine, Addenbrooke's Hospital, Cambridge CB1 8RN, UK
| | - Jerome I Rotter
- The Institute for Translational Genomics and Population Sciences, Department of Pediatrics, The Lundquist Institute for Biomedical Innovation at Harbor-UCLA Medical Center, Torrance, CA 90502, USA
| | - Edwin K Silverman
- Channing Division of Network Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA 02115, USA; Division of Pulmonary and Critical Care Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA 02115, USA
| | - Nicholas L Smith
- Department of Epidemiology, University of Washington, Seattle, WA 98105, USA; Department of Health Service, University of Washington, Seattle, WA 98105, USA; Seattle Epidemiologic Research and Information Center, Department of Veterans Affairs Office of Research and Development, Seattle, WA 98105, USA
| | - Hua Tang
- Department of Genetics, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Russell P Tracy
- Department of Pathology and Laboratory Medicine and Department of Biochemistry, University of Vermont Larner College of Medicine, Colchester, VT 05446, USA
| | - Timothy A Thornton
- Department of Biostatistics, University of Washington, Seattle, WA 98105, USA; Regeneron Genetics Center, Tarrytown, NY 10591, USA
| | - Ramachandran S Vasan
- National Heart, Lung and Blood Institute's and Boston University's Framingham Heart Study, Framingham, MA 01701, USA; Departments of Cardiology and Preventive Medicine, Department of Medicine, Boston University School of Medicine, Boston, MA 02118, USA; Department of Epidemiology, Boston University School of Public Health, Boston, MA 02118, USA
| | - Joe Zein
- Respiratory Institute, Cleveland Clinic, Cleveland, OH 44195, USA
| | - Rasika A Mathias
- Division of Allergy and Clinical Immunology, Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Alexander P Reiner
- Department of Medicine, University of Maryland School of Medicine, Baltimore, MD 21201, USA.
| | - Paul L Auer
- Zilber School of Public Health, University of Wisconsin, Milwaukee, Milwaukee, WI 53205, USA.
| |
Collapse
|
7
|
Li S, De La Cruz J, Hutchens S, Mukhopadhyay S, Criss ZK, Aita R, Pellon-Cardenas O, Hur J, Soteropoulos P, Husain S, Dhawan P, Verlinden L, Carmeliet G, Fleet JC, Shroyer NF, Verzi MP, Christakos S. Analysis of 1,25-Dihydroxyvitamin D 3 Genomic Action Reveals Calcium-Regulating and Calcium-Independent Effects in Mouse Intestine and Human Enteroids. Mol Cell Biol 2020; 41:e00372-20. [PMID: 33139494 PMCID: PMC7849401 DOI: 10.1128/mcb.00372-20] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2020] [Revised: 10/05/2020] [Accepted: 10/24/2020] [Indexed: 01/27/2023] Open
Abstract
Although vitamin D is critical for the function of the intestine, most studies have focused on the duodenum. We show that transgenic expression of the vitamin D receptor (VDR) only in the distal intestine of VDR null mice (KO/TG mice) results in the normalization of serum calcium and rescue of rickets. Although it had been suggested that calcium transport in the distal intestine involves a paracellular process, we found that the 1,25-dihydroxyvitamin D3 [1,25(OH)2D3]-activated genes in the proximal intestine associated with active calcium transport (Trpv6, S100g, and Atp2b1) are also induced by 1,25(OH)2D3 in the distal intestine of KO/TG mice. In addition, Slc30a10, encoding a manganese efflux transporter, was one of the genes most induced by 1,25(OH)2D3 in both proximal and distal intestine. Both villus and crypt were found to express Vdr and VDR target genes. RNA sequence (RNA-seq) analysis of human enteroids indicated that the effects of 1,25(OH)2D3 observed in mice are conserved in humans. Using Slc30a10-/- mice, a loss of cortical bone and a marked decrease in S100g and Trpv6 in the intestine was observed. Our findings suggest an interrelationship between vitamin D and intestinal Mn efflux and indicate the importance of distal intestinal segments to vitamin D action.
Collapse
Affiliation(s)
- Shanshan Li
- Department of Microbiology, Biochemistry and Molecular Genetics, Rutgers, The State University of New Jersey, New Jersey Medical School, Newark, New Jersey, USA
| | - Jessica De La Cruz
- Department of Microbiology, Biochemistry and Molecular Genetics, Rutgers, The State University of New Jersey, New Jersey Medical School, Newark, New Jersey, USA
| | - Steven Hutchens
- Division of Pharmacology and Toxicology, College of Pharmacy, Institute for Cellular and Molecular Biology and Institute for Neuroscience, The University of Texas at Austin, Austin, Texas, USA
| | - Somshuvra Mukhopadhyay
- Division of Pharmacology and Toxicology, College of Pharmacy, Institute for Cellular and Molecular Biology and Institute for Neuroscience, The University of Texas at Austin, Austin, Texas, USA
| | - Zachary K Criss
- Integrative Molecular and Biomedical Sciences Graduate Program, Division of Medicine, Baylor College of Medicine, Houston, Texas, USA
| | - Rohit Aita
- Department of Genetics, Rutgers University, New Brunswick, New Jersey, USA
| | | | - Joseph Hur
- Department of Genetics, Rutgers University, New Brunswick, New Jersey, USA
| | - Patricia Soteropoulos
- Department of Microbiology, Biochemistry and Molecular Genetics, Rutgers, The State University of New Jersey, New Jersey Medical School, Newark, New Jersey, USA
- Genomics Center, Rutgers, The State University of New Jersey, New Jersey Medical School, Newark, New Jersey, USA
| | - Seema Husain
- Department of Microbiology, Biochemistry and Molecular Genetics, Rutgers, The State University of New Jersey, New Jersey Medical School, Newark, New Jersey, USA
- Genomics Center, Rutgers, The State University of New Jersey, New Jersey Medical School, Newark, New Jersey, USA
| | - Puneet Dhawan
- Department of Microbiology, Biochemistry and Molecular Genetics, Rutgers, The State University of New Jersey, New Jersey Medical School, Newark, New Jersey, USA
- Genomics Center, Rutgers, The State University of New Jersey, New Jersey Medical School, Newark, New Jersey, USA
| | - Lieve Verlinden
- Laboratory of Clinical and Experimental Endocrinology, Department of Chronic Diseases and Metabolism, Leuven, Belgium
| | - Geert Carmeliet
- Laboratory of Clinical and Experimental Endocrinology, Department of Chronic Diseases and Metabolism, Leuven, Belgium
| | - James C Fleet
- Department of Nutrition Science, Purdue University, West Lafayette, Indiana, USA
| | - Noah F Shroyer
- Integrative Molecular and Biomedical Sciences Graduate Program, Division of Medicine, Baylor College of Medicine, Houston, Texas, USA
| | - Michael P Verzi
- Department of Genetics, Rutgers University, New Brunswick, New Jersey, USA
| | - Sylvia Christakos
- Department of Microbiology, Biochemistry and Molecular Genetics, Rutgers, The State University of New Jersey, New Jersey Medical School, Newark, New Jersey, USA
| |
Collapse
|
8
|
Riccardi C, Perrone L, Napolitano F, Sampaolo S, Melone MAB. Understanding the Biological Activities of Vitamin D in Type 1 Neurofibromatosis: New Insights into Disease Pathogenesis and Therapeutic Design. Cancers (Basel) 2020; 12:E2965. [PMID: 33066259 PMCID: PMC7602022 DOI: 10.3390/cancers12102965] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2020] [Revised: 09/18/2020] [Accepted: 10/08/2020] [Indexed: 02/07/2023] Open
Abstract
Vitamin D is a fat-soluble steroid hormone playing a pivotal role in calcium and phosphate homeostasis as well as in bone health. Vitamin D levels are not exclusively dependent on food intake. Indeed, the endogenous production-occurring in the skin and dependent on sun exposure-contributes to the majority amount of vitamin D present in the body. Since vitamin D receptors (VDRs) are ubiquitous and drive the expression of hundreds of genes, the interest in vitamin D has tremendously grown and its role in different diseases has been extensively studied. Several investigations indicated that vitamin D action extends far beyond bone health and calcium metabolism, showing broad effects on a variety of critical illnesses, including cancer, infections, cardiovascular and autoimmune diseases. Epidemiological studies indicated that low circulating vitamin D levels inversely correlate with cutaneous manifestations and bone abnormalities, clinical hallmarks of neurofibromatosis type 1 (NF1). NF1 is an autosomal dominant tumour predisposition syndrome causing significant pain and morbidity, for which limited treatment options are available. In this context, vitamin D or its analogues have been used to treat both skin and bone lesions in NF1 patients, alone or combined with other therapeutic agents. Here we provide an overview of vitamin D, its characteristic nutritional properties relevant for health benefits and its role in NF1 disorder. We focus on preclinical and clinical studies that demonstrated the clinical correlation between vitamin D status and NF1 disease, thus providing important insights into disease pathogenesis and new opportunities for targeted therapy.
Collapse
Affiliation(s)
- Claudia Riccardi
- Department of Chemical Sciences, University of Naples Federico II, via Cintia 21, I-80126 Naples, Italy;
- Department of Advanced Medical and Surgical Sciences, 2nd Division of Neurology, Center for Rare Diseases and InterUniversity Center for Research in Neurosciences, University of Campania Luigi Vanvitelli, via Sergio Pansini 5, I-80131 Naples, Italy; (L.P.); (F.N.); (S.S.)
| | - Lorena Perrone
- Department of Advanced Medical and Surgical Sciences, 2nd Division of Neurology, Center for Rare Diseases and InterUniversity Center for Research in Neurosciences, University of Campania Luigi Vanvitelli, via Sergio Pansini 5, I-80131 Naples, Italy; (L.P.); (F.N.); (S.S.)
| | - Filomena Napolitano
- Department of Advanced Medical and Surgical Sciences, 2nd Division of Neurology, Center for Rare Diseases and InterUniversity Center for Research in Neurosciences, University of Campania Luigi Vanvitelli, via Sergio Pansini 5, I-80131 Naples, Italy; (L.P.); (F.N.); (S.S.)
| | - Simone Sampaolo
- Department of Advanced Medical and Surgical Sciences, 2nd Division of Neurology, Center for Rare Diseases and InterUniversity Center for Research in Neurosciences, University of Campania Luigi Vanvitelli, via Sergio Pansini 5, I-80131 Naples, Italy; (L.P.); (F.N.); (S.S.)
| | - Mariarosa Anna Beatrice Melone
- Department of Advanced Medical and Surgical Sciences, 2nd Division of Neurology, Center for Rare Diseases and InterUniversity Center for Research in Neurosciences, University of Campania Luigi Vanvitelli, via Sergio Pansini 5, I-80131 Naples, Italy; (L.P.); (F.N.); (S.S.)
- Sbarro Institute for Cancer Research and Molecular Medicine, Department of Biology, Temple University, BioLife Building (015-00), 1900 North 12th Street, Philadelphia, PA 19122-6078, USA
| |
Collapse
|
9
|
Tani M, Tanaka S, Oeda C, Azumi Y, Kawamura H, Sakaue M, Ito M. SLC37A2, a phosphorus-related molecule, increases in smooth muscle cells in the calcified aorta. J Clin Biochem Nutr 2020; 68:23-31. [PMID: 33536709 PMCID: PMC7844665 DOI: 10.3164/jcbn.19-114] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2019] [Accepted: 04/04/2020] [Indexed: 11/24/2022] Open
Abstract
Vascular calcification is major source of cardiovascular disease in patients with chronic kidney disease. Hyperphosphatemia leads to increased intracellular phosphorus influx, which leads to an increase in osteoblast-like cells in vascular smooth muscle cell. PiT-1 transports phosphate in vascular smooth muscle cell. However, the mechanism of vascular calcification is not completely understood. This study investigated candidate phosphorus-related molecules other than PiT-1. We hypothesized that phosphorus-related molecules belonging to the solute-carrier (SLC) superfamily would be involved in vascular calcification. As a result of DNA microarray analysis, we focused on SLC37A2 and showed that mRNA expression of these cells increased on calcified aotic smooth muscle cells (AoSMC). SLC37A2 has been reported to transport both glucose-6-phosphate/phosphate and phosphate/phosphate exchanges. In vitro analysis showed that SLC37A2 expression was not affected by inflammation on AoSMC. The expression of SLC37A2 mRNA and protein increased in calcified AoSMC. In vivo analysis showed that SLC37A2 mRNA expression in the aorta of chronic kidney disease rats was correlated with osteogenic marker genes. Furthermore, SLC37A2 was expressed at the vascular calcification area in chronic kidney disease rats. As a result, we showed that SLC37A2 is one of the molecules that increase with vascular calcification in vitro and in vivo.
Collapse
Affiliation(s)
- Mariko Tani
- Graduate School of Human Science and Environment, University of Hyogo, 1-1-12 Shinzaike-Honcho, Himeji, Hyogo 670-0092, Japan
| | - Sarasa Tanaka
- Graduate School of Human Science and Environment, University of Hyogo, 1-1-12 Shinzaike-Honcho, Himeji, Hyogo 670-0092, Japan
| | - Chihiro Oeda
- School of Human Science and Environment, University of Hyogo, 1-1-12 Shinzaike-Honcho, Himeji, Hyogo 670-0092, Japan
| | - Yuichi Azumi
- Graduate School of Human Science and Environment, University of Hyogo, 1-1-12 Shinzaike-Honcho, Himeji, Hyogo 670-0092, Japan
| | - Hiromi Kawamura
- Graduate School of Human Science and Environment, University of Hyogo, 1-1-12 Shinzaike-Honcho, Himeji, Hyogo 670-0092, Japan
| | - Motoyoshi Sakaue
- Graduate School of Human Science and Environment, University of Hyogo, 1-1-12 Shinzaike-Honcho, Himeji, Hyogo 670-0092, Japan
| | - Mikiko Ito
- Graduate School of Human Science and Environment, University of Hyogo, 1-1-12 Shinzaike-Honcho, Himeji, Hyogo 670-0092, Japan
| |
Collapse
|
10
|
Carlberg C. Vitamin D: A Micronutrient Regulating Genes. Curr Pharm Des 2020; 25:1740-1746. [PMID: 31298160 DOI: 10.2174/1381612825666190705193227] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2019] [Accepted: 06/21/2019] [Indexed: 01/14/2023]
Abstract
BACKGROUND At sufficient sun exposure, humans can synthesize vitamin D3 endogenously in their skin, but today's lifestyle makes the secosteroid a true vitamin that needs to be taken up by diet or supplementation with pills. The vitamin D3 metabolite 1α,25-dihydroxyvitamin D3 acts as a nuclear hormone activating the transcription factor vitamin D receptor (VDR). METHODS This review discusses the biological effects of micronutrient vitamin D ranging from calcium homeostasis and bone formation to the modulation of innate and adaptive immunity. RESULTS Since normal human diet is sufficient in vitamin D, the need for efficient vitamin D3 synthesis in the skin acts as an evolutionary driver for its lightening during the migration out of Africa towards North. Via activating the VDR, vitamin D has direct effects on the epigenome and the expression of more than 1000 genes in most human tissues and cell types. CONCLUSIONS The pleiotropic action of vitamin D in health and disease prevention is explained through complex gene regulatory events of the transcription factor VDR.
Collapse
Affiliation(s)
- Carsten Carlberg
- Institute of Biomedicine, School of Medicine, University of Eastern Finland, FI-70211 Kuopio, Finland
| |
Collapse
|
11
|
Carlberg C. Vitamin D Signaling in the Context of Innate Immunity: Focus on Human Monocytes. Front Immunol 2019; 10:2211. [PMID: 31572402 PMCID: PMC6753645 DOI: 10.3389/fimmu.2019.02211] [Citation(s) in RCA: 64] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2019] [Accepted: 09/02/2019] [Indexed: 12/11/2022] Open
Abstract
The vitamin D3 metabolite 1α,25-dihydroxyvitamin D3 (1,25(OH)2D3) activates at sub-nanomolar concentrations the transcription factor vitamin D receptor (VDR). VDR is primarily involved in the control of cellular metabolism but in addition modulates processes important for immunity, such as anti-microbial defense and the induction of T cell tolerance. Monocytes and their differentiated phenotypes, macrophages and dendritic cells, are key cell types of the innate immune system, in which vitamin D signaling was most comprehensively investigated via the use of next generation sequencing technologies. These investigations provided genome-wide maps illustrating significant effects of 1,25(OH)2D3 on the binding of VDR, the pioneer transcription factors purine-rich box 1 (PU.1) and CCAAT/enhancer binding protein α (CEBPA) and the chromatin modifier CCCTC-binding factor (CTCF) as well as on chromatin accessibility and histone markers of promoter and enhancer regions, H3K4me3 and H3K27ac. Thus, the epigenome of human monocytes is at multiple levels sensitive to vitamin D. These data served as the basis for the chromatin model of vitamin D signaling, which mechanistically explains the activation of a few hundred primary vitamin D target genes. Comparable epigenome- and transcriptome-wide effects of vitamin D were also described in peripheral blood mononuclear cells isolated from individuals before and after supplementation with a vitamin D3 bolus. This review will conclude with the hypothesis that vitamin D modulates the epigenome of immune cells during perturbations by antigens and other immunological challenges suggesting that an optimal vitamin D status may be essential for an effective epigenetic learning process, in particular of the innate immune system.
Collapse
Affiliation(s)
- Carsten Carlberg
- School of Medicine, Institute of Biomedicine, University of Eastern Finland, Kuopio, Finland
| |
Collapse
|
12
|
Wang L, Ying J, Fan P, Weamer EA, DeMichele-Sweet MAA, Lopez OL, Kofler JK, Sweet RA. Effects of Vitamin D Use on Outcomes of Psychotic Symptoms in Alzheimer Disease Patients. Am J Geriatr Psychiatry 2019; 27:908-917. [PMID: 31126722 PMCID: PMC6693492 DOI: 10.1016/j.jagp.2019.03.016] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/22/2018] [Revised: 03/13/2019] [Accepted: 03/21/2019] [Indexed: 12/15/2022]
Abstract
OBJECTIVE To identify medications that may prevent psychosis in patients with Alzheimer disease (AD). METHODS The authors compared the frequency of medication usage among patients with AD with or without psychosis symptoms (AD + P versus AD - P). The authors also conducted survival analysis on time to psychosis for patients with AD to identify drugs with beneficial effects. The authors further explored the potential molecular mechanisms of identified drugs by gene-signature analysis. Specifically, the gene expression profiles induced by the identified drug(s) were collected to derive a list of most perturbed genes. These genes were further analyzed by the associations of their genetic variations with AD or psychosis-related phenotypes. RESULTS Vitamin D was used more often in AD - P patients than in AD + P patients. Vitamin D was also significantly associated with delayed time to psychosis. AD and/or psychosis-related genes were enriched in the list of genes most perturbed by vitamin D, specifically genes involved in the regulation of calcium signaling downstream of the vitamin D receptor. CONCLUSION Vitamin D was associated with delayed onset of psychotic symptoms in patients with AD. Its mechanisms of action provide a novel direction for development of drugs to prevent or treat psychosis in AD. In addition, genetic variations in vitamin D-regulated genes may provide a biomarker signature to identify a subpopulation of patients who can benefit from vitamin D treatment.
Collapse
Affiliation(s)
- Lirong Wang
- Department of Pharmaceutical Sciences (LW, PF), Computational Chemical Genomics Screening, University of Pittsburgh School of Pharmacy, Pittsburgh
| | - Jian Ying
- Department of Internal Medicine (JY), University of Utah, Salt Lake City
| | - Peihao Fan
- Department of Pharmaceutical Sciences (LW, PF), Computational Chemical Genomics Screening, University of Pittsburgh School of Pharmacy, Pittsburgh
| | - Elise A Weamer
- Department of Neurology (EAW, OLL, RAS), University of Pittsburgh School of Medicine, Pittsburgh
| | | | - Oscar L Lopez
- Department of Neurology (EAW, OLL, RAS), University of Pittsburgh School of Medicine, Pittsburgh; Department of Psychiatry (MAADS, OLL, RAS), University of Pittsburgh School of Medicine, Pittsburgh
| | - Julia K Kofler
- Department of Pathology (JKK), University of Pittsburgh School of Medicine, Pittsburgh
| | - Robert A Sweet
- Department of Neurology (EAW, OLL, RAS), University of Pittsburgh School of Medicine, Pittsburgh; Department of Psychiatry (MAADS, OLL, RAS), University of Pittsburgh School of Medicine, Pittsburgh; VISN 4 Mental Illness Research, Education and Clinical Center (RAS), VA Pittsburgh Healthcare System, Pittsburgh.
| |
Collapse
|
13
|
Abstract
Nutrigenomics studies how environmental factors, such as food intake and lifestyle, influence the expression of the genome. Vitamin D₃ represents a master example of nutrigenomics, since via its metabolite 1α,25-dihydroxyvitamin D₃, which binds with high-affinity to the vitamin D receptor, the secosteroid directly affects the epigenome and transcriptome at thousands of loci within the human genome. Vitamin D is important for both cellular metabolism and immunity, as it controls calcium homeostasis and modulates the response of the innate and adaptive immune system. At sufficient UV-B exposure, humans can synthesize vitamin D₃ endogenously in their skin, but today's lifestyle often makes the molecule a true vitamin and micronutrient that needs to be taken up by diet or supplementation with pills. The individual's molecular response to vitamin D requires personalized supplementation with vitamin D₃, in order to obtain optimized clinical benefits in the prevention of osteoporosis, sarcopenia, autoimmune diseases, and possibly different types of cancer. The importance of endogenous synthesis of vitamin D₃ created an evolutionary pressure for reduced skin pigmentation, when, during the past 50,000 years, modern humans migrated from Africa towards Asia and Europe. This review will discuss different aspects of how vitamin D interacts with the human genome, focusing on nutritional epigenomics in context of immune responses. This should lead to a better understanding of the clinical benefits of vitamin D.
Collapse
Affiliation(s)
- Carsten Carlberg
- School of Medicine, Institute of Biomedicine, University of Eastern Finland, FI-70211 Kuopio, Finland.
| |
Collapse
|
14
|
Nurminen V, Seuter S, Carlberg C. Primary Vitamin D Target Genes of Human Monocytes. Front Physiol 2019; 10:194. [PMID: 30890957 PMCID: PMC6411690 DOI: 10.3389/fphys.2019.00194] [Citation(s) in RCA: 57] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2018] [Accepted: 02/15/2019] [Indexed: 12/31/2022] Open
Abstract
The molecular basis of vitamin D signaling implies that the metabolite 1α,25-dihydroxyvitamin D3 (1,25(OH)2D3) of the secosteroid vitamin D3 activates the transcription factor vitamin D receptor (VDR), which in turn modulates the expression of hundreds of primary vitamin D target genes. Since the evolutionary role of nuclear receptors, such as VDR, was the regulation of cellular metabolism, the control of calcium metabolism became the primary function of vitamin D and its receptor. Moreover, the nearly ubiquitous expression of VDR enabled vitamin D to acquire additional physiological functions, such as the support of the innate immune system in its defense against microbes. Monocytes and their differentiated phenotypes, macrophages and dendritic cells, are key cell types of the innate immune system. Vitamin D signaling was most comprehensively investigated in THP-1 cells, which are an established model of human monocytes. This includes the 1,25(OH)2D3-modulated cistromes of VDR, the pioneer transcription factors PU.1 and CEBPA and the chromatin modifier CTCF as well as of the histone markers of promoter and enhancer regions, H3K4me3 and H3K27ac, respectively. These epigenome-wide datasets led to the development of our chromatin model of vitamin D signaling. This review discusses the mechanistic basis of 189 primary vitamin D target genes identified by transcriptome-wide analysis of 1,25(OH)2D3-stimulated THP-1 cells and relates the epigenomic basis of four different regulatory scenarios to the physiological functions of the respective genes.
Collapse
Affiliation(s)
- Veijo Nurminen
- School of Medicine, Institute of Biomedicine, University of Eastern Finland, Kuopio, Finland
| | - Sabine Seuter
- Institute for Cardiovascular Physiology, Medical Faculty, Goethe University Frankfurt, Frankfurt, Germany
| | - Carsten Carlberg
- School of Medicine, Institute of Biomedicine, University of Eastern Finland, Kuopio, Finland
| |
Collapse
|
15
|
Cappello AR, Curcio R, Lappano R, Maggiolini M, Dolce V. The Physiopathological Role of the Exchangers Belonging to the SLC37 Family. Front Chem 2018; 6:122. [PMID: 29719821 PMCID: PMC5913288 DOI: 10.3389/fchem.2018.00122] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2018] [Accepted: 03/30/2018] [Indexed: 12/14/2022] Open
Abstract
The human SLC37 gene family includes four proteins SLC37A1-4, localized in the endoplasmic reticulum (ER) membrane. They have been grouped into the SLC37 family due to their sequence homology to the bacterial organophosphate/phosphate (Pi) antiporter. SLC37A1-3 are the less characterized isoforms. SLC37A1 and SLC37A2 are Pi-linked glucose-6-phosphate (G6P) antiporters, catalyzing both homologous (Pi/Pi) and heterologous (G6P/Pi) exchanges, whereas SLC37A3 transport properties remain to be clarified. Furthermore, SLC37A1 is highly homologous to the bacterial glycerol 3-phosphate permeases, so it is supposed to transport also glycerol-3-phosphate. The physiological role of SLC37A1-3 is yet to be further investigated. SLC37A1 seems to be required for lipid biosynthesis in cancer cell lines, SLC37A2 has been proposed as a vitamin D and a phospho-progesterone receptor target gene, while mutations in the SLC37A3 gene appear to be associated with congenital hyperinsulinism of infancy. SLC37A4, also known as glucose-6-phosphate translocase (G6PT), transports G6P from the cytoplasm into the ER lumen, working in complex with either glucose-6-phosphatase-α (G6Pase-α) or G6Pase-β to hydrolyze intraluminal G6P to Pi and glucose. G6PT and G6Pase-β are ubiquitously expressed, whereas G6Pase-α is specifically expressed in the liver, kidney and intestine. G6PT/G6Pase-α complex activity regulates fasting blood glucose levels, whereas G6PT/G6Pase-β is required for neutrophil functions. G6PT deficiency is responsible for glycogen storage disease type Ib (GSD-Ib), an autosomal recessive disorder associated with both defective metabolic and myeloid phenotypes. Several kinds of mutations have been identified in the SLC37A4 gene, affecting G6PT function. An increased autoimmunity risk for GSD-Ib patients has also been reported, moreover, SLC37A4 seems to be involved in autophagy.
Collapse
Affiliation(s)
- Anna Rita Cappello
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, Rende, Italy
| | - Rosita Curcio
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, Rende, Italy
| | - Rosamaria Lappano
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, Rende, Italy
| | - Marcello Maggiolini
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, Rende, Italy
| | - Vincenza Dolce
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, Rende, Italy
| |
Collapse
|
16
|
Abstract
Vitamin D, a secosteroid predominately obtained by endogenous production, has in recent years been linked to obesity and its comorbidities. The purpose of this review is to draw conclusions from animal and human studies on the effects of vitamin D on adipogenesis to identify the molecular links between vitamin D and obesity. The information presented herein was obtained from 4 databases (PubMed, CINAHL, Cochrane Library, Scopus) using predefined search terms, as well as research literature and other reviews. The effects of vitamin D on adipogenesis have been researched in several animal models, and the majority of these studies suggest vitamin D plays an inhibitory role in adipogenesis. Studies into vitamin D status and obesity in humans are limited, with the majority being observational epidemiological studies that provide no conclusions on cause and effect or clear links on the molecular mechanisms. The few cell culture and supplementation studies that have investigated adipogenesis in human cells indicate that, in contrast to findings from rodent studies, vitamin D is proadipogenic. There is insufficient evidence to determine whether 1) vitamin D deficiency is associated with a lean or obese phenotype, 2) vitamin D deficiency is a consequence of obesity, or (3) the effects of vitamin D on fat tissue are due to interactions with calcium.
Collapse
Affiliation(s)
- Clare F Dix
- Centre for Dietetic Research, School of Human Movement and Nutrition Sciences, University of Queensland, Brisbane, Australia
| | | | - Olivia R L Wright
- Centre for Dietetic Research, School of Human Movement and Nutrition Sciences, University of Queensland, Brisbane, Australia
| |
Collapse
|
17
|
Carlberg C, Haq A. The concept of the personal vitamin D response index. J Steroid Biochem Mol Biol 2018; 175:12-17. [PMID: 28034764 DOI: 10.1016/j.jsbmb.2016.12.011] [Citation(s) in RCA: 108] [Impact Index Per Article: 15.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/24/2016] [Revised: 12/12/2016] [Accepted: 12/22/2016] [Indexed: 12/17/2022]
Abstract
Humans are able to synthesize vitamin D3 in their skin when exposed to UV-B, but seasonal variations, textile coverage and predominant indoor activities often make supplementation with the compound necessary. There is some dispute on the desired vitamin D status, measured via the serum concentration of the most stable vitamin D3 metabolite, 25-hydroxyvitamin D3, and the respective recommended daily supplementation. A possible answer may be provided by the concept of the personal vitamin D response index describing the efficiency of the molecular response to supplementation with vitamin D. The concept is based on the fact that vitamin D3 activates via its metabolite 1α,25-dihydroxyvitamin D3 the transcription factor vitamin D receptor and thus has a direct effect on the epigenome and transcriptome of many human tissues and cell types. Individuals can be distinguished into high, mid and low responders to vitamin D via measuring vitamin D sensitive molecular parameters, such as changes in the epigenetic status and the respective transcription of genes of mobile immune cells from blood or the level of proteins or metabolites in serum. Thus, we suggest that the need for vitamin D supplementation depends on the vitamin D status in relation to the personal vitamin D response index of an individual rather than on the vitamin D status alone.
Collapse
Affiliation(s)
- Carsten Carlberg
- School of Medicine, Institute of Biomedicine, University of Eastern Finland, POB 1627, FI-70211, Kuopio, Finland.
| | - Afrozul Haq
- Research & Development, Gulf Diagnostic Center Hospital, Abu Dhabi, United Arab Emirates
| |
Collapse
|
18
|
Seuter S, Virtanen JK, Nurmi T, Pihlajamäki J, Mursu J, Voutilainen S, Tuomainen TP, Neme A, Carlberg C. Molecular evaluation of vitamin D responsiveness of healthy young adults. J Steroid Biochem Mol Biol 2017; 174:314-321. [PMID: 27282116 DOI: 10.1016/j.jsbmb.2016.06.003] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/13/2016] [Accepted: 06/02/2016] [Indexed: 12/31/2022]
Abstract
Vitamin D3 has via its metabolites 25-hydroxyvitamin D3 (25(OH)D3) and 1α,25-dihydroxyvitamin D3 (1,25(OH)2D3) direct effects on the transcriptome and the epigenome of most human cells. In the VitDbol study we exposed 35 healthy young adults to an oral vitamin D3 dose (2000μg) or placebo and took blood samples directly before the supplementation as well as at days 1, 2 and 30. Within 24h the vitamin D3 intake raised the average serum levels of both 25(OH)D3 and 1,25(OH)2D3 by approximately 20%. However, we observed large inter-individual differences in these serum levels, reflected by the average ratios between 25(OH)D3 and 1,25(OH)2D3 concentrations ranging from 277 to 1365. Interestingly, average serum parathyroid hormone (PTH) levels increased at day 1 by some 10% but then decreased within the following four weeks to levels 5% below baseline. In peripheral blood mononuclear cells (PBMCs) that were isolated at the same time points we determined vitamin D-modulated chromatin accessibility by FAIRE-qPCR at selected genomic loci. This method is well suited to evaluate both short-term and long-term in vivo effects of vitamin D on the epigenome of human subjects. The differential vitamin D responsiveness of the VitDbol study participants was determined via individual changes in their PTH levels or chromatin accessibility in relation to alterations in 25(OH)D3 concentrations. This led to the segregation of the subjects into 14 high, 11 mid and 10 low responders. In summary, the vitamin D responsiveness classification provides additional information compared to a vitamin D status assessment based on single 25(OH)D3 serum measurements. The study was registered at Clinicaltrials.gov (NCT02063334).
Collapse
Affiliation(s)
- Sabine Seuter
- School of Medicine, Institute of Biomedicine, University of Eastern Finland, Kuopio, Finland
| | - Jyrki K Virtanen
- Institute of Public Health and Clinical Nutrition, University of Eastern Finland, Kuopio, Finland
| | - Tarja Nurmi
- Institute of Public Health and Clinical Nutrition, University of Eastern Finland, Kuopio, Finland
| | - Jussi Pihlajamäki
- Institute of Public Health and Clinical Nutrition, University of Eastern Finland, Kuopio, Finland
| | - Jaakko Mursu
- Institute of Public Health and Clinical Nutrition, University of Eastern Finland, Kuopio, Finland
| | - Sari Voutilainen
- Institute of Public Health and Clinical Nutrition, University of Eastern Finland, Kuopio, Finland
| | - Tomi-Pekka Tuomainen
- Institute of Public Health and Clinical Nutrition, University of Eastern Finland, Kuopio, Finland
| | - Antonio Neme
- School of Medicine, Institute of Biomedicine, University of Eastern Finland, Kuopio, Finland
| | - Carsten Carlberg
- School of Medicine, Institute of Biomedicine, University of Eastern Finland, Kuopio, Finland.
| |
Collapse
|
19
|
Seuter S, Neme A, Carlberg C. Epigenomic PU.1-VDR crosstalk modulates vitamin D signaling. BIOCHIMICA ET BIOPHYSICA ACTA-GENE REGULATORY MECHANISMS 2017; 1860:405-415. [PMID: 28232093 DOI: 10.1016/j.bbagrm.2017.02.005] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/11/2016] [Revised: 02/07/2017] [Accepted: 02/12/2017] [Indexed: 01/15/2023]
Abstract
The ETS-domain transcription factor PU.1 acts as a pioneer factor for other transcription factors including nuclear receptors. In this study, we report that in THP-1 human monocytes the PU.1 cistrome comprises 122,319 genomic sites. Interestingly, at 6498 (5.3%) of these loci PU.1 binding was significantly modulated by the vitamin D receptor (VDR) ligand 1α,25-dihydroxyvitamin D3 (1,25(OH)2D3). In most cases 1,25(OH)2D3 increased PU.1 association, which correlated strongly with VDR co-location and overlap ratios for canonical DR3-type VDR binding sites. Genome-wide 6488 sites associating both with PU.1 and VDR as well as 5649 non-VDR overlapping, 1,25(OH)2D3-sensitive PU.1 loci represent the PU.1-VDR crosstalk and can be described by four gene regulatory scenarios, each. Chromatin accessibility was the major discriminator between these models. The location of the PU.1 binding loci in open chromatin coincided with a significantly smaller mean distance to the closest 1,25(OH)2D3 target gene. PU.1 knockdown indicated that the pioneer factor is relevant for the transcriptional activation of 1,25(OH)2D3 target genes but its impact differed in magnitude and orientation. In conclusion, PU.1 is an important modulator of VDR signaling in monocytes, including but also exceeding its role as a pioneer factor, but we found no evidence for a direct interaction of both proteins.
Collapse
Affiliation(s)
- Sabine Seuter
- School of Medicine, Institute of Biomedicine, University of Eastern Finland, FI-70211 Kuopio, Finland
| | - Antonio Neme
- School of Medicine, Institute of Biomedicine, University of Eastern Finland, FI-70211 Kuopio, Finland
| | - Carsten Carlberg
- School of Medicine, Institute of Biomedicine, University of Eastern Finland, FI-70211 Kuopio, Finland.
| |
Collapse
|
20
|
Reinartz S, Distl O. Validation of Deleterious Mutations in Vorderwald Cattle. PLoS One 2016; 11:e0160013. [PMID: 27472836 PMCID: PMC4966933 DOI: 10.1371/journal.pone.0160013] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2016] [Accepted: 07/12/2016] [Indexed: 12/23/2022] Open
Abstract
In Montbéliarde cattle two candidate mutations on bovine chromosomes 19 and 29 responsible for embryonic lethality have been detected. Montbéliarde bulls have been introduced into Vorderwald cattle to improve milk and fattening performance. Due to the small population size of Vorderwald cattle and the wide use of a few Montbéliarde bulls through artificial insemination, inbreeding on Montbéliarde bulls in later generations was increasing. Therefore, we genotyped an aborted fetus which was inbred on Montbéliarde as well as Vorderwald x Montbéliarde crossbred bulls for both deleterious mutations. The abortion was observed in an experimental herd of Vorderwald cattle. The objectives of the present study were to prove if one or both lethal mutations may be assumed to have caused this abortion and to show whether these deleterious mutations have been introduced into the Vorderwald cattle population through Montbéliarde bulls. The aborted fetus was homozygous for the SLC37A2:g.28879810C>T mutation (ss2019324563) on BTA29 and both parents as well as the paternal and maternal grandsire were heterozygous for this mutation. In addition, the parents and the paternal grandsire were carriers of the MH2-haplotype linked with the T-allele of the SLC37A2:g.28879810C>T mutation. For the SHBG:g.27956790C>T mutation (rs38377500) on BTA19 (MH1), the aborted fetus and its sire were heterozygous. Among all further 341 Vorderwald cattle genotyped we found 27 SLC37A2:g.28879810C>T heterozygous animals resulting in an allele frequency of 0.0396. Among the 120 male Vorderwald cattle, there were 12 heterozygous with an allele frequency of 0.05. The SLC37A2:g.28879810C>T mutation could not be found in further nine cattle breeds nor in Vorderwald cattle with contributions from Ayrshire bulls. In 69 Vorderwald cattle without genes from Montbéliarde bulls the mutated allele of SLC37A2:g.28879810C>T could not be detected. The SHBG:g.27956790C>T mutation appeared unlikely to be responsible for the present case of abortion and, in addition, we observed this mutation in a homozygous state in a living animal. In conclusion, we could demonstrate the first case of an aborted fetus carrying the deleterious SLC37A2:g.28879810C>T mutation homozygous and show that this deleterious mutation had been introduced through Montbéliarde bulls into Vorderwald cattle.
Collapse
Affiliation(s)
- Sina Reinartz
- Institute for Animal Breeding and Genetics, University of Veterinary Medicine Hannover, Hannover, Germany
| | - Ottmar Distl
- Institute for Animal Breeding and Genetics, University of Veterinary Medicine Hannover, Hannover, Germany
- * E-mail:
| |
Collapse
|
21
|
Stauber T. The volume-regulated anion channel is formed by LRRC8 heteromers – molecular identification and roles in membrane transport and physiology. Biol Chem 2016; 396:975-90. [PMID: 25868000 DOI: 10.1515/hsz-2015-0127] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2015] [Accepted: 04/02/2015] [Indexed: 11/15/2022]
Abstract
Cellular volume regulation is fundamental for numerous physiological processes. The volume-regulated anion channel, VRAC, plays a crucial role in regulatory volume decrease. This channel, which is ubiquitously expressed in vertebrates, has been vastly characterized by electrophysiological means. It opens upon cell swelling and conducts chloride and arguably organic osmolytes. VRAC has been proposed to be critically involved in various cellular and organismal functions, including cell proliferation and migration, apoptosis, transepithelial transport, swelling-induced exocytosis and intercellular communication. It may also play a role in pathological states like cancer and ischemia. Despite many efforts, the molecular identity of VRAC had remained elusive for decades, until the recent discovery of heteromers of LRRC8A with other LRRC8 family members as an essential VRAC component. This identification marks a starting point for studies on the structure-function relation, for molecular biological investigations of its cell biology and for re-evaluating the physiological roles of VRAC. This review recapitulates the identification of LRRC8 heteromers as VRAC components, depicts the similarities between LRRC8 proteins and pannexins, and discussed whether VRAC conducts larger osmolytes. Furthermore, proposed physiological functions of VRAC and the present knowledge about the physiological significance of LRRC8 proteins are summarized and collated.
Collapse
|
22
|
Abstract
PTH and Vitamin D are two major regulators of mineral metabolism. They play critical roles in the maintenance of calcium and phosphate homeostasis as well as the development and maintenance of bone health. PTH and Vitamin D form a tightly controlled feedback cycle, PTH being a major stimulator of vitamin D synthesis in the kidney while vitamin D exerts negative feedback on PTH secretion. The major function of PTH and major physiologic regulator is circulating ionized calcium. The effects of PTH on gut, kidney, and bone serve to maintain serum calcium within a tight range. PTH has a reciprocal effect on phosphate metabolism. In contrast, vitamin D has a stimulatory effect on both calcium and phosphate homeostasis, playing a key role in providing adequate mineral for normal bone formation. Both hormones act in concert with the more recently discovered FGF23 and klotho, hormones involved predominantly in phosphate metabolism, which also participate in this closely knit feedback circuit. Of great interest are recent studies demonstrating effects of both PTH and vitamin D on the cardiovascular system. Hyperparathyroidism and vitamin D deficiency have been implicated in a variety of cardiovascular disorders including hypertension, atherosclerosis, vascular calcification, and kidney failure. Both hormones have direct effects on the endothelium, heart, and other vascular structures. How these effects of PTH and vitamin D interface with the regulation of bone formation are the subject of intense investigation.
Collapse
Affiliation(s)
- Syed Jalal Khundmiri
- Department of Medicine, University of Louisville, Louisville, Kentucky, USA
- Department of Physiology and Biophysics, University of Louisville, Louisville, Kentucky, USA
| | - Rebecca D. Murray
- Department of Medicine, University of Louisville, Louisville, Kentucky, USA
- Department of Physiology and Biophysics, University of Louisville, Louisville, Kentucky, USA
| | - Eleanor Lederer
- Department of Medicine, University of Louisville, Louisville, Kentucky, USA
- Department of Physiology and Biophysics, University of Louisville, Louisville, Kentucky, USA
- Robley Rex VA Medical Center, University of Louisville, Louisville, Kentucky, USA
| |
Collapse
|
23
|
Carlberg C. Molecular Approaches for Optimizing Vitamin D Supplementation. VITAMIN D HORMONE 2016; 100:255-71. [DOI: 10.1016/bs.vh.2015.10.001] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
|
24
|
Vukić M, Neme A, Seuter S, Saksa N, de Mello VDF, Nurmi T, Uusitupa M, Tuomainen TP, Virtanen JK, Carlberg C. Relevance of vitamin D receptor target genes for monitoring the vitamin D responsiveness of primary human cells. PLoS One 2015; 10:e0124339. [PMID: 25875760 PMCID: PMC4395145 DOI: 10.1371/journal.pone.0124339] [Citation(s) in RCA: 58] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2014] [Accepted: 02/27/2015] [Indexed: 11/18/2022] Open
Abstract
Vitamin D3 has transcriptome- and genome-wide effects and activates, via the binding of its metabolite 1α,25-dihydroxyvitamin D3 to the transcription factor vitamin D receptor (VDR), several hundred target genes. Using samples from a 5-month vitamin D3 intervention study (VitDmet), we recently reported that the expression of 12 VDR target genes in peripheral blood mononuclear cells (PBMCs) as well as 12 biochemical and clinical parameters of the study participants are significantly triggered by vitamin D3. In this study, we performed a more focused selection of further 12 VDR target genes and demonstrated that changes of their mRNA expression in PBMCs of VitDmet subjects significantly correlate with alterations of 25-hydroxyvitamin D3 serum levels. Network and self-organizing map analysis of these datasets together with that of the other 24 parameters was followed by relevance calculations and identified changes in parathyroid hormone serum levels and the expression of the newly selected genes STS, BCL6, ITGAM, LRRC25, LPGAT1 and TREM1 as well as of the previously reported genes DUSP10 and CD14 as the most relevant parameters for describing vitamin D responsiveness in vivo. Moreover, parameter relevance ranking allowed the segregation of study subjects into high and low responders. Due to the long intervention period the vitamin D response was not too prominent on the level of transcriptional activation. Therefore, we performed in the separate VitDbol trial a short-term but high dose stimulation with a vitamin D3 bolus. In PBMCs of VitDbol subjects we observed direct transcriptional effects on the selected VDR target genes, such as an up to 2.1-fold increase already one day after supplementation onset. In conclusion, both long-term and short-term vitamin D3 supplementation studies allow monitoring the vitamin D responsiveness of human individuals and represent new types of human in vivo vitamin D3 investigations.
Collapse
Affiliation(s)
- Maja Vukić
- School of Medicine, Institute of Biomedicine, University of Eastern Finland, Kuopio, Finland
| | - Antonio Neme
- School of Medicine, Institute of Biomedicine, University of Eastern Finland, Kuopio, Finland
| | - Sabine Seuter
- School of Medicine, Institute of Biomedicine, University of Eastern Finland, Kuopio, Finland
| | - Noora Saksa
- School of Medicine, Institute of Biomedicine, University of Eastern Finland, Kuopio, Finland
| | - Vanessa D. F. de Mello
- Institute of Public Health and Clinical Nutrition, University of Eastern Finland, Kuopio, Finland
| | - Tarja Nurmi
- Institute of Public Health and Clinical Nutrition, University of Eastern Finland, Kuopio, Finland
| | - Matti Uusitupa
- Institute of Public Health and Clinical Nutrition, University of Eastern Finland, Kuopio, Finland
| | - Tomi-Pekka Tuomainen
- Institute of Public Health and Clinical Nutrition, University of Eastern Finland, Kuopio, Finland
| | - Jyrki K. Virtanen
- Institute of Public Health and Clinical Nutrition, University of Eastern Finland, Kuopio, Finland
| | - Carsten Carlberg
- School of Medicine, Institute of Biomedicine, University of Eastern Finland, Kuopio, Finland
- * E-mail:
| |
Collapse
|
25
|
Saksa N, Neme A, Ryynänen J, Uusitupa M, de Mello VDF, Voutilainen S, Nurmi T, Virtanen JK, Tuomainen TP, Carlberg C. Dissecting high from low responders in a vitamin D3 intervention study. J Steroid Biochem Mol Biol 2015; 148:275-82. [PMID: 25448738 DOI: 10.1016/j.jsbmb.2014.11.012] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/22/2014] [Revised: 10/24/2014] [Accepted: 11/12/2014] [Indexed: 11/17/2022]
Abstract
Vitamin D3 is a pleiotropic signaling molecule that has via activation of the transcription factor vitamin D receptor (VDR) a direct effect on the expression of more than 100 genes. The aim of this study was to find transcriptomic and clinical biomarkers that are most suited to identify vitamin D3 responders within 71 pre-diabetic subjects during a 5-month intervention study (VitDmet). In hematopoietic cells, the genes ASAP2, CAMP, CD14, CD97, DUSP10, G0S2, IL8, LRRC8A, NINJ1, NRIP1, SLC37A2 and THBD are known as primary vitamin D targets. We demonstrate that each of these 12 genes carries a conserved VDR binding site within its genomic region and is expressed in human peripheral blood mononuclear cells (PBMCs). The changes in the expression of these genes in human PBMCs at the start and the end of the vitamin D-intervention were systematically correlated with the alteration in the circulating form of vitamin D3, 25-hydroxyvitamin D3 (25(OH)D3). Only 39-44 (55-62%) of the study subjects showed a highly significant response to vitamin D3, i.e., we considered them as "responders". In comparison, we found for 37-53 (52-75%) of the participants that only 12 biochemical and clinical parameters, such as concentrations of parathyroid hormone (PTH) and insulin, or computed values, such as homeostatic model assessment and insulin sensitivity index, show a correlation with serum 25(OH)D3 levels that is as high as that of the selected VDR target genes. All 24 parameters together described the pleiotropic vitamin D response of the VitDmet study subjects. Interestingly, they demonstrated a number of additional correlations that define a network, in which PTH plays the central role. In conclusion, vitamin D3-induced changes in human PBMCs can be described by transcriptomic and serum biomarkers and allow a segregation into high and low responders. This article is part of a Special Issue entitled '17th Vitamin D Workshop' .
Collapse
Affiliation(s)
- Noora Saksa
- School of Medicine, Institute of Biomedicine, University of Eastern Finland, P.O. Box 1627, FIN-70211 Kuopio, Finland
| | - Antonio Neme
- School of Medicine, Institute of Biomedicine, University of Eastern Finland, P.O. Box 1627, FIN-70211 Kuopio, Finland
| | - Jussi Ryynänen
- School of Medicine, Institute of Biomedicine, University of Eastern Finland, P.O. Box 1627, FIN-70211 Kuopio, Finland
| | - Matti Uusitupa
- Institute of Public Health and Clinical Nutrition, University of Eastern Finland, FIN-70211 Kuopio, Finland
| | - Vanessa D F de Mello
- Institute of Public Health and Clinical Nutrition, University of Eastern Finland, FIN-70211 Kuopio, Finland
| | - Sari Voutilainen
- Institute of Public Health and Clinical Nutrition, University of Eastern Finland, FIN-70211 Kuopio, Finland
| | - Tarja Nurmi
- Institute of Public Health and Clinical Nutrition, University of Eastern Finland, FIN-70211 Kuopio, Finland
| | - Jyrki K Virtanen
- Institute of Public Health and Clinical Nutrition, University of Eastern Finland, FIN-70211 Kuopio, Finland
| | - Tomi-Pekka Tuomainen
- Institute of Public Health and Clinical Nutrition, University of Eastern Finland, FIN-70211 Kuopio, Finland
| | - Carsten Carlberg
- School of Medicine, Institute of Biomedicine, University of Eastern Finland, P.O. Box 1627, FIN-70211 Kuopio, Finland.
| |
Collapse
|
26
|
Nurminen V, Neme A, Ryynänen J, Heikkinen S, Seuter S, Carlberg C. The transcriptional regulator BCL6 participates in the secondary gene regulatory response to vitamin D. BIOCHIMICA ET BIOPHYSICA ACTA-GENE REGULATORY MECHANISMS 2015; 1849:300-8. [DOI: 10.1016/j.bbagrm.2014.12.001] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/15/2014] [Revised: 11/27/2014] [Accepted: 12/01/2014] [Indexed: 12/31/2022]
|
27
|
Carlberg C, Molnár F. Vitamin D receptor signaling and its therapeutic implications: Genome-wide and structural view. Can J Physiol Pharmacol 2015; 93:311-8. [PMID: 25741777 DOI: 10.1139/cjpp-2014-0383] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Vitamin D3 is one of the few natural compounds that has, via its metabolite 1α,25-dihydroxyvitamin D3 (1,25(OH)2D3) and the transcription factor vitamin D receptor (VDR), a direct effect on gene regulation. For efficiently applying the therapeutic and disease-preventing potential of 1,25(OH)2D3 and its synthetic analogs, the key steps in vitamin D signaling need to be understood. These are the different types of molecular interactions with the VDR, such as (i) the complex formation of VDR with genomic DNA, (ii) the interaction of VDR with its partner transcription factors, (iii) the binding of 1,25(OH)2D3 or its synthetic analogs within the ligand-binding pocket of the VDR, and (iv) the resulting conformational change on the surface of the VDR leading to a change of the protein-protein interaction profile of the receptor with other proteins. This review will present the latest genome-wide insight into vitamin D signaling, and will discuss its therapeutic implications.
Collapse
Affiliation(s)
- Carsten Carlberg
- School of Medicine, Institute of Biomedicine, University of Eastern Finland, POB 1627, FI-70211 Kuopio, Finland
| | | |
Collapse
|
28
|
Ryynänen J, Neme A, Tuomainen TP, Virtanen JK, Voutilainen S, Nurmi T, de Mello VDF, Uusitupa M, Carlberg C. Changes in vitamin D target gene expression in adipose tissue monitor the vitamin D response of human individuals. Mol Nutr Food Res 2014; 58:2036-45. [DOI: 10.1002/mnfr.201400291] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2014] [Revised: 04/30/2014] [Accepted: 06/04/2014] [Indexed: 12/16/2022]
Affiliation(s)
- Jussi Ryynänen
- School of Medicine, Institute of Biomedicine; University of Eastern Finland; Kuopio Finland
| | - Antonio Neme
- School of Medicine, Institute of Biomedicine; University of Eastern Finland; Kuopio Finland
| | - Tomi-Pekka Tuomainen
- Institute of Public Health and Clinical Nutrition; University of Eastern Finland; Kuopio Finland
| | - Jyrki K. Virtanen
- Institute of Public Health and Clinical Nutrition; University of Eastern Finland; Kuopio Finland
| | - Sari Voutilainen
- Institute of Public Health and Clinical Nutrition; University of Eastern Finland; Kuopio Finland
| | - Tarja Nurmi
- Institute of Public Health and Clinical Nutrition; University of Eastern Finland; Kuopio Finland
| | - Vanessa D. F. de Mello
- Institute of Public Health and Clinical Nutrition; University of Eastern Finland; Kuopio Finland
| | - Matti Uusitupa
- Institute of Public Health and Clinical Nutrition; University of Eastern Finland; Kuopio Finland
| | - Carsten Carlberg
- School of Medicine, Institute of Biomedicine; University of Eastern Finland; Kuopio Finland
| |
Collapse
|