1
|
Wei X, Wu J, Pi X, Zhang Q, Tian J, Qi Z. Characterization of NLRP3 inflammasome components in the endangered Chinese giant salamander (Andrias davidianus). DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2024; 161:105263. [PMID: 39265857 DOI: 10.1016/j.dci.2024.105263] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/17/2024] [Revised: 09/06/2024] [Accepted: 09/09/2024] [Indexed: 09/14/2024]
Abstract
Chinese giant salamander (Andrias davidianus) is the largest extant urodela species and has unique evolutionary position. Studying the immune system of Chinese giant salamander contributes to understanding the evolution of immune systems of vertebrates. The NLR-related protein 3 (NLRP3) inflammasome comprised of NLRP3, ASC and caspase-1 play important roles in the host innate immunity. However, little is know about the NLRP3 inflammasome components in Chinese giant salamander. In this study, the NLRP3, apoptosis-associated speck-like protein (ASC) and caspase-1 (adaNLRP3, adaASC and adaCaspase-1) were characterized from Chinese giant salamander. The proteins of these three genes shared similar motifs and structures with their mammalian counterparts, with a PYD motif, a nucleotide-binding domain (NACHT) motif, and four leucine-rich repeat domain (LRR) motifs identified in adaNLRP3, a pyrin domain (PYD) motif and a caspase recruitment domain (CARD) motif in adaASC, and a CARD motif and a CASc motif in adaCaspase-1. These three genes were constitutively expressed in the skin, heart, lung, kidney, muscle, brain, spleen, and liver of Chinese giant salamander. Following Aeromonas hydrophia infection, all the three genes were up-regulated in various tissues. Molecular docking analysis revealed that the key residues involved in forming the adaNLRP3/adaASC complex were located in the PYD motifs, and that involved in forming the adaASC/adaCaspase-1 complex were located in the CARD motifs. Further analysis revealed that the hydrogen bonds and salt bridges had crucial roles in the formation of adaNLRP3/acaASC and adaASC/adaCaspase-1 complexes. To the best of our knowledge, this is the first report on the NLRP3 inflammasome components in Chinese giant salamander which will be helpful in further understanding the function of the NLRP3 inflammasome and in elucidating its role in the immune response to microbes.
Collapse
Affiliation(s)
- Xuan Wei
- Jiangsu Key Laboratory of Biochemistry and Biotechnology of Marine Wetland, Yancheng Institute of Technology, Yancheng, Jiangsu Province, 224051, China
| | - Jianxiong Wu
- Jiangsu Key Laboratory of Biochemistry and Biotechnology of Marine Wetland, Yancheng Institute of Technology, Yancheng, Jiangsu Province, 224051, China
| | - Xiangyu Pi
- Jiangsu Key Laboratory of Biochemistry and Biotechnology of Marine Wetland, Yancheng Institute of Technology, Yancheng, Jiangsu Province, 224051, China
| | - Qihuan Zhang
- Jiangsu Key Laboratory of Biochemistry and Biotechnology of Marine Wetland, Yancheng Institute of Technology, Yancheng, Jiangsu Province, 224051, China
| | - Jingyu Tian
- Marine Science Research Institute of Shandong Province, Qingdao, 266104, China
| | - Zhitao Qi
- Jiangsu Key Laboratory of Biochemistry and Biotechnology of Marine Wetland, Yancheng Institute of Technology, Yancheng, Jiangsu Province, 224051, China.
| |
Collapse
|
2
|
Bauer S, Hezinger L, Rexhepi F, Ramanathan S, Kufer TA. NOD-like Receptors-Emerging Links to Obesity and Associated Morbidities. Int J Mol Sci 2023; 24:ijms24108595. [PMID: 37239938 DOI: 10.3390/ijms24108595] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2023] [Revised: 05/06/2023] [Accepted: 05/08/2023] [Indexed: 05/28/2023] Open
Abstract
Obesity and its associated metabolic morbidities have been and still are on the rise, posing a major challenge to health care systems worldwide. It has become evident over the last decades that a low-grade inflammatory response, primarily proceeding from the adipose tissue (AT), essentially contributes to adiposity-associated comorbidities, most prominently insulin resistance (IR), atherosclerosis and liver diseases. In mouse models, the release of pro-inflammatory cytokines such as TNF-alpha (TNF-α) and interleukin (IL)-1β and the imprinting of immune cells to a pro-inflammatory phenotype in AT play an important role. However, the underlying genetic and molecular determinants are not yet understood in detail. Recent evidence demonstrates that nucleotide-binding and oligomerization domain (NOD)-like receptor (NLR) family proteins, a group of cytosolic pattern recognition receptors (PRR), contribute to the development and control of obesity and obesity-associated inflammatory responses. In this article, we review the current state of research on the role of NLR proteins in obesity and discuss the possible mechanisms leading to and the outcomes of NLR activation in the obesity-associated morbidities IR, type 2 diabetes mellitus (T2DM), atherosclerosis and non-alcoholic fatty liver disease (NAFLD) and discuss emerging ideas about possibilities for NLR-based therapeutic interventions of metabolic diseases.
Collapse
Affiliation(s)
- Sarah Bauer
- Institute of Nutritional Medicine, Department of Immunology, University of Hohenheim, 70593 Stuttgart, Germany
| | - Lucy Hezinger
- Institute of Nutritional Medicine, Department of Immunology, University of Hohenheim, 70593 Stuttgart, Germany
| | - Fjolla Rexhepi
- Department of Immunology and Cell Biology, Faculty of Medicine and Health Sciences, Université de Sherbrooke, Sherbrooke, QC J1K 2R1, Canada
| | - Sheela Ramanathan
- Department of Immunology and Cell Biology, Faculty of Medicine and Health Sciences, Université de Sherbrooke, Sherbrooke, QC J1K 2R1, Canada
| | - Thomas A Kufer
- Institute of Nutritional Medicine, Department of Immunology, University of Hohenheim, 70593 Stuttgart, Germany
| |
Collapse
|
3
|
Acosta-Martinez M, Cabail MZ. The PI3K/Akt Pathway in Meta-Inflammation. Int J Mol Sci 2022; 23:ijms232315330. [PMID: 36499659 PMCID: PMC9740745 DOI: 10.3390/ijms232315330] [Citation(s) in RCA: 53] [Impact Index Per Article: 17.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2022] [Revised: 11/22/2022] [Accepted: 12/01/2022] [Indexed: 12/09/2022] Open
Abstract
Obesity is a global epidemic representing a serious public health burden as it is a major risk factor for the development of cardiovascular disease, stroke and all-cause mortality. Chronic low-grade systemic inflammation, also known as meta-inflammation, is thought to underly obesity's negative health consequences, which include insulin resistance and the development of type 2 diabetes. Meta-inflammation is characterized by the accumulation of immune cells in adipose tissue, a deregulation in the synthesis and release of adipokines and a pronounced increase in the production of proinflammatory factors. In this state, the infiltration of macrophages and their metabolic activation contributes to complex paracrine and autocrine signaling, which sustains a proinflammatory microenvironment. A key signaling pathway mediating the response of macrophages and adipocytes to a microenvironment of excessive nutrients is the phosphoinositide 3-kinase (PI3K)/Akt pathway. This multifaceted network not only transduces metabolic information but also regulates macrophages' intracellular changes, which are responsible for their phenotypic switch towards a more proinflammatory state. In the present review, we discuss how the crosstalk between macrophages and adipocytes contributes to meta-inflammation and provide an overview on the involvement of the PI3K/Akt signaling pathway, and how its impairment contributes to the development of insulin resistance.
Collapse
Affiliation(s)
- Maricedes Acosta-Martinez
- Department of Physiology and Biophysics, Renaissance School of Medicine, Stony Brook University, Stony Brook, NY 11794, USA
| | - Maria Zulema Cabail
- Biological Science Department, State University of New York-College at Old Westbury, Old Westbury, NY 11568, USA
- Correspondence:
| |
Collapse
|
4
|
Upregulated NLRP3 inflammasome activation is attenuated by anthocyanins in patients with nonalcoholic fatty liver disease: A case-control and an intervention study. Clin Res Hepatol Gastroenterol 2022; 46:101843. [PMID: 34922061 DOI: 10.1016/j.clinre.2021.101843] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/21/2021] [Revised: 11/18/2021] [Accepted: 12/03/2021] [Indexed: 02/04/2023]
Abstract
OBJECTIVES Despite the recent attention focused on the roles of the NLRP3 inflammasome in the pathogenesis of metabolic and inflammatory diseases, little is known about the activation status of NLRP3 inflammasome in patients with nonalcoholic fatty liver disease (NAFLD). The present study aimed to investigate whether inflammasomes activation is upregulated in patients with NAFLD and the upregulation can be attenuated by anthocyanins, which are polyphenols with known anti-inflammatory activities. METHODS This study included a case-control study and a randomized controlled intervention trial. In the first part, NAFLD patients and healthy controls were recruited from a cohort of railroad workers. In the second part, NAFLD patients were randomly assigned to receive either capsules of anthocyanins (320 mg daily) or placebo for 12 weeks. A series of genes and factors associated with activation of NLRP3 inflammasome in subjects' plasma and peripheral blood mononuclear cells (PBMCs) were analyzed. RESULTS Compared with healthy controls, the mRNA levels of NLRP3 inflammasome components (NLRP3, caspase-1, interleukin (IL)-1β, and IL-18) were significantly upregulated in the PBMCs of NAFLD patients. Consistently, plasma levels of mature IL-1β and IL-18 in NAFLD patients were significantly higher than in controls. After anthocyanin administration, both mRNA expression of NLRP3 inflammasome components (caspase-1, IL-1β, and IL-18) in PBMCs and plasma levels of IL-1β and IL-18 decreased dramatically in NAFLD patients compared with controls. CONCLUSIONS This study has demonstrated that the activation of NLRP3 inflammasome is highly increased in NAFLD patients, but it can be markedly suppressed by anthocyanins, which provides a rationale for the development of anti-inflammatory therapies in NAFLD.
Collapse
|
5
|
Baazm M, Behrens V, Beyer C, Nikoubashman O, Zendedel A. Regulation of Inflammasomes by Application of Omega-3 Polyunsaturated Fatty Acids in a Spinal Cord Injury Model. Cells 2021; 10:3147. [PMID: 34831370 PMCID: PMC8618254 DOI: 10.3390/cells10113147] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Revised: 11/03/2021] [Accepted: 11/08/2021] [Indexed: 11/17/2022] Open
Abstract
Omega-3 polyunsaturated fatty acids (PUFA n3) ameliorate inflammation in different diseases and potentially improve neurological function after neuronal injury. Following spinal cord injury (SCI), inflammatory events result in caspase-1 mediated activation of interleukin-1 beta (IL-1b) and 18. We aim to evaluate the neuroprotective potency of PUFA n3 in suppressing the formation and activation of inflammasomes following SCI. Male Wistar rats were divided into four groups: control, SCI, SCI+PUFA n3, and SCI+Lipofundin MCT (medium-chain triglyceride; vehicle). PUFA n3 or vehicle was intravenously administered immediately after SCI and every 24 h for the next three days. We analyzed the expression of NLRP3, NLRP1, ASC, caspase-1, IL-1b, and 18 in the spinal cord. The distribution of microglia, oligodendrocytes, and astrocytes was assessed by immunohistochemistry analysis. Behavioral testing showed significantly improved locomotor recovery in PUFA n3-treated animals and the SCI-induced upregulation of inflammasome components was reduced. Histopathological evaluation confirmed the suppression of microgliosis, increased numbers of oligodendrocytes, and the prevention of demyelination by PUFA n3. Our data support the neuroprotective role of PUFA n3 by targeting the NLRP3 inflammasome. These findings provide evidence that PUFA n3 has therapeutic effects which potentially attenuate neuronal damage in SCI and possibly also in other neuronal injuries.
Collapse
Affiliation(s)
- Maryam Baazm
- Department of Anatomy, School of Medicine, Arak University of Medical Sciences, Arak 3819693345, Iran;
| | - Victoria Behrens
- Institute of Neuroanatomy, Uniklinik RWTH Aachen, 52074 Aachen, Germany; (V.B.); (C.B.)
| | - Cordian Beyer
- Institute of Neuroanatomy, Uniklinik RWTH Aachen, 52074 Aachen, Germany; (V.B.); (C.B.)
| | - Omid Nikoubashman
- Department of Neuroradiology, University Hospital RWTH, 52074 Aachen, Germany;
| | - Adib Zendedel
- Institute of Neuroanatomy, Uniklinik RWTH Aachen, 52074 Aachen, Germany; (V.B.); (C.B.)
| |
Collapse
|
6
|
Teixeira LD, Torrez Lamberti MF, DeBose-Scarlett E, Bahadiroglu E, Garrett TJ, Gardner CL, Meyer JL, Lorca GL, Gonzalez CF. Lactobacillus johnsonii N6.2 and Blueberry Phytophenols Affect Lipidome and Gut Microbiota Composition of Rats Under High-Fat Diet. Front Nutr 2021; 8:757256. [PMID: 34722616 PMCID: PMC8551501 DOI: 10.3389/fnut.2021.757256] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2021] [Accepted: 09/20/2021] [Indexed: 12/19/2022] Open
Abstract
Obesity is considered a primary contributing factor in the development of many diseases, including cancer, diabetes, and cardiovascular illnesses. Phytochemical-rich foods, associated to healthy gastrointestinal microbiota, have been shown to reduce obesity and associated comorbidities. In the present article, we describe the effects of the probiotic Lactobacillus johnsonii N6.2 and blueberry extracts (BB) on the gut microbiota and lipid profile of rats under a high-fat (HF) or low-calorie (LC) diet. L. johnsonii was found to increase the levels of long chain fatty acids (LCFA) in the serum of all animals under HF diet, while reduced LCFA concentrations were observed in the adipose tissue of animals under HF diet supplemented with BB extracts. All animals under HF diet also showed lower protein levels of SREBP1 and SCAP when treated with L. johnsonii. The gut microbiota diversity, β-diversity was significantly changed by L. johnsonii in the presence of BB. A significant reduction in α-diversity was observed in the ileum of animals under HF diet supplemented with L. johnsonii and BB, while increased α-diversity was observed in the ilium of animals under LC diet supplemented with L. johnsonii or BB. In summary, L. johnsonii and BB supplementation induced significant changes in gut microbiota diversity and lipid metabolism. The phospholipids pool was the lipidome component directly affected by the interventions. The ileum and colon microbiota showed clear differences depending on the diet and the treatments examined.
Collapse
Affiliation(s)
- Leandro Dias Teixeira
- Department of Microbiology and Cell Science, Genetics Institute, Institute of Food and Agricultural Sciences, University of Florida, Gainesville, FL, United States
| | - Monica F Torrez Lamberti
- Department of Microbiology and Cell Science, Genetics Institute, Institute of Food and Agricultural Sciences, University of Florida, Gainesville, FL, United States
| | - Evon DeBose-Scarlett
- Department of Microbiology and Cell Science, Genetics Institute, Institute of Food and Agricultural Sciences, University of Florida, Gainesville, FL, United States
| | - Erol Bahadiroglu
- Department of Microbiology and Cell Science, Genetics Institute, Institute of Food and Agricultural Sciences, University of Florida, Gainesville, FL, United States
| | - Timothy J Garrett
- Department of Pathology, Immunology, and Laboratory Medicine, College of Medicine, University of Florida, Gainesville, FL, United States
| | - Christopher L Gardner
- Department of Microbiology and Cell Science, Genetics Institute, Institute of Food and Agricultural Sciences, University of Florida, Gainesville, FL, United States
| | - Julie L Meyer
- Department of Soil and Water Science, Institute of Food and Agricultural Sciences, University of Florida, Gainesville, FL, United States
| | - Graciela L Lorca
- Department of Microbiology and Cell Science, Genetics Institute, Institute of Food and Agricultural Sciences, University of Florida, Gainesville, FL, United States
| | - Claudio F Gonzalez
- Department of Microbiology and Cell Science, Genetics Institute, Institute of Food and Agricultural Sciences, University of Florida, Gainesville, FL, United States
| |
Collapse
|
7
|
Miao F, Shan C, Ning D. Walnut oil alleviates LPS-induced intestinal epithelial cells injury by inhibiting TLR4/MyD88/NF-κB pathway activation. J Food Biochem 2021; 45:e13955. [PMID: 34580887 DOI: 10.1111/jfbc.13955] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2021] [Revised: 09/16/2021] [Accepted: 09/19/2021] [Indexed: 12/14/2022]
Abstract
In this study, we investigated the protective effects of walnut oil (WO) on mouse intestinal epithelial cells using used MODE-K cells as a model and explored the underlying mechanisms. Our data suggested that WO attenuated lipopolysaccharide (LPS)-induced pathological changes and inhibited the rate of LPS-induced apoptosis in MODE-K cells. Furthermore, WO down-regulated LPS-induced gene and protein expression of toll-like receptor 4 (TLR4), myeloid differentiation primary response gene 88 (MyD88), nuclear factor-κB (NF-κB), tumor necrosis factor-α, and interleukin-6. In conclusion, this study shows that WO exerts an anti-inflammatory effect on LPS-induced MODE-K cells injury by inhibiting the TLR4/MyD88/NF-κB pathway activation. Based on our data, a prominent functional food candidate can be provided for inflammatory bowel disease treatment. PRACTICAL APPLICATIONS: Walnut oil (WO) has excellent anti-inflammatory properties and is widely used in traditional dietary supplements. However, whether WO causes anti-lipopolysaccharide (LPS)-induced intestinal injury remains unclear. In this study, we investigated the protective effects of WO on mouse intestinal epithelial cells using MODE-K cells as a model and explored their potential mechanisms. Our data showed that WO ameliorated the pathological morphology, inhibited the apoptosis of LPS-induced MODE-K cell injury, decreased the release of pro-inflammatory cytokines, and down-regulated the related genes and proteins expression of the LPS-TLR4/MyD88/NF-κB inflammatory pathway. The results of this study would enhance the utilization of WO in the prevention of gastrointestinal diseases in animals and humans inflammatory bowel disease as well as in functional foods formulations.
Collapse
Affiliation(s)
- Fujun Miao
- Yunnan Academy of Forestry and Grassland, Kunming, China
| | - Chunlan Shan
- College of Animal Science, Guizhou University, Guiyang, China
| | - Delu Ning
- Yunnan Academy of Forestry and Grassland, Kunming, China
| |
Collapse
|
8
|
Omega-3 Supplementation Prevents Short-Term High-Fat Diet Effects on the α7 Nicotinic Cholinergic Receptor Expression and Inflammatory Response. Mediators Inflamm 2021; 2021:5526940. [PMID: 34421366 PMCID: PMC8371655 DOI: 10.1155/2021/5526940] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2021] [Revised: 06/16/2021] [Accepted: 07/13/2021] [Indexed: 12/29/2022] Open
Abstract
The study is aimed at investigating if PUFA supplementation could prevent the effects of a short-term HFD on α7nAChR expression and on the severity of sepsis. Swiss mice were used for the in vivo experiments. For the in vitro experiments, we used a microglia cell line (BV-2) and a hepatoma cell line (Hepa-1c1c7) derived from mice. The animals were either fed standard chow, fed a short-term HFD (60%), or given supplementation with omega-3 fatty acid (2 g/kg or 4 g/kg bw) for 17 days, followed by a short-term HFD. Endotoxemia was induced with an intraperitoneal (i.p.) lipopolysaccharide injection (LPS, 5 or 12 mg/kg), and sepsis was induced by subjecting the animals to cecal ligation and puncture (CLP). BV-2 and Hepa-1c1c7 cells were treated with LPS (100 and 500 ng/mL, respectively) for 3 hours. RT-PCR or Western blotting was used to evaluate α7nAChR expression, inflammatory markers, DNMT1, and overall ubiquitination. LPS and HFD reduced the expression of α7nAChR and increased the expression of inflammatory markers. Omega-3 partially prevented the damage caused by the HFD to the expression of α7nAChR in the bone marrow and hypothalamus, decreased the inflammatory markers, and reduced susceptibility to sepsis-induced death. Exposing the BV-2 cells to LPS increased the protein content of DNMT1 and the overall ubiquitination and reduced the expression of α7nAChR. The inflammation induced by LPS in the BV-2 cell decreased α7nAChR expression and concomitantly increased DNMT1 expression and the ubiquitinated protein levels, indicating the participation of pre- and posttranscriptional mechanisms.
Collapse
|
9
|
Story MJ. Essential sufficiency of zinc, ω-3 polyunsaturated fatty acids, vitamin D and magnesium for prevention and treatment of COVID-19, diabetes, cardiovascular diseases, lung diseases and cancer. Biochimie 2021; 187:94-109. [PMID: 34082041 PMCID: PMC8166046 DOI: 10.1016/j.biochi.2021.05.013] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2021] [Revised: 05/19/2021] [Accepted: 05/25/2021] [Indexed: 02/06/2023]
Abstract
Despite the development of a number of vaccines for COVID-19, there remains a need for prevention and treatment of the virus SARS-CoV-2 and the ensuing disease COVID-19. This report discusses the key elements of SARS-CoV-2 and COVID-19 that can be readily treated: viral entry, the immune system and inflammation, and the cytokine storm. It is shown that the essential nutrients zinc, ω-3 polyunsaturated fatty acids (PUFAs), vitamin D and magnesium provide the ideal combination for prevention and treatment of COVID-19: prevention of SARS-CoV-2 entry to host cells, prevention of proliferation of SARS-CoV-2, inhibition of excessive inflammation, improved control of the regulation of the immune system, inhibition of the cytokine storm, and reduction in the effects of acute respiratory distress syndrome (ARDS) and associated non-communicable diseases. It is emphasized that the non-communicable diseases associated with COVID-19 are inherently more prevalent in the elderly than the young, and that the maintenance of sufficiency of zinc, ω-3 PUFAs, vitamin D and magnesium is essential for the elderly to prevent the occurrence of non-communicable diseases such as diabetes, cardiovascular diseases, lung diseases and cancer. Annual checking of levels of these essential nutrients is recommended for those over 65 years of age, together with appropriate adjustments in their intake, with these services and supplies being at government cost. The cost:benefit ratio would be huge as the cost of the nutrients and the testing of their levels would be very small compared with the cost savings of specialists and hospitalization.
Collapse
Affiliation(s)
- Michael J Story
- Story Pharmaceutics Pty Ltd, PO Box 6086, Linden Park, South Australia, 5065, Australia.
| |
Collapse
|
10
|
Wu Z, Zhou L, Sun L, Xie Y, Xiao L, Wang H, Wang G. Brief postpartum separation from offspring promotes resilience to lipopolysaccharide challenge-induced anxiety and depressive-like behaviors and inhibits neuroinflammation in C57BL/6J dams. Brain Behav Immun 2021; 95:190-202. [PMID: 33766700 DOI: 10.1016/j.bbi.2021.03.016] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/20/2020] [Revised: 02/25/2021] [Accepted: 03/17/2021] [Indexed: 12/27/2022] Open
Abstract
Emerging evidence indicates an important role for neuroinflammation in depression. Brief maternal separation promotes resilience to depression in offspring, but relatively little is known about the effects of different durations of postpartum separation (PS) from offspring on anxiety and depressive-like behaviors in dams following immune challenge. Lactating C57BL/6J mice were subjected to no separation (NPS), brief PS (15 min/day, PS15) or prolonged PS (180 min/day, PS180) from postpartum day (PPD) 1 to PPD21 and then injected with lipopolysaccharide (LPS). Behavioral tests, including the open field test (OFT) and forced swimming test (FST), were carried out at 24 h after the injection. LPSresulted in anxiety and depressive-like behaviors in NPS dams and activated ionized calcium-binding adaptor molecule (Iba1), an important biomarker of microglia, in the hippocampus. However, compared with NPS + LPS dams, PS15 + LPS dams spent significantly more time in the center of the OFT (anxiety-like behavior) and exhibited lower immobility time in the FST (depressive-like behavior), which indicated a phenomenon of resilience. Furthermore, the activation of neuroinflammation was inhibited in PS15 dams. Specifically, levels of the Iba1 mRNA and protein were decreased, while the mRNA expression of NLR family pyrin domain containing 3 (NLRP3) inflammasome/interleukin-18 (IL-18)/nuclear factor kappa-B (NF-κB) was decreased in the hippocampus. Furthermore, positive linear correlations were observed between microglial activation and LPS-induced depressive-like behaviors in dams. Collectively, the findings of this study confirm that brief PS from offspring promotes resilience to LPS immune challenge-induced behavioral deficits and inhibits neuroinflammation in dams separated from their offspring during lactation.
Collapse
Affiliation(s)
- Zuotian Wu
- Department of Psychiatry, Renmin Hospital of Wuhan University, Jiefang Road No.238, Wuhan 430060, China
| | - Lin Zhou
- Department of Psychiatry, Renmin Hospital of Wuhan University, Jiefang Road No.238, Wuhan 430060, China
| | - Limin Sun
- Department of Psychiatry, Renmin Hospital of Wuhan University, Jiefang Road No.238, Wuhan 430060, China
| | - Yumeng Xie
- Department of Psychiatry, Renmin Hospital of Wuhan University, Jiefang Road No.238, Wuhan 430060, China
| | - Ling Xiao
- Department of Psychiatry, Renmin Hospital of Wuhan University, Jiefang Road No.238, Wuhan 430060, China
| | - Huiling Wang
- Department of Psychiatry, Renmin Hospital of Wuhan University, Jiefang Road No.238, Wuhan 430060, China
| | - Gaohua Wang
- Department of Psychiatry, Renmin Hospital of Wuhan University, Jiefang Road No.238, Wuhan 430060, China.
| |
Collapse
|
11
|
Nutrigenomics of Dietary Lipids. Antioxidants (Basel) 2021; 10:antiox10070994. [PMID: 34206632 PMCID: PMC8300813 DOI: 10.3390/antiox10070994] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2021] [Revised: 06/11/2021] [Accepted: 06/16/2021] [Indexed: 12/12/2022] Open
Abstract
Dietary lipids have a major role in nutrition, not only for their fuel value, but also as essential and bioactive nutrients. This narrative review aims to describe the current evidence on nutrigenomic effects of dietary lipids. Firstly, the different chemical and biological properties of fatty acids contained both in plant- and animal-based food are illustrated. A description of lipid bioavailability, bioaccessibility, and lipotoxicity is provided, together with an overview of the modulatory role of lipids as pro- or anti-inflammatory agents. Current findings concerning the metabolic impact of lipids on gene expression, epigenome, and gut microbiome in animal and human studies are summarized. Finally, the effect of the individual’s genetic make-up on lipid metabolism is described. The main goal is to provide an overview about the interaction between dietary lipids and the genome, by identifying and discussing recent scientific evidence, recognizing strengths and weaknesses, to address future investigations and fill the gaps in the current knowledge on metabolic impact of dietary fats on health.
Collapse
|
12
|
Liddle DM, Hutchinson AL, Monk JM, Power KA, Robinson LE. Dietary ω-3 polyunsaturated fatty acids modulate CD4 + T-cell subset markers, adipocyte antigen-presentation potential, and NLRP3 inflammasome activity in a coculture model of obese adipose tissue. Nutrition 2021; 91-92:111388. [PMID: 34298481 DOI: 10.1016/j.nut.2021.111388] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2020] [Revised: 05/28/2021] [Accepted: 06/01/2021] [Indexed: 11/28/2022]
Abstract
OBJECTIVES Chronic low-grade inflammation in obesity is partly driven by inflammatory cross talk between adipocytes and interferon-γ-secreting CD4+ T-helper (Th)1 cells, a process we have shown may be mitigated by long-chain (LC) ω-3 polyunsaturated fatty acids (PUFAs). Our objective was to study pivotal mediators of interactions between Th1 cells and adipocytes as potential mechanisms underlying the antiinflammatory effects of LC ω-3 PUFAs. METHODS Using an in vitro model, 3T3-L1 adipocytes were cocultured with purified splenic CD4+ T cells from C57BL/6 mice consuming one of two isocaloric high-fat (HF) diets (60% kcal fat), containing either 41.2% kcal from lard + 18.7% kcal from corn oil (control, HF) or 41.2% kcal from lard + 13.4% kcal from corn oil + 5.3% kcal from fish oil (HF+FO). Cocultures were stimulated for 48 h with lipopolysaccharide (10 ng/mL). RESULTS Compared with HF cocultures, HF+FO reduced Th1-cell markers (including secreted interferon-γ) and increased Th2-cell markers, consistent with reduced expression of genes related to major histocompatibility complex II (P < 0.05). HF+FO also blunted markers of priming and activity of the NOD-like receptor family pyrin domain containing 3 (NLRP3) inflammasome (P < 0.05). In confirmatory work, 3T3-L1 adipocyte pretreatment with the LC ω-3 PUFA docosahexaenoic acid (100 μM, 24 h) blunted interferon-γ-induced (5 ng/mL, 24 h) expression of genes related to major histocompatibility complex II and priming and activity markers of the NLRP3 inflammasome compared with control (P < 0.05). CONCLUSIONS Inflammatory interactions between CD4+ T cells and adipocytes may provide a target for LC ω-3 PUFAs to mitigate obesity-associated inflammation.
Collapse
Affiliation(s)
- Danyelle M Liddle
- Department of Human Health and Nutritional Sciences, University of Guelph, Guelph, Ontario, Canada
| | - Amber L Hutchinson
- Department of Human Health and Nutritional Sciences, University of Guelph, Guelph, Ontario, Canada
| | - Jennifer M Monk
- Department of Human Health and Nutritional Sciences, University of Guelph, Guelph, Ontario, Canada
| | - Krista A Power
- School of Nutrition Sciences, University of Ottawa, Ottawa, Ontario, Canada
| | - Lindsay E Robinson
- Department of Human Health and Nutritional Sciences, University of Guelph, Guelph, Ontario, Canada.
| |
Collapse
|
13
|
Turner L, Santosa S. Putting ATM to BED: How Adipose Tissue Macrophages Are Affected by Bariatric Surgery, Exercise, and Dietary Fatty Acids. Adv Nutr 2021; 12:1893-1910. [PMID: 33979430 PMCID: PMC8483961 DOI: 10.1093/advances/nmab011] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2020] [Revised: 12/17/2020] [Accepted: 01/19/2021] [Indexed: 12/20/2022] Open
Abstract
With increasing adiposity in obesity, adipose tissue macrophages contribute to adipose tissue malfunction and increased circulating proinflammatory cytokines. The chronic low-grade inflammation that occurs in obesity ultimately gives rise to a state of metainflammation that increases the risk of metabolic disease. To date, only lifestyle and surgical interventions have been shown to be somewhat effective at reversing the negative consequences of obesity and restoring adipose tissue homeostasis. Exercise, dietary interventions, and bariatric surgery result in immunomodulation, and for some individuals their effects are significant with or without weight loss. Robust evidence suggests that these interventions reduce chronic inflammation, in part, by affecting macrophage infiltration and promoting a phenotypic switch from the M1- to M2-like macrophages. The purpose of this review is to discuss the impact of dietary fatty acids, exercise, and bariatric surgery on cellular characteristics affecting adipose tissue macrophage presence and phenotypes in obesity.
Collapse
Affiliation(s)
- Laurent Turner
- Department of Health, Kinesiology, and Applied Physiology, Concordia University, Montreal, Quebec, Canada,Metabolism, Obesity, and Nutrition Lab, PERFORM Centre, Concordia University, Montreal, Quebec, Canada
| | | |
Collapse
|
14
|
Miao F, Shan C, Ma T, Geng S, Ning D. Walnut oil alleviates DSS-induced colitis in mice by inhibiting NLRP3 inflammasome activation and regulating gut microbiota. Microb Pathog 2021; 154:104866. [PMID: 33775855 DOI: 10.1016/j.micpath.2021.104866] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2020] [Revised: 03/10/2021] [Accepted: 03/10/2021] [Indexed: 12/11/2022]
Abstract
Ulcerative colitis (UC) has become a global disease and closely related to changes in intestinal oxidative stress, inflammatory factors and gut microbiota. Furthermore, the NLRP3 inflammasome activation is a key cause in the pathogenesis of dextran sulfate sodium (DSS)-induced colitis. Recent data showed the potential antioxidative and anti-inflammatory advantage of walnut oil, which widely used in traditional medicine and has become a dietary supplement for some patients. Therefore, we investigated whether walnut oil exerts an anti-inflammatory effect on DSS-induced colitis mice by targeting NLRP3 inflammasome and gut microbiota. Our data showed that walnut oil ameliorated the pathological morphology, decreased the reactive oxygen species (ROS) production and pro-inflammatory cytokines release, down-regulated the related gene proteins expression of NLRP3/ASC/Caspase-1 inflammatory pathway, inhibited apoptosis, shifted from more pathogens towards probiotics, and increased the levels of short-chain fatty acids (SCFAs) in DSS-induced damaging process. Collectively, our study concludes that walnut oil exerts anti-inflammatory effect on DSS-induced colitis in mice by inhibiting the NLRP3 inflammasome activation and modulating gut microbiota, and may be a prominent functional food candidate for UC treatment.
Collapse
Affiliation(s)
- Fujun Miao
- Yunnan Academy of Forestry and Grassland, Kunming, 650204, China
| | - Chunlan Shan
- College of Animal Science and Technology, Yunnan Agricultural University, Kunming, 650201, China.
| | - Ting Ma
- Yunnan Academy of Forestry and Grassland, Kunming, 650204, China
| | - Shuxiang Geng
- Yunnan Academy of Forestry and Grassland, Kunming, 650204, China
| | - Delu Ning
- Yunnan Academy of Forestry and Grassland, Kunming, 650204, China.
| |
Collapse
|
15
|
Monk JM, Liddle DM, Hutchinson AL, Robinson LE. Studying Adipocyte and Immune Cell Cross Talk Using a Co-culture System. Methods Mol Biol 2021; 2184:111-130. [PMID: 32808222 DOI: 10.1007/978-1-0716-0802-9_9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/30/2023]
Abstract
The co-culture of adipocytes and immune cells, such as macrophages or T cells (CD4+ or CD8+ subsets), is a novel experimental approach used to study paracrine interactions (or the cross talk) between cultured cell types in isolation, in order to understand their role in obese adipose tissue (AT) inflammation and dysfunction. Here we describe the general methodologies required for the co-culture of mature adipocytes (differentiated 3T3-L1 pre-adipocyte cell line) with primary immune cell subsets purified from mouse splenic mononuclear cells using a magnetic MicroBead positive selection, wherein multiple immune cell populations can be purified sequentially from a single mouse spleen, thereby providing diversity in the types of immune cells that can be co-cultured with adipocytes. Additionally, we describe experimental procedures for co-culturing adipocytes and immune cells in two different co-culture systems, including a cell contact-dependent co-culture system, wherein the cells are in direct physical contact, and a cell contact-independent, soluble mediator-driven co-culture system wherein the cells are physically separated by a trans-well semipermeable membrane. Finally, we discuss how these co-culture models can be utilized to recapitulate the AT microenvironment in obesity by utilizing physiologically relevant ratios of adipocytes:immune cells (specifically CDllb+ macrophages, CD4+ T cells, or CD8+ T cells) and lipopolysaccharide stimulation that mimics endotoxin concentrations observed in obesity.
Collapse
Affiliation(s)
- Jennifer M Monk
- Department of Human Health and Nutritional Sciences, University of Guelph, Guelph, ON, Canada.
| | - Danyelle M Liddle
- Department of Human Health and Nutritional Sciences, University of Guelph, Guelph, ON, Canada
| | - Amber L Hutchinson
- Department of Human Health and Nutritional Sciences, University of Guelph, Guelph, ON, Canada
| | - Lindsay E Robinson
- Department of Human Health and Nutritional Sciences, University of Guelph, Guelph, ON, Canada.
| |
Collapse
|
16
|
Yu Q, Wang T, Wang F, Yang Y, He C, Yang W, Zhang J, Zou Z. High n-3 fatty acids counteract hyperglycemia-induced insulin resistance in fat-1 mice via pre-adipocyte NLRP3 inflammasome inhibition. Food Funct 2021; 12:230-240. [PMID: 33295913 DOI: 10.1039/d0fo02092c] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
Although n-3 polyunsaturated fatty acids (n-3 PUFAs) have potential anti-insulin resistance activity, the mechanism remains largely unknown. In this study, increased glucose resistance, insulin sensitivity, and lower glycemia were observed upon streptozotocin (STZ) treatment in n-3 PUFA-enriched fat-1 mice compared to wild type (WT) mice. Endogenous n-3 PUFAs in fat-1 mice were found to impair hyperglycemia or high glucose level-induced nucleotide-binding domain and leucine-rich repeat pyrin 3 domain (NLRP3) inflammasome activation and inhibit IL-1β secretion in adipose tissues. In addition, endogenous n-3 PUFAs also inhibited high glucose-induced caspase-1 activity and IL-1β secretion in pre-adipocyte-enriched stromal vascular fractions (SVF) isolated from adipose tissues. Furthermore, in 3T3-L1 pre-adipocytes, high levels of glucose induced thioredoxin interacting protein (TXNIP) expression and activated the NLRP3 inflammasome, which was counteracted by docosahexaenoic acid (DHA), the major n-3 PUFA in fat-1 mice, by downregulating TXNIP via the phosphatidylinositol-3-kinase (PI3K)/Akt pathway. Our results suggest that n-3 PUFA-mediated insulin sensitivity is at least partly associated with inflammasome inhibition in pre-adipocytes. Our findings highlight the potential clinical use of dietary n-3 PUFAs in the prevention or intervention of T2D and other NLRP3 inflammasome-driven inflammatory diseases.
Collapse
Affiliation(s)
- Qingyao Yu
- College of Food and Pharmaceutical Sciences, Ningbo University, Ningbo, Zhejiang 315211, China.
| | - Tiantian Wang
- College of Food and Pharmaceutical Sciences, Ningbo University, Ningbo, Zhejiang 315211, China.
| | - Feng Wang
- Department of Laboratory Medicine, Ningbo Medical Center Lihuili Hospital, Ningbo, Zhejiang 315040, China
| | - Yong Yang
- Department of Clinical laboratory, the affiliated Hospital of Ningbo University, Ningbo, Zhejiang 315020, China
| | - Canxia He
- Zhejiang Key Laboratory of Pathophysiology, Medical School, Ningbo University, Ningbo, Zhejiang 315211, China.
| | - Wenge Yang
- College of Food and Pharmaceutical Sciences, Ningbo University, Ningbo, Zhejiang 315211, China.
| | - JinJie Zhang
- College of Food and Pharmaceutical Sciences, Ningbo University, Ningbo, Zhejiang 315211, China.
| | - Zuquan Zou
- Zhejiang Key Laboratory of Pathophysiology, Medical School, Ningbo University, Ningbo, Zhejiang 315211, China.
| |
Collapse
|
17
|
López-Tenorio II, Domínguez-López A, Miliar-García Á, Escalona-Cardoso GN, Real-Sandoval SA, Gómez-Alcalá A, Jaramillo-Flores ME. Modulation of the mRNA of the Nlrp3 inflammasome by Morin and PUFAs in an obesity model induced by a high-fat diet. Food Res Int 2020; 137:109706. [DOI: 10.1016/j.foodres.2020.109706] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2020] [Revised: 08/22/2020] [Accepted: 09/06/2020] [Indexed: 01/11/2023]
|
18
|
Recent insights on modulation of inflammasomes by adipokines: a critical event for the pathogenesis of obesity and metabolism-associated diseases. Arch Pharm Res 2020; 43:997-1016. [PMID: 33078304 DOI: 10.1007/s12272-020-01274-7] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2020] [Accepted: 10/13/2020] [Indexed: 12/17/2022]
Abstract
Aberrant production of adipokines, a group of adipocytes-derived hormones, is considered one of the most important pathological characteristics of obesity. In individuals with obesity, beneficial adipokines, such as adiponectin are downregulated, whereas leptin and other pro-inflammatory adipokines are highly upregulated. Hence, the imbalance in levels of these adipokines is thought to promote the development of obesity-linked complications. However, the mechanisms by which adipokines contribute to the pathogenesis of various diseases have not been clearly understood. Inflammasomes represent key signaling platform that triggers the inflammatory and immune responses through the processing of the interleukin family of pro-inflammatory cytokines in a caspase-1-dependent manner. Beyond their traditional function as a component of the innate immune system, inflammasomes have been recently integrated into the pathological process of multiple metabolism- and obesity-related disorders such as cardiovascular diseases, diabetes, fatty liver disease, and cancer. Interestingly, emerging evidence also highlights the role of adipokines in the modulation of inflammasomes activation, making it a promising mechanism underlying distinct biological actions of adipokines in diseases driven by inflammation and metabolic disorders. In this review, we summarize the effects of adipokines, in particular adiponectin, leptin, visfatin and apelin, on inflammasomes activation and their implications in the pathophysiology of obesity-linked complications.
Collapse
|
19
|
Alvarenga L, Cardozo LF, Borges NA, Lindholm B, Stenvinkel P, Shiels PG, Fouque D, Mafra D. Can nutritional interventions modulate the activation of the NLRP3 inflammasome in chronic kidney disease? Food Res Int 2020; 136:109306. [DOI: 10.1016/j.foodres.2020.109306] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2020] [Revised: 04/28/2020] [Accepted: 05/07/2020] [Indexed: 02/06/2023]
|
20
|
Gritsenko A, Green JP, Brough D, Lopez-Castejon G. Mechanisms of NLRP3 priming in inflammaging and age related diseases. Cytokine Growth Factor Rev 2020; 55:15-25. [PMID: 32883606 PMCID: PMC7571497 DOI: 10.1016/j.cytogfr.2020.08.003] [Citation(s) in RCA: 72] [Impact Index Per Article: 14.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2020] [Accepted: 08/20/2020] [Indexed: 02/06/2023]
Abstract
The NLRP3 inflammasome is a vital part of the innate immune response, whilst its aberrant activation drives the progression of a number of non-communicable diseases. Thus, NLRP3 inflammasome assembly must be tightly controlled at several checkpoints. The priming step of NLRP3 inflammasome activation is associated with increased NLRP3 gene expression, as well as post-translational modifications that control NLRP3 levels and licence the NLRP3 protein for inflammasome assembly. Increasing life expectancy in modern society is accompanied by a growing percentage of elderly individuals. The process of aging is associated with chronic inflammation that drives and/or worsens a range of age related non-communicable conditions. The NLRP3 inflammasome is known to contribute to pathological inflammation in many settings, but the mechanisms that prime NLRP3 for activation throughout aging and related co-morbidities have not been extensively reviewed. Here we dissect the biochemical changes that occur during aging and the pathogenesis of age related diseases and analyse the mechanisms by which they prime the NLRP3 inflammasome, thus exacerbating inflammation.
Collapse
Affiliation(s)
- Anna Gritsenko
- Lydia Becker Institute of Immunology and Inflammation, Division of Infection, Immunity and Respiratory Medicine, Faculty of Biology, Medicine and Health, University of Manchester, Manchester Academic Health Science Centre, Manchester, UK
| | - Jack P Green
- Lydia Becker Institute of Immunology and Inflammation, Division of Neuroscience and Experimental Psychology, Faculty of Biology, Medicine and Health, University of Manchester, Manchester Academic Health Science Centre, Manchester, UK
| | - David Brough
- Lydia Becker Institute of Immunology and Inflammation, Division of Neuroscience and Experimental Psychology, Faculty of Biology, Medicine and Health, University of Manchester, Manchester Academic Health Science Centre, Manchester, UK
| | - Gloria Lopez-Castejon
- Lydia Becker Institute of Immunology and Inflammation, Division of Infection, Immunity and Respiratory Medicine, Faculty of Biology, Medicine and Health, University of Manchester, Manchester Academic Health Science Centre, Manchester, UK.
| |
Collapse
|
21
|
Liddle DM, Hutchinson AL, Monk JM, DeBoer AA, Ma DWL, Robinson LE. Dietary long-chain n-3 PUFAs mitigate CD4 + T cell/adipocyte inflammatory interactions in co-culture models of obese adipose tissue. J Nutr Biochem 2020; 86:108488. [PMID: 32827664 DOI: 10.1016/j.jnutbio.2020.108488] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2020] [Revised: 05/14/2020] [Accepted: 08/05/2020] [Indexed: 02/07/2023]
Abstract
Obese adipose tissue (AT) inflammation is partly driven by accumulation of CD4+ T helper (Th)1 cells and reduced Th2 and T regulatory subsets, which promotes macrophage chemotaxis and ensuing AT metabolic dysfunction. This study investigated CD4+ T cell/adipocyte cytokine-mediated paracrine interactions (cross talk) as a target for dietary intervention to mitigate obese AT inflammation. Using an in vitro co-culture model designed to recapitulate CD4+ T cell accumulation in obese AT (5% of stromal vascular cellular fraction), 3T3-L1 adipocytes were co-cultured with purified splenic CD4+ T cells from C57Bl/6 mice consuming one of two isocaloric diets containing either 10% w/w safflower oil (control, CON) or 7% w/w safflower oil+3% w/w fish oil (FO) for 4 weeks (n=8-11/diet). The FO diet provided 1.9% kcal from the long-chain (LC) n-3 polyunsaturated fatty acids (PUFAs) eicosapentaenoic acid and docosahexaenoic acid, a dose that can be achieved by supplementation. Co-cultures were stimulated for 48 h with lipopolysaccharide (LPS) to mimic in vivo obese endotoxin levels or with conditioned media collected from LPS-stimulated visceral AT isolated from CON-fed mice. In both stimulation conditions, FO reduced mRNA expression and/or secreted protein levels of Th1 markers (T-bet, IFN-γ) and increased Th2 markers (GATA3, IL-4), concomitant with reduced inflammatory cytokines (IL-1β, IL-6, IL-12p70, TNF-α), macrophage chemokines (MCP-1, MCP-3, MIP-1α, MIP-2) and levels of activated central regulators of inflammatory signaling (NF-κB, STAT-1, STAT-3) (P<.05). Therefore, CD4+ T cell/adipocyte cross talk represents a potential target for LC n-3 PUFAs to mitigate obese AT inflammation.
Collapse
Affiliation(s)
- Danyelle M Liddle
- Department of Hsuman Health and Nutritional Sciences, University of Guelph, Guelph, ON, Canada N1G 2W1
| | - Amber L Hutchinson
- Department of Hsuman Health and Nutritional Sciences, University of Guelph, Guelph, ON, Canada N1G 2W1
| | - Jennifer M Monk
- Department of Hsuman Health and Nutritional Sciences, University of Guelph, Guelph, ON, Canada N1G 2W1
| | - Anna A DeBoer
- Department of Hsuman Health and Nutritional Sciences, University of Guelph, Guelph, ON, Canada N1G 2W1
| | - David W L Ma
- Department of Hsuman Health and Nutritional Sciences, University of Guelph, Guelph, ON, Canada N1G 2W1
| | - Lindsay E Robinson
- Department of Hsuman Health and Nutritional Sciences, University of Guelph, Guelph, ON, Canada N1G 2W1.
| |
Collapse
|
22
|
Giustina AD, de Souza Goldim MP, Danielski LG, Garbossa L, Junior ANO, Cidreira T, Denicol T, Bonfante S, da Rosa N, Fortunato JJ, Palandi J, de Oliveira BH, Martins DF, Bobinski F, Garcez M, Bellettini-Santos T, Budni J, Colpo G, Scaini G, Giridharan VV, Barichello T, Petronilho F. Lipoic Acid and Fish Oil Combination Potentiates Neuroinflammation and Oxidative Stress Regulation and Prevents Cognitive Decline of Rats After Sepsis. Mol Neurobiol 2020; 57:4451-4466. [PMID: 32743736 DOI: 10.1007/s12035-020-02032-y] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2020] [Accepted: 07/22/2020] [Indexed: 02/06/2023]
Abstract
Sepsis causes organ dysfunction due to an infection, and it may impact the central nervous system. Neuroinflammation and oxidative stress are related to brain dysfunction after sepsis. Both processes affect microglia activation, neurotrophin production, and long-term cognition. Fish oil (FO) is an anti-inflammatory compound, and lipoic acid (LA) is a universal antioxidant substance. They exert neuroprotective roles when administered alone. We aimed at determining the effect of FO+LA combination on microglia activation and brain dysfunction after sepsis. Microglia cells from neonatal pups were co-treated with lipopolysaccharide (LPS) and FO or LA, alone or combined, for 24 h. Cytokine levels were measured. Wistar rats were subjected to sepsis by cecal ligation and perforation (CLP) and treated orally with FO, LA, or FO+LA. At 24 h after surgery, the hippocampus, prefrontal cortex, and total cortex were obtained and assayed for levels of cytokines, myeloperoxidase (MPO) activity, protein carbonyls, superoxide dismutase (SOD), and catalase (CAT) activity. At 10 days after surgery, brain-derived neurotrophic factor (BDNF) levels were determined and behavioral tests were performed. The combination diminished in vitro levels of pro-inflammatory cytokines. The combination reduced TNF-α in the cortex, IL-1β in the prefrontal cortex, as well as MPO activity, and decreased protein carbonyls formation in all structures. The combination enhanced catalase activity in the prefrontal cortex and hippocampus, elevated BDNF levels in all structures, and prevented behavioral impairment. In summary, the combination was effective in preventing cognitive damage by reducing neuroinflammation and oxidative stress and increasing BDNF levels.
Collapse
Affiliation(s)
- Amanda Della Giustina
- Laboratory of Neurobiology of Inflammatory and Metabolic Processes, Graduate Program in Health Sciences, University of South Santa Catarina, Tubarão, SC, Brazil
| | - Mariana Pereira de Souza Goldim
- Laboratory of Neurobiology of Inflammatory and Metabolic Processes, Graduate Program in Health Sciences, University of South Santa Catarina, Tubarão, SC, Brazil
| | - Lucinéia Gainski Danielski
- Laboratory of Neurobiology of Inflammatory and Metabolic Processes, Graduate Program in Health Sciences, University of South Santa Catarina, Tubarão, SC, Brazil
| | - Leandro Garbossa
- Laboratory of Neurobiology of Inflammatory and Metabolic Processes, Graduate Program in Health Sciences, University of South Santa Catarina, Tubarão, SC, Brazil
| | - Aloir Neri Oliveira Junior
- Laboratory of Neurobiology of Inflammatory and Metabolic Processes, Graduate Program in Health Sciences, University of South Santa Catarina, Tubarão, SC, Brazil
| | - Thainá Cidreira
- Laboratory of Neurobiology of Inflammatory and Metabolic Processes, Graduate Program in Health Sciences, University of South Santa Catarina, Tubarão, SC, Brazil
| | - Taís Denicol
- Laboratory of Neurobiology of Inflammatory and Metabolic Processes, Graduate Program in Health Sciences, University of South Santa Catarina, Tubarão, SC, Brazil
| | - Sandra Bonfante
- Laboratory of Neurobiology of Inflammatory and Metabolic Processes, Graduate Program in Health Sciences, University of South Santa Catarina, Tubarão, SC, Brazil
| | - Naiana da Rosa
- Laboratory of Neurobiology of Inflammatory and Metabolic Processes, Graduate Program in Health Sciences, University of South Santa Catarina, Tubarão, SC, Brazil
| | - Jucélia Jeremias Fortunato
- Laboratory of Neurobiology of Inflammatory and Metabolic Processes, Graduate Program in Health Sciences, University of South Santa Catarina, Tubarão, SC, Brazil
| | - Juliete Palandi
- Experimental Neuroscience Laboratory (LaNEx), Postgraduate Program in Health Sciences, University of Southern Santa Catarina, Palhoça, Santa Catarina, Brazil
| | - Bruna Hoffmann de Oliveira
- Experimental Neuroscience Laboratory (LaNEx), Postgraduate Program in Health Sciences, University of Southern Santa Catarina, Palhoça, Santa Catarina, Brazil
| | - Daniel Fernandes Martins
- Experimental Neuroscience Laboratory (LaNEx), Postgraduate Program in Health Sciences, University of Southern Santa Catarina, Palhoça, Santa Catarina, Brazil
| | - Franciane Bobinski
- Experimental Neuroscience Laboratory (LaNEx), Postgraduate Program in Health Sciences, University of Southern Santa Catarina, Palhoça, Santa Catarina, Brazil
| | - Michelle Garcez
- Laboratory of Neurosciences, Graduate Program in Health Sciences, Health Sciences Unit, University of Southern Santa Catarina, Criciúma, SC, Brazil
| | - Tatiani Bellettini-Santos
- Laboratory of Neurosciences, Graduate Program in Health Sciences, Health Sciences Unit, University of Southern Santa Catarina, Criciúma, SC, Brazil
| | - Josiane Budni
- Laboratory of Neurosciences, Graduate Program in Health Sciences, Health Sciences Unit, University of Southern Santa Catarina, Criciúma, SC, Brazil
| | - Gabriela Colpo
- Faillace Department of Psychiatry and Behavioral Sciences, Translational Psychiatry Program, McGovern Medical School, The University of Texas Health Science Center at Houston (UTHealth), Houston, TX, 77054, USA
| | - Giselli Scaini
- Faillace Department of Psychiatry and Behavioral Sciences, Translational Psychiatry Program, McGovern Medical School, The University of Texas Health Science Center at Houston (UTHealth), Houston, TX, 77054, USA
| | - Vijayasree V Giridharan
- Faillace Department of Psychiatry and Behavioral Sciences, Translational Psychiatry Program, McGovern Medical School, The University of Texas Health Science Center at Houston (UTHealth), Houston, TX, 77054, USA
| | - Tatiana Barichello
- Faillace Department of Psychiatry and Behavioral Sciences, Translational Psychiatry Program, McGovern Medical School, The University of Texas Health Science Center at Houston (UTHealth), Houston, TX, 77054, USA.,Laboratory of Experimental Pathophysiology, Graduate Program in Health Sciences, Health Sciences Unit, University of Southern Santa Catarina, Criciúma, SC, Brazil
| | - Fabricia Petronilho
- Laboratory of Neurobiology of Inflammatory and Metabolic Processes, Graduate Program in Health Sciences, University of South Santa Catarina, Tubarão, SC, Brazil. .,Laboratório de Neurobiologia de Processos Inflamatórios e Metabólicos, Programa de Pós-graduação em Ciências da Saúde, Universidade do Sul de Santa Catarina, Tubarão, SC, Brazil.
| |
Collapse
|
23
|
Dewhurst-Trigg R, Hulston CJ, Markey O. The effect of quantity and quality of dietary fat intake on subcutaneous white adipose tissue inflammatory responses. Proc Nutr Soc 2020; 79:1-15. [PMID: 32063233 DOI: 10.1017/s0029665120000038] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
The global prevalence of obesity and obesity-associated cardiometabolic diseases is a significant public health burden. Chronic low-grade inflammation in metabolic tissues such as white adipose tissue (WAT) is linked to obesity and may play a role in disease progression. The overconsumption of dietary fat has been suggested to modulate the WAT inflammatory environment. It is also recognised that fats varying in degree of fatty acid saturation may elicit differential WAT inflammatory responses. This information has originated predominantly from animal or cell models and translation into human participants in vivo remains limited. This review will summarise human intervention studies investigating the effect of dietary fat quantity and quality on subcutaneous WAT inflammation, with a specific focus on the toll-like receptor 4 (TLR4)/NF-κB and nucleotide-binding and oligomerisation domain-like receptor, leucine-rich repeat and pyrin domain-containing 3 (NLRP3) inflammasome molecular signalling pathways. Overall, firm conclusions are hard to draw regarding the effect of dietary fat quantity and quality on WAT inflammatory responses due to the heterogeneity of study designs, diet composition and participant cohorts recruited. Previous studies have predominantly focused on measures of WAT gene expression. It is suggested that future work includes measures of WAT total content and phosphorylation of proteins involved in TLR4/NF-κB and NLRP3 signalling as this is more representative of alterations in WAT physiological function. Understanding pathways linking the intake of total fat and specific fatty acids with WAT metabolic-inflammatory responses may have important implications for public health by informing dietary guidelines aimed at cardiometabolic risk reduction.
Collapse
Affiliation(s)
- R Dewhurst-Trigg
- School of Sport, Exercise and Health Sciences, Loughborough University, LoughboroughLE11 3TU, UK
| | - C J Hulston
- School of Sport, Exercise and Health Sciences, Loughborough University, LoughboroughLE11 3TU, UK
| | - O Markey
- School of Sport, Exercise and Health Sciences, Loughborough University, LoughboroughLE11 3TU, UK
- Hugh Sinclair Unit of Human Nutrition, Department of Food and Nutritional Sciences, University of Reading, ReadingRG6 6AP, UK
| |
Collapse
|
24
|
Kwon Y. Immuno-Resolving Ability of Resolvins, Protectins, and Maresins Derived from Omega-3 Fatty Acids in Metabolic Syndrome. Mol Nutr Food Res 2019; 64:e1900824. [PMID: 31797565 DOI: 10.1002/mnfr.201900824] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2019] [Revised: 10/19/2019] [Indexed: 12/28/2022]
Abstract
Omega-3 fatty acid consumption has been suggested to be beneficial for the prevention of type 2 diabetes mellitus (T2DM). Its effects have been attributed to anti-inflammatory activity, with the inhibition of arachidonic acid metabolism playing a central role. However, a more recent view is that omega-3 fatty acids play an active role as the precursors of potent, specialized pro-resolving mediators (SPMs), such as resolvins, protectins, and maresins. Docosahexaenoic acid (DHA)- and eicosapentaenoic-acid-derived SPMs are identified in the adipose tissue but the levels of certain SPMs (e.g., protectin D1) are markedly reduced with obesity, suggesting adipose SPM deficiency, potentially resulting in unresolved inflammation. Supplementation of the biosynthetic intermediates of SPM (e.g., 17-hydroxy-DHA) or omega-3 fatty acids increases the level of adipose SPMs, reduces adipose inflammation (decrease in macrophage accumulation and change to less inflammatory macrophages), and enhances insulin sensitivity. The findings from studies using rodent obesity models must be translated to humans. It will be important to further elucidate the underlying mechanisms by which obesity reduces the levels of and the sensitivity to SPM in adipose tissues. This will enable the development of nutrition therapy to enhance the effects of omega-3 fatty acids in the prevention and/or treatment of T2DM.
Collapse
Affiliation(s)
- Youngjoo Kwon
- Department of Food Science and Engineering, Ewha Womans University, Seoul, 03760, Korea
| |
Collapse
|
25
|
Surendar J, Frohberger SJ, Karunakaran I, Schmitt V, Stamminger W, Neumann AL, Wilhelm C, Hoerauf A, Hübner MP. Adiponectin Limits IFN-γ and IL-17 Producing CD4 T Cells in Obesity by Restraining Cell Intrinsic Glycolysis. Front Immunol 2019; 10:2555. [PMID: 31736971 PMCID: PMC6828851 DOI: 10.3389/fimmu.2019.02555] [Citation(s) in RCA: 69] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2019] [Accepted: 10/15/2019] [Indexed: 12/13/2022] Open
Abstract
Compared to the innate immune system, the contribution of the adaptive immune response during obesity and insulin resistance is still not completely understood. Here we demonstrate that high fat diet (HFD) increases the frequencies of activated CD4+ and CD8+ T cells and frequencies of T cells positive for IFN-γ and IL-17 in the adipose tissue. The adipocyte-derived soluble factor adiponectin reduces IFN-γ and IL-17 positive CD4+ T cells from HFD mice and dampens the differentiation of naïve T cells into Th1 cells and Th17 cells. Adiponectin reduces Th17 cell differentiation and restrains glycolysis in an AMPK dependent fashion. Treatment with adult worm extracts of the rodent filarial nematode Litomosoides sigmodontis (LsAg) reduces adipose tissue Th1 and Th17 cell frequencies during HFD and increases adiponectin levels. Stimulation of T cells in the presence of adipocyte-conditioned media (ACM) from LsAg-treated mice reduces Th1 and Th17 frequencies and this effect was abolished when ACM was treated with an adiponectin neutralizing antibody. Collectively, these data reveal a novel role of adiponectin in controlling pro-inflammatory CD4+ T cells during obesity and suggest that the beneficial role of helminth infections and helminth-derived products on obesity and insulin resistance may be in part mediated by adiponectin.
Collapse
Affiliation(s)
- Jayagopi Surendar
- Institute for Medical Microbiology, Immunology and Parasitology, University Hospital Bonn, Bonn, Germany.,Unit for Immunopathology, Institute of Clinical Chemistry and Clinical Pharmacology, University Hospital Bonn, Bonn, Germany
| | - Stefan J Frohberger
- Institute for Medical Microbiology, Immunology and Parasitology, University Hospital Bonn, Bonn, Germany
| | - Indulekha Karunakaran
- Institute for Medical Microbiology, Immunology and Parasitology, University Hospital Bonn, Bonn, Germany
| | - Vanessa Schmitt
- Unit for Immunopathology, Institute of Clinical Chemistry and Clinical Pharmacology, University Hospital Bonn, Bonn, Germany
| | - Wiebke Stamminger
- Institute for Medical Microbiology, Immunology and Parasitology, University Hospital Bonn, Bonn, Germany
| | - Anna-Lena Neumann
- Institute for Medical Microbiology, Immunology and Parasitology, University Hospital Bonn, Bonn, Germany
| | - Christoph Wilhelm
- Unit for Immunopathology, Institute of Clinical Chemistry and Clinical Pharmacology, University Hospital Bonn, Bonn, Germany
| | - Achim Hoerauf
- Institute for Medical Microbiology, Immunology and Parasitology, University Hospital Bonn, Bonn, Germany.,German Center for Infection Research (DZIF), Partner Site Bonn-Cologne, Bonn, Germany
| | - Marc P Hübner
- Institute for Medical Microbiology, Immunology and Parasitology, University Hospital Bonn, Bonn, Germany
| |
Collapse
|
26
|
Liddle DM, Monk JM, Hutchinson AL, Ma DWL, Robinson LE. CD8 + T cell/adipocyte inflammatory cross talk and ensuing M1 macrophage polarization are reduced by fish-oil-derived n-3 polyunsaturated fatty acids, in part by a TNF-α-dependent mechanism. J Nutr Biochem 2019; 76:108243. [PMID: 31760229 DOI: 10.1016/j.jnutbio.2019.108243] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2019] [Revised: 07/15/2019] [Accepted: 09/10/2019] [Indexed: 12/25/2022]
Abstract
Obese visceral adipose tissue (AT) inflammation is driven by adipokine-mediated cross talk between CD8+ T cells and adipocytes, a process mitigated by long-chain (LC) n-3 polyunsaturated fatty acids (PUFA) but underlying mechanisms and ensuing effects on macrophage polarization status are unknown. Using an in vitro co-culture model that recapitulates the degree of CD8+ T cell infiltration reported in obese AT, 3T3-L1 adipocytes were co-cultured for 24 h with purified splenic CD8+ T cells from C57Bl/6 mice consuming either a 10% w/w safflower oil (control, CON) or 7% w/w safflower oil + 3% w/w fish oil (FO) diet for 4 weeks (n=8-10/diet). Co-cultured cells were in direct contact or in a contact-independent condition separated by a Transwell permeable membrane and stimulated with lipopolysaccharide (10 ng/ml) to mimic in vivo obese endotoxin levels. In contact-dependent co-cultures, FO reduced inflammatory (IL-6, TNFα, IFN-γ) and macrophage chemotactic (CCL2, CCL7, CCL3) mRNA expression and/or secreted protein, NF-κB p65 activation, ROS accumulation, NLRP3 inflammasome priming (Nlrp3, Il1β mRNA) and activation (caspase-1 activity) compared to CON (P<.05). The anti-inflammatory action of FO was reproduced by the addition of a TNF-α neutralizing antibody (1 μg/ml) to CON co-cultures (CON/anti-TNF-α), albeit to a lesser degree. Conditioned media from FO and CON/anti-TNF-α co-cultures, in turn, reduced RAW 264.7 macrophage mRNA expression of M1 polarization markers (iNos, Cd11c, Ccr2) and associated inflammatory cytokines (Il6, Tnfα, Il1β) compared to CON. These data suggest that inflammatory CD8+ T cell/adipocyte cross talk is partially attributable to TNF-α signaling, which can be mitigated by LC n-3 PUFA.
Collapse
Affiliation(s)
- Danyelle M Liddle
- Department of Human Health and Nutritional Sciences, University of Guelph, Guelph, ON, Canada, N1G 2W1
| | - Jennifer M Monk
- Department of Human Health and Nutritional Sciences, University of Guelph, Guelph, ON, Canada, N1G 2W1
| | - Amber L Hutchinson
- Department of Human Health and Nutritional Sciences, University of Guelph, Guelph, ON, Canada, N1G 2W1
| | - David W L Ma
- Department of Human Health and Nutritional Sciences, University of Guelph, Guelph, ON, Canada, N1G 2W1
| | - Lindsay E Robinson
- Department of Human Health and Nutritional Sciences, University of Guelph, Guelph, ON, Canada, N1G 2W1.
| |
Collapse
|
27
|
Yaribeygi H, Atkin SL, Simental-Mendía LE, Barreto GE, Sahebkar A. Anti-inflammatory effects of resolvins in diabetic nephropathy: Mechanistic pathways. J Cell Physiol 2019; 234:14873-14882. [PMID: 30746696 DOI: 10.1002/jcp.28315] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2018] [Revised: 01/19/2019] [Accepted: 01/24/2019] [Indexed: 01/24/2023]
Abstract
The incidence of diabetes mellitus is growing rapidly. The exact pathophysiology of diabetes is unclear, but there is increasing evidence of the role of the inflammatory response in both developing diabetes as well as its complications. Resolvins are naturally occurring polyunsaturated fatty acids that are found in fish oil and sea food that have been shown to possess anti-inflammatory actions in several tissues including the kidneys. The pathways by which resolvins exert this anti-inflammatory effect are unclear. In this review we discuss the evidence showing that resolvins can suppress inflammatory responses via at least five molecular mechanisms through inhibition of the nucleotide-binding oligomerization domain protein 3 inflammasome, inhibition of nuclear factor κB molecular pathways, improvement of oxidative stress, modulation of nitric oxide synthesis/release and prevention of local and systemic leukocytosis. Complete understanding of these molecular pathways is important as this may lead to the development of new effective therapeutic strategies for diabetes and diabetic nephropathy.
Collapse
Affiliation(s)
- Habib Yaribeygi
- Chronic Kidney Disease Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | | | | | - George E Barreto
- Departamento de Nutrición y Bioquímica, Facultad de Ciencias, Pontificia Universidad Javeriana, Bogotá D.C., Colombia.,Instituto de Ciencias Biomédicas, Universidad Autónoma de Chile, Santiago, Chile
| | - Amirhossein Sahebkar
- Neurogenic Inflammation Research Center, Mashhad University of Medical Sciences, Mashhad, Iran.,Biotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran.,School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| |
Collapse
|
28
|
de Almeida Mallmann B, Martin EM, Soo Kim K, Calderon-Apodaca NL, Baxter MFA, Latorre JD, Hernandez-Velasco X, Paasch-Martinez L, Owens CM, Dridi S, Bottje WG, Greene ES, Tellez-Isaias G. Evaluation of Bone Marrow Adipose Tissue and Bone Mineralization on Broiler Chickens Affected by Wooden Breast Myopathy. Front Physiol 2019; 10:674. [PMID: 31191361 PMCID: PMC6549442 DOI: 10.3389/fphys.2019.00674] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2019] [Accepted: 05/13/2019] [Indexed: 12/19/2022] Open
Abstract
In humans, alterations in bone metabolism have been associated with myopathies. We postulate the hypothesis that perhaps similar pathologies can also be associated in modern chickens. Hence, this study aimed to assess the fat infiltration in bone marrow and its repercussion on broiler chicken affected by Wooden Breast (WB) myopathy. Ten Cobb 500 live birds with extreme rigidity of the Pectoralis major (PM) muscle were selected as WB affected chickens by physical examination of the muscle at 49 days of age, whereas ten chickens healthy with no physical signs of hardness in the breast muscle were considered to be unaffected. Macroscopic lesions in affected chickens included areas of firm and inflamed muscle with pale appearance, hemorrhaging, and viscous exudate on the surface. Bone marrow and sections of the PM muscle were collected and analyzed for light microscopy. Additionally, transmission electron microscopy was conducted in affected or unaffected muscle. Chickens affected with WB showed significant reductions (P < 0.05) in femur diameter, calcium, and phosphorous percentage but increased breast weight, compression force and filet thickness when compared with non-affected chickens. Interestingly, bone marrow from WB chicken had subjectively, more abundant infiltration of adipose tissue, when compared with non-affected chickens. Histology of the Pectoralis major of birds with WB showed abundant infiltration of adipose tissue, muscle fibers degeneration with necrosis and infiltration of heterophils and mononuclear cells, connective tissue proliferation, and vasculitis. Ultrastructural changes of WB muscle revealed lack definition of bands in muscle tissue, or any normal ultrastructural anatomy such as myofibrils. The endomysium components were necrotic, and in some areas, the endomysium was notable only as a string of necrotic tissue between degraded myofibrils. The fascia appeared hypertrophied, with large areas of necrosis and myofiber without structural identity with degraded mitochondria adjacent to the disrupted muscle tissue. As far as we know, this is the first study that describes a subjective increase in adipose tissue in the bone marrow of chickens affected with WB when compared with non-affected chickens, and reduced bone mineralization.
Collapse
Affiliation(s)
| | - Elizabeth M Martin
- Institute for Nanoscience and Engineering, University of Arkansas, Fayetteville, AR, United States
| | - Kyung Soo Kim
- Department of Plant Pathology, University of Arkansas, Fayetteville, AR, United States
| | - Norma L Calderon-Apodaca
- Departamento de Medicina y Zootecnia de Aves, Facultad de Medicina Veterinaria y Zootecnia, Universidad Nacional Autónoma de México, Mexico City, Mexico
| | - Mikayla F A Baxter
- Department of Poultry Science, University of Arkansas, Fayetteville, AR, United States
| | - Juan D Latorre
- Department of Poultry Science, University of Arkansas, Fayetteville, AR, United States
| | - Xochitl Hernandez-Velasco
- Departamento de Medicina y Zootecnia de Aves, Facultad de Medicina Veterinaria y Zootecnia, Universidad Nacional Autónoma de México, Mexico City, Mexico
| | - Leopoldo Paasch-Martinez
- Departamento de Medicina y Zootecnia de Aves, Facultad de Medicina Veterinaria y Zootecnia, Universidad Nacional Autónoma de México, Mexico City, Mexico
| | - Casey M Owens
- Department of Poultry Science, University of Arkansas, Fayetteville, AR, United States
| | - Sami Dridi
- Department of Poultry Science, University of Arkansas, Fayetteville, AR, United States
| | - Walter G Bottje
- Department of Poultry Science, University of Arkansas, Fayetteville, AR, United States
| | - Elizabeth S Greene
- Department of Poultry Science, University of Arkansas, Fayetteville, AR, United States
| | | |
Collapse
|
29
|
Lee KR, Midgette Y, Shah R. Fish Oil Derived Omega 3 Fatty Acids Suppress Adipose NLRP3 Inflammasome Signaling in Human Obesity. J Endocr Soc 2019; 3:504-515. [PMID: 30788452 PMCID: PMC6371080 DOI: 10.1210/js.2018-00220] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/20/2018] [Accepted: 12/17/2018] [Indexed: 01/21/2023] Open
Abstract
CONTEXT The NRLP3 inflammasome is a multiprotein danger-sensing complex that serves as a critical link between obesity-related adipose inflammation and insulin resistance and has been shown in animal models to be inhibited by fish oil-derived long chain omega-3 polyunsaturated fatty acids (n-3 PUFA). OBJECTIVE We conducted a clinical trial and in vitro experiments to test our hypothesis that n-3 PUFA suppress NLRP3 inflammasome in human obesity through downregulation of inflammasome gene expression in adipocytes and macrophages. DESIGN Placebo-controlled clinical trial and in vitro coculture experiments with primary human adipocytes (from biopsy specimens) and human THP-1 monocyte-derived macrophages treated with eicosapentaenoic acid (EPA) and/or docosahexaenoic acid (DHA) vs vehicle control. SETTING General community, research laboratory. PATIENTS AND OTHER PARTICIPANTS Obese (body mass index ≥ 30 kg/m2), nondiabetic males and females age 18 to 50. N = 25. INTERVENTIONS Clinical trial: Eight-week treatment with 4 g Lovaza (EPA and DHA) or placebo. Cells culture: EPA and/or DHA at 100 µg/mL or vehicle control in culture medium. MAIN OUTCOME MEASURES Adipose tissue or adipocyte/macrophage mRNA expression of IL-1β and IL-18 and circulating IL-18 levels. RESULTS Treatment of obese human subjects with fish oil supplements reduced expression of adipose inflammatory genes including inflammasome-associated IL-18 and IL-1β and circulating IL-18 levels. Both EPA and DHA reduced inflammasome gene expression in obese human adipose and human adipocyte and macrophages. CONCLUSIONS N-3 PUFA reduce NLRP3 inflammasome in human adipose through downregulation of gene expression in adipocytes and monocytes/macrophages and has potential as nutritional therapeutic agent in prevention of obesity-related inflammation.
Collapse
Affiliation(s)
- Kailey Roberts Lee
- Division of Endocrinology and Diabetes, Children’s Hospital of Philadelphia, Philadelphia, Pennsylvania
| | - Yasmeen Midgette
- Division of Endocrinology and Diabetes, Children’s Hospital of Philadelphia, Philadelphia, Pennsylvania
| | - Rachana Shah
- Division of Endocrinology and Diabetes, Children’s Hospital of Philadelphia, Philadelphia, Pennsylvania
| |
Collapse
|
30
|
Sedláček P, Plavinová I, Langmajerová J, Dvořáková J, Novák J, Trefil L, Müller L, Buňatová P, Zeman V, Müllerová D. Effect of n-3 fatty acids supplementation during life style modification in women with overweight. Cent Eur J Public Health 2018; 26:265-271. [DOI: 10.21101/cejph.a5259] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2017] [Indexed: 11/15/2022]
|
31
|
NLRP3 inflammasome activation in inflammaging. Semin Immunol 2018; 40:61-73. [PMID: 30268598 DOI: 10.1016/j.smim.2018.09.001] [Citation(s) in RCA: 106] [Impact Index Per Article: 15.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/01/2018] [Revised: 09/17/2018] [Accepted: 09/18/2018] [Indexed: 02/06/2023]
Abstract
The process of aging is associated with the appearance of low-grade subclinical inflammation, termed inflammaging, that can accelerate age-related diseases. In Western societies the age-related inflammatory response can additionally be aggravated by an inflammatory response related to modern lifestyles and excess calorie consumption, a pathophysiologic inflammatory response that was coined metaflammation. Here, we summarize the current knowledge of mechanisms that drive both of these processes and focus our discussion the emerging concept that a key innate immune pathway, the NLRP3 inflammasome, is centrally involved in the recognition of triggers that appear during physiological aging and during metabolic stress. We further discuss how these processes are involved in the pathogenesis of common age-related pathologies and highlight potential strategies by which the detrimental inflammatory responses could be pharmacologically addressed.
Collapse
|
32
|
Jiang D, Chen S, Sun R, Zhang X, Wang D. The NLRP3 inflammasome: Role in metabolic disorders and regulation by metabolic pathways. Cancer Lett 2018; 419:8-19. [PMID: 29339210 DOI: 10.1016/j.canlet.2018.01.034] [Citation(s) in RCA: 68] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2017] [Revised: 01/06/2018] [Accepted: 01/09/2018] [Indexed: 12/14/2022]
Abstract
Inflammasomes are large multimolecular complexes present in the cytosol of stimulated immune cells; they mediate the activation of caspase-1, leading to cellular pyroptosis. So far, a variety of studies on inflammasomes have emerged, and the best-studied is the NLRP3 inflammasome that is involved in many inflammatory responses. Furthermore, its relationship with metabolism is gaining increasing attention in this field. In this review, we discuss the importance of the NLRP3 inflammasome in metabolic disorders and its close association with metabolic pathways.
Collapse
Affiliation(s)
| | | | | | - Xue Zhang
- Department of Pathology and Pathophysiology, China.
| | - Di Wang
- Institute of Immunology, China.
| |
Collapse
|
33
|
Integrated Immunomodulatory Mechanisms through which Long-Chain n-3 Polyunsaturated Fatty Acids Attenuate Obese Adipose Tissue Dysfunction. Nutrients 2017; 9:nu9121289. [PMID: 29186929 PMCID: PMC5748740 DOI: 10.3390/nu9121289] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2017] [Revised: 11/14/2017] [Accepted: 11/16/2017] [Indexed: 12/13/2022] Open
Abstract
Obesity is a global health concern with rising prevalence that increases the risk of developing other chronic diseases. A causal link connecting overnutrition, the development of obesity and obesity-associated co-morbidities is visceral adipose tissue (AT) dysfunction, characterized by changes in the cellularity of various immune cell populations, altered production of inflammatory adipokines that sustain a chronic state of low-grade inflammation and, ultimately, dysregulated AT metabolic function. Therefore, dietary intervention strategies aimed to halt the progression of obese AT dysfunction through any of the aforementioned processes represent an important active area of research. In this connection, fish oil-derived dietary long-chain n-3 polyunsaturated fatty acids (PUFA) in the form of eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA) have been demonstrated to attenuate obese AT dysfunction through multiple mechanisms, ultimately affecting AT immune cellularity and function, adipokine production, and metabolic signaling pathways, all of which will be discussed herein.
Collapse
|
34
|
Cui C, Li Y, Gao H, Zhang H, Han J, Zhang D, Li Y, Zhou J, Lu C, Su X. Modulation of the gut microbiota by the mixture of fish oil and krill oil in high-fat diet-induced obesity mice. PLoS One 2017; 12:e0186216. [PMID: 29016689 PMCID: PMC5633193 DOI: 10.1371/journal.pone.0186216] [Citation(s) in RCA: 52] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2017] [Accepted: 09/27/2017] [Indexed: 12/19/2022] Open
Abstract
Previous studies confirmed that dietary supplements of fish oil and krill oil can alleviate obesity in mice, but the underlying mechanism remains unclear. This study aims to discern whether oil treatment change the structure of the gut microbiota during the obesity alleviation. The ICR mice received high-fat diet (HFD) continuously for 12 weeks after two weeks of acclimatization with a standard chow diet, and the mice fed with a standard chow diet were used as the control. In the groups that received HFD with oil supplementation, the weight gains were attenuated and the liver index, total cholesterol, triglyceride and low-density lipoprotein cholesterol were reduced stepwise compared with the HFD group, and the overall structure of the gut microbiota, which was modulated in the HFD group, was shifted toward the structure found in the control group. Moreover, eighty-two altered operational taxonomic units responsive to oil treatment were identified and nineteen of them differing in one or more parameters associated with obesity. In conclusion, this study confirmed the effect of oil treatment on obesity alleviation, as well as on the microbiota structure alterations. We proposed that further researches are needed to elucidate the causal relationship between obesity alleviation and gut microbiota modulation.
Collapse
Affiliation(s)
- Chenxi Cui
- School of Marine Science, Ningbo University, Ningbo, Zhejiang, China
| | - Yanyan Li
- Department of Food Science, Cornell University, New York, NY, United States of America
| | - Hang Gao
- The First Bethune Hospital of Jilin University, Changchun, Jilin, China
| | - Hongyan Zhang
- School of Marine Science, Ningbo University, Ningbo, Zhejiang, China
| | - Jiaojiao Han
- School of Marine Science, Ningbo University, Ningbo, Zhejiang, China
| | - Dijun Zhang
- School of Marine Science, Ningbo University, Ningbo, Zhejiang, China
| | - Ye Li
- School of Marine Science, Ningbo University, Ningbo, Zhejiang, China
| | - Jun Zhou
- School of Marine Science, Ningbo University, Ningbo, Zhejiang, China
| | - Chenyang Lu
- School of Marine Science, Ningbo University, Ningbo, Zhejiang, China
| | - Xiurong Su
- School of Marine Science, Ningbo University, Ningbo, Zhejiang, China
| |
Collapse
|
35
|
Ralston JC, Lyons CL, Kennedy EB, Kirwan AM, Roche HM. Fatty Acids and NLRP3 Inflammasome-Mediated Inflammation in Metabolic Tissues. Annu Rev Nutr 2017; 37:77-102. [PMID: 28826373 DOI: 10.1146/annurev-nutr-071816-064836] [Citation(s) in RCA: 150] [Impact Index Per Article: 18.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Worldwide obesity rates have reached epidemic proportions and significantly contribute to the growing prevalence of metabolic diseases. Chronic low-grade inflammation, a hallmark of obesity, involves immune cell infiltration into expanding adipose tissue. In turn, obesity-associated inflammation can lead to complications in other metabolic tissues (e.g., liver, skeletal muscle, pancreas) through lipotoxicity and inflammatory signaling networks. Importantly, although numerous signaling pathways are known to integrate metabolic and inflammatory processes, the nucleotide-binding and oligomerization domain-like receptor, leucine-rich repeat and pyrin domain-containing 3 (NLRP3) inflammasome is now noted to be a key regulator of metabolic inflammation. The NLRP3 inflammasome can be influenced by various metabolites, including fatty acids. Specifically, although saturated fatty acids may promote NLRP3 inflammasome activation, monounsaturated fatty acids and polyunsaturated fatty acids have recently been shown to impede NLRP3 activity. Therefore, the NLRP3 inflammasome and associated metabolic inflammation have key roles in the relationships among fatty acids, metabolites, and metabolic disease. This review focuses on the ability of fatty acids to influence inflammation and the NLRP3 inflammasome across numerous metabolic tissues in the body. In addition, we explore some perspectives for the future, wherein recent work in the immunology field clearly demonstrates that metabolic reprogramming defines immune cell functionality. Although there is a paucity of information about how diet and fatty acids modulate this process, it is possible that this will open up a new avenue of research relating to nutrient-sensitive metabolic inflammation.
Collapse
Affiliation(s)
- Jessica C Ralston
- Nutrigenomics Research Group; UCD Conway Institute of Biomolecular and Biomedical Research; School of Public Health, Physiotherapy, and Sports Science; and Institute of Food and Health; University College Dublin, Dublin 4, Ireland; , , , ,
| | - Claire L Lyons
- Nutrigenomics Research Group; UCD Conway Institute of Biomolecular and Biomedical Research; School of Public Health, Physiotherapy, and Sports Science; and Institute of Food and Health; University College Dublin, Dublin 4, Ireland; , , , ,
| | - Elaine B Kennedy
- Nutrigenomics Research Group; UCD Conway Institute of Biomolecular and Biomedical Research; School of Public Health, Physiotherapy, and Sports Science; and Institute of Food and Health; University College Dublin, Dublin 4, Ireland; , , , ,
| | - Anna M Kirwan
- Nutrigenomics Research Group; UCD Conway Institute of Biomolecular and Biomedical Research; School of Public Health, Physiotherapy, and Sports Science; and Institute of Food and Health; University College Dublin, Dublin 4, Ireland; , , , ,
| | - Helen M Roche
- Nutrigenomics Research Group; UCD Conway Institute of Biomolecular and Biomedical Research; School of Public Health, Physiotherapy, and Sports Science; and Institute of Food and Health; University College Dublin, Dublin 4, Ireland; , , , ,
| |
Collapse
|
36
|
Targeting endothelial metaflammation to counteract diabesity cardiovascular risk: Current and perspective therapeutic options. Pharmacol Res 2017; 120:226-241. [PMID: 28408314 DOI: 10.1016/j.phrs.2017.04.009] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/10/2017] [Revised: 03/21/2017] [Accepted: 04/07/2017] [Indexed: 02/08/2023]
Abstract
The association of obesity and diabetes, termed "diabesity", defines a combination of primarily metabolic disorders with insulin resistance as the underlying common pathophysiology. Cardiovascular disorders associated with diabesity represent the leading cause of morbidity and mortality in the Western world. This makes diabesity, with its rising impacts on both health and economics, one of the most challenging biomedical and social threats of present century. The emerging comprehension of the genes whose alteration confers inter-individual differences on risk factors for diabetes or obesity, together with the potential role of genetically determined variants on mechanisms controlling responsiveness, effectiveness and safety of anti-diabetic therapy underlines the need of additional knowledge on molecular mechanisms involved in the pathophysiology of diabesity. Endothelial cell dysfunction, resulting from the unbalanced production of endothelial-derived vascular mediators, is known to be present at the earliest stages of insulin resistance and obesity, and may precede the clinical diagnosis of diabetes by several years. Once considered as a mere consequence of metabolic abnormalities, it is now clear that endothelial dysfunctional activity may play a pivotal role in the progression of diabesity. In the vicious circle where vascular defects and metabolic disturbances worsen and reinforce each other, a low-grade, chronic, and 'cold' inflammation (metaflammation) has been suggested to serve as the pathophysiological link that binds endothelial and metabolic dysfunctions. In this paradigm, it is important to consider how traditional antidiabetic treatments (specifically addressing metabolic dysregulation) may directly impact on inflammatory processes or cardiovascular function. Indeed, not all drugs currently available to treat diabetes possess the same anti-inflammatory potential, or target endothelial cell function equally. Perspective strategies pointing at reducing metaflammation or directly addressing endothelial dysfunction may disclose beneficial consequences on metabolic regulation. This review focuses on existing and potential new approaches ameliorating endothelial dysfunction and vascular inflammation in the context of diabesity.
Collapse
|
37
|
Stocks MM, Crispens MA, Ding T, Mokshagundam S, Bruner-Tran KL, Osteen KG. Therapeutically Targeting the Inflammasome Product in a Chimeric Model of Endometriosis-Related Surgical Adhesions. Reprod Sci 2017; 24:1121-1128. [PMID: 28322132 DOI: 10.1177/1933719117698584] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Development of adhesions commonly occurs in association with surgery for endometriosis. Even in the absence of surgery, women with endometriosis appear to be at an enhanced risk of developing adhesions. In the current study, we utilized a chimeric mouse model of experimental endometriosis in order to examine the role of inflammasome activation in the development of postsurgical adhesions. Mice were randomized to receive peritoneal injections of human endometrial tissue fragments or endometrial tissue conditioned media (CM) from women with or without endometriosis 16 hours after ovariectomy and placement of an estradiol-releasing silastic capsule. A subset of mice receiving CM was also treated with interleukin (IL) 1 receptor antagonist (IL-1ra). Our studies demonstrate that peritoneal injection of endometrial tissue fragments near the time of surgery resulted in extensive adhesive disease regardless of tissue origin. However, adhesion scores were significantly higher in mice receiving CM from tissues acquired from patients with endometriosis compared to control tissue CM ( P = .0001). Cytokine bead array analysis of endometrial CM revealed enhanced expression of IL-1β from patients with endometriosis compared to controls ( P < .01). Finally, the ability of human tissue CM to promote adhesive disease was dramatically reduced in mice cotreated with IL-1ra ( P < .0001). Our data implicate enhanced expression of IL-1β in women with endometriosis as a potential causal factor in their increased susceptibility of developing postsurgical adhesions. Thus, targeting inflammasome activation may be an effective strategy for the prevention of surgical adhesions in patients with endometriosis.
Collapse
Affiliation(s)
- Meredith M Stocks
- 1 Department of Obstetrics and Gynecology, Women's Reproductive Health Research Center, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Marta A Crispens
- 1 Department of Obstetrics and Gynecology, Women's Reproductive Health Research Center, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Tianbing Ding
- 1 Department of Obstetrics and Gynecology, Women's Reproductive Health Research Center, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Shilpa Mokshagundam
- 1 Department of Obstetrics and Gynecology, Women's Reproductive Health Research Center, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Kaylon L Bruner-Tran
- 1 Department of Obstetrics and Gynecology, Women's Reproductive Health Research Center, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Kevin G Osteen
- 1 Department of Obstetrics and Gynecology, Women's Reproductive Health Research Center, Vanderbilt University Medical Center, Nashville, TN, USA.,2 Department of Pathology, Microbiology and Immunology, Vanderbilt University School of Medicine, Nashville, TN, USA.,3 VA Tennessee Valley Healthcare System, Nashville, TN, USA
| |
Collapse
|
38
|
Is there a role for diet in ameliorating the reproductive sequelae associated with chronic low-grade inflammation in polycystic ovary syndrome and obesity? Fertil Steril 2016; 106:520-7. [DOI: 10.1016/j.fertnstert.2016.07.1069] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2016] [Revised: 07/11/2016] [Accepted: 07/12/2016] [Indexed: 02/06/2023]
|