1
|
Xia J, Yin S, Yu J, Wang J, Jin X, Wang Y, Liu H, Sun G. Improvement in Glycolipid Metabolism Parameters After Supplementing Fish Oil-Derived Omega-3 Fatty Acids Is Associated with Gut Microbiota and Lipid Metabolites in Type 2 Diabetes Mellitus. Nutrients 2024; 16:3755. [PMID: 39519588 PMCID: PMC11547733 DOI: 10.3390/nu16213755] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2024] [Revised: 10/24/2024] [Accepted: 10/30/2024] [Indexed: 11/16/2024] Open
Abstract
BACKGROUND/OBJECTIVES This study aimed to investigate the effects of fish oil-derived omega-3 polyunsaturated fatty acids (omega-3 PUFAs) on gut microbiota and serum lipid metabolites in T2DM. METHODS In a three-month, randomized, double-blind, placebo-controlled study, 110 T2DM patients received either fish oil (n = 55) or corn oil (n = 55) capsules daily. Serum lipids, glycemic parameters, gut microbiota diversity, and lipidomics were assessed. RESULTS This study found that fish oil-derived omega-3 PUFAs intervention did not significantly lower the fasting plasma glucose levels when compared with the baseline level (p > 0.05). However, serum fasting blood glucose (p = 0.039), glycosylated hemoglobin levels (p = 0.048), HOMA-IR (p = 0.022), total cholesterol (p < 0.001), triglyceride (p = 0.034), LDL cholesterol (p = 0.048), and non-HDL levels (p = 0.046) were significantly lower in the fish oil group compared with the corn oil group after three months of intervention. Also, it altered glycerophospholipid metabolism and gut microbiota. After three months, the fish oil group showed a significantly lower abundance of Desulfobacterota compared with the corn oil control group (p = 0.003), with reduced levels of Colidextribacter (p = 0.002), Ralstonia (p = 0.021), and Klebsiella (p = 0.013). Conversely, the abundance of Limosilactobacillus (p = 0.017), Lactobacillus (p = 0.011), and Haemophilus (p = 0.018) increased significantly. In addition, relevant glycolipid metabolism indicators showed significant correlations with the altered profiles of serum lipid metabolites, intestinal bacteria, and fungi. CONCLUSIONS This study highlights the impact of fish oil-derived omega-3 PUFAs on intestinal microbiota structure and function in patients with type 2 diabetes. The observed decrease in pathogenic bacterial species and the enhancement of beneficial species may have significant implications for gut health and systemic inflammation, both of which are pivotal in managing diabetes. Further research is warranted to comprehensively elucidate the long-term benefits and underlying mechanisms of these microbiota alterations.
Collapse
Affiliation(s)
- Jiayue Xia
- Key Laboratory of Environmental Medicine and Engineering of Ministry of Education, School of Public Health, Southeast University, Nanjing 210009, China; (J.X.); (S.Y.); (J.Y.); (J.W.); (X.J.); (Y.W.)
- Department of Nutrition and Food Hygiene, School of Public Health, Southeast University, Nanjing 210009, China
| | - Shiyu Yin
- Key Laboratory of Environmental Medicine and Engineering of Ministry of Education, School of Public Health, Southeast University, Nanjing 210009, China; (J.X.); (S.Y.); (J.Y.); (J.W.); (X.J.); (Y.W.)
- Department of Nutrition and Food Hygiene, School of Public Health, Southeast University, Nanjing 210009, China
| | - Junhui Yu
- Key Laboratory of Environmental Medicine and Engineering of Ministry of Education, School of Public Health, Southeast University, Nanjing 210009, China; (J.X.); (S.Y.); (J.Y.); (J.W.); (X.J.); (Y.W.)
- Department of Nutrition and Food Hygiene, School of Public Health, Southeast University, Nanjing 210009, China
| | - Jiongnan Wang
- Key Laboratory of Environmental Medicine and Engineering of Ministry of Education, School of Public Health, Southeast University, Nanjing 210009, China; (J.X.); (S.Y.); (J.Y.); (J.W.); (X.J.); (Y.W.)
- Department of Nutrition and Food Hygiene, School of Public Health, Southeast University, Nanjing 210009, China
| | - Xingyi Jin
- Key Laboratory of Environmental Medicine and Engineering of Ministry of Education, School of Public Health, Southeast University, Nanjing 210009, China; (J.X.); (S.Y.); (J.Y.); (J.W.); (X.J.); (Y.W.)
- Department of Nutrition and Food Hygiene, School of Public Health, Southeast University, Nanjing 210009, China
| | - Yuanyuan Wang
- Key Laboratory of Environmental Medicine and Engineering of Ministry of Education, School of Public Health, Southeast University, Nanjing 210009, China; (J.X.); (S.Y.); (J.Y.); (J.W.); (X.J.); (Y.W.)
- Department of Nutrition and Food Hygiene, School of Public Health, Southeast University, Nanjing 210009, China
| | - Hechun Liu
- Department of Endocrinology and Metabolism, The First Affiliated Hospital of Nanjing Medical University, 300 Guangzhou Road, Nanjing 210029, China
| | - Guiju Sun
- Key Laboratory of Environmental Medicine and Engineering of Ministry of Education, School of Public Health, Southeast University, Nanjing 210009, China; (J.X.); (S.Y.); (J.Y.); (J.W.); (X.J.); (Y.W.)
- Department of Nutrition and Food Hygiene, School of Public Health, Southeast University, Nanjing 210009, China
| |
Collapse
|
2
|
McMullan JE, Yeates AJ, Allsopp PJ, Mulhern MS, Strain JJ, van Wijngaarden E, Myers GJ, Shroff E, Shamlaye CF, McSorley EM. Fish consumption and its lipid modifying effects - A review of intervention studies. Neurotoxicology 2023; 99:82-96. [PMID: 37820771 DOI: 10.1016/j.neuro.2023.10.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Revised: 09/22/2023] [Accepted: 10/04/2023] [Indexed: 10/13/2023]
Abstract
Fish is an important source of nutrients, particularly the long chain n-3 polyunsaturated fatty acids (n-3 PUFAs). The incorporation of fish into the diet has been shown to have several health benefits, including lowering the risk of cardiovascular disease (CVD). Elevated plasma lipids are one of the main modifiable risk factors contributing to CVD and may be partly mediated by n-3 PUFAs. Although n-3 PUFAs in the form of supplementation have been shown to exert lipid modifying effects, the effects of fish consumption on the lipid profile have not been well summarised to date. Therefore, the aim of the present review is to discuss the current evidence from intervention studies investigating the effect of fish consumption on the lipid profile in both apparently healthy and non-healthy populations. Existing evidence appears to support the role of fish in promoting a shift towards a less inflammatory lipid profile through raising n-3 PUFAs and potentially lowering n-6 PUFA and triglyceride concentrations in both healthy and non-healthy populations. Fish consumption has a negligible effect on cholesterol concentrations; however, fish consumption may promote a small increase in high density lipoprotein (HDL) cholesterol amongst people with lower HDL at baseline. Limited studies have shown fish consumption to result in shifts in phospholipid and sphingolipid species and structure, albeit it is not yet clear whether these alterations have any meaningful impact on CVD risk. Future well-designed studies that utilise NMR and/or lipidomics analysis are warranted to explore the effects of these shifts in lipid content and structure in the context of disease development. Public health guidance should emphasise the cardioprotective benefits of fish and encourage consumption particularly in the Global North where fish consumption remains low.
Collapse
Affiliation(s)
- James E McMullan
- Nutrition Innovation Centre for Food and Health (NICHE), School of Biomedical Sciences, Ulster University, Coleraine, Northern Ireland, UK
| | - Alison J Yeates
- Nutrition Innovation Centre for Food and Health (NICHE), School of Biomedical Sciences, Ulster University, Coleraine, Northern Ireland, UK
| | - Philip J Allsopp
- Nutrition Innovation Centre for Food and Health (NICHE), School of Biomedical Sciences, Ulster University, Coleraine, Northern Ireland, UK
| | - Maria S Mulhern
- Nutrition Innovation Centre for Food and Health (NICHE), School of Biomedical Sciences, Ulster University, Coleraine, Northern Ireland, UK
| | - J J Strain
- Nutrition Innovation Centre for Food and Health (NICHE), School of Biomedical Sciences, Ulster University, Coleraine, Northern Ireland, UK
| | - Edwin van Wijngaarden
- School of Medicine and Dentistry, University of Rochester, 601 Elmwood Avenue, Rochester, NY 14642, USA
| | - Gary J Myers
- School of Medicine and Dentistry, University of Rochester, 601 Elmwood Avenue, Rochester, NY 14642, USA
| | - Emelyn Shroff
- The Ministry of Health, Mahé, Republic of Seychelles
| | | | - Emeir M McSorley
- Nutrition Innovation Centre for Food and Health (NICHE), School of Biomedical Sciences, Ulster University, Coleraine, Northern Ireland, UK.
| |
Collapse
|
3
|
Luo Y, Sun L, Wu Q, Song B, Wu Y, Yang X, Zhou P, Niu Z, Zheng H, Li H, Gu W, Wang J, Ning G, Zeng R, Lin X. Diet-Related Lipidomic Signatures and Changed Type 2 Diabetes Risk in a Randomized Controlled Feeding Study With Mediterranean Diet and Traditional Chinese or Transitional Diets. Diabetes Care 2023; 46:1691-1699. [PMID: 37463495 PMCID: PMC10465987 DOI: 10.2337/dc23-0314] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/20/2023] [Accepted: 06/15/2023] [Indexed: 07/20/2023]
Abstract
OBJECTIVE Few trials studied the links of food components in different diets with their induced lipidomic changes and related metabolic outcomes. Thus, we investigated specific lipidomic signatures with habitual diets and modified diabetes risk by using a trial and a cohort. RESEARCH DESIGN AND METHODS We included 231 Chinese with overweight and prediabetes in a randomized feeding trial with Mediterranean, traditional, or transitional diets (control diet) from February to September 2019. Plasma lipidomic profiles were measured at baseline, third month, and sixth month by high-throughput targeted liquid chromatography-mass spectrometry. Associations of the identified lipids with habitual dietary intakes were examined in another lipidomic database of a Chinese cohort (n = 1,117). The relationships between diet-induced changes of lipidomic species and diabetes risk factors were further investigated through both individual lipids and relevant modules in the trial. RESULTS Out of 364 lipidomic species, 26 altered across groups, including 12 triglyceride (TAG) fractions, nine plasmalogens, four phosphatidylcholines (PCs), and one phosphatidylethanolamine. TAG fractions and PCs were associated with habitual fish intake while plasmalogens were associated with red meat intake in the cohort. Of the diet-related lipidomic metabolites, 10 TAG fractions and PC(16:0/22:6) were associated with improved Matsuda index (β = 0.12 to 0.42; PFDR < 0.030). Two plasmalogens were associated with deteriorated fasting glucose (β = 0.29 to 0.31; PFDR < 0.014). Similar results were observed for TAG and plasmalogen related modules. CONCLUSIONS These fish- and red meat-related lipidomic signatures sensitively reflected different diets and modified type 2 diabetes risk factors, critical for optimizing dietary patterns.
Collapse
Affiliation(s)
- Yaogan Luo
- Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Liang Sun
- Ministry of Education Key Laboratory of Public Health Safety, School of Public Health, Institute of Nutrition, Fudan University, Shanghai, China
| | - Qingqing Wu
- Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, Shanghai, China
| | - Boyu Song
- Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Yanpu Wu
- Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Xiaowei Yang
- Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Puchen Zhou
- Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Zhenhua Niu
- Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China
| | - He Zheng
- Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Huaixing Li
- Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Weiqiong Gu
- Department of Endocrine and Metabolic Diseases, Shanghai Institute of Endocrine and Metabolic Diseases, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Shanghai National Clinical Research Center for Metabolic Diseases, Key Laboratory for Endocrine and Metabolic Diseases of the National Health Commission of the PR China, Shanghai National Center for Translational Medicine, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Jiqiu Wang
- Department of Endocrine and Metabolic Diseases, Shanghai Institute of Endocrine and Metabolic Diseases, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Shanghai National Clinical Research Center for Metabolic Diseases, Key Laboratory for Endocrine and Metabolic Diseases of the National Health Commission of the PR China, Shanghai National Center for Translational Medicine, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Guang Ning
- Department of Endocrine and Metabolic Diseases, Shanghai Institute of Endocrine and Metabolic Diseases, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Shanghai National Clinical Research Center for Metabolic Diseases, Key Laboratory for Endocrine and Metabolic Diseases of the National Health Commission of the PR China, Shanghai National Center for Translational Medicine, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Rong Zeng
- Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, Shanghai, China
- Key Laboratory of Systems Biology, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Hangzhou, China
| | - Xu Lin
- Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China
- Key Laboratory of Systems Biology, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Hangzhou, China
| |
Collapse
|
4
|
Calderón-Pérez L, Companys J, Solà R, Pedret A, Valls RM. The effects of fatty acid-based dietary interventions on circulating bioactive lipid levels as intermediate biomarkers of health, cardiovascular disease, and cardiovascular disease risk factors: a systematic review and meta-analysis of randomized clinical trials. Nutr Rev 2023; 81:988-1033. [PMID: 36545749 DOI: 10.1093/nutrit/nuac101] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/20/2023] Open
Abstract
CONTEXT Dietary fatty acids (FAs), primarily n-3 polyunsaturated FAs, have been associated with enrichment of the circulating bioactive lipidome and changes in the enzymatic precursor lipoprotein-associated phospholipase A2 (Lp-PLA2) mass; however, the magnitude of this effect remains unclear. OBJECTIVE The aim of this systematic review and meta-analysis was to evaluate the effect of different dietary FAs on the bioactive lipid profile of healthy participants and those with cardiovascular disease (CVD) and CVD risk factors. DATA SOURCES PubMed, SCOPUS and the Cochrane Library databases were searched for relevant articles published between October 2010 and May 2022. DATA EXTRACTION Data were screened for relevance and then retrieved in full and evaluated for eligibility by 2 reviewers independently. DATA ANALYSIS The net difference in the bioactive lipid mean values between the endpoint and the baseline, and the corresponding SDs or SEs, were used for the qualitative synthesis. For the meta-analysis, a fixed-effects model was used. RESULTS Twenty-seven randomized clinical trials (representing >2560 participants) were included. Over 78% of the enrolled participants had ≥1 associated CVD risk factor, whereas <22% were healthy. In the meta-analysis, marine n-3 supplements (dose range, 0.37-1.9 g/d) significantly increased pro-inflammatory lysophosphatidylcholines (lyso-PCs; for lyso-PC(16:0): mean, +0.52 [95% confidence interval (CI), 0.02-1.01] µM; for lyso-PC(18:0): mean, +0.58 [95%CI, 0.09-1.08] µM) in obese participants. Additionally, n-3 supplementation (1-5.56 g/d) decreased plasma Lp-PLA2 mass, a well-known inflammation marker, in healthy (-0.35 [95%CI, -0.59 to -0.10] ng/mL), dyslipidemic (-0.36 [95%CI, -0.47 to -0.25] ng/mL), and stable coronary artery disease participants (-0.52 [95%CI, -0.91 to -0.12] ng/mL). CONCLUSIONS Daily n-3 provided as EPA+DHA supplements and consumed from 1 to 6 months reduced plasma Lp-PLA2 mass in healthy participants and those with CVD and CVD risk factors, suggesting an anti-inflammatory effect. However, the saturated lyso-PC response to n-3 was impaired in obese participants. SYSTEMATIC REVIEW REGISTRATION PROSPERO registration no. CRD42021218335.
Collapse
Affiliation(s)
| | - Judit Companys
- Eurecat, Centre Tecnològic de Catalunya, Unitat de Nutrició i Salut, Reus, Spain
| | - Rosa Solà
- Functional Nutrition, Oxidation, and Cardiovascular Diseases Group (NFOC-Salut), Departament de Medicina i Cirurgia, Facultat de Medicina i Ciències de la Salut, Universitat Rovira i Virgili, Reus, Spain. Hospital Universitari Sant Joan de Reus, Reus, Spain
| | - Anna Pedret
- Functional Nutrition, Oxidation, and Cardiovascular Diseases Group (NFOC-Salut), Departament de Medicina i Cirurgia, Facultat de Medicina i Ciències de la Salut, Universitat Rovira i Virgili, Reus, Spain
| | - Rosa M Valls
- Functional Nutrition, Oxidation, and Cardiovascular Diseases Group (NFOC-Salut), Departament de Medicina i Cirurgia, Facultat de Medicina i Ciències de la Salut, Universitat Rovira i Virgili, Reus, Spain
| |
Collapse
|
5
|
Effects of maternal HF diet and absence of TRPC1 gene on mouse placental growth and fetal intrauterine growth retardation (IUGR). J Nutr Biochem 2023; 114:109162. [PMID: 36243380 DOI: 10.1016/j.jnutbio.2022.109162] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2022] [Revised: 09/08/2022] [Accepted: 09/09/2022] [Indexed: 11/06/2022]
Abstract
Placental tissue intracellular calcium (Ca2+) regulates placental development and growth. Maternal high-fat diet (HFD) results in placental lipid accumulation, increased inflammation, reduced nutrient transport expression, and intrauterine growth restriction (IUGR). Currently, whether maternal HFD differentially affects placental and fetal growth and development under reduced Ca2+ influx is not yet known. We hypothesized that maternal HFD feeding decreases placental growth and development resulting in IUGR and that reduction of Ca2+ influx in the placenta worsens maternal HFD-induced placental dysfunction and IUGR. Three-week-old female B6129SF2/J wild type (WT) and transient receptor potential canonical 1 (TRPC1) protein deficient (KO) mice were fed normal fat (NF, 16 kcal % fat) and high fat (HF, 45 kcal % fat) diets for 12 weeks prior to mating with NF diet fed male mice. Fetuses and placentae were examined at mid- (D12) and late- (D18) gestation. At D12, maternal HFD had no effects on placental or fetal weight changes in WT and TRPC1 KO mice while absence of TRPC1 resulted in decreased placental and fetal weights. At D18, maternal HFD increased placental weights in both TRPC1 KO and WT mice, in part, by moderately increasing placental tissue triacylglyceride (TAG, P=.0632). At D12, mRNA expression of key placental growth factors including IGF1, PLGF, and VEGF were increased in WT compared to TRPC1 KO mice while IGF2 and VEGF mRNA expression were increased at D18. Results presented in our study demonstrated that maternal HFD increased placental weight, in part, due to increased lipid concentration resulting in IUGR and via an additive adverse effect of genotype and maternal HFD. Future studies are needed to determine the signaling mechanism underlying Ca2+ influx reduction-induced placental dysfunction and IUGR.
Collapse
|
6
|
Magnuson AD, Bukowski MR, Rosenberger TA, Picklo MJ. Quantifying Sphingomyelin in Dairy through Infusion-Based Shotgun Mass Spectrometry with Lithium-Ion-Induced Fragmentation. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2022; 70:13808-13817. [PMID: 36239443 DOI: 10.1021/acs.jafc.2c04587] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Quantifying sphingomyelin (SM) species by infusion-based mass spectrometry (MS) is complicated by the presence of isobaric phosphatidylcholine (PC) species, which generate a common m/z 184 product ion in the presence of ammonium ions as a result of the phosphocholine headgroup. Lithium ion adducts of SM undergo a selective dehydration [Li + H2O + (CH3)3NC2H4PO4] with a corresponding neutral loss of -207 Da. This neutral loss was employed to create a SM-selective method for identifying target species, which were quantitated using multiple reaction monitoring (MRM). SM-selective fragments in MS3 were used to characterize the sphingosine base and acyl chain. These methods were used to identify 50 individual SM species in bovine milk ranging from SM 28:1 to SM 44:2, with d16:1, d17:1, d18:1, d19:1, and d20:1 bases, and acyl fatty acids ranging from 10 to 25 carbons and 0-1 desaturations. Spiked SM standards into milk had a recovery of 99.7%, and endogenous milk SM had <10% coefficient of variation for both intra- and interday variability, with limits of detection of 1.4-5.55 nM and limits of quantitation of 11.8-178.1 nM. This MS-MRM method was employed to accurately and precisely quantify SM species in dairy products, including bovine-derived whole milk, half and half, whipping cream, and goat milk.
Collapse
Affiliation(s)
- Andrew D Magnuson
- Grand Forks Human Nutrition Research Center, Agricultural Research Service (ARS), United States Department of Agriculture (USDA), 2420 Second Avenue North, Grand Forks, North Dakota 58203, United States
| | - Michael R Bukowski
- Beltsville Agricultural Research Center, Agricultural Research Service (ARS), United States Department of Agriculture (USDA), 10300 Baltimore Avenue, Beltsville, Maryland 20705, United States
| | - Thad A Rosenberger
- Department of Biomedical Sciences, University of North Dakota School of Medicine and Health Sciences, University of North Dakota, Grand Forks, North Dakota 58201, United States
| | - Matthew J Picklo
- Grand Forks Human Nutrition Research Center, Agricultural Research Service (ARS), United States Department of Agriculture (USDA), 2420 Second Avenue North, Grand Forks, North Dakota 58203, United States
| |
Collapse
|
7
|
Chen S, Zong G, Wu Q, Yun H, Niu Z, Zheng H, Zeng R, Sun L, Lin X. Associations of plasma glycerophospholipid profile with modifiable lifestyles and incident diabetes in middle-aged and older Chinese. Diabetologia 2022; 65:315-328. [PMID: 34800146 DOI: 10.1007/s00125-021-05611-3] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/21/2021] [Accepted: 08/17/2021] [Indexed: 10/19/2022]
Abstract
AIMS/HYPOTHESIS Glycerophospholipid (GPL) perturbance was linked to the pathogenesis of diabetes in animal studies but prospective studies in humans are rare, particularly in Asians. We aimed to investigate the associations between plasma GPLs and incident diabetes and to explore effects of lifestyle on the associations in a Chinese population. METHODS The study included 1877 community-dwelling Chinese individuals aged 50-70 years (751 men and 1126 women), free of diabetes at baseline and followed for 6 years. A total of 160 GPL species were quantified in plasma at baseline by using high-throughput targeted lipidomics. Log-Poisson regression was used to assess the associations between GPLs and incidence of diabetes. RESULTS Over the 6 years of follow-up, 499 participants (26.6%) developed diabetes. After multivariable adjustment, eight GPLs were positively associated with incident diabetes (RRper SD 1.13-1.25; all false-discovery rate [FDR]-corrected p < 0.05), including five novel GLPs, namely phosphatidylcholines (PCs; 16:0/18:1, 18:0/16:1, 18:1/20:3), lysophosphatidylcholine (LPC; 20:3) and phosphatidylethanolamine (PE; 16:0/16:1), and three reported GPLs (PCs 16:0/16:1, 16:0/20:3 and 18:0/20:3). In network analysis, a PC-containing module was positively associated with incident diabetes (RRper SD 1.16 [95% CI 1.06, 1.26]; FDR-corrected p < 0.05). Notably, three of the diabetes-associated PCs (16:0/16:1, 16:0/18:1 and 18:0/16:1) and PE (16:0/16:1) were associated not only with fatty acids in the de novo lipogenesis (DNL) pathway, especially 16:1n-7 (Spearman correlation coefficients = 0.35-0.62, p < 0.001), but also with an unhealthy dietary pattern high in refined grains and low in fish, dairy and soy products (|factor loadings| ≥0.2). When stratified by physical activity levels, the associations of the eight GPLs and the PC module with incident diabetes were stronger in participants with lower physical activity (RRper SD 1.24-1.49, FDR-corrected p < 0.05) than in those with the median and higher physical activity levels (RRper SD 1.03-1.12, FDR-corrected p ≥ 0.05; FDR-corrected pinteraction < 0.05). CONCLUSIONS/INTERPRETATION Eight GPLs, especially PCs associated with the DNL pathway, were positively associated with incident diabetes in a cohort of Chinese men and women. The associations were most prominent in participants with a low level of physical activity.
Collapse
Affiliation(s)
- Shuangshuang Chen
- Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Geng Zong
- Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Qingqing Wu
- Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, Shanghai, China
| | - Huan Yun
- Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Zhenhua Niu
- Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China
| | - He Zheng
- Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Rong Zeng
- Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, Shanghai, China.
- Key Laboratory of Systems Health Science of Zhejiang Province, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou, China.
| | - Liang Sun
- Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China.
| | - Xu Lin
- Key Laboratory of Systems Health Science of Zhejiang Province, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou, China.
- Shanghai Institute of Nutrition and Health, Chinese Academy of Sciences, Shanghai, China.
| |
Collapse
|
8
|
Bukowski MR, Singh BB, Roemmich JN, Claycombe-Larson KJ. Lipidomic Analysis of TRPC1 Ca 2+-Permeable Channel-Knock Out Mouse Demonstrates a Vital Role in Placental Tissue Sphingolipid and Triacylglycerol Homeostasis Under Maternal High-Fat Diet. Front Endocrinol (Lausanne) 2022; 13:854269. [PMID: 35360063 PMCID: PMC8960927 DOI: 10.3389/fendo.2022.854269] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/13/2022] [Accepted: 02/14/2022] [Indexed: 11/13/2022] Open
Abstract
The transient receptor potential canonical channel 1 (TRPC1) is a ubiquitous Ca2+-permeable integral membrane protein present in most tissues, including adipose and placenta, and functionally regulates energetic homeostasis. We demonstrated that elimination of TRPC1 in a mouse model increased body adiposity and limited adipose accumulation under a high fat diet (HFD) even under conditions of exercise. Additionally, intracellular Ca2+ regulates membrane lipid content via the activation of the protein kinase C pathway, which may impact placental membrane lipid content and structure. Based upon this we investigated the effect of HFD and TRPC1 elimination on neutral lipids (triacylglycerol and cholesteryl ester), membrane lipids (phosphatidylcholine and phosphatidylethanolamine), and other multifunctional lipid species (unesterified cholesterol, sphingomyelins, ceramides). The concentration of unesterified cholesterol and sphingomyelin increased with gestational age (E12.5 to E 18.5.) indicating possible increases in plasma membrane fluidity. Diet-dependent increases ceramide concentration at E12.5 suggest a pro-inflammatory role for HFD in early gestation. TRPC1-dependent decreases in cholesterol ester concentration with concomitant increases in long-chain polyunsaturated fatty acid -containing triacylglycerols indicate a disruption of neutral lipid homeostasis that may be tied to Ca2+ regulation. These results align with changes in lipid content observed in studies of preeclamptic human placenta.
Collapse
Affiliation(s)
- Michael R. Bukowski
- USDA-ARS Grand Forks Human Nutrition Research Center, Grand Forks, ND, United States
- *Correspondence: Michael R. Bukowski, ; Kate J. Claycombe-Larson,
| | - Brij B. Singh
- School of Dentistry, UT Health Science Center San Antonio, San Antonio, TX, United States
| | - James N. Roemmich
- USDA-ARS Grand Forks Human Nutrition Research Center, Grand Forks, ND, United States
| | - Kate J. Claycombe-Larson
- USDA-ARS Grand Forks Human Nutrition Research Center, Grand Forks, ND, United States
- *Correspondence: Michael R. Bukowski, ; Kate J. Claycombe-Larson,
| |
Collapse
|
9
|
Erkkilä AT, Manninen S, Fredrikson L, Bhalke M, Holopainen M, Ruuth M, Lankinen M, Käkelä R, Öörni K, Schwab US. Lipidomic changes of LDL after consumption of Camelina sativa oil, fatty fish and lean fish in subjects with impaired glucose metabolism-A randomized controlled trial. J Clin Lipidol 2021; 15:743-751. [PMID: 34548243 DOI: 10.1016/j.jacl.2021.08.060] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2021] [Revised: 08/30/2021] [Accepted: 08/30/2021] [Indexed: 12/18/2022]
Abstract
BACKGROUND There is little knowledge on the effects of alpha-linolenic acid (ALA) and n-3 long-chain polyunsaturated fatty acids (n-3 LCPUFA) on the LDL lipidome and aggregation of LDL particles. OBJECTIVE We examined if consumption of Camelina sativa oil (CSO) as a source of ALA, fatty fish (FF) as a source of n-3 LCPUFA and lean fish (LF) as a source of fish protein affect the lipidome of LDL as compared to a control diet. METHODS Participants with impaired glucose tolerance (39 women and 40 men) were randomized to 4 study groups (CSO providing 10 g/d ALA, FF and LF [both 4 fish meals/wk] and control limiting their fish and ALA intake) in a 12-week, parallel trial. Diets were instructed and dietary fats were provided to the participants. The lipidome of LDL particles isolated from samples collected at baseline and after intervention was analyzed with electrospray ionization-tandem mass spectrometry. RESULTS In the CSO group, the relative concentrations of saturated and monounsaturated cholesteryl ester species in LDL decreased and the species with ALA increased. In the FF group, LDL phosphatidylcholine (PC) species containing n-3 LCPUFA increased. There was a significant positive correlation between the change in total sphingomyelin and change in LDL aggregation, while total PC and triunsaturated PC species were inversely associated with LDL aggregation when all the study participants were included in the analysis. CONCLUSION Dietary intake of CSO and FF modifies the LDL lipidome to contain more polyunsaturated and less saturated lipid species. The LDL surface lipids are associated with LDL aggregation.
Collapse
Affiliation(s)
- Arja T Erkkilä
- Institute of Public Health and Clinical Nutrition, University of Eastern Finland, Kuopio, Finland.
| | - Suvi Manninen
- Institute of Public Health and Clinical Nutrition, University of Eastern Finland, Kuopio, Finland
| | - Linda Fredrikson
- Helsinki University Lipidomics Unit (HiLIPID), Helsinki Institute for Life Sciences (HiLIFE) and Biocenter Finland, University of Helsinki, Helsinki, Finland; Molecular and Integrative Biosciences Research Programme, Faculty of Biological and Environmental Sciences, University of Helsinki, Helsinki, Finland
| | - Monika Bhalke
- Helsinki University Lipidomics Unit (HiLIPID), Helsinki Institute for Life Sciences (HiLIFE) and Biocenter Finland, University of Helsinki, Helsinki, Finland; Molecular and Integrative Biosciences Research Programme, Faculty of Biological and Environmental Sciences, University of Helsinki, Helsinki, Finland
| | - Minna Holopainen
- Helsinki University Lipidomics Unit (HiLIPID), Helsinki Institute for Life Sciences (HiLIFE) and Biocenter Finland, University of Helsinki, Helsinki, Finland; Molecular and Integrative Biosciences Research Programme, Faculty of Biological and Environmental Sciences, University of Helsinki, Helsinki, Finland
| | - Maija Ruuth
- Atherosclerosis Research Laboratory, Wihuri Research Institute, Helsinki, Finland; Research Programs Unit, Faculty of Medicine, University of Helsinki, Helsinki, Finland
| | - Maria Lankinen
- Institute of Public Health and Clinical Nutrition, University of Eastern Finland, Kuopio, Finland
| | - Reijo Käkelä
- Helsinki University Lipidomics Unit (HiLIPID), Helsinki Institute for Life Sciences (HiLIFE) and Biocenter Finland, University of Helsinki, Helsinki, Finland; Molecular and Integrative Biosciences Research Programme, Faculty of Biological and Environmental Sciences, University of Helsinki, Helsinki, Finland
| | - Katariina Öörni
- Atherosclerosis Research Laboratory, Wihuri Research Institute, Helsinki, Finland; Molecular and Integrative Biosciences Research Programme, Faculty of Biological and Environmental Sciences, University of Helsinki, Helsinki, Finland
| | - Ursula S Schwab
- Institute of Public Health and Clinical Nutrition, University of Eastern Finland, Kuopio, Finland; Department of Medicine, Endocrinology and Clinical Nutrition, Kuopio University Hospital, Kuopio, Finland
| |
Collapse
|
10
|
Chen S, Wu Q, Zhu L, Zong G, Li H, Zheng H, Zeng R, Lin X, Sun L. Plasma glycerophospholipid profile, erythrocyte n-3 PUFAs, and metabolic syndrome incidence: a prospective study in Chinese men and women. Am J Clin Nutr 2021; 114:143-153. [PMID: 33829226 DOI: 10.1093/ajcn/nqab050] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2020] [Accepted: 02/09/2021] [Indexed: 11/14/2022] Open
Abstract
BACKGROUND Animal studies have highlighted critical roles of glycerophospholipid (GP) metabolism in various metabolic syndrome (MetS)-related features such as dyslipidemia, obesity, and insulin resistance. However, human prospective studies of associations between circulating GPs and risks of MetS are scarce. OBJECTIVES We aimed to investigate whether GPs are associated with incidence of MetS in a well-established cohort. METHODS A total of 1243 community-dwelling Chinese aged 50-70 y without MetS at baseline and followed up for 6 y were included in current analyses. A total of 145 plasma GPs were quantified by high-throughput targeted lipidomics. MetS was defined using the updated National Cholesterol Education Program Adult Treatment Panel III criteria for Asian Americans. RESULTS After 6 y, 429 participants developed MetS. Eleven GPs, especially those with long-chain polyunsaturated fatty acids (LCPUFAs) or very-long-chain polyunsaturated fatty acids (VLCPUFAs) at the sn-2 position, including 1 phosphatidylcholine (PC) [PC(18:0/22:6)], 9 phosphatidylethanolamines (PEs) [PE(16:0/22:6), PE(18:0/14:0), PE(18:0/18:1), PE(18:0/18:2), PE(18:0/20:3), PE(18:0/22:5), PE(18:0/22:6), PE(18:1/22:6), and PE(18:2/22:6)], and 1 phosphatidylserine (PS) [PS(18:0/18:0)], were positively associated with incident MetS (RRs: 1.16-1.30 per SD change; Bonferroni-corrected P < 0.05). In network analysis, the strongest positive association for MetS incidence was evidenced in a module mainly composed of PEs containing C22:6 and PSs [RR: 1.21; 95% CI: 1.12, 1.31 per SD change; Bonferroni-corrected P < 0.05]. This association was more pronounced in participants with lower erythrocyte total n-3 PUFA concentrations [Bonferroni-corrected Pinter(P value for the interaction)< 0.05]. CONCLUSIONS Elevated plasma concentrations of GPs, especially PEs with LCPUFAs or VLCPUFAs at the sn-2 position, are associated with higher risk of incident MetS. Future studies are merited to confirm our findings.
Collapse
Affiliation(s)
- Shuangshuang Chen
- CAS Key Laboratory of Nutrition, Metabolism and Food Safety, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Qingqing Wu
- Key Laboratory of Systems Biology, Institute of Biochemistry and Cell Biology, CAS Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, Shanghai, China
| | - Li Zhu
- Key Laboratory of Systems Biology, Institute of Biochemistry and Cell Biology, CAS Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, Shanghai, China
| | - Geng Zong
- CAS Key Laboratory of Nutrition, Metabolism and Food Safety, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Huaixing Li
- CAS Key Laboratory of Nutrition, Metabolism and Food Safety, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China
| | - He Zheng
- CAS Key Laboratory of Nutrition, Metabolism and Food Safety, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Rong Zeng
- Key Laboratory of Systems Biology, Institute of Biochemistry and Cell Biology, CAS Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, Shanghai, China.,Key Laboratory of Systems Biology, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Hangzhou, China
| | - Xu Lin
- Key Laboratory of Systems Biology, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Hangzhou, China.,Shanghai Institute of Nutrition and Health, Chinese Academy of Sciences, Shanghai, China
| | - Liang Sun
- CAS Key Laboratory of Nutrition, Metabolism and Food Safety, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China
| |
Collapse
|
11
|
Picklo M, Vallée Marcotte B, Bukowski M, de Toro-Martín J, Rust BM, Guénard F, Vohl MC. Identification of Phenotypic Lipidomic Signatures in Response to Long Chain n-3 Polyunsaturated Fatty Acid Supplementation in Humans. J Am Heart Assoc 2021; 10:e018126. [PMID: 33461307 PMCID: PMC7955441 DOI: 10.1161/jaha.120.018126] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Background Supplementation with long chain n‐3 polyunsaturated fatty acids is used to reduce total circulating triacylglycerol (TAG) concentrations. However, in about 30% of people, supplementation with long chain n‐3 polyunsaturated fatty acids does not result in decreased plasma TAG. Lipidomic analysis may provide insight into this inter‐individual variability. Methods Lipidomic analyses using targeted, mass spectrometry were performed on plasma samples obtained from a clinical study in which participants were supplemented with 3 g/day of long chain n‐3 in the form of fish oil capsules over a 6‐week period. TAG species and cholesteryl esters (CE) were quantified for 130 participants pre‐ and post‐supplementation. Participants were segregated into 3 potential responder phenotypes: (1) positive responder (Rpos; TAG decrease), (2) non‐responder (Rnon; lacking TAG change), and (3) negative responder (Rneg; TAG increase) representing 67%, 18%, and 15% of the study participants, respectively. Separation of the 3 phenotypes was attributed to differential responses in TAG with 50 to 54 carbons with 1 to 4 desaturations. Elevated TAG with higher carbon number and desaturation were common to all phenotypes following supplementation. Using the TAG responder phenotype for grouping, decreases in total CE and specific CE occurred in the Rpos phenotype versus the Rneg phenotype with intermediate responses in the Rnon phenotype. CE 20:5, containing eicosapentaenoic acid (20:5n‐3), was elevated in all phenotypes. A classifier combining lipidomic and genomic features was built to discriminate triacylglycerol response phenotypes and reached a high predictive performance with a balanced accuracy of 75%. Conclusions These data identify lipidomic signatures, TAG and CE, associated with long chain n‐3 response p henotypes and identify a novel phenotype based upon CE changes. Registration URL: https://www.ClinicalTrials.gov; Unique Identifier: NCT01343342.
Collapse
Affiliation(s)
- Matthew Picklo
- USDA-ARS Grand Forks Human Nutrition Research Center Grand Forks ND
| | - Bastien Vallée Marcotte
- Centre Nutrition Santé et Société (NUTRISS) Institut sur la Nutrition et les Aliments Fonctionnels (INAF) Université Laval Québec City QC Canada
| | - Michael Bukowski
- USDA-ARS Grand Forks Human Nutrition Research Center Grand Forks ND
| | - Juan de Toro-Martín
- Centre Nutrition Santé et Société (NUTRISS) Institut sur la Nutrition et les Aliments Fonctionnels (INAF) Université Laval Québec City QC Canada
| | - Bret M Rust
- USDA-ARS Grand Forks Human Nutrition Research Center Grand Forks ND
| | - Frédéric Guénard
- Centre Nutrition Santé et Société (NUTRISS) Institut sur la Nutrition et les Aliments Fonctionnels (INAF) Université Laval Québec City QC Canada
| | - Marie-Claude Vohl
- Centre Nutrition Santé et Société (NUTRISS) Institut sur la Nutrition et les Aliments Fonctionnels (INAF) Université Laval Québec City QC Canada
| |
Collapse
|
12
|
Bukowski MR, Picklo MJ. Simple, Rapid Lipidomic Analysis of Triacylglycerols in Bovine Milk by Infusion-Electrospray Mass Spectrometry. Lipids 2020; 56:243-255. [PMID: 33169389 DOI: 10.1002/lipd.12292] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2020] [Revised: 10/08/2020] [Accepted: 10/26/2020] [Indexed: 11/11/2022]
Abstract
Bovine milk is a complex mixture of lipids, proteins, carbohydrates, and other factors of which lipids comprise 3-5% of the total mass. Rapid analysis and characterization of the triacylglycerols (TAG) that comprise about 95% of the total lipid is daunting given the numerous TAG species. In the attached methods paper, we demonstrate an improved method for identifying and quantifying TAG species by infusion-based "shotgun" lipidomics. Because of the broad range of TAG species in milk, a single internal standard was insufficient for the analysis and required sectioning the spectrum into three portions based upon mass range to provide accurate quantitation of TAG species. Isobaric phospholipid interferences were removed using a simple dispersive solid-phase extraction step. Using this method, > 100 TAG species were quantitated by acyl carbon number and desaturation level in a sample of commercially purchased bovine milk.
Collapse
Affiliation(s)
- Michael R Bukowski
- USDA-ARS Grand Forks Human Nutrition Research Center, Grand Forks, ND, 58203, USA
| | - Matthew J Picklo
- USDA-ARS Grand Forks Human Nutrition Research Center, Grand Forks, ND, 58203, USA
| |
Collapse
|
13
|
Mehus AA, Rust B, Idso JP, Hanson B, Zeng H, Yan L, Bukowski MR, Picklo MJ. Time-restricted feeding mice a high-fat diet induces a unique lipidomic profile. J Nutr Biochem 2020; 88:108531. [PMID: 33098972 DOI: 10.1016/j.jnutbio.2020.108531] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2020] [Revised: 09/11/2020] [Accepted: 10/18/2020] [Indexed: 11/19/2022]
Abstract
Time-restricted feeding (TRF) can reduce adiposity and lessen the co-morbidities of obesity. Mice consuming obesogenic high-fat (HF) diets develop insulin resistance and hepatic steatosis, but have elevated indices of long-chain polyunsaturated fatty acids (LCPUFA) that may be beneficial. While TRF impacts lipid metabolism, scant data exist regarding the impact of TRF upon lipidomic composition of tissues. We (1) tested the hypothesis that TRF of a HF diet elevates LCPUFA indices while preventing insulin resistance and hepatic steatosis and (2) determined the impact of TRF upon the lipidome in plasma, liver, and adipose tissue. For 12 weeks, male, adult mice were fed a control diet ad libitum, a HF diet ad libitum (HF-AL), or a HF diet with TRF, 12 hours during the dark phase (HF-TRF). HF-TRF prevented insulin resistance and hepatic steatosis resulting from by HF-AL treatment. TRF-blocked plasma increases in LCPUFA induced by HF-AL treatment but elevated concentrations of triacylglycerols and non-esterified saturated fatty acids. Analysis of the hepatic lipidome demonstrated that TRF did not elevate LCPUFA while reducing steatosis. However, TRF created (1) a separate hepatic lipid signature for triacylglycerols, phosphatidylcholine, and phosphatidylethanolamine species and (2) modified gene and protein expression consistent with reduced fatty acid synthesis and restoration of diurnal gene signaling. TRF increased the saturated fatty acid content in visceral adipose tissue. In summary, TRF of a HF diet alters the lipidomic profile of plasma, liver, and adipose tissue, creating a third distinct lipid metabolic state indicative of positive metabolic adaptations following HF intake.
Collapse
Affiliation(s)
- Aaron A Mehus
- USDA-ARS Grand Forks Human Nutrition Research Center Grand Forks, North Dakota, USA; Department of Pathology, University of North Dakota, School of Medicine and Health Sciences, Grand Forks, North Dakota, USA
| | - Bret Rust
- USDA-ARS Grand Forks Human Nutrition Research Center Grand Forks, North Dakota, USA
| | - Joseph P Idso
- USDA-ARS Grand Forks Human Nutrition Research Center Grand Forks, North Dakota, USA
| | - Benjamin Hanson
- USDA-ARS Grand Forks Human Nutrition Research Center Grand Forks, North Dakota, USA
| | - Huawei Zeng
- USDA-ARS Grand Forks Human Nutrition Research Center Grand Forks, North Dakota, USA
| | - Lin Yan
- USDA-ARS Grand Forks Human Nutrition Research Center Grand Forks, North Dakota, USA
| | - Michael R Bukowski
- USDA-ARS Grand Forks Human Nutrition Research Center Grand Forks, North Dakota, USA; Department of Chemistry, University of North Dakota, Grand Forks, North Dakota, USA
| | - Matthew J Picklo
- USDA-ARS Grand Forks Human Nutrition Research Center Grand Forks, North Dakota, USA; Department of Chemistry, University of North Dakota, Grand Forks, North Dakota, USA.
| |
Collapse
|
14
|
Neijat M, Zacek P, Picklo MJ, House JD. Lipidomic characterization of omega-3 polyunsaturated fatty acids in phosphatidylcholine and phosphatidylethanolamine species of egg yolk lipid derived from hens fed flaxseed oil and marine algal biomass. Prostaglandins Leukot Essent Fatty Acids 2020; 161:102178. [PMID: 32980739 DOI: 10.1016/j.plefa.2020.102178] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/13/2020] [Revised: 07/31/2020] [Accepted: 09/09/2020] [Indexed: 01/06/2023]
Abstract
Membrane phospholipids, including phosphatidylcholine (PC) and phosphatidylethanolamine (PE), consist of distinct fatty acids occupying the sn-1 and sn-2 positions, reflecting the highly regulated nature of lipid biosynthesis. However, little is known about the influence of dietary lipids on the positional nature of fatty acids in tissues, including the enrichment of omega-3 polyunsaturated fatty acid (PUFA) in chicken egg yolk phospholipids. This study was undertaken to characterize the PC and PE species in egg lipids derived from Lohmann hens (n=10/treatment) randomly allocated to either a control (no supplementation), a flaxseed oil (FO) or a marine algal oil (MA) diet. Each of the FO or MA diets supplied three levels of total omega-3 PUFA (0.20, 0.40 and 0.60% of diet) that were provided for 6 weeks. A combination of multiplexed mass spectrometry (MS) experiments are used to determine total, isobaric, and position molecules for PC and PE in egg yolk. The distribution of phospholipids in the yolk was predominantly PC over PE (~72 vs. 23%, respectively) across treatments. The longer chain PUFA existed in the sn-2 position in the PC and PE. Although docosahexaenoic acid (22:6) formed isomers with fatty acids 16:0, 18:0 and 18:1; it was preferentially enriched in the egg in combination with 16:0 with both the FO and MA-fed groups in both lipid pools. All 22:6-containing isomers were enriched by ~2-fold more (P < 0.0001) with MA than FO, however, all isomers exhibited a plateau with the FO-fed group. In addition, the MS analyses of PCs revealed several isobaric species containing eicosapentaenoic acid (EPA, 20:5), however, in the PE, EPA formed only one isomer (i.e. in combination with 16:0). These results may assist to elucidate potential aspects regulating the limited enrichment of omega-3 PUFA, particularly EPA and docosahexaenoic acid (22:6) in chicken eggs.
Collapse
Affiliation(s)
- M Neijat
- Department of Food and Human Nutritional Sciences, University of Manitoba, Winnipeg, Manitoba, R3T 2N2, Canada
| | - P Zacek
- Faculty of Science, BIOCEV, Charles University in Prague, Průmyslová 595, 252 50 Vestec, Czech Republic
| | - M J Picklo
- USDA-ARS Grand Forks Human Nutrition Research Center, Grand Forks, ND 58203-9034
| | - J D House
- Department of Food and Human Nutritional Sciences, University of Manitoba, Winnipeg, Manitoba, R3T 2N2, Canada; Richardson Centre for Functional Foods and Nutraceuticals, University of Manitoba, Winnipeg, Manitoba, R3T 2E1, Canada; Canadian Centre for Agri-Food Research in Health and Medicine, St. Boniface Research Centre, Winnipeg, MB, R2H 2A6, Canada.
| |
Collapse
|
15
|
Shabrina A, Tung TH, Nguyen NTK, Lee HC, Wu HT, Wang W, Huang SY. n-3 PUFA and caloric restriction diet alters lipidomic profiles in obese men with metabolic syndrome: a preliminary open study. Eur J Nutr 2019; 59:3103-3112. [PMID: 31865423 DOI: 10.1007/s00394-019-02149-4] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2019] [Accepted: 11/18/2019] [Indexed: 12/20/2022]
Abstract
PURPOSE For people with metabolic syndrome (MetS), altering the macronutrient composition of their diets might ameliorate metabolic abnormalities. The common method of clinical assessment only measures total lipid concentrations but ignores the individual species that contribute to these total concentrations. Thus, to predict the amelioration of MetS following caloric restriction (CR) and the intake of fish oil, we used lipidomics to investigate changes in plasma lipids and identify potential lipid metabolites. METHODS Lipidomics was performed using ultra-high-performance liquid chromatography-tandem mass spectrometry on plasma samples from a clinical trial conducted over 12 weeks. Subjects were randomized into two groups: CR (n = 12) and CR with fish oil (CRF, n = 9). Anthropometric and clinical parameters were measured and correlated with plasma lipidomics data. RESULTS Compared with baseline, significant differences were observed in body weight, waist circumference, blood pressure and interleukin-6 in both groups, but triglyceride (TG) levels significantly decreased in only the CRF group (all p < 0.05). A total of 138 lipid species were identified. Levels of species containing long-chain polyunsaturated fatty acids were significantly elevated-greater than twofold-following fish oil intake, these included TG (60:9) and phosphatidylcholine (p40:6) (all q < 0.05). TG (60:9) tended to correlate negatively with body weight, body mass index, blood pressure, and HbA1c following fish oil intake. CONCLUSION CR and fish oil can ameliorate MetS features, including anthropometric parameters, blood pressure, and blood lipid concentrations. The levels of particular lipid species such as TG-containing docosapentaenoic acid were elevated post-intervention and negatively associated with MetS features. TG (60:9) may be proposed as a lipid metabolite to predict amelioration in MetS following the intake of CR and fish oil.
Collapse
Affiliation(s)
- A Shabrina
- School of Nutrition and Health Sciences, Taipei Medical University, 250 Wu-Xing Street, Taipei, 110, Taiwan
| | - T-H Tung
- School of Nutrition and Health Sciences, Taipei Medical University, 250 Wu-Xing Street, Taipei, 110, Taiwan
| | - N T K Nguyen
- School of Nutrition and Health Sciences, Taipei Medical University, 250 Wu-Xing Street, Taipei, 110, Taiwan
| | - H-C Lee
- School of Nutrition and Health Sciences, Taipei Medical University, 250 Wu-Xing Street, Taipei, 110, Taiwan
| | - H-T Wu
- Graduate Institute of Metabolism and Obesity Sciences, Taipei Medical University, Taipei, Taiwan
| | - W Wang
- Graduate Institute of Metabolism and Obesity Sciences, Taipei Medical University, Taipei, Taiwan.,Division of Digestive Surgery, Department of Surgery, Taipei Medical University Hospital, Taipei, Taiwan.,Department of Surgery, College of Medicine, Taipei Medical University, Taipei, Taiwan
| | - S-Y Huang
- School of Nutrition and Health Sciences, Taipei Medical University, 250 Wu-Xing Street, Taipei, 110, Taiwan. .,Graduate Institute of Metabolism and Obesity Sciences, Taipei Medical University, Taipei, Taiwan. .,Nutrition Research Center, Taipei Medical University Hospital, Taipei, Taiwan. .,Center for Reproductive Medicine and Sciences, Taipei Medical University Hospital, Taipei, Taiwan.
| |
Collapse
|
16
|
Picklo MJ, Hanson BK, Bukowski MR. Simplified Mass Spectrometric Analysis of Ceramides using a Common Collision Energy. Lipids 2019; 54:471-477. [DOI: 10.1002/lipd.12179] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2019] [Revised: 06/13/2019] [Accepted: 06/17/2019] [Indexed: 11/10/2022]
Affiliation(s)
- Matthew J. Picklo
- USDA‐ARS Grand Forks Human Nutrition Research Center 2420 2nd Avenue North, Grand Forks ND 58203‐9034 USA
| | - Benjamin K. Hanson
- USDA‐ARS Grand Forks Human Nutrition Research Center 2420 2nd Avenue North, Grand Forks ND 58203‐9034 USA
| | - Michael R. Bukowski
- USDA‐ARS Grand Forks Human Nutrition Research Center 2420 2nd Avenue North, Grand Forks ND 58203‐9034 USA
| |
Collapse
|
17
|
Yang B, Fritsche KL, Beversdorf DQ, Gu Z, Lee JC, Folk WR, Greenlief CM, Sun GY. Yin-Yang Mechanisms Regulating Lipid Peroxidation of Docosahexaenoic Acid and Arachidonic Acid in the Central Nervous System. Front Neurol 2019; 10:642. [PMID: 31275232 PMCID: PMC6591372 DOI: 10.3389/fneur.2019.00642] [Citation(s) in RCA: 46] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2019] [Accepted: 05/31/2019] [Indexed: 12/11/2022] Open
Abstract
Phospholipids in the central nervous system (CNS) are rich in polyunsaturated fatty acids (PUFAs), particularly arachidonic acid (ARA) and docosahexaenoic acid (DHA). Besides providing physical properties to cell membranes, these PUFAs are metabolically active and undergo turnover through the “deacylation-reacylation (Land's) cycle”. Recent studies suggest a Yin-Yang mechanism for metabolism of ARA and DHA, largely due to different phospholipases A2 (PLA2s) mediating their release. ARA and DHA are substrates of cyclooxygenases and lipoxygenases resulting in an array of lipid mediators, which are pro-inflammatory and pro-resolving. The PUFAs are susceptible to peroxidation by oxygen free radicals, resulting in the production of 4-hydroxynonenal (4-HNE) from ARA and 4-hydroxyhexenal (4-HHE) from DHA. These alkenal electrophiles are reactive and capable of forming adducts with proteins, phospholipids and nucleic acids. The perceived cytotoxic and hormetic effects of these hydroxyl-alkenals have impacted cell signaling pathways, glucose metabolism and mitochondrial functions in chronic and inflammatory diseases. Due to the high levels of DHA and ARA in brain phospholipids, this review is aimed at providing information on the Yin-Yang mechanisms for regulating these PUFAs and their lipid peroxidation products in the CNS, and implications of their roles in neurological disorders.
Collapse
Affiliation(s)
- Bo Yang
- Department of Chemistry, University of Missouri, Columbia, MO, United States
| | - Kevin L Fritsche
- Department of Nutrition and Exercise Physiology, University of Missouri, Columbia, MO, United States
| | - David Q Beversdorf
- Departments of Radiology, Neurology and Psychological Sciences, and the Thompson Center, Columbia, MO, United States
| | - Zezong Gu
- Department of Pathology and Anatomical Sciences, University of Missouri, Columbia, MO, United States
| | - James C Lee
- Department of Bioengineering, University of Illinois at Chicago, Chicago, IL, United States
| | - William R Folk
- Biochemistry Department, University of Missouri, Columbia, MO, United States
| | - C Michael Greenlief
- Department of Chemistry, University of Missouri, Columbia, MO, United States
| | - Grace Y Sun
- Biochemistry Department, University of Missouri, Columbia, MO, United States
| |
Collapse
|
18
|
Žáček P, Bukowski M, Mehus A, Johnson L, Zeng H, Raatz S, Idso JP, Picklo M. Dietary saturated fatty acid type impacts obesity-induced metabolic dysfunction and plasma lipidomic signatures in mice. J Nutr Biochem 2019; 64:32-44. [DOI: 10.1016/j.jnutbio.2018.10.005] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2018] [Revised: 09/19/2018] [Accepted: 10/08/2018] [Indexed: 12/18/2022]
|
19
|
Manninen S, Lankinen M, de Mello V, Ågren J, Laaksonen D, Schwab U, Erkkilä A. The effect of camelina sativa oil and fish intakes on fatty acid compositions of blood lipid fractions. Nutr Metab Cardiovasc Dis 2019; 29:51-61. [PMID: 30454883 DOI: 10.1016/j.numecd.2018.10.002] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/25/2018] [Revised: 10/01/2018] [Accepted: 10/01/2018] [Indexed: 01/08/2023]
Abstract
BACKGROUND AND AIMS Blood lipid fractions serve as objective biomarkers of dietary fat intake. It is unclear which fatty acid pool most accurately reflects the dietary intakes of different n-3 PUFAs. We aimed to investigate the effect of fish and camelina sativa oil (CSO) intakes on fatty acid composition of erythrocyte membranes (EM), plasma phospholipids (PL), cholesteryl esters (CE) and triglycerides (TG). We also aimed to identify the most appropriate blood lipid fraction for assessing n-3 PUFA intake. METHODS AND RESULTS Altogether 79 volunteers with impaired glucose metabolism were randomly assigned either to CSO, fatty fish, lean fish or control groups for 12 weeks. Fatty acid compositions of lipid pools were measured by gas chromatography. The proportion of alpha-linolenic acid (ALA) increased in all lipid pools in the CSO group (false discovery rate (FDR) p < 0.001 for all). Similarly, the proportions of EPA and DHA increased in all lipid fractions in the fatty fish group (FDR p < 0.001 for EM, PL and CE; FDR p = 0.005 for TG; FDR p < 0.001 for EM, PL, CE; FDR p < 0.007 for TG, respectively). Changes in the dietary intakes of ALA, EPA and DHA correlated with the changes in their proportions in all lipid pools (r = 0.3-0.5, p < 0.05). CONCLUSION There is no difference in the ability of blood lipid fractions in reflecting the dietary intake of different n-3 PUFAs over a time period of 12 weeks in subjects with high baseline omega-3 index. This trial was registered in Clinicaltrials.gov (NCT01768429).
Collapse
Affiliation(s)
- S Manninen
- Institute of Public Health and Clinical Nutrition, Faculty of Health Sciences, University of Eastern Finland, Kuopio, Finland.
| | - M Lankinen
- Institute of Public Health and Clinical Nutrition, Faculty of Health Sciences, University of Eastern Finland, Kuopio, Finland
| | - V de Mello
- Institute of Public Health and Clinical Nutrition, Faculty of Health Sciences, University of Eastern Finland, Kuopio, Finland
| | - J Ågren
- Institute of Biomedicine, Physiology, University of Eastern Finland, Kuopio, Finland
| | - D Laaksonen
- Institute of Biomedicine, Physiology, University of Eastern Finland, Kuopio, Finland; Institute of Clinical medicine, Internal Medicine, Kuopio University Hospital, Kuopio, Finland
| | - U Schwab
- Institute of Public Health and Clinical Nutrition, Faculty of Health Sciences, University of Eastern Finland, Kuopio, Finland; Institute of Clinical medicine, Internal Medicine, Kuopio University Hospital, Kuopio, Finland
| | - A Erkkilä
- Institute of Public Health and Clinical Nutrition, Faculty of Health Sciences, University of Eastern Finland, Kuopio, Finland
| |
Collapse
|
20
|
Pastor Ó, Guzmán-Lafuente P, Serna J, Muñoz-Hernández M, López Neyra A, García-Rozas P, García-Seisdedos D, Alcázar A, Lasunción MA, Busto R, Lamas Ferreiro A. A comprehensive evaluation of omega-3 fatty acid supplementation in cystic fibrosis patients using lipidomics. J Nutr Biochem 2018; 63:197-205. [PMID: 30414540 DOI: 10.1016/j.jnutbio.2018.09.026] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2017] [Revised: 09/06/2018] [Accepted: 09/19/2018] [Indexed: 10/28/2022]
Abstract
The evaluation of the benefits of omega-3 fatty acid supplementation in humans requires the identification and characterization of suitable biomarkers of its incorporation in the body. The reference method for the evaluation of omega-3, gas chromatography, is difficult to apply in clinical practice because of its low throughput and does not provide information about the incorporation of specific fatty acids in lipid species and the potential effects of supplementation on lipid classes. We used a quantitative lipidomic approach to follow the incorporation of omega-3 fatty acids into plasma lipids in cystic fibrosis patients (n=50) from a randomized controlled clinical trial after the supplementation of seaweed oil enriched with docosahexaenoic acid (DHA). Lipidomic analysis accurately showed the distribution of fatty acids in different lipid classes after omega-3 supplementation, and the performance in determining the compliance to supplementation was similar to that of gas chromatography coupled to mass spectrometry. Twelve months after fatty acid supplementation, DHA was predominantly incorporated into highly unsaturated cholesteryl esters (110.9±16.2 vs. 278.6±32.6 μM, mean±S.E.M.) and phosphatidylcholine (142.4±11.9 vs. 272.9±21.4 μM) and, to a lesser extent, into phosphatidylethanolamine (9.4±0.8 vs. 15.5±1.5 μM) and triglycerides (0.4±0.04 vs. 1.1±0.12 μM). In addition, a technique was developed for the fast measurement of the DHA/arachidonic acid ratio to simplify the follow-up of nutritional intervention with DHA-enriched foods. We conclude that lipidomics is a suitable approach for monitoring the incorporation of omega-3 fatty acids in nutritional studies.
Collapse
Affiliation(s)
- Óscar Pastor
- Servicio de Bioquímica Clínica, Unidad de Cuantificación y Caracterización Molecular, Hospital Universitario Ramón y Cajal, Spain; Instituto Ramón y Cajal de Investigación Sanitaria (IRYCIS), Spain; CIBER de Fisiología de la Obesidad y Nutrición (CIBERobn), ISCIII, Spain.
| | - Paula Guzmán-Lafuente
- Servicio de Bioquímica Clínica, Unidad de Cuantificación y Caracterización Molecular, Hospital Universitario Ramón y Cajal, Spain
| | - Jorge Serna
- Servicio de Bioquímica Clínica, Unidad de Cuantificación y Caracterización Molecular, Hospital Universitario Ramón y Cajal, Spain
| | - Marta Muñoz-Hernández
- Servicio de Pediatría, Unidad de Fibrósis Quística, Hospital Universitario Ramón y Cajal, Spain
| | - Alejandro López Neyra
- Servicio de Pediatría, Unidad de Fibrósis Quística, Hospital Universitario Ramón y Cajal, Spain
| | | | - David García-Seisdedos
- Servicio de Bioquímica Clínica, Unidad de Cuantificación y Caracterización Molecular, Hospital Universitario Ramón y Cajal, Spain
| | - Alberto Alcázar
- Servicio de Bioquímica-Investigación, Hospital Universitario Ramón y Cajal, Spain; Instituto Ramón y Cajal de Investigación Sanitaria (IRYCIS), Spain
| | - Miguel A Lasunción
- Servicio de Bioquímica-Investigación, Hospital Universitario Ramón y Cajal, Spain; Instituto Ramón y Cajal de Investigación Sanitaria (IRYCIS), Spain
| | - Rebeca Busto
- Servicio de Bioquímica-Investigación, Hospital Universitario Ramón y Cajal, Spain; Instituto Ramón y Cajal de Investigación Sanitaria (IRYCIS), Spain
| | - Adelaida Lamas Ferreiro
- Servicio de Pediatría, Unidad de Fibrósis Quística, Hospital Universitario Ramón y Cajal, Spain; Instituto Ramón y Cajal de Investigación Sanitaria (IRYCIS), Spain
| |
Collapse
|
21
|
Zhu S, Tan P, Ji R, Xiang X, Cai Z, Dong X, Mai K, Ai Q. Influence of a Dietary Vegetable Oil Blend on Serum Lipid Profiles in Large Yellow Croaker ( Larimichthys crocea). JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2018; 66:9097-9106. [PMID: 30095902 DOI: 10.1021/acs.jafc.8b03382] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Serum lipid metabolic responses are associated with certain metabolic disorders induced by dietary habits in mammals. However, such associations have not been reported in fish. Lipidomic analyses were performed to investigate fish lipid metabolic responses to a dietary vegetable oil (VO) blend and to elucidate the mechanism of how the dietary VO blend affects serum lipid profiles. Results showed that the dietary VO blend strongly affects serum lipid profiles, especially the ratio of triglyceride/phosphatidylcholine (TAG/PC), via inhibiting hepatic PC biosynthesis and facilitating hepatic and intestinal lipoprotein assembly. Studies in vitro suggested that changes of serum TAG/PC ratio may be partially attributed to altered fatty acid composition in diets. Additionally, the reduction of 16:0/18:1-PC induced by the dietary VO blend may play a role in abnormal lipid deposition through inhibiting PPARA-mediated activation of β-oxidation. These findings suggested that the serum TAG/PC ratio might be a predictive parameter for abnormal lipid metabolism induced by dietary nutrition in fish.
Collapse
Affiliation(s)
- Si Zhu
- Key Laboratory of Aquaculture Nutrition and Feed (Ministry of Agriculture) & Key Laboratory of Mariculture (Ministry of Education) , Ocean University of China , 5 Yushan Road , Qingdao , Shangdong 266003 , China
| | - Peng Tan
- Key Laboratory of Aquaculture Nutrition and Feed (Ministry of Agriculture) & Key Laboratory of Mariculture (Ministry of Education) , Ocean University of China , 5 Yushan Road , Qingdao , Shangdong 266003 , China
| | - Renlei Ji
- Key Laboratory of Aquaculture Nutrition and Feed (Ministry of Agriculture) & Key Laboratory of Mariculture (Ministry of Education) , Ocean University of China , 5 Yushan Road , Qingdao , Shangdong 266003 , China
| | - Xiaojun Xiang
- Key Laboratory of Aquaculture Nutrition and Feed (Ministry of Agriculture) & Key Laboratory of Mariculture (Ministry of Education) , Ocean University of China , 5 Yushan Road , Qingdao , Shangdong 266003 , China
| | - Zuonan Cai
- Key Laboratory of Aquaculture Nutrition and Feed (Ministry of Agriculture) & Key Laboratory of Mariculture (Ministry of Education) , Ocean University of China , 5 Yushan Road , Qingdao , Shangdong 266003 , China
| | - Xiaojing Dong
- Key Laboratory of Aquaculture Nutrition and Feed (Ministry of Agriculture) & Key Laboratory of Mariculture (Ministry of Education) , Ocean University of China , 5 Yushan Road , Qingdao , Shangdong 266003 , China
| | - Kangsen Mai
- Key Laboratory of Aquaculture Nutrition and Feed (Ministry of Agriculture) & Key Laboratory of Mariculture (Ministry of Education) , Ocean University of China , 5 Yushan Road , Qingdao , Shangdong 266003 , China
- Laboratory for Marine Fisheries and Aquaculture , Qingdao National Laboratory for Marine Science and Technology , Qingdao , Shangdong China
| | - Qinghui Ai
- Key Laboratory of Aquaculture Nutrition and Feed (Ministry of Agriculture) & Key Laboratory of Mariculture (Ministry of Education) , Ocean University of China , 5 Yushan Road , Qingdao , Shangdong 266003 , China
- Laboratory for Marine Fisheries and Aquaculture , Qingdao National Laboratory for Marine Science and Technology , Qingdao , Shangdong China
| |
Collapse
|
22
|
Sundaram S, Žáček P, Bukowski MR, Mehus AA, Yan L, Picklo MJ. Lipidomic Impacts of an Obesogenic Diet Upon Lewis Lung Carcinoma in Mice. Front Oncol 2018; 8:134. [PMID: 29868466 PMCID: PMC5958182 DOI: 10.3389/fonc.2018.00134] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2018] [Accepted: 04/13/2018] [Indexed: 12/25/2022] Open
Abstract
Metabolic reprogramming of lipid metabolism is a hallmark of cancer. Consumption of a high-fat obesogenic diet enhances spontaneous metastasis using a Lewis lung carcinoma (LLC) model. In order to gain further insights into the mechanisms by which dietary fats impact cancer progression, we conducted a lipidomic analysis of primary tumors originated from LLC from mice fed with a standard AIN93G diet or a soybean oil-based high-fat diet (HFD). Hierarchical clustering heatmap analysis of phosphatidylcholine (PC) lipids and phosphatidylethanolamine (PE) lipids demonstrated an increase in polyunsaturated fatty acids (PUFA)-containing phospholipids and a decrease in monounsaturated fatty acids (MUFA)-containing lipids in tumors from mice fed the HFD. The quantities of 51 PC and 24 PE lipids differed in primary tumors of LLC from mice fed the control diet and the HFD. Analysis of triacylglycerol (TAG) lipids identified differences in 32 TAG (by brutto structure) between the two groups; TAG analysis by neutral loss identified 46 PUFA-containing TAG species that were higher in mice fed with the HFD than in the controls. Intake of the HFD did not alter the expression of the de novo lipogenesis enzymes (fatty acid synthase, acetyl-CoA carboxylase-1, and stearoyl-CoA desaturase-1). Our results demonstrate that the dietary fatty acid composition of the HFD is reflected in the higher order lipidomic composition of primary tumors. Subsequent studies are needed to investigate how these lipidomic changes may be used for targeted dietary intervention to reduce tumor growth and malignant progression.
Collapse
Affiliation(s)
- Sneha Sundaram
- USDA-ARS Grand Forks Human Nutrition Research Center, Grand Forks, ND, United States
| | - Petr Žáček
- USDA-ARS Grand Forks Human Nutrition Research Center, Grand Forks, ND, United States
| | - Michael R Bukowski
- USDA-ARS Grand Forks Human Nutrition Research Center, Grand Forks, ND, United States
| | - Aaron A Mehus
- USDA-ARS Grand Forks Human Nutrition Research Center, Grand Forks, ND, United States
| | - Lin Yan
- USDA-ARS Grand Forks Human Nutrition Research Center, Grand Forks, ND, United States
| | - Matthew J Picklo
- USDA-ARS Grand Forks Human Nutrition Research Center, Grand Forks, ND, United States.,Department of Chemistry, University of North Dakota, Grand Forks, ND, United States
| |
Collapse
|