1
|
Zhou J, Ren Y, Yu J, Zeng Y, Ren J, Wu Y, Zhang Q, Xiao X. The effect of maternal dietary polyphenol consumption on offspring metabolism. Crit Rev Food Sci Nutr 2024:1-18. [PMID: 39698806 DOI: 10.1080/10408398.2024.2442539] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2024]
Abstract
The early intrauterine environment of mothers during pregnancy significantly affects the metabolic health of their offspring. Existing studies suggest that poor maternal nutrition during pregnancy increases the risk of obesity or diabetes in offspring, so it is highly important to intervene during pregnancy to prevent metabolic disorders in mothers and their offspring. Polyphenols with anti-inflammatory and antioxidant properties are found in many foods and have protective effects on obesity, diabetes, cancer, and cardiovascular disease. Furthermore, recent evidence indicates that maternal dietary polyphenols could be a potential therapy for improving pregnancy outcomes and offspring metabolism. In this review, we discuss the studies and mechanisms of different kinds of maternal dietary polyphenols during pregnancy and lactation in improving the metabolism of offspring, analyze the limitations of the current studies, and propose possible directions of further research, which provide new ideas and directions for reducing metabolic diseases in offspring.
Collapse
Affiliation(s)
- Jing Zhou
- Key Laboratory of Endocrinology of National Health Commission, Diabetes Research Center of Chinese Academy of Medical Sciences, Department of Endocrinology, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, China
| | - Yaolin Ren
- Key Laboratory of Endocrinology of National Health Commission, Diabetes Research Center of Chinese Academy of Medical Sciences, Department of Endocrinology, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, China
| | - Jie Yu
- Key Laboratory of Endocrinology of National Health Commission, Diabetes Research Center of Chinese Academy of Medical Sciences, Department of Endocrinology, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, China
| | - Yuan Zeng
- Key Laboratory of Endocrinology of National Health Commission, Diabetes Research Center of Chinese Academy of Medical Sciences, Department of Endocrinology, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, China
| | - Jing Ren
- Key Laboratory of Endocrinology of National Health Commission, Diabetes Research Center of Chinese Academy of Medical Sciences, Department of Endocrinology, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, China
| | - Yifan Wu
- Key Laboratory of Endocrinology of National Health Commission, Diabetes Research Center of Chinese Academy of Medical Sciences, Department of Endocrinology, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, China
| | - Qian Zhang
- Key Laboratory of Endocrinology of National Health Commission, Diabetes Research Center of Chinese Academy of Medical Sciences, Department of Endocrinology, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, China
| | - Xinhua Xiao
- Key Laboratory of Endocrinology of National Health Commission, Diabetes Research Center of Chinese Academy of Medical Sciences, Department of Endocrinology, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, China
| |
Collapse
|
2
|
Tain YL, Hsu CN. Kidney Programming and Hypertension: Linking Prenatal Development to Adulthood. Int J Mol Sci 2024; 25:13610. [PMID: 39769369 PMCID: PMC11677590 DOI: 10.3390/ijms252413610] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2024] [Revised: 12/12/2024] [Accepted: 12/18/2024] [Indexed: 01/11/2025] Open
Abstract
The complex relationship between kidney disease and hypertension represents a critical area of research, yet less attention has been devoted to exploring how this connection develops early in life. Various environmental factors during pregnancy and lactation can significantly impact kidney development, potentially leading to kidney programming that results in alterations in both structure and function. This early programming can contribute to adverse long-term kidney outcomes, such as hypertension. In the context of kidney programming, the molecular pathways involved in hypertension are intricate and include epigenetic modifications, oxidative stress, impaired nitric oxide pathway, inappropriate renin-angiotensin system (RAS) activation, disrupted nutrient sensing, gut microbiota dysbiosis, and altered sodium transport. This review examines each of these mechanisms and highlights reprogramming interventions proposed in preclinical studies to prevent hypertension related to kidney programming. Given that reprogramming strategies differ considerably from conventional treatments for hypertension in kidney disease, it is essential to shift focus toward understanding the processes of kidney programming and its role in the development of programmed hypertension.
Collapse
Affiliation(s)
- You-Lin Tain
- Division of Pediatric Nephrology, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung 833, Taiwan;
- College of Medicine, Chang Gung University, Taoyuan 333, Taiwan
| | - Chien-Ning Hsu
- Department of Pharmacy, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung 833, Taiwan
- School of Pharmacy, Kaohsiung Medical University, Kaohsiung 807, Taiwan
| |
Collapse
|
3
|
Tain YL, Hsu CN. Maternal Polyphenols and Offspring Cardiovascular-Kidney-Metabolic Health. Nutrients 2024; 16:3168. [PMID: 39339768 PMCID: PMC11434705 DOI: 10.3390/nu16183168] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2024] [Revised: 09/12/2024] [Accepted: 09/13/2024] [Indexed: 09/30/2024] Open
Abstract
BACKGROUND The convergence of cardiovascular, kidney, and metabolic disorders at the pathophysiological level has led to the recognition of cardiovascular-kidney-metabolic (CKM) syndrome, which represents a significant global health challenge. Polyphenols, a group of phytochemicals, have demonstrated potential health-promoting effects. METHODS This review highlights the impact of maternal polyphenol supplementation on the CKM health of offspring. RESULTS Initially, we summarize the interconnections between polyphenols and each aspect of CKM syndrome. We then discuss in vivo studies that have investigated the use of polyphenols during pregnancy and breastfeeding, focusing on their role in preventing CKM syndrome in offspring. Additionally, we explore the common mechanisms underlying the protective effects of maternal polyphenol supplementation. CONCLUSIONS Overall, this review underscores the potential of early-life polyphenol interventions in safeguarding against CKM syndrome in offspring. It emphasizes the importance of continued research to advance our understanding and facilitate the clinical translation of these interventions.
Collapse
Affiliation(s)
- You-Lin Tain
- Division of Pediatric Nephrology, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung 833, Taiwan;
- Institute for Translational Research in Biomedicine, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung 833, Taiwan
- College of Medicine, Chang Gung University, Taoyuan 333, Taiwan
| | - Chien-Ning Hsu
- Department of Pharmacy, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung 833, Taiwan
- School of Pharmacy, Kaohsiung Medical University, Kaohsiung 807, Taiwan
| |
Collapse
|
4
|
Tain YL, Hsu CN. Maternal Dietary Strategies for Improving Offspring Cardiovascular-Kidney-Metabolic Health: A Scoping Review. Int J Mol Sci 2024; 25:9788. [PMID: 39337276 PMCID: PMC11432268 DOI: 10.3390/ijms25189788] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2024] [Revised: 09/08/2024] [Accepted: 09/09/2024] [Indexed: 09/30/2024] Open
Abstract
Dietary regulation has been recognized for its profound impact on human health. The convergence of cardiovascular, kidney, and metabolic disorders at the pathophysiological level has given rise to cardiovascular-kidney-metabolic (CKM) syndrome, which constitutes a significant global health burden. Maternal dietary nutrients play a crucial role in fetal development, influencing various programmed processes. This review emphasizes the effects of different types of dietary interventions on each component of CKM syndrome in both preclinical and clinical settings. We also provide an overview of potential maternal dietary strategies, including amino acid supplementation, lipid-associated diets, micronutrients, gut microbiota-targeted diets, and plant polyphenols, aimed at preventing CKM syndrome in offspring. Additionally, we discuss the mechanisms mediated by nutrient-sensing signals that contribute to CKM programming. Altogether, we underscore the interaction between maternal dietary interventions and the risk of CKM syndrome in offspring, emphasizing the need for continued research to facilitate their clinical translation.
Collapse
Affiliation(s)
- You-Lin Tain
- Division of Pediatric Nephrology, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung 833, Taiwan;
- College of Medicine, Chang Gung University, Taoyuan 333, Taiwan
- Institute for Translational Research in Biomedicine, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung 833, Taiwan
| | - Chien-Ning Hsu
- Department of Pharmacy, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung 833, Taiwan
- School of Pharmacy, Kaohsiung Medical University, Kaohsiung 807, Taiwan
| |
Collapse
|
5
|
Bonet ML, Ribot J, Sánchez J, Palou A, Picó C. Early Life Programming of Adipose Tissue Remodeling and Browning Capacity by Micronutrients and Bioactive Compounds as a Potential Anti-Obesity Strategy. Cells 2024; 13:870. [PMID: 38786092 PMCID: PMC11120104 DOI: 10.3390/cells13100870] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Revised: 05/13/2024] [Accepted: 05/17/2024] [Indexed: 05/25/2024] Open
Abstract
The early stages of life, especially the period from conception to two years, are crucial for shaping metabolic health and the risk of obesity in adulthood. Adipose tissue (AT) plays a crucial role in regulating energy homeostasis and metabolism, and brown AT (BAT) and the browning of white AT (WAT) are promising targets for combating weight gain. Nutritional factors during prenatal and early postnatal stages can influence the development of AT, affecting the likelihood of obesity later on. This narrative review focuses on the nutritional programming of AT features. Research conducted across various animal models with diverse interventions has provided insights into the effects of specific compounds on AT development and function, influencing the development of crucial structures and neuroendocrine circuits responsible for energy balance. The hormone leptin has been identified as an essential nutrient during lactation for healthy metabolic programming against obesity development in adults. Studies have also highlighted that maternal supplementation with polyunsaturated fatty acids (PUFAs), vitamin A, nicotinamide riboside, and polyphenols during pregnancy and lactation, as well as offspring supplementation with myo-inositol, vitamin A, nicotinamide riboside, and resveratrol during the suckling period, can impact AT features and long-term health outcomes and help understand predisposition to obesity later in life.
Collapse
Affiliation(s)
- M. Luisa Bonet
- Laboratory of Molecular Biology, Nutrition and Biotechnology (Group of Nutrigenomics, Biomarkers and Risk Evaluation), University of the Balearic Islands, 07122 Palma, Spain; (M.L.B.); (J.S.); (A.P.); (C.P.)
- Health Research Institute of the Balearic Islands (IdISBa), 07010 Palma, Spain
- CIBER de Fisiopatología de la Obesidad y Nutrición (CIBEROBN), 28029 Madrid, Spain
- Artificial Intelligence Research Institute of the Balearic Islands (IAIB), University of the Balearic Islands, 07122 Palma, Spain
| | - Joan Ribot
- Laboratory of Molecular Biology, Nutrition and Biotechnology (Group of Nutrigenomics, Biomarkers and Risk Evaluation), University of the Balearic Islands, 07122 Palma, Spain; (M.L.B.); (J.S.); (A.P.); (C.P.)
- Health Research Institute of the Balearic Islands (IdISBa), 07010 Palma, Spain
- CIBER de Fisiopatología de la Obesidad y Nutrición (CIBEROBN), 28029 Madrid, Spain
| | - Juana Sánchez
- Laboratory of Molecular Biology, Nutrition and Biotechnology (Group of Nutrigenomics, Biomarkers and Risk Evaluation), University of the Balearic Islands, 07122 Palma, Spain; (M.L.B.); (J.S.); (A.P.); (C.P.)
- Health Research Institute of the Balearic Islands (IdISBa), 07010 Palma, Spain
- CIBER de Fisiopatología de la Obesidad y Nutrición (CIBEROBN), 28029 Madrid, Spain
| | - Andreu Palou
- Laboratory of Molecular Biology, Nutrition and Biotechnology (Group of Nutrigenomics, Biomarkers and Risk Evaluation), University of the Balearic Islands, 07122 Palma, Spain; (M.L.B.); (J.S.); (A.P.); (C.P.)
- Health Research Institute of the Balearic Islands (IdISBa), 07010 Palma, Spain
- CIBER de Fisiopatología de la Obesidad y Nutrición (CIBEROBN), 28029 Madrid, Spain
- Artificial Intelligence Research Institute of the Balearic Islands (IAIB), University of the Balearic Islands, 07122 Palma, Spain
| | - Catalina Picó
- Laboratory of Molecular Biology, Nutrition and Biotechnology (Group of Nutrigenomics, Biomarkers and Risk Evaluation), University of the Balearic Islands, 07122 Palma, Spain; (M.L.B.); (J.S.); (A.P.); (C.P.)
- Health Research Institute of the Balearic Islands (IdISBa), 07010 Palma, Spain
- CIBER de Fisiopatología de la Obesidad y Nutrición (CIBEROBN), 28029 Madrid, Spain
- Artificial Intelligence Research Institute of the Balearic Islands (IAIB), University of the Balearic Islands, 07122 Palma, Spain
| |
Collapse
|
6
|
Yang Y, Yu J, Huo J, Yang L, Yan Y. Protective effects of peanut skin extract on high-fat and high-fructose diet-induced kidney injury in rats. Food Sci Biotechnol 2023; 32:1091-1099. [PMID: 37215259 PMCID: PMC10195960 DOI: 10.1007/s10068-023-01250-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2022] [Revised: 11/28/2022] [Accepted: 01/04/2023] [Indexed: 01/21/2023] Open
Abstract
Chronic kidney disease (CKD) is becoming a major public health problem worldwide. This study aimed to explore whether peanut skin extract (PSE) has protective effects against high-fat and high-fructose (HF) diet-induced kidney injury. Rats were fed HF diet in the whole experiment, while rats in PSE-treated groups were supplemented with PSE. Finally, PSE reduced kidney tissue weight, perinephric fat weight, and levels of serum ammonia, creatinine, and urea nitrogen, along with decreases of renal IL-1β and TNF-α level. Histological examination indicated that PSE alleviated renal tubular dilatation, and degeneration and partial exfoliation of renal tubular epithelial cells. In addition, PSE decreased serum and urinary uric acid level, together with reductions of XOD production and XOD activity both in serum and liver, and down-regulated expressions of renal NLRP3 and ERS proteins. Thus, PSE may be a potential functional food for protecting against renal injury in high energy intake.
Collapse
Affiliation(s)
- Yang Yang
- Key Laboratory of the Ministry of Education for Medicinal Resources and Natural Pharmaceutical Chemistry, National Engineering Laboratory for Resource Development of Endangered Crude Drugs in Northwest of China, College of Life Sciences, Shaanxi Normal University, Xi’an, 710119 China
| | - Jing Yu
- Key Laboratory of the Ministry of Education for Medicinal Resources and Natural Pharmaceutical Chemistry, National Engineering Laboratory for Resource Development of Endangered Crude Drugs in Northwest of China, College of Life Sciences, Shaanxi Normal University, Xi’an, 710119 China
| | - Jiaoyao Huo
- Key Laboratory of the Ministry of Education for Medicinal Resources and Natural Pharmaceutical Chemistry, National Engineering Laboratory for Resource Development of Endangered Crude Drugs in Northwest of China, College of Life Sciences, Shaanxi Normal University, Xi’an, 710119 China
| | - Luting Yang
- Key Laboratory of the Ministry of Education for Medicinal Resources and Natural Pharmaceutical Chemistry, National Engineering Laboratory for Resource Development of Endangered Crude Drugs in Northwest of China, College of Life Sciences, Shaanxi Normal University, Xi’an, 710119 China
| | - Yaping Yan
- Key Laboratory of the Ministry of Education for Medicinal Resources and Natural Pharmaceutical Chemistry, National Engineering Laboratory for Resource Development of Endangered Crude Drugs in Northwest of China, College of Life Sciences, Shaanxi Normal University, Xi’an, 710119 China
| |
Collapse
|
7
|
Liu HY, Lee CH, Hsu CN, Tain YL. Maternal High-Fat Diet Controls Offspring Kidney Health and Disease. Nutrients 2023; 15:2698. [PMID: 37375602 DOI: 10.3390/nu15122698] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2023] [Revised: 06/04/2023] [Accepted: 06/08/2023] [Indexed: 06/29/2023] Open
Abstract
A balanced diet during gestation is critical for fetal development, and excessive intake of saturated fats during gestation and lactation is related to an increased risk of offspring kidney disease. Emerging evidence indicates that a maternal high-fat diet influences kidney health and disease of the offspring via so-called renal programming. This review summarizes preclinical research documenting the connection between a maternal high-fat diet during gestation and lactation and offspring kidney disease, as well as the molecular mechanisms behind renal programming, and early-life interventions to offset adverse programming processes. Animal models indicate that offspring kidney health can be improved via perinatal polyunsaturated fatty acid supplementation, gut microbiota changes, and modulation of nutrient-sensing signals. These findings reinforce the significance of a balanced maternal diet for the kidney health of offspring.
Collapse
Affiliation(s)
- Hsi-Yun Liu
- Department of Pediatrics, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung 833, Taiwan
| | - Chen-Hao Lee
- Department of Pediatrics, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung 833, Taiwan
| | - Chien-Ning Hsu
- Department of Pharmacy, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung 833, Taiwan
- School of Pharmacy, Kaohsiung Medical University, Kaohsiung 807, Taiwan
| | - You-Lin Tain
- Department of Pediatrics, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung 833, Taiwan
- Institute for Translational Research in Biomedicine, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung 833, Taiwan
- College of Medicine, Chang Gung University, Taoyuan 333, Taiwan
| |
Collapse
|
8
|
Yamaoka S, Sasaki K, Sato S. Curcumin intake during lactation suppresses oxidative stress through upregulation of nuclear factor erythroid 2-related factor 2 in the kidneys of fructose-loaded female rat offspring exposed to maternal protein restriction. Birth Defects Res 2023; 115:674-686. [PMID: 36811147 DOI: 10.1002/bdr2.2158] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2022] [Revised: 12/30/2022] [Accepted: 01/23/2023] [Indexed: 02/24/2023]
Abstract
BACKGROUND A high-fructose diet causes the progression of chronic kidney disease. Maternal malnutrition during pregnancy and lactation increases oxidative stress, leading to chronic renal diseases later in life. We investigated whether curcumin intake during lactation could suppress oxidative stress and regulate NF-E2-related factor 2 (Nrf2) expression in the kidneys of fructose-loaded female rat offspring exposed to maternal protein restriction. METHODS Pregnant Wistar rats received diets containing 20% (NP) or 8% (LP) casein and 0 or 2.5 g "highly absorptive curcumin" /kg diet containing-LP diets (LP/LP or LP/Cur) during lactation. At weaning, female offspring received either distilled water (W) or 10% fructose solution (Fr) and were divided into four groups: NP/NP/W, LP/LP/W, LP/LP/Fr, and LP/Cur/Fr. At week 13, glucose (Glc), triacylglycerol (Tg), and malondialdehyde (MDA) levels in the plasma, macrophages number, fibrotic area, glutathione (GSH) levels, glutathione peroxidase (GPx) activity, protein expression levels of Nrf2, heme oxygenase-1 (HO-1), and superoxide dismutase 1 (SOD1) in the kidneys were examined. RESULTS The plasma levels of Glc, TG, and MDA, the number of macrophages, and the percentage of fibrotic area in the kidneys of the LP/Cur/Fr group were significantly lower than those of the LP/LP/Fr group. The expression of Nrf2 and its downstream molecules HO-1 and SOD1, GSH levels, and GPx activity in the kidneys of the LP/Cur/Fr group were significantly higher than those of the LP/LP/Fr group. CONCLUSIONS Maternal curcumin intake during lactation may suppress oxidative stress by upregulating Nrf2 expression in the kidneys of fructose-loaded female offspring exposed to maternal protein restriction.
Collapse
Affiliation(s)
- Shin Yamaoka
- Aomori University of Health and Welfare, Graduate School of Health Sciences, Aomori, Japan.,Department of Nutrition, Akita Nutrition Junior College, Akita, Japan
| | - Kotomi Sasaki
- Department of Nutrition, Aomori University of Health and Welfare, Aomori, Japan
| | - Shin Sato
- Aomori University of Health and Welfare, Graduate School of Health Sciences, Aomori, Japan.,Department of Nutrition, Aomori University of Health and Welfare, Aomori, Japan
| |
Collapse
|
9
|
Huang W, Chen YY, Li ZQ, He FF, Zhang C. Recent Advances in the Emerging Therapeutic Strategies for Diabetic Kidney Diseases. Int J Mol Sci 2022; 23:ijms231810882. [PMID: 36142794 PMCID: PMC9506036 DOI: 10.3390/ijms231810882] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2022] [Revised: 09/10/2022] [Accepted: 09/15/2022] [Indexed: 12/06/2022] Open
Abstract
Diabetic kidney disease (DKD) is one of the most common causes of end-stage renal disease worldwide. The treatment of DKD is strongly associated with clinical outcomes in patients with diabetes mellitus. Traditional therapeutic strategies focus on the control of major risk factors, such as blood glucose, blood lipids, and blood pressure. Renin–angiotensin–aldosterone system inhibitors have been the main therapeutic measures in the past, but the emergence of sodium–glucose cotransporter 2 inhibitors, incretin mimetics, and endothelin-1 receptor antagonists has provided more options for the management of DKD. Simultaneously, with advances in research on the pathogenesis of DKD, some new therapies targeting renal inflammation, fibrosis, and oxidative stress have gradually entered clinical application. In addition, some recently discovered therapeutic targets and signaling pathways, mainly in preclinical and early clinical trial stages, are expected to provide benefits for patients with DKD in the future. This review summarizes the traditional treatments and emerging management options for DKD, demonstrating recent advances in the therapeutic strategies for DKD.
Collapse
|
10
|
Zhang X, Hasan AA, Wu H, Gaballa MMS, Zeng S, Liu L, Xie L, Jung T, Grune T, Krämer BK, Kleuser B, Li J, Hocher B. High-fat, sucrose and salt-rich diet during rat spermatogenesis lead to the development of chronic kidney disease in the female offspring of the F2 generation. FASEB J 2022; 36:e22259. [PMID: 35294083 DOI: 10.1096/fj.202101789rr] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2021] [Revised: 03/03/2022] [Accepted: 03/07/2022] [Indexed: 11/11/2022]
Abstract
Effects of feeding male rats during spermatogenesis a high-fat, high-sucrose and high-salt diet (HFSSD) over two generations (F0 and F1) on renal outcomes are unknown. Male F0 and F1 rats were fed either control diet (F0CD+F1CD) or HFSSD (F0HD+F1HD). The outcomes were glomerular filtration rate and urinary albumin excretion in F1 and F2 offspring. If both outcomes were altered a morphological and molecular assessment was done. F2 offspring of both sexes had a decreased GFR. However, increased urinary albumin excretion was only observed in female F2 F0HD+F1HD offspring compared with controls. F0HD+F1HD female F2 offspring developed glomerulosclerosis (+31%; p < .01) and increased renal interstitial fibrosis (+52%; p < .05). RNA sequencing followed by qRT-PCR validation showed that four genes (Enpp6, Tmem144, Cd300lf, and Actr3b) were differentially regulated in the kidneys of female F2 offspring. lncRNA XR-146683.1 expression decreased in female F0HD+F1HD F2 offspring and its expression was (r = 0.44, p = .027) correlated with the expression of Tmem144. Methylation of CpG islands in the promoter region of the Cd300lf gene was increased (p = .001) in female F2 F0HD+F1HD offspring compared to controls. Promoter CpG island methylation rate of Cd300lf was inversely correlated with Cd300lf mRNA expression in F2 female offspring (r = -0.483, p = .012). Cd300lf mRNA expression was inversely correlated with the urinary albumin-to-creatinine ratio in female F2 offspring (r = -0.588, p = .005). Paternal pre-conceptional unhealthy diet given for two generations predispose female F2 offspring to chronic kidney disease due to epigenetic alterations of renal gene expression. Particularly, Cd300lf gene promotor methylation was inversely associated with Cd300lf mRNA expression and Cd300lf mRNA expression itself was inversely associated with urinary albumin excretion in F2 female offspring whose fathers and grandfathers got a pre-conceptional unhealthy diet.
Collapse
Affiliation(s)
- Xiaoli Zhang
- Key Laboratory of Study and Discovery of Small Targeted Molecules of Hunan Province, School of Medicine, Hunan Normal University, Changsha, China.,Institute of Pharmacy, Freie Universität Berlin, Berlin, Germany.,Fifth Department of Medicine (Nephrology/Endocrinology/Rheumatology), University Medical Centre Mannheim, University of Heidelberg, Heidelberg, Germany
| | - Ahmed A Hasan
- Institute of Pharmacy, Freie Universität Berlin, Berlin, Germany.,Fifth Department of Medicine (Nephrology/Endocrinology/Rheumatology), University Medical Centre Mannheim, University of Heidelberg, Heidelberg, Germany
| | - Hongwei Wu
- Fifth Department of Medicine (Nephrology/Endocrinology/Rheumatology), University Medical Centre Mannheim, University of Heidelberg, Heidelberg, Germany.,Department of Nephrology, the First Affiliated Hospital of Jinan University, Guangzhou, China
| | - Mohamed M S Gaballa
- Fifth Department of Medicine (Nephrology/Endocrinology/Rheumatology), University Medical Centre Mannheim, University of Heidelberg, Heidelberg, Germany.,Faculty of Veterinary Medicine, Benha University, Toukh, Egypt
| | - Suimin Zeng
- The First Hospital of Traditional Chinese Medicine, Yiyang, China
| | - Liping Liu
- Key Laboratory of Study and Discovery of Small Targeted Molecules of Hunan Province, School of Medicine, Hunan Normal University, Changsha, China
| | - Li Xie
- Key Laboratory of Study and Discovery of Small Targeted Molecules of Hunan Province, School of Medicine, Hunan Normal University, Changsha, China
| | - Tobias Jung
- Department of Molecular Toxicology, German Institute of Human Nutrition Potsdam-Rehbruecke (DIfE), Nuthetal, Germany
| | - Tilman Grune
- Department of Molecular Toxicology, German Institute of Human Nutrition Potsdam-Rehbruecke (DIfE), Nuthetal, Germany.,Department of Physiological Chemistry, Faculty of Chemistry, University of Vienna, Vienna, Austria
| | - Bernhard K Krämer
- Fifth Department of Medicine (Nephrology/Endocrinology/Rheumatology), University Medical Centre Mannheim, University of Heidelberg, Heidelberg, Germany
| | - Burkhard Kleuser
- Institute of Pharmacy, Freie Universität Berlin, Berlin, Germany
| | - Jian Li
- Key Laboratory of Study and Discovery of Small Targeted Molecules of Hunan Province, School of Medicine, Hunan Normal University, Changsha, China
| | - Berthold Hocher
- Key Laboratory of Study and Discovery of Small Targeted Molecules of Hunan Province, School of Medicine, Hunan Normal University, Changsha, China.,Fifth Department of Medicine (Nephrology/Endocrinology/Rheumatology), University Medical Centre Mannheim, University of Heidelberg, Heidelberg, Germany.,Reproductive and Genetic Hospital of CITIC-Xiangya, Changsha, China.,Institute of Medical Diagnostics, IMD Berlin, Berlin, Germany
| |
Collapse
|
11
|
Daoust L, Choi BSY, Lacroix S, Rodrigues Vilela V, Varin TV, Dudonné S, Pilon G, Roy D, Levy E, Desjardins Y, Chassaing B, Marette A. The postnatal window is critical for the development of sex-specific metabolic and gut microbiota outcomes in offspring. Gut Microbes 2022; 13:2004070. [PMID: 34812123 PMCID: PMC8632343 DOI: 10.1080/19490976.2021.2004070] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
The Developmental Origins of Health and Disease (DOHaD) concept has been proposed to explain the influence of environmental conditions during critical developmental stages on the risk of diseases in adulthood. The aim of this study was to compare the impact of the prenatal vs. postnatal environment on the gut microbiota in dams during the preconception, gestation and lactation periods and their consequences on metabolic outcomes in offspring. Here we used the cross-fostering technique, e.g. the exchange of pups following birth to a foster dam, to decipher the metabolic effects of the intrauterine versus postnatal environmental exposures to a polyphenol-rich cranberry extract (CE). CE administration to high-fat high-sucrose (HFHS)-fed dams improved glucose homeostasis and reduced liver steatosis in association with a shift in the maternal gut microbiota composition. Unexpectedly, we observed that the postnatal environment contributed to metabolic outcomes in female offspring, as revealed by adverse effects on adiposity and glucose metabolism, while no effect was observed in male offspring. In addition to the strong sexual dimorphism, we found a significant influence of the nursing mother on the community structure of the gut microbiota based on α-diversity and β-diversity indices in offspring. Gut microbiota transplantation (GMT) experiments partly reproduced the observed phenotype in female offspring. Our data support the concept that the postnatal environment represents a critical window to influence future sex-dependent metabolic outcomes in offspring that are causally but partly linked with gut microbiome alterations.
Collapse
Affiliation(s)
- Laurence Daoust
- Quebec Heart and Lung Institute Research Center, Quebec, Montreal, Canada,Institute of Nutrition and Functional Food, Laval University, Quebec, Montreal, Canada
| | - Béatrice S.-Y. Choi
- Quebec Heart and Lung Institute Research Center, Quebec, Montreal, Canada,Institute of Nutrition and Functional Food, Laval University, Quebec, Montreal, Canada
| | - Sébastien Lacroix
- Institute of Nutrition and Functional Food, Laval University, Quebec, Montreal, Canada,Canada Research Excellence Chair in the Microbiome-Endocannabinoïdome Mediators Axis in Metabolic Health (Cerc-mend), Laval University, Quebec, Montreal, Canada
| | - Vanessa Rodrigues Vilela
- Quebec Heart and Lung Institute Research Center, Quebec, Montreal, Canada,Institute of Nutrition and Functional Food, Laval University, Quebec, Montreal, Canada
| | - Thibault Vincent Varin
- Quebec Heart and Lung Institute Research Center, Quebec, Montreal, Canada,Institute of Nutrition and Functional Food, Laval University, Quebec, Montreal, Canada
| | - Stéphanie Dudonné
- Institute of Nutrition and Functional Food, Laval University, Quebec, Montreal, Canada
| | - Geneviève Pilon
- Quebec Heart and Lung Institute Research Center, Quebec, Montreal, Canada,Institute of Nutrition and Functional Food, Laval University, Quebec, Montreal, Canada
| | - Denis Roy
- Institute of Nutrition and Functional Food, Laval University, Quebec, Montreal, Canada
| | - Emile Levy
- Institute of Nutrition and Functional Food, Laval University, Quebec, Montreal, Canada,Chu Sainte-Justine Research Center, Montreal University, Montreal, Canada
| | - Yves Desjardins
- Institute of Nutrition and Functional Food, Laval University, Quebec, Montreal, Canada
| | - Benoit Chassaing
- Inserm U1016, Team “Mucosal Microbiota in Chronic Inflammatory Diseases”, Cnrs Umr 8104, Université De Paris, Paris, France
| | - André Marette
- Quebec Heart and Lung Institute Research Center, Quebec, Montreal, Canada,Institute of Nutrition and Functional Food, Laval University, Quebec, Montreal, Canada,CONTACT André Marette Cardiology Axis of the Quebec Heart and Lung Institute, Laval University, QuébecG1V 0A6, Canada
| |
Collapse
|
12
|
Khan MA, Kassianos AJ, Hoy WE, Alam AK, Healy HG, Gobe GC. Promoting Plant-Based Therapies for Chronic Kidney Disease. J Evid Based Integr Med 2022; 27:2515690X221079688. [PMID: 35243916 PMCID: PMC8902019 DOI: 10.1177/2515690x221079688] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Chronic kidney disease (CKD) is debilitating, increasing in incidence worldwide, and a financial and social burden on health systems. Kidney failure, the final stage of CKD, is life-threatening if untreated with kidney replacement therapies. Current therapies using commercially-available drugs, such as angiotensin-converting enzyme inhibitors, angiotensin II receptor blockers and calcium channel blockers, generally only delay the progression of CKD. This review article focuses on effective alternative therapies to improve the prevention and treatment of CKD, using plants or plant extracts. Three mechanistic processes that are well-documented in CKD pathogenesis are inflammation, fibrosis, and oxidative stress. Many plants and their extracts are already known to ameliorate kidney dysfunction through antioxidant action, with subsequent benefits on inflammation and fibrosis. In vitro and in vivo experiments using plant-based therapies for pre-clinical research demonstrate some robust therapeutic benefits. In the CKD clinic, combination treatments of plant extracts with conventional therapies that are seen as relatively successful currently may confer additive or synergistic renoprotective effects. Therefore, the aim of recent research is to identify, rigorously test pre-clinically and clinically, and avoid any toxic outcomes to obtain optimal therapeutic benefit from medicinal plants. This review may prove to be a filtering tool to researchers into complementary and alternative medicines to find out the current trends of using plant-based therapies for the treatment of kidney diseases, including CKD.
Collapse
Affiliation(s)
- Muhammad Ali Khan
- NHMRC CKD CRE (CKD.QLD), Univ of Queensland, Brisbane, Australia.,School of Biomedical Sciences, Faculty of Medicine, Univ of Queensland, Australia.,Conjoint Internal Medicine Laboratory, Chemical Pathology, Pathology Queensland, Brisbane, Queensland, Australia.,Kidney Disease Research Collaborative, Princess Alexandra Hospital and Univ of Queensland, Translational Research Institute, Brisbane, Australia.,Department of Pharmacy, Bangabandhu Sheikh Mujibur Rahman Science and Technology University, Bangladesh
| | - Andrew J Kassianos
- Conjoint Internal Medicine Laboratory, Chemical Pathology, Pathology Queensland, Brisbane, Queensland, Australia.,Centre for Chronic Disease, Faculty of Medicine, Univ of Queensland, Brisbane, Australia.,Kidney Health Service, Royal Brisbane and Women's Hospital, Brisbane, Australia.,IHBI, Queensland Univ of Technology, Brisbane, Australia
| | - Wendy E Hoy
- NHMRC CKD CRE (CKD.QLD), Univ of Queensland, Brisbane, Australia.,Centre for Chronic Disease, Faculty of Medicine, Univ of Queensland, Brisbane, Australia
| | | | - Helen G Healy
- NHMRC CKD CRE (CKD.QLD), Univ of Queensland, Brisbane, Australia.,Conjoint Internal Medicine Laboratory, Chemical Pathology, Pathology Queensland, Brisbane, Queensland, Australia.,Centre for Chronic Disease, Faculty of Medicine, Univ of Queensland, Brisbane, Australia.,Kidney Health Service, Royal Brisbane and Women's Hospital, Brisbane, Australia
| | - Glenda C Gobe
- NHMRC CKD CRE (CKD.QLD), Univ of Queensland, Brisbane, Australia.,School of Biomedical Sciences, Faculty of Medicine, Univ of Queensland, Australia.,Kidney Disease Research Collaborative, Princess Alexandra Hospital and Univ of Queensland, Translational Research Institute, Brisbane, Australia
| |
Collapse
|
13
|
Fortunato IM, dos Santos TW, Ferraz LFC, Santos JC, Ribeiro ML. Effect of Polyphenols Intake on Obesity-Induced Maternal Programming. Nutrients 2021; 13:nu13072390. [PMID: 34371900 PMCID: PMC8308680 DOI: 10.3390/nu13072390] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2021] [Revised: 06/30/2021] [Accepted: 07/03/2021] [Indexed: 12/12/2022] Open
Abstract
Excess caloric intake and body fat accumulation lead to obesity, a complex chronic disease that represents a significant public health problem due to the health-related risk factors. There is growing evidence showing that maternal obesity can program the offspring, which influences neonatal phenotype and predispose offspring to metabolic disorders such as obesity. This increased risk may also be epigenetically transmitted across generations. Thus, there is an imperative need to find effective reprogramming approaches in order to resume normal fetal development. Polyphenols are bioactive compounds found in vegetables and fruits that exert its anti-obesity effect through its powerful anti-oxidant and anti-inflammatory activities. Polyphenol supplementation has been proven to counteract the prejudicial effects of maternal obesity programming on progeny. Indeed, some polyphenols can cross the placenta and protect the fetal predisposition against obesity. The present review summarizes the effects of dietary polyphenols on obesity-induced maternal reprogramming as an offspring anti-obesity approach.
Collapse
Affiliation(s)
- Isabela Monique Fortunato
- Post Graduate Program in Health Science, Universidade São Francisco (USF), Bragança Paulista 12916-900, SP, Brazil; (I.M.F.); (T.W.d.S.); (L.F.C.F.)
| | - Tanila Wood dos Santos
- Post Graduate Program in Health Science, Universidade São Francisco (USF), Bragança Paulista 12916-900, SP, Brazil; (I.M.F.); (T.W.d.S.); (L.F.C.F.)
| | - Lucio Fábio Caldas Ferraz
- Post Graduate Program in Health Science, Universidade São Francisco (USF), Bragança Paulista 12916-900, SP, Brazil; (I.M.F.); (T.W.d.S.); (L.F.C.F.)
| | - Juliana Carvalho Santos
- Lymphoma Translational Group, Josep Carreras Leukemia Research Institute (IJC), 08916 Badalona, Spain
- Correspondence: (J.C.S.); (M.L.R.)
| | - Marcelo Lima Ribeiro
- Post Graduate Program in Health Science, Universidade São Francisco (USF), Bragança Paulista 12916-900, SP, Brazil; (I.M.F.); (T.W.d.S.); (L.F.C.F.)
- Correspondence: (J.C.S.); (M.L.R.)
| |
Collapse
|
14
|
Kuropka P, Zwyrzykowska-Wodzińska A, Kupczyński R, Włodarczyk M, Szumny A, Nowaczyk RM. The Effect of Ilex × meserveae S. Y. Hu Extract and Its Fractions on Renal Morphology in Rats Fed with Normal and High-Cholesterol Diet. Foods 2021; 10:foods10040818. [PMID: 33918905 PMCID: PMC8069847 DOI: 10.3390/foods10040818] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2021] [Revised: 04/01/2021] [Accepted: 04/06/2021] [Indexed: 01/21/2023] Open
Abstract
Therapeutic properties of Ilex species are widely used in natural medicine. Ilex × meserveae may become a potential substitute for Ilex paraguariensis (Yerba Mate). As a part of the preliminary safety verification of this European Ilex hybrid vs. Yerba Mate, an eight-week study concerning the impact of regular administration of leaves of both species on kidneys was conducted. The standard water infusion and three dominant fractions of Ilex × meserveae leaves’ constituents (polyphenols, saponins and less polar terpenoids) were separately tried on 96 male Wistar rats divided into 8-member groups. Animals were divided into two basic nutritional groups: the first one was rats fed standard feed and the second on was rats fed with high-cholesterol diet (20 g of cholesterol per kg of standard feed). Postmortem morphometric evaluation of stained kidney samples concerned the filtration barrier elements, which are crucial in proper diuresis. The results showed that saponins present in the hydroalcoholic dry extract (administered in a dose of 10 mg/kg of body weight/day) as well as in water infusions (1:20) from Ilex × meserveae and Ilex paraguariensis do not demonstrate nephrotoxicity but conversely, have a protective role on kidney status in animals fed with a normal diet and in a high-cholesterol diet.
Collapse
Affiliation(s)
- Piotr Kuropka
- Department of Biostructure and Animal Physiology, Division of Histology and Embryology, Wroclaw University of Environmental and Life Sciences, Norwida 25, 50-375 Wroclaw, Poland;
| | - Anna Zwyrzykowska-Wodzińska
- Department of Environment Hygiene and Animal Welfare, Wroclaw University of Environmental and Life Sciences, Chelmońskiego 38C, 51-631 Wroclaw, Poland; (A.Z.-W.); (R.K.)
| | - Robert Kupczyński
- Department of Environment Hygiene and Animal Welfare, Wroclaw University of Environmental and Life Sciences, Chelmońskiego 38C, 51-631 Wroclaw, Poland; (A.Z.-W.); (R.K.)
| | - Maciej Włodarczyk
- Department of Pharmacognosy and Herbal Medicines, Faculty of Pharmacy, Wroclaw Medical University, Borowska 211a, 50-556 Wroclaw, Poland;
| | - Antoni Szumny
- Department of Chemistry, Wroclaw University of Environmental and Life Sciences, Norwida 25, 50-375 Wroclaw, Poland;
| | - Renata M. Nowaczyk
- Department of Biostructure and Animal Physiology, Division of Histology and Embryology, Wroclaw University of Environmental and Life Sciences, Norwida 25, 50-375 Wroclaw, Poland;
- Correspondence:
| |
Collapse
|
15
|
Impact of Dietary Flavanols on Microbiota, Immunity and Inflammation in Metabolic Diseases. Nutrients 2021; 13:nu13030850. [PMID: 33807621 PMCID: PMC7998994 DOI: 10.3390/nu13030850] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2021] [Revised: 02/26/2021] [Accepted: 03/01/2021] [Indexed: 02/07/2023] Open
Abstract
Flavanols are natural occurring polyphenols abundant in fruits and vegetables to which have been attributed to beneficial effects on health, and also against metabolic diseases, such as diabetes, obesity and metabolic syndrome. These positive properties have been associated to the modulation of different molecular pathways, and importantly, to the regulation of immunological reactions (pro-inflammatory cytokines, chemokines, adhesion molecules, nuclear factor-κB [NF-κB], inducible enzymes), and the activity of cells of the immune system. In addition, flavanols can modulate the composition and function of gut microbiome in a prebiotic-like manner, resulting in the positive regulation of metabolic pathways and immune responses, and reduction of low-grade chronic inflammation. Moreover, the biotransformation of flavanols by gut bacteria increases their bioavailability generating a number of metabolites with potential to affect human metabolism, including during metabolic diseases. However, the exact mechanisms by which flavanols act on the microbiota and immune system to influence health and disease remain unclear, especially in humans where these connections have been scarcely explored. This review seeks to summarize recent advances on the complex interaction of flavanols with gut microbiota, immunity and inflammation focus on metabolic diseases.
Collapse
|
16
|
Intrauterine growth restriction: Clinical consequences on health and disease at adulthood. Reprod Toxicol 2021; 99:168-176. [DOI: 10.1016/j.reprotox.2020.10.005] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2020] [Revised: 10/01/2020] [Accepted: 10/04/2020] [Indexed: 02/06/2023]
|
17
|
Menchetti L, Curone G, Andoni E, Barbato O, Troisi A, Fioretti B, Polisca A, Codini M, Canali C, Vigo D, Brecchia G. Impact of Goji Berries ( Lycium barbarum) Supplementation on the Energy Homeostasis of Rabbit Does: Uni- and Multivariate Approach. Animals (Basel) 2020; 10:ani10112000. [PMID: 33143190 PMCID: PMC7693689 DOI: 10.3390/ani10112000] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2020] [Revised: 10/21/2020] [Accepted: 10/28/2020] [Indexed: 12/16/2022] Open
Abstract
Simple Summary The energy balance during the reproduction cycle is a problematic issue for livestock species because it has consequences not only on animal welfare but also on the profitability of the farm. The adoption of new nutritional strategies could improve both of these aspects. In the present study, the supplementation with goji berries was proposed and evaluated on the rabbit, which is both a livestock animal and a useful animal model. Goji berry is the fruit of Lycium barbarum that is a natural resource made up of several compounds with biological activities and their consumption could be beneficial for the health and the general well-being of humans and animals. Its effect on several hormones and metabolites involved on energy balance of rabbit doe were evaluated by using both uni- and multivariate approach. Our finding, in addition to describing the intricate relationships between body conditions, hormones and metabolites during pregnancy and lactation, suggested that the supplementation with goji berry in the rabbit diet at low percentage could improve some aspects of energy metabolism and, in particular, doe’s insulin sensitivity. Conversely, the intake of high doses of goji raises concerns due to the risk of excessive fattening and worsening of insulin resistance. Abstract This study examined the effects of goji berries dietary supplementation on the energetic metabolism of doe. Thirty days before artificial insemination, 75 New Zealand White does were assigned to three different diets: commercial standard diet (C) and supplemented with 1% (LG) and 3% (HG) of goji berries, respectively. Body conditions, hormones and metabolites were monitored until weaning. Body weight and BCS were higher in HG than C (p < 0.05). LG showed lower T3/T4 ratio and cortisol concentrations (p < 0.05) and tended to have lower indices of insulin resistances (p < 0.1) than HG. Compared to control, leptin was higher in HG at AI (p < 0.01) and in LG during lactation (p < 0.05). Two principal components were extracted by multivariate analysis describing the relationships between (1) non-esterified fatty acids, insulin and glucose levels, and (2) body conditions and leptin metabolism. The first component highlighted the energy deficit and the insulin resistance of the does during pregnancy and lactation. The second one showed that leptin, body weight and Body Condition Score (BCS) enhance as levels of goji berries in the diet increase. Thus, the effects of goji supplementation are dose-dependent: an improvement on energy metabolism was achieved with a low-dose while the highest dose could determine excessive fattening and insulin resistance in does.
Collapse
Affiliation(s)
- Laura Menchetti
- Department of Agricultural and Agri-food Sciences and Technologies, University of Bologna, Viale Fanin 46, 40138 Bologna, Italy;
- Department of Veterinary Medicine, University of Perugia, Via San Costanzo 4, 06126 Perugia, Italy; (A.P.); (C.C.)
| | - Giulio Curone
- Department of Veterinary Medicine, University of Milano, Via dell’Università 6, 26900 Lodi, Italy; (G.C.); (D.V.)
| | - Egon Andoni
- Faculty of Veterinary Medicine, Agricultural University of Albania, Rr Paisi Vodica, Koder, 1029 Kamez, Albania;
| | - Olimpia Barbato
- Department of Veterinary Medicine, University of Perugia, Via San Costanzo 4, 06126 Perugia, Italy; (A.P.); (C.C.)
- Correspondence: (O.B.); (G.B.)
| | - Alessandro Troisi
- School of Biosciences and Veterinary Medicine, University of Camerino, Via 9 Circonvallazione 93/95-62024 Matelica, Italy;
| | - Bernard Fioretti
- Department of Chemistry, Biology and Biotechnologies, University of Perugia, Via Elce di Sotto 8, 06123 Perugia, Italy;
| | - Angela Polisca
- Department of Veterinary Medicine, University of Perugia, Via San Costanzo 4, 06126 Perugia, Italy; (A.P.); (C.C.)
| | - Michela Codini
- Department of Pharmaceutical Sciences, University of Perugia, Via A. Fabretti 48, 06123 Perugia, Italy;
| | - Claudio Canali
- Department of Veterinary Medicine, University of Perugia, Via San Costanzo 4, 06126 Perugia, Italy; (A.P.); (C.C.)
| | - Daniele Vigo
- Department of Veterinary Medicine, University of Milano, Via dell’Università 6, 26900 Lodi, Italy; (G.C.); (D.V.)
| | - Gabriele Brecchia
- Department of Veterinary Medicine, University of Milano, Via dell’Università 6, 26900 Lodi, Italy; (G.C.); (D.V.)
- Correspondence: (O.B.); (G.B.)
| |
Collapse
|
18
|
Yamasaki S, Kimura G, Koizumi K, Dai N, Ketema RM, Tomihara T, Ueno Y, Ohno Y, Sato S, Kurasaki M, Hosokawa T, Saito T. Maternal green tea extract intake during lactation attenuates hepatic lipid accumulation in adult male rats exposed to a continuous high-fat diet from the foetal period. Food Nutr Res 2020; 64:5231. [PMID: 34908919 PMCID: PMC8634344 DOI: 10.29219/fnr.v64.5231] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2020] [Revised: 06/18/2020] [Accepted: 06/24/2020] [Indexed: 11/30/2022] Open
Abstract
Background Maternal lipid intake in the early postnatal period has a long-term effect on the possibility of fatty liver formation in children; besides, the importance of lipid consumption during lactation for children’s health has been suggested. Green tea extract (GTE) contains abundant catechins, and it has been reported to improve lipid metabolism and prevent fatty liver. Objective The aim of this study was to examine the effects of maternal GTE intake during lactation on hepatic lipid accumulation in adult male rats exposed to a continuous high-fat (HF) diet from the foetal period. Methods Pregnant Wistar rats received diets containing 13% (control-fat, CON) or 45% (high-fat, HF) fat. CON-fed mothers received the same diet during lactation, whereas HF-fed mothers received either HF diet alone or HF diet supplemented with 0.24% GTE. At weaning, male offspring were divided into three groups, i.e. CON/CON/CON, HF/HF/HF (HF-offspring) or HF/HF+GTE/HF (GTE-offspring), and were fed until 51 weeks. Results A significant hepatic triglyceride (Tg) accumulation was observed in the HF-offspring when compared with the other offspring. This is presumed to be caused by the promotion of Tg synthesis derived from exogenous fatty acid due to a significant increase in diacylglycerol O-acyltransferase 1 and a decrease in Tg expenditure caused by decreasing microsomal triglyceride transfer protein (MTTP) and long-chain acyl-CoA dehydrogenase. On the other hand, attenuated hepatic Tg accumulation was observed in the GTE-offspring. The levels of the hepatic lipid metabolism-related enzymes were improved to the same level as the CON-offspring, and particularly, MTTP was significantly increased as compared with the HF-offspring. Conclusion This study indicates the potential protective effects of maternal GTE intake during lactation on HF diet-induced hepatic lipid accumulation in adult male rat offspring and the possible underlying mechanisms.
Collapse
Affiliation(s)
- Shojiro Yamasaki
- Graduate School of Health Sciences, Hokkaido University, Sapporo, Japan
| | - Goh Kimura
- Graduate School of Health Sciences, Hokkaido University, Sapporo, Japan
| | - Kazunari Koizumi
- Graduate School of Health Sciences, Hokkaido University, Sapporo, Japan
| | - Ning Dai
- Graduate School of Health Sciences, Hokkaido University, Sapporo, Japan
| | | | - Tomomi Tomihara
- Graduate School of Health Sciences, Hokkaido University, Sapporo, Japan
| | - Yukako Ueno
- Graduate School of Health Sciences, Hokkaido University, Sapporo, Japan
| | - Yuki Ohno
- Graduate School of Health Sciences, Hokkaido University, Sapporo, Japan
| | - Shin Sato
- Department of Nutrition, Aomori University of Health and Welfare, Aomori, Japan
| | - Masaaki Kurasaki
- Faculty of Environmental Earth Science, Hokkaido University, Sapporo, Japan
| | - Toshiyuki Hosokawa
- Institute for the Advancement of Higher Education, Hokkaido University, Sapporo, Japan
| | - Takeshi Saito
- Faculty of Health Sciences, Hokkaido University, Sapporo, Japan
| |
Collapse
|
19
|
Hou G, Jin M, Ye Z, Zhang X, Huang Q, Ye M. Ameliorate effects of soybean soluble polysaccharide on adenine-induced chronic renal failure in mice. Int J Biol Macromol 2020; 149:158-164. [PMID: 31931056 DOI: 10.1016/j.ijbiomac.2020.01.095] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2019] [Revised: 01/08/2020] [Accepted: 01/09/2020] [Indexed: 01/03/2023]
Abstract
In the present study, the kidney protection effects of soluble soybean polysaccharide (SSPS) were evaluated. To address the issues, a mice model of Chronic renal failure (CRF) was established by gavage 0.2% (w/w) adenine for 3 weeks. In vivo results showed that SSPS could change the concentrations of blood urea nitrogen (BUN), creatinine (CRE), total protein (TP) and albumin (ALB), thereby affecting kidney function. In addition, Masson histopathology analysis indicated that SSPS could decrease the area of collagen fiber in the kidney tissues of CRF mice. Moreover, the results of mRNA expression and western experiment suggested that SSPS treatment could increase the expression of transforming growth factor-β (TGF-β), Smad3 and P-Smad3, while reduce the expression of α smooth muscle actin (α-SMA) when compared with the model group. These results indicated that SSPS potentially improve kidney function through TGF/Smad pathway in CRF mice.
Collapse
Affiliation(s)
- Guohua Hou
- Microbial Resources and Application Laboratory, School of Food and Biological Engineering, Hefei University of Technology, Hefei 230009, China
| | - Mingzhi Jin
- Microbial Resources and Application Laboratory, School of Food and Biological Engineering, Hefei University of Technology, Hefei 230009, China
| | - Ziyang Ye
- Microbial Resources and Application Laboratory, School of Food and Biological Engineering, Hefei University of Technology, Hefei 230009, China
| | - Xinmiao Zhang
- Microbial Resources and Application Laboratory, School of Food and Biological Engineering, Hefei University of Technology, Hefei 230009, China
| | - Qianli Huang
- Microbial Resources and Application Laboratory, School of Food and Biological Engineering, Hefei University of Technology, Hefei 230009, China; School of Resources and Environmental Engineering, Hefei University of Technology, Hefei 230009, China.
| | - Ming Ye
- Microbial Resources and Application Laboratory, School of Food and Biological Engineering, Hefei University of Technology, Hefei 230009, China.
| |
Collapse
|
20
|
Song Y, Tajima H, Sato T, Ito K, Okuno T, Kurasaki M. Zweigelt and Niagara skin extracts suppress cyclobutane pyrimidine dimer formation due to UV irradiation in NHEK cells: first attempt. JOURNAL OF ENVIRONMENTAL SCIENCE AND HEALTH. PART. B, PESTICIDES, FOOD CONTAMINANTS, AND AGRICULTURAL WASTES 2020; 55:593-598. [PMID: 32241220 DOI: 10.1080/03601234.2020.1745544] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
The grape skins after pressing the juice are a major problem for winery. However, because it contains a large amount of polyphenols, development of effective usages are expected to construct sustainable waste use. In this study, we examined whether grape skin extract is effective for recovery of DNA damage caused by UV irradiation. Extract from Zweigelt and Niagara skin was prepared by methanol, and UV irradiation was performed at 10 mJ/cm2 (250 nm) and 15 mJ/cm2 (290 nm) using human normal skin cells. As results, the decreased cell viability due to UV irradiation was improved by adding Niagara or Zweigelt skin extract. On the other hand, cyclobutane pyrimidine dimer production due to UV irradiation decreased significantly by Niagara or Zweigelt extract. In addition, the effects of grape skin extracts on the expression of sirtuin gene were also examined.
Collapse
Affiliation(s)
- Yutong Song
- Environmental Adaptation Science, Graduate School of Environmental Science, Hokkaido University, Sapporo, Japan
| | | | | | - Keizo Ito
- Sapporo Bio Factory Co., Ltd, Sapporo, Japan
| | - Tsutomu Okuno
- Department of Electrical Engineering and Computer Science, Graduate School of System Design, Tokyo Metropolitan University, Hino, Japan
| | - Masaaki Kurasaki
- Environmental Adaptation Science, Graduate School of Environmental Science, Hokkaido University, Sapporo, Japan
- Environmental Adaptation Science, Faculty of Environmental Earth Science, Hokkaido University, Sapporo, Japan
| |
Collapse
|
21
|
Ramírez-Alarcón K, Sánchez-Agurto Á, Lamperti L, Martorell M. Epigenetics, Maternal Diet and Metabolic Programming. ACTA ACUST UNITED AC 2019. [DOI: 10.2174/1874196701907010045] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Background:
The maternal environment influences embryonic and fetal life. Nutritional deficits or excesses alter the trajectory of fetus/offspring’s development. The concept of “developmental programming” and “developmental origins of health and disease” consists of the idea that maternal diet may remodel the genome and lead to epigenetic changes. These changes are induced during early life, permanently altering the phenotype in the posterior adult stage, favoring the development of metabolic diseases such as obesity, dyslipidemia, hypertension, hyperinsulinemia, and metabolic syndrome. In this review, it is aimed to overview epigenetics, maternal diet and metabolic programming factors and determine which of these might affect future generations.
Scope and Approach:
Nutrients interfere with the epigenome by influencing the supply and use of methyl groups through DNA transmethylation and demethylation mechanisms. They also influence the remodeling of chromatin and arginine or lysine residues at the N-terminal tails of histone, thus altering miRNA expression. Fats, proteins, B vitamins and folates act as important cofactors in methylation processes. The metabolism of carbon in the methyl groups of choline, folic acid and methionine to S-Adenosyl Methionine (SAM), acts as methyl donors to methyl DNA, RNA, and proteins. B-complex vitamins are important since they act as coenzymes during this process.
Key Findings and Conclusion:
Nutrients, during pregnancy, potentially influence susceptibility to diseases in adulthood. Additionally, the deficit or excess of nutrients alter the epigenetic machinery, affecting genes and influencing the genome of the offspring and therefore, predisposing the development of chronic diseases in adults.
Collapse
|
22
|
Silva LBAR, Pinheiro-Castro N, Novaes GM, Pascoal GDFL, Ong TP. Bioactive food compounds, epigenetics and chronic disease prevention: Focus on early-life interventions with polyphenols. Food Res Int 2019; 125:108646. [PMID: 31554120 DOI: 10.1016/j.foodres.2019.108646] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2019] [Revised: 08/20/2019] [Accepted: 08/23/2019] [Indexed: 12/14/2022]
|
23
|
Yamasaki S, Tomihara T, Kimura G, Ueno Y, Ketema RM, Sato S, Mukai Y, Sikder T, Kurasaki M, Hosokawa T, Saito T. Long-term effects of maternal resveratrol intake during lactation on cholesterol metabolism in male rat offspring. Int J Food Sci Nutr 2019; 71:226-234. [PMID: 31290360 DOI: 10.1080/09637486.2019.1639638] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
Resveratrol (RSV) can protect against non-communicable diseases by improving cholesterol metabolism. However, it is unclear that effects of maternal RSV intake on health of adult offspring. In this study, we examined effects of maternal RSV intake during lactation on cholesterol metabolism in adult male rat offspring. Female Wistar rats were fed a control diet (CON) supplemented with or without RSV (20 mg/kg body weight/day) during their lactation period. Male offspring were weaned onto a standard diet and maintained on this diet for 36 weeks. As a result, plasma cholesterol level significantly decreased in RSV offspring compared to CON offspring. Furthermore, a decrease in hepatic 3-hydroxy-3-methylglutaryl-CoA reductase level and an increase in hepatic LDL-receptor level were observed in the RSV offspring. These results indicate that maternal RSV intake causes long-term decrease in plasma cholesterol level in the offspring through suppression of hepatic cholesterol biosynthesis and promotion of hepatic cholesterol uptake.
Collapse
Affiliation(s)
- Shojiro Yamasaki
- Graduate School of Health Sciences, Hokkaido University, Sapporo, Japan
| | - Tomomi Tomihara
- Graduate School of Health Sciences, Hokkaido University, Sapporo, Japan
| | - Goh Kimura
- Graduate School of Health Sciences, Hokkaido University, Sapporo, Japan
| | - Yukako Ueno
- Graduate School of Health Sciences, Hokkaido University, Sapporo, Japan
| | | | - Shin Sato
- Department of Nutrition, Aomori University of Health and Welfare, Aomori, Japan
| | - Yuuka Mukai
- Faculty of Health and Social Work, Kanagawa University of Human Services, Yokosuka, Japan
| | - Tajuddin Sikder
- Department of Public Health and Informatics, Jahangirnagar University, Dhaka, Bangladesh
| | - Masaaki Kurasaki
- Faculty of Environmental Earth Science, Hokkaido University, Sapporo, Japan
| | - Toshiyuki Hosokawa
- Institute for the Advancement of Higher Education, Hokkaido University, Sapporo, Japan
| | - Takeshi Saito
- Graduate School of Health Sciences, Hokkaido University, Sapporo, Japan.,Faculty of Health Sciences, Hokkaido University, Sapporo, Japan
| |
Collapse
|
24
|
Cacabelos R, Carril JC, Sanmartín A, Cacabelos P. Pharmacoepigenetic Processors: Epigenetic Drugs, Drug Resistance, Toxicoepigenetics, and Nutriepigenetics. PHARMACOEPIGENETICS 2019:191-424. [DOI: 10.1016/b978-0-12-813939-4.00006-1] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2025]
|