1
|
Liu Z, Tang R, Liu J, Zhang Z, Li Y, Zhao R. Epicatechin and β-glucan from whole highland barley grain ameliorates hyperlipidemia associated with attenuating intestinal barrier dysfunction and modulating gut microbiota in high-fat-diet-fed mice. Int J Biol Macromol 2024; 278:134917. [PMID: 39173794 DOI: 10.1016/j.ijbiomac.2024.134917] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2024] [Revised: 08/11/2024] [Accepted: 08/19/2024] [Indexed: 08/24/2024]
Abstract
Hyperlipidemia is associated with intestinal barrier dysfunction and gut microbiota dysbiosis. Here, we aimed at investigating whether epicatechin (EC) and β-glucan (BG) from whole highland barley grain alleviated hyperlipidemia associated with ameliorating intestinal barrier dysfunction and modulating gut microbiota dysbiosis in high-fat-diet-induced mice. It was observed that EC and BG significantly improved serum lipid disorders and up-regulated expression of PPARα protein and genes. Supplementation of EC and BG attenuated intestinal barrier dysfunction via promoting goblet cells proliferation and tight junctions. Supplementation of EC and BG prevented high fat diet-induced gut microbiota dysbiosis via modulating the relative abundance of Ruminococcaceae, Lactobacillus, Desulfovibrio, Lactococcus, Allobaculum and Akkermansia, and the improving of short chain fatty acid contents. Notably, combination of EC and BG showed synergistic effect on activating PPARα expression, improving colonic physical barrier dysfunction and the relative abundance of Lactobacillus and Desulfovibrio, which may help explain the effect of whole grain highland barley on alleviating hyperlipidemia.
Collapse
Affiliation(s)
- Zehua Liu
- College of Food Science and Technology, Henan University of Technology, Zhengzhou, Henan 450001, China; Food Laboratory of Zhongyuan, Luohe, Henan 462300, China.
| | - Ruoxin Tang
- College of Food Science and Technology, Henan University of Technology, Zhengzhou, Henan 450001, China
| | - Jianshen Liu
- College of Food Science and Technology, Henan University of Technology, Zhengzhou, Henan 450001, China
| | - Zhaowan Zhang
- College of Food Science and Technology, Henan University of Technology, Zhengzhou, Henan 450001, China
| | - Yuanyuan Li
- Academy of Agricultural Planning and Engineering, Ministry of Agriculture and Rural Affairs, Beijing 100125, China.
| | - Renyong Zhao
- College of Food Science and Technology, Henan University of Technology, Zhengzhou, Henan 450001, China; Food Laboratory of Zhongyuan, Luohe, Henan 462300, China
| |
Collapse
|
2
|
Wang Y, Liu J, Xiao H, Sun H, Hu H, Ma X, Zhang A, Zhou H. Dietary intakes of vitamin D promote growth performance and disease resistance in juvenile grass carp (Ctenopharyngodon idella). FISH PHYSIOLOGY AND BIOCHEMISTRY 2024; 50:1189-1203. [PMID: 38427282 DOI: 10.1007/s10695-024-01330-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Accepted: 02/25/2024] [Indexed: 03/02/2024]
Abstract
Vitamin D3 (VD3) is an essential nutrient for fish and participates in a variety of physiological activities. Notably, both insufficient and excessive supplementation of VD3 severely impede fish growth, and the requirements of VD3 for fish vary considerably in different species and growth periods. The present study aimed to evaluate the appropriate requirements of VD3 for juvenile grass carp (Ctenopharyngodon idella) according to growth performance and disease prevention capacity. In this study, diets containing six supplemental levels of VD3 (0, 300, 600, 1200, 2400, and 4800 IU/kg diet) were formulated to investigate the effect(s) of VD3 on the growth performance, antioxidant enzyme activities, and antimicrobial ability in juvenile grass carp. Compared with the VD3 deficiency group (0 IU/kg), the supplementation of 300-2400 IU/kg VD3 significantly enhanced growth performance and increased antioxidant enzyme activities in the fish liver. Moreover, dietary supplementation of VD3 significantly improved the intestinal health by manipulating the composition of intestinal microbiota in juvenile grass carp. In agreement with this notion, the mortality of juvenile grass carp fed with dietary VD3 was much lower than that in VD3 deficient group upon infection with Aeromonas hydrophila. Meanwhile, dietary supplementation of 300-2400 IU/kg VD3 reduced bacterial load in the spleen and head kidney of the infected fish, and 1200 IU/kg VD3 supplementation could decrease enteritis morbidity and increase lysozyme activities in the intestine. These findings strengthened the essential role of dietary VD3 in managing fish growth and antimicrobial capacity. Additionally, based on weight gain ratio and lysozyme activities, the appropriate VD3 requirements for juvenile grass carp were estimated to be 1994.80 and 2321.80 IU/kg diet, respectively.
Collapse
Affiliation(s)
- Yueyue Wang
- School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, 610054, People's Republic of China
| | - Jiaxi Liu
- School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, 610054, People's Republic of China
| | - Haoran Xiao
- School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, 610054, People's Republic of China
| | - Hao Sun
- School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, 610054, People's Republic of China
| | - Hengyi Hu
- School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, 610054, People's Republic of China
| | - Xiaoyu Ma
- School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, 610054, People's Republic of China
| | - Anying Zhang
- School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, 610054, People's Republic of China
| | - Hong Zhou
- School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, 610054, People's Republic of China.
| |
Collapse
|
3
|
Zhang Y, Sun Y, Liu Y, Liu J, Sun J, Bai Y, Fan B, Lu C, Wang F. Polygonum sibiricum polysaccharides alleviate chronic unpredictable mild stress-induced depressive-like behaviors by regulating the gut microbiota composition and SCFAs levels. J Funct Foods 2023. [DOI: 10.1016/j.jff.2023.105411] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
|
4
|
Li Y, Li L, Tian J, Zheng F, Liao H, Zhao Z, Chen Y, Pang J, Wu T. Insoluble Fiber in Barley Leaf Attenuates Hyperuricemic Nephropathy by Modulating Gut Microbiota and Short-Chain Fatty Acids. Foods 2022; 11:3482. [PMID: 36360095 PMCID: PMC9656210 DOI: 10.3390/foods11213482] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2022] [Revised: 10/19/2022] [Accepted: 10/29/2022] [Indexed: 08/12/2023] Open
Abstract
Hyperuricemia (HUA), characterized by abnormal serum uric acid (UA) levels, is recognized as an important risk factor for hyperuricemic nephropathy (HN), which is strongly linked to gut microbiota. This study investigated the protective effects and regulatory mechanisms of insoluble fiber from barley leaves (BL) against HN, induced by adenine (Ad) and potassium oxonate (PO). The results showed that BL dramatically reduced the levels of serum UA and creatinine (CR) and alleviated renal injury and fibrosis. Moreover, BL modulated oxidative stress and downregulated the expression of urate transporter 1 (URAT1) and glucose transporter 9 (GLUT9) in the kidneys of mice with HN. In addition, the 16S rRNA sequence data showed that BL also increased the relative abundance of short-chain fatty acids (SCFAs)-producing bacteria, including Bacteroides, Alloprevotella, and Eisenbergiella. Besides, BL treatment also increased SCFAs levels. Of interest, the application of SCFAs in hyperuricemic mice effectively reduced their serum UA. Furthermore, SCFAs dose-dependently inhibited URAT1 and GLUT9 in vitro and potently interacted with URAT1 and GLUT9 in the docking analysis. When taken together, our results indicate that BL and its metabolite SCFAs may be potential candidates for relieving HUA or HN.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | - Ting Wu
- Guangdong Provincial Key Laboratory of Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou 510515, China
| |
Collapse
|
5
|
Yang H, Heirbaut S, Jing X, De Neve N, Vandaele L, Jeyanathan J, Fievez V. Susceptibility of dairy cows to subacute ruminal acidosis is reflected in both prepartum and postpartum bacteria as well as odd- and branched-chain fatty acids in feces. J Anim Sci Biotechnol 2022; 13:87. [PMID: 36195941 PMCID: PMC9533591 DOI: 10.1186/s40104-022-00738-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2022] [Accepted: 06/01/2022] [Indexed: 11/10/2022] Open
Abstract
Background The transition period is a challenging period for high-producing dairy cattle. Cows in early lactation are considered as a group at risk of subacute ruminal acidosis (SARA). Variability in SARA susceptibility in early lactation is hypothesized to be reflected in fecal characteristics such as fecal pH, dry matter content, volatile and odd- and branched-chain fatty acids (VFA and OBCFA, respectively), as well as fecal microbiota. This was investigated with 38 periparturient dairy cows, which were classified into four groups differing in median and mean time of reticular pH below 6 as well as area under the curve of pH below 6. Furthermore, we investigated whether fecal differences were already obvious during a period prior to the SARA risk (prepartum). Results Variation in reticular pH during a 3-week postpartum period was not associated with differences in fecal pH and VFA concentration. In the postpartum period, the copy number of fecal bacteria and methanogens of unsusceptible (UN) cows was higher than moderately susceptible (MS) or susceptible (SU) cows, while the genera Ruminococcus and Prevotellacea_UCG-001 were proportionally less abundant in UN compared with SU cows. Nevertheless, only a minor reduction was observed in iso-BCFA proportions in fecal fatty acids of SU cows, particularly iso-C15:0 and iso-C16:0, compared with UN cows. Consistent with the bacterial changes postpartum, the lower abundance of Ruminococcus was already observed in the prepartum fecal bacterial communities of UN cows, whereas Lachnospiraceae_UCG-001 was increased. Nevertheless, no differences were observed in the prepartum fecal VFA or OBCFA profiles among the groups. Prepartum fecal bacterial communities of cows were clustered into two distinct clusters with 70% of the SU cows belonging to cluster 1, in which they represented 60% of the animals. Conclusions Inter-animal variation in postpartum SARA susceptibility was reflected in post- and prepartum fecal bacterial communities. Differences in prepartum fecal bacterial communities could alert for susceptibility to develop SARA postpartum. Our results generated knowledge on the association between fecal bacteria and SARA development which could be further explored in a prevention strategy. Graphical abstract ![]()
Supplementary Information The online version contains supplementary material available at 10.1186/s40104-022-00738-8.
Collapse
Affiliation(s)
- Hong Yang
- Laboratory for Animal Nutrition and Animal Product Quality, Department of Animal Sciences and Aquatic Ecology, Faculty of Bioscience Engineering, Ghent University, Campus Coupure, building F, 1st floor, Coupure Links 653, 9000, Ghent, Belgium
| | - Stijn Heirbaut
- Laboratory for Animal Nutrition and Animal Product Quality, Department of Animal Sciences and Aquatic Ecology, Faculty of Bioscience Engineering, Ghent University, Campus Coupure, building F, 1st floor, Coupure Links 653, 9000, Ghent, Belgium
| | - Xiaoping Jing
- Laboratory for Animal Nutrition and Animal Product Quality, Department of Animal Sciences and Aquatic Ecology, Faculty of Bioscience Engineering, Ghent University, Campus Coupure, building F, 1st floor, Coupure Links 653, 9000, Ghent, Belgium.,State Key Laboratory of Grassland and Agro-Ecosystems, International Centre for Tibetan Plateau Ecosystem Management, School of Life Sciences, Lanzhou University, Lanzhou, 730000, China
| | - Nympha De Neve
- Laboratory for Animal Nutrition and Animal Product Quality, Department of Animal Sciences and Aquatic Ecology, Faculty of Bioscience Engineering, Ghent University, Campus Coupure, building F, 1st floor, Coupure Links 653, 9000, Ghent, Belgium
| | - Leen Vandaele
- Animal Sciences Unit, Flanders Research Institute for Agriculture, Fisheries and Food, Scheldeweg 68, 9090, Melle, Belgium
| | - Jeyamalar Jeyanathan
- Laboratory for Animal Nutrition and Animal Product Quality, Department of Animal Sciences and Aquatic Ecology, Faculty of Bioscience Engineering, Ghent University, Campus Coupure, building F, 1st floor, Coupure Links 653, 9000, Ghent, Belgium
| | - Veerle Fievez
- Laboratory for Animal Nutrition and Animal Product Quality, Department of Animal Sciences and Aquatic Ecology, Faculty of Bioscience Engineering, Ghent University, Campus Coupure, building F, 1st floor, Coupure Links 653, 9000, Ghent, Belgium.
| |
Collapse
|
6
|
Feng Y, Li D, Ma C, Tian M, Hu X, Chen F. Barley Leaf Ameliorates Citrobacter rodentium-Induced Colitis through Preventive Effects. Nutrients 2022; 14:nu14183833. [PMID: 36145206 PMCID: PMC9502111 DOI: 10.3390/nu14183833] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2022] [Revised: 09/08/2022] [Accepted: 09/14/2022] [Indexed: 11/24/2022] Open
Abstract
The incidence and prevalence of inflammatory bowel disease (IBD) have been increasing globally and progressively in recent decades. Barley leaf (BL) is a nutritional supplement that is shown to have health-promoting effects on intestinal homeostasis. Our previous study demonstrated that BL could significantly attenuate Citrobacter rodentium (CR)-induced colitis, but whether it exerts a prophylactic or therapeutic effect remains elusive. In this study, we supplemented BL before or during CR infestation to investigate which way BL acts. The results showed that BL supplementation prior to infection significantly reduced the disease activity index (DAI) score, weight loss, colon shortening, colonic wall swelling, and transmissible murine colonic hyperplasia. It significantly reduced the amount of CR in the feces and also markedly inhibited the extraintestinal transmission of CR. Meanwhile, it significantly reduced the levels and expression of tumor necrosis factor-alpha (TNF-α), interferon-gamma (IFNγ), and interleukin-1β (IL1β). In addition, pretreatment with BL improved CR-induced gut microbiota dysbiosis by reducing the content of Proteobacteria, while increasing the content of Lactobacillus. In contrast, the effect of BL supplementation during infestation on the improvement of CR-induced colitis was not as good as that of pretreatment with BL. In conclusion, BL protects against CR-caused colitis in a preventive manner.
Collapse
Affiliation(s)
| | | | | | | | | | - Fang Chen
- Correspondence: ; Tel.: +86-10-62737645 (ext. 18)
| |
Collapse
|
7
|
Efficiency Assessment of Bacterial Cellulose on Lowering Lipid Levels In Vitro and Improving Lipid Metabolism In Vivo. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27113495. [PMID: 35684437 PMCID: PMC9182494 DOI: 10.3390/molecules27113495] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/11/2022] [Revised: 05/21/2022] [Accepted: 05/24/2022] [Indexed: 01/30/2023]
Abstract
Bacterial cellulose (BC) is well known as a high-performance dietary fiber. This study investigates the adsorption capacity of BC for cholesterol, sodium cholate, unsaturated oil, and heavy metal ions in vitro. Further, a hyperlipidemia mouse model was constructed to investigate the effects of BC on lipid metabolism, antioxidant levels, and intestinal microflora. The results showed that the maximum adsorption capacities of BC for cholesterol, sodium cholate, Pb2+ and Cr6+ were 11.910, 16.149, 238.337, 1.525 and 1.809 mg/g, respectively. Additionally, BC reduced the blood lipid levels, regulated the peroxide levels, and ameliorated the liver injury in hyperlipidemia mice. Analysis of the intestinal flora revealed that BC improved the bacterial community of intestinal microflora in hyperlipidemia mice. It was found that the abundance of Bacteroidetes was increased, while the abundance of Firmicutes and Proteobacteria was decreased at the phylum level. In addition, increased abundance of Lactobacillus and decreased abundance of Lachnospiraceae and Prevotellaceae were obtained at the genus level. These changes were supposed to be beneficial to the activities of intestinal microflora. To conclude, the findings prove the role of BC in improving lipid metabolism in hyperlipidemia mice and provide a theoretical basis for the utilization of BC in functional food.
Collapse
|
8
|
Li Y, Ma Q, Liu G, Zhang Z, Zhan Y, Zhu M, Wang C. Metabolic Alternations During Gestation in Dezhou Donkeys and the Link to the Gut Microbiota. Front Microbiol 2022; 13:801976. [PMID: 35369472 PMCID: PMC8969422 DOI: 10.3389/fmicb.2022.801976] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2021] [Accepted: 02/23/2022] [Indexed: 01/02/2023] Open
Abstract
The maternal intestinal microbial community changes dramatically during pregnancy and plays an important role in animal growth, metabolism, immunity and reproduction. However, our understanding of microbiota compositional dynamics during the whole pregnancy period in donkey is incomplete. This study was carried out to evaluate gut microbiota alterations as well as the correlation with serum biochemical indices, comparing pregnant donkeys to non-pregnant donkeys. A total of 18 pregnant (including EP, early-stage pregnancy; MP, middle-stage pregnancy and LP, late-stage pregnancy) and six non-pregnant (C as a control) donkey blood samples and rectum contents were collected. The results showed that pregnant donkeys had higher microbial richness than non-pregnant donkeys and that the lowest microbial diversity occurred at the EP period. Moreover, the relative abundances of the families Clostridiaceae and Streptococcaceae were significantly higher in the EP group (p < 0.05) than that in the C and MP groups, while the relative abundances of the families Lachnospiraceae and Rikenellaceae were significantly lower in the EP group (p < 0.05) than that in the C group. The predicted microbial gene functions related to the inflammatory response and apoptosis, such as Staphylococcus aureus infection, the RIG-1-like receptor signaling pathway and apoptosis, were mainly enriched in EP. Furthermore, pregnant donkeys had higher glucose levels than non-pregnant donkeys, especially at EP period. EP donkeys had lower triglyceride, total protein and albumin levels but higher malondialdehyde, interleukin 1β, interleukin 6 and tumor necrosis factor-α levels than those in the C and MP groups. Additionally, there were strong correlations between inflammatory cytokine levels and the relative abundances of genera belonging to the Clostridiaceae and Streptococcaceae families. This is the first comparative study performed in donkeys that indicates that pregnancy status (especially in the early pregnancy period) alters the gut microbiota composition, which was correlated with serum biochemical parameters. These results could provide useful information for improving the reproductive management in Dezhou donkeys.
Collapse
|
9
|
Fan C, Zhang L, Jia S, Tang X, Fu H, Li W, Liu C, Zhang H, Cheng Q, Zhang Y. Seasonal variations in the composition and functional profiles of gut microbiota reflect dietary changes in plateau pikas. Integr Zool 2022; 17:379-395. [PMID: 35051309 PMCID: PMC9305894 DOI: 10.1111/1749-4877.12630] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
Seasonal variations in gut microbiota of small mammals and how it is influenced by environmental variables is relatively poorly understood. We sampled 162 wild plateau pikas (Ochotona curzoniae) in four seasons over two and a half years and recorded the air temperature, precipitation, and nutrient content in edible vegetation at the sampling site. After conducting 16S rRNA and shotgun metagenomic sequencing, we found that the highest alpha diversity, the relative abundance of Firmicutes, and the simplest co-occurrence network occurred in winter, whereas that the highest relative abundance of Proteobacteria and the most complex network structure was observed in spring. The highest relative abundance of Verrucomicrobiota and Spirochaetota were seen in summer and autumn, respectively. Air temperature, precipitation, and the contents of crude protein, crude fiber, and polysaccharide in vegetation had significant effects on the seasonal changes in gut microbiota. Diet contributed more to microbial variation than climatic factors. Metagenomic analysis revealed that the amino acid metabolism pathway and axillary activity enzymes were most abundant in summer, while abundance of carbohydrate-binding modules and carbohydrate esterases were highest in spring. These microbial variations were related to the changes in dietary nutrition, indicating that gut microbiota of plateau pika contribute to the efficient use of food resources. This study provides new evidence of how external environmental factors affect the intestinal environment of small mammals. This article is protected by copyright. All rights reserved.
Collapse
Affiliation(s)
- Chao Fan
- Key Laboratory of Adaptation and Evolution of Plateau Biota, Northwest Institute of Plateau Biology, Chinese Academy of Sciences, Xining, 810008, China.,College of Life Sciences, Qufu Normal University, Qufu, 273165, China.,University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Liangzhi Zhang
- Key Laboratory of Adaptation and Evolution of Plateau Biota, Northwest Institute of Plateau Biology, Chinese Academy of Sciences, Xining, 810008, China.,Qinghai Provincial Key Laboratory of Animal Ecological Genomics, Xining, 810008, China
| | - Shangang Jia
- College of Grassland Science and Technology, China Agricultural University, Beijing, 100193, China
| | - Xianjiang Tang
- Key Laboratory of Adaptation and Evolution of Plateau Biota, Northwest Institute of Plateau Biology, Chinese Academy of Sciences, Xining, 810008, China.,Qinghai Provincial Key Laboratory of Animal Ecological Genomics, Xining, 810008, China.,University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Haibo Fu
- Key Laboratory of Adaptation and Evolution of Plateau Biota, Northwest Institute of Plateau Biology, Chinese Academy of Sciences, Xining, 810008, China.,Qinghai Provincial Key Laboratory of Animal Ecological Genomics, Xining, 810008, China.,University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Wenjing Li
- Key Laboratory of Adaptation and Evolution of Plateau Biota, Northwest Institute of Plateau Biology, Chinese Academy of Sciences, Xining, 810008, China.,Qinghai Provincial Key Laboratory of Animal Ecological Genomics, Xining, 810008, China
| | - Chuanfa Liu
- Key Laboratory of Adaptation and Evolution of Plateau Biota, Northwest Institute of Plateau Biology, Chinese Academy of Sciences, Xining, 810008, China.,Qinghai Provincial Key Laboratory of Animal Ecological Genomics, Xining, 810008, China.,University of Chinese Academy of Sciences, Beijing, 100049, China
| | - He Zhang
- Key Laboratory of Adaptation and Evolution of Plateau Biota, Northwest Institute of Plateau Biology, Chinese Academy of Sciences, Xining, 810008, China.,Qinghai Provincial Key Laboratory of Animal Ecological Genomics, Xining, 810008, China.,University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Qi Cheng
- Key Laboratory of Adaptation and Evolution of Plateau Biota, Northwest Institute of Plateau Biology, Chinese Academy of Sciences, Xining, 810008, China.,Qinghai Provincial Key Laboratory of Animal Ecological Genomics, Xining, 810008, China.,University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Yanming Zhang
- Key Laboratory of Adaptation and Evolution of Plateau Biota, Northwest Institute of Plateau Biology, Chinese Academy of Sciences, Xining, 810008, China.,Qinghai Provincial Key Laboratory of Animal Ecological Genomics, Xining, 810008, China
| |
Collapse
|
10
|
Li D, Feng Y, Tian M, Hu X, Zheng R, Chen F. Dietary Barley Leaf Mitigates Tumorigenesis in Experimental Colitis-Associated Colorectal Cancer. Nutrients 2021; 13:3487. [PMID: 34684488 PMCID: PMC8537996 DOI: 10.3390/nu13103487] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2021] [Revised: 09/23/2021] [Accepted: 09/27/2021] [Indexed: 02/07/2023] Open
Abstract
Dietary barley (Hordeum vulgare L.) leaf (BL) is a popular functional food known to have potential health benefits; however, the effect of BL in colorectal cancer prevention has not been examined. Here, we examined the role of BL on the prevention of colorectal carcinogenesis and defined the mechanism involved. BL supplementation could protect against weight loss, mitigate tumor formation, and diminish histologic damage in mice treated with azoxymethane (AOM) and dextran sulfate sodium (DSS). Moreover, BL suppressed colonic expression of inflammatory enzymes, while improving the mucosal barrier dysfunctions. The elevated levels of cell proliferation markers and the increased expression of genes involved in β-catenin signaling were also reduced by BL. In addition, analyses of microbiota revealed that BL prevented AOM/DSS-induced gut microbiota dysbiosis by promoting the enrichment of Bifidobacterium. Overall, these data suggest that BL is a promising dietary agent for preventing colitis-associated colorectal cancer.
Collapse
Affiliation(s)
- Daotong Li
- Health Science Center, Department of Anatomy, Histology and Embryology, Peking University, Beijing 100191, China;
- National Engineering Research Center for Fruit and Vegetable Processing, Key Laboratory of Fruits and Vegetables Processing, College of Food Science and Nutritional Engineering, Ministry of Agriculture, Engineering Research Centre for Fruits and Vegetables Processing, Ministry of Education, China Agricultural University, Beijing 100083, China; (Y.F.); (M.T.); (X.H.)
| | - Yu Feng
- National Engineering Research Center for Fruit and Vegetable Processing, Key Laboratory of Fruits and Vegetables Processing, College of Food Science and Nutritional Engineering, Ministry of Agriculture, Engineering Research Centre for Fruits and Vegetables Processing, Ministry of Education, China Agricultural University, Beijing 100083, China; (Y.F.); (M.T.); (X.H.)
| | - Meiling Tian
- National Engineering Research Center for Fruit and Vegetable Processing, Key Laboratory of Fruits and Vegetables Processing, College of Food Science and Nutritional Engineering, Ministry of Agriculture, Engineering Research Centre for Fruits and Vegetables Processing, Ministry of Education, China Agricultural University, Beijing 100083, China; (Y.F.); (M.T.); (X.H.)
| | - Xiaosong Hu
- National Engineering Research Center for Fruit and Vegetable Processing, Key Laboratory of Fruits and Vegetables Processing, College of Food Science and Nutritional Engineering, Ministry of Agriculture, Engineering Research Centre for Fruits and Vegetables Processing, Ministry of Education, China Agricultural University, Beijing 100083, China; (Y.F.); (M.T.); (X.H.)
| | - Ruimao Zheng
- Health Science Center, Department of Anatomy, Histology and Embryology, Peking University, Beijing 100191, China;
| | - Fang Chen
- National Engineering Research Center for Fruit and Vegetable Processing, Key Laboratory of Fruits and Vegetables Processing, College of Food Science and Nutritional Engineering, Ministry of Agriculture, Engineering Research Centre for Fruits and Vegetables Processing, Ministry of Education, China Agricultural University, Beijing 100083, China; (Y.F.); (M.T.); (X.H.)
| |
Collapse
|
11
|
Tian M, Li D, Ma C, Feng Y, Hu X, Chen F. Barley Leaf Insoluble Dietary Fiber Alleviated Dextran Sulfate Sodium-Induced Mice Colitis by Modulating Gut Microbiota. Nutrients 2021; 13:nu13030846. [PMID: 33807544 PMCID: PMC8001343 DOI: 10.3390/nu13030846] [Citation(s) in RCA: 45] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2021] [Revised: 02/24/2021] [Accepted: 02/24/2021] [Indexed: 12/11/2022] Open
Abstract
Supplementation of dietary fiber has been proved to be an effective strategy to prevent and relieve inflammatory bowel disease (IBD) through gut microbiota modulation. However, more attention has been paid to the efficacy of soluble dietary fiber than that of insoluble dietary fiber (IDF). In the present study, we investigated whether IDF from barley leaf (BLIDF) can inhibit gut inflammation via modulating the intestinal microbiota in DSS-induced colitis mice. The mice were fed 1.52% BLIDF-supplemented diet for 28 days. Results demonstrated that feeding BLIDF markedly mitigated DSS-induced acute colitis symptoms and down-regulated IL-6, TNF-α, and IL-1β levels in the colon and serum of colitis mice. BLIDF supplementation effectively reduced the abundance of Akkermansia and increased the abundance of Parasutterella, Erysipelatoclostridium, and Alistipes. Importantly, the anti-colitis effects of BLIDF were abolished when the intestinal microbiota was depleted by antibiotics. Furthermore, the targeted microbiota-derived metabolites analysis suggested that BLIDF feeding can reverse the DSS-induced decline of short-chain fatty acids and secondary bile acids in mice feces. Finally, BLIDF supplementation elevated the expression of occludin and mucin2, and decreased the expression of claudin-1 in colons of DSS-treated mice. Overall, our observations suggest that BLIDF exerts anti-inflammatory effects via modulating the intestinal microbiota composition and increasing the production of microbiota-derived metabolites.
Collapse
Affiliation(s)
| | | | | | | | | | - Fang Chen
- Correspondence: ; Tel.: +86-10-62737645 (ext. 18)
| |
Collapse
|
12
|
Lu F, Li Y, Zhou B, Guo Q, Zhang Y. Early-life supplementation of grape polyphenol extract promotes polyphenol absorption and modulates the intestinal microbiota in association with the increase in mRNA expression of the key intestinal barrier genes. Food Funct 2021; 12:602-613. [PMID: 33346297 DOI: 10.1039/d0fo02231d] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Early-life nutritional supplementation can dramatically influence health status. Dietary polyphenols are a widespread group of phytochemicals with potential bioactive functions. However, how polyphenol intake during early life affects health status remains largely unknown. Mice aged 3- and 6-weeks were used to investigate how grape polyphenol extract (GPE) administration during early life altered polyphenol absorption, the intestinal microbiota, and the intestinal barrier. After a 2-week GPE supplementation, there were more diverse polyphenol metabolites in the plasma of 3-week-old mice than in the plasma of 6-week-old mice. Correspondingly, GPE supplementation increased the mRNA expression of genes related to polyphenol absorption in 3-week-old mice but not 6-week-old mice. Early-life GPE administration also stimulated the key genes of the small intestinal barrier in mice. Moreover, the key genes of the small intestinal barrier were positively associated with the genes related to polyphenol absorption in the small intestine of 3-week-old mice. In addition, fecal Akkermansia and Lactobacillus were increased, as evidenced by 16S rRNA gene sequencing. As a result, the acetate and butyrate production in the large intestinal content was enhanced, and the mRNA expression of the key genes involved in the large intestinal barrier was also increased. Thus, our study demonstrates that dietary polyphenol intake in early life induces improvements in polyphenol absorption, the intestinal microbiota, and the intestinal barrier, suggesting the importance of polyphenol-rich nutritional programming during early life on health status.
Collapse
Affiliation(s)
- Feng Lu
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, 100083, China.
| | | | | | | | | |
Collapse
|
13
|
Effect of host breeds on gut microbiome and serum metabolome in meat rabbits. BMC Vet Res 2021; 17:24. [PMID: 33413361 PMCID: PMC7791989 DOI: 10.1186/s12917-020-02732-6] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2020] [Accepted: 12/22/2020] [Indexed: 12/15/2022] Open
Abstract
BACKGROUND Gut microbial compositional and functional variation can affect health and production performance of farm animals. Analysing metabolites in biological samples provides information on the basic mechanisms that affect the well-being and production traits in farm animals. However, the extent to which host breeds affect the gut microbiome and serum metabolome in meat rabbits is still unknown. In this study, the differences in phylogenetic composition and functional capacities of gut microbiota in two commercial rabbit breeds Elco and Ira were determined by 16S rRNA gene and metagenomic sequencing. The alternations in serum metabolome in the two rabbit breeds were detected using ultra-performance liquid chromatography system coupled with quadrupole time of flight mass spectrometry (UPLC-QTOFMS). RESULTS Sequencing results revealed that there were significant differences in the gut microbiota of the two breeds studied, suggesting that host breeds affect structure and diversity of gut microbiota. Numerous breed-associated microorganisms were identified at different taxonomic levels and most microbial taxa belonged to the families Lachnospiraceae and Ruminococcaceae. In particular, several short-chain fatty acids (SCFAs) producing species including Coprococcus comes, Ruminococcus faecis, Ruminococcus callidus, and Lachnospiraceae bacterium NK4A136 could be considered as biomarkers for improving the health and production performance in meat rabbits. Additionally, gut microbial functional capacities related to bacterial chemotaxis, ABC transporters, and metabolism of different carbohydrates, amino acids, and lipids varied greatly between rabbit breeds. Several fatty acids, amino acids, and organic acids in the serum were identified as breed-associated, where certain metabolites could be regarded as biomarkers correlated with the well-being and production traits of meat rabbits. Correlation analysis between breed-associated microbial species and serum metabolites revealed significant co-variations, indicating the existence of cross-talk among host-gut microbiome-serum metabolome. CONCLUSIONS Our study provides insight into how gut microbiome and serum metabolome of meat rabbits are affected by host breeds and uncovers potential biomarkers important for breed improvement of meat rabbits.
Collapse
|
14
|
Ke W, Bonilla-Rosso G, Engel P, Wang P, Chen F, Hu X. Suppression of High-Fat Diet-Induced Obesity by Platycodon Grandiflorus in Mice Is Linked to Changes in the Gut Microbiota. J Nutr 2020; 150:2364-2374. [PMID: 32510156 DOI: 10.1093/jn/nxaa159] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2020] [Revised: 04/07/2020] [Accepted: 05/12/2020] [Indexed: 01/09/2023] Open
Abstract
BACKGROUND The root of Platycodon grandiflorus (PG) has a long-standing tradition in the Asian diet and herbal medicine, because of its anti-inflammatory and antiobesity effects. Changes in the gut microbiota can have dietary effects on host health, which suggests a relation between the 2. OBJECTIVES The aim of our study was to investigate the relation between PG-mediated suppression of obesity and the composition and functioning of the gut microbiota. METHODS Six-week-old male C57BL/6J mice were fed either a control diet (CON, 10% kcal from fat), a high-fat diet (HFD, 60% kcal from fat), or a PG-supplemented HFD for 18 wk. PG was administered by oral gavage at 2 g · kg body weight-1 · d-1. Body weight and food intake were monitored. Lipid metabolism, inflammation, and intestinal barrier function were determined. Amplicon sequencing of the bacterial 16S ribosomal RNA gene was used to explore gut microbiota structure, and nontargeted metabolomics analysis was performed to investigate metabolite concentrations in fecal samples. RESULTS We found that PG significantly ameliorated HFD-induced inflammation, recovered intestinal barrier integrity (reduced permeability by 39% , P = 0.008), reduced fat accumulation by 26% (P = 0.009), and changed the expression of key genes involved in the development of white adipose tissue (P < 0.05) in HFD-fed mice to similar levels in CON mice. Moreover, PG attenuated HFD-induced changes in the gut microbiota; it especially increased Allobaculum (7.3-fold, P = 0.002) relative to HFD, whereas CON was 15.2-fold of HFD (P = 0.002). These changes by PG were associated with an increase in the production of SCFAs (butyrate and propionate, P < 0.001) and other carbohydrate-related metabolites known to have a major role in disease suppression. CONCLUSIONS Our study demonstrated that PG beneficially changed the gut microbiota and the gut metabolome in HFD-fed mice, and suggests that the antiobesity effects of PG may be mediated via changes in gut microbiota composition and metabolic activity.
Collapse
Affiliation(s)
- Weixin Ke
- College of Food Science and Nutritional Engineering, National Engineering Research Center for Fruit and Vegetable Processing, Key Laboratory of Fruit and Vegetable Processing, China Agricultural University, Beijing, China.,Department of Fundamental Microbiology, University of Lausanne, Lausanne, Switzerland
| | - Germán Bonilla-Rosso
- Department of Fundamental Microbiology, University of Lausanne, Lausanne, Switzerland
| | - Philipp Engel
- Department of Fundamental Microbiology, University of Lausanne, Lausanne, Switzerland
| | - Pan Wang
- College of Food Science and Nutritional Engineering, National Engineering Research Center for Fruit and Vegetable Processing, Key Laboratory of Fruit and Vegetable Processing, China Agricultural University, Beijing, China
| | - Fang Chen
- College of Food Science and Nutritional Engineering, National Engineering Research Center for Fruit and Vegetable Processing, Key Laboratory of Fruit and Vegetable Processing, China Agricultural University, Beijing, China.,Beijing Advanced Innovation Center for Food Nutrition and Human Health, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, China
| | - Xiaosong Hu
- College of Food Science and Nutritional Engineering, National Engineering Research Center for Fruit and Vegetable Processing, Key Laboratory of Fruit and Vegetable Processing, China Agricultural University, Beijing, China.,Beijing Advanced Innovation Center for Food Nutrition and Human Health, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, China
| |
Collapse
|
15
|
Golonka RM, Xiao X, Abokor AA, Joe B, Vijay-Kumar M. Altered nutrient status reprograms host inflammation and metabolic health via gut microbiota. J Nutr Biochem 2020; 80:108360. [PMID: 32163821 PMCID: PMC7242157 DOI: 10.1016/j.jnutbio.2020.108360] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2019] [Revised: 02/07/2020] [Accepted: 02/08/2020] [Indexed: 02/07/2023]
Abstract
The metabolism of macro- and micronutrients is a complex and highly regulated biological process. An imbalance in the metabolites and their signaling networks can lead to nonresolving inflammation and consequently to the development of chronic inflammatory-associated diseases. Therefore, identifying the accumulated metabolites and altered pathways during inflammatory disorders would not only serve as "real-time" markers but also help in the development of nutritional therapeutics. In this review, we explore recent research that has delved into elucidating the effects of carbohydrate/calorie restriction, protein malnutrition, lipid emulsions and micronutrient deficiencies on metabolic health and inflammation. Moreover, we describe the integrated stress response in terms of amino acid starvation and lipemia and how this modulates new age diseases such as inflammatory bowel disease and atherosclerosis. Lastly, we explain the latest research on metaflammation and inflammaging. This review focuses on multiple signaling pathways, including, but not limited to, the FGF21-β-hydroxybutryate-NLRP3 axis, the GCN2-eIF2α-ATF4 pathway, the von Hippel-Lindau/hypoxia-inducible transcription factor pathway and the TMAO-PERK-FoxO1 axis. Additionally, throughout the review, we explain how the gut microbiota responds to altered nutrient status and also how antimicrobial peptides generated from nutrient-based signaling pathways can modulate the gut microbiota. Collectively, it must be emphasized that metabolic starvation and inflammation are strongly regulated by both environmental (i.e., nutrition, gut microbiome) and nonenvironmental (i.e., genetics) factors, which can influence the susceptibility to inflammatory disorders.
Collapse
Affiliation(s)
- Rachel M Golonka
- UT Microbiome Consortium, Department of Physiology and Pharmacology, The University of Toledo College of Medicine and Life Sciences, Toledo, OH 43614
| | - Xia Xiao
- Center for Systems Biology, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA
| | - Ahmed A Abokor
- UT Microbiome Consortium, Department of Physiology and Pharmacology, The University of Toledo College of Medicine and Life Sciences, Toledo, OH 43614
| | - Bina Joe
- UT Microbiome Consortium, Department of Physiology and Pharmacology, The University of Toledo College of Medicine and Life Sciences, Toledo, OH 43614
| | - Matam Vijay-Kumar
- UT Microbiome Consortium, Department of Physiology and Pharmacology, The University of Toledo College of Medicine and Life Sciences, Toledo, OH 43614.
| |
Collapse
|
16
|
Dietary Platycodon grandiflorus Attenuates Hepatic Insulin Resistance and Oxidative Stress in High-Fat-Diet Induced Non-Alcoholic Fatty Liver Disease. Nutrients 2020; 12:nu12020480. [PMID: 32074961 PMCID: PMC7071327 DOI: 10.3390/nu12020480] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2020] [Revised: 01/26/2020] [Accepted: 02/11/2020] [Indexed: 12/18/2022] Open
Abstract
The root of Platycodon grandiflorus (PG), with hepatoprotective and anti-oxidation effects, has a long history of being used as food and herbal medicine in Asia. However, the mechanism of PG against non-alcoholic fatty liver disease (NAFLD) is still not clear. The aim of this study was to investigate the mechanism of PG suppressing the development of NAFLD induced by a high-fat diet (HFD) in mice. Male C57BL/6J mice were fed with either a standard chow diet or a HFD, either supplemented with or without PG, for 16 weeks. Serum lipids, liver steatosis, oxidative stress and insulin sensitivity were determined. Expressions or activities of hepatic enzymes in the related pathways were analyzed to investigate the mechanisms. PG significantly reduced HFD-induced hepatic injury and hyperlipidemia, as well as hepatic steatosis via regulating phosphorylation of acetyl-CoA carboxylase (p-ACC) and expression of fatty acid synthase (FAS). In addition, PG ameliorated oxidative stress by restoring glutathione (GSH) content and antioxidant activities, and improved insulin sensitivity by regulating the PI3K/Akt/GSK3β signaling pathway. Our data showed that dietary PG have profound effects on hepatic insulin sensitivity and oxidative stress, two key factors in the pathogenesis of NAFLD, demonstrating the potential of PG as a therapeutic strategy for NAFLD.
Collapse
|
17
|
Ferulic acid increases intestinal Lactobacillus and improves cardiac function in TAC mice. Biomed Pharmacother 2019; 120:109482. [PMID: 31568990 DOI: 10.1016/j.biopha.2019.109482] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2019] [Revised: 09/20/2019] [Accepted: 09/22/2019] [Indexed: 12/26/2022] Open
Abstract
Ferulic acid, a main ingredient of Ligusticum, exhibits anti-oxidant and anti-inflammation effects in heart diseases. Some studies indicate that gut microbiome is associated with the generation of ferulic acid. Whether the beneficial effect of ferulic is raised by the alteration of gut microbiota is still unknown. This study examined the effect of sodium ferulate on gut microbiome and cardiac function in TAC mice. Cell Counting Kit-8 (CCK8) assay verified that ferulic acid has low toxicity in vitro and that ferulic acid inhibited the up-regulation of β-MHC and ANP induced by Angiotensin II. In addition, daily supplement of 50 mg/kg sodium ferulate improved the ejection fraction and changed the gut microbiota composition of TAC mice. Relative abundance of Lactobacillus and Parabacteroides are increased in TAC mice gavaged with sodium ferulate. In addition, Lactobacillus is negatively correlated with HW/BW and LW/BW ratio. These results suggest that the beneficial effect of ferulic in TAC mice is probably through the regulation of gut microbiota.
Collapse
|
18
|
Pierre JF, Leone V, Martinez-Guryn K. Journal of Nutritional Biochemistry Special Issue: nutritional modulation of the gut microbiome in gastrointestinal and metabolic disease. J Nutr Biochem 2019; 66:110-112. [PMID: 30784995 DOI: 10.1016/j.jnutbio.2019.01.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Affiliation(s)
- Joseph F Pierre
- Department of Pediatrics, Department of Microbiology, Immunology and Biochemistry, College of Medicine, University of Tennessee Health Science Center, Memphis, TN
| | - Vanessa Leone
- Department of Medicine, University of Chicago, Knapp Center for Biomedical Research, 900 E. 57(th) Street, Chicago, IL 60637, United States
| | - Kristina Martinez-Guryn
- Department of Biomedical Sciences, College of Graduate Studies, Midwestern University, 555 31(st) Street, Downers Grove, IL 60515, United States.
| |
Collapse
|