1
|
Li N, Zhang Z, Shen L, Song G, Tian J, Liu Q, Ni J. Selenium metabolism and selenoproteins function in brain and encephalopathy. SCIENCE CHINA. LIFE SCIENCES 2025; 68:628-656. [PMID: 39546178 DOI: 10.1007/s11427-023-2621-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/11/2024] [Accepted: 06/09/2024] [Indexed: 11/17/2024]
Abstract
Selenium (Se) is an essential trace element of the utmost importance to human health. Its deficiency induces various disorders. Se species can be absorbed by organisms and metabolized to hydrogen selenide for the biosynthesis of selenoproteins, selenonucleic acids, or selenosugars. Se in mammals mainly acts as selenoproteins to exert their biological functions. The brain ranks highest in the specific hierarchy of organs to maintain the level of Se and the expression of selenoproteins under the circumstances of Se deficiency. Dyshomeostasis of Se and dysregulation of selenoproteins result in encephalopathy such as Alzheimer's disease, Parkinson's disease, depression, amyotrophic lateral sclerosis, and multiple sclerosis. This review provides a summary and discussion of Se metabolism, selenoprotein function, and their roles in modulating brain diseases based on the most currently published literature. It focuses on how Se is utilized and transported to the brain, how selenoproteins are biosynthesized and function physiologically in the brain, and how selenoproteins are involved in neurodegenerative diseases. At the end of this review, the perspectives and problems are outlined regarding Se and selenoproteins in the regulation of encephalopathy.
Collapse
Affiliation(s)
- Nan Li
- Shenzhen Key Laboratory of Marine Biotechnology and Ecology, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen, 518055, China
- Shenzhen-Hong Kong Institute of Brain Science, Shenzhen Fundamental Research Institutions, Shenzhen, 518055, China
| | - Zhonghao Zhang
- Shenzhen Key Laboratory of Marine Biotechnology and Ecology, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen, 518055, China
| | - Liming Shen
- Shenzhen Key Laboratory of Marine Biotechnology and Ecology, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen, 518055, China
- Shenzhen-Hong Kong Institute of Brain Science, Shenzhen Fundamental Research Institutions, Shenzhen, 518055, China
| | - Guoli Song
- Shenzhen Key Laboratory of Marine Biotechnology and Ecology, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen, 518055, China
| | - Jing Tian
- Shenzhen Key Laboratory of Marine Biotechnology and Ecology, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen, 518055, China.
| | - Qiong Liu
- Shenzhen Key Laboratory of Marine Biotechnology and Ecology, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen, 518055, China.
| | - Jiazuan Ni
- Shenzhen Key Laboratory of Marine Biotechnology and Ecology, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen, 518055, China
| |
Collapse
|
2
|
Wu L, Xin Y, Zhang J, Yang X, Chen T, Niu P. Associations between Metals, Serum Folate, and Cognitive Function in the Elderly: Mixture and Mediation Analyses. ENVIRONMENT & HEALTH (WASHINGTON, D.C.) 2024; 2:865-874. [PMID: 39722838 PMCID: PMC11667285 DOI: 10.1021/envhealth.4c00071] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Revised: 06/18/2024] [Accepted: 06/19/2024] [Indexed: 12/28/2024]
Abstract
Exposure to metals may potentially impact cognitive health in the elderly; however, the evidence remains ambiguous. The specific role of serum folate in this relationship is also unclear. We aimed to evaluate the individual and joint impact of metals on cognition in the elderly from the United States and explore the potential mediating effect of serum folate. Data from the NHANES 2011-2014 were used, with inductively coupled plasma mass spectrometry (ICP-MS) employed to measure blood metal concentrations. Cognitive function was assessed using tests for immediate, delayed, and working memory: Immediate Recall test (IRT), the Delayed Recall test (DRT), the Animal Fluency test (AFT), and the Digit Symbol Substitution test (DSST). Generalized linear regression models (GLMs), Bayesian kernel machine regression model (BKMR), and quantile g-computation (QG-C) models were used to assess associations between metals (lead, cadmium, mercury, selenium, manganese) and cognition, with mediation analyses examining serum folate's involvement in metal effects. This study included 2002 participants aged ≥60. GLMs revealed the negative association between cadmium and the z-scores of IRT (β: -0.17,95% CI: -0.30, -0.04) and DSST (β: -0.15,95% CI: -0.27, -0.04), with negative effects also observed in the BKMR and QG-C models. Selenium displayed significantly positive association with cognition across various statistical models, including GLMs, QG-C, and BKMR. Serum folate played a mediating role in the effects of cadmium and selenium exposure on DSST z-scores, with a proportion of mediation of 17% and 10%, respectively. Our study assessed the impact of metal mixtures on cognition in the elderly population, finding that high selenium level was strongly associated with better cognitive performance, while cadmium was associated with lower cognitive function scores. Serum folate might partially mediate the association between cadmium, selenium, and DSST z-scores.
Collapse
Affiliation(s)
- Luli Wu
- Department
of Occupational Health and Environmental Health, School of Public
Health, Capital Medical University, 100069 Beijing, China
- Beijing
Key Laboratory of Environmental Toxicology, School of Public Health, Capital Medical University, 100069 Beijing, China
| | - Ye Xin
- Department
of Occupational Health and Environmental Health, School of Public
Health, Capital Medical University, 100069 Beijing, China
- Beijing
Key Laboratory of Environmental Toxicology, School of Public Health, Capital Medical University, 100069 Beijing, China
| | - Junrou Zhang
- Department
of Occupational Health and Environmental Health, School of Public
Health, Capital Medical University, 100069 Beijing, China
- Beijing
Key Laboratory of Environmental Toxicology, School of Public Health, Capital Medical University, 100069 Beijing, China
| | - Xin Yang
- Department
of Occupational Health and Environmental Health, School of Public
Health, Capital Medical University, 100069 Beijing, China
- Beijing
Key Laboratory of Environmental Toxicology, School of Public Health, Capital Medical University, 100069 Beijing, China
| | - Tian Chen
- Department
of Occupational Health and Environmental Health, School of Public
Health, Capital Medical University, 100069 Beijing, China
- Beijing
Key Laboratory of Environmental Toxicology, School of Public Health, Capital Medical University, 100069 Beijing, China
| | - Piye Niu
- Department
of Occupational Health and Environmental Health, School of Public
Health, Capital Medical University, 100069 Beijing, China
- Beijing
Key Laboratory of Environmental Toxicology, School of Public Health, Capital Medical University, 100069 Beijing, China
| |
Collapse
|
3
|
Bonetti M, Borsani E, Bonomini F. The Use of Nutraceutical and Pharmacological Strategies in Murine Models of Autism Spectrum Disorder. Cells 2024; 13:2036. [PMID: 39768128 PMCID: PMC11675073 DOI: 10.3390/cells13242036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2024] [Revised: 11/29/2024] [Accepted: 12/08/2024] [Indexed: 01/11/2025] Open
Abstract
Autism spectrum disorder (ASD) is a common neurodevelopmental condition mainly characterized by both a scarce aptitude for social interactions or communication and engagement in repetitive behaviors. These primary symptoms can manifest with variable severity and are often paired with a heterogeneous plethora of secondary complications, among which include anxiety, ADHD (attention deficit hyperactivity disorder), cognitive impairment, sleep disorders, sensory alterations, and gastrointestinal issues. So far, no treatment for the core symptoms of ASD has yielded satisfactory results in a clinical setting. Consequently, medical and psychological support for ASD patients has focused on improving quality of life and treating secondary complications. Despite no single cause being identified for the onset and development of ASD, many genetic mutations and risk factors, such as maternal age, fetal exposure to certain drugs, or infections have been linked to the disorder. In preclinical contexts, these correlations have acted as a valuable basis for the development of various murine models that have successfully mimicked ASD-like symptoms and complications. This review aims to summarize the findings of the extensive literature regarding the pharmacological and nutraceutical interventions that have been tested in the main animal models for ASD, and their effects on core symptoms and the anatomical, physiological, or molecular markers of the disorder.
Collapse
Affiliation(s)
- Matteo Bonetti
- Division of Anatomy and Physiopathology, Department of Clinical and Experimental Sciences, University of Brescia, 25123 Brescia, Italy; (M.B.); (E.B.)
| | - Elisa Borsani
- Division of Anatomy and Physiopathology, Department of Clinical and Experimental Sciences, University of Brescia, 25123 Brescia, Italy; (M.B.); (E.B.)
- Interdepartmental University Center of Research “Adaptation and Regeneration of Tissues and Organs (ARTO)”, University of Brescia, 25123 Brescia, Italy
- Italian Society of Orofacial Pain (Società Italiana Studio Dolore Orofacciale—SISDO), 25123 Brescia, Italy
| | - Francesca Bonomini
- Division of Anatomy and Physiopathology, Department of Clinical and Experimental Sciences, University of Brescia, 25123 Brescia, Italy; (M.B.); (E.B.)
- Interdepartmental University Center of Research “Adaptation and Regeneration of Tissues and Organs (ARTO)”, University of Brescia, 25123 Brescia, Italy
- Italian Society of Orofacial Pain (Società Italiana Studio Dolore Orofacciale—SISDO), 25123 Brescia, Italy
| |
Collapse
|
4
|
Wang T, He W, Chen Y, Gou Y, Ma Y, Du X, Wang Y, Yan W, Zhou H. Differential One-Carbon Metabolites among Children with Autism Spectrum Disorder: A Case-Control Study. J Nutr 2024; 154:3346-3352. [PMID: 39270851 DOI: 10.1016/j.tjnut.2024.09.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2024] [Revised: 08/27/2024] [Accepted: 09/03/2024] [Indexed: 09/15/2024] Open
Abstract
BACKGROUND Driven by the complex multifactorial etiopathogenesis of autism spectrum disorder (ASD), a growing interest surrounds the disturbance in folate-dependent one-carbon metabolism (OCM) in the pathology of ASD, whereas the evidence remained inconclusive. OBJECTIVES The study aims to investigate the association of OCM metabolism and ASD and characterize differential OCM metabolites among children with ASD. METHODS Plasma OCM metabolites were investigated in 59 children with ASD and 40 neurotypical children using ultra-performance liquid chromatography tandem mass spectrometry technology. Differences (significance level < 0.001) were tested in each OCM metabolite between cases and controls. Multivariable models were also performed after adjusting for covariates. RESULTS Ten out of 22 examined OCM metabolites were significantly different in children with ASD, compared with neurotypical controls. Specifically, S-adenosylmethionine (SAM), oxidized glutathione (GSSG), and glutathione (GSH) levels were increased, whereas S-adenosylhomocysteine (SAH), choline, glycine, L-serine, cystathionine, L-cysteine, and taurine levels were significantly decreased. Children with ASD showed significantly higher SAM/SAH ratio (3.87 ± 0.93 compared with 2.00 ± 0.76, P = 0.0001) and lower GSH/GSSG ratio [0.58 (0.46, 0.81) compared with 1.71 (0.93, 2.99)] compared with the neurotypical controls. Potential interactive effects between SAM/SAH ratio, taurine, L-serine, and gastrointestinal syndromes were further observed. CONCLUSIONS OCM disturbance was observed among children with ASD, particularly in methionine methylation and trans-sulfuration pathways. The findings add valuable insights into the mechanisms underlying ASD and the potential of ameliorating OCM as a promising therapeutic of ASD, which warrant further validation.
Collapse
Affiliation(s)
- Tianqi Wang
- Department of Neurology, Children's Hospital of Fudan University, National Children's Medical Center, Shanghai, China
| | - Wennan He
- Department of Clinical Epidemiology & Clinical Trial Unit (CTU), Children's Hospital of Fudan University, National Children's Medical Center, Shanghai, China
| | - Yun Chen
- Department of Neurological Rehabilitation, Guizhou Branch of Shanghai Children's Medical Center, Shanghai Jiao Tong University School of Medicine, Guiyang, China
| | - Yuxun Gou
- Guizhou Medical University, Guiyang, China
| | - Yu Ma
- Department of Neurology, Children's Hospital of Fudan University, National Children's Medical Center, Shanghai, China
| | - Xiaonan Du
- Department of Neurology, Children's Hospital of Fudan University, National Children's Medical Center, Shanghai, China
| | - Yi Wang
- Department of Neurology, Children's Hospital of Fudan University, National Children's Medical Center, Shanghai, China; State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Fudan University, Shanghai, China.
| | - Weili Yan
- Department of Clinical Epidemiology & Clinical Trial Unit (CTU), Children's Hospital of Fudan University, National Children's Medical Center, Shanghai, China.
| | - Hao Zhou
- Department of Neurological Rehabilitation, Guizhou Branch of Shanghai Children's Medical Center, Shanghai Jiao Tong University School of Medicine, Guiyang, China; Department of Rehabilitation, Children's Hospital of Fudan University, National Children's Medical Center, Shanghai, China.
| |
Collapse
|
5
|
Thomas SD, Jayaprakash P, Marwan NZHJ, Aziz EABA, Kuder K, Łażewska D, Kieć-Kononowicz K, Sadek B. Alleviation of Autophagic Deficits and Neuroinflammation by Histamine H3 Receptor Antagonist E159 Ameliorates Autism-Related Behaviors in BTBR Mice. Pharmaceuticals (Basel) 2024; 17:1293. [PMID: 39458934 PMCID: PMC11510413 DOI: 10.3390/ph17101293] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2024] [Revised: 09/25/2024] [Accepted: 09/26/2024] [Indexed: 10/28/2024] Open
Abstract
BACKGROUND/OBJECTIVES Autism spectrum disorder (ASD) is a neurodevelopmental condition marked by social interaction difficulties, repetitive behaviors, and immune dysregulation with elevated pro-inflammatory markers. Autophagic deficiency also contributes to social behavior deficits in ASD. Histamine H3 receptor (H3R) antagonism is a potential treatment strategy for brain disorders with features overlapping ASD, such as schizophrenia and Alzheimer's disease. METHODS This study investigated the effects of sub-chronic systemic treatment with the H3R antagonist E159 on social deficits, repetitive behaviors, neuroinflammation, and autophagic disruption in male BTBR mice. RESULTS E159 (2.5, 5, and 10 mg/kg, i.p.) improved stereotypic repetitive behavior by reducing self-grooming time and enhancing spontaneous alternation in addition to attenuating social deficits. It also decreased pro-inflammatory cytokines in the cerebellum and hippocampus of treated BTBR mice. In BTBR mice, reduced expression of autophagy-related proteins LC3A/B and Beclin 1 was observed, which was elevated following treatment with E159, attenuating the disruption in autophagy. The co-administration with the H3R agonist MHA (10 mg/kg, i.p.) reversed these effects, highlighting the role of histaminergic neurotransmission in observed behavioral improvements. CONCLUSIONS These preliminary findings suggest the therapeutic potential of H3R antagonists in targeting neuroinflammation and autophagic disruption to improve ASD-like behaviors.
Collapse
Affiliation(s)
- Shilu Deepa Thomas
- Department of Pharmacology & Therapeutics, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain P.O. Box 17666, United Arab Emirates; (S.D.T.); (P.J.); (N.Z.H.J.M.); (E.A.B.A.A.)
- Zayed Center for Health Sciences, United Arab Emirates University, Al Ain P.O. Box 15551, United Arab Emirates
| | - Petrilla Jayaprakash
- Department of Pharmacology & Therapeutics, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain P.O. Box 17666, United Arab Emirates; (S.D.T.); (P.J.); (N.Z.H.J.M.); (E.A.B.A.A.)
- Zayed Center for Health Sciences, United Arab Emirates University, Al Ain P.O. Box 15551, United Arab Emirates
| | - Nurfirzana Z. H. J. Marwan
- Department of Pharmacology & Therapeutics, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain P.O. Box 17666, United Arab Emirates; (S.D.T.); (P.J.); (N.Z.H.J.M.); (E.A.B.A.A.)
- Zayed Center for Health Sciences, United Arab Emirates University, Al Ain P.O. Box 15551, United Arab Emirates
| | - Ezzatul A. B. A. Aziz
- Department of Pharmacology & Therapeutics, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain P.O. Box 17666, United Arab Emirates; (S.D.T.); (P.J.); (N.Z.H.J.M.); (E.A.B.A.A.)
- Zayed Center for Health Sciences, United Arab Emirates University, Al Ain P.O. Box 15551, United Arab Emirates
| | - Kamil Kuder
- Department of Technology and Biotechnology of Drugs, Faculty of Pharmacy, Jagiellonian University Medical College, Medyczna Str. 9, 30-688 Kraków, Poland; (K.K.); (D.Ł.); (K.K.-K.)
| | - Dorota Łażewska
- Department of Technology and Biotechnology of Drugs, Faculty of Pharmacy, Jagiellonian University Medical College, Medyczna Str. 9, 30-688 Kraków, Poland; (K.K.); (D.Ł.); (K.K.-K.)
| | - Katarzyna Kieć-Kononowicz
- Department of Technology and Biotechnology of Drugs, Faculty of Pharmacy, Jagiellonian University Medical College, Medyczna Str. 9, 30-688 Kraków, Poland; (K.K.); (D.Ł.); (K.K.-K.)
| | - Bassem Sadek
- Department of Pharmacology & Therapeutics, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain P.O. Box 17666, United Arab Emirates; (S.D.T.); (P.J.); (N.Z.H.J.M.); (E.A.B.A.A.)
- Zayed Center for Health Sciences, United Arab Emirates University, Al Ain P.O. Box 15551, United Arab Emirates
| |
Collapse
|
6
|
Cui K, Li L, Li K, Xiao W, Wang Q. AOP-based framework for predicting the joint action mode of di-(2-ethylhexyl) phthalate and bisphenol A co-exposure on autism spectrum disorder. Neurotoxicology 2024; 104:75-84. [PMID: 39084265 DOI: 10.1016/j.neuro.2024.07.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2023] [Revised: 06/16/2024] [Accepted: 07/24/2024] [Indexed: 08/02/2024]
Abstract
Autism spectrum disorder (ASD), also known as autism, is a common, highly hereditary and heterogeneous neurodevelopmental disorder. The global prevalence of ASD among children continues to rise significantly, which is partially attributed to environmental pollution. It has been reported that pre- or post-natal exposure to di-(2-ethylhexyl) phthalate (DEHP) or bisphenol A (BPA), two prevalent environmental endocrine disruptors, increases the risk of ASD in offspring. Yet, the joint action mode linking DEHP and BPA with ASD is incompletely understood. This study aims to unravel the joint action mode of DEHP and BPA co-exposure on the development of ASD. An adverse outcome pathway (AOP) framework was employed to integrate data from multiple public database and construct chemical-gene-phenotype-disease networks (CGPDN) for DEHP- and BPA-related ASD. Topological analysis and comprehensive literature exploration of the CGPDN were performed to build the AOP. By analysis of shared key events (KEs) or phenotypes within the AOP or the CGPDN, we uncovered two AOPs, decreased N-methyl-D-aspartate receptor (NMDAR) and estrogen antagonism that were likely linked to ASD, both with moderate confidence. Our analysis further predicted that the joint action mode of DEHP and BPA related ASD was possibly an additive or synergistic action. Thus, we propose that the co-exposure to BPA and DEHP perhaps additively or synergistically increases the risk of ASD.
Collapse
Affiliation(s)
- Kanglong Cui
- Department of Toxicology, School of Public Health, Peking University, No.38 Xueyuan Road, Haidian District, Beijing 100191, China
| | - Ludi Li
- Department of Toxicology, School of Public Health, Peking University, No.38 Xueyuan Road, Haidian District, Beijing 100191, China
| | - Kai Li
- Department of Toxicology, School of Public Health, Peking University, No.38 Xueyuan Road, Haidian District, Beijing 100191, China
| | - Wusheng Xiao
- Department of Toxicology, School of Public Health, Peking University, No.38 Xueyuan Road, Haidian District, Beijing 100191, China; Key Laboratory of State Administration of Traditional Chinese Medicine for Compatibility Toxicology, Peking University, No.38 Xueyuan Road, Haidian District, Beijing 100191, China; Beijing Key Laboratory of Toxicological Research and Risk Assessment for Food Safety, Peking University, No.38 Xueyuan Road, Haidian District, Beijing 100191, China.
| | - Qi Wang
- Department of Toxicology, School of Public Health, Peking University, No.38 Xueyuan Road, Haidian District, Beijing 100191, China; Key Laboratory of State Administration of Traditional Chinese Medicine for Compatibility Toxicology, Peking University, No.38 Xueyuan Road, Haidian District, Beijing 100191, China; Beijing Key Laboratory of Toxicological Research and Risk Assessment for Food Safety, Peking University, No.38 Xueyuan Road, Haidian District, Beijing 100191, China.
| |
Collapse
|
7
|
Ahmed Mohamed Z, Yang J, Wen J, Jia F, Banerjee S. SEPHS1 Gene: A new master key for neurodevelopmental disorders. Clin Chim Acta 2024; 562:119844. [PMID: 38960024 DOI: 10.1016/j.cca.2024.119844] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2024] [Revised: 06/30/2024] [Accepted: 06/30/2024] [Indexed: 07/05/2024]
Abstract
The SEPHS1 (Selenophosphate Synthetase 1) gene encodes a critical enzyme for synthesizing selenophosphate, the active donor of selenium (Se) necessary for selenoprotein biosynthesis. Selenoproteins are vital for antioxidant defense, thyroid hormone metabolism, and cellular homeostasis. Mutations in SEPHS1 gene, are associated with neurodevelopmental disorders with developmental delay, poor growth, hypotonia, and dysmorphic features. Due to Se's critical role in brain development and function, SEPHS1 gene has taken center stage in neurodevelopmental research. This review explores the structure and function of the SEPHS1 gene, its role in neurodevelopment, and the implications of its dysregulation for neurodevelopmental disorders. Therapeutic strategies, including Se supplementation, gene therapy, and targeted therapies, are discussed as potential interventions to address SEPHS1 associated neurodevelopmental dysfunction. The study's findings reveal how SEPHS1 mutations disrupt neurodevelopment, emphasizing the gene's intolerance to loss of function. Future research should focus on functional characterization of SEPHS1 variants, broader genetic screenings, and therapeutic developments.
Collapse
Affiliation(s)
- Zakaria Ahmed Mohamed
- Department of Genetics, College of Basic Medical Sciences, Jilin University, Changchun 130021, China; Department of Developmental and Behavioral Pediatrics, The First Hospital of Jilin University, Jilin University, Changchun, China
| | - Jianli Yang
- Department of Genetics, College of Basic Medical Sciences, Jilin University, Changchun 130021, China
| | - Jianping Wen
- Department of Genetics, College of Basic Medical Sciences, Jilin University, Changchun 130021, China
| | - Feiyong Jia
- Department of Developmental and Behavioral Pediatrics, The First Hospital of Jilin University, Jilin University, Changchun, China
| | - Santasree Banerjee
- Department of Genetics, College of Basic Medical Sciences, Jilin University, Changchun 130021, China.
| |
Collapse
|
8
|
Dou JF, Schmidt RJ, Volk HE, Nitta MM, Feinberg JI, Newschaffer CJ, Croen LA, Hertz-Picciotto I, Fallin MD, Bakulski KM. Exposure to heavy metals in utero and autism spectrum disorder at age 3: a meta-analysis of two longitudinal cohorts of siblings of children with autism. Environ Health 2024; 23:62. [PMID: 38970053 PMCID: PMC11225197 DOI: 10.1186/s12940-024-01101-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Accepted: 06/25/2024] [Indexed: 07/07/2024]
Abstract
BACKGROUND Autism spectrum disorder (ASD) is a prevalent and heterogeneous neurodevelopmental disorder. Risk is attributed to genetic and prenatal environmental factors, though the environmental agents are incompletely characterized. METHODS In Early Autism Risk Longitudinal Investigation (EARLI) and Markers of Autism Risk in Babies Learning Early Signs (MARBLES), two pregnancy cohorts of siblings of children with ASD, urinary metals concentrations during two pregnancy time periods (< 28 weeks and ≥ 28 weeks of gestation) were measured using inductively coupled plasma mass spectrometry. At age three, clinicians assessed ASD with DSM-5 criteria. In an exposure-wide association framework, using multivariable log binomial regression, we examined each metal for association with ASD status, adjusting for gestational age at urine sampling, child sex, age at pregnancy, race/ethnicity and education. We meta-analyzed across the two cohorts. RESULTS In EARLI (n = 170) 17% of children were diagnosed with ASD, and 44% were classified as having non-neurotypical development (Non-TD). In MARBLES (n = 231), 21% were diagnosed with ASD, and 14% classified as Non-TD. During the first and second trimester period (< 28 weeks), having cadmium concentration over the level of detection was associated with 1.69 (1.08, 2.64) times higher risk of ASD, and 1.29 (0.95, 1.75)times higher risk of Non-TD. A doubling of first and second trimester cesium concentration was marginally associated with 1.89 (0.94, 3.80) times higher risk of ASD, and a doubling of third trimester cesium with 1.69 (0.97, 2.95) times higher risk of ASD. CONCLUSION Exposure in utero to elevated levels of cadmium and cesium, as measured in urine collected during pregnancy, was associated with increased risk of developing ASD.
Collapse
Affiliation(s)
- John F Dou
- University of Michigan, Ann Arbor, MI, USA
| | | | | | | | | | | | - Lisa A Croen
- Division of Research, Kaiser Permanente Northern California, Oakland, CA, USA
| | | | - M Daniele Fallin
- Rollins School of Public Health, Emory University, Atlanta, GA, USA
| | | |
Collapse
|
9
|
Zhu H, Duan Y, Yang Y, Chen E, Huang H, Wang X, Zhou J. Sodium aescinate induces renal toxicity by promoting Nrf2/GPX4-mediated ferroptosis. Chem Biol Interact 2024; 391:110892. [PMID: 38364601 DOI: 10.1016/j.cbi.2024.110892] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Revised: 01/16/2024] [Accepted: 01/29/2024] [Indexed: 02/18/2024]
Abstract
Sodium aescinate (SA) is extracted from Aesculus wilsonii Rehd seeds and was first marketed as a medicament in German. With the wide application of SA in clinical practice, reports of adverse drug reactions and adverse events have gradually increased, including renal impairment. However, the pathogenic mechanisms of SA have not yet been fully elucidated. The toxic effects and underlying mechanisms of SA were explored in this study. Our data showed that SA significantly elevated the levels of blood urea nitrogen (BUN), serum creatinine (Scr) and Kidney injury molecule 1 (Kim-1), accompanied by pathologically significant changes in renal tissue. SA induced NRK-52E cell death and disrupted the integrity of the cell membrane. Moreover, SA caused significant reductions in FTH, Nrf2, xCT, GPX4, and FSP1 levels, but increased TFR1 and ACSL4 levels. SA decreased glutathione peroxidase (GPx), glutathione (GSH) and cysteine (Cys) levels, but improved Fe2+, malondialdehyde (MDA), reactive oxygen species (ROS) and lipid peroxidation levels, ultimately leading to the induction of ferroptosis. Importantly, inhibition of ferroptosis or activation of the Nrf2/GPX4 pathway prevented SA-induced nephrotoxicity. These findings indicated that SA induced oxidative damage and ferroptosis-mediated kidney injury by suppressing the Nrf2/GPX4 axis activity.
Collapse
Affiliation(s)
- Haiyan Zhu
- School of Medicine, Yichun University, 576 XueFu Road, Yuanzhou District, Yichun, 336000, PR China
| | - Yenan Duan
- School of Medicine, Yichun University, 576 XueFu Road, Yuanzhou District, Yichun, 336000, PR China
| | - Yijing Yang
- School of Medicine, Yichun University, 576 XueFu Road, Yuanzhou District, Yichun, 336000, PR China
| | - Enqing Chen
- School of Medicine, Yichun University, 576 XueFu Road, Yuanzhou District, Yichun, 336000, PR China
| | - Hanxin Huang
- School of Medicine, Yichun University, 576 XueFu Road, Yuanzhou District, Yichun, 336000, PR China
| | - Xi Wang
- School of Medicine, Yichun University, 576 XueFu Road, Yuanzhou District, Yichun, 336000, PR China
| | - Jie Zhou
- School of Medicine, Yichun University, 576 XueFu Road, Yuanzhou District, Yichun, 336000, PR China.
| |
Collapse
|
10
|
Gillespie B, Houghton MJ, Ganio K, McDevitt CA, Bennett D, Dunn A, Raju S, Schroeder A, Hill RA, Cardoso BR. Maternal selenium dietary supplementation alters sociability and reinforcement learning deficits induced by in utero exposure to maternal immune activation in mice. Brain Behav Immun 2024; 116:349-361. [PMID: 38142918 DOI: 10.1016/j.bbi.2023.12.024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/04/2023] [Revised: 11/24/2023] [Accepted: 12/19/2023] [Indexed: 12/26/2023] Open
Abstract
Maternal immune activation (MIA) during pregnancy increases the risk for the unborn foetus to develop neurodevelopmental conditions such as autism spectrum disorder and schizophrenia later in life. MIA mouse models recapitulate behavioural and biological phenotypes relevant to both conditions, and are valuable models to test novel treatment approaches. Selenium (Se) has potent anti-inflammatory properties suggesting it may be an effective prophylactic treatment against MIA. The aim of this study was to determine if Se supplementation during pregnancy can prevent adverse effects of MIA on offspring brain and behaviour in a mouse model. Selenium was administered via drinking water (1.5 ppm) to pregnant dams from gestational day (GD) 9 to birth, and MIA was induced at GD17 using polyinosinic:polycytidylic acid (poly-I:C, 20 mg/kg via intraperitoneal injection). Foetal placenta and brain cytokine levels were assessed using a Luminex assay and brain elemental nutrients assessed using inductively coupled plasma- mass spectrometry. Adult offspring were behaviourally assessed using a reinforcement learning paradigm, the three-chamber sociability test and the open field test. MIA elevated placental IL-1β and IL-17, and Se supplementation successfully prevented this elevation. MIA caused an increase in foetal brain calcium, which was prevented by Se supplement. MIA caused in offspring a female-specific reduction in sociability, which was recovered by Se, and a male-specific reduction in social memory, which was not recovered by Se. Exposure to poly-I:C or selenium, but not both, reduced performance in the reinforcement learning task. Computational modelling indicated that this was predominantly due to increased exploratory behaviour, rather than reduced rate of learning the location of the food reward. This study demonstrates that while Se may be beneficial in ameliorating sociability deficits caused by MIA, it may have negative effects in other behavioural domains. Caution in the use of Se supplementation during pregnancy is therefore warranted.
Collapse
Affiliation(s)
- Brendan Gillespie
- Department of Psychiatry, Monash University, Clayton, VIC 3168, Australia
| | - Michael J Houghton
- Department of Nutrition, Dietetics and Food, Monash University, Notting Hill, VIC 3168, Australia; Victorian Heart Institute, Monash University, Clayton, VIC 3168, Australia
| | - Katherine Ganio
- Department of Microbiology and Immunology, The Peter Doherty Institute for Infection and Immunity, The University of Melbourne, Melbourne, VIC 3000, Australia
| | - Christopher A McDevitt
- Department of Microbiology and Immunology, The Peter Doherty Institute for Infection and Immunity, The University of Melbourne, Melbourne, VIC 3000, Australia
| | - Daniel Bennett
- Department of Psychiatry, Monash University, Clayton, VIC 3168, Australia
| | - Ariel Dunn
- Department of Psychiatry, Monash University, Clayton, VIC 3168, Australia
| | - Sharvada Raju
- Department of Psychiatry, Monash University, Clayton, VIC 3168, Australia
| | - Anna Schroeder
- Department of Psychiatry, Monash University, Clayton, VIC 3168, Australia.
| | - Rachel A Hill
- Department of Psychiatry, Monash University, Clayton, VIC 3168, Australia.
| | - Barbara R Cardoso
- Department of Nutrition, Dietetics and Food, Monash University, Notting Hill, VIC 3168, Australia.
| |
Collapse
|
11
|
Mishra E, Thakur MK. Vitamin B 12-folic acid supplementation improves memory by altering mitochondrial dynamics, dendritic arborization, and neurodegeneration in old and amnesic male mice. J Nutr Biochem 2024; 124:109536. [PMID: 37981108 DOI: 10.1016/j.jnutbio.2023.109536] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2023] [Revised: 10/28/2023] [Accepted: 11/15/2023] [Indexed: 11/21/2023]
Abstract
Memory impairment during aging and amnesia is attributed to compromised mitochondrial dynamics and mitophagy and other mitochondrial quality control mechanisms. Mitochondrial dynamics involves the continuous process of fission and fusion of mitochondria within a cell and is a fundamental mechanism for regulating mitochondrial quality and function. An extensive range of potential nutritional supplements has been shown to improve mitochondrial health, synaptic plasticity, and cognitive functions. Previous findings revealed that supplementation of vitamin B12-folic acid reduces locomotor deficits and mitochondrial abnormalities but enhances mitochondrial and neuronal health. The present study aims to explore the impact of combined vitamin B12-folic acid supplementation on mitochondrial dynamics, neuronal health, and memory decline in old age and scopolamine-induced amnesia, which remains elusive. The results demonstrated that supplementation led to a noteworthy increase in recognition and spatial memory and expression of memory-related protein BDNF in old and amnesic mice. Moreover, the decrease in the fragmented mitochondrial number was validated by the downregulation of mitochondrial fission p-Drp1 (S616) protein and the increase in elongated mitochondria by the upregulation of mitochondrial fusion Mfn2 protein. The increased spine density and dendritic arborization in old and amnesic mice upon supplementation were confirmed by the enhanced expression level of PSD95 and synaptophysin. Furthermore, supplementation reduced ROS production, inhibited Caspase-3 activation, mitigated neurodegeneration, and enhanced mitochondrial membrane potential, ATP production, Vdac1 expression, myelination, in old and amnesic mice. Collectively, our findings imply that combined supplementation of vitamin B12-folic acid improves mitochondrial dynamics and neuronal health, and leads to recovery of memory during old age and amnesia.
Collapse
Affiliation(s)
- Ela Mishra
- Department of Zoology, Biochemistry and Molecular Biology Laboratory, Centre of Advanced Study, Institute of Science, Banaras Hindu University, Varanasi, India.
| | - Mahendra Kumar Thakur
- Department of Zoology, Biochemistry and Molecular Biology Laboratory, Centre of Advanced Study, Institute of Science, Banaras Hindu University, Varanasi, India.
| |
Collapse
|
12
|
Yenkoyan K, Ounanian Z, Mirumyan M, Hayrapetyan L, Zakaryan N, Sahakyan R, Bjørklund G. Advances in the Treatment of Autism Spectrum Disorder: Current and Promising Strategies. Curr Med Chem 2024; 31:1485-1511. [PMID: 37888815 PMCID: PMC11092563 DOI: 10.2174/0109298673252910230920151332] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2023] [Revised: 07/04/2023] [Accepted: 08/26/2023] [Indexed: 10/28/2023]
Abstract
Autism spectrum disorder (ASD) is an umbrella term for developmental disorders characterized by social and communication impairments, language difficulties, restricted interests, and repetitive behaviors. Current management approaches for ASD aim to resolve its clinical manifestations based on the type and severity of the disability. Although some medications like risperidone show potential in regulating ASD-associated symptoms, a comprehensive treatment strategy for ASD is yet to be discovered. To date, identifying appropriate therapeutic targets and treatment strategies remains challenging due to the complex pathogenesis associated with ASD. Therefore, a comprehensive approach must be tailored to target the numerous pathogenetic pathways of ASD. From currently viable and basic treatment strategies, this review explores the entire field of advancements in ASD management up to cutting-edge modern scientific research. A novel systematic and personalized treatment approach is suggested, combining the available medications and targeting each symptom accordingly. Herein, summarize and categorize the most appropriate ways of modern ASD management into three distinct categories: current, promising, and prospective strategies.
Collapse
Affiliation(s)
- Konstantin Yenkoyan
- Neuroscience Laboratory, Cobrain Center, Yerevan State Medical University after M. Heratsi, Yerevan, Armenia
- Department of Biochemistry, Yerevan State Medical University after M. Heratsi, Yerevan, Armenia
| | - Zadik Ounanian
- Neuroscience Laboratory, Cobrain Center, Yerevan State Medical University after M. Heratsi, Yerevan, Armenia
| | - Margarita Mirumyan
- Neuroscience Laboratory, Cobrain Center, Yerevan State Medical University after M. Heratsi, Yerevan, Armenia
- Department of Biochemistry, Yerevan State Medical University after M. Heratsi, Yerevan, Armenia
| | - Liana Hayrapetyan
- Neuroscience Laboratory, Cobrain Center, Yerevan State Medical University after M. Heratsi, Yerevan, Armenia
- Department of Radiation Oncology, Inselspital, Bern University Hospital and Department for BioMedical Research (DBMR), University of Bern, Switzerland
- Graduate School for Cellular and Biomedical Sciences, University of Bern, Switzerland
| | - Naira Zakaryan
- Department of Biochemistry, Yerevan State Medical University after M. Heratsi, Yerevan, Armenia
| | - Raisa Sahakyan
- Department of Biochemistry, Yerevan State Medical University after M. Heratsi, Yerevan, Armenia
| | - Geir Bjørklund
- Department of Research, Council for Nutritional and Environmental Medicine, Mo i Rana, Norway
| |
Collapse
|
13
|
De Simone R, Ajmone-Cat MA, Tartaglione AM, Calamandrei G, Minghetti L. Maternal suboptimal selenium intake and low-level lead exposure affect offspring's microglial immune profile and its reactivity to a subsequent inflammatory hit. Sci Rep 2023; 13:21448. [PMID: 38052845 PMCID: PMC10698039 DOI: 10.1038/s41598-023-45613-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2023] [Accepted: 10/21/2023] [Indexed: 12/07/2023] Open
Abstract
Micronutrients such as selenium (Se) are essentials since prenatal life to support brain and cognitive development. Se deficiency, which affects up to 1 billion people worldwide, can interact with common adverse environmental challenges including (Pb), exacerbating their toxic effects. Exploiting our recently validated rat model of maternal Se restriction and developmental low Pb exposure, our aims were to investigate: (i) the early consequences of suboptimal Se intake and low-Pb exposure on neuroinflammation in neonates' whole brains; (ii) the potential priming effect of suboptimal Se and low-Pb exposure on offspring's glial reactivity to a further inflammatory hit. To these aims female rats were fed with suboptimal (0.04 mg/kg; Subopt) and optimal (0.15 mg/kg; Opt) Se dietary levels throughout pregnancy and lactation and exposed or not to environmentally relevant Pb dose in drinking water (12.5 µg/mL) since 4 weeks pre-mating. We found an overall higher basal expression of inflammatory markers in neonatal brains, as well as in purified microglia and organotypic hippocampal slice cultures, from the Subopt Se offspring. Subopt/Pb cultures were highly activated than Subopt cultures and showed a higher susceptibility to the inflammatory challenge lipopolysaccharide than cultures from the Opt groups. We demonstrate that even a mild Se deficiency and low-Pb exposure during brain development can influence the neuroinflammatory tone of microglia, exacerbate the toxic effects of Pb and prime microglial reactivity to subsequent inflammatory stimuli. These neuroinflammatory changes may be responsible, at least in part, for adverse neurodevelopmental outcomes.
Collapse
Affiliation(s)
- R De Simone
- National Center for Drug Research and Evaluation, Istituto Superiore di Sanità, 00161, Rome, Italy.
| | - M A Ajmone-Cat
- National Center for Drug Research and Evaluation, Istituto Superiore di Sanità, 00161, Rome, Italy
| | - A M Tartaglione
- Center for Behavioral Sciences and Mental Health, Istituto Superiore di Sanità, 00161, Rome, Italy
| | - G Calamandrei
- Center for Behavioral Sciences and Mental Health, Istituto Superiore di Sanità, 00161, Rome, Italy
| | - L Minghetti
- Research Coordination and Support Service, Istituto Superiore di Sanità, 00161, Rome, Italy
| |
Collapse
|
14
|
Dou JF, Schmidt RJ, Volk HE, Nitta MM, Feinberg JI, Newschaffer CJ, Croen LA, Hertz-Picciotto I, Fallin MD, Bakulski KM. Exposure to heavy metals in utero and autism spectrum disorder at age 3: A meta-analysis of two longitudinal cohorts of siblings of children with autism. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2023:2023.11.21.23298827. [PMID: 38045240 PMCID: PMC10690342 DOI: 10.1101/2023.11.21.23298827] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/05/2023]
Abstract
Background Autism spectrum disorder (ASD) is a prevalent and heterogeneous neurodevelopmental disorder. Risk is attributed to genetic and prenatal environmental factors, though the environmental agents are incompletely characterized. Methods In Early Autism Risk Longitudinal Investigation (EARLI) and Markers of Autism Risk in Babies Learning Early Signs (MARBLES), two pregnancy cohorts of siblings of children with ASD, maternal urinary metals concentrations at two time points during pregnancy were measured using inductively coupled plasma mass spectrometry. At age three, clinicians assessed ASD with DSM-5 criteria. Using multivariable log binomial regression, we examined each metal for association with ASD status, adjusting for gestational age at urine sampling, child sex, maternal age, and maternal education, and meta-analyzed across the two cohorts. Results In EARLI (n=170) 17.6% of children were diagnosed with ASD, and an additional 43.5% were classified as having other non-neurotypical development (Non-TD). In MARBLES (n=156), 22.7% were diagnosed with ASD, while an additional 11.5% had Non-TD. In earlier pregnancy metals measures, having cadmium concentration over the level of detection was associated with 1.78 (1.19, 2.67) times higher risk of ASD, and 1.43 (1.06, 1.92) times higher risk of Non-TD. A doubling of early pregnancy cesium concentration was marginally associated with 1.81 (0.95, 3.42) times higher risk of ASD, and 1.58 (0.95, 2.63) times higher risk of Non-TD. Conclusion Exposure in utero to elevated levels of cadmium and cesium, as measured in maternal urine collected during pregnancy, was associated with increased risk of developing ASD.
Collapse
Affiliation(s)
- John F. Dou
- University of Michigan, Ann Arbor, Michigan, USA
| | | | | | | | | | | | - Lisa A. Croen
- Division of Research, Kaiser Permanente Northern California, Oakland, CA, USA
| | | | | | | |
Collapse
|
15
|
Önal S, Sachadyn-Król M, Kostecka M. A Review of the Nutritional Approach and the Role of Dietary Components in Children with Autism Spectrum Disorders in Light of the Latest Scientific Research. Nutrients 2023; 15:4852. [PMID: 38068711 PMCID: PMC10708497 DOI: 10.3390/nu15234852] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2023] [Revised: 11/15/2023] [Accepted: 11/16/2023] [Indexed: 12/18/2023] Open
Abstract
Autism spectrum disorder (ASD) is a neurodevelopmental disorder that affects several areas of mental development. The onset of ASD occurs in the first few years of life, usually before the age of 3 years. Proper nutrition is important to ensure that an individual's nutrient and energy requirements are met, and it can also have a moderating effect on the progression of the disorder. A systematic database search was conducted as a narrative review to determine whether nutrition and specific diets can potentially alter gastrointestinal symptoms and neurobehavioral disorders. Databases such as Science Direct, PubMed, Scopus, Web of Science (WoS), and Google Scholar were searched to find studies published between 2000 and September 2023 on the relationship between ASD, dietary approaches, and the role of dietary components. The review may indicate that despite extensive research into dietary interventions, there is a general lack of conclusive scientific data about the effect of therapeutic diets on ASD; therefore, no definitive recommendation can be made for any specific nutritional therapy as a standard treatment for ASD. An individualized dietary approach and the dietician's role in the therapeutic team are very important elements of every therapy. Parents and caregivers should work with nutrition specialists, such as registered dietitians or healthcare providers, to design meal plans for autistic individuals, especially those who would like to implement an elimination diet.
Collapse
Affiliation(s)
- Seda Önal
- Department of Nutrition and Dietetics, Health Sciences Institute, Ankara University, 06110 Ankara, Turkey;
- Department of Nutrition and Dietetics, Faculty of Health Sciences, Fırat University, 23200 Elazığ, Turkey
| | - Monika Sachadyn-Król
- Faculty of Food Science and Biotechnology, University of Life Sciences in Lublin, 20-950 Lublin, Poland;
| | - Małgorzata Kostecka
- Faculty of Food Science and Biotechnology, University of Life Sciences in Lublin, 20-950 Lublin, Poland;
| |
Collapse
|
16
|
Luo Y, Lv K, Du Z, Zhang D, Chen M, Luo J, Wang L, Liu T, Gong H, Fan X. Minocycline improves autism-related behaviors by modulating microglia polarization in a mouse model of autism. Int Immunopharmacol 2023; 122:110594. [PMID: 37441807 DOI: 10.1016/j.intimp.2023.110594] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Revised: 06/13/2023] [Accepted: 06/30/2023] [Indexed: 07/15/2023]
Abstract
Autism spectrum disorder (ASD) is a heterogeneous neurodevelopmental disorder with few pharmacological treatments. Minocycline, a tetracycline derivative that inhibits microglial activation, has been well-identified with anti-inflammatory properties and neuroprotective effects. A growing body of research suggests that ASD is associated with neuroinflammation, abnormal neurotransmitter levels, and neurogenesis. Thus, we hypothesized that minocycline could improve autism-related behaviors by inhibiting microglia activation and altering neuroinflammation. To verify our hypothesis, we used a mouse model of autism, BTBR T + Itpr3tf/J (BTBR). As expected, minocycline administration rescued the sociability and repetitive, stereotyped behaviors of BTBR mice while having no effect in C57BL/6J mice. We also found that minocycline improved neurogenesis and inhibited microglia activation in the hippocampus of BTBR mice. In addition, minocycline treatment inhibited Erk1/2 phosphorylation in the hippocampus of BTBR mice. Our findings show that minocycline administration alleviates ASD-like behaviors in BTBR mice and improves neurogenesis, suggesting that minocycline supplementation might be a potential strategy for improving ASD symptoms.
Collapse
Affiliation(s)
- Yi Luo
- Department of Military Cognitive Psychology, School of Psychology, Army Medical University, Chongqing 400038, China
| | - Keyi Lv
- Department of Military Cognitive Psychology, School of Psychology, Army Medical University, Chongqing 400038, China
| | - Zhulin Du
- Department of Military Cognitive Psychology, School of Psychology, Army Medical University, Chongqing 400038, China; School of Life Sciences, Chongqing University, Chongqing 401331, China
| | - Dandan Zhang
- Department of Military Cognitive Psychology, School of Psychology, Army Medical University, Chongqing 400038, China
| | - Mei Chen
- Department of Military Cognitive Psychology, School of Psychology, Army Medical University, Chongqing 400038, China
| | - Jing Luo
- Department of Military Cognitive Psychology, School of Psychology, Army Medical University, Chongqing 400038, China
| | - Lian Wang
- Department of Military Cognitive Psychology, School of Psychology, Army Medical University, Chongqing 400038, China
| | - Tianyao Liu
- Department of Military Cognitive Psychology, School of Psychology, Army Medical University, Chongqing 400038, China
| | - Hong Gong
- Department of Military Cognitive Psychology, School of Psychology, Army Medical University, Chongqing 400038, China.
| | - Xiaotang Fan
- Department of Military Cognitive Psychology, School of Psychology, Army Medical University, Chongqing 400038, China.
| |
Collapse
|
17
|
Jiang P, Zhou L, Du Z, Zhao L, Tang Y, Fei X, Wang L, Li D, Li S, Yang H, Fan X, Liao H. Icariin alleviates autistic-like behavior, hippocampal inflammation and vGlut1 expression in adult BTBR mice. Behav Brain Res 2023; 445:114384. [PMID: 36889463 DOI: 10.1016/j.bbr.2023.114384] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2022] [Revised: 02/23/2023] [Accepted: 03/05/2023] [Indexed: 03/08/2023]
Abstract
Autism spectrum disorder (ASD) is a complicated, heterogeneous disorder characterized by social interaction deficits and repetitive stereotypical behaviors. Neuroinflammation and synaptic protein dysregulation have been implicated in ASD pathogenesis. Icariin (ICA) has proven to exert neuroprotective function through anti-inflammatory function. Therefore, this study aimed to clarify the effects of ICA treatment on autism-like behavioral deficits in BTBR mice and whether these changes were related to modifications in the hippocampal inflammation and the balance of excitatory/inhibitory synapses. ICA supplementation (80 mg/kg, once daily for ten days, i.g.) ameliorated social deficits, repetitive stereotypical behaviors, and short-term memory deficit without affecting locomotor activity or anxiety-like behaviors of BTBR mice. Furthermore, ICA treatment inhibited neuroinflammation via decreasing microglia number and the soma size in the CA1 region of the hippocampus, as well as the protein levels of proinflammatory cytokines in the hippocampus of BTBR mice. In addition, ICA treatment also rescued excitatory-inhibitory synaptic protein imbalance by inhibiting the increased vGlut1 level without affecting the vGAT level in the BTBR mouse hippocampus. Collectively, the observed results indicate that ICA treatment alleviates ASD-like features, mitigates disturbed balance of excitatory-inhibitory synaptic protein, and inhibits hippocampal inflammation in BTBR mice, and may represent a novel promising drug for ASD treatment.
Collapse
Affiliation(s)
- Peiyan Jiang
- The Affiliated Traditional Chinese Medicine Hospital of Southwest Medical University, Luzhou, Sichuan, China; Department of Military Cognitive Psychology, School of Psychology, Army Medical University, Chongqing 400038, China
| | - Lianyu Zhou
- Department of Military Cognitive Psychology, School of Psychology, Army Medical University, Chongqing 400038, China; Department of Neurosurgery, Xinqiao Hospital, Army Medical University, Chongqing 400037, China
| | - Zhulin Du
- School of Life Sciences, Chongqing University, Chongqing 401331, China
| | - Linyang Zhao
- Department of Military Cognitive Psychology, School of Psychology, Army Medical University, Chongqing 400038, China
| | - Yexi Tang
- Department of Neurosurgery, Xinqiao Hospital, Army Medical University, Chongqing 400037, China
| | - Xinghang Fei
- Department of Military Cognitive Psychology, School of Psychology, Army Medical University, Chongqing 400038, China; Department of Neurosurgery, Xinqiao Hospital, Army Medical University, Chongqing 400037, China
| | - Lian Wang
- Department of Military Cognitive Psychology, School of Psychology, Army Medical University, Chongqing 400038, China
| | - Dabing Li
- School of Basic Medical Sciences, Southwest Medical University, Luzhou, Sichuan, China
| | - Song Li
- Department of Neurosurgery, Xinqiao Hospital, Army Medical University, Chongqing 400037, China; Chongqing Institute for Brain and Intelligence, Guangyang Bay Laboratory, Chongqing, China
| | - Hui Yang
- Department of Neurosurgery, Xinqiao Hospital, Army Medical University, Chongqing 400037, China; Chongqing Institute for Brain and Intelligence, Guangyang Bay Laboratory, Chongqing, China.
| | - Xiaotang Fan
- Department of Military Cognitive Psychology, School of Psychology, Army Medical University, Chongqing 400038, China.
| | - Huiling Liao
- The Affiliated Traditional Chinese Medicine Hospital of Southwest Medical University, Luzhou, Sichuan, China.
| |
Collapse
|
18
|
Indika NLR, Frye RE, Rossignol DA, Owens SC, Senarathne UD, Grabrucker AM, Perera R, Engelen MPKJ, Deutz NEP. The Rationale for Vitamin, Mineral, and Cofactor Treatment in the Precision Medical Care of Autism Spectrum Disorder. J Pers Med 2023; 13:252. [PMID: 36836486 PMCID: PMC9964499 DOI: 10.3390/jpm13020252] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Revised: 01/27/2023] [Accepted: 01/28/2023] [Indexed: 01/31/2023] Open
Abstract
Children with autism spectrum disorder may exhibit nutritional deficiencies due to reduced intake, genetic variants, autoantibodies interfering with vitamin transport, and the accumulation of toxic compounds that consume vitamins. Importantly, vitamins and metal ions are essential for several metabolic pathways and for neurotransmitter functioning. The therapeutic benefits of supplementing vitamins, minerals (Zinc, Magnesium, Molybdenum, and Selenium), and other cofactors (coenzyme Q10, alpha-lipoic acid, and tetrahydrobiopterin) are mediated through their cofactor as well as non-cofactor functions. Interestingly, some vitamins can be safely administered at levels far above the dose typically used to correct the deficiency and exert effects beyond their functional role as enzyme cofactors. Moreover, the interrelationships between these nutrients can be leveraged to obtain synergistic effects using combinations. The present review discusses the current evidence for using vitamins, minerals, and cofactors in autism spectrum disorder, the rationale behind their use, and the prospects for future use.
Collapse
Affiliation(s)
- Neluwa-Liyanage R. Indika
- Department of Biochemistry, Faculty of Medical Sciences, University of Sri Jayewardenepura, Nugegoda 10250, Sri Lanka
| | - Richard E. Frye
- Autism Discovery and Research Foundation, Phoenix, AZ 85050, USA
- Rossignol Medical Center, Phoenix, AZ 85050, USA
| | - Daniel A. Rossignol
- Rossignol Medical Center, Phoenix, AZ 85050, USA
- Rossignol Medical Center, Aliso Viejo, CA 92656, USA
| | - Susan C. Owens
- Autism Oxalate Project at the Autism Research Institute, San Diego, CA 92116, USA
| | - Udara D. Senarathne
- Department of Biochemistry, Faculty of Medical Sciences, University of Sri Jayewardenepura, Nugegoda 10250, Sri Lanka
| | - Andreas M. Grabrucker
- Department of Biological Sciences, University of Limerick, V94 T9PX Limerick, Ireland
- Bernal Institute, University of Limerick, V94 T9PX Limerick, Ireland
- Health Research Institute (HRI), University of Limerick, V94 T9PX Limerick, Ireland
| | - Rasika Perera
- Department of Biochemistry, Faculty of Medical Sciences, University of Sri Jayewardenepura, Nugegoda 10250, Sri Lanka
| | - Marielle P. K. J. Engelen
- Center for Translational Research in Aging & Longevity, Texas A&M University, College Station, TX 77843, USA
| | - Nicolaas E. P. Deutz
- Center for Translational Research in Aging & Longevity, Texas A&M University, College Station, TX 77843, USA
| |
Collapse
|
19
|
Li H, Xu Y, Li W, Zhang L, Zhang X, Li B, Chen Y, Wang X, Zhu C. Novel insights into the immune cell landscape and gene signatures in autism spectrum disorder by bioinformatics and clinical analysis. Front Immunol 2023; 13:1082950. [PMID: 36761165 PMCID: PMC9905846 DOI: 10.3389/fimmu.2022.1082950] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2022] [Accepted: 12/28/2022] [Indexed: 01/26/2023] Open
Abstract
The pathogenesis of autism spectrum disorder (ASD) is not well understood, especially in terms of immunity and inflammation, and there are currently no early diagnostic or treatment methods. In this study, we obtained six existing Gene Expression Omnibus transcriptome datasets from the blood of ASD patients. We performed functional enrichment analysis, PPI analysis, CIBERSORT algorithm, and Spearman correlation analysis, with a focus on expression profiling in hub genes and immune cells. We validated that monocytes and nonclassical monocytes were upregulated in the ASD group using peripheral blood (30 children with ASD and 30 age and sex-matched typically developing children) using flow cytometry. The receiver operating characteristic curves (PSMC4 and ALAS2) and analysis stratified by ASD severity (LIlRB1 and CD69) showed that they had predictive value using the "training" and verification groups. Three immune cell types - monocytes, M2 macrophages, and activated dendritic cells - had different degrees of correlation with 15 identified hub genes. In addition, we analyzed the miRNA-mRNA network and agents-gene interactions using miRNA databases (starBase and miRDB) and the DSigDB database. Two miRNAs (miR-342-3p and miR-1321) and 23 agents were linked with ASD. These findings suggest that dysregulation of the immune system may contribute to ASD development, especially dysregulation of monocytes and monocyte-derived cells. ASD-related hub genes may serve as potential predictors for ASD, and the potential ASD-related miRNAs and agents identified here may open up new strategies for the prevention and treatment of ASD.
Collapse
Affiliation(s)
- Hongwei Li
- Henan Key Laboratory of Child Brain Injury and Henan Pediatric Clinical Research Center, Institute of Neuroscience and the Third Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Yiran Xu
- Henan Key Laboratory of Child Brain Injury and Henan Pediatric Clinical Research Center, Institute of Neuroscience and the Third Affiliated Hospital of Zhengzhou University, Zhengzhou, China,National Health Council (NHC) Key Laboratory of Birth Defects Prevention, Henan Key Laboratory of Population Defects Prevention, Zhengzhou, China
| | - Wenhua Li
- Henan Key Laboratory of Child Brain Injury and Henan Pediatric Clinical Research Center, Institute of Neuroscience and the Third Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Lingling Zhang
- Henan Key Laboratory of Child Brain Injury and Henan Pediatric Clinical Research Center, Institute of Neuroscience and the Third Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Xiaoli Zhang
- Henan Key Laboratory of Child Brain Injury and Henan Pediatric Clinical Research Center, Institute of Neuroscience and the Third Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Bingbing Li
- Henan Key Laboratory of Child Brain Injury and Henan Pediatric Clinical Research Center, Institute of Neuroscience and the Third Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Yiwen Chen
- Henan Key Laboratory of Child Brain Injury and Henan Pediatric Clinical Research Center, Institute of Neuroscience and the Third Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Xiaoyang Wang
- Henan Key Laboratory of Child Brain Injury and Henan Pediatric Clinical Research Center, Institute of Neuroscience and the Third Affiliated Hospital of Zhengzhou University, Zhengzhou, China,Centre of Perinatal Medicine and Health, Institute of Clinical Science, University of Gothenburg, Gothenburg, Sweden
| | - Changlian Zhu
- Henan Key Laboratory of Child Brain Injury and Henan Pediatric Clinical Research Center, Institute of Neuroscience and the Third Affiliated Hospital of Zhengzhou University, Zhengzhou, China,Center for Brain Repair and Rehabilitation, Institute of Neuroscience and Physiology, University of Gothenburg, Gothenburg, Sweden,*Correspondence: Changlian Zhu, ;;
| |
Collapse
|
20
|
Garbo S, Di Giacomo S, Łażewska D, Honkisz-Orzechowska E, Di Sotto A, Fioravanti R, Zwergel C, Battistelli C. Selenium-Containing Agents Acting on Cancer-A New Hope? Pharmaceutics 2022; 15:pharmaceutics15010104. [PMID: 36678733 PMCID: PMC9860877 DOI: 10.3390/pharmaceutics15010104] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2022] [Revised: 12/18/2022] [Accepted: 12/24/2022] [Indexed: 12/29/2022] Open
Abstract
Selenium-containing agents are more and more considered as an innovative potential treatment option for cancer. Light is shed not only on the considerable advancements made in understanding the complex biology and chemistry related to selenium-containing small molecules but also on Se-nanoparticles. Numerous Se-containing agents have been widely investigated in recent years in cancer therapy in relation to tumour development and dissemination, drug delivery, multidrug resistance (MDR) and immune system-related (anti)cancer effects. Despite numerous efforts, Se-agents apart from selenocysteine and selenomethionine have not yet reached clinical trials for cancer therapy. The purpose of this review is to provide a concise critical overview of the current state of the art in the development of highly potent target-specific Se-containing agents.
Collapse
Affiliation(s)
- Sabrina Garbo
- Department of Molecular Medicine, Sapienza University of Rome, Viale Regina Elena 324, 00161 Rome, Italy
| | - Silvia Di Giacomo
- Department of Physiology and Pharmacology “V. Erspamer”, Sapienza University of Rome, Piazzale Aldo Moro 5, 00185 Rome, Italy
| | - Dorota Łażewska
- Department of Technology and Biotechnology of Drugs, Faculty of Pharmacy, Jagiellonian University Medical College in Kraków, Medyczna 9, 30-688 Kraków, Poland
| | - Ewelina Honkisz-Orzechowska
- Department of Technology and Biotechnology of Drugs, Faculty of Pharmacy, Jagiellonian University Medical College in Kraków, Medyczna 9, 30-688 Kraków, Poland
| | - Antonella Di Sotto
- Department of Physiology and Pharmacology “V. Erspamer”, Sapienza University of Rome, Piazzale Aldo Moro 5, 00185 Rome, Italy
| | - Rossella Fioravanti
- Department of Drug Chemistry and Technologies, Sapienza University of Rome, Piazzale Aldo Moro 5, 00185 Rome, Italy
| | - Clemens Zwergel
- Department of Drug Chemistry and Technologies, Sapienza University of Rome, Piazzale Aldo Moro 5, 00185 Rome, Italy
- Correspondence: (C.Z.); (C.B.)
| | - Cecilia Battistelli
- Department of Molecular Medicine, Sapienza University of Rome, Viale Regina Elena 324, 00161 Rome, Italy
- Correspondence: (C.Z.); (C.B.)
| |
Collapse
|
21
|
Potential Benefits of Selenium Supplementation in Reducing Insulin Resistance in Patients with Cardiometabolic Diseases: A Systematic Review and Meta-Analysis. Nutrients 2022; 14:nu14224933. [PMID: 36432623 PMCID: PMC9693215 DOI: 10.3390/nu14224933] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2022] [Revised: 11/11/2022] [Accepted: 11/18/2022] [Indexed: 11/23/2022] Open
Abstract
BACKGROUND Selenium is a trace element that has been reported to be effective in regulating glucose and lipid metabolism. However, there is conflicting evidence from different clinical trials of selenium supplementation in treating cardiometabolic diseases (CMDs). OBJECTIVE This meta-analysis aimed to identify the effects of selenium supplementation on insulin resistance, glucose homeostasis, and lipid profiles in patients with CMDs. METHODS Randomized controlled trials (RCTs) of selenium supplementation for treating CMDs were screened in five electronic databases. Insulin levels, homeostatic model assessment of insulin resistance (HOMA-IR), fasting plasma glucose (FPG), and glycosylated hemoglobin A1C (HbA1c) were defined as the primary outcome markers, and lipid profiles were considered the secondary outcome markers. RESULTS Ten studies involving 526 participants were included in the meta-analysis. The results suggested that selenium supplementation significantly reduced serum insulin levels (standardized men difference [SMD]: -0.53; 95% confidence interval [CI] [-0.84, -0.21], p = 0.001, I2 = 68%) and HOMA-IR (SMD: -0.50, 95% CI [-0.86, -0.14], p = 0.006, I2 = 75%) and increased high-density lipoprotein cholesterol (HDL-C) levels (SMD: 0.97; 95% CI [0.26, 1.68], p = 0.007, I2 = 92%), but had no significant effect on FPG, total cholesterol (TC), triglycerides (TG), low-density lipoprotein cholesterol (LDL-C), and very low-density lipoprotein cholesterol (VLDL-C). CONCLUSION Current evidence supports the beneficial effects of selenium supplementation on reducing insulin levels, HOMA-IR, and increasing HDL-C levels. Selenium supplementation may be an effective strategy for reducing insulin resistance in patients with CMDs. However, more high-quality clinical studies are needed to improve the certainty of our estimates.
Collapse
|