1
|
Zöller K, To D, Bernkop-Schnürch A. Biomedical applications of functional hydrogels: Innovative developments, relevant clinical trials and advanced products. Biomaterials 2025; 312:122718. [PMID: 39084097 DOI: 10.1016/j.biomaterials.2024.122718] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2024] [Revised: 07/08/2024] [Accepted: 07/26/2024] [Indexed: 08/02/2024]
Abstract
Functional hydrogels are used for numerous biomedical applications such as tissue engineering, wound dressings, lubricants, contact lenses and advanced drug delivery systems. Most of them are based on synthetic or natural polymers forming a three-dimensional network that contains aqueous media. Among synthetic polymers, poly(meth)acrylates, polyethyleneglycols, poly(vinylalcohols), poly(vinylpyrrolidones), PLGA and poly(urethanes) are of high relevance, whereas natural polymers are mainly polysaccharides such as hyaluronic acid, alginate or chitosan and proteins such as albumin, collagen or elastin. In contrast to most synthetic polymers, natural polymers are biodegradable. Both synthetic and natural polymers are often chemically modified in order to improve or induce favorable properties and functions like high mechanical strength, stiffness, elasticity, high porosity, adhesive properties, in situ gelling properties, high water binding capacity or drug release controlling properties. Within this review we provide an overview about the broad spectrum of biomedical applications of functional hydrogels, summarize innovative approaches, discuss the concept of relevant functional hydrogels that are in clinical trials and highlight advanced products as examples for successful developments.
Collapse
Affiliation(s)
- Katrin Zöller
- Department of Pharmaceutical Technology, Institute of Pharmacy, University of Innsbruck, Innrain 80/82, Innsbruck, 6020, Austria
| | - Dennis To
- Department of Pharmaceutical Technology, Institute of Pharmacy, University of Innsbruck, Innrain 80/82, Innsbruck, 6020, Austria
| | - Andreas Bernkop-Schnürch
- Department of Pharmaceutical Technology, Institute of Pharmacy, University of Innsbruck, Innrain 80/82, Innsbruck, 6020, Austria.
| |
Collapse
|
2
|
Fragassi A, Greco A, Palomba R. Lubricant Strategies in Osteoarthritis Treatment: Transitioning from Natural Lubricants to Drug Delivery Particles with Lubricant Properties. J Xenobiot 2024; 14:1268-1292. [PMID: 39311151 PMCID: PMC11417909 DOI: 10.3390/jox14030072] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2024] [Revised: 09/06/2024] [Accepted: 09/13/2024] [Indexed: 09/26/2024] Open
Abstract
Osteoarthritis (OA) is a debilitating joint disease characterized by cartilage degradation, leading to pain and functional impairment. A key contributor to OA progression is the decline in cartilage lubrication. In physiological conditions, synovial fluid (SF) macromolecules like hyaluronic acid (HA), phospholipids, and lubricin play a crucial role in the boundary lubrication of articular cartilage. In early OA, cartilage damage triggers inflammation, altering SF composition and compromising the lubrication layer. This increases friction between mating interfaces, worsening cartilage degradation and local inflammation. Therefore, early-stage restoration of lubrication (by injecting in the joint different classes of compounds and formulations) could alleviate, and potentially reverse, OA progression. In the light of this, a broad variety of lubricants have been investigated for their ability to reduce friction in OA joints and promote cartilage repair in clinical and preclinical studies. This review examines recent advancements in lubricant-based therapy for OA, focusing on natural, bioinspired, and alternative products. Starting from the currently applied therapy, mainly based on natural lubricants as HA, we will present their modified versions, either in hydrogel form or with specific biomimetic moieties with the aim of reducing their clearance from the joint and of enhancing their lubricating properties. Finally, the most advanced and recent formulation, represented by alternative strategies, will be proposed. Particular emphasis will be placed on those ones involving new types of hydrogels, microparticles, nanoparticles, and liposomes, which are currently under investigation in preclinical studies. The potential application of particles and liposomes could foster the transition from natural lubricants to Drug Delivery Systems (DDSs) with lubricant features; transition which could provide more complete OA treatments, by simultaneously providing lubrication replacement and sustained release of different payloads and active agents directly at the joint level. Within each category, we will examine relevant preclinical studies, highlighting challenges and future prospects.
Collapse
Affiliation(s)
- Agnese Fragassi
- Department of Pharmaceutical and Pharmacological Sciences, University of Padova, Via F. Marzolo 5, 35131 Padova, Italy
| | - Antonietta Greco
- Department of Medicine and Surgery, NanoMedicine Center (NANOMIB), University of Milano-Bicocca, Via Follereau 3, 20854 Vedano al Lambro, Italy
| | - Roberto Palomba
- Laboratory of Nanotechnology for Precision Medicine, Italian Institute of Technology, Via Morego 30, 16163 Genova, Italy
| |
Collapse
|
3
|
Ayala S, Matan SO, Delco ML, Fortier LA, Cohen I, Bonassar LJ. Degradation of lubricating molecules in synovial fluid alters chondrocyte sensitivity to shear strain. J Orthop Res 2024. [PMID: 39182184 DOI: 10.1002/jor.25960] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Revised: 07/01/2024] [Accepted: 08/03/2024] [Indexed: 08/27/2024]
Abstract
Articular joints facilitate motion and transfer loads to underlying bone through a combination of cartilage tissue and synovial fluid, which together generate a low-friction contact surface. Traumatic injury delivered to cartilage and the surrounding joint capsule causes secretion of proinflammatory cytokines by chondrocytes and the synovium, triggering cartilage matrix breakdown and impairing the ability of synovial fluid to lubricate the joint. Once these inflammatory processes become chronic, posttraumatic osteoarthritis (PTOA) development begins. However, the exact mechanism by which negative alterations to synovial fluid leads to PTOA pathogenesis is not fully understood. We hypothesize that removing the lubricating macromolecules from synovial fluid alters the relationship between mechanical loads and subsequent chondrocyte behavior in injured cartilage. To test this hypothesis, we utilized an ex vivo model of PTOA that involves subjecting cartilage explants to a single rapid impact followed by continuous articulation within a lubricating bath of either healthy synovial fluid, phosphate-buffered saline (PBS), synovial fluid treated with hyaluronidase, or synovial fluid treated with trypsin. These treatments degrade the main macromolecules attributed with providing synovial fluid with its lubricating properties; hyaluronic acid and lubricin. Explants were then bisected and fluorescently stained to assess global and depth-dependent cell death, caspase activity, and mitochondrial depolarization. Explants were tested via confocal elastography to determine the local shear strain profile generated in each lubricant. These results show that degrading hyaluronic acid or lubricin in synovial fluid significantly increases middle zone chondrocyte damage and shear strain loading magnitudes, while also altering chondrocyte sensitivity to loading.
Collapse
Affiliation(s)
- Steven Ayala
- Meinig School of Biomedical Engineering, Cornell University, Ithaca, New York, USA
| | - Salman O Matan
- Meinig School of Biomedical Engineering, Cornell University, Ithaca, New York, USA
| | - Michelle L Delco
- Department of Clinical Sciences, Cornell University College of Veterinary Medicine, Ithaca, New York, USA
| | - Lisa A Fortier
- Department of Clinical Sciences, Cornell University College of Veterinary Medicine, Ithaca, New York, USA
| | - Itai Cohen
- Department of Physics, Cornell University, Ithaca, New York, USA
| | - Lawrence J Bonassar
- Meinig School of Biomedical Engineering, Cornell University, Ithaca, New York, USA
- Sibley School of Mechanical and Aerospace Engineering, Cornell University, Ithaca, New York, USA
| |
Collapse
|
4
|
Zhou J, Li X, Han Z, Qian Y, Bai L, Han Q, Gao M, Xue Y, Geng D, Yang X, Hao Y. Acetyl-11-keto-β-boswellic acid restrains the progression of synovitis in osteoarthritis via the Nrf2/HO-1 pathway. Acta Biochim Biophys Sin (Shanghai) 2024. [PMID: 38982914 DOI: 10.3724/abbs.2024102] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/11/2024] Open
Abstract
Synovial inflammation plays a key role in osteoarthritis (OA) pathogenesis. Fibroblast-like synoviocytes (FLSs) represent a distinct cell subpopulation within the synovium, and their unique phenotypic alterations are considered significant contributors to inflammation and fibrotic responses. The underlying mechanism by which acetyl-11-keto-β-boswellic acid (AKBA) modulates FLS activation remains unclear. This study aims to assess the beneficial effects of AKBA through both in vitro and in vivo investigations. Network pharmacology evaluation is used to identify potential targets of AKBA in OA. We evaluate the effects of AKBA on FLSs activation in vitro and the regulatory role of AKBA on the Nrf2/HO-1 signaling pathway. ML385 (an Nrf2 inhibitor) is used to verify the binding of AKBA to its target in FLSs. We validate the in vivo efficacy of AKBA in alleviating OA using anterior cruciate ligament transection and destabilization of the medial meniscus (ACLT+DMM) in a rat model. Network pharmacological analysis reveals the potential effect of AKBA on OA. AKBA effectively attenuates lipopolysaccharide (LPS)-induced abnormal migration and invasion and the production of inflammatory mediators, matrix metalloproteinases (MMPs), and reactive oxygen species (ROS) in FLSs, contributing to the restoration of the synovial microenvironment. After treatment with ML385, the effect of AKBA on FLSs is reversed. In vivo studies demonstrate that AKBA mitigates synovial inflammation and fibrotic responses induced by ACLT+DMM in rats via activation of the Nrf2/HO-1 axis. AKBA exhibits theoretical potential for alleviating OA progression through the Nrf2/HO-1 pathway and represents a viable therapeutic candidate for this patient population.
Collapse
Affiliation(s)
- Jing Zhou
- Orthopedics and Sports Medicine Center, the Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou 215006, China
- Gusu School, Nanjing Medical University, Suzhou 215006, China
| | - Xueyan Li
- Gusu School, Nanjing Medical University, Suzhou 215006, China
- Department of Anesthesia, the Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou 215006, China
| | - Zeyu Han
- Department of Foot and Ankle Surgery, Beijing Tongren Hospital, Capital Medical University, Beijing 100730, China
| | - Yinhua Qian
- Orthopedics and Sports Medicine Center, the Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou 215006, China
- Gusu School, Nanjing Medical University, Suzhou 215006, China
| | - Lang Bai
- Orthopedics and Sports Medicine Center, the Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou 215006, China
- Gusu School, Nanjing Medical University, Suzhou 215006, China
| | - Qibin Han
- Orthopedics and Sports Medicine Center, the Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou 215006, China
- Gusu School, Nanjing Medical University, Suzhou 215006, China
| | - Maofeng Gao
- Department of Orthopaedics, the First Affiliated Hospital of Soochow University, Suzhou 215006, China
| | - Yi Xue
- Department of Orthopaedics, Changshu Hospital Affiliated to Nanjing University of Traditional Chinese Medicine, Suzhou 215500, China
| | - Dechun Geng
- Department of Orthopaedics, the First Affiliated Hospital of Soochow University, Suzhou 215006, China
| | - Xing Yang
- Orthopedics and Sports Medicine Center, the Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou 215006, China
- Gusu School, Nanjing Medical University, Suzhou 215006, China
| | - Yuefeng Hao
- Orthopedics and Sports Medicine Center, the Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou 215006, China
- Gusu School, Nanjing Medical University, Suzhou 215006, China
| |
Collapse
|
5
|
Chang W, Chen L, Chen K. The bioengineering application of hyaluronic acid in tissue regeneration and repair. Int J Biol Macromol 2024; 270:132454. [PMID: 38763255 DOI: 10.1016/j.ijbiomac.2024.132454] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Revised: 05/04/2024] [Accepted: 05/15/2024] [Indexed: 05/21/2024]
Abstract
The multifaceted role of hyaluronic acid (HA) across diverse biomedical disciplines underscores its versatility in tissue regeneration and repair. HA hydrogels employ different crosslinking including chemical (chitosan, collagen), photo- initiation (riboflavin, LAP), enzymatic (HRP/H2O2), and physical interactions (hydrogen bonds, metal coordination). In biophysics and biochemistry, HA's signaling pathways, primarily through CD44 and RHAMM receptors, modulate cell behavior (cell migration; internalization of HA), inflammation, and wound healing. Particularly, smaller HA fragments stimulate inflammatory responses through toll-like receptors, impacting macrophages and cytokine expression. HA's implications in oncology highlight its involvement in tumor progression, metastasis, and treatment. Elevated HA in tumor stroma impacts apoptosis resistance and promotes tumor growth, presenting potential therapeutic targets to halt tumor progression. In orthopedics, HA's presence in synovial fluid aids in osteoarthritis management, as its supplementation alleviates pain, enhances synovial fluid's viscoelastic properties, and promotes cartilage integrity. In ophthalmology, HA's application in dry eye syndrome addresses symptoms by moisturizing the eyes, replenishing tear film deficiencies, and facilitating wound healing. Intravitreal injections and hydrogel-based systems offer versatile approaches for drug delivery and vitreous humor replacement. For skin regeneration and wound healing, HA hydrogel dressings exhibit exceptional properties by promoting moist wound healing and facilitating tissue repair. Integration of advanced regenerative tools like stem cells and solubilized amnion membranes into HA-based systems accelerates wound closure and tissue recovery. Overall, HA's unique properties and interactions render it a promising candidate across diverse biomedical domains, showcasing immense potentials in tissue regeneration and therapeutic interventions. Nevertheless, many detailed cellular and molecular mechanisms of HA and its applications remain unexplored and warrant further investigation.
Collapse
Affiliation(s)
- WeiTing Chang
- Department of Obstetrics and Gynecology, Taipei Tzu-Chi Hospital, The Buddhist Tzu-Chi Medical Foundation, Taipei, Taiwan
| | - LiRu Chen
- Department of Physical Medicine and Rehabilitation, Mackay Memorial Hospital, Taipei, Taiwan; Department of Mechanical Engineering, National YangMing ChiaoTung University, Hsinchu, Taiwan
| | - KuoHu Chen
- Department of Obstetrics and Gynecology, Taipei Tzu-Chi Hospital, The Buddhist Tzu-Chi Medical Foundation, Taipei, Taiwan; School of Medicine, Tzu-Chi University, Hualien, Taiwan.
| |
Collapse
|
6
|
Kuppa SS, Kang JY, Yang HY, Lee SC, Sankaranarayanan J, Kim HK, Seon JK. Hyaluronic Acid Viscosupplement Modulates Inflammatory Mediators in Chondrocyte and Macrophage Coculture via MAPK and NF-κB Signaling Pathways. ACS OMEGA 2024; 9:21467-21483. [PMID: 38764654 PMCID: PMC11097370 DOI: 10.1021/acsomega.4c01911] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Revised: 03/30/2024] [Accepted: 04/18/2024] [Indexed: 05/21/2024]
Abstract
Osteoarthritis (OA) is a chronic musculoskeletal disorder characterized by cartilage degeneration and synovial inflammation. Paracrine interactions between chondrocytes and macrophages play an essential role in the onset and progression of OA. In this study, in replicating the inflammatory response during OA pathogenesis, chondrocytes were treated with interleukin-1β (IL-1β), and macrophages were treated with lipopolysaccharide and interferon-γ. In addition, a coculture system was developed to simulate the biological situation in the joint. In this study, we examined the impact of hyaluronic acid (HA) viscosupplement, particularly Hyruan Plus, on chondrocytes and macrophages. Notably, this viscosupplement has demonstrated promising outcomes in reducing inflammation; however, the underlying mechanism of action remains elusive. The viscosupplement attenuated inflammation, showing an inhibitory effect on nitric oxide production, downregulating proinflammatory cytokines such as matrix metalloproteinases (MMP13 and MMP3), and upregulating the expression levels of type II collagen and aggrecan in chondrocytes. HA also reduced the expression level of inflammatory cytokines such as IL-1β, TNF-α, and IL-6 in macrophages, and HA exerted an overall protective effect by partially suppressing the MAPK pathway in chondrocytes and p65/NF-κB signaling in macrophages. Therefore, HA shows potential as a viscosupplement for treating arthritic joints.
Collapse
Affiliation(s)
- Sree Samanvitha Kuppa
- Department
of Biomedical Sciences, Chonnam National
University Medical School, Hwasun 58128, Korea
- Department
of Orthopaedics Surgery, Center for Joint
Disease of Chonnam National University Hwasun Hospital, 322 Seoyang-ro, Hwasun-eup, Jeonnam 519-763, Korea
- Korea
Biomedical Materials and Devices Innovation Research Center of Chonnam
National University Hospital, 42, Jebong-ro, Dong-gu, Gwangju 501-757, Korea
| | - Ju Yeon Kang
- Department
of Orthopaedics Surgery, Center for Joint
Disease of Chonnam National University Hwasun Hospital, 322 Seoyang-ro, Hwasun-eup, Jeonnam 519-763, Korea
- Korea
Biomedical Materials and Devices Innovation Research Center of Chonnam
National University Hospital, 42, Jebong-ro, Dong-gu, Gwangju 501-757, Korea
| | - Hong Yeol Yang
- Department
of Orthopaedics Surgery, Center for Joint
Disease of Chonnam National University Hwasun Hospital, 322 Seoyang-ro, Hwasun-eup, Jeonnam 519-763, Korea
- Korea
Biomedical Materials and Devices Innovation Research Center of Chonnam
National University Hospital, 42, Jebong-ro, Dong-gu, Gwangju 501-757, Korea
| | - Seok Cheol Lee
- Department
of Orthopaedics Surgery, Center for Joint
Disease of Chonnam National University Hwasun Hospital, 322 Seoyang-ro, Hwasun-eup, Jeonnam 519-763, Korea
- Korea
Biomedical Materials and Devices Innovation Research Center of Chonnam
National University Hospital, 42, Jebong-ro, Dong-gu, Gwangju 501-757, Korea
| | - Jaishree Sankaranarayanan
- Department
of Biomedical Sciences, Chonnam National
University Medical School, Hwasun 58128, Korea
- Department
of Orthopaedics Surgery, Center for Joint
Disease of Chonnam National University Hwasun Hospital, 322 Seoyang-ro, Hwasun-eup, Jeonnam 519-763, Korea
- Korea
Biomedical Materials and Devices Innovation Research Center of Chonnam
National University Hospital, 42, Jebong-ro, Dong-gu, Gwangju 501-757, Korea
| | - Hyung Keun Kim
- Department
of Orthopaedics Surgery, Center for Joint
Disease of Chonnam National University Hwasun Hospital, 322 Seoyang-ro, Hwasun-eup, Jeonnam 519-763, Korea
- Korea
Biomedical Materials and Devices Innovation Research Center of Chonnam
National University Hospital, 42, Jebong-ro, Dong-gu, Gwangju 501-757, Korea
| | - Jong Keun Seon
- Department
of Biomedical Sciences, Chonnam National
University Medical School, Hwasun 58128, Korea
- Department
of Orthopaedics Surgery, Center for Joint
Disease of Chonnam National University Hwasun Hospital, 322 Seoyang-ro, Hwasun-eup, Jeonnam 519-763, Korea
- Korea
Biomedical Materials and Devices Innovation Research Center of Chonnam
National University Hospital, 42, Jebong-ro, Dong-gu, Gwangju 501-757, Korea
| |
Collapse
|
7
|
Nguyen M, Battistoni CM, Babiak PM, Liu JC, Panitch A. Chondroitin Sulfate/Hyaluronic Acid-Blended Hydrogels Suppress Chondrocyte Inflammation under Pro-Inflammatory Conditions. ACS Biomater Sci Eng 2024; 10:3242-3254. [PMID: 38632852 PMCID: PMC11094685 DOI: 10.1021/acsbiomaterials.4c00200] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Revised: 04/04/2024] [Accepted: 04/09/2024] [Indexed: 04/19/2024]
Abstract
Osteoarthritis is characterized by enzymatic breakdown of the articular cartilage via the disruption of chondrocyte homeostasis, ultimately resulting in the destruction of the articular surface. Decades of research have highlighted the importance of inflammation in osteoarthritis progression, with inflammatory cytokines shifting resident chondrocytes into a pro-catabolic state. Inflammation can result in poor outcomes for cells implanted for cartilage regeneration. Therefore, a method to promote the growth of new cartilage and protect the implanted cells from the pro-inflammatory cytokines found in the joint space is required. In this study, we fabricate two gel types: polymer network hydrogels composed of chondroitin sulfate and hyaluronic acid, glycosaminoglycans (GAGs) known for their anti-inflammatory and prochondrogenic activity, and interpenetrating networks of GAGs and collagen I. Compared to a collagen-only hydrogel, which does not provide an anti-inflammatory stimulus, chondrocytes in GAG hydrogels result in reduced production of pro-inflammatory cytokines and enzymes as well as preservation of collagen II and aggrecan expression. Overall, GAG-based hydrogels have the potential to promote cartilage regeneration under pro-inflammatory conditions. Further, the data have implications for the use of GAGs to generally support tissue engineering in pro-inflammatory environments.
Collapse
Affiliation(s)
- Michael Nguyen
- Department
of Biomedical Engineering, University of
California, Davis, California 95616, United States
| | - Carly M. Battistoni
- Davidson
School of Chemical Engineering, Purdue University, West Lafayette, Indiana 47907, United States
| | - Paulina M. Babiak
- Davidson
School of Chemical Engineering, Purdue University, West Lafayette, Indiana 47907, United States
| | - Julie C. Liu
- Davidson
School of Chemical Engineering, Purdue University, West Lafayette, Indiana 47907, United States
- Weldon
School of Biomedical Engineering, Purdue
University, West Lafayette, Indiana 47907, United States
| | - Alyssa Panitch
- Department
of Biomedical Engineering, University of
California, Davis, California 95616, United States
- Wallace
H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, Georgia 30332, United States
| |
Collapse
|
8
|
Farinelli L, Riccio M, Gigante A, De Francesco F. Pain Management Strategies in Osteoarthritis. Biomedicines 2024; 12:805. [PMID: 38672160 PMCID: PMC11048725 DOI: 10.3390/biomedicines12040805] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2024] [Revised: 03/27/2024] [Accepted: 04/03/2024] [Indexed: 04/28/2024] Open
Abstract
Pain is the major symptom of osteoarthritis (OA) and is an important factor in strategies to manage this disease. However, the current standard of care does not provide satisfactory pain relief for many patients. The pathophysiology of OA is complex, and its presentation as a clinical syndrome is associated with the pathologies of multiple joint tissues. Treatment options are generally classified as pharmacologic, nonpharmacologic, surgical, and complementary and/or alternative, typically used in combination to achieve optimal results. The goals of treatment are the alleviation of symptoms and improvement in functional status. Several studies are exploring various directions for OA pain management, including tissue regeneration techniques, personalized medicine, and targeted drug therapies. The aim of the present narrative review is to extensively describe all the treatments available in the current practice, further describing the most important innovative therapies. Advancements in understanding the molecular and genetic aspects of osteoarthritis may lead to more effective and tailored treatment approaches in the future.
Collapse
Affiliation(s)
- Luca Farinelli
- Clinical Orthopaedics, Department of Clinical and Molecular Sciences, Università Politecnica delle Marche, 60121 Ancona, Italy; (L.F.); (A.G.)
| | - Michele Riccio
- Department of Reconstructive Surgery and Hand Surgery, Azienda Ospedaliera Universitaria delle Marche, 60126 Ancona, Italy;
| | - Antonio Gigante
- Clinical Orthopaedics, Department of Clinical and Molecular Sciences, Università Politecnica delle Marche, 60121 Ancona, Italy; (L.F.); (A.G.)
| | - Francesco De Francesco
- Department of Reconstructive Surgery and Hand Surgery, Azienda Ospedaliera Universitaria delle Marche, 60126 Ancona, Italy;
| |
Collapse
|
9
|
Carton F, Malatesta M. Nanotechnological Research for Regenerative Medicine: The Role of Hyaluronic Acid. Int J Mol Sci 2024; 25:3975. [PMID: 38612784 PMCID: PMC11012323 DOI: 10.3390/ijms25073975] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2024] [Revised: 03/30/2024] [Accepted: 03/31/2024] [Indexed: 04/14/2024] Open
Abstract
Hyaluronic acid (HA) is a linear, anionic, non-sulfated glycosaminoglycan occurring in almost all body tissues and fluids of vertebrates including humans. It is a main component of the extracellular matrix and, thanks to its high water-holding capacity, plays a major role in tissue hydration and osmotic pressure maintenance, but it is also involved in cell proliferation, differentiation and migration, inflammation, immunomodulation, and angiogenesis. Based on multiple physiological effects on tissue repair and reconstruction processes, HA has found extensive application in regenerative medicine. In recent years, nanotechnological research has been applied to HA in order to improve its regenerative potential, developing nanomedical formulations containing HA as the main component of multifunctional hydrogels systems, or as core component or coating/functionalizing element of nanoconstructs. This review offers an overview of the various uses of HA in regenerative medicine aimed at designing innovative nanostructured devices to be applied in various fields such as orthopedics, dermatology, and neurology.
Collapse
Affiliation(s)
| | - Manuela Malatesta
- Department of Neurosciences, Biomedicine and Movement Sciences, University of Verona, Strada Le Grazie 8, 37134 Verona, Italy;
| |
Collapse
|
10
|
Xiang H, Zhao W, Jiang K, He J, Chen L, Cui W, Li Y. Progress in regulating inflammatory biomaterials for intervertebral disc regeneration. Bioact Mater 2024; 33:506-531. [PMID: 38162512 PMCID: PMC10755503 DOI: 10.1016/j.bioactmat.2023.11.021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Revised: 11/04/2023] [Accepted: 11/29/2023] [Indexed: 01/03/2024] Open
Abstract
Intervertebral disc degeneration (IVDD) is rising worldwide and leading to significant health issues and financial strain for patients. Traditional treatments for IVDD can alleviate pain but do not reverse disease progression, and surgical removal of the damaged disc may be required for advanced disease. The inflammatory microenvironment is a key driver in the development of disc degeneration. Suitable anti-inflammatory substances are critical for controlling inflammation in IVDD. Several treatment options, including glucocorticoids, non-steroidal anti-inflammatory drugs, and biotherapy, are being studied for their potential to reduce inflammation. However, anti-inflammatories often have a short half-life when applied directly and are quickly excreted, thus limiting their therapeutic effects. Biomaterial-based platforms are being explored as anti-inflammation therapeutic strategies for IVDD treatment. This review introduces the pathophysiology of IVDD and discusses anti-inflammatory therapeutics and the components of these unique biomaterial platforms as comprehensive treatment systems. We discuss the strengths, shortcomings, and development prospects for various biomaterials platforms used to modulate the inflammatory microenvironment, thus providing guidance for future breakthroughs in IVDD treatment.
Collapse
Affiliation(s)
- Honglin Xiang
- Department of Orthopaedics, Laboratory of Biological Tissue Engineering and Digital Medicine, Affiliated Hospital of North Sichuan Medical College, No. 1 The South of Maoyuan Road, Nanchong, Sichuan, 637000, PR China
| | - Weikang Zhao
- Department of Orthopedics, The First Affiliated Hospital of Chongqing Medical University, Orthopedic Laboratory of Chongqing Medical University, No.1 Youyi Road, Yuzhong District, Chongqing, 400016, PR China
| | - Ke Jiang
- Department of Orthopaedics, Laboratory of Biological Tissue Engineering and Digital Medicine, Affiliated Hospital of North Sichuan Medical College, No. 1 The South of Maoyuan Road, Nanchong, Sichuan, 637000, PR China
| | - Jiangtao He
- Department of Orthopaedics, Laboratory of Biological Tissue Engineering and Digital Medicine, Affiliated Hospital of North Sichuan Medical College, No. 1 The South of Maoyuan Road, Nanchong, Sichuan, 637000, PR China
| | - Lu Chen
- Department of Orthopaedics, Laboratory of Biological Tissue Engineering and Digital Medicine, Affiliated Hospital of North Sichuan Medical College, No. 1 The South of Maoyuan Road, Nanchong, Sichuan, 637000, PR China
| | - Wenguo Cui
- Department of Orthopaedics, Shanghai Key Laboratory for Prevention and Treatment of Bone and Joint Diseases, Shanghai Institute of Traumatology and Orthopaedics, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, 197 Ruijin 2nd Road, Shanghai, 200025, PR China
| | - Yuling Li
- Department of Orthopaedics, Laboratory of Biological Tissue Engineering and Digital Medicine, Affiliated Hospital of North Sichuan Medical College, No. 1 The South of Maoyuan Road, Nanchong, Sichuan, 637000, PR China
| |
Collapse
|
11
|
Pereira MF, Ribeiro G, Gonzales A, Arantes JA, Dória RG. Effects of intra-articular administration of hyaluronic acid or platelet-rich plasma as a complementary treatment to arthroscopy in horses with osteochondritis dissecans. Vet Anim Sci 2024; 23:100330. [PMID: 38259325 PMCID: PMC10801337 DOI: 10.1016/j.vas.2023.100330] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2024] Open
Abstract
Although arthroscopy is the treatment of choice for horses with osteochondritis dissecans (OCD), it is not yet known whether intra-articular therapies in the postoperative period can bring any benefit to the recovery of these animals. This study evaluated the effects of the intra-articular application of platelet-rich plasma (PRP), hyaluronic acid (HA) or lactated Ringer's solution (LR) in horses with OCD undergoing arthroscopy. Eighteen male and female Brazilian Sport horses aged between 2 and 6 years were evaluated. All animals presented OCD fragments in the middle crest of the tibia. Ten days after surgery, animals were randomly distributed into three groups and received intra-articular application of PRP (n = 6), HA (n = 6), or LR (control group, n = 6). Clinical, radiographic, ultrasound and synovial fluid evaluations were performed on the day of surgery and after 10, 30 and 60 days. An increase in the thickness of the joint capsule was observed 30 days after surgery in the three groups evaluated. In the control group, there was significant improvement in the flexion test 30 and 60 days after surgery, and in the PRP group, there was worsening of this parameter in the same evaluations. In the control group, there was a reduction in the degree of synovial effusion, and in the PRP and HA groups, there was increased effusion. There was a significant increase in the number of leukocytes in the HA group. Intra-articular use of PRP or HA ten days after arthroscopy did not promote positive effects on the recovery of horses with OCD.
Collapse
Affiliation(s)
- Marcos F. Pereira
- Batatais Equine Veterinary Hospital, Rodovia Altino Arantes, 5500, Batatais, São Paulo 14300-000, Brazil
| | - Gesiane Ribeiro
- Faculty of Veterinary Medicine, Lusófona University of Humanities and Technology (FMV/ULHT), Campo Grande 376, Lisboa 1749-024, Portugal
| | - Alessandra Gonzales
- Batatais Equine Veterinary Hospital, Rodovia Altino Arantes, 5500, Batatais, São Paulo 14300-000, Brazil
| | - Julia A. Arantes
- Department of Veterinary Medicine, Faculty of Animal Science and Food Engineering, University of São Paulo (USP), Rua Duque de Caxias Norte, 225, Jardim Elite, 13.635-900, Pirassununga, São Paulo, Brazil
| | - Renata G.S. Dória
- Department of Veterinary Medicine, Faculty of Animal Science and Food Engineering, University of São Paulo (USP), Rua Duque de Caxias Norte, 225, Jardim Elite, 13.635-900, Pirassununga, São Paulo, Brazil
| |
Collapse
|
12
|
Zhang Y, Zhao H, Zhang J. Hyaluronidase inhibitor sHA2.75 alleviates ischemia-reperfusion-induced acute kidney injury. Cell Cycle 2024; 23:248-261. [PMID: 38526145 PMCID: PMC11057651 DOI: 10.1080/15384101.2024.2309019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2023] [Accepted: 11/26/2023] [Indexed: 03/26/2024] Open
Abstract
Hyaluronidases (HAases) are enzymes that degrade hyaluronic acid (HA) in the animal kingdom. The HAases-HA system is crucial for HA homeostasis and plays a significant role in biological processes and extracellular matrix (ECM)-related pathophysiological conditions. This study aims to explore the role of inhibiting the HAases-HA system in acute kidney injury (AKI). We selected the potent inhibitor "sHA2.75" to inhibit HAase activity through mixed inhibitory mechanisms. The ischemia-reperfusion mouse model was established using male BALB/c mice (7-9 weeks old), and animals were subjected to subcapsular injection with 50 mg/kg sHA2.75 twice a week to evaluate the effects of sHA2.75 on AKI on day 1, 5 and 14 after ischemia-reperfusion or sham procedure. Blood and tissue samples were collected for immunohistochemistry, biochemical, and quantitative analyses. sHA2.75 significantly reduced blood urea nitrogen (BUN) and serum creatinine levels in AKI mouse models. Expression of kidney injury-related genes such as Kidney injury molecule-1 (KIM-1), Neutrophil Gelatinase-Associated Lipocalin (NGAL), endothelial nitric oxide synthase (eNOS), type I collagen (Col1), type III collagen (Col3), alpha-smooth muscle actin (α-SMA) showed significant downregulation in mouse kidney tissues after sHA2.75 treatment. Moreover, sHA2.75 treatment led to decreased plasma levels of Interleukin-6 (IL-6) proteins and reduced mRNA levels in renal tissues of AKI mice. Inhibitor sHA2.75 administration in the AKI mouse model downregulated kidney injury-related biomarkers and immune-specific genes, thereby alleviating AKI in vivo. These findings suggest the potential use of HAase inhibitors for treating ischemic reperfusion-induced kidney injury.
Collapse
Affiliation(s)
- Yang Zhang
- Department of Laboratory, Nanjing Jiangning Hospital of Traditional Chinese Medicine, Nanjing, Jiangsu, China
| | - Huajiang Zhao
- Department of Laboratory, Nanjing Jiangning Hospital of Traditional Chinese Medicine, Nanjing, Jiangsu, China
| | - Jing Zhang
- Department of Laboratory, Nanjing Jiangning Hospital of Traditional Chinese Medicine, Nanjing, Jiangsu, China
| |
Collapse
|
13
|
Devald IV, Khodus EA. [Therapy of degenerative changes in the ankle joint with US-guided linear hyaluronic acid injections. A review]. TERAPEVT ARKH 2024; 95:1192-1196. [PMID: 38785060 DOI: 10.26442/00403660.2023.12.202493] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Accepted: 12/05/2023] [Indexed: 05/25/2024]
Abstract
The article discusses the issue and our own experience of local therapy for osteoarthritis of the ankle joint with injections of linear hyaluronic acid under ultrasound navigation. Since the ankle joint is difficult in terms of surgical treatment in general and endoprosthetics in particular, a course of intra-articular injection of 1% Flexotron® Forte hyaluronate, especially in the early stages of dystrophic changes in cartilage, is a promising method for relieving pain, chondroprotection and preserving the biomechanics of the joint, and ultrasound navigation when performing manipulation, it ensures the most accurate introduction of the drug into the joint cavity.
Collapse
Affiliation(s)
- I V Devald
- South Ural State Medical University
- Chelyabinsk State University
- Professor Kinzersky Clinic"
| | - E A Khodus
- Chelyabinsk State University
- "Professor Kinzersky Clinic"
| |
Collapse
|
14
|
Li X, Tao H, Zhou J, Zhang L, Shi Y, Zhang C, Sun W, Chu M, Chen K, Gu C, Yang X, Geng D, Hao Y. MAGL inhibition relieves synovial inflammation and pain via regulating NOX4-Nrf2 redox balance in osteoarthritis. Free Radic Biol Med 2023; 208:13-25. [PMID: 37516370 DOI: 10.1016/j.freeradbiomed.2023.07.019] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Revised: 07/15/2023] [Accepted: 07/17/2023] [Indexed: 07/31/2023]
Abstract
Osteoarthritis (OA) is a degenerative joint disease characterized by cartilage injury, hyperplasia of bone and inflammatory lesions of synovium. Monoacylglycerol lipase (MAGL), a member of the α/β hydrolase superfamily, is involved in regulation of injury protection and immune-inflammation response. Autoinflammatory response of the synovium and the release of inflammatory mediators play critical roles in occurrence of early-stage OA. Fibroblast-like synoviocytes (FLSs) are resident mesenchymal cells of the synovial tissue. Considering that MAGL inhibition regulates the inflammatory signaling cascade, it is crucial to ascertain the biological effects and specific mechanisms of MAGL in alleviating inflammatory infiltration of OA FLSs. The aim of this study was to investigate the effect of MAGL on biological function in OA FLSs. Results from in vitro experiments showed that MAGL blockade not only effectively inhibited proliferation, invasion and migration of FLSs, but also downregulated expression of inflammatory-associated proteins. Sequencing results indicated that MAGL inhibition significantly suppressed NOX4-mediated oxidative stress, thus promoting Nrf2 nuclear accumulation and inhibiting generation of intracellular reactive oxygen species (ROS). Attenuation of NOX4 further alleviated redox dysplasia and ultimately improved tumor-like phenotypes, such as abnormal proliferation, migration and migration of FLSs. In vivo results corroborated this finding, with MAGL inhibition found to modulate pain and disease progression in an OA rat model. Collectively, these results indicate that MAGL administration is an ideal therapy treating OA.
Collapse
Affiliation(s)
- Xueyan Li
- Anesthesiology Department, Suzhou Municipal Hospital (North District), Nanjing Medical University Affiliated Suzhou Hospital, 242, Guangji Road, Suzhou, Jiangsu, China
| | - Huaqiang Tao
- Department of Orthopedics, The First Affiliated Hospital of Soochow University, No. 188 Shizi Street, Suzhou, Jiangsu, China
| | - Jing Zhou
- Orthopedics and Sports Medicine Center, Suzhou Municipal Hospital, Nanjing Medical University Affiliated Suzhou Hospital, 242, Guangji Road, Suzhou, Jiangsu, 226000, China
| | - Liyuan Zhang
- Anesthesiology Department, Suzhou Municipal Hospital (North District), Nanjing Medical University Affiliated Suzhou Hospital, 242, Guangji Road, Suzhou, Jiangsu, China
| | - Yi Shi
- Anesthesiology Department, Suzhou Municipal Hospital (North District), Nanjing Medical University Affiliated Suzhou Hospital, 242, Guangji Road, Suzhou, Jiangsu, China
| | - Chun Zhang
- Department of Anesthesiology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, 999, Xiwang Road, Shanghai, China
| | - Wen Sun
- Anesthesiology Department, Suzhou Municipal Hospital (North District), Nanjing Medical University Affiliated Suzhou Hospital, 242, Guangji Road, Suzhou, Jiangsu, China
| | - Miao Chu
- Department of Orthopedics, The First Affiliated Hospital of Soochow University, No. 188 Shizi Street, Suzhou, Jiangsu, China
| | - Kai Chen
- Department of Orthopedics, The First Affiliated Hospital of Soochow University, No. 188 Shizi Street, Suzhou, Jiangsu, China
| | - Chengyong Gu
- Anesthesiology Department, Suzhou Municipal Hospital (North District), Nanjing Medical University Affiliated Suzhou Hospital, 242, Guangji Road, Suzhou, Jiangsu, China.
| | - Xing Yang
- Orthopedics and Sports Medicine Center, Suzhou Municipal Hospital, Nanjing Medical University Affiliated Suzhou Hospital, 242, Guangji Road, Suzhou, Jiangsu, 226000, China.
| | - Dechun Geng
- Department of Orthopedics, The First Affiliated Hospital of Soochow University, No. 188 Shizi Street, Suzhou, Jiangsu, China.
| | - Yuefeng Hao
- Orthopedics and Sports Medicine Center, Suzhou Municipal Hospital, Nanjing Medical University Affiliated Suzhou Hospital, 242, Guangji Road, Suzhou, Jiangsu, 226000, China.
| |
Collapse
|
15
|
Wen S, Iturriaga V, Vásquez B, del Sol M. Comparison of Four Treatment Protocols with Intra-Articular Medium Molecular Weight Hyaluronic Acid in Induced Temporomandibular Osteoarthritis: An Experimental Study. Int J Mol Sci 2023; 24:14130. [PMID: 37762430 PMCID: PMC10531553 DOI: 10.3390/ijms241814130] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2023] [Revised: 09/09/2023] [Accepted: 09/12/2023] [Indexed: 09/29/2023] Open
Abstract
The aim was to compare the effect between a single intra-articular infiltration (1i) and two infiltrations (2i) of medium molecular weight hyaluronic acid (MMW-HA) of high viscosity (HV) and low viscosity (LV) on the histopathological characteristics of temporomandibular joint (TMJ) osteoarthritis (OA) induced in rabbits. An experimental study was conducted on Oryctolagus cuniculus rabbits, including 42 TMJs, distributed between (1) TMJ-C, control group; (2) TMJ-OA, group with OA; (3) TMJ-OA-wt, group with untreated OA; (4) group treated with HA-HV-1i; (5) group treated with HA-HV-2i; (6) group treated with HA-LV-1i; and (7) group treated with HA-LV-2i. The results were evaluated using the Osteoarthritis Research Society International (OARSI) scale and descriptive histology considering the mandibular condyle (MC), the articular disc (AD), and the mandibular fossa (MF). The Kruskal-Wallis test was used for the statistical analysis, considering p < 0.05 significant. All treated groups significantly decreased the severity of OA compared to the TMJ-OA-wt group. The HA-HV-2i group showed significant differences in the degree of OA from the TMJ-OA group. The degree of OA in the HA-HV-2i group was significantly lower than in the HA-LV-1i, HA-LV-2i, and HA-HV-1i groups. The protocol that showed better results in repairing the joint was HA-HV-2i. There are histological differences depending on the protocol of the preparation used: two infiltrations seem to be better than one, and when applying two doses, high viscosity shows better results.
Collapse
Affiliation(s)
- Schilin Wen
- Doctoral Program in Morphological Sciences, Faculty of Medicine, Universidad de La Frontera, Temuco 4780000, Chile;
- Grupo de Investigación de Pregrado en Odontología, Facultad de Ciencias de la Salud (FACSA), Universidad Autónoma de Chile, Temuco 4810101, Chile
| | - Veronica Iturriaga
- Temporomandibular Disorder and Orofacial Pain Program, Department of Integral Adult Care Dentistry, Universidad de La Frontera, Temuco 4780000, Chile;
- Sleep & Pain Research Group, Faculty of Dentistry, Universidad de La Frontera, Temuco 4780000, Chile
- Center of Excellence in Morphological and Surgical Studies (CEMyQ), Universidad de La Frontera, Temuco 4780000, Chile
| | - Bélgica Vásquez
- Department of Basic Sciences, Faculty of Medicine, Universidad de La Frontera, Temuco 4780000, Chile;
| | - Mariano del Sol
- Doctoral Program in Morphological Sciences, Faculty of Medicine, Universidad de La Frontera, Temuco 4780000, Chile;
- Center of Excellence in Morphological and Surgical Studies (CEMyQ), Universidad de La Frontera, Temuco 4780000, Chile
| |
Collapse
|
16
|
Ruscitto A, Chen P, Tosa I, Wang Z, Zhou G, Safina I, Wei R, Morel MM, Koch A, Forman M, Reeve G, Lecholop MK, Wilson M, Bonthius D, Chen M, Ono M, Wang TC, Yao H, Embree MC. Lgr5-expressing secretory cells form a Wnt inhibitory niche in cartilage critical for chondrocyte identity. Cell Stem Cell 2023; 30:1179-1198.e7. [PMID: 37683603 PMCID: PMC10790417 DOI: 10.1016/j.stem.2023.08.004] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Revised: 06/06/2023] [Accepted: 08/07/2023] [Indexed: 09/10/2023]
Abstract
Osteoarthritis is a degenerative joint disease that causes pain, degradation, and dysfunction. Excessive canonical Wnt signaling in osteoarthritis contributes to chondrocyte phenotypic instability and loss of cartilage homeostasis; however, the regulatory niche is unknown. Using the temporomandibular joint as a model in multiple species, we identify Lgr5-expressing secretory cells as forming a Wnt inhibitory niche that instruct Wnt-inactive chondroprogenitors to form the nascent synovial joint and regulate chondrocyte lineage and identity. Lgr5 ablation or suppression during joint development, aging, or osteoarthritis results in depletion of Wnt-inactive chondroprogenitors and a surge of Wnt-activated, phenotypically unstable chondrocytes with osteoblast-like properties. We recapitulate the cartilage niche and create StemJEL, an injectable hydrogel therapy combining hyaluronic acid and sclerostin. Local delivery of StemJEL to post-traumatic osteoarthritic jaw and knee joints in rabbit, rat, and mini-pig models restores cartilage homeostasis, chondrocyte identity, and joint function. We provide proof of principal that StemJEL preserves the chondrocyte niche and alleviates osteoarthritis.
Collapse
Affiliation(s)
- Angela Ruscitto
- Cartilage Biology and Regenerative Medicine Laboratory, Section of Growth and Development, Division of Orthodontics, College of Dental Medicine, Columbia University Irving Medical Center, New York, NY 10032, USA; Columbia Stem Cell Initiative, Columbia University Irving Medical Center, New York, NY 10032, USA
| | - Peng Chen
- Clemson University-Medical University of South Carolina Joint Bioengineering Program, Department of Bioengineering, Clemson University, Clemson, SC 29634, USA; Department of Oral Health Sciences, College of Dental Medicine, Medical University of South Carolina, Charleston, SC 29425, USA
| | - Ikue Tosa
- Cartilage Biology and Regenerative Medicine Laboratory, Section of Growth and Development, Division of Orthodontics, College of Dental Medicine, Columbia University Irving Medical Center, New York, NY 10032, USA; Columbia Stem Cell Initiative, Columbia University Irving Medical Center, New York, NY 10032, USA
| | - Ziyi Wang
- Department of Molecular Biology and Biochemistry, Okayama University Graduate, School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama 7008525, Japan
| | - Gan Zhou
- Cartilage Biology and Regenerative Medicine Laboratory, Section of Growth and Development, Division of Orthodontics, College of Dental Medicine, Columbia University Irving Medical Center, New York, NY 10032, USA; Columbia Stem Cell Initiative, Columbia University Irving Medical Center, New York, NY 10032, USA
| | - Ingrid Safina
- Cartilage Biology and Regenerative Medicine Laboratory, Section of Growth and Development, Division of Orthodontics, College of Dental Medicine, Columbia University Irving Medical Center, New York, NY 10032, USA
| | - Ran Wei
- Cartilage Biology and Regenerative Medicine Laboratory, Section of Growth and Development, Division of Orthodontics, College of Dental Medicine, Columbia University Irving Medical Center, New York, NY 10032, USA
| | - Mallory M Morel
- Cartilage Biology and Regenerative Medicine Laboratory, Section of Growth and Development, Division of Orthodontics, College of Dental Medicine, Columbia University Irving Medical Center, New York, NY 10032, USA
| | - Alia Koch
- Section of Hospital Dentistry, Division of Oral & Maxillofacial Surgery, College of Dental Medicine, Columbia University Irving Medical Center, New York, NY 10032, USA
| | - Michael Forman
- Section of Hospital Dentistry, Division of Oral & Maxillofacial Surgery, College of Dental Medicine, Columbia University Irving Medical Center, New York, NY 10032, USA
| | - Gwendolyn Reeve
- Division of Oral and Maxillofacial Surgery, New York Presbyterian Weill Cornell Medicine, New York, NY 10065, USA
| | - Michael K Lecholop
- Department of Oral and Maxillofacial Surgery, College of Dental Medicine, Medical University of South Carolina, Charleston, SC 29425, USA
| | - Marshall Wilson
- Clemson University-Medical University of South Carolina Joint Bioengineering Program, Department of Bioengineering, Clemson University, Clemson, SC 29634, USA; Department of Oral Health Sciences, College of Dental Medicine, Medical University of South Carolina, Charleston, SC 29425, USA
| | - Daniel Bonthius
- Clemson University-Medical University of South Carolina Joint Bioengineering Program, Department of Bioengineering, Clemson University, Clemson, SC 29634, USA; Department of Oral Health Sciences, College of Dental Medicine, Medical University of South Carolina, Charleston, SC 29425, USA
| | - Mo Chen
- Wnt Scientific, LLC, Harlem Biospace, New York, NY 10027, USA
| | - Mitsuaki Ono
- Department of Molecular Biology and Biochemistry, Okayama University Graduate, School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama 7008525, Japan; Department of Oral Rehabilitation and Implantology, Okayama University Hospital, Okayama 7008525, Japan
| | - Timothy C Wang
- Columbia Stem Cell Initiative, Columbia University Irving Medical Center, New York, NY 10032, USA; Division of Digestive and Liver Diseases, Department of Medicine, College of Physicians and Surgeons, Columbia University Irving Medical Center, New York, NY 10032, USA
| | - Hai Yao
- Clemson University-Medical University of South Carolina Joint Bioengineering Program, Department of Bioengineering, Clemson University, Clemson, SC 29634, USA; Department of Oral Health Sciences, College of Dental Medicine, Medical University of South Carolina, Charleston, SC 29425, USA
| | - Mildred C Embree
- Cartilage Biology and Regenerative Medicine Laboratory, Section of Growth and Development, Division of Orthodontics, College of Dental Medicine, Columbia University Irving Medical Center, New York, NY 10032, USA; Columbia Stem Cell Initiative, Columbia University Irving Medical Center, New York, NY 10032, USA.
| |
Collapse
|
17
|
Munesada D, Sakai D, Nakamura Y, Schol J, Matsushita E, Tamagawa S, Sako K, Ogasawara S, Sato M, Watanabe M. Investigation of the Mitigation of DMSO-Induced Cytotoxicity by Hyaluronic Acid following Cryopreservation of Human Nucleus Pulposus Cells. Int J Mol Sci 2023; 24:12289. [PMID: 37569664 PMCID: PMC10419032 DOI: 10.3390/ijms241512289] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2023] [Revised: 07/26/2023] [Accepted: 07/30/2023] [Indexed: 08/13/2023] Open
Abstract
To develop an off-the-shelf therapeutic product for intervertebral disc (IVD) repair using nucleus pulposus cells (NPCs), it is beneficial to mitigate dimethyl sulfoxide (DMSO)-induced cytotoxicity caused by intracellular reactive oxygen species (ROS). Hyaluronic acid (HA) has been shown to protect chondrocytes against ROS. Therefore, we examined the potential of HA on mitigating DMSO-induced cytotoxicity for the enhancement of NPC therapy. Human NPC cryopreserved in DMSO solutions were thawed, mixed with equal amounts of EDTA-PBS (Group E) or HA (Group H), and incubated for 3-5 h. After incubation, DMSO was removed, and the cells were cultured for 5 days. Thereafter, we examined cell viability, cell proliferation rates, Tie2 positivity (a marker of NP progenitor cells), and the estimated numbers of Tie2 positive cells. Fluorescence intensity of DHE and MitoSOX staining, as indicators for oxidative stress, were evaluated by flow cytometry. Group H showed higher rates of cell proliferation and Tie2 expressing cells with a trend toward suppression of oxidative stress compared to Group E. Thus, HA treatment appears to suppress ROS induced by DMSO. These results highlight the ability of HA to maintain NPC functionalities, suggesting that mixing HA at the time of transplantation may be useful in the development of off-the-shelf NPC products.
Collapse
Affiliation(s)
- Daiki Munesada
- Department of Orthopedic Surgery, Tokai University School of Medicine, 143 Shimokasuya, Isehara 259-1193, Japan; (D.M.); (J.S.); (S.T.); (K.S.); (S.O.); (M.S.); (M.W.)
| | - Daisuke Sakai
- Department of Orthopedic Surgery, Tokai University School of Medicine, 143 Shimokasuya, Isehara 259-1193, Japan; (D.M.); (J.S.); (S.T.); (K.S.); (S.O.); (M.S.); (M.W.)
- Center for Musculoskeletal Innovative Research and Advancement (C-MiRA), Tokai University Graduate School, 143 Shimokasuya, Isehara 259-1193, Japan
| | - Yoshihiko Nakamura
- Research Center for Regenerative Medicine, Tokai University School of Medicine, 143 Shimokasuya, Isehara 259-1193, Japan; (Y.N.); (E.M.)
| | - Jordy Schol
- Department of Orthopedic Surgery, Tokai University School of Medicine, 143 Shimokasuya, Isehara 259-1193, Japan; (D.M.); (J.S.); (S.T.); (K.S.); (S.O.); (M.S.); (M.W.)
- Center for Musculoskeletal Innovative Research and Advancement (C-MiRA), Tokai University Graduate School, 143 Shimokasuya, Isehara 259-1193, Japan
- Research Center for Regenerative Medicine, Tokai University School of Medicine, 143 Shimokasuya, Isehara 259-1193, Japan; (Y.N.); (E.M.)
| | - Erika Matsushita
- Research Center for Regenerative Medicine, Tokai University School of Medicine, 143 Shimokasuya, Isehara 259-1193, Japan; (Y.N.); (E.M.)
| | - Shota Tamagawa
- Department of Orthopedic Surgery, Tokai University School of Medicine, 143 Shimokasuya, Isehara 259-1193, Japan; (D.M.); (J.S.); (S.T.); (K.S.); (S.O.); (M.S.); (M.W.)
- Department of Medicine for Orthopaedics and Motor Organ, Juntendo University Graduate School of Medicine, 3-1-3 Hongo, Bunkyo-ku 113-8431, Japan
| | - Kosuke Sako
- Department of Orthopedic Surgery, Tokai University School of Medicine, 143 Shimokasuya, Isehara 259-1193, Japan; (D.M.); (J.S.); (S.T.); (K.S.); (S.O.); (M.S.); (M.W.)
| | - Shota Ogasawara
- Department of Orthopedic Surgery, Tokai University School of Medicine, 143 Shimokasuya, Isehara 259-1193, Japan; (D.M.); (J.S.); (S.T.); (K.S.); (S.O.); (M.S.); (M.W.)
| | - Masato Sato
- Department of Orthopedic Surgery, Tokai University School of Medicine, 143 Shimokasuya, Isehara 259-1193, Japan; (D.M.); (J.S.); (S.T.); (K.S.); (S.O.); (M.S.); (M.W.)
- Center for Musculoskeletal Innovative Research and Advancement (C-MiRA), Tokai University Graduate School, 143 Shimokasuya, Isehara 259-1193, Japan
| | - Masahiko Watanabe
- Department of Orthopedic Surgery, Tokai University School of Medicine, 143 Shimokasuya, Isehara 259-1193, Japan; (D.M.); (J.S.); (S.T.); (K.S.); (S.O.); (M.S.); (M.W.)
- Center for Musculoskeletal Innovative Research and Advancement (C-MiRA), Tokai University Graduate School, 143 Shimokasuya, Isehara 259-1193, Japan
| |
Collapse
|
18
|
Alshehri FA, Alharbi MS. The Effect of Adjunctive Use of Hyaluronic Acid on Prevalence of Porphyromonas gingivalis in Subgingival Biofilm in Patients with Chronic Periodontitis: A Systematic Review. Pharmaceutics 2023; 15:1883. [PMID: 37514069 PMCID: PMC10385933 DOI: 10.3390/pharmaceutics15071883] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2023] [Revised: 06/23/2023] [Accepted: 06/23/2023] [Indexed: 07/30/2023] Open
Abstract
Porphyromonas gingivalis (P. gingivalis) is a Gram-negative anaerobic bacterium that plays an important role in the development and progression of periodontitis. Hyaluronic acid (HA) is a naturally occurring glycosaminoglycan that has previously demonstrated antibacterial potential in vitro against multiple bacterial species, including P. gingivalis. The purpose of this systematic review is to evaluate the effectiveness of HA as an adjunctive topical antibacterial agent to non-surgical mechanical therapy of periodontitis in reducing the prevalence of P. gingivalis in subgingival biofilms. Five clinical studies were identified that satisfied the eligibility criteria. Only three trials were suitable for the meta-analysis as they provided data at three and six months. Data on the prevalence of P. gingivalis in each study were collected. The odds ratio (OR) for measuring the effect size with a 95% confidence interval (CI) was applied to the available data. The results did not favor the use of HA during non-surgical mechanical therapy to reduce the prevalence of P. gingivalis in subgingival biofilm (odd ratio = 0.95 and 1.11 at three and six months, consecutively). Within their limitations, the current data do not indicate an advantage for using HA during mechanical periodontal therapy to reduce the prevalence of P. gingivalis.
Collapse
Affiliation(s)
- Fahad A Alshehri
- Department of Periodontics and Community Dentistry, College of Dentistry, King Saud University, Riyadh 12372, Saudi Arabia
| | - Meshal S Alharbi
- Department of Periodontics and Community Dentistry, College of Dentistry, King Saud University, Riyadh 12372, Saudi Arabia
- Qassim Health Cluster, Ministry of Health, Buraydah 52367, Saudi Arabia
| |
Collapse
|
19
|
Di Nardo A, Chang YL, Alimohammadi S, Masuda-Kuroki K, Wang Z, Sriram K, Insel PA. Mast cell tolerance in the skin microenvironment to commensal bacteria is controlled by fibroblasts. Cell Rep 2023; 42:112453. [PMID: 37120813 DOI: 10.1016/j.celrep.2023.112453] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2022] [Revised: 01/16/2023] [Accepted: 04/14/2023] [Indexed: 05/01/2023] Open
Abstract
Activation and degranulation of mast cells (MCs) is an essential aspect of innate and adaptive immunity. Skin MCs, the most exposed to the external environment, are at risk of quickly degranulating with potentially severe consequences. Here, we define how MCs assume a tolerant phenotype via crosstalk with dermal fibroblasts (dFBs) and how this phenotype reduces unnecessary inflammation when in contact with beneficial commensal bacteria. We explore the interaction of human MCs (HMCs) and dFBs in the human skin microenvironment and test how this interaction controls MC inflammatory response by inhibiting the nuclear factor κB (NF-κB) pathway. We show that the extracellular matrix hyaluronic acid, as the activator of the regulatory zinc finger (de)ubiquitinating enzyme A20/tumor necrosis factor α-induced protein 3 (TNFAIP3), is responsible for the reduced HMC response to commensal bacteria. The role of hyaluronic acid as an anti-inflammatory ligand on MCs opens new avenues for the potential treatment of inflammatory and allergic disorders.
Collapse
Affiliation(s)
- Anna Di Nardo
- Department of Dermatology, School of Medicine, University of California San Diego, La Jolla, CA 92037, USA.
| | - Yu-Ling Chang
- Department of Dermatology, School of Medicine, University of California San Diego, La Jolla, CA 92037, USA
| | - Shahrzad Alimohammadi
- Department of Dermatology, School of Medicine, University of California San Diego, La Jolla, CA 92037, USA
| | - Kana Masuda-Kuroki
- Department of Dermatology, School of Medicine, University of California San Diego, La Jolla, CA 92037, USA
| | - Zhenping Wang
- Department of Dermatology, School of Medicine, University of California San Diego, La Jolla, CA 92037, USA
| | - Krishna Sriram
- Department of Pharmacology, School of Medicine, University of California San Diego, La Jolla, CA 92037, USA; Department of Medicine, School of Medicine, University of California San Diego, La Jolla, CA 92037, USA
| | - Paul A Insel
- Department of Pharmacology, School of Medicine, University of California San Diego, La Jolla, CA 92037, USA; Department of Medicine, School of Medicine, University of California San Diego, La Jolla, CA 92037, USA
| |
Collapse
|
20
|
Berdiaki A, Neagu M, Spyridaki I, Kuskov A, Perez S, Nikitovic D. Hyaluronan and Reactive Oxygen Species Signaling—Novel Cues from the Matrix? Antioxidants (Basel) 2023; 12:antiox12040824. [PMID: 37107200 PMCID: PMC10135151 DOI: 10.3390/antiox12040824] [Citation(s) in RCA: 17] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Revised: 03/22/2023] [Accepted: 03/24/2023] [Indexed: 03/30/2023] Open
Abstract
Hyaluronan (HA) is a naturally occurring non-sulfated glycosaminoglycan (GAG) localized to the cell surface and the tissue extracellular matrix (ECM). It is composed of disaccharides containing glucuronic acid and N-acetylglucosamine, is synthesized by the HA synthase (HAS) enzymes and is degraded by hyaluronidase (HYAL) or reactive oxygen and nitrogen species (ROS/RNS) actions. HA is deposited as a high molecular weight (HMW) polymer and degraded to low molecular weight (LMW) fragments and oligosaccharides. HA affects biological functions by interacting with HA-binding proteins (hyaladherins). HMW HA is anti-inflammatory, immunosuppressive, and antiangiogenic, whereas LMW HA has pro-inflammatory, pro-angiogenetic, and oncogenic effects. ROS/RNS naturally degrade HMW HA, albeit at enhanced levels during tissue injury and inflammatory processes. Thus, the degradation of endothelial glycocalyx HA by increased ROS challenges vascular integrity and can initiate several disease progressions. Conversely, HA exerts a vital role in wound healing through ROS-mediated HA modifications, which affect the innate immune system. The normal turnover of HA protects against matrix rigidification. Insufficient turnover leads to increased tissue rigidity, leading to tissue dysfunction. Both endogenous and exogenous HMW HA have a scavenging capacity against ROS. The interactions of ROS/RNS with HA are more complex than presently perceived and present an important research topic.
Collapse
|
21
|
Alharbi MS, Alshehri FA, Alobaidi AS, Alrowis R, Alshibani N, Niazy AA. High molecular weight hyaluronic acid reduces the growth and biofilm formation of the oral pathogen Porphyromonas gingivalis. Saudi Dent J 2023; 35:141-146. [PMID: 36942200 PMCID: PMC10024125 DOI: 10.1016/j.sdentj.2023.01.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2023] [Revised: 01/19/2023] [Accepted: 01/24/2023] [Indexed: 02/05/2023] Open
Abstract
Background Porphyromonas gingivalis (P. gingivalis) is viewed as a keystone microorganism in the pathogenesis of periodontal and peri-implant diseases. Hyaluronic acid (HA) is believed to exert antimicrobial activity. The aim of this study is to assess the in-vitro growth and biofilm formation of P. gingivalis under HA and compare the effect of HA to that of azithromycin (AZM) and chlorhexidine (CHX). Materials and methods In each material, the minimum inhibitory concentration (MIC), 50% MIC, 25% MIC, and 12.5% MIC were tested. The growth of P. gingivalis was evaluated by absorbance spectrophotometry after 48 h. A biofilm inhibition assay was performed on a 72-hour culture by washing planktonic bacterial cells, fixing and staining adherent cells, and measuring the variation in stain concentrations relative to the untreated control using absorbance spectrophotometry. Results The results show that the overall growth of P. gingivalis after 48 h was 0.048 ± 0.030, 0.008 ± 0.013, and 0.073 ± 0.071 under HA, AZM, and CHX, respectively, while the untreated control reached 0.236 ± 0.039. HA was also able to significantly reduce the biofilm formation of P. gingivalis by 64.30 % ± 22.39, while AZM and CHX reduced biofilm formation by 91.16 %±12.58 and 88.35 %±17.11, respectively. Conclusions High molecular-weight HA significantly inhibited the growth of P. gingivalis. The overall effect of HA on the growth of P. gingivalis was similar to that of CHX but less than that of AZM. HA was also able to significantly reduce the biofilm formation of P. gingivalis. However, the ability of HA to prevent the biofilm formation of P. gingivalis was generally less than that of both AZM and CHX.
Collapse
Affiliation(s)
- Meshal S. Alharbi
- Department of Periodontics and Community Dentistry, College of Dentistry, King Saud University, 12372 Riyadh, Saudi Arabia
- Qassim Health Cluster, Ministry of Health, 52367 Buraydah, Saudi Arabia
| | - Fahad A. Alshehri
- Department of Periodontics and Community Dentistry, College of Dentistry, King Saud University, 12372 Riyadh, Saudi Arabia
- Corresponding author.
| | - Ahmed S. Alobaidi
- Department of Botany and Microbiology, College of Science, King Saud University, PO Box 4255, Riyadh 11451, Saudi Arabia
| | - Raed Alrowis
- Department of Periodontics and Community Dentistry, College of Dentistry, King Saud University, 12372 Riyadh, Saudi Arabia
| | - Nouf Alshibani
- Department of Periodontics and Community Dentistry, College of Dentistry, King Saud University, 12372 Riyadh, Saudi Arabia
| | - Abdurahman A. Niazy
- Department of Oral Medicine and Diagnostic Sciences, College of Dentistry, King Saud University, 12372 Riyadh, Saudi Arabia
| |
Collapse
|
22
|
Alpan AL, Cin GT. Comparison of hyaluronic acid, hypochlorous acid, and flurbiprofen on postoperative morbidity in palatal donor area: a randomized controlled clinical trial. Clin Oral Investig 2023:10.1007/s00784-022-04848-5. [PMID: 36595064 PMCID: PMC9808727 DOI: 10.1007/s00784-022-04848-5] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2022] [Accepted: 12/26/2022] [Indexed: 01/04/2023]
Abstract
OBJECTIVE This study aims to evaluate the effects of topical hyaluronic acid (HA), hypochlorous acid (HOCl), and flurbiprofen on postoperative morbidity of palatal donor sites after free gingival graft (FGG) surgery. MATERIALS AND METHODS Sixty patients requiring FGG were randomly assigned into four groups: control, HA gel (600 mg/100 g high molecular weight hyaluronic acid), HOCl spray (170-200 ppm, ph7.1), flurbiprofen spray (0.075gr flurbiprofen). Topical agents were applied for 14 days, according to groups. Patients were followed for 28 days. Palatal healing was assessed with the Laundry wound healing index (WHI). Complete epithelization (CE) was evaluated with photographs and H2O2 bubbling. Pain, burning sensation, chewing efficacy, and tissue color match (CM) were evaluated using a visual analog scale (VAS). Postoperative analgesic consumption and delayed bleeding (DB) were also recorded. RESULTS HA provided better WHI values on the 7th, 14th, and 21st days compared to the other groups, respectively (p < 0.05). CE was formed on the 21st day in the HA group but on the 28th day in the other groups. HOCl and flurbiprofen groups were not different from the control group or each other in terms of WHI. HOCl had the lowest VAS scores of all time periods. DB was not observed in any group. Significantly fewer analgesics were taken in the topical agent-applied groups compared to the control group. CONCLUSIONS HA exhibits a positive impact on the epithelization of palatal wound healing and color matching. HOCl and flurbiprofen provided less pain; however, they might have negative effects on palatal wound healing. CLINICAL RELEVANCE As a result of obtaining free gingival grafts from palatal tissue for mucogingival surgical procedures, secondary wound healing of the donor area occurs. This wound in the palatal region can cause discomfort and pain every time patients use their mouths. The use of HA can reduce postoperative complications by accelerating wound healing and reducing pain. The topical use of flurbiprofen and HOCl can reduce patients' pain.
Collapse
Affiliation(s)
- Aysan Lektemur Alpan
- Department of Periodontology, Faculty of Dentistry, Pamukkale University, Kınıklı Campus, 20160 Denizli, Turkey
| | - Gizem Torumtay Cin
- Department of Periodontology, Faculty of Dentistry, Pamukkale University, Kınıklı Campus, 20160 Denizli, Turkey
| |
Collapse
|
23
|
Molecular Fingerprint of Human Pathological Synoviocytes in Response to Extractive Sulfated and Biofermentative Unsulfated Chondroitins. Int J Mol Sci 2022; 23:ijms232415865. [PMID: 36555507 PMCID: PMC9784855 DOI: 10.3390/ijms232415865] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2022] [Revised: 12/05/2022] [Accepted: 12/06/2022] [Indexed: 12/15/2022] Open
Abstract
Pharma-grade extractive chondroitin sulfate (CS) is widely used for osteoarthritis (OA) treatment. Recently, unsulfated biofermentative chondroitin (BC) proved positive effects in OA in vitro model. This study, based on primary pathological human synoviocytes, aimed to analyze, by a multiplex assay, a panel of OA-related biomarkers in response to short-term treatments with bovine (CSb), pig (CSp) and fish (CSf) chondroitins, in comparison to BC. As expected, all samples had anti-inflammatory properties, however CSb, CSf and especially BC affected more cytokines and chemokines. Based on these results and molecular weight similarity, CSf and BC were selected to further explore the synoviocytes' response. In fact, Western blot analyses showed CSf and BC were comparable, downregulating OA-related biomarkers such as the proteins mTOR, NF-kB, PTX-3 and COMP-2. Proteomic analyses, performed by applying a nano-LC-MS/MS TMT isobaric labelling-based approach, displayed the modulation of both common and distinct molecules to chondroitin treatments. Thus, CSf and BC modulated the biological mediators involved in the inflammation cascade, matrix degradation/remodeling, glycosaminoglycans' synthesis and cellular homeostasis. This study helps in shedding light on different molecular mechanisms related to OA disease that may be potentially affected not only by animal-source chondroitin sulfate but also by unsulfated biofermentative chondroitin.
Collapse
|
24
|
Shikina E, Kovalevsky R, Shirkovskaya A, Toukach P. Prospective bacterial and fungal sources of hyaluronic acid: A review. Comput Struct Biotechnol J 2022; 20:6214-6236. [PMID: 36420162 PMCID: PMC9676211 DOI: 10.1016/j.csbj.2022.11.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2022] [Revised: 11/05/2022] [Accepted: 11/05/2022] [Indexed: 11/11/2022] Open
Abstract
The unique biological and rheological properties make hyaluronic acid a sought-after material for medicine and cosmetology. Due to very high purity requirements for hyaluronic acid in medical applications, the profitability of streptococcal fermentation is reduced. Production of hyaluronic acid by recombinant systems is considered a promising alternative. Variations in combinations of expressed genes and fermentation conditions alter the yield and molecular weight of produced hyaluronic acid. This review is devoted to the current state of hyaluronic acid production by recombinant bacterial and fungal organisms.
Collapse
|
25
|
Filatova YS, Soloviev IN. Hyaluronic acid in the treatment of osteoarthritis of various localization: A review. TERAPEVT ARKH 2022; 94:1014-1019. [DOI: 10.26442/00403660.2022.08.201790] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2022] [Accepted: 10/12/2022] [Indexed: 02/25/2023]
Abstract
The article discusses the treatment of osteoarthritis (OA), the prevalence of which is high, and according to some forecasts it will increase by 50% in the next 20 years. The authors emphasize the high comorbidity among patients suffering from OA and high cardiovascular and gastrointestinal risks with frequent use of NSAIDs, the volume of consumption of which is constantly increasing. Discussing recommendations for the treatment of patients with OA, the article focuses on the use of hyaluronic acid (HA) preparations in the treatment of OA. The mechanisms of anti-inflammatory and chondroprotective actions of HA in the joint, its effect on cartilage and synovial membrane are discussed. Attention is drawn to the fact that, despite more than 30 years of experience in the effective use of HA preparations in the treatment of OA, this procedure is still a subject of controversy among international professional communities. The article presents data from meta-analyses and systematic reviews confirming the effectiveness of the use of intra-articular management of HA preparations in OA of various localization (knee joints, hip joints, hand joints). In conclusion, the recommendations of the technical expert group established at the International Symposium on Intra-Articular Treatment are given to determine the criteria for the successful administration of HA in OA of various localizations, as well as predictors of success and non-success of therapy with HA drugs. The experts identified indications, contraindications for intra-articular administration of HA preparations, as well as conditions associated with an increased risk of therapy failure. In conclusion, the authors draw conclusions about the importance of using HA preparations for intra-articular administration for the treatment of OA, starting from the early stages, following the recommendations of experts.
Collapse
|
26
|
High Molecular Weight Hyaluronic Acid Reduces the Expression of Virulence Genes fimA, mfa1, hagA, rgpA, and kgp in the Oral Pathogen Porphyromonas gingivalis. Pharmaceutics 2022; 14:pharmaceutics14081628. [PMID: 36015254 PMCID: PMC9415305 DOI: 10.3390/pharmaceutics14081628] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Revised: 07/13/2022] [Accepted: 08/02/2022] [Indexed: 02/04/2023] Open
Abstract
Porphyromonas gingivalis (P. gingivalis) is a cornerstone pathogen in the development and progression of periodontal and peri-implant tissue destruction. It is capable of causing dysbiosis of the microbial biofilm and modulation of the host immune system. Hyaluronic acid (HA) is a naturally occurring glycosaminoglycan found in all living organisms. It is well known and has been used for improving tissue healing. In addition, some studies have suggested that there may be an antimicrobial potential to HA. The aim of this study was to evaluate the effect of hyaluronic acid, azithromycin (AZM), and chlorhexidine (CHX) on the expression of genes (i.e., fimA, mfa1, hagA, rgpA, rgpB, and kgp) related to the virulence and adhesion of P. gingivalis. The study groups were divided into four: (1) HA treated group; (2) AZM treated group; (3) CHX treated group; and (4) untreated group to serve as a negative control. P. gingivalis ATCC 33277 was cultured and then exposed to four different concentrations (100% MIC, 50% MIC, 25% MIC, and 12.5% MIC) of HA, AZM, and CHX for 24 h. The expression levels of the aforementioned genes were measured using quantitative reverse transcription polymerase chain reaction (RT-qPCR). Relative fold-change values were calculated and compared between groups. The fold-change values of all genes combined were 0.46 ± 0.33, 0.31 ± 0.24, and 0.84 ± 0.77 for HA, AZM, and CHX, respectively. HA has downregulated all the genes by mostly a half-fold: 0.35 ± 0.20, 0.47 ± 0.35, 0.44 ± 0.25, 0.67 ± 0.46, 0.48 ± 0.33 and 0.35 ± 0.22 with fimA, mfa1, hagA, rgpA, rgpB and kgp, respectively. The effect of HA was significant on all genes except rgpB compared to the untreated control. Lower concentrations of HA tended to exhibit greater downregulation with 1 mg/mL being the most effective. High molecular weight (1.5 MDa) hyaluronic acid has a potent effect on P. gingivalis by downregulating fimA, mfa1, hagA, rgpA, and kgp. The effect of HA was generally less than that of AZM but greater than that of CHX.
Collapse
|
27
|
Kim YS, Guilak F. Engineering Hyaluronic Acid for the Development of New Treatment Strategies for Osteoarthritis. Int J Mol Sci 2022; 23:8662. [PMID: 35955795 PMCID: PMC9369020 DOI: 10.3390/ijms23158662] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2022] [Revised: 07/22/2022] [Accepted: 07/29/2022] [Indexed: 11/16/2022] Open
Abstract
Osteoarthritis (OA) is a degenerative joint disease that is characterized by inflammation of the joints, degradation of cartilage, and the remodeling of other joint tissues. Due to the absence of disease-modifying drugs for OA, current clinical treatment options are often only effective at slowing down disease progression and focus mainly on pain management. The field of tissue engineering has therefore been focusing on developing strategies that could be used not only to alleviate symptoms of OA but also to regenerate the damaged tissue. Hyaluronic acid (HA), an integral component of both the synovial fluid and articular cartilage, has gained widespread usage in developing hydrogels that deliver cells and biomolecules to the OA joint thanks to its biocompatibility and ability to support cell growth and the chondrogenic differentiation of encapsulated stem cells, providing binding sites for growth factors. Tissue-engineering strategies have further attempted to improve the role of HA as an OA therapeutic by developing diverse modified HA delivery platforms for enhanced joint retention and controlled drug release. This review summarizes recent advances in developing HA-based hydrogels for OA treatment and provides additional insights into how HA-based therapeutics could be further improved to maximize their potential as a viable treatment option for OA.
Collapse
Affiliation(s)
- Yu Seon Kim
- Department of Orthopaedic Surgery, Washington University School of Medicine, St. Louis, MO 63110, USA
- Shriners Hospitals for Children—Saint Louis, St. Louis, MO 63110, USA
- Center of Regenerative Medicine, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Farshid Guilak
- Department of Orthopaedic Surgery, Washington University School of Medicine, St. Louis, MO 63110, USA
- Shriners Hospitals for Children—Saint Louis, St. Louis, MO 63110, USA
- Center of Regenerative Medicine, Washington University School of Medicine, St. Louis, MO 63110, USA
- Department of Biomedical Engineering, Washington University, St. Louis, MO 63105, USA
| |
Collapse
|
28
|
New Hyaluronic Acid from Plant Origin to Improve Joint Protection—An In Vitro Study. Int J Mol Sci 2022; 23:ijms23158114. [PMID: 35897688 PMCID: PMC9332867 DOI: 10.3390/ijms23158114] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2022] [Revised: 07/13/2022] [Accepted: 07/18/2022] [Indexed: 11/17/2022] Open
Abstract
Background: In recent decades, hyaluronic acid (HA) has attracted great attention as a new treatment option for osteoarthritis. Classical therapies are not able to stop the cartilage degeneration process nor do they favor tissue repair. Nowadays, it is accepted that high molecular weight HA can reduce inflammation by promoting tissue regeneration; therefore, the aim of this study was to verify the efficacy of a new high molecular weight HA of plant origin (called GreenIuronic®) in maintaining joint homeostasis and preventing the harmful processes of osteoarthritis. Methods: The bioavailability of GreenIuronic® was investigated in a 3D intestinal barrier model that mimics human oral intake while excluding damage to the intestinal barrier. Furthermore, the chemical significance and biological properties of GreenIuronic® were investigated in conditions that simulate osteoarthritis. Results: Our data demonstrated that GreenIuronic® crosses the intestinal barrier without side effects as it has a chemical–biological profile, which could be responsible for many specific chondrocyte functions. Furthermore, in the osteoarthritis model, GreenIuronic® can modulate the molecular mechanism responsible for preventing and restoring the degradation of cartilage. Conclusion: According to our results, this new form of HA appears to be well absorbed and distributed to chondrocytes, preserving their biological activities. Therefore, the oral administration of GreenIuronic® in humans can be considered a valid strategy to obtain beneficial therapeutic effects during osteoarthritis.
Collapse
|
29
|
Lin YJ, Chang Chien BY, Lee YH. Injectable and thermoresponsive hybrid hydrogel with Antibacterial, Anti-inflammatory, oxygen Transport, and enhanced cell growth activities for improved diabetic wound healing. Eur Polym J 2022. [DOI: 10.1016/j.eurpolymj.2022.111364] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
|
30
|
Cui P, Li M, Yu M, Liu Y, Ding Y, Liu W, Liu J. Advances in sports food: Sports nutrition, food manufacture, opportunities and challenges. Food Res Int 2022; 157:111258. [DOI: 10.1016/j.foodres.2022.111258] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2021] [Revised: 04/12/2022] [Accepted: 04/14/2022] [Indexed: 11/26/2022]
|
31
|
Kobayashi M, Harada S, Fujimoto N, Nomura Y. Apple polyphenols exhibits chondroprotective changes of synovium and prevents knee osteoarthritis. Biochem Biophys Res Commun 2022; 614:120-124. [DOI: 10.1016/j.bbrc.2022.05.016] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2022] [Accepted: 05/04/2022] [Indexed: 01/15/2023]
|
32
|
Lung Hyaluronasome: Involvement of Low Molecular Weight Ha (Lmw-Ha) in Innate Immunity. Biomolecules 2022; 12:biom12050658. [PMID: 35625586 PMCID: PMC9138743 DOI: 10.3390/biom12050658] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2022] [Revised: 04/27/2022] [Accepted: 04/28/2022] [Indexed: 02/01/2023] Open
Abstract
Hyaluronic acid (HA) is a major component of the extracellular matrix. It is synthesized by hyaluronan synthases (HAS) into high-molecular-weight chains (HMW-HA) that exhibit anti-inflammatory and immunomodulatory functions. In damaged, infected, and/or inflamed tissues, HMW-HA are degraded by hyaluronidases (HYAL) or reactive oxygen species (ROS) to give rise to low-molecular-weight HAs (LMW-HAs) that are potent pro-inflammatory molecules. Therefore, the size of HA regulates the balance of anti- or pro-inflammatory functions. The activities of HA depend also on its interactions with hyaladherins. HA synthesis, degradation, and activities through HA/receptors interactions define the hyaluronasome. In this review, a short overview of the role of high and low-molecular-weight HA polymers in the lungs is provided. The involvement of LMW-HA in pulmonary innate immunity via the activation of neutrophils, macrophages, dendritic cells, and epithelial cells is described to highlight LMW-HA as a therapeutic target in inflammatory respiratory diseases. Finally, the possibilities to counter LMW-HA’s deleterious effects in the lungs are discussed.
Collapse
|
33
|
Kaul A, Singampalli KL, Parikh UM, Yu L, Keswani SG, Wang X. Hyaluronan, a double-edged sword in kidney diseases. Pediatr Nephrol 2022; 37:735-744. [PMID: 34009465 PMCID: PMC8960635 DOI: 10.1007/s00467-021-05113-9] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/05/2020] [Revised: 03/31/2021] [Accepted: 04/30/2021] [Indexed: 12/20/2022]
Abstract
Over the years, hyaluronic acid (HA) has emerged as an important molecule in nephrological and urological studies involving extracellular matrix (ECM) organization, inflammation, tissue regeneration, and viral sensing. During this time, many have noted the perplexing double-edged nature of the molecule, at times promoting pro-fibrotic events and at other times promoting anti-fibrotic events. Different molecular weights of HA can be attributed to these disparities, though most studies have yet to focus on this subtlety. With regard to the kidney, HA is induced in the initial response phase of injury and is subsequently decreased during disease progression of AKI, CKD, and diabetic nephropathy. These and other kidney diseases force patients, particularly pediatric patients, to face dialysis, surgical procedures, and ultimately, transplant. To summarize the current literature for researchers and pediatric nephrologists, this review aims to expound HA and elucidate its paradoxical effects in multiple kidney diseases using studies that emphasize HA molecular weight when available.
Collapse
Affiliation(s)
- Aditya Kaul
- Laboratory for Regenerative Tissue Repair, Division of Pediatric Surgery, Department of Surgery, Texas Children's Hospital/Baylor College of Medicine, Houston, TX, 77030, USA
| | - Kavya L Singampalli
- Laboratory for Regenerative Tissue Repair, Division of Pediatric Surgery, Department of Surgery, Texas Children's Hospital/Baylor College of Medicine, Houston, TX, 77030, USA
- Medical Scientist Training Program, Baylor College of Medicine, Houston, 77030, TX, USA
- Department of Bioengineering, Rice University, Houston, 77030, TX, USA
| | - Umang M Parikh
- Laboratory for Regenerative Tissue Repair, Division of Pediatric Surgery, Department of Surgery, Texas Children's Hospital/Baylor College of Medicine, Houston, TX, 77030, USA
| | - Ling Yu
- Laboratory for Regenerative Tissue Repair, Division of Pediatric Surgery, Department of Surgery, Texas Children's Hospital/Baylor College of Medicine, Houston, TX, 77030, USA
| | - Sundeep G Keswani
- Laboratory for Regenerative Tissue Repair, Division of Pediatric Surgery, Department of Surgery, Texas Children's Hospital/Baylor College of Medicine, Houston, TX, 77030, USA
| | - Xinyi Wang
- Laboratory for Regenerative Tissue Repair, Division of Pediatric Surgery, Department of Surgery, Texas Children's Hospital/Baylor College of Medicine, Houston, TX, 77030, USA.
| |
Collapse
|
34
|
Synergistic Effect of L-Carnosine and Hyaluronic Acid in Their Covalent Conjugates on the Antioxidant Abilities and the Mutual Defense against Enzymatic Degradation. Antioxidants (Basel) 2022; 11:antiox11040664. [PMID: 35453350 PMCID: PMC9030210 DOI: 10.3390/antiox11040664] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2022] [Revised: 03/21/2022] [Accepted: 03/28/2022] [Indexed: 11/16/2022] Open
Abstract
Hyaluronic acid (Hy) is a natural linear polymer that is widely distributed in different organisms, especially in the articular cartilage and the synovial fluid. During tissue injury due to oxidative stress, Hy plays an important protective role. All the beneficial properties of Hy make the polymer attractive for many biomedical uses; however, the low stability and short biological half-life limit Hy application. To overcome these problems, the addition of small antioxidant molecules to Hy solution has been employed to protect the molecular integrity of Hy or delay its degradation. Carnosine (β-alanyl-L-histidine, Car) protects cells from the damage due to the reactive species derived from oxygen (ROS), nitrogen (RNS) or carbonyl groups (RCS). Car inhibits the degradation of hyaluronan induced by free radical processes in vitro but, like Hy, the potential protective action of Car is drastically hampered by the enzymatic hydrolysis in vivo. Recently, we conjugated Hy to Car and the derivatives (HyCar) showed protective effects in experimental models of osteoarthritis and rheumatoid arthritis in vivo. Here we report the antioxidant activity exerted by HyCar against ROS, RNS and RCS. Moreover, we tested if the covalent conjugation between Hy and Car inhibits the enzymatic hydrolysis of the polymer and the dipeptide backbone. We found that the antioxidant properties and the resistance to the enzymatic hydrolysis of Hy and Car are greatly improved by the conjugation.
Collapse
|
35
|
Satin AM, Norelli JB, Sgaglione NA, Grande DA. Effect of Combined Leukocyte-Poor Platelet-Rich Plasma and Hyaluronic Acid on Bone Marrow-Derived Mesenchymal Stem Cell and Chondrocyte Metabolism. Cartilage 2021; 13:267S-276S. [PMID: 31282189 PMCID: PMC8804819 DOI: 10.1177/1947603519858739] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
OBJECTIVE Given the potential applications of combined biologics, the authors sought to evaluate the in vitro effect of combined platelet-rich plasma (PRP) and hyaluronic acid (HA) on cellular metabolism. DESIGN Bone marrow-derived mesenchymal stem cells (BMSCs) and chondrocytes were obtained from the femurs of Sprague-Dawley rats. An inflammatory model was created by adding 10 ng/mL interleukin-1-beta to culture media. Non-crosslinked high-molecular-weight HA, activated-PRP (aPRP), and unactivated-PRP (uPRP) were tested. Cellular proliferation and gene expression were measured at 1 week. Genes of interest included aggrecan, matrix metalloproteinase (MMP)-9, and MMP-13. RESULTS Combined uPRP-HA was associated with a significant increase in chondrocyte and BMSC proliferation at numerous preparations. There was a trend of increased chondrocyte aggrecan expression with combined PRP-HA. The greatest and only significant decrease in BMSC MMP-9 expression was observed with combined PRP-HA. While a significant reduction of BMSC MMP-13 expression was seen with PRP and HA-alone, a greater reduction was observed with PRP-HA. MMP-9 chondrocyte expression was significantly reduced in cells treated with PRP-HA. PRP-alone and HA-alone at identical concentrations did not result in a significant reduction. The greatest reduction of MMP-13 chondrocyte expression was observed in chondrocytes plus combined PRP-HA. CONCLUSIONS We demonstrated a statistically significant increase in BMSC and chondrocyte proliferation and decreased expression of catabolic enzymes with combined PRP-HA. These results demonstrate the additive in vitro effect of combined PRP-HA to stimulate cellular growth, restore components of the articular extracellular matrix, and reduce inflammation.
Collapse
Affiliation(s)
- Alexander M. Satin
- Department of Orthopaedic Surgery,
Long Island Jewish Medical Center, Northwell Health, New Hyde Park, NY,
USA
| | - Jolanta B. Norelli
- Donald and Barbara Zucker School
of Medicine at Hofstra/Northwell, Hempstead, NY, USA
- Orthopaedic Research Laboratory,
Feinstein Institute for Medical Research, Manhasset, NY, USA
| | - Nicholas A. Sgaglione
- Department of Orthopaedic Surgery,
Long Island Jewish Medical Center, Northwell Health, New Hyde Park, NY,
USA
- Donald and Barbara Zucker School
of Medicine at Hofstra/Northwell, Hempstead, NY, USA
| | - Daniel A. Grande
- Department of Orthopaedic Surgery,
Long Island Jewish Medical Center, Northwell Health, New Hyde Park, NY,
USA
- Donald and Barbara Zucker School
of Medicine at Hofstra/Northwell, Hempstead, NY, USA
- Orthopaedic Research Laboratory,
Feinstein Institute for Medical Research, Manhasset, NY, USA
| |
Collapse
|
36
|
Filho MCB, Dos Santos Haupenthal DP, Zaccaron RP, de Bem Silveira G, de Roch Casagrande L, Lupselo FS, Alves N, de Sousa Mariano S, do Bomfim FRC, de Andrade TAM, Machado-de-Ávila RA, Silveira PCL. Intra-articular treatment with hyaluronic acid associated with gold nanoparticles in a mechanical osteoarthritis model in Wistar rats. J Orthop Res 2021; 39:2546-2555. [PMID: 33580538 DOI: 10.1002/jor.25008] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/28/2019] [Revised: 11/26/2020] [Accepted: 02/10/2021] [Indexed: 02/04/2023]
Abstract
This study aimed to evaluate the effects of intra-articular treatment with hyaluronic acid (HA) associated with GNPs in a mechanical model of osteoarthritis induced by median meniscectomy (MM). Fifty Wistar rats (2 months weighing between 250 and 300 g) were used, divided into five groups of 10 animals each: Sham, osteoarthritis (OA), OA + HA, OA + gold nanoparticles (GNPs), and OA + HA + GNPs. Intra-articular treatment was started 30 days after the model was induced, with a frequency of 2 weeks for 60 days. Fifteen days after the last application, the animals were euthanized with the removal of the joint tissue for biochemical and histological analysis. The model used was able to mimic osteoarthritis, characterized by the presence of high levels of proinflammatory cytokines, oxidative stress, and degeneration of joint surfaces (Grade III, according to SCORE OARSI). The isolated use of HA or GNPs provided beneficial results to the joint; however, only the group subjected to the association between HA and GNPs showed the attenuation of oxidative stress and reduced proinflammatory markers, with a simultaneous increase in levels of anti-inflammatory cytokines and growth factors. Upon histological analysis, only the OA + HA + GNPs group achieved the restoration of the thickness of the joint cartilage with reduced damage and return to the intact joint surface. The results found demonstrated that the association of GNPs with HA was able to reverse the deleterious effects caused by the model by inhibiting the progressive degeneration of joint surfaces, representing a promising treatment for osteoarthritis.
Collapse
Affiliation(s)
- Mario Cesar Búrigo Filho
- Laboratory of Experimental Phisiopatology, Program of postgraduate in Science of Health, Universidade do Extremo Sul Catarinense, Criciúma, Santa Catarina, Brazil
| | - Daniela Pacheco Dos Santos Haupenthal
- Laboratory of Experimental Phisiopatology, Program of postgraduate in Science of Health, Universidade do Extremo Sul Catarinense, Criciúma, Santa Catarina, Brazil
| | - Rubya Pereira Zaccaron
- Laboratory of Experimental Phisiopatology, Program of postgraduate in Science of Health, Universidade do Extremo Sul Catarinense, Criciúma, Santa Catarina, Brazil
| | - Gustavo de Bem Silveira
- Laboratory of Experimental Phisiopatology, Program of postgraduate in Science of Health, Universidade do Extremo Sul Catarinense, Criciúma, Santa Catarina, Brazil
| | - Laura de Roch Casagrande
- Laboratory of Experimental Phisiopatology, Program of postgraduate in Science of Health, Universidade do Extremo Sul Catarinense, Criciúma, Santa Catarina, Brazil
| | - Fernando Silva Lupselo
- Laboratory of Experimental Phisiopatology, Program of postgraduate in Science of Health, Universidade do Extremo Sul Catarinense, Criciúma, Santa Catarina, Brazil
| | - Naiara Alves
- Graduate Program of Biomedical Sciences, University Center of Herminio Ometto Foundation, Araras, São Paulo, Brazil
| | - Samara de Sousa Mariano
- Graduate Program of Biomedical Sciences, University Center of Herminio Ometto Foundation, Araras, São Paulo, Brazil
| | | | | | - Ricardo Andrez Machado-de-Ávila
- Laboratory of Experimental Phisiopatology, Program of postgraduate in Science of Health, Universidade do Extremo Sul Catarinense, Criciúma, Santa Catarina, Brazil
| | - Paulo Cesar Lock Silveira
- Laboratory of Experimental Phisiopatology, Program of postgraduate in Science of Health, Universidade do Extremo Sul Catarinense, Criciúma, Santa Catarina, Brazil
| |
Collapse
|
37
|
Danieli MV, Guerreiro JPF, Vimercati TA, Mendes PHF, Miyazaki PRTK, Cataneo DC. Platelet-Rich Plasma Versus Hyaluronic Acid for Knee Chondral Injuries In Young Patients. Rev Bras Ortop 2021; 56:634-640. [PMID: 34733436 PMCID: PMC8558929 DOI: 10.1055/s-0041-1724075] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2020] [Accepted: 09/17/2020] [Indexed: 11/09/2022] Open
Abstract
Objective
The present study aimed to compare the clinical and functional outcomes of hyaluronic acid (HA) or platelet-rich plasma (PRP) applications to treat young patients with knee chondral lesions with no arthrosis.
Methods
Prospective clinical and functional evaluation of 30 young adult patients with knee chondral lesions submitted to conservative treatment with HA or PRP for a minimum follow-up time of 12 months. The Western Ontario and McMaster Universities Arthritis Index (WOMAC) and visual analog scale (VAS) were used for the evaluation.
Results
According to the WOMAC score, the PRP group showed significant improvement in all evaluated points, whereas the HA group presented no score improvement. In the VAS, the PRP group showed improvement in all evaluated points, and the HA group presented improvement at 6 and 12 months. Compared to the HA group, the PRP group presented better WOMAC scores at all evaluated points and better VAS scores up to 6 months after treatment.
Conclusion
Platelet-rich plasma application resulted in better clinical and functional outcomes at both the WOMAC and VAS scores when applied to knees from young patients with chondral lesions, but no arthrosis. These outcomes were sustained for up to 12 months.
Level of evidence
Randomized clinical trial (Type 2B)
Collapse
Affiliation(s)
- Marcus Vinicius Danieli
- Grupo de Cirurgia do Joelho, Uniorte Hospital de Ortopedia, Londrina, PR, Brasil.,Hospital Evangélico de Londrina, Londrina, PR, Brasil
| | - João Paulo Fernandes Guerreiro
- Grupo de Cirurgia do Joelho, Uniorte Hospital de Ortopedia, Londrina, PR, Brasil.,Hospital Evangélico de Londrina, Londrina, PR, Brasil
| | | | | | | | - Daniele Cristina Cataneo
- Departamento de Cirurgia, Universidade Estadual Paulista (UNESP), Faculdade de Medicina, Botucatu, Botucatu, SP, Brasil
| |
Collapse
|
38
|
Qu J, Cheng Y, Wu W, Yuan L, Liu X. Glycocalyx Impairment in Vascular Disease: Focus on Inflammation. Front Cell Dev Biol 2021; 9:730621. [PMID: 34589494 PMCID: PMC8473795 DOI: 10.3389/fcell.2021.730621] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2021] [Accepted: 08/25/2021] [Indexed: 02/05/2023] Open
Abstract
The glycocalyx is a complex polysaccharide-protein layer lining the lumen of vascular endothelial cells. Changes in the structure and function of the glycocalyx promote an inflammatory response in blood vessels and play an important role in the pathogenesis of many vascular diseases (e.g., diabetes, atherosclerosis, and sepsis). Vascular endothelial dysfunction is a hallmark of inflammation-related diseases. Endothelial dysfunction can lead to tissue swelling, chronic inflammation, and thrombosis. Therefore, elimination of endothelial inflammation could be a potential target for the treatment of vascular diseases. This review summarizes the key role of the glycocalyx in the inflammatory process and the possible mechanism by which it alleviates this process by interrupting the cycle of endothelial dysfunction and inflammation. Especially, we highlight the roles of different components of the glycocalyx in modulating the inflammatory process, including components that regulate leukocyte rolling, L-selectin binding, inflammasome activation and the signaling interactions between the glycocalyx components and the vascular cells. We discuss how the glycocalyx interferes with the development of inflammation and the importance of preventing glycocalyx impairment. Finally, drawing on current understanding of the role of the glycocalyx in inflammation, we consider a potential strategy for the treatment of vascular diseases.
Collapse
Affiliation(s)
- Jing Qu
- Laboratory of Cardiovascular Diseases, Regenerative Medicine Research Center, West China Hospital, Sichuan University, Chengdu, China
| | - Yue Cheng
- Department of Cardiology, West China Hospital, Sichuan University, Chengdu, China
| | - Wenchao Wu
- Laboratory of Cardiovascular Diseases, Regenerative Medicine Research Center, West China Hospital, Sichuan University, Chengdu, China
| | - Lixing Yuan
- Public Laboratory of West China Second University Hospital, Sichuan University, Chengdu, China
| | - Xiaojing Liu
- Laboratory of Cardiovascular Diseases, Regenerative Medicine Research Center, West China Hospital, Sichuan University, Chengdu, China.,Department of Cardiology, West China Hospital, Sichuan University, Chengdu, China
| |
Collapse
|
39
|
Intra-Articular Hybrid Hyaluronic Acid Injection Treatment in Overweight Patients with Knee Osteoarthritis: A Single-Center, Open-Label, Prospective Study. APPLIED SCIENCES-BASEL 2021. [DOI: 10.3390/app11188711] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Background: A BMI > 25 is the most decisive, albeit modifiable, risk factor for knee osteoarthritis (KOA). This study aimed at assessing the efficacy of intra-articular injections of hybrid hyaluronic acid (HA) complexes (Sinovial® H-L) for the treatment of KOA in overweight patients in terms of disease severity, cardiocirculatory capacity, and quality of life. Materials: In this single-site, open-label, prospective trial, 37 patients with symptomatic knee OA were assessed at baseline and 3 months after ultrasound-guided intra-articular injection of hybrid HA complexes (Sinovial® H-L). Results: Primary variables displaying a statistically significant improvement after treatment were pain (VAS), disease severity (WOMAC), and cardiopulmonary capacity (6 min walk test). Among secondary variables, quality of life (SF-12) improved significantly, as did analgesic intake for pain control. No statistically significant difference was observed in body fat and muscle mass percentage measured by bioelectrical impedance analysis. Conclusions: Intra-articular hybrid HA injections are significantly effective in improving OA-related disease severity, cardiopulmonary function, and analgesic intake. This supports the role of hybrid HA viscosupplementation as a nonpharmacological treatment to relieve pain, reduce disability, improve quality of life, and limit the risk of polypharmacy in overweight patients with knee OA.
Collapse
|
40
|
Cai SS, Li T, Akinade T, Zhu Y, Leong KW. Drug delivery carriers with therapeutic functions. Adv Drug Deliv Rev 2021; 176:113884. [PMID: 34302897 PMCID: PMC8440421 DOI: 10.1016/j.addr.2021.113884] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2021] [Revised: 07/14/2021] [Accepted: 07/15/2021] [Indexed: 01/07/2023]
Abstract
Design of micro- or nanocarriers for drug delivery has primarily been focused on properties such as hydrophobicity, biodegradability, size, shape, surface charge, and toxicity, so that they can achieve optimal delivery with respect to drug loading, release kinetics, biodistribution, cellular uptake, and biocompatibility. Incorporation of stimulus-sensitive moieties into the carriers would lead to "smart" delivery systems. A further evolution would be to endow the carrier with a therapeutic function such that it no longer serves as a mere passive entity to release the drug at the target tissue but can be viewed as a therapeutic agent in itself. In this review, we will discuss recent and ongoing efforts over the past decade to design therapeutic drug carriers that confer a biological benefit, including ROS scavenging or generating, pro- or anti-inflammatory, and immuno-evasive properties, to enhance the overall therapeutic efficacy of the delivery systems.
Collapse
Affiliation(s)
- Shuting S. Cai
- Department of Biomedical Engineering, Columbia University, New York 10027, New York, United States
| | - Tianyu Li
- Department of Biomedical Engineering, Columbia University, New York 10027, New York, United States
| | - Tolulope Akinade
- Graduate Program in Cellular, Molecular and Biomedical Studies, Vagelos College of Physicians and Surgeons, Columbia University, New York 10027, New York, United States
| | - Yuefei Zhu
- Department of Biomedical Engineering, Columbia University, New York 10027, New York, United States
| | - Kam W. Leong
- Department of Biomedical Engineering, Columbia University, New York 10027, New York, United States,Department of Systems Biology, Columbia University, New York 10027, New York, United States,Corresponding author , Mailing address: 351 Engineering Terrace, Mail Code 8904, 1210 Amsterdam Avenue, New York, NY 10027
| |
Collapse
|
41
|
Peck J, Slovek A, Miro P, Vij N, Traube B, Lee C, Berger AA, Kassem H, Kaye AD, Sherman WF, Abd-Elsayed A. A Comprehensive Review of Viscosupplementation in Osteoarthritis of the Knee. Orthop Rev (Pavia) 2021; 13:25549. [PMID: 34745480 PMCID: PMC8567800 DOI: 10.52965/001c.25549] [Citation(s) in RCA: 46] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Accepted: 07/03/2021] [Indexed: 12/25/2022] Open
Abstract
PURPOSE OF REVIEW The purpose of this systematic review is to discuss emerging evidence in the field of viscosupplementation for chronic knee pain secondary to Osteoarthritis (OA). This review focuses on types of viscosupplementation that are clinically available currently, evidence to support their use, contraindications, and adverse events. RECENT FINDINGS OA, also known as degenerative joint disease, is the most common form of arthritis in the United States, affecting 54.4 million, or 22.7% of the adult population. The knee is the most common joint affected in OA, with up to 41% involvement, 30% in the hands, and 19% in the hips. The pathophysiology of OA is complex, with contributing factors including mechanical stress to the joint, as well as many person-specific factors such as genetic susceptibility, ethnicity, nutrition, and sex. Treatment modalities include weight control, exercise, non-steroidal and steroidal anti-inflammatory drugs, opioids, intra-articular platelet-rich plasma, placebo, corticosteroid injection, intra-articular viscosupplementation, and surgery. Viscosupplementation consists of injection of hyaluronic acid (HA) into affected joints, intending to restore the physiologic viscoelasticity in the synovial fluid (SF) in the absence of inflammation. HA has also been shown to downregulate pro-inflammatory factors, such as PGE2 and NFkB, and proteases and proteinases known to break down the joint matrix.The contraindications for HA injection are similar to any other injection therapy, and adverse events are usually mild, local, and transient. Viscosupplementation (VS) is effective over placebo and more effective than NSAIDs and corticosteroids in pain reduction and improved functionality; however, guidelines recommend neither for nor against its use, demonstrating variability in the existing evidence base.Current VS options divide primarily into native vs. cross-linked and low-molecular-weight vs. high-molecular-weight. Current treatment options include Hylan g-f-20, Sodium Hyaluronate preparations (Suparts Fx, Euflexxa, Gelsyn-3, Durolane, Hyalgen), single-use agents (Gel-One, Synvisc-One, Monovisc), and Hyaluronan (Orthovisc, Monovisc, Hymovic). They share a common safety profile, and all have evidence supporting their efficacy. Their specific details are reviewed here. SUMMARY OA is the most common form of arthritis. It is a chronic, debilitating illness with a high impact on the functionality and quality of life of a significant part of the population in the western world. Treatments include medical management, physical therapy, activity modification, injection, and surgery. VS effectively reduces pain, increases functionality, and delays surgery in the knee to treat osteoarthritis. While previous studies have demonstrated variable results, more evidence is becoming available generally supportive of the benefit of VS in the treatment of knee OA.
Collapse
Affiliation(s)
| | - Annabel Slovek
- Valley Anesthesiology and Pain Consultants - Envision Physician Services, Phoenix
| | - Paulo Miro
- University of Arizona College of Medicine-Phoenix, AZ
| | - Neeraj Vij
- University of Arizona College of Medicine-Phoenix, AZ
| | - Blake Traube
- University of Arizona College of Medicine-Phoenix, AZ
| | - Christopher Lee
- Creighton University School of Medicine-Phoenix Regional Campus, Phoenix, AZ
| | - Amnon A Berger
- Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA
| | | | | | | | - Alaa Abd-Elsayed
- University of Wisconsin School of Medicine and Public Health, Madison, WI
| |
Collapse
|
42
|
Kotla NG, Bonam SR, Rasala S, Wankar J, Bohara RA, Bayry J, Rochev Y, Pandit A. Recent advances and prospects of hyaluronan as a multifunctional therapeutic system. J Control Release 2021; 336:598-620. [PMID: 34237401 DOI: 10.1016/j.jconrel.2021.07.002] [Citation(s) in RCA: 53] [Impact Index Per Article: 17.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2021] [Revised: 06/30/2021] [Accepted: 07/01/2021] [Indexed: 12/12/2022]
Abstract
Hyaluronan (HA) is a naturally occurring non-sulfated glycosaminoglycan (GAG), cell-surface-associated biopolymer and is the key component of tissue extracellular matrix (ECM). Along with remarkable physicochemical properties, HA also has multifaceted biological effects that include but not limited to ECM organization, immunomodulation, and various cellular processes. Environmental cues such as tissue injury, infection or cancer change downstream signaling functionalities of HA. Unlike native HA, the fragments of HA have diversified effects on inflammation, cancer, fibrosis, angiogenesis and autoimmune response. In this review, we aim to discuss HA as a therapeutic delivery system development process, source, biophysical-chemical properties, and associated biological pathways (especially via cell surface receptors) of native and fragmented HA. We also tried to address an overview of the potential role of HA (native HA vs fragments) in the modulation of inflammation, immune response and various cancer targeting delivery applications. This review will also highlight the HA based therapeutic systems, medical devices and future perspectives of various biomedical applications were discussed in detail.
Collapse
Affiliation(s)
- Niranjan G Kotla
- CÚRAM, SFI Research Centre for Medical Devices, National University of Ireland Galway, H91 W2TY, Ireland
| | - Srinivasa Reddy Bonam
- Institut National de la Santé et de la Recherche Médicale, Centre de Recherche des Cordeliers, Equipe- Immunopathologie et Immunointervention Thérapeutique, Sorbonne Université, Université de Paris, Paris F-75006, France
| | - Swetha Rasala
- CÚRAM, SFI Research Centre for Medical Devices, National University of Ireland Galway, H91 W2TY, Ireland
| | - Jitendra Wankar
- CÚRAM, SFI Research Centre for Medical Devices, National University of Ireland Galway, H91 W2TY, Ireland
| | - Raghvendra A Bohara
- CÚRAM, SFI Research Centre for Medical Devices, National University of Ireland Galway, H91 W2TY, Ireland
| | - Jagadeesh Bayry
- Institut National de la Santé et de la Recherche Médicale, Centre de Recherche des Cordeliers, Equipe- Immunopathologie et Immunointervention Thérapeutique, Sorbonne Université, Université de Paris, Paris F-75006, France; Indian Institute of Technology Palakkad, Palakkad 678 623, Kerala, India
| | - Yury Rochev
- CÚRAM, SFI Research Centre for Medical Devices, National University of Ireland Galway, H91 W2TY, Ireland; Sechenov First Moscow State Medical University, Institute for Regenerative Medicine, Moscow 119992, Russia.
| | - Abhay Pandit
- CÚRAM, SFI Research Centre for Medical Devices, National University of Ireland Galway, H91 W2TY, Ireland.
| |
Collapse
|
43
|
Vassallo V, Stellavato A, Cimini D, Pirozzi AVA, Alfano A, Cammarota M, Balato G, D'Addona A, Ruosi C, Schiraldi C. Unsulfated biotechnological chondroitin by itself as well as in combination with high molecular weight hyaluronan improves the inflammation profile in osteoarthritis in vitro model. J Cell Biochem 2021; 122:1021-1036. [PMID: 34056757 PMCID: PMC8453819 DOI: 10.1002/jcb.29907] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2020] [Revised: 12/23/2020] [Accepted: 01/27/2021] [Indexed: 12/11/2022]
Abstract
Several studies suggest that inflammation has a pivotal role during the progression of osteoarthritis (OA) and cytokines have been identified as the main process mediators. This study aimed to explore the ability to modulate the main OA pro-inflammatory biomarkers of novel gels (H-HA/BC) based on high molecular weight hyaluronan (H-HA) and unsulfated biotechnological chondroitin (BC). For the first time, BC was tested also in combination with H-HA on human primary cells isolated from pathological knee joints. Specifically, the experiments were performed using an OA in vitro model based on human chondrocytes and synoviocytes. To evaluate the anti-inflammatory effects of H-HA/BC in comparison with H-HA and BC single gels, NF-kB, COMP-2, MyD88, MMP-13 and a wide range of cytokines, known to be specific biomarkers in OA (e.g., IL-6, IL-8, and TNF-α), were evaluated. In addition, cell morphology and proliferation occurring in the presence of either H-HA/BC or single components were assessed using time-lapse video microscopy. It was shown that synovial fluids and cells isolated from OA suffering patients, presented a cytokine pattern respondent to an ongoing inflammation status. H-HA and BC significantly reduced the levels of 23 biomarkers associated with cartilage damage. However, H-HA/BC decreased significantly 24 biological mediators and downregulated 19 of them more efficiently than the single components. In synoviocytes cultures, cytokine analyses proved that H-HA/BC gels re-established an extracellular environment more similar to a healthy condition reducing considerably the concentration of 11 analytes. Instead, H-HA and BC significantly modulated 7 (5 only with a longer treatment) and 8 biological cytokines, respectively. Our results suggest that H-HA/BC beyond the viscosupplementation effect typical for HA-based gels, can improve the inflammation status in joints and thus could be introduced as a valid protective and anti-inflammatory intraarticular device in the field of Class III medical devices for OA treatments.
Collapse
Affiliation(s)
- Valentina Vassallo
- Department of Experimental Medicine, Section of Biotechnology, Medical Histology and Molecular BiologyUniversity of Campania "Luigi Vanvitelli"NaplesItaly
| | - Antonietta Stellavato
- Department of Experimental Medicine, Section of Biotechnology, Medical Histology and Molecular BiologyUniversity of Campania "Luigi Vanvitelli"NaplesItaly
| | - Donatella Cimini
- Department of Experimental Medicine, Section of Biotechnology, Medical Histology and Molecular BiologyUniversity of Campania "Luigi Vanvitelli"NaplesItaly
| | - Anna V. A. Pirozzi
- Department of Experimental Medicine, Section of Biotechnology, Medical Histology and Molecular BiologyUniversity of Campania "Luigi Vanvitelli"NaplesItaly
| | - Alberto Alfano
- Department of Experimental Medicine, Section of Biotechnology, Medical Histology and Molecular BiologyUniversity of Campania "Luigi Vanvitelli"NaplesItaly
| | - Marcella Cammarota
- Department of Experimental Medicine, Section of Biotechnology, Medical Histology and Molecular BiologyUniversity of Campania "Luigi Vanvitelli"NaplesItaly
| | - Giovanni Balato
- School of Medicine and Surgery "Federico II" of NaplesA.O.U. Federico II of NaplesNaplesItaly
| | - Alessio D'Addona
- School of Medicine and Surgery "Federico II" of NaplesA.O.U. Federico II of NaplesNaplesItaly
| | - Carlo Ruosi
- School of Medicine and Surgery "Federico II" of NaplesA.O.U. Federico II of NaplesNaplesItaly
| | - Chiara Schiraldi
- Department of Experimental Medicine, Section of Biotechnology, Medical Histology and Molecular BiologyUniversity of Campania "Luigi Vanvitelli"NaplesItaly
| |
Collapse
|
44
|
da Costa SR, da Mota e Albuquerque RF, Helito CP, Camanho GL. The role of viscosupplementation in patellar chondropathy. Ther Adv Musculoskelet Dis 2021; 13:1759720X211015005. [PMID: 34035839 PMCID: PMC8127754 DOI: 10.1177/1759720x211015005] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2020] [Accepted: 04/13/2021] [Indexed: 12/26/2022] Open
Abstract
Patellar chondropathy has a high incidence in the general population, being more common in patients younger than 50 years, female and recreational athletes, and overweight and obese patients. The most common complaints are pain, limited mobility, crepitus, difficulty climbing and descending stairs, and joint instability, usually showing unsatisfactory results with anti-inflammatory, physiotherapy, rehabilitation, and many other conservative treatment methods. The presumed hyaluronic acid (HA) disease-modifying activity may include effects on cartilage degradation, endogenous HA synthesis, synoviocyte and chondrocyte function, and other cellular inflammatory processes. Currently, HA is widely used as a safe and effective conservative treatment for osteoarthritis in the knee and other joints. HA improves the physiological environment in an osteoarthritic joint and the shock absorption and lubrication properties of the osteoarthritic synovial fluid, thus restoring the protective viscoelasticity of the synovial HA, reducing the pain, and improving the mobility. The complete mechanism of HA in the joint is not fully understood, but a wide range of actions in the joint is recognized. Its anti-inflammatory, analgesic, and chondroprotective action is related to the modulation of the intra- and extracellular inflammation cascade. HA has been shown to be safe and effective in the treatment of pain related to patellar chondropathy.
Collapse
Affiliation(s)
- Sergio Ricardo da Costa
- PhD Program for Musculoskeletal System Sciences, Instituto de Ortopedia e Traumatologia, Hospital das clínicas HCFMUSP, Faculdade de Medicina, Universidade de Sao Paulo, 333 Ovídio Pires de Campos St., Cerqueira César, São Paulo, SP 05403-010, Brazil
| | - Roberto Freire da Mota e Albuquerque
- Knee Surgery Division, Instituto de Ortopedia e Traumatologia, Hospital das clínicas HCFMUSP, Faculdade de Medicina, Universidade de São Paulo, São Paulo, SP, Brazil
| | - Camilo Partezani Helito
- Knee Surgery Division, Instituto de Ortopedia e Traumatologia, Hospital das clínicas HCFMUSP, Faculdade de Medicina, Universidade de São Paulo, São Paulo, SP, Brazil
| | - Gilberto Luis Camanho
- Knee Surgery Division, Instituto de Ortopedia e Traumatologia, Hospital das clínicas HCFMUSP, Faculdade de Medicina, Universidade de São Paulo, São Paulo, SP, Brazil
| |
Collapse
|
45
|
Serra Aguado CI, Ramos-Plá JJ, Soler C, Segarra S, Moratalla V, Redondo JI. Effects of Oral Hyaluronic Acid Administration in Dogs Following Tibial Tuberosity Advancement Surgery for Cranial Cruciate Ligament Injury. Animals (Basel) 2021; 11:1264. [PMID: 33925642 PMCID: PMC8146498 DOI: 10.3390/ani11051264] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2021] [Revised: 04/19/2021] [Accepted: 04/22/2021] [Indexed: 11/19/2022] Open
Abstract
Hyaluronic acid (HA) intraarticular injection is used in the management of osteoarthritis in veterinary medicine. However, HA oral administration is less common given the scarce currently available scientific evidence. This study was aimed at evaluating the effects of oral HA administration on synovial fluid concentrations of several selected biomarkers in dogs with cranial cruciate ligament (CCL) injury operated on using the tibial tuberosity advancement (TTA) technique. Fifty-five dogs were included in this prospective, randomized, double-blind, clinical study; they were randomly assigned to receive either a placebo (group A; n = 25) or HA (group B; n = 30) orally for 10 weeks. Synovial fluid samples were obtained before surgery, and at 10 weeks postoperatively to measure concentrations of HA, haptoglobin, nitric oxide, and paraoxonase-1. After 10 weeks, group HA showed a significant increase in HA concentration (p = 0.0016) and a significant decrease in PON-1 concentration (p = 0.011) compared to baseline. In conclusion, post-op oral HA administration in canine patients with CCL injury leads to improvements in osteoarthritis biomarkers, namely higher synovial fluid HA concentrations and reduced synovial fluid paraoxonase-1 concentrations. These findings support the bioavailability of orally-administered HA and its usefulness in improving biomarkers of osteoarthritis.
Collapse
Affiliation(s)
- Claudio Iván Serra Aguado
- Hospital Veterinario UCV, Departamento de Medicina y Cirugía, Facultad de Veterinaria y Ciencias Experimentales, Universidad Católica de Valencia San Vicente Mártir, 46018 Valencia, Spain;
| | - Juan José Ramos-Plá
- Departamento de Medicina y Cirugía Animal, Facultad de Veterinaria, Universidad Cardenal Herrera-CEU, CEU Universities, 46115 Valencia, Spain;
| | - Carme Soler
- Hospital Veterinario UCV, Departamento de Medicina y Cirugía, Facultad de Veterinaria y Ciencias Experimentales, Universidad Católica de Valencia San Vicente Mártir, 46018 Valencia, Spain;
| | - Sergi Segarra
- R&D Bioiberica S.A.U., 08950 Esplugues de Llobregat, Spain;
| | | | - José Ignacio Redondo
- Departamento de Medicina y Cirugía Animal, Facultad de Veterinaria, Universidad Cardenal Herrera-CEU, CEU Universities, 46115 Valencia, Spain;
| |
Collapse
|
46
|
Kaul A, Short WD, Wang X, Keswani SG. Hyaluronidases in Human Diseases. Int J Mol Sci 2021; 22:ijms22063204. [PMID: 33809827 PMCID: PMC8004219 DOI: 10.3390/ijms22063204] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2021] [Revised: 03/18/2021] [Accepted: 03/18/2021] [Indexed: 12/28/2022] Open
Abstract
With the burgeoning interest in hyaluronic acid (HA) in recent years, hyaluronidases (HYALs) have come to light for their role in regulating catabolism of HA and its molecular weight (MW) distribution in various tissues. Of the six hyaluronidase-like gene sequences in the human genome, HYALs 1 and 2 are of particular significance because they are the primary hyaluronidases active in human somatic tissue. Perhaps more importantly, for the sake of this review, they cleave anti-inflammatory and anti-fibrotic high-molecular-weight HA into pro-inflammatory and pro-fibrotic oligosaccharides. With this, HYALs regulate HA degradation and thus the development and progression of various diseases. Given the dearth of literature focusing specifically on HYALs in the past decade, this review seeks to expound their role in human diseases of the skin, heart, kidneys, and more. The review will delve into the molecular mechanisms and pathways of HYALs and discuss current and potential future therapeutic benefits of HYALs as a clinical treatment.
Collapse
Affiliation(s)
- Aditya Kaul
- Laboratory for Regenerative Tissue Repair, Division of Pediatric Surgery, Department of Surgery, Texas Children’s Hospital, Houston, TX 77030, USA; (A.K.); (W.D.S.)
- Department of Surgery, Baylor College of Medicine, Houston, TX 77030, USA
| | - Walker D. Short
- Laboratory for Regenerative Tissue Repair, Division of Pediatric Surgery, Department of Surgery, Texas Children’s Hospital, Houston, TX 77030, USA; (A.K.); (W.D.S.)
- Department of Surgery, Baylor College of Medicine, Houston, TX 77030, USA
| | - Xinyi Wang
- Laboratory for Regenerative Tissue Repair, Division of Pediatric Surgery, Department of Surgery, Texas Children’s Hospital, Houston, TX 77030, USA; (A.K.); (W.D.S.)
- Department of Surgery, Baylor College of Medicine, Houston, TX 77030, USA
- Correspondence: (X.W.); (S.G.K.); Tel.: +832-824-0469 (X.W.); +832-822-3135 (S.G.K.); Fax: +832-825-3141 (X.W.); +832-825-3141 (S.G.K.)
| | - Sundeep G. Keswani
- Laboratory for Regenerative Tissue Repair, Division of Pediatric Surgery, Department of Surgery, Texas Children’s Hospital, Houston, TX 77030, USA; (A.K.); (W.D.S.)
- Department of Surgery, Baylor College of Medicine, Houston, TX 77030, USA
- Correspondence: (X.W.); (S.G.K.); Tel.: +832-824-0469 (X.W.); +832-822-3135 (S.G.K.); Fax: +832-825-3141 (X.W.); +832-825-3141 (S.G.K.)
| |
Collapse
|
47
|
Yamazaki A, Edamura K, Tomo Y, Seki M, Asano K. Variations in gene expression levels with severity of synovitis in dogs with naturally occurring stifle osteoarthritis. PLoS One 2021; 16:e0246188. [PMID: 33507995 PMCID: PMC7842980 DOI: 10.1371/journal.pone.0246188] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2020] [Accepted: 01/15/2021] [Indexed: 01/15/2023] Open
Abstract
Osteoarthritis (OA) is one of the major causes of chronic pain in dogs. However, the pathogenesis of OA has not been fully understood in dogs. The objective of this study was to comprehensively investigate the mRNA expression levels of proinflammatory cytokines, inflammatory mediators, nerve growth factor and its receptor, and matrix metalloproteinases in the synovium of dogs with spontaneous OA as well as to elucidate their relationships with the severity of synovitis. Dogs that were diagnosed with stifle OA on the basis of radiographic findings were included, and the degree of synovitis was observed using stifle arthroscopy. The dogs were assigned to two different groups depending on their synovitis scores: the low-grade group (score of 1 or 2; n = 8) and high-grade group (score of 3 to 5; n = 18). The dogs showing no evidence of orthopedic disease were included in the control group (n = 6). Synovial tissue samples were collected from the sites at which synovitis scores were assessed using arthroscopy. Total RNA was extracted from the collected synovial tissue, and cDNA was synthesized. Subsequently, RT-qPCR were performed using canine-specific primer sets for IL1B, IL6, CXCL8, TNF, TGFB1, PTGS2, PTGES, MMP3, MMP13, NGF, NTRK1, and PTGER4. Expression levels of IL1B, IL6, CXCL8, and MMP13 were significantly higher in the high-grade group than in the control group. In addition, expression levels of IL1B, CXCL8, TNF, and PTGS2 were significantly higher in the high-grade group than in the low-grade group. Expression levels of IL1B, IL6, CXCL8, TNF, PTGS2, and PTGER4 showed significant positive correlation with synovitis score. In conclusion, all mRNA expression levels in the synovial membrane varied according to the degree of synovitis in dogs with spontaneous OA. Thus, this study may partially elucidate the pathogenesis of synovitis in dogs with spontaneous OA.
Collapse
Affiliation(s)
- Atsushi Yamazaki
- Department of Veterinary Medicine, Laboratory of Veterinary Surgery, College of Bioresource and Sciences, Nihon University, Fujisawa, Kanagawa, Japan
| | - Kazuya Edamura
- Department of Veterinary Medicine, Laboratory of Veterinary Surgery, College of Bioresource and Sciences, Nihon University, Fujisawa, Kanagawa, Japan
- * E-mail:
| | - Yuma Tomo
- Department of Veterinary Medicine, Laboratory of Veterinary Surgery, College of Bioresource and Sciences, Nihon University, Fujisawa, Kanagawa, Japan
| | - Mamiko Seki
- Department of Veterinary Medicine, Laboratory of Veterinary Surgery, College of Bioresource and Sciences, Nihon University, Fujisawa, Kanagawa, Japan
| | - Kazushi Asano
- Department of Veterinary Medicine, Laboratory of Veterinary Surgery, College of Bioresource and Sciences, Nihon University, Fujisawa, Kanagawa, Japan
| |
Collapse
|
48
|
Han N, Wang Z, Li X. Melatonin alleviates d-galactose-decreased hyaluronic acid production in synovial membrane cells via Sirt1 signalling. Cell Biochem Funct 2021; 39:488-495. [PMID: 33432584 DOI: 10.1002/cbf.3613] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2020] [Revised: 09/29/2020] [Accepted: 10/07/2020] [Indexed: 12/13/2022]
Abstract
Hyaluronic acid (HA) exerts a critical role in the lubricating and buffering properties of synovial fluid in joints. The production of HA is regulated by growth factors, hormones, inflammatory cytokines and mechanical load. The reduction of HA contributes to the progression of osteoarthritis. Herein, we found that d-galactose (d-gal) induced the senescence of rabbit synovial membrane cells, accompanied by decreased HA production. The mRNA level of HA synthase 2 (HAS2) was downregulated by d-gal, as analysed by real-time polymerase chain reaction. Melatonin, an endocrine hormone, can regulate the homeostasis of bone and cartilage. We found that melatonin treatment attenuated d-gal-induced cell senescence and decreased the expression of p21, p16 and pp65 proteins. Melatonin could reverse HA production and maintain HAS2 expression. Furthermore, we revealed that Sirt1 signalling was required for melatonin effects. Sirt1 inhibitor could counteract melatonin-mediated HA production and HAS2 expression. Additionally, Sirt1 overexpression directly antagonized d-gal-induced cell aging and HA downregulation. Taken together, our results suggest that melatonin-Sirt1 signal has a protective effect on synovial membrane cells, enhancing HA synthesis and interrupting cell senescence.
Collapse
Affiliation(s)
- Na Han
- Department of Central Laboratory & Institute of Clinical Molecular Biology, Peking University People's Hospital, Beijing, China.,National Center for Trauma Medicine, Beijing, China
| | - Zhiqiang Wang
- Special Medical Center, Logistics University of People's Armed Police Force, Tianjin, China
| | - Xianhui Li
- Department of Clinical Medicine, Logistics University of People's Armed Police Force, Tianjin, China
| |
Collapse
|
49
|
Iturriaga V, Vásquez B, Bornhardt T, Del Sol M. Effects of low and high molecular weight hyaluronic acid on the osteoarthritic temporomandibular joint in rabbit. Clin Oral Investig 2021; 25:4507-4518. [PMID: 33392807 DOI: 10.1007/s00784-020-03763-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2020] [Accepted: 12/21/2020] [Indexed: 02/08/2023]
Abstract
OBJECTIVE To compare the effect between intra-articular infiltration of low molecular weight (LMW-HA) and high molecular weight hyaluronic acid (HMW-HA) on the histopathological characteristics of the cartilage and disc of the temporomandibular joint (TMJ) osteoarthritis (OA) induced in rabbits. MATERIAL AND METHODS An experimental study was conducted on 38 rabbit TMJs. The effect of different hyaluronic acids was compared at 30 and 135 days. Histopathological analysis was performed. Cartilage damage was assessed with the OARSI scale. RESULTS The severity of the induced OA according to OARSI was 3.4 degrees in the mandibular condyle (MC) and 3.2 in the mandibular fossa (MF); the articular disc (AD) presented disorganization of the collagen fibers, with randomly arranged hypertrophic chondrocytes. At 30 days, untreated TMJs worsened. TMJ treated with LMW-HA reduced its severity to 1.5 degrees in MC and 1.6 in MF, the AD presented histological aspects within normal limits. TMJ treated with HMW-HA presented 2.4 degrees in MC and 2.2 in MF, the AD maintained characteristics similar to the group with OA. At 135 days, all groups worsened. CONCLUSION Exogenous HA is effective in the management of TMJ-OA induced in rabbits, showing cartilage and articular disc repair at 30 days. The LMW-HA group had better effects on joint tissue than HMW-HA 30 days after treatment. However, at 135 days, both groups presented regression of joint tissue repair. CLINICAL RELEVANCE HA is effective in the anti-arthritic treatment of TMJ-OA induced in rabbits; LMW-HA shows better results in cartilage and articular disc repair than HMW-HA.
Collapse
Affiliation(s)
- Veronica Iturriaga
- Department of Integral Adult Care Dentistry, Temporomandibular Disorder and Orofacial Pain Program, Sleep & Pain Research Group, Faculty of Dentistry, Universidad de La Frontera, Temuco, Chile
| | - Bélgica Vásquez
- Faculty of Health Sciences, Universidad de Tarapacá, Avenida 18 de Septiembre #2222, Arica, Chile.
| | - Thomas Bornhardt
- Department of Integral Adult Care Dentistry, Temporomandibular Disorder and Orofacial Pain Program, Sleep & Pain Research Group, Faculty of Dentistry, Universidad de La Frontera, Temuco, Chile
| | - Mariano Del Sol
- Center of Excellence in Morphological and Surgical Studies (CEMyQ), Doctoral Program in Morphological Sciences, Universidad de La Frontera, Temuco, Chile
| |
Collapse
|
50
|
Sánchez-Fernández E, Magán-Fernández A, O'Valle F, Bravo M, Mesa F. Hyaluronic acid reduces inflammation and crevicular fluid IL-1β concentrations in peri-implantitis: a randomized controlled clinical trial. J Periodontal Implant Sci 2021; 51:63-74. [PMID: 33634616 PMCID: PMC7920839 DOI: 10.5051/jpis.1903660183] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2019] [Revised: 09/01/2020] [Accepted: 09/28/2020] [Indexed: 12/19/2022] Open
Abstract
Purpose This study investigated the effects of hyaluronic acid (HA) on peri-implant clinical variables and crevicular concentrations of the proinflammatory biomarkers interleukin (IL)-1β and tumor necrosis factor (TNF)-α in patients with peri-implantitis. Methods A randomized controlled trial was conducted in peri-implantitis patients. Patients were randomized to receive a 0.8% HA gel (test group), an excipient-based gel (control group 1), or no gel (control group 2). Clinical periodontal variables and marginal bone loss after 0, 45, and 90 days of treatment were assessed. IL-1β and TNF-α levels in crevicular fluid were measured by enzyme-linked immunosorbent assays at baseline and after 45 days of treatment. Clustering analysis was performed, considering the possibility of multiple implants in a single patient. Results Sixty-one patients with 100 dental implants were assigned to the test group, control group 1, or control group 2. Probing pocket depth (PPD) was significantly lower in the test group than in both control groups at 45 days (control 1: 95% CI, −1.66, −0.40 mm; control 2: 95% CI, −1.07, −0.01 mm) and 90 days (control 1: 95% CI, −1.72, −0.54 mm; control 2: 95% CI, −1.13, −0.15 mm). There was a trend towards less bleeding on probing in the test group than in control group 2 at 90 days (P=0.07). Implants with a PPD ≥5 mm showed higher levels of IL-1β in the control group 2 at 45 days than in the test group (P=0.04). Conclusions This study demonstrates for the first time that the topical application of a HA gel in the peri-implant pocket and around implants with peri-implantitis may reduce inflammation and crevicular fluid IL-1β levels. Trial Registration ClinicalTrials.gov Identifier: NCT03157193
Collapse
Affiliation(s)
- Elena Sánchez-Fernández
- Department of Oral Surgery and Implant Dentistry, School of Dentistry, University of Granada, Granada, Spain
| | | | - Francisco O'Valle
- Department of Pathology and History of Science, School of Medicine, University of Granada, Granada, Spain.,Biosanitary Research Institute (ibs.Granada), University of Granada, Granada, Spain
| | - Manuel Bravo
- Department of Preventive and Community Dentistry, School of Dentistry, University of Granada, Granada, Spain
| | - Francisco Mesa
- Department of Periodontics, School of Dentistry, University of Granada, Granada, Spain
| |
Collapse
|