1
|
Ducrocq M, Kamus L, Richard H, Beauchamp G, Janvier V, Laverty S. Micro-computed tomography reveals high-density mineralised protrusions and microstructural lesions in equine stifle joint articular cartilage. Equine Vet J 2025; 57:203-216. [PMID: 38720453 PMCID: PMC11616958 DOI: 10.1111/evj.14100] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Accepted: 04/02/2024] [Indexed: 12/05/2024]
Abstract
BACKGROUND Stifle osteoarthritis (OA) lesions are most common in the medial femorotibial (MFT) compartment. Their characterisation and mapping will inform equine veterinarians towards an accurate diagnosis of OA. OBJECTIVES Investigate and map micro-CT (μCT) changes in the hyaline articular cartilage (HAC) in the medial femoral condyle (MFC) and medial tibial plateau (MTP). STUDY DESIGN Ex vivo cadaveric. METHODS Stifles (n = 7 OA and 17 control [CO]) were retrieved from a tissue bank. The MFC and MFT were imaged with μCT. Regions of interest (ROIs) were cranial (MFCcr; MTPcr) and caudal (MFCca; MTPca) sites. In each ROI, μCT images were scored for HAC fibrillation, surface mineralisation and for the presence of high-density mineralised protrusions (HDMP). The lesions were mapped, and site-matched histology was performed. RESULTS The microstructure of healthy and abnormal HAC was discernible on μCT images and confirmed with histology. HAC fibrillation was more prevalent (p = 0.019) in the MFCcr of the OA group (n = 7/7, 100%) when compared with the CO group (n = 7/17, 41%). Score 1 HAC surface mineralisation was more prevalent (p = 0.038) in the OA MFCca (n = 4/7, 57%) when compared with the CO group (n = 2/17, 12%). HDMP were heterogenous and hyperdense mineralised material protruding into the HAC and were more frequent (p = 0.033) in MFCs (n = 12/24, 50%) compared with MTPs (n = 5/24, 20%). Score 3 HDMPs were also more prevalent (p = 0.003) in the MFCcr (n = 7/24, 29%) compared with MFCca (n = 0/24, 0%) and in MFCs (n = 7/24, 29%) compared with MTPs (n = 3/24, 12.5%) (p = 0.046). MAIN LIMITATIONS Clinical history was not available for all specimens. CONCLUSIONS Equine HDMP and HAC surface mineralisation are imaged for the first time in the MFT joint. HAC fibrillation and erosion and HDMP are more frequent in the cranial aspect of the MFC. μCT images of OA in equine stifle joints provide a novel perspective of lesions and improve understanding of OA.
Collapse
Affiliation(s)
- Mathilde Ducrocq
- Comparative Orthopaedic Research Laboratory, Département de Sciences Cliniques, Faculté de Médecine VétérinaireUniversité de MontréalSt‐HyacintheQuebecCanada
| | - Louis Kamus
- Comparative Orthopaedic Research Laboratory, Département de Sciences Cliniques, Faculté de Médecine VétérinaireUniversité de MontréalSt‐HyacintheQuebecCanada
| | - Hélène Richard
- Comparative Orthopaedic Research Laboratory, Département de Sciences Cliniques, Faculté de Médecine VétérinaireUniversité de MontréalSt‐HyacintheQuebecCanada
| | - Guy Beauchamp
- Département de Biomedecine, Faculté de Médecine VétérinaireUniversité de MontréalSt‐HyacintheQuebecCanada
| | - Valentin Janvier
- Comparative Orthopaedic Research Laboratory, Département de Sciences Cliniques, Faculté de Médecine VétérinaireUniversité de MontréalSt‐HyacintheQuebecCanada
| | - Sheila Laverty
- Comparative Orthopaedic Research Laboratory, Département de Sciences Cliniques, Faculté de Médecine VétérinaireUniversité de MontréalSt‐HyacintheQuebecCanada
| |
Collapse
|
2
|
Suyatno A, Nurfinti WO, Kusuma CPA, Pratama YA, Ardianto C, Samirah Samirah, Rahadiansyah E, Khotib J, Budiatin AS. Effectiveness of Bilayer Scaffold Containing Chitosan/Gelatin/Diclofenac and Bovine Hydroxyapatite on Cartilage/Subchondral Regeneration in Rabbit Joint Defect Models. Adv Pharmacol Pharm Sci 2024; 2024:6987676. [PMID: 39364298 PMCID: PMC11449564 DOI: 10.1155/2024/6987676] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2024] [Accepted: 09/04/2024] [Indexed: 10/05/2024] Open
Abstract
Subchondral defects are often caused by trauma involving cartilage damage, leading to subsequent damage to the underlying bone, specifically the subchondral region. Bilayer scaffolds made from biomaterials, such as bovine hydroxyapatite, possess biocompatible and biodegradable properties that mimic the natural environmental conditions of target tissues so that they can support the formation of new tissues. On the other side, diclofenac as an anti-inflammatory drug potentiates to inhibit the inflammatory excess regarding the damage. This study aims to study the effectiveness of diclofenac scaffold to rabbit joint defect model. The scaffold was implanted in the rabbit femoral trochlear bone hole, which had a diameter of 5 mm and a depth of 4 mm. After 28 days of intervention, the animals were examined using macroscopic evaluation, hematoxylin-eosin (HE) staining, and immunohistochemistry (IHC) for type I collagen and type II collagen. Subsequently, the cartilage was evaluated using the International Cartilage Repair Society (ICRS) scoring system. The macroscopic ICRS scores were significantly higher (p < 0.05) in the bilayer scaffold implantation group compared to the monolayer scaffold and control groups. Histological ICRS scores were also significantly higher (p < 0.05) in the bilayer scaffold group compared to the control group. Type II collagen expression was higher (p < 0.05) in the bilayer scaffold group compared to the monolayer scaffold and control groups, although type I collagen expression was lower in comparison. In conclusion, this research suggests that the diclofenac-loaded bilayer scaffold effectively enhances cartilage and subchondral bone regeneration.
Collapse
Affiliation(s)
- Andhi Suyatno
- Faculty of PharmacyUniversitas Airlangga, Surabaya 60115, Indonesia
| | - Wa O. Nurfinti
- Faculty of PharmacyUniversitas Airlangga, Surabaya 60115, Indonesia
| | | | - Yusuf A. Pratama
- Department of Pharmacy PracticeFaculty of PharmacyUniversitas Airlangga, Surabaya 60115, Indonesia
| | - Chrismawan Ardianto
- Department of Pharmacy PracticeFaculty of PharmacyUniversitas Airlangga, Surabaya 60115, Indonesia
| | - Samirah Samirah
- Department of Pharmacy PracticeFaculty of PharmacyUniversitas Airlangga, Surabaya 60115, Indonesia
| | - Erreza Rahadiansyah
- Department of Orthopaedics and TraumatologyFaculty of MedicineUniversitas Airlangga, Surabaya 60131, Indonesia
| | - Junaidi Khotib
- Department of Pharmacy PracticeFaculty of PharmacyUniversitas Airlangga, Surabaya 60115, Indonesia
| | - Aniek S. Budiatin
- Department of Pharmacy PracticeFaculty of PharmacyUniversitas Airlangga, Surabaya 60115, Indonesia
| |
Collapse
|
3
|
Grass DM, Malek G, Taïeb HM, Ittah E, Richard H, Reznikov N, Laverty S. Characterization and quantification of in-vitro equine bone resorption in 3D using μCT and deep learning-aided feature segmentation. Bone 2024; 185:117131. [PMID: 38777311 DOI: 10.1016/j.bone.2024.117131] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/08/2024] [Revised: 05/18/2024] [Accepted: 05/19/2024] [Indexed: 05/25/2024]
Abstract
High cyclic strains induce formation of microcracks in bone, triggering targeted bone remodeling, which entails osteoclastic resorption. Racehorse bone is an ideal model for studying the effects of high-intensity loading, as it is subject to focal formation of microcracks and subsequent bone resorption. The volume of resorption in vitro is considered a direct indicator of osteoclast activity but indirect 2D measurements are used more often. Our objective was to develop an accurate, high-throughput method to quantify equine osteoclast resorption volume in μCT 3D images. Here, equine osteoclasts were cultured on equine bone slices and imaged with μCT pre- and postculture. Individual resorption events were then isolated and analyzed in 3D. Modal volume, maximum depth, and aspect ratio of resorption events were calculated. A convolutional neural network (CNN U-Net-like) was subsequently trained to identify resorption events on post-culture μCT images alone, without the need for pre-culture imaging, using archival bone slices with known resorption areas and paired CTX-I biomarker levels in culture media. 3D resorption volume measurements strongly correlated with both the CTX-I levels (p < 0.001) and area measurements (p < 0.001). Our 3D analysis shows that the shapes of resorption events form a continuous spectrum, rather than previously reported pit and trench categories. With more extensive resorption, shapes of increasing complexity appear, although simpler resorption cavity morphologies (small, rounded) remain most common, in acord with the left-hand limit paradigm. Finally, we show that 2D measurements of in vitro osteoclastic resorption are a robust and reliable proxy.
Collapse
Affiliation(s)
- Debora M Grass
- Comparative Orthopaedic Research Laboratory, Department of Clinical Sciences, Faculty of Veterinary Medicine, University of Montreal, 3200 Sicotte, St-Hyacinthe, QC J2S 2M2, Canada
| | - Gwladys Malek
- Comparative Orthopaedic Research Laboratory, Department of Clinical Sciences, Faculty of Veterinary Medicine, University of Montreal, 3200 Sicotte, St-Hyacinthe, QC J2S 2M2, Canada
| | - Hubert M Taïeb
- Department of Bioengineering, Faculty of Engineering, McGill University, 3480 University Street, Montreal, Quebec H3A 0E9, Canada
| | - Eran Ittah
- Department of Bioengineering, Faculty of Engineering, McGill University, 3480 University Street, Montreal, Quebec H3A 0E9, Canada
| | - Hélène Richard
- Comparative Orthopaedic Research Laboratory, Department of Clinical Sciences, Faculty of Veterinary Medicine, University of Montreal, 3200 Sicotte, St-Hyacinthe, QC J2S 2M2, Canada
| | - Natalie Reznikov
- Department of Bioengineering, Faculty of Engineering, McGill University, 3480 University Street, Montreal, Quebec H3A 0E9, Canada
| | - Sheila Laverty
- Comparative Orthopaedic Research Laboratory, Department of Clinical Sciences, Faculty of Veterinary Medicine, University of Montreal, 3200 Sicotte, St-Hyacinthe, QC J2S 2M2, Canada.
| |
Collapse
|
4
|
Dubuc J, Schneider MJ, Dubuc V, Richard H, Pinsard M, Bancelin S, Legare F, Girard C, Laverty S. Degradation of Proteoglycans and Collagen in Equine Meniscal Tissues. Int J Mol Sci 2024; 25:6439. [PMID: 38928148 PMCID: PMC11203490 DOI: 10.3390/ijms25126439] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Revised: 05/28/2024] [Accepted: 05/30/2024] [Indexed: 06/28/2024] Open
Abstract
Investigate meniscal extracellular matrix degradation. Equine menisci (n = 34 from 17 horses) were studied. Site-matched sections were cut and scored from three regions (ROIs; n = 102) and stained for histology, proteoglycan (safranin O and fast green), aggrecan, and collagen cleavage (NITEGE, DIPEN, and C1,2C antibodies, respectively). Picrosirius red and second harmonic generation microscopy were performed to investigate collagen ultrastructure. A total of 42 ROIs met the inclusion criteria and were included in the final analysis. The median (range) ROI histological score was 3 (0-9), providing a large spectrum of pathology. The median (range) proteoglycan score was 1 (0-3), representing superficial and central meniscal loss. The median (range) of DIPEN, NITEGE, and C1,2C scores was 1 (0-3), revealing immunostaining of the femoral and tibial surfaces. The proteoglycan scores exhibited significant positive associations with both histologic evaluation (p = 0.03) and DIPEN scores (p = 0.02). Additionally, a robust positive association (p = 0.007) was observed between the two aggrecanolysis indicators, NITEGE and DIPEN scores. A negative association (p = 0.008) was identified between NITEGE and histological scores. The C1,2C scores were not associated with any other scores. Picrosirius red and second harmonic generation microscopy (SHGM) illustrated the loss of the collagen matrix and structure centrally. Proteoglycan and collagen degradation commonly occur superficially in menisci and less frequently centrally. The identification of central meniscal proteoglycan and collagen degradation provides novel insight into central meniscal degeneration. However, further research is needed to elucidate the etiology and sequence of degradative events.
Collapse
Affiliation(s)
- Julia Dubuc
- Comparative Orthopedic Research Laboratory, Department of Clinical Sciences, Faculté de Médecine Vétérinaire, Université de Montréal, 3200 Sicotte Saint-Hyacinthe, Quebec, QC J2S2M2, Canada; (J.D.); (M.J.S.); (V.D.); (H.R.); (C.G.)
| | - Melodie Jil Schneider
- Comparative Orthopedic Research Laboratory, Department of Clinical Sciences, Faculté de Médecine Vétérinaire, Université de Montréal, 3200 Sicotte Saint-Hyacinthe, Quebec, QC J2S2M2, Canada; (J.D.); (M.J.S.); (V.D.); (H.R.); (C.G.)
| | - Valerie Dubuc
- Comparative Orthopedic Research Laboratory, Department of Clinical Sciences, Faculté de Médecine Vétérinaire, Université de Montréal, 3200 Sicotte Saint-Hyacinthe, Quebec, QC J2S2M2, Canada; (J.D.); (M.J.S.); (V.D.); (H.R.); (C.G.)
| | - Helene Richard
- Comparative Orthopedic Research Laboratory, Department of Clinical Sciences, Faculté de Médecine Vétérinaire, Université de Montréal, 3200 Sicotte Saint-Hyacinthe, Quebec, QC J2S2M2, Canada; (J.D.); (M.J.S.); (V.D.); (H.R.); (C.G.)
| | - Maxime Pinsard
- Institut National de la Recherche Scientifique, Université du Quebec, 1650 Bd Lionel-Boulet, Varennes, Quebec, QC J3X1P7, Canada
| | - Stephane Bancelin
- Institut National de la Recherche Scientifique, Université du Quebec, 1650 Bd Lionel-Boulet, Varennes, Quebec, QC J3X1P7, Canada
| | - Francois Legare
- Institut National de la Recherche Scientifique, Université du Quebec, 1650 Bd Lionel-Boulet, Varennes, Quebec, QC J3X1P7, Canada
| | - Christiane Girard
- Comparative Orthopedic Research Laboratory, Department of Clinical Sciences, Faculté de Médecine Vétérinaire, Université de Montréal, 3200 Sicotte Saint-Hyacinthe, Quebec, QC J2S2M2, Canada; (J.D.); (M.J.S.); (V.D.); (H.R.); (C.G.)
| | - Sheila Laverty
- Comparative Orthopedic Research Laboratory, Department of Clinical Sciences, Faculté de Médecine Vétérinaire, Université de Montréal, 3200 Sicotte Saint-Hyacinthe, Quebec, QC J2S2M2, Canada; (J.D.); (M.J.S.); (V.D.); (H.R.); (C.G.)
| |
Collapse
|
5
|
Yokota S, Ishizu H, Miyazaki T, Takahashi D, Iwasaki N, Shimizu T. Osteoporosis, Osteoarthritis, and Subchondral Insufficiency Fracture: Recent Insights. Biomedicines 2024; 12:843. [PMID: 38672197 PMCID: PMC11048726 DOI: 10.3390/biomedicines12040843] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2024] [Revised: 03/31/2024] [Accepted: 04/08/2024] [Indexed: 04/28/2024] Open
Abstract
The increased incidence of osteoarthritis (OA), particularly knee and hip OA, and osteoporosis (OP), owing to population aging, have escalated the medical expense burden. Osteoarthritis is more prevalent in older women, and the involvement of subchondral bone fragility spotlights its association with OP. Notably, subchondral insufficiency fracture (SIF) may represent a more pronounced condition of OA pathophysiology. This review summarizes the relationship between OA and OP, incorporating recent insights into SIF. Progressive SIF leads to joint collapse and secondary OA and is associated with OP. Furthermore, the thinning and fragility of subchondral bone in early-stage OA suggest that SIF may be a subtype of OA (osteoporosis-related OA, OPOA) characterized by significant subchondral bone damage. The high bone mineral density observed in OA may be overestimated due to osteophytes and sclerosis and can potentially contribute to OPOA. The incidence of OPOA is expected to increase along with population aging. Therefore, prioritizing OP screening, early interventions for patients with early-stage OA, and fracture prevention measures such as rehabilitation, fracture liaison services, nutritional management, and medication guidance are essential.
Collapse
Affiliation(s)
| | | | | | | | | | - Tomohiro Shimizu
- Department of Orthopedic Surgery, Faculty of Medicine, Graduate School of Medicine, Hokkaido University, Sapporo 060-8638, Japan; (S.Y.); (H.I.); (T.M.); (D.T.); (N.I.)
| |
Collapse
|
6
|
Goldkuhl JEC, Zablotski Y, Sill V, Jahn W, Lorenz I, Brunk J, Gerlach K, Troillet A. Evaluation of cartilage injury in horses with osteochondral fragments in the metacarpo-/metatarsophalangeal joint: A study on 823 arthroscopies. Equine Vet J 2024; 56:89-98. [PMID: 36922161 DOI: 10.1111/evj.13937] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2022] [Accepted: 03/09/2023] [Indexed: 03/17/2023]
Abstract
BACKGROUND Osteochondral fragment removal is commonly performed but there are little scientific data supporting this procedure in the absence of clinical signs. More information is needed to facilitate clinical decision-making regarding fragment removal of the metacarpo-/metatarsophalangeal joint. OBJECTIVES To assess prevalence of cartilage injury in the equine metacarpo-/metatarsophalangeal joint and its association to fragment size, location, age and lameness. STUDY DESIGN Retrospective observational study. METHODS Clinical records, including radiographs of 823 metacarpo-/metatarsophalangeal joints (640 horses) that underwent arthroscopic fragment removal, were reviewed. Fragment size, intra-articular fragment location and cartilage injury score were recorded. Presence of synovitis was retrospectively evaluated in 157 joints. Kruskal-Wallis and Mann-Whitney tests were used for group comparisons, and Dunn's post hoc test was applied for multiple comparisons. Linear regression analysis was used to assess strength of association between age and mean cartilage score. Univariable regression analysis was performed and variables with p < 0.2 were used in the final mixed-effects multivariable model to which backwards stepwise selection was applied. Significance level was p < 0.05. RESULTS Cartilage injury was present in 28.8% (95% CI = 25.8-32.0) of joints. Lameness was not associated with fragment location or fragment size. Fragment size was not associated with cartilage injury. Age (OR = 1.35, 95% CI = 1.22-1.48, p < 0.001) and lameness (OR = 5.03, 95% CI = 2.27-11.68, p < 0.001) were associated with cartilage injury as well as fragment location (palmar/plantar, OR = 0.22, 95% CI = 0.13-0.38, p < 0.001), with dorsal fragments being more likely to be associated with cartilage lesions than palmar/plantar fragments. There was a significant association between age and mean cartilage score (b = 0.18, 95% CI = 0.14-0.22, p < 0.001). MAIN LIMITATIONS The series included a heterogenous group of horses of different breed, sex, age and use. Data were collected retrospectively and could, in parts, not be fully evaluated. CONCLUSIONS Early fragment removal, especially in joints with dorsal fragmentation, can be beneficial to avoid future cartilage injuries in equine athletes.
Collapse
Affiliation(s)
| | - Yury Zablotski
- Clinic for Horses at the Centre for Clinical Veterinary Medicine, Faculty of Veterinary Medicine, Ludwig Maximilians University, Munich, Germany
| | - Volker Sill
- Pferdeklinik Bargteheide, Bargteheide, Germany
| | - Werner Jahn
- Pferdeklinik Bargteheide, Bargteheide, Germany
| | - Ina Lorenz
- Pferdeklinik Bargteheide, Bargteheide, Germany
| | - Jan Brunk
- Pferdeklinik Bargteheide, Bargteheide, Germany
| | - Kerstin Gerlach
- Department for Horses, Faculty of Veterinary Medicine, University of Leipzig, Leipzig, Germany
| | - Antonia Troillet
- Department for Horses, Faculty of Veterinary Medicine, University of Leipzig, Leipzig, Germany
| |
Collapse
|
7
|
Nekomoto A, Nakasa T, Ikuta Y, Ding C, Miyaki S, Adachi N. Feasibility of administration of calcitonin gene-related peptide receptor antagonist on attenuation of pain and progression in osteoarthritis. Sci Rep 2023; 13:15354. [PMID: 37717108 PMCID: PMC10505157 DOI: 10.1038/s41598-023-42673-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2023] [Accepted: 09/13/2023] [Indexed: 09/18/2023] Open
Abstract
Suppressing inflammation and abnormal subchondral bone turnover is essential for reducing osteoarthritis (OA) progression and pain relief. This study focused on calcitonin gene-related peptide (CGRP), which is involved in inflammation and bone metabolism, and investigated whether a CGRP receptor antagonist (rimegepant) could suppress OA progression and relieve pain in two OA models. C57BL/6 mice (10-week-old) underwent surgical destabilization of the medial meniscus, and Rimegepant (1.0 mg/kg/100 μL) or phosphate-buffered saline (100 μL) was administered weekly intraperitoneally after OA surgery and evaluated at 4, 8, and 12 weeks. In the senescence-accelerated mice (SAM)-prone 8 (SAMP8), rimegepant was administered weekly before and after subchondral bone sclerosis and sacrificed at 9 and 23 weeks, respectively. Behavioral assessment and immunohistochemical staining (CGRP) of the dorsal root ganglion (DRG) were conducted to assess pain. In DMM mice, synovitis, cartilage degeneration, and osteosclerosis were significantly suppressed in the rimegepant group. In SAMP8, synovitis, cartilage degeneration, and osteosclerosis were significantly suppressed by rimegepant at 9 weeks; however, not at 23 weeks. Behavioral assessment shows the traveled distance and the number of standings in the rimegepant group were significantly longer and higher. In addition, CGRP expression of the DRG was significantly lower in the rimegepant group at 8 and 12 weeks of DMM and 9 weeks of SAMP8 treatment. No adverse effects were observed in either of the mouse models. Inhibition of CGRP signaling has the potential to be a therapeutic target to prevent OA progression and suppress pain through the attenuation of subchondral bone sclerosis and synovitis.
Collapse
Affiliation(s)
- Akinori Nekomoto
- Department of Orthopaedic Surgery, Graduate School of Biomedical and Health Sciences, Hiroshima University, 1-2-3 Kasumi, Minamiku, Hiroshima, Hiroshima, 734-8551, Japan
| | - Tomoyuki Nakasa
- Department of Orthopaedic Surgery, Graduate School of Biomedical and Health Sciences, Hiroshima University, 1-2-3 Kasumi, Minamiku, Hiroshima, Hiroshima, 734-8551, Japan.
| | - Yasunari Ikuta
- Department of Orthopaedic Surgery, Graduate School of Biomedical and Health Sciences, Hiroshima University, 1-2-3 Kasumi, Minamiku, Hiroshima, Hiroshima, 734-8551, Japan
| | - Chenyang Ding
- Department of Orthopaedic Surgery, Graduate School of Biomedical and Health Sciences, Hiroshima University, 1-2-3 Kasumi, Minamiku, Hiroshima, Hiroshima, 734-8551, Japan
| | - Shigeru Miyaki
- Department of Orthopaedic Surgery, Graduate School of Biomedical and Health Sciences, Hiroshima University, 1-2-3 Kasumi, Minamiku, Hiroshima, Hiroshima, 734-8551, Japan
- Medical Center for Translational and Clinical Research, Hiroshima University Hospital, Hiroshima, Japan
| | - Nobuo Adachi
- Department of Orthopaedic Surgery, Graduate School of Biomedical and Health Sciences, Hiroshima University, 1-2-3 Kasumi, Minamiku, Hiroshima, Hiroshima, 734-8551, Japan
| |
Collapse
|
8
|
Lin ST, Foote AK, Bolas NM, Peter VG, Pokora R, Patrick H, Sargan DR, Murray RC. Three-Dimensional Imaging and Histopathological Features of Third Metacarpal/Tarsal Parasagittal Groove and Proximal Phalanx Sagittal Groove Fissures in Thoroughbred Horses. Animals (Basel) 2023; 13:2912. [PMID: 37760312 PMCID: PMC10525482 DOI: 10.3390/ani13182912] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2023] [Revised: 09/11/2023] [Accepted: 09/12/2023] [Indexed: 09/29/2023] Open
Abstract
Fissure in the third metacarpal/tarsal parasagittal groove and proximal phalanx sagittal groove is a potential prodromal pathology of fracture; therefore, early identification and characterisation of fissures using non-invasive imaging could be of clinical value. Thirty-three equine cadaver limbs underwent standing cone-beam (CB) computed tomography (CT), fan-beam (FB) CT, low-field magnetic resonance imaging (MRI), and macro/histo-pathological examination. Imaging diagnoses of fissures were compared to microscopic examination. Imaging features of fissures were described. Histopathological findings were scored and compared between locations with and without fissures on CT. Microscopic examination identified 114/291 locations with fissures. The diagnostic sensitivity and specificity were 88.5% and 61.3% for CBCT, 84.1% and 72.3% for FBCT, and 43.6% and 85.2% for MRI. Four types of imaging features of fissures were characterised on CT: (1) CBCT/FBCT hypoattenuating linear defects, (2) CBCT/FBCT striated hypoattenuated lines, (3) CBCT/FBCT subchondral irregularity, and (4) CBCT striated hypoattenuating lines and FBCT subchondral irregularity. Fissures on MRI appeared as subchondral bone hypo-/hyperintense defects. Microscopic scores of subchondral bone sclerosis, microcracks, and collapse were significantly higher in locations with CT-identified fissures. All imaging modalities were able to identify fissures. Fissures identified on CT were associated with histopathology of fatigue injuries.
Collapse
Affiliation(s)
- Szu-Ting Lin
- Department of Veterinary Medicine, University of Cambridge, Madingley Rd., Cambridge CB3 0ES, UK;
| | - Alastair K. Foote
- Rossdales Veterinary Surgeons, Cotton End Rd., Exning, Newmarket CB8 7NN, UK; (A.K.F.); (V.G.P.); (R.P.); (R.C.M.)
| | - Nicholas M. Bolas
- Hallmarq Veterinary Imaging, Unit 5 Bridge Park, Merrow Lane, Guildford GU4 7BF, UK;
| | - Vanessa G. Peter
- Rossdales Veterinary Surgeons, Cotton End Rd., Exning, Newmarket CB8 7NN, UK; (A.K.F.); (V.G.P.); (R.P.); (R.C.M.)
| | - Rachel Pokora
- Rossdales Veterinary Surgeons, Cotton End Rd., Exning, Newmarket CB8 7NN, UK; (A.K.F.); (V.G.P.); (R.P.); (R.C.M.)
| | - Hayley Patrick
- Swayne and Partners Veterinary Surgeons, Western Way, Bury St Edmunds IP33 3SP, UK;
| | - David R. Sargan
- Department of Veterinary Medicine, University of Cambridge, Madingley Rd., Cambridge CB3 0ES, UK;
| | - Rachel C. Murray
- Rossdales Veterinary Surgeons, Cotton End Rd., Exning, Newmarket CB8 7NN, UK; (A.K.F.); (V.G.P.); (R.P.); (R.C.M.)
| |
Collapse
|
9
|
Sumii J, Nakasa T, Kato Y, Miyaki S, Adachi N. The Subchondral Bone Condition During Microfracture Affects the Repair of the Osteochondral Unit in the Cartilage Defect in the Rat Model. Am J Sports Med 2023; 51:2472-2479. [PMID: 37306063 DOI: 10.1177/03635465231177586] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
BACKGROUND Microfracture (MF) is frequently performed as a first-line treatment for articular cartilage defects. Although good clinical outcomes are often obtained in the short term, poor clinical outcomes sometimes occur because of subchondral bone deterioration. The condition of the subchondral bone treated with MF may affect the repair of the osteochondral unit. PURPOSE To analyze histological findings of the osteochondral unit after performing MF on subchondral bone in different states-normal, absorption, and sclerosis-in a rat model. STUDY DESIGN Controlled laboratory study. METHODS Full-thickness cartilage defects (5.0 × 3.0 mm) were created in the weightbearing area of the medial femoral condyle in both knees of 47 Sprague-Dawley rats. Five MF holes were created within the cartilage defect using a 0.55-mm needle to a depth of 1 mm at 0 weeks (normal group), 2 weeks (absorption group), and 4 weeks (sclerosis group) after the cartilage defect was created. In the left knee, MF holes were filled with β-tricalcium phosphate (β-TCP). At 2 and 4 weeks after MF, knee joints were harvested and histologically analyzed. RESULTS MF holes were enlarged at 2 weeks and further enlarged at 4 weeks in all groups. In the absorption group, osteoclast accumulation around the MF holes and cyst formation were observed. The trabecular bone surrounding the MF holes was thickened in the sclerosis group. The diameter of the MF hole was largest in the absorption group at 2 and 4 weeks after MF compared with the other groups. No subchondral bone cysts were observed after β-TCP implantation. Pineda scores in all groups were significantly better with β-TCP implantation than without β-TCP implantation at 2 and 4 weeks. CONCLUSION MF for subchondral bone with bone absorption induced enlargement of the MF holes, cyst formation, and delay of cartilage defect coverage. Implantation of β-TCP into the MF holes enhanced remodeling of the MF holes and improved repair of the osteochondral unit compared with MF only. Therefore, the condition of the subchondral bone treated with MF affects repair of the osteochondral unit in a cartilage defect.
Collapse
Affiliation(s)
- Junichi Sumii
- Department of Orthopaedic Surgery, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima, Japan
| | - Tomoyuki Nakasa
- Department of Orthopaedic Surgery, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima, Japan
| | - Yuichi Kato
- Department of Orthopaedic Surgery, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima, Japan
| | - Shigeru Miyaki
- Department of Orthopaedic Surgery, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima, Japan
- Medical Center for Translational and Clinical Research, Hiroshima University Hospital, Hiroshima, Japan
| | - Nobuo Adachi
- Department of Orthopaedic Surgery, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima, Japan
| |
Collapse
|
10
|
Poudel SB, Ruff RR, Yildirim G, Dixit M, Michot B, Gibbs JL, Ortiz SD, Kopchick JJ, Kirsch T, Yakar S. Excess Growth Hormone Triggers Inflammation-Associated Arthropathy, Subchondral Bone Loss, and Arthralgia. THE AMERICAN JOURNAL OF PATHOLOGY 2023; 193:829-842. [PMID: 36870529 PMCID: PMC10284029 DOI: 10.1016/j.ajpath.2023.02.010] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Revised: 01/29/2023] [Accepted: 02/10/2023] [Indexed: 03/06/2023]
Abstract
Growth hormone (GH) is a key mediator of skeletal growth. In humans, excess GH secretion due to pituitary adenoma, seen in patients with acromegaly, results in severe arthropathies. This study investigated the effects of long-term excess GH on the knee joint tissues. One year-old wild-type (WT) and bovine GH (bGH) transgenic mice were used as a model for excess GH. bGH mice showed increased sensitivity to mechanical and thermal stimuli, compared with WT mice. Micro-computed tomography analyses of the distal femur subchondral bone revealed significant reductions in trabecular thickness and significantly reduced bone mineral density of the tibial subchondral bone-plate associated with increased osteoclast activity in both male and female bGH compared with WT mice. bGH mice showed severe loss of matrix from the articular cartilage, osteophytosis, synovitis, and ectopic chondrogenesis. Articular cartilage loss in the bGH mice was associated with elevated markers of inflammation and chondrocyte hypertrophy. Finally, hyperplasia of synovial cells was associated with increased expression of Ki-67 and diminished p53 levels in the synovium of bGH mice. Unlike the low-grade inflammation seen in primary osteoarthritis, arthropathy caused by excess GH affects all joint tissues and triggers severe inflammatory response. Data from this study suggest that treatment of acromegalic arthropathy should involve inhibition of ectopic chondrogenesis and chondrocyte hypertrophy.
Collapse
Affiliation(s)
- Sher B Poudel
- Department of Molecular Pathobiology, David B. Kriser Dental Center, New York University College of Dentistry, New York, New York
| | - Ryan R Ruff
- Department of Epidemiology and Health Promotion, David B. Kriser Dental Center, New York University College of Dentistry, New York, New York
| | - Gozde Yildirim
- Department of Molecular Pathobiology, David B. Kriser Dental Center, New York University College of Dentistry, New York, New York
| | - Manisha Dixit
- Department of Molecular Pathobiology, David B. Kriser Dental Center, New York University College of Dentistry, New York, New York
| | - Benoit Michot
- Department of Restorative Dentistry and Biomaterials Sciences, Harvard School of Dental Medicine, Boston, Massachusetts
| | - Jennifer L Gibbs
- Department of Restorative Dentistry and Biomaterials Sciences, Harvard School of Dental Medicine, Boston, Massachusetts
| | - Silvana D Ortiz
- Department of Biomedical Sciences, Edison Biotechnology Institute, Ohio University, Athens, Ohio
| | - John J Kopchick
- Department of Biomedical Sciences, Edison Biotechnology Institute, Ohio University, Athens, Ohio
| | - Thorsten Kirsch
- Department of Orthopaedic Surgery, New York University Grossman School of Medicine, New York, New York; Department of Biomedical Engineering, New York University Tandon School of Engineering, New York, New York
| | - Shoshana Yakar
- Department of Molecular Pathobiology, David B. Kriser Dental Center, New York University College of Dentistry, New York, New York.
| |
Collapse
|
11
|
Kato Y, Nakasa T, Sumii J, Kanemitsu M, Ishikawa M, Miyaki S, Adachi N. Changes in the Subchondral Bone Affect Pain in the Natural Course of Traumatic Articular Cartilage Defects. Cartilage 2023; 14:247-255. [PMID: 36788469 PMCID: PMC10416198 DOI: 10.1177/19476035231154514] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/27/2022] [Revised: 12/31/2022] [Accepted: 01/02/2023] [Indexed: 02/16/2023] Open
Abstract
OBJECTIVE Articular cartilage defect causes joint pain and finally progresses to osteoarthritis. Although the subchondral bone condition affects clinical outcomes of cartilage defects, the natural course of changes in subchondral bone and associated pain in full-thickness cartilage defects remain unknown. Therefore, we investigated the natural course of histological changes in subchondral bone and joint pain in cartilage defects using a rat model. DESIGN Full-thickness cartilage defects were created at the medial femoral condyle of 10-week-old male Sprague-Dawley rats. Rats were sacrificed at 3, 7, 14, 28, and 56 days postoperatively, and histological including immunohistochemistry and tartrate-resistant acid phosphatase (TRAP) staining and micro-computed tomography (μCT) analyses of their knees were performed. Pain was evaluated using behavioral analysis and immunofluorescence staining of the dorsal root ganglion (DRG). RESULTS The contour of the subchondral bone plate was maintained until day 3, but it was absorbed just under the cartilage defect from day 7 to 14. Starting on day 28, sclerotic changes surrounding the bone absorption area were detected. In the subchondral bone, the number of TRAP-positive cells peaked on day 14. Osteocalcin-positive cells were observed at 7 days, and their number gradually increased till day 56. Behavioral analysis showed that the total distance and the number of getting up by hind legs decreased on day 14. The number of calcitonin gene-related peptide-positive fibers in the DRG increased and was the highest on day 14. CONCLUSIONS The subchondral bone condition under cartilage defects dynamically changes from bone resorption to sclerosis and is related to pain level.
Collapse
Affiliation(s)
- Yuichi Kato
- Department of Orthopaedic Surgery, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima, Japan
| | - Tomoyuki Nakasa
- Department of Orthopaedic Surgery, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima, Japan
- Medical Center for Translational and Clinical Research, Hiroshima University Hospital, Hiroshima, Japan
| | - Junichi Sumii
- Department of Orthopaedic Surgery, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima, Japan
| | - Munekazu Kanemitsu
- Department of Orthopaedic Surgery, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima, Japan
| | - Masakazu Ishikawa
- Department of Artificial Joints and Biomaterials, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima, Japan
| | - Shigeru Miyaki
- Department of Orthopaedic Surgery, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima, Japan
- Medical Center for Translational and Clinical Research, Hiroshima University Hospital, Hiroshima, Japan
| | - Nobuo Adachi
- Department of Orthopaedic Surgery, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima, Japan
| |
Collapse
|
12
|
Ma C, Aitken D, Wu F, Squibb K, Cicuttini F, Jones G. Association between radiographic hand osteoarthritis and bone microarchitecture in a population-based sample. Arthritis Res Ther 2022; 24:223. [PMID: 36115996 PMCID: PMC9482179 DOI: 10.1186/s13075-022-02907-6] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2022] [Accepted: 08/30/2022] [Indexed: 12/01/2022] Open
Abstract
Background Subchondral bone plays an important role in the pathogenesis of radiographic osteoarthritis (OA). However, the bony changes that occur in hand OA (HOA) are much less understood. This study aimed to describe the association between radiographic HOA and high-resolution peripheral quantitative computed tomography (HRpQCT) measures of the hand and radius in a population-based sample. Methods A total of 201 participants (mean age 72, 46% female) from the Tasmanian Older Adult Cohort (TASOAC) study underwent HRpQCT assessment of the 2nd distal and proximal interphalangeal (DIP, PIP), 1st carpometacarpal (CMC) joint, and distal radius. Radiographic HOA was assessed at the 2nd DIP, PIP joints, and the 1st CMC joint using the OARSI atlas. Results Proximal osteophyte and joint space narrowing (JSN) scores were consistently more strongly associated with HRpQCT measures compared to the distal site with positive associations for indices of bone size (total and trabecular bone area and cortical perimeter but inconsistent for cortical area) and negative associations for volumetric bone mineral density (vBMD). There was a decrease in trabecular number and bone volume fraction with increasing osteophyte and JSN score as well as an increase in trabecular separation and inhomogeneity. Osteophyte and JSN scores in the hand were not associated with HRpQCT measures at the distal radius. Conclusions This hypothesis generating data suggests that bone size and trabecular disorganization increase with both osteophyte formation and JSN (proximal more than distal), while local vBMD decreases. This process appears to be primarily at the site of pathology rather than nearby unaffected bone. Supplementary Information The online version contains supplementary material available at 10.1186/s13075-022-02907-6.
Collapse
|
13
|
Miagkoff L, Girard CA, St-Jean G, Richard H, Beauchamp G, Laverty S. Cannabinoid receptors are expressed in equine synovium and upregulated with synovitis. Equine Vet J 2022. [PMID: 35836386 DOI: 10.1111/evj.13860] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2022] [Accepted: 07/10/2022] [Indexed: 01/15/2023]
Abstract
BACKGROUND Osteoarthritis (OA) is a major cause of equine lameness. Cannabinoid receptors (CB) are now considered to be promising therapeutic targets in human rheumatology for pain and inflammation, however little is known about the equine endocannabinoid system. OBJECTIVES The primary goal was to assess the presence and expression pattern of CB1 and CB2 in the synovium of healthy joints. A secondary goal was to explore the relationship between the CB expression, degree of synovitis and OA pathology. STUDY DESIGN Ex vivo experimental study. METHODS Metacarpophalangeal joints (n=25) from a tissue bank were studied. The joints were dissected, and the articular cartilage lesions were scored. Synovial membrane specimens (n=45) were harvested, fixed and the degree of synovitis was graded on histological sections. Co-localised synovial sections were also immunostained with antibodies to CB1 and CB2. Five regions of interest (ROIs) were randomly selected from digital images of manually segmented synovial intima and scored blindly for positive cellular immunoreactive staining by 2 independent observers. Interobserver agreement was calculated with an intraclass correlation coefficient (ICC). Relationships between CB1 and CB2 immunoreactive scores and synovitis or joint OA grade were explored with mixed linear models. RESULTS CB1 was expressed in synovial intimal cells in all specimens studied whereas CB2 expression was identified in 94%. Both receptors were also expressed in the subintimal blood vessel walls. ICCs were 84.6% (CB1) and 92.9% (CB2) for the immunoreactivity scores. Both CB1 and CB2 expression were significantly upregulated (p=0.04 and p=0.03 respectively) with increasing degree of synovitis. Conversely, CB1 expression significantly decreased (p=0.03) with increasing severity of OA. MAIN LIMITATIONS The type of synovial cell expressing CB1 or CB2 was not investigated. CONCLUSIONS Equine synovial intimal cells constitutively express both CB1 and CB2 receptors that are upregulated with synovitis and may have a role in joint pain. They are potential targets for therapy with cannabinoid molecules or their derivatives. This article is protected by copyright. All rights reserved.
Collapse
Affiliation(s)
- Ludovic Miagkoff
- Comparative Orthopedic Research Laboratory, Department of Clinical Sciences, Faculté de Médecine Vétérinaire, Université de Montréal, 3200 Sicotte, St. Hyacinthe, Quebec, Canada
| | - Christiane A Girard
- Comparative Orthopedic Research Laboratory, Department of Clinical Sciences, Faculté de Médecine Vétérinaire, Université de Montréal, 3200 Sicotte, St. Hyacinthe, Quebec, Canada
| | - Guillaume St-Jean
- Comparative Orthopedic Research Laboratory, Department of Clinical Sciences, Faculté de Médecine Vétérinaire, Université de Montréal, 3200 Sicotte, St. Hyacinthe, Quebec, Canada
| | - Hélène Richard
- Comparative Orthopedic Research Laboratory, Department of Clinical Sciences, Faculté de Médecine Vétérinaire, Université de Montréal, 3200 Sicotte, St. Hyacinthe, Quebec, Canada
| | - Guy Beauchamp
- Comparative Orthopedic Research Laboratory, Department of Clinical Sciences, Faculté de Médecine Vétérinaire, Université de Montréal, 3200 Sicotte, St. Hyacinthe, Quebec, Canada
| | - Sheila Laverty
- Comparative Orthopedic Research Laboratory, Department of Clinical Sciences, Faculté de Médecine Vétérinaire, Université de Montréal, 3200 Sicotte, St. Hyacinthe, Quebec, Canada
| |
Collapse
|
14
|
Malek G, Richard H, Beauchamp G, Laverty S. An in vitro model for discovery of osteoclast specific biomarkers towards identification of racehorses at risk for catastrophic fractures. Equine Vet J 2022; 55:534-550. [PMID: 35616632 DOI: 10.1111/evj.13600] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Accepted: 05/12/2022] [Indexed: 11/29/2022]
Abstract
BACKGROUND Focal bone microcracks with osteoclast recruitment and bone lysis, may reduce fracture resistance in racehorses. As current imaging does not detect all horses at risk for fracture, the discovery of novel serum biomarkers of bone resorption or osteoclast activity could potentially address this unmet clinical need. The biology of equine osteoclasts on their natural substrate, equine bone, has never been studied in vitro and may permit identification of specific biomarkers of their activity. OBJECTIVES 1) Establish osteoclast cultures on equine bone, 2) Measure biomarkers (tartrate resistant acid phosphatase isoform 5b (TRACP-5b) and C-terminal telopeptide of type I collagen (CTX-I)) in vitro and 3) Study the effects of inflammation. STUDY DESIGN In vitro experiments. METHODS Haematopoietic stem cells, from 5 equine sternal bone marrow aspirates, were differentiated into osteoclasts and cultured either alone or on equine bone slices, with or without pro-inflammatory stimulus (IL-1β or LPS). CTX-I and TRACP-5b were immunoassayed in the media. Osteoclast numbers and bone resorption area were assessed. RESULTS TRACP-5b increased over time without bone (p < 0.0001) and correlated with osteoclast number (r = 0.63, p < 0.001). CTX-I and TRACP-5b increased with time for cultures with bone (p = 0.002; p = 0.02 respectively), correlated with each other (r = 0.64, p < 0.002) and correlated with bone resorption (r = 0.85, p < 0.001; r = 0.82, p < 0.001 respectively). Inflammation had no measurable effects. MAIN LIMITATIONS Specimen numbers limited. CONCLUSIONS Equine osteoclasts were successfully cultured on equine bone slices and their bone resorption quantified. TRACP-5b was shown to be a biomarker of equine osteoclast number and bone resorption for the first time; CTX-I was also confirmed to be a biomarker of equine bone resorption in vitro. This robust equine specific in vitro assay will help the study of osteoclast biology.
Collapse
Affiliation(s)
- Gwladys Malek
- Comparative Orthopaedic Research Laboratory, Department of Clinical Sciences, Faculty of Veterinary Medicine, University of Montreal, 3200 Sicotte, St-Hyacinthe, QC, Canada
| | - Hélène Richard
- Comparative Orthopaedic Research Laboratory, Department of Clinical Sciences, Faculty of Veterinary Medicine, University of Montreal, 3200 Sicotte, St-Hyacinthe, QC, Canada
| | - Guy Beauchamp
- Comparative Orthopaedic Research Laboratory, Department of Clinical Sciences, Faculty of Veterinary Medicine, University of Montreal, 3200 Sicotte, St-Hyacinthe, QC, Canada
| | - Sheila Laverty
- Comparative Orthopaedic Research Laboratory, Department of Clinical Sciences, Faculty of Veterinary Medicine, University of Montreal, 3200 Sicotte, St-Hyacinthe, QC, Canada
| |
Collapse
|
15
|
Hoy SR, Vucetich JA, Peterson RO. The Role of Wolves in Regulating a Chronic Non-communicable Disease, Osteoarthritis, in Prey Populations. Front Ecol Evol 2022. [DOI: 10.3389/fevo.2022.819137] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
It is widely accepted that predators disproportionately prey on individuals that are old, weak, diseased or injured. By selectively removing individuals with diseases, predators may play an important role in regulating the overall health of prey populations. However, that idea is seldom tested empirically. Here we assess the extent that wolves (Canis lupus) select adult moose (Alces alces) in Isle Royale National Park on the basis of age-class and osteoarthritis, a chronic, non-communicable disease. We also assess how temporal variation in kill rates (on moose by wolves) were associated with the subsequent incidence of osteoarthritis in the moose population over a 33-year period (1975–2007). Wolves showed strong selection for senescent moose and tended to avoid prime-aged adults. However, the presence of severe osteoarthritis, but not mild or moderate osteoarthritis, appeared to increase the vulnerability of prime-aged moose to predation. There was weak evidence to suggest that senescent moose with osteoarthritis maybe more vulnerable to wolves, compared to senescent moose without the disease. The incidence of osteoarthritis declined following years with higher kill rates–which is plausibly due to the selective removal of individuals with osteoarthritis. Together those results suggest that selective predation plays an important role in regulating the health of prey populations. Additionally, because osteoarthritis is influenced by genetic factors, these results highlight how wolf predation may act as a selective force against genes associated with developing severe osteoarthritis as a prime-aged adult. Our findings highlight one benefits of allowing predators to naturally regulate prey populations. The evidence we present for predation’s influence on the health of prey populations is also relevant for policy-related arguments about refraining from intensively hunting wolf populations.
Collapse
|
16
|
Kaspiris A, Chronopoulos E, Vasiliadis E, Khaldi L, Melissaridou D, Iliopoulos ID, Savvidou OD. Sex, but not age and bone mass index positively impact on the development of osteochondral micro‐defects and the accompanying cellular alterations during osteoarthritis progression. Chronic Dis Transl Med 2022; 8:41-50. [PMID: 35620158 PMCID: PMC9128565 DOI: 10.1002/cdt3.16] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2021] [Accepted: 12/09/2021] [Indexed: 11/25/2022] Open
Abstract
Background Osteoarthritis (ΟΑ) is characterized by cartilage breakdown and subchondral sclerosis. Micro‐fractures of the calcified tissues have been, also, detected, but their exact role has not been elucidated yet. This study was to examine the frequency of cracks during OA progression and to correlate them with the underlying cellular modifications and matrix metalloproteinase‐2 (MMP‐2) expression using histological/immunohistological methods. Methods Overall, 20 patients and 3 controls (9 specimens per patient), aged 60–89 years, diagnosed with hip/knee OA were included. The development of cracks was examined in 138 sections, whereas the expression of MMP‐2 was examined in 69 additional sections. Results Based on Mankin score, three groups of OA severity were analyzed: Group I (mild) was constituted of sections with score 1–5 while Groups II (moderate) and III (severe) with score 6–7 and greater or equal to 8, respectively. Demographic characteristics did not reveal any association between the number of microdefects and age or body mass index (BMI). Cartilage micro‐cracks were increased during moderate and severe OA, while bone cracks were increased during mild and severe OA. In knee OA, cartilage cracks were not correlated with Mankin score, whereas in hip OA they appeared association with severity score. Bone cracks were positively correlated with matrix apoptotic osteocytes and osteoblastic cells, but not with osteoclasts. MMP‐2 immunostaining was increasing by OA severity in the osteochondral unit. Similarly, MMP‐2 was expressed on the microcracks’ wall mainly in Group III. Conclusion Our data displayed that bone cracks during primary OA stages, represent an early adaptative mechanism aiming to maintain cartilage integrity. Accumulation of bone defects and concomitant increase of apoptotic osteocytes activated an abnormal remodeling due to osteoblastic activity, in which MMP‐2 played a pivotal role, leading to subchondral sclerosis promoting further osteochondral deformities.
Collapse
Affiliation(s)
- Angelos Kaspiris
- Laboratory of Molecular Pharmacology, Division for Orthopaedic Research, School of Health Sciences University of Patras Patras Greece
| | - Efstathios Chronopoulos
- Second Department of Orthopaedic Surgery, School of Medicine National and Kapodistrian University of Athens, “Konstantopoulio” General Hospital Athens Greece
| | - Elias Vasiliadis
- Third Department of Orthopaedic Surgery “KAT” General Hospital and Medical School University of Athens Athens Greece
| | - Lubna Khaldi
- Department of Pathology “Agios Savvas” Athens Cancer Hospital–NHS Athens Greece
| | - Dimitra Melissaridou
- First Department of Orthopaedic Surgery, School of Medicine National and Kapodistrian University of Athens, “ATTIKON” University General Hospital Athens Greece
| | - Ilias D. Iliopoulos
- Department of Orthopaedic Surgery, “Rion” University Hospital and Medical School, School of Health Sciences University of Patras Patras Greece
| | - Olga D. Savvidou
- First Department of Orthopaedic Surgery, School of Medicine National and Kapodistrian University of Athens, “ATTIKON” University General Hospital Athens Greece
| |
Collapse
|
17
|
Haut Donahue TL, Narez GE, Powers M, Dejardin LM, Wei F, Haut RC. A Morphological Study of the Meniscus, Cartilage and Subchondral Bone Following Closed-Joint Traumatic Impact to the Knee. Front Bioeng Biotechnol 2022; 10:835730. [PMID: 35387294 PMCID: PMC8977861 DOI: 10.3389/fbioe.2022.835730] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2021] [Accepted: 02/22/2022] [Indexed: 11/13/2022] Open
Abstract
Post-traumatic osteoarthritis (PTOA) is a debilitating disease that is a result of a breakdown of knee joint tissues following traumatic impact. The interplay of how these tissues influence each other has received little attention because of complex interactions. This study was designed to correlate the degeneration of the menisci, cartilage and subchondral bone following an acute traumatic event that resulted in anterior cruciate ligament (ACL) and medial meniscus tears. We used a well-defined impact injury animal model that ruptures the ACL and tears the menisci. Subsequently, the knee joints underwent ACL reconstruction and morphological analyses were performed on the menisci, cartilage and subchondral bone at 1-, 3- and 6-months following injury. The results showed that the morphological scores of the medial and lateral menisci worsened with time, as did the tibial plateau and femoral condyle articular cartilage scores. The medial meniscus was significantly correlated to the medial tibial subchondral bone at 1 month (p = 0.01), and to the medial tibial cartilage at 3 months (p = 0.04). There was only one significant correlation in the lateral hemijoint, i.e., the lateral tibial cartilage to the lateral tibial subchondral bone at 6 months (p = 0.05). These data may suggest that, following trauma, the observed medial meniscal damage should be treated acutely by means other than a full or partial meniscectomy, since that procedure may have been the primary cause of degenerative changes in the underlying cartilage and subchondral bone. In addition to potentially treating meniscal damage differently, improvements could be made in optimizing treatment of acute knee trauma.
Collapse
Affiliation(s)
- T. L. Haut Donahue
- Department of Biomedical Engineering, University of Memphis, Memphis, TN, United States
- *Correspondence: T. L. Haut Donahue,
| | - G. E. Narez
- Department of Biomedical Engineering, University of Massachusetts Amherst, Amherst, MA, United States
| | - M. Powers
- Department of Biomedical Engineering, University of Massachusetts Amherst, Amherst, MA, United States
| | - L. M. Dejardin
- Department of Small Animal Clinical Sciences, Michigan State University, East Lansing, MI, United States
| | - F. Wei
- Orthopaedic Biomechanics Laboratories, College of Osteopathic Medicine, Michigan State University, East Lansing, MI, United States
| | - R. C. Haut
- Orthopaedic Biomechanics Laboratories, College of Osteopathic Medicine, Michigan State University, East Lansing, MI, United States
| |
Collapse
|
18
|
Jiang W, Jin Y, Zhang S, Ding Y, Huo K, Yang J, Zhao L, Nian B, Zhong TP, Lu W, Zhang H, Cao X, Shah KM, Wang N, Liu M, Luo J. PGE2 activates EP4 in subchondral bone osteoclasts to regulate osteoarthritis. Bone Res 2022; 10:27. [PMID: 35260562 PMCID: PMC8904489 DOI: 10.1038/s41413-022-00201-4] [Citation(s) in RCA: 56] [Impact Index Per Article: 18.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2021] [Revised: 12/08/2021] [Accepted: 12/22/2021] [Indexed: 12/14/2022] Open
Abstract
Prostaglandin E2 (PGE2), a major cyclooxygenase-2 (COX-2) product, is highly secreted by the osteoblast lineage in the subchondral bone tissue of osteoarthritis (OA) patients. However, NSAIDs, including COX-2 inhibitors, have severe side effects during OA treatment. Therefore, the identification of novel drug targets of PGE2 signaling in OA progression is urgently needed. Osteoclasts play a critical role in subchondral bone homeostasis and OA-related pain. However, the mechanisms by which PGE2 regulates osteoclast function and subsequently subchondral bone homeostasis are largely unknown. Here, we show that PGE2 acts via EP4 receptors on osteoclasts during the progression of OA and OA-related pain. Our data show that while PGE2 mediates migration and osteoclastogenesis via its EP2 and EP4 receptors, tissue-specific knockout of only the EP4 receptor in osteoclasts (EP4LysM) reduced disease progression and osteophyte formation in a murine model of OA. Furthermore, OA-related pain was alleviated in the EP4LysM mice, with reduced Netrin-1 secretion and CGRP-positive sensory innervation of the subchondral bone. The expression of platelet-derived growth factor-BB (PDGF-BB) was also lower in the EP4LysM mice, which resulted in reduced type H blood vessel formation in subchondral bone. Importantly, we identified a novel potent EP4 antagonist, HL-43, which showed in vitro and in vivo effects consistent with those observed in the EP4LysM mice. Finally, we showed that the Gαs/PI3K/AKT/MAPK signaling pathway is downstream of EP4 activation via PGE2 in osteoclasts. Together, our data demonstrate that PGE2/EP4 signaling in osteoclasts mediates angiogenesis and sensory neuron innervation in subchondral bone, promoting OA progression and pain, and that inhibition of EP4 with HL-43 has therapeutic potential in OA.
Collapse
Affiliation(s)
- Wenhao Jiang
- Yangzhi Rehabilitation Hospital (Sunshine Rehabilitation Centre), Tongji University School of Medicine, Shanghai, PR China.,Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Shanghai, PR China
| | - Yunyun Jin
- Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Shanghai, PR China
| | - Shiwei Zhang
- Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Shanghai, PR China
| | - Yi Ding
- Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Shanghai, PR China
| | - Konglin Huo
- Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Shanghai, PR China
| | - Junjie Yang
- Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Shanghai, PR China
| | - Lei Zhao
- Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Shanghai, PR China
| | - Baoning Nian
- Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Shanghai, PR China
| | - Tao P Zhong
- Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Shanghai, PR China
| | - Weiqiang Lu
- Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Shanghai, PR China
| | - Hankun Zhang
- Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Shanghai, PR China
| | - Xu Cao
- Departments of Orthopaedic Surgery and Biomedical Engineering and Institute of Cell Engineering, The Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Karan Mehul Shah
- Department of Oncology and Metabolism, The University of Sheffield, Sheffield, UK
| | - Ning Wang
- Department of Oncology and Metabolism, The University of Sheffield, Sheffield, UK
| | - Mingyao Liu
- Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Shanghai, PR China
| | - Jian Luo
- Yangzhi Rehabilitation Hospital (Sunshine Rehabilitation Centre), Tongji University School of Medicine, Shanghai, PR China. .,Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Shanghai, PR China.
| |
Collapse
|
19
|
Lee OJ, Koch TG. Steps Toward Standardized In Vitro Assessment of Immunomodulatory Equine Mesenchymal Stromal Cells Before Clinical Application. Stem Cells Dev 2021; 31:18-25. [PMID: 34779250 PMCID: PMC8792491 DOI: 10.1089/scd.2021.0189] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
Inflammation-associated disorders are significant causes of morbidity in horses. Equine single-donor mesenchymal stromal cells (sdMSCs) hold promise as cell-therapy candidates due to their secretory nonprogenitor functions. This has been demonstrated by mononuclear cell suppression assays (MSAs) showing that sdMSCs are blood mononuclear cell (BMC) suppressive in vitro. sdMSCs derived from umbilical cord blood are of clinical interest due to their ease of procurement, multipotency, and immunomodulatory ability. Due to the inherent donor-to-donor heterogeneity of MSCs, the development of robust and easily deployable methods of potency assessment is critical for improving MSCs' predictability in treating inflammatory diseases. This study focuses on the development of robust in vitro potency assays and the assessment of potential sdMSC therapeutic end products generated from pooled sdMSCs (pMSCs). We hypothesized that, compared to MSA using only one donor, MSA using pooled BMCs (pBMCs) is a more robust sdMSC potency assay due to reduced donor BMC heterogeneity. pBMCs were generated by pooling equine BMCs isolated from peripheral blood of five donors in equal ratios. pBMCs were labeled with carboxyfluorescein succinimidyl ester (CFSE) and stored in liquid nitrogen until use. Similarly, pooling sdMSCs from multiple equine donors in equal ratios generated pMSCs. sdMSC cultures were assessed with pBMCs in MSA using Bromodeoxyuridine ELISA and CFSE. Proliferation assessment of BMCs from individual donors revealed varied responses to concanavalin A (ConA) stimulation. MSA using BMCs from single donors further demonstrated BMC donor variability. Utilizing this assay, we have also found that the immunosuppressive potencies of pMSCs are at least equal, if not more, than the calculated mean of individual cultures. MSA based on pBMCs provides a consistent and reproducible equine sdMSC potency assay. This knowledge could be used in production monitoring of cellular potency and as release criteria before clinical use.
Collapse
Affiliation(s)
- Olivia J Lee
- Department of Biomedical Sciences, University of Guelph, Guelph, Canada
| | - Thomas G Koch
- Department of Biomedical Sciences, University of Guelph, Guelph, Canada
| |
Collapse
|
20
|
Zhang Y, Zhu T, He F, Chen AC, Yang H, Zhu X. Identification of Key Genes and Pathways in Osteoarthritis via Bioinformatic Tools: An Updated Analysis. Cartilage 2021; 13:1457S-1464S. [PMID: 33855867 PMCID: PMC8808887 DOI: 10.1177/19476035211008975] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
OBJECTIVE Osteoarthritis (OA) is a severe and common degenerative disease; however, the exact pathology of OA is undefined. Our study is designed to investigate the underlying molecular mechanism of OA with bioinformatic tools. DESIGN Three updated GEO datasets: GSE55235, GSE55457, and GSE82107 were selected for data analyzing. R software was utilized to screen and confirm the candidate differentially expressed genes in the development of OA. Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes pathway were performed to identify the enriched GO terms and signaling pathways. Protein and protein interaction (PPI) models were built to observe the connected relationship among each potential protein. RESULTS A total of 113 upregulated genes and 161 downregulated genes were found by integrating 3 datasets. GO enrichment indicated that cell differentiation, cellular response to starvation, and negative regulation of phosphorylation were important biological processes. KEGG enrichment indicated that FoxO, IL-17 signaling pathways, and osteoclast differentiation mainly participated in the progression of OA. Combining the molecular function and PPI results, ubiquitylation was identified as a pivotal bioactive reaction involved in OA. CONCLUSION Our study provided updated candidate genes and pathways of OA, which may benefit further research and treatment for OA.
Collapse
Affiliation(s)
- Yijian Zhang
- Department of Orthopedics, The First
Affiliated Hospital of Soochow University, Suzhou, China
- Orthopedic Institute, Soochow
University, Suzhou, China
| | - Tianfeng Zhu
- Department of Orthopedics, The First
Affiliated Hospital of Soochow University, Suzhou, China
- Orthopedic Institute, Soochow
University, Suzhou, China
| | - Fan He
- Department of Orthopedics, The First
Affiliated Hospital of Soochow University, Suzhou, China
- Orthopedic Institute, Soochow
University, Suzhou, China
| | - Angela Carley Chen
- School of Public Health and Health
Systems, University of Waterloo, Waterloo, Ontario, Canada
| | - Huilin Yang
- Department of Orthopedics, The First
Affiliated Hospital of Soochow University, Suzhou, China
- Orthopedic Institute, Soochow
University, Suzhou, China
| | - Xuesong Zhu
- Department of Orthopedics, The First
Affiliated Hospital of Soochow University, Suzhou, China
- Orthopedic Institute, Soochow
University, Suzhou, China
| |
Collapse
|
21
|
Stewart HL, Kawcak CE, Inscoe CR, Puett C, Lee YZ, Lu J, Zhou OZ, Selberg KT. Comparative evaluation of tomosynthesis, computed tomography, and magnetic resonance imaging findings for metacarpophalangeal joints from equine cadavers. Am J Vet Res 2021; 82:872-879. [PMID: 34669497 DOI: 10.2460/ajvr.82.11.872] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
OBJECTIVE To describe the technique and assess the diagnostic potential and limitations of tomosynthesis for imaging of the metacarpophalangeal joint (MCPJ) of equine cadavers; compare the tomosynthesis appearance of pathological lesions with their conventional radiographic, CT, and MRI appearances; and evaluate all imaging findings with gross lesions of a given MCPJ. SAMPLE Distal portions of 4 forelimbs from 4 equine cadavers. PROCEDURES The MCPJs underwent radiography, tomosynthesis (with a purpose-built benchtop unit), CT, and MRI; thereafter, MCPJs were disarticulated and evaluated for the presence of gross lesions. The ability to identify pathological lesions on all images was assessed, followed by semiobjective scoring for quality of the overall image and appearance of the subchondral bone, articular cartilage, periarticular margins, and adjacent trabecular bone of the third metacarpal bone, proximal phalanx, and proximal sesamoid bones of each MCPJ. RESULTS Some pathological lesions in the subchondral bone of the third metacarpal bone were detectable with tomosynthesis but not with radiography. Overall, tomosynthesis was comparable to radiography, but volumetric imaging modalities were superior to tomosynthesis and radiography for imaging of subchondral bone, articular cartilage, periarticular margins, and adjacent bone. CONCLUSIONS AND CLINICAL RELEVANCE With regard to the diagnostic characterization of equine MCPJs, tomosynthesis may be more accurate than radiography for identification of lesions within subchondral bone because, in part, of its ability to reduce superimposition of regional anatomic features. Tomosynthesis may be useful as an adjunctive imaging technique, highlighting subtle lesions within bone, compared with standard radiographic findings.
Collapse
Affiliation(s)
- Holly L Stewart
- From the Equine Orthopaedic Research Center and Translational Medicine Institute, Department of Clinical Sciences, and Department of Environmental and Radiological Health Sciences, College of Veterinary Medicine & Biomedical Sciences, Colorado State University, Fort Collins, CO 80523
| | - Christopher E Kawcak
- From the Equine Orthopaedic Research Center and Translational Medicine Institute, Department of Clinical Sciences, and Department of Environmental and Radiological Health Sciences, College of Veterinary Medicine & Biomedical Sciences, Colorado State University, Fort Collins, CO 80523
| | - Christina R Inscoe
- Department of Physics and Astronomy, College of Arts and Sciences, Department of Biomedical Engineering, and Department of Radiology, College of Medicine, University of North Carolina, Chapel Hill, NC 27599
| | - Connor Puett
- Department of Physics and Astronomy, College of Arts and Sciences, Department of Biomedical Engineering, and Department of Radiology, College of Medicine, University of North Carolina, Chapel Hill, NC 27599
| | - Yueh Z Lee
- Department of Physics and Astronomy, College of Arts and Sciences, Department of Biomedical Engineering, and Department of Radiology, College of Medicine, University of North Carolina, Chapel Hill, NC 27599
| | - Jianping Lu
- Department of Physics and Astronomy, College of Arts and Sciences, Department of Biomedical Engineering, and Department of Radiology, College of Medicine, University of North Carolina, Chapel Hill, NC 27599
| | - Otto Z Zhou
- Department of Physics and Astronomy, College of Arts and Sciences, Department of Biomedical Engineering, and Department of Radiology, College of Medicine, University of North Carolina, Chapel Hill, NC 27599
| | - Kurt T Selberg
- From the Equine Orthopaedic Research Center and Translational Medicine Institute, Department of Clinical Sciences, and Department of Environmental and Radiological Health Sciences, College of Veterinary Medicine & Biomedical Sciences, Colorado State University, Fort Collins, CO 80523
| |
Collapse
|
22
|
McQuillan S, Kearney C, Hoey S, Connolly S, Rowan C. A threshold volume of 10 ml is suggested for detecting articular cartilage defects in equine carpal joints using CT arthrography: Ex vivo pilot study. Vet Radiol Ultrasound 2021; 63:54-63. [PMID: 34672041 DOI: 10.1111/vru.13028] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2020] [Revised: 07/17/2021] [Accepted: 08/03/2021] [Indexed: 11/30/2022] Open
Abstract
Computed tomographic arthrography (CTA) has been described as a method for detecting articular cartilage defects in equine carpal joints; however, published studies on the effects of contrast volume for lesion detection are currently lacking. The purpose of this prospective, experimental, pilot study was to determine a threshold volume of iodinated contrast for CTA of the antebrachiocarpal (ABC) and middle carpal (MC) joints for detection of articular cartilage surface defects. Articular cartilage defects were iatrogenically created in the surfaces of the ABC and MC joints of 20 equine cadaver limbs using arthroscopy. Unaltered articular surfaces within some joints acted as controls. Joints were imaged precontrast using multidetector CT. The ABC and MC joints were injected with a 150 mg iodine/ml nonionic contrast medium, in 5 ml increments from 5 to 50 ml per joint with CT performed subsequent to each increment. Cartilage defects were measured grossly using a caliper. Detection (qualitative) and measurement (quantitative) of the defects were independently performed by two board-certified radiologists using medical imaging software. At each volume of contrast, the interrater reliability for gross examination and the two observers in the detection of a defect was calculated (Gwet's AC1). Logistic mixed-effects models of selected volumes, 0, 5, 10, 15, and 50 ml, demonstrated that at 10 ml contrast and above, no statistically significant difference between either observer and gross examination for defect detection was identified for either joint. Findings supported using a dose of 10 ml for 150 mg iodine/ml concentration contrast media when performing CTA of equine carpal joints.
Collapse
Affiliation(s)
- Siobhan McQuillan
- School of Veterinary Medicine, UCD Veterinary Hospital, University College Dublin, Dublin, Ireland
| | - Clodagh Kearney
- School of Veterinary Medicine, UCD Veterinary Hospital, University College Dublin, Dublin, Ireland
| | - Seamus Hoey
- School of Veterinary Medicine, UCD Veterinary Hospital, University College Dublin, Dublin, Ireland
| | - Susan Connolly
- School of Computer Science and Statistics, Trinity College Dublin, Dublin, Ireland
| | - Conor Rowan
- School of Veterinary Medicine, UCD Veterinary Hospital, University College Dublin, Dublin, Ireland.,Diagnostic Imaging, Vetmeduni Vienna, Vienna, Austria
| |
Collapse
|
23
|
Shirakawa Y, Nakasa T, Kanemitsu M, Nekomoto A, Ishikawa M, Yimiti D, Miyaki S, Adachi N. Therapeutic effect of targeting Substance P on the progression of osteoarthritis. Mod Rheumatol 2021; 32:1175-1185. [PMID: 34915568 DOI: 10.1093/mr/roab089] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2021] [Revised: 06/23/2021] [Accepted: 09/29/2021] [Indexed: 12/13/2022]
Abstract
OBJECTIVES Substance P (SP) modulates NK1 and has various functions such as regulation of pain response, bone metabolism, and angiogenesis, which are recognized as important factors in osteoarthritis (OA). We aimed to evaluate the therapeutic effect of targeting SP on OA progression. METHODS SP expression patterns were analysed histologically in articular cartilage and subchondral bone of human knees from OA patients and autopsy donors as non-OA samples and in mouse articular cartilage. Moreover, to examine the effect of SP on the progression of OA, we administered drugs to mice following the surgical destabilization of the medial meniscus: Phosphate-buffered saline (PBS), septide (NK1 receptor agonist), or aprepitant (NK1 receptor antagonist). Histological analysis and bone morphologic analysis using micro-computed tomography were performed. RESULTS In human analysis, the expression of SP in mild OA samples was significantly higher than that in severe OA, and that in healthy cartilage was significantly higher than that in OA. In mouse analysis, Osteoarthritis Research Society International scores in the septide group were significantly lower than those in the control group. Computed tomography analysis showed that the subchondral bone's epiphysis in the control group had sclerotic change, not observed in the septide group. CONCLUSIONS The administration of septide ameliorates OA progression through preventing subchondral bone sclerosis.
Collapse
Affiliation(s)
- Yoshiko Shirakawa
- Department of Orthopaedic Surgery, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima, Japan
| | - Tomoyuki Nakasa
- Department of Orthopaedic Surgery, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima, Japan
- Medical Center for Translational and Clinical Research, Hiroshima University Hospital, Hiroshima, Japan
| | - Munekazu Kanemitsu
- Department of Orthopaedic Surgery, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima, Japan
| | - Akinori Nekomoto
- Department of Orthopaedic Surgery, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima, Japan
| | - Masakazu Ishikawa
- Department of Orthopaedic Surgery, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima, Japan
| | - Dilimulati Yimiti
- Department of Orthopaedic Surgery, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima, Japan
| | - Shigeru Miyaki
- Department of Orthopaedic Surgery, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima, Japan
- Medical Center for Translational and Clinical Research, Hiroshima University Hospital, Hiroshima, Japan
| | - Nobuo Adachi
- Department of Orthopaedic Surgery, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima, Japan
| |
Collapse
|
24
|
Kresakova L, Danko J, Vdoviakova K, Medvecky L, Zert Z, Petrovova E, Varga M, Spakovska T, Pribula J, Gasparek M, Giretova M, Stulajterova R, Kolvek F, Andrejcakova Z, Simaiova V, Kadasi M, Vrabec V, Toth T, Hura V. In Vivo Study of Osteochondral Defect Regeneration Using Innovative Composite Calcium Phosphate Biocement in a Sheep Model. MATERIALS (BASEL, SWITZERLAND) 2021; 14:4471. [PMID: 34442993 PMCID: PMC8398687 DOI: 10.3390/ma14164471] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/25/2021] [Revised: 07/31/2021] [Accepted: 08/04/2021] [Indexed: 11/17/2022]
Abstract
This study aimed to clarify the therapeutic effect and regenerative potential of the novel, amino acids-enriched acellular biocement (CAL) based on calcium phosphate on osteochondral defects in sheep. Eighteen sheep were divided into three groups, the treated group (osteochondral defects filled with a CAL biomaterial), the treated group with a biocement without amino acids (C cement), and the untreated group (spontaneous healing). Cartilages of all three groups were compared with natural cartilage (negative control). After six months, sheep were evaluated by gross appearance, histological staining, immunohistochemical staining, histological scores, X-ray, micro-CT, and MRI. Treatment of osteochondral defects by CAL resulted in efficient articular cartilage regeneration, with a predominant structural and histological characteristic of hyaline cartilage, contrary to fibrocartilage, fibrous tissue or disordered mixed tissue on untreated defect (p < 0.001, modified O'Driscoll score). MRI results of treated defects showed well-integrated and regenerated cartilage with similar signal intensity, regularity of the articular surface, and cartilage thickness with respect to adjacent native cartilage. We have demonstrated that the use of new biocement represents an effective solution for the successful treatment of osteochondral defects in a sheep animal model, can induce an endogenous regeneration of cartilage in situ, and provides several benefits for the design of future therapies supporting osteochondral defect healing.
Collapse
Affiliation(s)
- Lenka Kresakova
- Department of Morphological Disciplines, University of Veterinary Medicine and Pharmacy in Kosice, Komenskeho 73, 041 81 Kosice, Slovakia; (J.D.); (K.V.); (E.P.); (V.S.)
| | - Jan Danko
- Department of Morphological Disciplines, University of Veterinary Medicine and Pharmacy in Kosice, Komenskeho 73, 041 81 Kosice, Slovakia; (J.D.); (K.V.); (E.P.); (V.S.)
| | - Katarina Vdoviakova
- Department of Morphological Disciplines, University of Veterinary Medicine and Pharmacy in Kosice, Komenskeho 73, 041 81 Kosice, Slovakia; (J.D.); (K.V.); (E.P.); (V.S.)
| | - Lubomir Medvecky
- Division of Functional and Hybrid Systems, Institute of Materials Research of SAS, Watsonova 47, 040 01 Kosice, Slovakia; (L.M.); (M.G.); (R.S.)
| | - Zdenek Zert
- Clinic of Horses, University of Veterinary Medicine and Pharmacy in Kosice, Komenskeho 73, 041 81 Kosice, Slovakia; (Z.Z.); (F.K.); (V.H.)
| | - Eva Petrovova
- Department of Morphological Disciplines, University of Veterinary Medicine and Pharmacy in Kosice, Komenskeho 73, 041 81 Kosice, Slovakia; (J.D.); (K.V.); (E.P.); (V.S.)
| | - Maros Varga
- Hospital AGEL Kosice-Saca, Lucna 57, 040 15 Kosice-Saca, Slovakia; (M.V.); (T.S.); (J.P.)
| | - Tatiana Spakovska
- Hospital AGEL Kosice-Saca, Lucna 57, 040 15 Kosice-Saca, Slovakia; (M.V.); (T.S.); (J.P.)
| | - Jozef Pribula
- Hospital AGEL Kosice-Saca, Lucna 57, 040 15 Kosice-Saca, Slovakia; (M.V.); (T.S.); (J.P.)
| | - Miroslav Gasparek
- Department of Engineering Science, University of Oxford, Parks Road, Oxford OX1 3PJ, UK;
| | - Maria Giretova
- Division of Functional and Hybrid Systems, Institute of Materials Research of SAS, Watsonova 47, 040 01 Kosice, Slovakia; (L.M.); (M.G.); (R.S.)
| | - Radoslava Stulajterova
- Division of Functional and Hybrid Systems, Institute of Materials Research of SAS, Watsonova 47, 040 01 Kosice, Slovakia; (L.M.); (M.G.); (R.S.)
| | - Filip Kolvek
- Clinic of Horses, University of Veterinary Medicine and Pharmacy in Kosice, Komenskeho 73, 041 81 Kosice, Slovakia; (Z.Z.); (F.K.); (V.H.)
| | - Zuzana Andrejcakova
- Department of Biology and Physiology, University of Veterinary Medicine and Pharmacy in Kosice, Komenskeho 73, 041 81 Kosice, Slovakia;
| | - Veronika Simaiova
- Department of Morphological Disciplines, University of Veterinary Medicine and Pharmacy in Kosice, Komenskeho 73, 041 81 Kosice, Slovakia; (J.D.); (K.V.); (E.P.); (V.S.)
| | - Marian Kadasi
- Clinic of Ruminants, University of Veterinary Medicine and Pharmacy in Kosice, Komenskeho 73, 041 81 Kosice, Slovakia;
| | - Vladimir Vrabec
- Clinic of Birds, Exotic and Free Living Animals, University of Veterinary Medicine and Pharmacy in Kosice, Komenskeho 73, 041 81 Kosice, Slovakia;
| | - Teodor Toth
- Department of Biomedical Engineering and Measurement, Faculty of Mechanical Engineering, Technical University of Kosice, Letna 9, 042 00 Kosice, Slovakia;
| | - Vladimir Hura
- Clinic of Horses, University of Veterinary Medicine and Pharmacy in Kosice, Komenskeho 73, 041 81 Kosice, Slovakia; (Z.Z.); (F.K.); (V.H.)
| |
Collapse
|
25
|
Wang B, Díaz-Payno PJ, Browe DC, Freeman FE, Nulty J, Burdis R, Kelly DJ. Affinity-bound growth factor within sulfated interpenetrating network bioinks for bioprinting cartilaginous tissues. Acta Biomater 2021; 128:130-142. [PMID: 33866035 DOI: 10.1016/j.actbio.2021.04.016] [Citation(s) in RCA: 53] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2020] [Revised: 04/07/2021] [Accepted: 04/08/2021] [Indexed: 02/06/2023]
Abstract
3D bioprinting has emerged as a promising technology in the field of tissue engineering and regenerative medicine due to its ability to create anatomically complex tissue substitutes. However, it still remains challenging to develop bioactive bioinks that provide appropriate and permissive environments to instruct and guide the regenerative process in vitro and in vivo. In this study alginate sulfate, a sulfated glycosaminoglycan (sGAG) mimic, was used to functionalize an alginate-gelatin methacryloyl (GelMA) interpenetrating network (IPN) bioink to enable the bioprinting of cartilaginous tissues. The inclusion of alginate sulfate had a limited influence on the viscosity, shear-thinning and thixotropic properties of the IPN bioink, enabling high-fidelity bioprinting and supporting mesenchymal stem cell (MSC) viability post-printing. The stiffness of printed IPN constructs greatly exceeded that achieved by printing alginate or GelMA alone, while maintaining resilience and toughness. Furthermore, given the high affinity of alginate sulfate to heparin-binding growth factors, the sulfated IPN bioink supported the sustained release of transforming growth factor-β3 (TGF-β3), providing an environment that supported robust chondrogenesis in vitro, with little evidence of hypertrophy or mineralization over extended culture periods. Such bioprinted constructs also supported chondrogenesis in vivo, with the controlled release of TGF-β3 promoting significantly higher levels of cartilage-specific extracellular matrix deposition. Altogether, these results demonstrate the potential of bioprinting sulfated bioinks as part of a 'single-stage' or 'point-of-care' strategy for regenerating cartilaginous tissues. STATEMENT OF SIGNIFICANCE: This study highlights the potential of using sulfated interpenetrating network (IPN) bioink to support the regeneration of phenotypically stable articular cartilage. Construction of interpenetrating networks in the bioink enables unique high-fidelity bioprinting and provides synergistic increases in mechanical properties. The presence of alginate sulfate enables the capacity of high affinity-binding of TGF-β3, which promoted robust chondrogenesis in vitro and in vivo.
Collapse
Affiliation(s)
- Bin Wang
- Trinity Centre for Biomedical Engineering, Trinity Biomedical Sciences Institute, Trinity College Dublin, Dublin, Ireland; Department of Mechanical, Manufacturing & Biomedical Engineering, School of Engineering, Trinity College Dublin, Dublin, Ireland
| | - Pedro J Díaz-Payno
- Trinity Centre for Biomedical Engineering, Trinity Biomedical Sciences Institute, Trinity College Dublin, Dublin, Ireland; Department of Mechanical, Manufacturing & Biomedical Engineering, School of Engineering, Trinity College Dublin, Dublin, Ireland
| | - David C Browe
- Trinity Centre for Biomedical Engineering, Trinity Biomedical Sciences Institute, Trinity College Dublin, Dublin, Ireland; Department of Mechanical, Manufacturing & Biomedical Engineering, School of Engineering, Trinity College Dublin, Dublin, Ireland; Advanced Materials and Bioengineering Research Centre (AMBER), Royal College of Surgeons in Ireland and Trinity College Dublin, Dublin, Ireland
| | - Fiona E Freeman
- Trinity Centre for Biomedical Engineering, Trinity Biomedical Sciences Institute, Trinity College Dublin, Dublin, Ireland; Department of Mechanical, Manufacturing & Biomedical Engineering, School of Engineering, Trinity College Dublin, Dublin, Ireland
| | - Jessica Nulty
- Trinity Centre for Biomedical Engineering, Trinity Biomedical Sciences Institute, Trinity College Dublin, Dublin, Ireland; Department of Mechanical, Manufacturing & Biomedical Engineering, School of Engineering, Trinity College Dublin, Dublin, Ireland
| | - Ross Burdis
- Trinity Centre for Biomedical Engineering, Trinity Biomedical Sciences Institute, Trinity College Dublin, Dublin, Ireland; Department of Mechanical, Manufacturing & Biomedical Engineering, School of Engineering, Trinity College Dublin, Dublin, Ireland
| | - Daniel J Kelly
- Trinity Centre for Biomedical Engineering, Trinity Biomedical Sciences Institute, Trinity College Dublin, Dublin, Ireland; Department of Mechanical, Manufacturing & Biomedical Engineering, School of Engineering, Trinity College Dublin, Dublin, Ireland; Advanced Materials and Bioengineering Research Centre (AMBER), Royal College of Surgeons in Ireland and Trinity College Dublin, Dublin, Ireland; Department of Anatomy, Royal College of Surgeons in Ireland, Dublin, Ireland.
| |
Collapse
|
26
|
Werner NC, Stoker AM, Bozynski CC, Keeney JA, Cook JL. Characterizing correlations among disease severity measures in osteochondral tissues from osteoarthritic knees. J Orthop Res 2021; 39:1103-1112. [PMID: 32678931 DOI: 10.1002/jor.24802] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/18/2019] [Revised: 07/02/2020] [Accepted: 07/13/2020] [Indexed: 02/04/2023]
Abstract
Osteoarthritis (OA) is a complex disease with biologic, biomechanical, and clinical heterogeneity among patients. Relationships among OA tissue metabolism, histopathology, and extracellular matrix (ECM) composition have not been well characterized. It was hypothesized that moderate (r = .4-.69) to strong (r > .7) correlations exist among these different measures of disease severity in osteochondral tissues from OA knees. Joint surfaces were obtained from patients (n = 6) undergoing total knee arthroplasty. Osteochondral explants (n = 136) were created and cultured for 3 days. Culture media were collected for biomarker analyses, and tissue was assessed for viability, histological scoring, and ECM composition. Correlations among media biomarker concentrations, histological scoring, ECM composition, and viability were determined using a Spearman correlation. GRO-α, IL-6, IL-8, and MCP-1 showed strong positive correlations to each other, and moderate positive correlations to NO, PGE2, and MMP-2. Total MMP activity, MMP-9, and MMP-13 had strong positive correlations to each other, and moderate positive correlations to MMP-1. MMP-2 had a moderate to strong positive correlations to histological scores (total and cartilage structure) and collagen content. MMP-2, IL-6, IL-8, and MCP-1 had moderate negative correlations, and MMP-9 had a moderate positive correlation, to viability. GRO-α, IL-6, IL-8, and MCP-1 had moderate positive correlations to collagen content. MMP-9, MMP-13, and total MMP activity had moderate negative correlations to tissue GAG. The data suggest links among proinflammatory and degradative pathways are present in OA osteochondral tissues. Further characterization of these links have the potential to delineate mechanisms of disease and diagnostic and therapeutic targets for knee OA.
Collapse
Affiliation(s)
- Nicole C Werner
- Department of Orthopaedic Surgery, University of Missouri, Columbia, Missouri.,Thompson Laboratory for Regenerative Orthopaedics, University of Missouri, Columbia, Missouri
| | - Aaron M Stoker
- Department of Orthopaedic Surgery, University of Missouri, Columbia, Missouri.,Thompson Laboratory for Regenerative Orthopaedics, University of Missouri, Columbia, Missouri
| | - Chantelle C Bozynski
- Department of Orthopaedic Surgery, University of Missouri, Columbia, Missouri.,Thompson Laboratory for Regenerative Orthopaedics, University of Missouri, Columbia, Missouri
| | - James A Keeney
- Department of Orthopaedic Surgery, University of Missouri, Columbia, Missouri
| | - James L Cook
- Department of Orthopaedic Surgery, University of Missouri, Columbia, Missouri.,Thompson Laboratory for Regenerative Orthopaedics, University of Missouri, Columbia, Missouri
| |
Collapse
|
27
|
Hu W, Chen Y, Dou C, Dong S. Microenvironment in subchondral bone: predominant regulator for the treatment of osteoarthritis. Ann Rheum Dis 2021; 80:413-422. [PMID: 33158879 PMCID: PMC7958096 DOI: 10.1136/annrheumdis-2020-218089] [Citation(s) in RCA: 225] [Impact Index Per Article: 56.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2020] [Revised: 10/21/2020] [Accepted: 10/22/2020] [Indexed: 12/11/2022]
Abstract
Osteoarthritis (OA) is a degenerative joint disease in the elderly. Although OA has been considered as primarily a disease of the articular cartilage, the participation of subchondral bone in the pathogenesis of OA has attracted increasing attention. This review summarises the microstructural and histopathological changes in subchondral bone during OA progression that are due, at the cellular level, to changes in the interactions among osteocytes, osteoblasts, osteoclasts (OCs), endothelial cells and sensory neurons. Therefore, we focus on how pathological cellular interactions in the subchondral bone microenvironment promote subchondral bone destruction at different stages of OA progression. In addition, the limited amount of research on the communication between OCs in subchondral bone and chondrocytes (CCs) in articular cartilage during OA progression is reviewed. We propose the concept of 'OC-CC crosstalk' and describe the various pathways by which the two cell types might interact. Based on the 'OC-CC crosstalk', we elaborate potential therapeutic strategies for the treatment of OA, including restoring abnormal subchondral bone remodelling and blocking the bridge-subchondral type H vessels. Finally, the review summarises the current understanding of how the subchondral bone microenvironment is related to OA pain and describes potential interventions to reduce OA pain by targeting the subchondral bone microenvironment.
Collapse
Affiliation(s)
- Wenhui Hu
- Department of Biomedical Materials Science, Third Military Medical University, Chongqing, China
| | - Yueqi Chen
- Department of Biomedical Materials Science, Third Military Medical University, Chongqing, China
- Department of Orthopedics, Southwest Hospital, Third Military Medical University, Chongqing, China
| | - Ce Dou
- Department of Biomedical Materials Science, Third Military Medical University, Chongqing, China
- Department of Orthopedics, Southwest Hospital, Third Military Medical University, Chongqing, China
| | - Shiwu Dong
- Department of Biomedical Materials Science, Third Military Medical University, Chongqing, China
- Department of Orthopedics, Southwest Hospital, Third Military Medical University, Chongqing, China
- State Key Laboratory of Trauma, Burns and Combined Injury, Third Military Medical University, Chongqing, China
| |
Collapse
|
28
|
Rothschild BM, Wayne Lambert H. Distinguishing between congenital phenomena and traumatic experiences: Osteochondrosis versus osteochondritis. J Orthop 2021; 23:185-190. [PMID: 33551611 DOI: 10.1016/j.jor.2021.01.006] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/31/2020] [Accepted: 01/15/2021] [Indexed: 11/18/2022] Open
Abstract
The current study is to distinguish between osteochondrosis and osteochondritis, utilizing surface microscopy of individuals with documented pathology. Osteochondrosis is associated with smooth borders and gradient from edge to defect base, while osteochondritis and subchondral impaction fractures are associated with subsidence of the affected area of articular surface with irregular edges. The base of osteochondrosis is penetrated by multiple channels, smoothly perforate its surface, indistinguishable from unfused epiphyses, confirming their vascular nature. This study provides a technique for distinguishing osteochondrosis and osteochondritis and further documents of the value of epi-illumination microscopy in expanding our understanding of bone and joint disease.
Collapse
Affiliation(s)
- Bruce M Rothschild
- IU Health, 2401 University Ave, Muncie, IN, 47303, USA
- Carnegie Museum of Natural History, 4400 Forbes Ave, Pittsburgh, PA, 15213, USA
| | - H Wayne Lambert
- Department of Pathology, Anatomy, and Laboratory Medicine (PALM), Division of Anatomy, West Virginia University School of Medicine, Robert C. Byrd Health Sciences Center, Morgantown, WV, 26506, USA
| |
Collapse
|
29
|
Kanemitsu M, Nakasa T, Shirakawa Y, Ishikawa M, Miyaki S, Adachi N. Role of vasoactive intestinal peptide in the progression of osteoarthritis through bone sclerosis and angiogenesis in subchondral bone. J Orthop Sci 2020; 25:897-906. [PMID: 31928851 DOI: 10.1016/j.jos.2019.11.010] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/20/2019] [Revised: 10/25/2019] [Accepted: 11/18/2019] [Indexed: 11/25/2022]
Abstract
OBJECTIVE Osteoarthritis (OA) is a progressive joint disorder, with abnormal remodeling of subchondral bone linked to the disruption of cartilage metabolism. Nerves also play an important role in bone remodeling in OA progression, and vasoactive intestinal peptide (VIP), one of the neuropeptides, plays an important role in bone metabolism. The aim of this study was to analyze the expression pattern of VIP in subchondral bone, and its potential as a therapeutic target for OA progression. DESIGN The pattern of VIP expression in the human tibia was histologically evaluated. The effect of VIP on angiogenesis was investigated using human umbilical vein endothelial cells (HUVECs). Knee OA was induced by the resection of the medial meniscotibial ligament in C57BL/6 mice. A VIP receptor antagonist was intraperitoneally administered postoperatively, and therapeutic effects were analyzed at 4 and 8 weeks. RESULTS VIP expression in the subchondral bone increased as OA progressed in human tibia. VIP was also expressed in the vascular channels into the cartilage layer. The total length and branch points were significantly increased, due to the VIP receptor agonist in HUVECs. In OA mice, the VIP receptor antagonist could prevent cartilage degeneration and subchondral bone sclerosis. The Osteoarthritis Research Society International score in the VIP receptor antagonist group was significantly lower than in the control group. CONCLUSION VIP is involved in the progression of OA through its effect on subchondral bone sclerosis and angiogenesis. Inhibition of VIP signaling has the potential to be a therapeutic target to prevent OA progression.
Collapse
Affiliation(s)
- Munekazu Kanemitsu
- Department of Orthopaedic Surgery, Graduate School of Biomedical Sciences, Hiroshima University, 1-2-3, Kasumi, Minami-ku, Hiroshima, 734-8551, Japan
| | - Tomoyuki Nakasa
- Department of Orthopaedic Surgery, Graduate School of Biomedical Sciences, Hiroshima University, 1-2-3, Kasumi, Minami-ku, Hiroshima, 734-8551, Japan; Medical Center for Translation and Clinical Research, Hiroshima University Hospital, 1-2-3, Kasumi, Minami-ku, Hiroshima, 734-8551, Japan.
| | - Yoshiko Shirakawa
- Department of Orthopaedic Surgery, Graduate School of Biomedical Sciences, Hiroshima University, 1-2-3, Kasumi, Minami-ku, Hiroshima, 734-8551, Japan
| | - Masakazu Ishikawa
- Department of Orthopaedic Surgery, Graduate School of Biomedical Sciences, Hiroshima University, 1-2-3, Kasumi, Minami-ku, Hiroshima, 734-8551, Japan
| | - Shigeru Miyaki
- Medical Center for Translation and Clinical Research, Hiroshima University Hospital, 1-2-3, Kasumi, Minami-ku, Hiroshima, 734-8551, Japan
| | - Nobuo Adachi
- Department of Orthopaedic Surgery, Graduate School of Biomedical Sciences, Hiroshima University, 1-2-3, Kasumi, Minami-ku, Hiroshima, 734-8551, Japan
| |
Collapse
|
30
|
Yang J, Li Y, Liu Y, Zhang Q, Zhang Q, Chen J, Yan X, Yuan X. Role of the SDF-1/CXCR4 signaling pathway in cartilage and subchondral bone in temporomandibular joint osteoarthritis induced by overloaded functional orthopedics in rats. J Orthop Surg Res 2020; 15:330. [PMID: 32795379 PMCID: PMC7427765 DOI: 10.1186/s13018-020-01860-x] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/21/2020] [Accepted: 08/03/2020] [Indexed: 12/18/2022] Open
Abstract
OBJECTIVES To (i) use a mandibular advancement appliance in rats to investigate the role of the stromal cell-derived factor/CXC receptor 4 (SDF-1/CXCR4) signaling pathway in temporomandibular joint osteoarthritis (TMJ OA) induced by overloaded functional orthopedics (OFO) and (ii) provide a cellular and molecular basis for efficacious treatment of skeletal class-II malocclusion and avoidance of TMJ OA. METHOD Male Sprague-Dawley rats (6 weeks) were divided randomly into control + normal saline (NS), EXP + ADM3100 (SDF-1 antagonist), EXP + NS, and control + ADM3100 groups. Changes in articular cartilage and subchondral bone after TMJ OA in these four groups were observed by hematoxylin and eosin (H&E), immunofluorescence double staining (IDS), Safranin-O staining, immunohistochemical (IHC) staining, real-time polymerase chain reaction, and micro-computed tomography at 2, 4, and 8 weeks. RESULTS OFO led to increased expression of SDF-1, CXCR4, and matrix metalloproteinase (MMP) 13 and decreased expression of collagen II. The thickness of the hypertrophic cartilage layer was reduced at 4 weeks in the EXP + NS group, and damage to subchondral bone was observed at 2 weeks. Using ADM3100 to inhibit SDF-1 signaling could attenuate expression of MMP13, cartilage damage, and osteoblast differentiation. IDS showed that the areas of expression of SDF-1 and OSX in subchondral bone overlapped. CONCLUSIONS Overloaded functional orthopedics (OFO) induced TMJ OA. The destruction of subchondral bone in TMJ OA caused by OFO occurred before damage to cartilage. SDF-1/CXCR4 may induce the osteogenic differentiation and cause cartilage degradation in TMJ OA caused by OFO.
Collapse
Affiliation(s)
- Jing Yang
- Department of Orthodontics, Affiliated Hospital of Qingdao University, Qingdao University, Jiangsu Road No. 16, Qingdao, 266000, Shandong, People's Republic of China
- Qingdao Stomatological Hospital, Qingdao, Shandong, People's Republic of China
| | - Yazhen Li
- West China School of Stomatology, Sichuan University, Chengdu, Sichuan, People's Republic of China
| | - Ying Liu
- Second Affiliated Hospital of Shandong University, Shandong University, Jinan, Shandong, People's Republic of China
| | - Qiang Zhang
- Department of Orthodontics, Affiliated Hospital of Qingdao University, Qingdao University, Jiangsu Road No. 16, Qingdao, 266000, Shandong, People's Republic of China
| | - Qi Zhang
- School of Stomatology, Qingdao University, Qingdao, Shandong, People's Republic of China
| | - Junbo Chen
- School of Stomatology, Qingdao University, Qingdao, Shandong, People's Republic of China
| | - Xiao Yan
- Department of Orthodontics, Affiliated Hospital of Qingdao University, Qingdao University, Jiangsu Road No. 16, Qingdao, 266000, Shandong, People's Republic of China.
| | - Xiao Yuan
- Department of Orthodontics, Affiliated Hospital of Qingdao University, Qingdao University, Jiangsu Road No. 16, Qingdao, 266000, Shandong, People's Republic of China.
| |
Collapse
|
31
|
Shaffer SK, To C, Garcia TC, Fyhrie DP, Uzal FA, Stover SM. Subchondral focal osteopenia associated with proximal sesamoid bone fracture in Thoroughbred racehorses. Equine Vet J 2020; 53:294-305. [PMID: 32474944 DOI: 10.1111/evj.13291] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2020] [Accepted: 05/10/2020] [Indexed: 02/04/2023]
Abstract
BACKGROUND Proximal sesamoid bone (PSB) fracture is the most common fatal injury in Thoroughbred (TB) racehorses in the United States. Epidemiological and pathological evidence indicates PSB fracture is likely the acute culmination of a chronic stress-related process. However, the aetiopathogenesis of PSB fracture is poorly understood. OBJECTIVE To characterise bone abnormalities that precede PSB fracture. STUDY DESIGN Two retrospective case-control groups of PSBs from TB racehorses with, and without, unilateral biaxial PSB fracture. METHODS Proximal sesamoid bones were harvested post-mortem from TB racehorses subjected to euthanasia for unilateral biaxial PSB fracture (cases) or causes unrelated to PSB fracture (controls) while racing or training. The fractured medial PSB (FX-PSB) and contralateral intact medial PSB (CLI-PSB) from racehorses that sustained PSB fracture, and an intact medial PSB (CTRL-PSB) from racehorses that did not have a PSB fracture were collected as case and control specimens. Study 1 distributions of morphological features were compared among case and control groups using visual examination, photographs, radiographs and histology of whole PSBs and serial sagittal sections (10 FX-PSB, 10 CLI-PSB and 10 CTRL-PSB). Study 2 local bone volume fraction and mineral densities were compared among case and control PSBs using microcomputed tomography (9 FX-PSB, 9 CLI-PSB and 9 CTRL-PSB). RESULTS A focal subchondral lesion characterised by colocalised focal discoloration, radiolucency, osteopenia, low tissue mineral density and a surrounding region of dense cancellous bone was identified in most case horses but not in controls. This subchondral lesion was found in a slightly abaxial mid-body location and was bilaterally present in most case horses. MAIN LIMITATIONS The post-mortem samples may not represent the spectrum of abnormalities that occur throughout the development of the subchondral lesion. Lateral PSBs were not examined, so their contribution to biaxial PSB fracture pathogenesis is unknown. CONCLUSION Abaxial subchondral lesions are consistent with pre-existing injury and likely associated with PSB fracture.
Collapse
Affiliation(s)
- Sarah K Shaffer
- Department of Mechanical and Aerospace Engineering, University of California-Davis, Davis, CA, USA
| | - Celeste To
- Department of Surgical and Radiological Sciences, University of California-Davis, Davis, CA, USA
| | - Tanya C Garcia
- Department of Surgical and Radiological Sciences, University of California-Davis, Davis, CA, USA
| | - David P Fyhrie
- Departments of Orthopedic Surgery and Biomedical Engineering, University of California-Davis, Davis, CA, USA
| | - Francisco A Uzal
- California Animal Health and Food Safety Laboratory System, University of California-Davis, Davis, CA, USA
| | - Susan M Stover
- Department of Surgical and Radiological Sciences, University of California-Davis, Davis, CA, USA
| |
Collapse
|
32
|
Gilday R, Richard H, Beauchamp G, Fogarty U, Laverty S. Abundant osteoclasts in the subchondral bone of the juvenile Thoroughbred metacarpus suggest an important role in joint maturation. Equine Vet J 2020; 52:733-742. [PMID: 31972056 DOI: 10.1111/evj.13235] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2019] [Revised: 12/12/2019] [Accepted: 01/11/2020] [Indexed: 02/06/2023]
Abstract
BACKGROUND The administration of bisphosphonate medications, which target osteoclastic-bone remodelling, to juvenile and adult racehorses is a matter of debate owing to concerns that these molecules remain bound to the bone-mineralised matrix and may interfere with subsequent bone growth, adaptation to exercise and healing of bone microdamage in equine athletes. Osteoclasts participate in endochondral ossification, subchondral bone remodelling and bone repair. There is a knowledge gap on the role of equine osteoclast biology in the growth and maturation of joint surfaces and this information is important to inform judicious bisphosphonate use. OBJECTIVES Measure and compare the osteoclast density in the subchondral bone of Thoroughbred (TB) distal third metacarpi (McIII) at different sites, varying depths from the articular surface and with age (0-84 months). STUDY DESIGN Ex vivo cadaveric study. METHODS McIIIs from foals, yearlings and adults were collected, fixed in formaldehyde and stored at 4°C. Sections were cut from the lateral hemi-metacarpus, stained and scored for cartilage degeneration. Osteoclasts were counted on immunohistochemically (Cathepsin K) stained sections. Osteoclast density was compared in regions of interest (ROIs-the sagittal ridge, axial and abaxial condyle) and also at two depths (0-3 mm and 3-6 mm) into the subchondral bone below the osteochondral junction. RESULTS The osteoclast density was consistently highest in the subchondral cortical bone plate (0-3 mm) when compared with the deeper trabecular bone in all age groups. Furthermore, the osteoclast density was significantly higher in juvenile Thoroughbreds (foals and yearlings) within both sites in the subchondral bone when compared with adults. MAIN LIMITATIONS The number of specimens available for study was restricted. CONCLUSIONS Osteoclasts are important in normal McIII epiphyseal and articular surface maturation and have a propensity to localise at the osteochondral junction and subchondral cortical bone plate zone in juvenile Thoroughbreds.
Collapse
Affiliation(s)
- Rebecca Gilday
- Comparative Orthopaedic Research Laboratory, Département des Sciences Cliniques, Faculté de Médecine Vétérinaire, Université de Montréal, St-Hyacinthe, Quebec, Canada
| | - Hélène Richard
- Comparative Orthopaedic Research Laboratory, Département des Sciences Cliniques, Faculté de Médecine Vétérinaire, Université de Montréal, St-Hyacinthe, Quebec, Canada
| | - Guy Beauchamp
- Département de Pathologie et Microbiologie, Faculté de Médecine Vétérinaire, Université de Montréal, St-Hyacinthe, Quebec, Canada
| | | | - Sheila Laverty
- Comparative Orthopaedic Research Laboratory, Département des Sciences Cliniques, Faculté de Médecine Vétérinaire, Université de Montréal, St-Hyacinthe, Quebec, Canada
| |
Collapse
|
33
|
Malekipour F, Hitchens PL, Whitton RC, Lee PVS. Effects of in vivo fatigue-induced subchondral bone microdamage on the mechanical response of cartilage-bone under a single impact compression. J Biomech 2019; 100:109594. [PMID: 31924348 DOI: 10.1016/j.jbiomech.2019.109594] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2019] [Revised: 12/03/2019] [Accepted: 12/21/2019] [Indexed: 11/30/2022]
Abstract
Subchondral bone (SCB) microdamage is prevalent in the joints of human athletes and animals subjected to high rate and magnitude cyclic loading of the articular surface. Quantifying the effect of such focal in vivo fatigue-induced microdamage on the mechanical response of the tissue is critical for the understanding of joint surface injury and the development of osteoarthritis. Thus, we aimed to quantify the mechanical properties of cartilage-bone from equine third metacarpal (MC3) condyles, which is a common area of accumulated microdamage due to repetitive impact loading. We chose a non-destructive technique, i.e. high-resolution microcomputed tomography (µCT) imaging, to identify various degrees of in vivo microdamage in SCB prior to mechanical testing; because µCT imaging can only identify a proportion of accumulated microdamage, we aimed to identify racing and training history variables that provide additional information on the prior loading history of the samples. We then performed unconfined high-rate compression of approximately 2% strain at 45%/s strain rate to simulate a cycle of gallop and used real-time strain measurements using digital image correlation (DIC) techniques to find the stiffness and shock absorbing ability (relative energy loss) of the cartilage-bone unit, and those associated with cartilage and SCB. Results indicated that stiffness of cartilage-bone and those associated with the SCB decreased with increasing grade of damage. Whole specimen stiffness also increased, and relative energy loss decreased with higher TMD, whereas bone volume fraction of the SCB was only associated negatively with the stiffness of the bone. Overall, the degree of subchondral bone damage observed with µCT was the main predictor of stiffness and relative energy loss of the articular surface of the third metacarpal bone of Thoroughbred racehorses under impact loading.
Collapse
Affiliation(s)
- Fatemeh Malekipour
- Department of Biomedical Engineering, University of Melbourne, Parkville, VIC 3010, Australia
| | - Peta L Hitchens
- Equine Centre, Faculty of Veterinary and Agricultural Sciences, University of Melbourne, Werribee, VIC 3030, Australia
| | - R Chris Whitton
- Equine Centre, Faculty of Veterinary and Agricultural Sciences, University of Melbourne, Werribee, VIC 3030, Australia
| | - Peter Vee-Sin Lee
- Department of Biomedical Engineering, University of Melbourne, Parkville, VIC 3010, Australia.
| |
Collapse
|
34
|
Lepage SIM, Robson N, Gilmore H, Davis O, Hooper A, St John S, Kamesan V, Gelis P, Carvajal D, Hurtig M, Koch TG. Beyond Cartilage Repair: The Role of the Osteochondral Unit in Joint Health and Disease. TISSUE ENGINEERING PART B-REVIEWS 2019; 25:114-125. [PMID: 30638141 PMCID: PMC6486663 DOI: 10.1089/ten.teb.2018.0122] [Citation(s) in RCA: 51] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Once believed to be limited to articular cartilage, osteoarthritis is now considered to be an organ disease of the “whole joint.” Damage to the articular surface can lead to, be caused by, or occur in parallel with, damage to other tissues in the joint. The relationship between cartilage and the underlying subchondral bone has particular importance when assessing joint health and determining treatment strategies. The articular cartilage is anchored to the subchondral bone through an interface of calcified cartilage, which as a whole makes up the osteochondral unit. This unit functions primarily by transferring load-bearing weight over the joint to allow for normal joint articulation and movement. Unfortunately, irreversible damage and degeneration of the osteochondral unit can severely limit joint function. Our understanding of joint pain, the primary complaint of patients, is poorly understood and past efforts toward structural cartilage restoration have often not been associated with a reduction in pain. Continued research focusing on the contribution of subchondral bone and restoration of the entire osteochondral unit are therefore needed, with the hope that this will lead to curative, and not merely palliative, treatment options. The purpose of this narrative review is to investigate the role of the osteochondral unit in joint health and disease. Topics of discussion include the crosstalk between cartilage and bone, the efficacy of diagnostic procedures, the origins of joint pain, current and emerging treatment paradigms, and suitable preclinical animal models for safety and efficacy assessment of novel osteochondral therapies. The goal of the review is to facilitate an appreciation of the important role played by the subchondral bone in joint pain and why the osteochondral unit as a whole should be considered in many cases of joint restoration strategies.
Collapse
Affiliation(s)
- Sarah I M Lepage
- 1 Department of Biomedical Sciences, University of Guelph, Guelph, Canada
| | - Naomi Robson
- 1 Department of Biomedical Sciences, University of Guelph, Guelph, Canada
| | - Hillary Gilmore
- 1 Department of Biomedical Sciences, University of Guelph, Guelph, Canada
| | - Ola Davis
- 1 Department of Biomedical Sciences, University of Guelph, Guelph, Canada
| | - Allyssa Hooper
- 1 Department of Biomedical Sciences, University of Guelph, Guelph, Canada
| | - Stephanie St John
- 1 Department of Biomedical Sciences, University of Guelph, Guelph, Canada
| | - Vashine Kamesan
- 1 Department of Biomedical Sciences, University of Guelph, Guelph, Canada
| | - Paul Gelis
- 1 Department of Biomedical Sciences, University of Guelph, Guelph, Canada
| | - Diana Carvajal
- 1 Department of Biomedical Sciences, University of Guelph, Guelph, Canada
| | - Mark Hurtig
- 2 Department of Clinical Studies, University of Guelph, Guelph, Canada
| | - Thomas G Koch
- 1 Department of Biomedical Sciences, University of Guelph, Guelph, Canada
| |
Collapse
|
35
|
Di Filippo PA, Dias Meireles MA, Ribeiro LMF, de Lannes ST, Meireles NFT, Viana IS, Hokamura HK. Influence of Exercise, Age, Body weight, and Growth on the Development of Tarsal Osteoarthritis in Young Mangalarga Marchador Horses. J Equine Vet Sci 2019; 80:36-39. [PMID: 31443831 DOI: 10.1016/j.jevs.2019.06.015] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2018] [Revised: 06/17/2019] [Accepted: 06/17/2019] [Indexed: 10/26/2022]
Abstract
In this study, the effect of early exercise, age, body weight (BW), and growth on the articular cartilage and subchondral bones of the tarsocrural joints was evaluated in 40 young Mangalarga Marchador horses allowed free choice exercise in pasture. Twenty of the horses had additional controlled exercise 3 days per week from a mean age of 30 ± 20 days until 36 months. The training program consisted of an increasing number of 15-minute gallop sprints in an oval paddock with a concrete floor covered by a thick layer of sand. BW, withers height (WH), and neck circumference were measured and body condition scores, cresty neck scores, and obesity index were rated. For each tarsus and foal, 5 standard radiographic projections were evaluated. All evaluations were performed at time point 1 (18 months of age) and time point 2 (36 months of age). Radiographic changes suggestive of tarsal osteoarthritis were observed in two male foals of the trained group at time point 2 (10% of 20). No horses from the untrained group developed OA. Training of the foals did not result in alterations of the morphometric parameters evaluated. However, significant differences were found between time point 1 and 2 in trained and untrained animals. At time point 2, the animals presented greater weights and WHs than at time point 1. We conclude that specific levels of physical activity during initial development do not increase the prevalence of osteoarthritic injury in Mangalarga Marchador foals.
Collapse
Affiliation(s)
- Paula Alessandra Di Filippo
- Universidade Estadual do Norte Fluminense Darcy Ribeiro, UENF, Campos dos Goytacazes, Rio de Janeiro, Brazil.
| | | | - Luiza Maria Feitosa Ribeiro
- Universidade Estadual do Norte Fluminense Darcy Ribeiro, UENF, Campos dos Goytacazes, Rio de Janeiro, Brazil
| | - Saulo Tinoco de Lannes
- Universidade Estadual do Norte Fluminense Darcy Ribeiro, UENF, Campos dos Goytacazes, Rio de Janeiro, Brazil
| | | | - Inácio Silva Viana
- Universidade Estadual do Norte Fluminense Darcy Ribeiro, UENF, Campos dos Goytacazes, Rio de Janeiro, Brazil
| | - Helena Kiyomi Hokamura
- Universidade Estadual do Norte Fluminense Darcy Ribeiro, UENF, Campos dos Goytacazes, Rio de Janeiro, Brazil
| |
Collapse
|
36
|
Li X, Sun Y, Zhou Z, Zhang D, Jiao J, Hu M, Hassan CR, Qin YX. Mitigation of Articular Cartilage Degeneration and Subchondral Bone Sclerosis in Osteoarthritis Progression Using Low-Intensity Ultrasound Stimulation. ULTRASOUND IN MEDICINE & BIOLOGY 2019; 45:148-159. [PMID: 30322672 PMCID: PMC6289639 DOI: 10.1016/j.ultrasmedbio.2018.08.022] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/05/2017] [Revised: 08/24/2018] [Accepted: 08/28/2018] [Indexed: 06/08/2023]
Abstract
The purpose of this study was to evaluate the effect of low-intensity ultrasound on articular cartilage and subchondral bone alterations in joints under normal and functional disuse conditions during osteoarthritis (OA) progression. Total of thirty 5-mo-old female Sprague-Dawley rats were randomly assigned to six groups (n = 5/group): age-matched group, OA group, OA + ultrasound (US) group, hindlimb suspension (HLS) group, HLS + OA group and HLS + OA + US group. The surgical anterior cruciate ligament was used to induce OA in the right knee joints. After 2 wk of OA induction, low-intensity ultrasound generated with a 3-MHz transducer with 20% pulse duty cycle and 30 mW/cm2 acoustic intensity was delivered to the right knee joints for 20 min a day, 5 d a week for a total of 6 wk. Then, the right tibias were harvested for micro-computed tomography, histologic and mechanical analysis. Micro-computed tomography results indicated that the thickness and sulfated glycosaminoglycan content of cartilage decreased, but the thickness of the subchondral cortical bone plate and the formation of subchondral trabecular bone increased in the OA group under the normal joint use condition. Furthermore, histologic results revealed that chondrocyte density and arrangement in cartilage corrupted and the underlying subchondral bone increased during OA progression. These changes were accompanied by reductions in mechanical parameters in OA cartilage. However, fewer OA symptoms were observed in the HLS + OA group under the joint disuse condition. The cartilage degeneration and subchondral bone sclerosis were alleviated in the US treatment group, especially under normal joint use condition. In conclusion, low-intensity ultrasound could improve cartilage degeneration and subchondral sclerosis during OA progression. Also, it could provide a promising strategy for future clinical treatment for OA patients.
Collapse
Affiliation(s)
- Xiaofei Li
- Department of Biomedical Engineering, Stony Brook University, Stony Brook, New York, USA
| | - Yueli Sun
- Department of Biomedical Engineering, Stony Brook University, Stony Brook, New York, USA
| | - Zhilun Zhou
- Department of Biomedical Engineering, Stony Brook University, Stony Brook, New York, USA
| | - Dongye Zhang
- Department of Biomedical Engineering, Stony Brook University, Stony Brook, New York, USA
| | - Jian Jiao
- Department of Biomedical Engineering, Stony Brook University, Stony Brook, New York, USA
| | - Minyi Hu
- Department of Biomedical Engineering, Stony Brook University, Stony Brook, New York, USA
| | - Chaudhry Raza Hassan
- Department of Biomedical Engineering, Stony Brook University, Stony Brook, New York, USA
| | - Yi-Xian Qin
- Department of Biomedical Engineering, Stony Brook University, Stony Brook, New York, USA.
| |
Collapse
|
37
|
Anne-Archard N, Martel G, Fogarty U, Richard H, Beauchamp G, Laverty S. Differences in third metacarpal trabecular microarchitecture between the parasagittal groove and condyle at birth and in adult racehorses. Equine Vet J 2018; 51:115-122. [DOI: 10.1111/evj.12980] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2017] [Accepted: 06/04/2018] [Indexed: 11/30/2022]
Affiliation(s)
- N. Anne-Archard
- Comparative Orthopaedic Research Laboratory; Département des Sciences Cliniques; Faculté de Médecine Vétérinaire; Université de Montréal; Saint-Hyacinthe Quebec Canada
| | - G. Martel
- Comparative Orthopaedic Research Laboratory; Département des Sciences Cliniques; Faculté de Médecine Vétérinaire; Université de Montréal; Saint-Hyacinthe Quebec Canada
| | - U. Fogarty
- Irish Equine Centre; Johnstown Co Kildare Ireland
| | - H. Richard
- Comparative Orthopaedic Research Laboratory; Département des Sciences Cliniques; Faculté de Médecine Vétérinaire; Université de Montréal; Saint-Hyacinthe Quebec Canada
| | - G. Beauchamp
- Département de Pathologie et Microbiologie; Faculté de Médecine Vétérinaire; Université de Montréal; Saint-Hyacinthe Quebec Canada
| | - S. Laverty
- Comparative Orthopaedic Research Laboratory; Département des Sciences Cliniques; Faculté de Médecine Vétérinaire; Université de Montréal; Saint-Hyacinthe Quebec Canada
| |
Collapse
|
38
|
Bischofberger AS, Fürst AE, Torgerson PR, Carstens A, Hilbe M, Kircher P. Use of a 3-Telsa magnet to perform delayed gadolinium-enhanced magnetic resonance imaging of the distal interphalangeal joint of horses with and without naturally occurring osteoarthritis. Am J Vet Res 2018; 79:287-298. [PMID: 29466042 DOI: 10.2460/ajvr.79.3.287] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
OBJECTIVE To characterize delayed gadolinium-enhanced MRI of cartilage (dGEMRIC) features of healthy hyaline cartilage of the distal interphalangeal joint (DIPJ) of horses, to determine whether dGEMRIC can be used to differentiate various stages of naturally occurring osteoarthritis of the DIPJ, and to correlate relaxation times determined by dGEMRIC with the glycosaminoglycan concentration, water content, and macroscopic and histologic findings of hyaline cartilage of DIPJs with and without osteoarthritis. SAMPLE 1 cadaveric forelimb DIPJ from each of 12 adult warmblood horses. PROCEDURES T1-weighted cartilage relaxation times were obtained for predetermined sites of the DIPJ before (T1preGd) and after (T1postGd) intra-articular gadolinium administration. Corresponding cartilage sites underwent macroscopic, histologic, and immunohistochemical evaluation, and cartilage glycosaminoglycan concentration and water content were determined. Median T1preGd and T1postGd were correlated with macroscopic, histologic, and biochemical data. Mixed generalized linear models were created to evaluate the effects of cartilage site, articular surface, and macroscopic and histologic scores on relaxation times. RESULTS 122 cartilage specimens were analyzed. Median T1postGd was lower than the median T1preGd for normal and diseased cartilage. Both T1preGd and T1postGd were correlated with macroscopic and histologic scores, whereby T1preGd increased and T1postGd decreased as osteoarthritis progressed. There was topographic variation of T1preGd and T1postGd within the DIPJ. Cartilage glycosaminoglycan concentration and water content were significantly correlated with T1preGd and macroscopic and histologic scores but were not correlated with T1postGd. CONCLUSIONS AND CLINICAL RELEVANCE Results indicated that dGEMRIC relaxation times varied for DIPJs with various degrees of osteoarthritis. These findings may help facilitate early detection of osteoarthritis.
Collapse
|
39
|
Ludolphy C, Kahle P, Kierdorf H, Kierdorf U. Osteoarthritis of the temporomandibular joint in the Eastern Atlantic harbour seal (Phoca vitulina vitulina) from the German North Sea: a study of the lesions seen in dry bone. BMC Vet Res 2018; 14:150. [PMID: 29716601 PMCID: PMC5930511 DOI: 10.1186/s12917-018-1473-5] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2017] [Accepted: 04/23/2018] [Indexed: 01/14/2023] Open
Abstract
BACKGROUND Pathological changes and resulting functional impairment of the temporomandibular joint (TMJ) can substantially affect physical condition, morbidity, and mortality of wildlife species. Analysis of TMJ disorders is therefore of interest for the characterization of the health status of populations of wild mammals. This paper, for the first time, analyses the prevalence of TMJ osteoarthritis (TMJ-OA) and the spectrum of osteoarthritic bone lesions of the TMJ in the Eastern Atlantic harbour seal (Phoca vitulina vitulina), applying a standardized scoring system. Dry skulls of 1872 individuals from the German North Sea, collected between 1961 and 1994, were examined for lesions consistent with a diagnosis of TMJ-OA. Of the skulls, 913 (48.8%) were from male, 959 (51.2%) from female seals, with age at death ranging from 2 weeks to 25 years. Possible associations of TMJ-OA with dental or periodontal disorders were also analysed. RESULTS Lesions consistent with TMJ-OA were found in 963 (53.9%) of the 1787 juvenile/subadult (5 weeks to 5 years of age) and adult (> 5 years) specimens, the condition mostly (95.0% of affected individuals) occurring in a bilateral fashion. Males were affected more frequently than females (p < 0.001), while lesion severity tended to be higher in females (p < 0.05). Severity of TMJ-OA lesions was positively correlated with age (p < 0.001). Lesion severity was also weakly positively correlated with the number of fractured teeth (p < 0.05) and of intravitally lost teeth (p < 0.01), when controlling for age at death as a confounder. CONCLUSIONS TMJ-OA is a common disorder in the Eastern Atlantic harbour seal. The more pronounced severity of the lesions in females compared to males is basically attributed to the higher average age of the female subsample. The causes underlying the high prevalence of TMJ-OA in the studied assemblage remain unknown. Most of the specimens (75.3%) analysed in the present study were found dead during the first phocine distemper virus epizootic in 1988. Therefore, it is assumed that, contrary to other museum collections, only little overrepresentation of pathological skeletal conditions is present in this death sample compared with the population from which it originated.
Collapse
Affiliation(s)
- Catharina Ludolphy
- Department of Biology, University of Hildesheim, Universitätsplatz 1, 31141, Hildesheim, Germany
| | - Patricia Kahle
- Department of Biology, University of Hildesheim, Universitätsplatz 1, 31141, Hildesheim, Germany
| | - Horst Kierdorf
- Department of Biology, University of Hildesheim, Universitätsplatz 1, 31141, Hildesheim, Germany
| | - Uwe Kierdorf
- Department of Biology, University of Hildesheim, Universitätsplatz 1, 31141, Hildesheim, Germany.
| |
Collapse
|
40
|
Boyde A. Evaluation of laser ablation microtomy for correlative microscopy of hard tissues. J Microsc 2018; 271:17-30. [PMID: 29485196 DOI: 10.1111/jmi.12689] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2017] [Revised: 01/26/2018] [Accepted: 02/01/2018] [Indexed: 11/30/2022]
Abstract
Laser ablation machining or microtomy (LAM) is a relatively new approach to producing slide mounted sections of translucent materials. We evaluated the method with a variety of problems from the bone, joint and dental tissues fields where we require thin undecalcified and undistorted sections for correlative light microscopy (LM) and backscattered electron scanning electron microscopy (BSE SEM). All samples were embedded in poly-methylmethacrlate (PMMA) and flat block surfaces had been previously studied by BSE-SEM and confocal scanning light microscopy (CSLM). Most were also studied by X-yay microtomography (XMT). The block surface is stuck to a glass slide with cyanoacrylate adhesive. Setting the section thickness and levelling uses inbuilt optical coherence tomographic imaging. Tight focusing of near-infrared laser radiation in the sectioning plane gives extreme intensities causing photodisruption of material at the focal point. The laser beam is moved by a fast scanner to write a cutting line, which is simultaneously moved by an XY positioning unit to create a sectioning plane. The block is thereby released from the slide, leaving the section stuck to the slide. Light, wet polishing on the finest grade (4000 grit) silicon carbide polishing paper is used to remove a 1-2 μm thick damaged layer at the surface of the section. Sections produced by laser cutting are fine in quality and superior to those produced by mechanical cutting and can be thinner than the 'voxel' in most laboratory X-ray microtomography systems. The present extensive pilot studies have shown that it works to produce samples which we can study by both light and electron microscopy.
Collapse
Affiliation(s)
- A Boyde
- Dental Physical Sciences, Queen Mary University of London, London, UK
| |
Collapse
|
41
|
Nelson BB, Kawcak CE, Barrett MF, McIlwraith CW, Grinstaff MW, Goodrich LR. Recent advances in articular cartilage evaluation using computed tomography and magnetic resonance imaging. Equine Vet J 2018; 50:564-579. [DOI: 10.1111/evj.12808] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2017] [Accepted: 01/09/2018] [Indexed: 12/18/2022]
Affiliation(s)
- B. B. Nelson
- Gail Holmes Equine Orthopaedic Research Center Department of Clinical Sciences College of Veterinary Medicine and Biomedical Sciences, Colorado State University Fort Collins Colorado USA
| | - C. E. Kawcak
- Gail Holmes Equine Orthopaedic Research Center Department of Clinical Sciences College of Veterinary Medicine and Biomedical Sciences, Colorado State University Fort Collins Colorado USA
| | - M. F. Barrett
- Gail Holmes Equine Orthopaedic Research Center Department of Clinical Sciences College of Veterinary Medicine and Biomedical Sciences, Colorado State University Fort Collins Colorado USA
- Department of Environmental and Radiological Health Sciences Colorado State University Fort Collins Colorado USA
| | - C. W. McIlwraith
- Gail Holmes Equine Orthopaedic Research Center Department of Clinical Sciences College of Veterinary Medicine and Biomedical Sciences, Colorado State University Fort Collins Colorado USA
| | - M. W. Grinstaff
- Departments of Biomedical Engineering, Chemistry and Medicine Boston University Boston Massachusetts USA
| | - L. R. Goodrich
- Gail Holmes Equine Orthopaedic Research Center Department of Clinical Sciences College of Veterinary Medicine and Biomedical Sciences, Colorado State University Fort Collins Colorado USA
| |
Collapse
|
42
|
Martig S, Hitchens PL, Stevenson MA, Whitton RC. Subchondral bone morphology in the metacarpus of racehorses in training changes with distance from the articular surface but not with age. J Anat 2018; 232:919-930. [PMID: 29446086 DOI: 10.1111/joa.12794] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/22/2018] [Indexed: 02/04/2023] Open
Abstract
The repetitive large loads generated during high-speed training and racing commonly cause subchondral bone injuries in the metacarpal condyles of racehorses. Adaptive bone modelling leads to focal sclerosis at the site of highest loading in the palmar aspect of the metacarpal condyles. Information on whether and how adaptive modelling of subchondral bone changes during the career of a racehorse is sparse. The aim of this cross-sectional study was to describe the changes in subchondral bone micromorphology in the area of highest loading in the palmar aspect of the metacarpal condyle in thoroughbred racehorses as a function of age and training. Bone morphology parameters derived from micro-CT images were evaluated using principal component analysis and mixed-effects linear regression models. The largest differences in micromorphology were observed in untrained horses between the age of 16 and 20 months. Age and duration of a training period had no influence on tissue mineral density, bone volume fraction or number and area of closed pores to a depth of 5.1 mm from the articular surface in 2- to 4-year-old racehorses in training. Horses with subchondral bone injuries had more pores in cross-section compared with horses without subchondral bone injuries. Differences in bone volume fraction were due to the volume of less mineralised bone. Tissue mineral density increased and bone volume fraction decreased with increasing distance from the articular surface up to 5.1 mm from the articular surface. Further research is required to elucidate the biomechanical and pathophysiological consequences of these gradients of micromorphological parameters in the subchondral bone.
Collapse
Affiliation(s)
- Sandra Martig
- Equine Centre, Melbourne Veterinary School, Faculty of Veterinary and Agricultural Sciences, The University of Melbourne, Werribee, Vic., Australia
| | - Peta L Hitchens
- Equine Centre, Melbourne Veterinary School, Faculty of Veterinary and Agricultural Sciences, The University of Melbourne, Werribee, Vic., Australia
| | - Mark A Stevenson
- Melbourne Veterinary School, Faculty of Veterinary and Agricultural Sciences, The University of Melbourne, Parkville, Vic., Australia
| | - R Chris Whitton
- Equine Centre, Melbourne Veterinary School, Faculty of Veterinary and Agricultural Sciences, The University of Melbourne, Werribee, Vic., Australia
| |
Collapse
|
43
|
Loukov D, Karampatos S, Maly MR, Bowdish DME. Monocyte activation is elevated in women with knee-osteoarthritis and associated with inflammation, BMI and pain. Osteoarthritis Cartilage 2018; 26:255-263. [PMID: 29128509 DOI: 10.1016/j.joca.2017.10.018] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/11/2017] [Revised: 10/11/2017] [Accepted: 10/31/2017] [Indexed: 02/02/2023]
Abstract
OBJECTIVE Monocytes contribute to synovitis and disease pathogenesis in osteoarthritis (OA). Low-grade inflammation occurs in OA and correlates with disease severity and progression. Since monocyte development and function is altered by systemic inflammation, we analyzed monocyte numbers and function between individuals with knee OA and healthy age- and sex-matched controls. DESIGN We analyzed markers of soluble and cellular inflammation in peripheral blood of women with knee OA and compared them to healthy age- and sex-matched controls. Soluble inflammatory mediators (TNF, IL-6, IL-10 and CRP) in the serum were measured by high-sensitivity ELISA. Leukocyte numbers, surface expression of monocyte activation markers, and monocyte production of pro-inflammatory mediators (TNF and IL-1β) following stimulation were measured by flow cytometry. RESULTS Women with knee OA (n = 15) had elevated levels of serum c-reactive protein (CRP) and a lower proportion of circulating monocytes. Monocytes from OA participants had elevated expression of the activation markers CD16, CCR2, and HLA-DR and induced greater production of tumor necrosis factor (TNF) and IL-1β compared to healthy controls. Higher serum TNF and BMI were correlated with increased monocyte expression of CCR2. Additionally monocyte CCR2 expression and serum TNF were correlated with worse pain on a validated questionnaire. CONCLUSIONS Our findings suggest monocytes are activated prior to their entry into the synovium. Modulating systemic inflammation and monocyte recruitment to the synovium could be of therapeutic benefit.
Collapse
Affiliation(s)
- D Loukov
- Department of Pathology and Molecular Medicine, McMaster University, Hamilton, Ontario, Canada; McMaster Immunology Research Centre, McMaster University, Hamilton, Ontario, Canada; Michael G. DeGroote Institute for Infectious Disease Research, McMaster University, Hamilton, Ontario, Canada
| | - S Karampatos
- School of Rehabilitation Science, McMaster University, Hamilton, Ontario, Canada
| | - M R Maly
- School of Rehabilitation Science, McMaster University, Hamilton, Ontario, Canada; Department of Kinesiology, University of Waterloo, Waterloo, Ontario, Canada
| | - D M E Bowdish
- Department of Pathology and Molecular Medicine, McMaster University, Hamilton, Ontario, Canada; McMaster Immunology Research Centre, McMaster University, Hamilton, Ontario, Canada; Michael G. DeGroote Institute for Infectious Disease Research, McMaster University, Hamilton, Ontario, Canada.
| |
Collapse
|
44
|
Engiles JB, Stewart H, Janes J, Kennedy LA. A diagnostic pathologist's guide to carpal disease in racehorses. J Vet Diagn Invest 2017; 29:414-430. [PMID: 28580838 DOI: 10.1177/1040638717710238] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
As a pathologist, postmortem examination of the equine carpus can be daunting. The anatomy is complex and oftentimes, small or subtle lesions have significant impact on lameness and secondary lesions such as catastrophic musculoskeletal fractures and other injuries. In performance horses, particularly racehorses, the carpus is a common site of injury and source of lameness. Given the predisposition of racehorses to developing carpal disease, familiarity with clinically relevant anatomy and common developmental, degenerative, traumatic, and inflammatory processes are imperative for thorough postmortem examination. Our aim is (1) to provide a concise summary of clinically relevant anatomy and function that serves as a guide for postmortem evaluation of the equine carpus, and (2) to review common carpal injuries and diseases in actively training, racing, or retired racehorses, including developmental lesions (incomplete ossification, osteochondromata), infectious and inflammatory lesions (septic arthritis and tenosynovitis), and degenerative and traumatic lesions (degenerative and traumatic osteoarthritis, osteochondral fragmentation, and polyostotic catastrophic "breakdown" fractures). Representative gross and histologic images are presented along with corresponding antemortem and postmortem diagnostic images, and a review of current scientific literature pertaining to the pathogenesis of these equine carpal lesions.
Collapse
Affiliation(s)
- Julie B Engiles
- Department of Pathobiology, New Bolton Center, School of Veterinary Medicine, University of Pennsylvania, Kennett Square, PA (Engiles).,Gail Holmes Orthopaedic Research Center, Department of Clinical Studies, College of Veterinary Medicine and Biomedical Sciences, Colorado State University, Fort Collins, CO (Stewart).,Department of Veterinary Science, Veterinary Diagnostic Laboratory, University of Kentucky, Lexington, KY (Janes, Kennedy)
| | - Holly Stewart
- Department of Pathobiology, New Bolton Center, School of Veterinary Medicine, University of Pennsylvania, Kennett Square, PA (Engiles).,Gail Holmes Orthopaedic Research Center, Department of Clinical Studies, College of Veterinary Medicine and Biomedical Sciences, Colorado State University, Fort Collins, CO (Stewart).,Department of Veterinary Science, Veterinary Diagnostic Laboratory, University of Kentucky, Lexington, KY (Janes, Kennedy)
| | - Jennifer Janes
- Department of Pathobiology, New Bolton Center, School of Veterinary Medicine, University of Pennsylvania, Kennett Square, PA (Engiles).,Gail Holmes Orthopaedic Research Center, Department of Clinical Studies, College of Veterinary Medicine and Biomedical Sciences, Colorado State University, Fort Collins, CO (Stewart).,Department of Veterinary Science, Veterinary Diagnostic Laboratory, University of Kentucky, Lexington, KY (Janes, Kennedy)
| | - Laura A Kennedy
- Department of Pathobiology, New Bolton Center, School of Veterinary Medicine, University of Pennsylvania, Kennett Square, PA (Engiles).,Gail Holmes Orthopaedic Research Center, Department of Clinical Studies, College of Veterinary Medicine and Biomedical Sciences, Colorado State University, Fort Collins, CO (Stewart).,Department of Veterinary Science, Veterinary Diagnostic Laboratory, University of Kentucky, Lexington, KY (Janes, Kennedy)
| |
Collapse
|
45
|
Carli AV, Harvey EJ, Azeddine B, Gao C, Li Y, Li A, Sayegh M, Wang H, Nahal A, Michel RP, Henderson JE, Séguin C. Substrain-specific differences in bone parameters, alpha-2-macroglobulin circulating levels, and osteonecrosis incidence in a rat model. J Orthop Res 2017; 35:1183-1194. [PMID: 26895739 DOI: 10.1002/jor.23199] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/23/2015] [Accepted: 02/08/2016] [Indexed: 02/04/2023]
Abstract
Osteonecrosis of the femoral head (ONFH) is a potentially devastating complication that occurs in up to 40% of young adults receiving chronic glucocorticoid (GC) therapy. Through a validated GC therapy rat model, we have previously shown that Wistar Kyoto (WK) rats exhibit a genetic susceptibility to GC-induced ONFH compared to Sasco Fischer (F344) rats. We have undertaken this study in order to investigate differences between these two strains for their bone parameters, alpha-2-macroglobulin (A2M) circulating levels and incidence of GC-induced osteonecrosis of the femoral head. WK and F344 rats were treated either with 1.5 mg/kg/day of prednisone or placebo for 6 months. Blood was taken every month. The femoral heads were harvested for histological examination to detect ONFH and analyzed with micro-computed tomography. After 3 months of GC-therapy, plasma A2M was elevated in treated rats only. GC-treated WK rats exhibited histological evidence of early ONFH through higher rates of cellular apoptosis and empty osteocyte lacunae in the subchondral bone compared to placebos and to F344 rats. Furthermore, micro-CT analysis exhibited femoral head collapse only in GC-treated WK rats. Interestingly, GC-treated F344 rats exhibited significant micro-CT changes, but such changes were less concentrated in the articular region and were accompanied histologically with increased marrow fat. These µCT and histological findings suggest that elevated A2M serum level is not predictive and suitable as an indicative biomarker for early GC-induced ONFH in rodents. Elevated A2M levels observed during GC treatment suggests that it plays role in the host reparative response to GC-associated effects. © 2017 Orthopaedic Research Society. Published by Wiley Periodicals, Inc. J Orthop Res 35:1183-1194, 2017.
Collapse
Affiliation(s)
- Alberto V Carli
- Vascular, Biology Research Lab, Research Institute, McGill University Health Centre, C9 Montreal General Hospital, 1650 Cedar Avenue, Montreal, QC H3G 1A4, Canada.,Bone Engineering Labs, Surgical Research, Research Institute, McGill University Health Centre, Montreal General Hospital, 1650 Cedar Avenue, Montreal, QC H3G 1A4, Canada.,Department of Surgery, Division of Orthopaedic Surgery, McGill University Health Centre, B5 Montreal General Hospital, 1650 Cedar Avenue, Montreal, QC H3G 1A4, Canada
| | - Edward J Harvey
- Vascular, Biology Research Lab, Research Institute, McGill University Health Centre, C9 Montreal General Hospital, 1650 Cedar Avenue, Montreal, QC H3G 1A4, Canada.,Bone Engineering Labs, Surgical Research, Research Institute, McGill University Health Centre, Montreal General Hospital, 1650 Cedar Avenue, Montreal, QC H3G 1A4, Canada.,Department of Surgery, Division of Orthopaedic Surgery, McGill University Health Centre, B5 Montreal General Hospital, 1650 Cedar Avenue, Montreal, QC H3G 1A4, Canada
| | - Bouziane Azeddine
- Vascular, Biology Research Lab, Research Institute, McGill University Health Centre, C9 Montreal General Hospital, 1650 Cedar Avenue, Montreal, QC H3G 1A4, Canada
| | - Chan Gao
- Bone Engineering Labs, Surgical Research, Research Institute, McGill University Health Centre, Montreal General Hospital, 1650 Cedar Avenue, Montreal, QC H3G 1A4, Canada
| | - Yongbiao Li
- Vascular, Biology Research Lab, Research Institute, McGill University Health Centre, C9 Montreal General Hospital, 1650 Cedar Avenue, Montreal, QC H3G 1A4, Canada
| | - Ailian Li
- Bone Engineering Labs, Surgical Research, Research Institute, McGill University Health Centre, Montreal General Hospital, 1650 Cedar Avenue, Montreal, QC H3G 1A4, Canada
| | - Mireille Sayegh
- Vascular, Biology Research Lab, Research Institute, McGill University Health Centre, C9 Montreal General Hospital, 1650 Cedar Avenue, Montreal, QC H3G 1A4, Canada
| | - Huifen Wang
- Bone Engineering Labs, Surgical Research, Research Institute, McGill University Health Centre, Montreal General Hospital, 1650 Cedar Avenue, Montreal, QC H3G 1A4, Canada
| | - Ayoub Nahal
- Department of Pathology, McGill University Health Centre (MUHC), C3 Montreal General Hospital, 1650 Cedar Avenue, Montreal, QC H3G 1A4, Canada and McGill University Health Centre (MUHC), Glen site, 1001 Décarie Blvd, Montreal, QC H4A 3J1, Canada
| | - René P Michel
- Department of Pathology, McGill University Health Centre (MUHC), C3 Montreal General Hospital, 1650 Cedar Avenue, Montreal, QC H3G 1A4, Canada and McGill University Health Centre (MUHC), Glen site, 1001 Décarie Blvd, Montreal, QC H4A 3J1, Canada
| | - Janet E Henderson
- Bone Engineering Labs, Surgical Research, Research Institute, McGill University Health Centre, Montreal General Hospital, 1650 Cedar Avenue, Montreal, QC H3G 1A4, Canada
| | - Chantal Séguin
- Vascular, Biology Research Lab, Research Institute, McGill University Health Centre, C9 Montreal General Hospital, 1650 Cedar Avenue, Montreal, QC H3G 1A4, Canada.,Department of Medicine, Division of Hematology and Oncology, McGill University Health Centre, Glen site, 1001 Décarie Blvd, room D02-7519, Montreal, QC H4A 3J1, Canada
| |
Collapse
|
46
|
Changes in the osteochondral unit during osteoarthritis: structure, function and cartilage-bone crosstalk. Nat Rev Rheumatol 2016; 12:632-644. [PMID: 27652499 DOI: 10.1038/nrrheum.2016.148] [Citation(s) in RCA: 550] [Impact Index Per Article: 61.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
In diarthrodial joints, the articular cartilage, calcified cartilage, and subchondral cortical and trabecular bone form a biocomposite - referred to as the osteochondral unit - that is uniquely adapted to the transfer of load. During the evolution of the osteoarthritic process the compositions, functional properties, and structures of these tissues undergo marked alterations. Although pathological processes might selectively target a single joint tissue, ultimately all of the components of the osteochondral unit will be affected because of their intimate association, and thus the biological and physical crosstalk among them is of great importance. The development of targeted therapies against the osteoarthritic processes in cartilage or bone will, therefore, require an understanding of the state of these joint tissues at the time of the intervention. Importantly, these interventions will not be successful unless they are applied at the early stages of disease before considerable structural and functional alterations occur in the osteochondral unit. This Review describes the changes that occur in bone and cartilage during the osteoarthritic process, and highlights strategies for how this knowledge could be applied to develop new therapeutic interventions for osteoarthritis.
Collapse
|
47
|
Early cathepsin K degradation of type II collagen in vitro and in vivo in articular cartilage. Osteoarthritis Cartilage 2016; 24:1461-9. [PMID: 27049030 DOI: 10.1016/j.joca.2016.03.016] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/11/2015] [Revised: 01/09/2016] [Accepted: 03/25/2016] [Indexed: 02/02/2023]
Abstract
OBJECTIVE To characterize the initial events in the cleavage of type II collagen mediated by cathepsin K and demonstrate the presence of the resulting products in human and equine articular osteoarthritic cartilage. DESIGN Equine type II collagen was digested with cathepsin K and the cleavage products characterized by mass spectrometry. Anti-neoepitope antibodies were raised against the most N-terminal cleavage products and used to investigate the progress of collagen cleavage, in vitro, and the presence of cathepsin K-derived products in equine and human osteoarthritic cartilage. RESULTS Six cathepsin K cleavage sites distributed throughout the triple helical region were identified in equine type II collagen. Most of the cleavages occurred following a hydroxyproline residue. The most N-terminal site was within three residues of the previously identified site in bovine type II collagen. Western blotting using anti-neoepitope antibodies showed that the initial cleavages occurred at the N-terminal sites and this was followed by more extensive degradation resulting in products too small to be resolved by SDS gel electrophoresis. Immunohistochemical staining of cartilage sections from equine or human osteoarthritic joints showed staining in lesional areas which was not observed in non-arthritic sites. CONCLUSIONS Cathepsin K cleaves triple helical collagen by erosion from the N-terminus and with subsequent progressive cleavages. The liberated fragments can be detected in osteoarthritic cartilage and may represent useful biomarkers for disease activity.
Collapse
|
48
|
Low Levels of Vitamin D have a Deleterious Effect on the Articular Cartilage in a Rat Model. HSS J 2016; 12:150-7. [PMID: 27385944 PMCID: PMC4916094 DOI: 10.1007/s11420-016-9492-x] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/06/2015] [Accepted: 01/14/2016] [Indexed: 02/07/2023]
Abstract
BACKGROUND Vitamin D appears to play an important role in bone and cartilage metabolism since its receptors are widely found in human articular chondrocytes. Thus, effects of variation of vitamin D may directly impact cartilage and bone biology. QUESTIONS/PURPOSES The aims of this study are to compare (1) articular cartilage structure and composition and (2) trabecular and cortical bone microstructure in rats with normal versus insufficient vitamin D levels. METHODS Twenty-five mature, male Sprague-Dawley rats were allocated to two groups: (1) control arm (vitamin D replete-12 rats) and (2) an experimental arm (vitamin D deficient-13 rats). Vitamin D deficiency was induced using a vitamin D-deficient diet and UV light restriction. Rats were sacrificed after 4 weeks vitamin D deficiency was confirmed. The right knee was harvested for analysis of both the medial (MFC) and lateral femoral condyles (LFC). A region of interest was established on both condyles to correlate subchondral bone architecture and the overlying cartilage. Histological analysis was performed and graded using the modified Mankin score. Subchondral and cortical bony architecture was evaluated with micro-CT. RESULTS After 4 weeks, the vitamin D-deficient group had statistically significant changes in cartilage structure in both the MFC and LFC [1.55 ± 0.6 vs. 4.23 ± 4.1 (p = 0.035) and 1.55 ± 0.6 vs. 3.53 ± 2.4 (p = 0.009), respectively]. Micro-CT analysis revealed no correlation between subchondral bone values and the overlying cartilage Mankin score (p = 0.460). No significant difference was evident between the subchondral bone of the control and study group. CONCLUSIONS Low levels of vitamin D have a deleterious effect on the cartilage. Given the high prevalence of vitamin D deficiency in the general population, these findings raise important questions about the potential role of vitamin D in articular cartilage health.
Collapse
|
49
|
Smith AD, Morton AJ, Winter MD, Colahan PT, Ghivizzani S, Brown MP, Hernandez JA, Nickerson DM. MAGNETIC RESONANCE IMAGING SCORING OF AN EXPERIMENTAL MODEL OF POST-TRAUMATIC OSTEOARTHRITIS IN THE EQUINE CARPUS. Vet Radiol Ultrasound 2016; 57:502-14. [PMID: 27198611 DOI: 10.1111/vru.12369] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2015] [Revised: 02/25/2016] [Accepted: 02/29/2016] [Indexed: 12/17/2022] Open
Abstract
Magnetic resonance imaging (MRI) is the most sensitive imaging modality to detect the early changes of osteoarthritis. Currently, there is no quantifiable method to tract these pathological changes over time in the horse. The objective of this experimental study was to characterize the progression of MRI changes in an equine model of post-traumatic osteoarthritis using a semiquantitative scoring system for whole-organ evaluation of the middle carpal joint. On day 0, an osteochondral fragment was created in one middle carpal joint (OCI) and the contralateral joint (CON) was sham-operated in 10 horses. On day 14, study horses resumed exercise on a high-speed treadmill until the completion of the study (day 98). High-field MRI examinations were performed on days 0 (preosteochondral fragmentation), 14, and 98 and scored by three blinded observers using consensus agreement. Images were scored based on 15 independent articular features, and scores were compared between and within-groups. On days 14 and 98, OCI joints had significantly (P ≤ 0.05) higher whole-organ median scores (29.0 and 31.5, respectively), compared to CON joints (21.5 and 20.0, respectively). On day 14, OCI joints showed significant increases in high-signal bone lesion scores, and osteochondral fragment number and size. On day 98, high-signal bone lesion, low-signal bone lesion, osteophyte formation, cartilage signal abnormality, subchondral bone irregularity, joint effusion, and synovial thickening scores were significantly increased in OCI joints. Study results suggest that the MRI whole-organ scoring system reported here may be used to identify onset and progression of pathological changes following osteochondral injury.
Collapse
Affiliation(s)
- Andrew D Smith
- Department of Large Animal Clinical Sciences, University of Florida College of Veterinary Medicine, University of Florida, Gainesville, FL, 32608
| | - Alison J Morton
- Department of Large Animal Clinical Sciences, University of Florida College of Veterinary Medicine, University of Florida, Gainesville, FL, 32608.
| | - Matthew D Winter
- Department of Small Animal Clinical Sciences, University of Florida College of Veterinary Medicine, University of Florida, Gainesville, FL, 32608
| | - Patrick T Colahan
- Department of Large Animal Clinical Sciences, University of Florida College of Veterinary Medicine, University of Florida, Gainesville, FL, 32608
| | - Steve Ghivizzani
- Department of Orthopaedics and Rehabilitation, University of Florida College of Medicine, Univeristy of Florida, Gainesville, FL, 32608
| | - Murray P Brown
- Department of Large Animal Clinical Sciences, University of Florida College of Veterinary Medicine, University of Florida, Gainesville, FL, 32608
| | - Jorge A Hernandez
- Department of Large Animal Clinical Sciences, University of Florida College of Veterinary Medicine, University of Florida, Gainesville, FL, 32608
| | - David M Nickerson
- Department of Statistics, University of Central Florida, Orlando, FL, 32816
| |
Collapse
|
50
|
Ballegeer EA. Computed Tomography of the Musculoskeletal System. Vet Clin North Am Small Anim Pract 2016; 46:373-420, v. [DOI: 10.1016/j.cvsm.2015.12.005] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|