1
|
Abdal Dayem A, Yan E, Do M, Kim Y, Lee Y, Cho SG, Kim DH. Engineering extracellular vesicles for ROS scavenging and tissue regeneration. NANO CONVERGENCE 2024; 11:24. [PMID: 38922501 PMCID: PMC11208369 DOI: 10.1186/s40580-024-00430-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Accepted: 05/22/2024] [Indexed: 06/27/2024]
Abstract
Stem cell therapy holds promise for tissue regeneration, yet significant challenges persist. Emerging as a safer and potentially more effective alternative, extracellular vesicles (EVs) derived from stem cells exhibit remarkable abilities to activate critical signaling cascades, thereby facilitating tissue repair. EVs, nano-scale membrane vesicles, mediate intercellular communication by encapsulating a diverse cargo of proteins, lipids, and nucleic acids. Their therapeutic potential lies in delivering cargos, activating signaling pathways, and efficiently mitigating oxidative stress-an essential aspect of overcoming limitations in stem cell-based tissue repair. This review focuses on engineering and applying EVs in tissue regeneration, emphasizing their role in regulating reactive oxygen species (ROS) pathways. Additionally, we explore strategies to enhance EV therapeutic activity, including functionalization and incorporation of antioxidant defense proteins. Understanding these molecular mechanisms is crucial for optimizing EV-based regenerative therapies. Insights into EV and ROS signaling modulation pave the way for targeted and efficient regenerative therapies harnessing the potential of EVs.
Collapse
Affiliation(s)
- Ahmed Abdal Dayem
- Department of Stem Cell and Regenerative Biotechnology, Molecular & Cellular Reprogramming Center, Institute of Advanced Regenerative Science, Konkuk University, 120 Neungdong-ro, Gwangjin-gu, Seoul, 05029, Republic of Korea
| | - Ellie Yan
- Department of Biomedical Engineering, Johns Hopkins University, Baltimore, MD, 21205, USA
| | - Minjae Do
- Department of Biomedical Engineering, Johns Hopkins University, Baltimore, MD, 21205, USA
| | - Yoojung Kim
- Department of Stem Cell and Regenerative Biotechnology, Molecular & Cellular Reprogramming Center, Institute of Advanced Regenerative Science, Konkuk University, 120 Neungdong-ro, Gwangjin-gu, Seoul, 05029, Republic of Korea
| | - Yeongseo Lee
- Department of Stem Cell and Regenerative Biotechnology, Molecular & Cellular Reprogramming Center, Institute of Advanced Regenerative Science, Konkuk University, 120 Neungdong-ro, Gwangjin-gu, Seoul, 05029, Republic of Korea
| | - Ssang-Goo Cho
- Department of Stem Cell and Regenerative Biotechnology, Molecular & Cellular Reprogramming Center, Institute of Advanced Regenerative Science, Konkuk University, 120 Neungdong-ro, Gwangjin-gu, Seoul, 05029, Republic of Korea.
- R&D Team, StemExOne Co., Ltd., 307 KU Technology Innovation Bldg, 120, Neungdong-ro, Gwangjin- gu, Seoul, 05029, Republic of Korea.
| | - Deok-Ho Kim
- Department of Biomedical Engineering, Johns Hopkins University, Baltimore, MD, 21205, USA.
- Department of Mechanical Engineering, Johns Hopkins University, Baltimore, MD, 21205, USA.
- Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, 21205, USA.
- Center for Microphysiological Systems, Johns Hopkins University, Baltimore, MD, 21205, USA.
- Institute for NanoBiotechnology, Johns Hopkins University, Baltimore, MD, 21218, USA.
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA.
| |
Collapse
|
2
|
Ma Z, Li DX, Lan X, Bubelenyi A, Vyhlidal M, Kunze M, Sommerfeldt M, Adesida AB. Short-term response of primary human meniscus cells to simulated microgravity. Cell Commun Signal 2024; 22:342. [PMID: 38907358 PMCID: PMC11191296 DOI: 10.1186/s12964-024-01684-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2024] [Accepted: 05/27/2024] [Indexed: 06/23/2024] Open
Abstract
BACKGROUND Mechanical unloading of the knee articular cartilage results in cartilage matrix atrophy, signifying the osteoarthritic-inductive potential of mechanical unloading. In contrast, mechanical loading stimulates cartilage matrix production. However, little is known about the response of meniscal fibrocartilage, a major mechanical load-bearing tissue of the knee joint, and its functional matrix-forming fibrochondrocytes to mechanical unloading events. METHODS In this study, primary meniscus fibrochondrocytes isolated from the inner avascular region of human menisci from both male and female donors were seeded into porous collagen scaffolds to generate 3D meniscus models. These models were subjected to both normal gravity and mechanical unloading via simulated microgravity (SMG) for 7 days, with samples collected at various time points during the culture. RESULTS RNA sequencing unveiled significant transcriptome changes during the 7-day SMG culture, including the notable upregulation of key osteoarthritis markers such as COL10A1, MMP13, and SPP1, along with pathways related to inflammation and calcification. Crucially, sex-specific variations in transcriptional responses were observed. Meniscus models derived from female donors exhibited heightened cell proliferation activities, with the JUN protein involved in several potentially osteoarthritis-related signaling pathways. In contrast, meniscus models from male donors primarily regulated extracellular matrix components and matrix remodeling enzymes. CONCLUSION These findings advance our understanding of sex disparities in knee osteoarthritis by developing a novel in vitro model using cell-seeded meniscus constructs and simulated microgravity, revealing significant sex-specific molecular mechanisms and therapeutic targets.
Collapse
Affiliation(s)
- Zhiyao Ma
- Department of Surgery, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, AB, T6G 2R3, Canada
| | - David Xinzheyang Li
- Department of Surgery, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, AB, T6G 2R3, Canada
- Department of Civil and Environmental Engineering, Faculty of Engineering, AB, University of Alberta, Edmonton, T6G 2R3, Canada
| | - Xiaoyi Lan
- Department of Surgery, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, AB, T6G 2R3, Canada
| | - Adam Bubelenyi
- Faculty of Science, AB, University of Alberta, Edmonton, T6G 2R3, Canada
| | - Margaret Vyhlidal
- Department of Surgery, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, AB, T6G 2R3, Canada
| | - Melanie Kunze
- Department of Surgery, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, AB, T6G 2R3, Canada
| | - Mark Sommerfeldt
- Department of Surgery, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, AB, T6G 2R3, Canada
| | - Adetola B Adesida
- Department of Surgery, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, AB, T6G 2R3, Canada.
- Department of Mechanical Engineering, Faculty of Engineering, University of Alberta, Edmonton, AB, T6G 2R3, Canada.
| |
Collapse
|
3
|
Kraus VB, Hsueh MF. Molecular biomarker approaches to prevention of post-traumatic osteoarthritis. Nat Rev Rheumatol 2024; 20:272-289. [PMID: 38605249 DOI: 10.1038/s41584-024-01102-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/05/2024] [Indexed: 04/13/2024]
Abstract
Up to 50% of individuals develop post-traumatic osteoarthritis (PTOA) within 10 years following knee-joint injuries such as anterior cruciate ligament rupture or acute meniscal tear. Lower-extremity PTOA prevalence is estimated to account for ≥12% of all symptomatic osteoarthritis (OA), or approximately 5.6 million cases in the USA. With knowledge of the inciting event, it might be possible to 'catch PTOA in the act' with sensitive imaging and soluble biomarkers and thereby prevent OA sequelae by early intervention. Existing biomarker data in the joint-injury literature can provide insights into the pathogenesis and early risk trajectory related to PTOA and can help to elucidate a research agenda for preventing or slowing the onset of PTOA. Non-traumatic OA and PTOA have many clinical, radiological and genetic similarities, and efforts to understand early risk trajectories in PTOA might therefore contribute to the identification and classification of early non-traumatic OA, which is the most prevalent form of OA.
Collapse
Affiliation(s)
- Virginia Byers Kraus
- Duke Molecular Physiology Institute, Duke University, Durham, NC, USA.
- Department of Medicine, Duke University School of Medicine, Durham, NC, USA.
- Department of Orthopaedic Surgery, Duke University School of Medicine, Durham, NC, USA.
| | - Ming-Feng Hsueh
- Duke Molecular Physiology Institute, Duke University, Durham, NC, USA
- Department of Orthopaedic Surgery, Duke University School of Medicine, Durham, NC, USA
| |
Collapse
|
4
|
Chen H, Li J, Li S, Wang X, Xu G, Li M, Li G. Research progress of procyanidins in repairing cartilage injury after anterior cruciate ligament tear. Heliyon 2024; 10:e26070. [PMID: 38420419 PMCID: PMC10900419 DOI: 10.1016/j.heliyon.2024.e26070] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2024] [Accepted: 02/07/2024] [Indexed: 03/02/2024] Open
Abstract
Anterior cruciate ligament (ACL) tear is a common sports-related injury, and cartilage injury always emerges as a serious complication following ACL tear, significantly impacting the physical and psychological well-being of affected individuals. Over the years, efforts have been directed toward finding strategies to repair cartilage injury after ACL tear. In recent times, procyanidins, known for their anti-inflammatory and antioxidant properties, have emerged as potential key players in addressing this concern. This article focuses on summarizing the research progress of procyanidins in repairing cartilage injury after ACL tear. It covers the roles, mechanisms, and clinical significance of procyanidins in repairing cartilage injury following ACL tear and explores the future prospects of procyanidins in this domain. This review provides novel insights and hope for the repair of cartilage injury following ACL tear.
Collapse
Affiliation(s)
- Hanlin Chen
- The First Hospital of Lanzhou University, Lanzhou, China
- Major in Clinical Medicine, First Clinical Medical College of Lanzhou University, Lanzhou, China
| | - Jingrui Li
- The First Hospital of Lanzhou University, Lanzhou, China
- Major in Clinical Medicine, First Clinical Medical College of Lanzhou University, Lanzhou, China
| | - Shaofei Li
- The First Hospital of Lanzhou University, Lanzhou, China
- Major in Clinical Medicine, First Clinical Medical College of Lanzhou University, Lanzhou, China
| | - Xiaoqi Wang
- Major in Clinical Medicine, Second Clinical Medical College of Lanzhou University, Lanzhou, China
| | - Ge Xu
- The First Hospital of Lanzhou University, Lanzhou, China
- Major in Clinical Medicine, First Clinical Medical College of Lanzhou University, Lanzhou, China
| | - Molan Li
- The First Hospital of Lanzhou University, Lanzhou, China
- Major in Clinical Medicine, First Clinical Medical College of Lanzhou University, Lanzhou, China
| | - Guangjie Li
- The First Hospital of Lanzhou University, Lanzhou, China
| |
Collapse
|
5
|
Du X, Xin R, Chen X, Wang G, Huang C, Zhou K, Zhang S. TAF15 regulates the BRD4/GREM1 axis and activates the gremlin-1-NF-κB pathway to promote OA progression. Regen Ther 2023; 24:227-236. [PMID: 37496731 PMCID: PMC10366938 DOI: 10.1016/j.reth.2023.06.016] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2023] [Revised: 06/18/2023] [Accepted: 06/29/2023] [Indexed: 07/28/2023] Open
Abstract
Background Anterior cruciate ligament (ACL) injury is recognized as a risk factor for osteoarthritis (OA) progression. Herein, the function of TAF15 in ACL injury-induced OA was investigated. Methods OA cell model and OA mouse model were established by interleukin-1 beta (IL-1β) stimulation and ACL transection administration, respectively. The pathological changes were analyzed by histopathology. The mRNA and protein expressions were assessed using qRT-PCR, Western blot and IHC. Chondrocyte viability and apoptosis were examined by CCK8 assay and TUNEL staining, respectively. The interactions between TAF15, BRD4 and GREM1 were analyzed by RIP or ChIP assay. Results TAF15 expression was markedly elevated in OA, and its knockdown suppressed IL-1β-induced chondrocyte apoptosis and ECM degradation in vivo and cartilage pathological changes in vitro. TAF15 promoted BRD4 mRNA stability, and TAF15 silencing's repression on chondrocyte apoptosis and ECM degradation induced by IL-1β was abrogated following BRD4 overexpression. BRD4 promoted GREM1 expression by directly binding with GREM1. In addition, the GREM1/NF-κB pathway functioned as the downstream pathway of BRD4 in promoting OA progression. Conclusion TAF15 upregulation facilitated chondrocyte apoptosis and ECM degradation during OA development by acting on the BRD4/GREM1/NF-κB axis, which provided a theoretical basis for the development of novel therapies for OA.
Collapse
Affiliation(s)
- Xiufan Du
- Hainan General Hospital (Hainan Affiliated Hospital of Hainan Medical University), Department of Sports Medicine, Haikou, 570311, Hainan, PR China
| | - Ruomei Xin
- Danzhou People's Hospital, Nursing Department, Danzhou, 571700, Hainan, PR China
| | - Xiaoyan Chen
- Hainan General Hospital (Hainan Affiliated Hospital of Hainan Medical University), Department of Stomatology, Haikou, 570311, Hainan, PR China
| | - Guangji Wang
- Hainan General Hospital (Hainan Affiliated Hospital of Hainan Medical University), Department of Sports Medicine, Haikou, 570311, Hainan, PR China
| | - Chunhang Huang
- Hainan General Hospital (Hainan Affiliated Hospital of Hainan Medical University), Department of Sports Medicine, Haikou, 570311, Hainan, PR China
| | - Kai Zhou
- Hainan General Hospital (Hainan Affiliated Hospital of Hainan Medical University), Department of Sports Medicine, Haikou, 570311, Hainan, PR China
| | - Shunli Zhang
- The Second Affiliated Hospital of Hainan Medical University, Haikou, 570216, Hainan, PR China
| |
Collapse
|
6
|
Little D, Amadio PC, Awad HA, Cone SG, Dyment NA, Fisher MB, Huang AH, Koch DW, Kuntz AF, Madi R, McGilvray K, Schnabel LV, Shetye SS, Thomopoulos S, Zhao C, Soslowsky LJ. Preclinical tendon and ligament models: Beyond the 3Rs (replacement, reduction, and refinement) to 5W1H (why, who, what, where, when, how). J Orthop Res 2023; 41:2133-2162. [PMID: 37573480 PMCID: PMC10561191 DOI: 10.1002/jor.25678] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/08/2023] [Revised: 07/21/2023] [Accepted: 08/02/2023] [Indexed: 08/14/2023]
Abstract
Several tendon and ligament animal models were presented at the 2022 Orthopaedic Research Society Tendon Section Conference held at the University of Pennsylvania, May 5 to 7, 2022. A key objective of the breakout sessions at this meeting was to develop guidelines for the field, including for preclinical tendon and ligament animal models. This review summarizes the perspectives of experts for eight surgical small and large animal models of rotator cuff tear, flexor tendon transection, anterior cruciate ligament tear, and Achilles tendon injury using the framework: "Why, Who, What, Where, When, and How" (5W1H). A notable conclusion is that the perfect tendon model does not exist; there is no single gold standard animal model that represents the totality of tendon and ligament disease. Each model has advantages and disadvantages and should be carefully considered in light of the specific research question. There are also circumstances when an animal model is not the best approach. The wide variety of tendon and ligament pathologies necessitates choices between small and large animal models, different anatomic sites, and a range of factors associated with each model during the planning phase. Attendees agreed on some guiding principles including: providing clear justification for the model selected, providing animal model details at publication, encouraging sharing of protocols and expertise, improving training of research personnel, and considering greater collaboration with veterinarians. A clear path for translating from animal models to clinical practice was also considered as a critical next step for accelerating progress in the tendon and ligament field.
Collapse
Affiliation(s)
- Dianne Little
- Department of Basic Medical Sciences, The Weldon School of Biomedical Engineering, Purdue University, West Lafayette, Indiana, USA
| | - Peter C Amadio
- Department of Orthopaedic Surgery, Mayo Clinic, Rochester, Minnesota, USA
| | - Hani A Awad
- Department of Orthopaedics, Department of Biomedical Engineering, The Center for Musculoskeletal Research, University of Rochester, Rochester, New York, USA
| | - Stephanie G Cone
- Department of Biomedical Engineering, University of Delaware, Newark, Delaware, USA
| | - Nathaniel A Dyment
- McKay Orthopaedic Research Laboratory, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Matthew B Fisher
- Joint Department of Biomedical Engineering, College of Engineering, North Carolina State University-University of North Carolina at Chapel Hill, Raleigh, North Carolina, USA
| | - Alice H Huang
- Department of Orthopedic Surgery, Department of Biomedical Engineering, Columbia University, New York, New York, USA
| | - Drew W Koch
- Department of Clinical Sciences, College of Veterinary Medicine, and Comparative Medicine Institute, North Carolina State University, Raleigh, North Carolina, USA
| | - Andrew F Kuntz
- McKay Orthopaedic Research Laboratory, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Rashad Madi
- McKay Orthopaedic Research Laboratory, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Kirk McGilvray
- Department of Mechanical Engineering, School of Biomedical Engineering, Colorado State University, Fort Collins, Colorado, USA
| | - Lauren V Schnabel
- Department of Clinical Sciences, College of Veterinary Medicine, and Comparative Medicine Institute, North Carolina State University, Raleigh, North Carolina, USA
| | - Snehal S Shetye
- McKay Orthopaedic Research Laboratory, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Stavros Thomopoulos
- Department of Orthopedic Surgery, Department of Biomedical Engineering, Columbia University, New York, New York, USA
| | - Chunfeng Zhao
- Department of Orthopaedic Surgery, Mayo Clinic, Rochester, Minnesota, USA
| | - Louis J Soslowsky
- McKay Orthopaedic Research Laboratory, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| |
Collapse
|
7
|
Schwartz E, Chang K, Sun C, Zhang F, Peng G, Owens B, Wei L. The Effects of an Osteoarthritic Joint Environment on ACL Damage and Degeneration: A Yucatan Miniature Pig Model. Biomolecules 2023; 13:1416. [PMID: 37759816 PMCID: PMC10526460 DOI: 10.3390/biom13091416] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Revised: 09/05/2023] [Accepted: 09/14/2023] [Indexed: 09/29/2023] Open
Abstract
Posttraumatic osteoarthritis (PTOA) arises secondary to joint injuries and is characteristically driven by inflammatory mediators. PTOA is often studied in the setting of ACL tears. However, a wide range of other injuries also lead to PTOA pathogenesis. The purpose of this study was to characterize the morphological changes in the uninjured ACL in a PTOA inflammatory environment. We retrospectively reviewed 14 ACLs from 13 Yucatan minipigs, 7 of which had undergone our modified intra-articular drilling (mIAD) procedure, which induced PTOA through inflammatory mediators. Seven ACLs were harvested from mIAD minipigs (PTOA) and seven ACLs from control minipigs with no cartilage degeneration (non-PTOA). ACL degeneration was evaluated using histological scoring systems. IL-1β, NF-κB, and TNF-α mRNA expression in the synovium was measured using qRT-PCR. PTOA minipigs demonstrated significant ACL degeneration, marked by a disorganized extracellular matrix, increased vascularity, and changes in cellular shape, density, and alignment. Furthermore, IL-1β, NF-κB, and TNF-α expression was elevated in the synovium of PTOA minipigs. These findings demonstrate the potential for ACL degeneration in a PTOA environment and emphasize the need for anti-inflammatory disease-modifying therapies following joint injury.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Lei Wei
- Department of Orthopaedics, Warren Alpert Medical School of Brown University, Rhode Island Hospital, Providence, RI 02903, USA; (E.S.); (K.C.); (C.S.); (F.Z.); (G.P.); (B.O.)
| |
Collapse
|
8
|
You B, Zhou C, Yang Y. MSC-EVs alleviate osteoarthritis by regulating microenvironmental cells in the articular cavity and maintaining cartilage matrix homeostasis. Ageing Res Rev 2023; 85:101864. [PMID: 36707035 DOI: 10.1016/j.arr.2023.101864] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Revised: 01/19/2023] [Accepted: 01/23/2023] [Indexed: 01/26/2023]
Abstract
Osteoarthritis (OA), a common cause of chronic articular cartilage degeneration, is the main cause of disability in older adults and severely affects quality of life. Multiple factors are involved in the pathogenesis of OA, resulting in imbalance in the homeostasis of the joint cavity microenvironment, which exacerbates the disease. Because of the deficiency of blood vessels and nerves in cartilage, existing therapies to promote cartilage healing are relatively ineffective. Mesenchymal stem cell (MSC)-related therapies have achieved positive outcomes for the treatment of OA, and these beneficial effects have been confirmed to be largely mediated by extracellular vesicles (EVs). MSC-derived EVs (MSC-EVs) have been demonstrated to participate in the regulation of chondrocyte function, to have anti-inflammatory and immunomodulatory effects, and to alleviate metabolic disorders of the extracellular matrix, thereby slowing the progression of OA. In addition, engineered MSC-EVs can enrich therapeutic molecules and optimize administration to enhance their therapeutic effects on OA. A thorough understanding of the endogenous properties of EVs and related engineering strategies could help researchers develop more precise control therapy for OA.
Collapse
Affiliation(s)
- Benshuai You
- Clinical Laboratory Center, The Affiliated Taizhou People's Hospital of Nanjing Medical University, Taizhou 225300, Jiangsu, China
| | - Chenglin Zhou
- Clinical Laboratory Center, The Affiliated Taizhou People's Hospital of Nanjing Medical University, Taizhou 225300, Jiangsu, China.
| | - Yang Yang
- Clinical Laboratory Center, The Affiliated Taizhou People's Hospital of Nanjing Medical University, Taizhou 225300, Jiangsu, China.
| |
Collapse
|
9
|
Yang B, Li X, Fu C, Cai W, Meng B, Qu Y, Kou X, Zhang Q. Extracellular vesicles in osteoarthritis of peripheral joint and temporomandibular joint. Front Endocrinol (Lausanne) 2023; 14:1158744. [PMID: 36950682 PMCID: PMC10025484 DOI: 10.3389/fendo.2023.1158744] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/04/2023] [Accepted: 02/21/2023] [Indexed: 03/08/2023] Open
Abstract
Osteoarthritis (OA) is a disabling disease with significant morbidity worldwide. OA attacks the large synovial joint, including the peripheral joints and temporomandibular joint (TMJ). As a representative of peripheral joint OA, knee OA shares similar symptoms with TMJ OA. However, these two joints also display differences based on their distinct development, anatomy, and physiology. Extracellular vesicles (EVs) are phospholipid bilayer nanoparticles, including exosomes, microvesicles, and apoptotic bodies. EVs contain proteins, lipids, DNA, micro-RNA, and mRNA that regulate tissue homeostasis and cell-to-cell communication, which play an essential role in the progression and treatment of OA. They are likely to partake in mechanical response, extracellular matrix degradation, and inflammatory regulation during OA. More evidence has shown that synovial fluid and synovium-derived EVs may serve as OA biomarkers. More importantly, mesenchymal stem cell-derived EV shows a therapeutic effect on OA. However, the different function of EVs in these two joints is largely unknown based on their distinct biological characteristic. Here, we reviewed the effects of EVs in OA progression and compared the difference between the knee joint and TMJ, and summarized their potential therapeutic role in the treatment of OA.
Collapse
Affiliation(s)
- Benyi Yang
- Guangdong Provincial Key Laboratory of Stomatology Hospital of Stomatology, Guanghua School of Stomatology, Sun Yat-sen University, South China Center of Craniofacial Stem Cell Research, Guangzhou, China
| | - Xin Li
- Department of Temporomandibular Joint, Affiliated Stomatology Hospital of Guangzhou Medical University, Guangzhou Medical University, Guangzhou, China
- Guangzhou Key Laboratory of Basic and Applied Research of Oral Regenerative Medicine, Guangdong Engineering Research Center of Oral Restoration and Reconstruction, Guangzhou, China
| | - Chaoran Fu
- Guangdong Provincial Key Laboratory of Stomatology Hospital of Stomatology, Guanghua School of Stomatology, Sun Yat-sen University, South China Center of Craniofacial Stem Cell Research, Guangzhou, China
| | - Wenyi Cai
- Department of Temporomandibular Joint, Affiliated Stomatology Hospital of Guangzhou Medical University, Guangzhou Medical University, Guangzhou, China
- Guangzhou Key Laboratory of Basic and Applied Research of Oral Regenerative Medicine, Guangdong Engineering Research Center of Oral Restoration and Reconstruction, Guangzhou, China
| | - Bowen Meng
- Guangdong Provincial Key Laboratory of Stomatology Hospital of Stomatology, Guanghua School of Stomatology, Sun Yat-sen University, South China Center of Craniofacial Stem Cell Research, Guangzhou, China
| | - Yan Qu
- Guangdong Provincial Key Laboratory of Stomatology Hospital of Stomatology, Guanghua School of Stomatology, Sun Yat-sen University, South China Center of Craniofacial Stem Cell Research, Guangzhou, China
| | - Xiaoxing Kou
- Guangdong Provincial Key Laboratory of Stomatology Hospital of Stomatology, Guanghua School of Stomatology, Sun Yat-sen University, South China Center of Craniofacial Stem Cell Research, Guangzhou, China
- *Correspondence: Qingbin Zhang, ; Xiaoxing Kou,
| | - Qingbin Zhang
- Department of Temporomandibular Joint, Affiliated Stomatology Hospital of Guangzhou Medical University, Guangzhou Medical University, Guangzhou, China
- Guangzhou Key Laboratory of Basic and Applied Research of Oral Regenerative Medicine, Guangdong Engineering Research Center of Oral Restoration and Reconstruction, Guangzhou, China
- *Correspondence: Qingbin Zhang, ; Xiaoxing Kou,
| |
Collapse
|
10
|
Rodriguez-Merchan EC, Encinas-Ullan CA. Knee Osteoarthritis Following Anterior Cruciate Ligament Reconstruction: Frequency, Contributory Elements, and Recent Interventions to Modify the Route of Degeneration. THE ARCHIVES OF BONE AND JOINT SURGERY 2022; 10:951-958. [PMID: 36561222 PMCID: PMC9749126 DOI: 10.22038/abjs.2021.52790.2616] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 10/14/2020] [Accepted: 01/30/2021] [Indexed: 12/24/2022]
Abstract
Half of the individuals who experience an anterior cruciate ligament reconstruction (ACLR) suffer from knee osteoarthritis (OA) 12-14 years later. Elements that make a contribution to the appearance of OA following ACLR are anomalous anterior tibial displacement and anomalous tibial rotation in the course of the stance phase of walking (exhibited in 85% of operated knees). Individuals who undergo an early ACLR (5 days on average following anterior cruciate ligament [ACL] breakage) have an inferior frequency of radiographically apparent tibiofemoral OA at 32-37 years of follow-up than individuals with ACL rupture who did not experience the procedure. Nevertheless, the percentage of symptomatic OA, radiographically apparent patellofemoral OA and knee symptoms are alike in both groups. At 15 years of follow-up, 23% of knees that experienced an anatomic ACLR suffer from OA, while this percentage augments to 44% if the ACLR was non-anatomic. Knees of individuals who experience ACLR need total knee arthroplasty at an earlier age than healthy knees. Intra-articular injections of interleukin-1 receptor antagonist and corticosteroids may reduce the risk of OA after ACLR.
Collapse
|
11
|
Yin H, Li M, Tian G, Ma Y, Ning C, Yan Z, Wu J, Ge Q, Sui X, Liu S, Zheng J, Guo W, Guo Q. The role of extracellular vesicles in osteoarthritis treatment via microenvironment regulation. Biomater Res 2022; 26:52. [PMID: 36199125 PMCID: PMC9532820 DOI: 10.1186/s40824-022-00300-7] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2022] [Accepted: 09/18/2022] [Indexed: 11/10/2022] Open
Abstract
Osteoarthritis (OA) is a degenerative joint disease that is common among the middle-aged and older populations, causes patients to experience recurrent pain in their joints and negatively affects their quality of life. Currently, therapeutic options for patients with OA consist of medications to alleviate pain and treat the symptoms; however, due to typically poor outcomes, patients with advanced OA are unlikely to avoid joint replacement. In recent years, several studies have linked disrupted homeostasis of the joint cavity microenvironment to the development of OA. Recently, extracellular vesicles (EVs) have received increasing attention in the field of OA. EVs are natural nano-microcarrier materials with unique biological activity that are produced by cells through paracrine action. They are composed of lipid bilayers that contain physiologically active molecules, such as nucleic acids and proteins. Moreover, EVs may participate in local and distal intercellular and intracellular communication. EVs have also recently been shown to influence OA development by regulating biochemical factors in the OA microenvironmental. In this article, we first describe the microenvironment of OA. Then, we provide an overview of EVs, summarize the main types used for the treatment of OA, and describe their mechanisms. Next, we review clinical studies using EVs for OA treatment. Finally, the specific mechanism underlying the application of miRNA-enriched EVs in OA therapy is described.
Collapse
Affiliation(s)
- Han Yin
- Institute of Orthopedics, The First Medical Center, Chinese PLA General Hospital, Beijing Key Lab of Regenerative Medicine in Orthopedics, Key Laboratory of Musculoskeletal Trauma and War Injuries PLA, No. 28 Fuxing Road, Haidian District, Beijing, 100853, PR China
| | - Muzhe Li
- Institute of Orthopedics, The First Medical Center, Chinese PLA General Hospital, Beijing Key Lab of Regenerative Medicine in Orthopedics, Key Laboratory of Musculoskeletal Trauma and War Injuries PLA, No. 28 Fuxing Road, Haidian District, Beijing, 100853, PR China
- Department of Orthopedics, The First Affiliated Hospital of University of South China, Hengyang, 421000, China
| | - Guangzhao Tian
- Institute of Orthopedics, The First Medical Center, Chinese PLA General Hospital, Beijing Key Lab of Regenerative Medicine in Orthopedics, Key Laboratory of Musculoskeletal Trauma and War Injuries PLA, No. 28 Fuxing Road, Haidian District, Beijing, 100853, PR China
- School of Medicine, Nankai University, Tianjin, 300071, China
| | - Yang Ma
- Institute of Orthopedics, The First Medical Center, Chinese PLA General Hospital, Beijing Key Lab of Regenerative Medicine in Orthopedics, Key Laboratory of Musculoskeletal Trauma and War Injuries PLA, No. 28 Fuxing Road, Haidian District, Beijing, 100853, PR China
| | - Chao Ning
- Institute of Orthopedics, The First Medical Center, Chinese PLA General Hospital, Beijing Key Lab of Regenerative Medicine in Orthopedics, Key Laboratory of Musculoskeletal Trauma and War Injuries PLA, No. 28 Fuxing Road, Haidian District, Beijing, 100853, PR China
| | - Zineng Yan
- Institute of Orthopedics, The First Medical Center, Chinese PLA General Hospital, Beijing Key Lab of Regenerative Medicine in Orthopedics, Key Laboratory of Musculoskeletal Trauma and War Injuries PLA, No. 28 Fuxing Road, Haidian District, Beijing, 100853, PR China
| | - Jiang Wu
- Institute of Orthopedics, The First Medical Center, Chinese PLA General Hospital, Beijing Key Lab of Regenerative Medicine in Orthopedics, Key Laboratory of Musculoskeletal Trauma and War Injuries PLA, No. 28 Fuxing Road, Haidian District, Beijing, 100853, PR China
| | - Qian Ge
- Huaiyin People's Hospital of Huai'an, Huai'an, 223001, China
| | - Xiang Sui
- Institute of Orthopedics, The First Medical Center, Chinese PLA General Hospital, Beijing Key Lab of Regenerative Medicine in Orthopedics, Key Laboratory of Musculoskeletal Trauma and War Injuries PLA, No. 28 Fuxing Road, Haidian District, Beijing, 100853, PR China
| | - Shuyun Liu
- Institute of Orthopedics, The First Medical Center, Chinese PLA General Hospital, Beijing Key Lab of Regenerative Medicine in Orthopedics, Key Laboratory of Musculoskeletal Trauma and War Injuries PLA, No. 28 Fuxing Road, Haidian District, Beijing, 100853, PR China.
| | - Jinxuan Zheng
- Department of Orthodontics, Guanghua School of Stomatology, Guangdong Provincial Key Laboratory of Stomatology, Sun Yat-Sen University, No.56 Linyuan Xi Road, Yuexiu District, Guangzhou, Guangdong, 510055, People's Republic of China.
| | - Weimin Guo
- Department of Orthopaedic Surgery, Guangdong Provincial Key Laboratory of Orthopedics and Traumatology, First Affiliated Hospital, Sun Yat-Sen University, No.58 Zhongshan Second Road, Yuexiu District, Guangzhou, 510080, Guangdong, China.
| | - Quanyi Guo
- Institute of Orthopedics, The First Medical Center, Chinese PLA General Hospital, Beijing Key Lab of Regenerative Medicine in Orthopedics, Key Laboratory of Musculoskeletal Trauma and War Injuries PLA, No. 28 Fuxing Road, Haidian District, Beijing, 100853, PR China.
| |
Collapse
|
12
|
Zhuang Y, Jiang S, Yuan C, Lin K. The potential therapeutic role of extracellular vesicles in osteoarthritis. Front Bioeng Biotechnol 2022; 10:1022368. [PMID: 36185451 PMCID: PMC9523151 DOI: 10.3389/fbioe.2022.1022368] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2022] [Accepted: 09/01/2022] [Indexed: 11/13/2022] Open
Abstract
Osteoarthritis (OA) is a worldwide and disabling disease, which cause severe pain and heavy socioeconomic burden. However, pharmacologic or surgical therapies cannot mitigate OA progression. Mesenchymal stem cells (MSCs) therapy has emerged as potential approach for OA treatment, while the immunogenicity and ethical audit of cell therapy are unavoidable. Compared with stem cell strategy, EVs induce less immunological rejection, and they are more stable for storage and in vivo application. MSC-EVs-based therapy possesses great potential in regulating inflammation and promoting cartilage matrix reconstruction in OA treatment. To enhance the therapeutic effect, delivery efficiency, tissue specificity and safety, EVs can be engineered via different modification strategies. Here, the application of MSC-EVs in OA treatment and the potential underlying mechanism were summarized. Moreover, EV modification strategies including indirect MSC modification and direct EV modification were reviewed.
Collapse
Affiliation(s)
- Yu Zhuang
- Department of Oral and Cranio-Maxillofacial Surgery, Shanghai Ninth People’s Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- College of Stomatology, Shanghai Jiao Tong University, Shanghai, China
- National Center for Stomatology, National Clinical Research Center for Oral Diseases, Shanghai Key Laboratory of Stomatology, Research Unit of Oral and Maxillofacial Regenerative Medicine, Chinese Academy of Medical Sciences, Shanghai, China
| | - Shengjie Jiang
- Department of Oral and Cranio-Maxillofacial Surgery, Shanghai Ninth People’s Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- College of Stomatology, Shanghai Jiao Tong University, Shanghai, China
- National Center for Stomatology, National Clinical Research Center for Oral Diseases, Shanghai Key Laboratory of Stomatology, Research Unit of Oral and Maxillofacial Regenerative Medicine, Chinese Academy of Medical Sciences, Shanghai, China
| | - Changyong Yuan
- School of Stomatology, Xuzhou Medical University, Shanghai, China
- Department of Dental Implant, The Affiliated Stomatological Hospital of Xuzhou Medical University, Shanghai, China
- Shanghai Key Laboratory of Stomatology, Department of Oral and Cranio-Maxillofacial Surgery, Shanghai Ninth People’s Hospital, Shanghai Research Institute of Stomatology, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- *Correspondence: Changyong Yuan, ; Kaili Lin,
| | - Kaili Lin
- Department of Oral and Cranio-Maxillofacial Surgery, Shanghai Ninth People’s Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- College of Stomatology, Shanghai Jiao Tong University, Shanghai, China
- National Center for Stomatology, National Clinical Research Center for Oral Diseases, Shanghai Key Laboratory of Stomatology, Research Unit of Oral and Maxillofacial Regenerative Medicine, Chinese Academy of Medical Sciences, Shanghai, China
- *Correspondence: Changyong Yuan, ; Kaili Lin,
| |
Collapse
|
13
|
Huang H, Li Z, Luo S, Zheng J, Zhou G, Wang G. Factors Influencing the Progression of Patellofemoral Articular Cartilage Damage After Anterior Cruciate Ligament Reconstruction. Orthop J Sports Med 2022; 10:23259671221108362. [PMID: 35859648 PMCID: PMC9289919 DOI: 10.1177/23259671221108362] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/09/2022] [Accepted: 04/08/2022] [Indexed: 11/17/2022] Open
Abstract
Background: Although anterior cruciate ligament reconstruction (ACLR) can restore the
stability and function of the knee joint, patellofemoral joint cartilage
damage still progresses. Currently, the clinically important factors that
lead to the progression of patellofemoral articular cartilage damage are not
fully understood. Purpose: To investigate the factors that affect the progression of patellofemoral
articular cartilage damage after ACLR. Study Design: Cohort study; Level of evidence, 2. Methods: Among 160 patients who underwent ACLR between January 2015 and December 2019,
the authors evaluated 129 patients for at least 1 year after surgery. Within
1 week before ACLR and at the last follow-up, patients underwent subjective
functional assessment and magnetic resonance imaging evaluations of
articular cartilage damage (modified Outerbridge assessment). At the last
follow-up, the side-to-side difference on KT-2000 arthrometer and bilateral
quadriceps muscle strength were measured. Univariate and multivariate
logistic regression analyses were performed. Results: The mean follow-up was 24.69 ± 10.74 months. Progression of patellar
cartilage damage from preoperatively to final follow-up was seen in 45
patients (P < .001). Logistic regression analysis
revealed that the follow-up period (P = .047; odds radio
(OR) = 0.953) (improvement of patellar cartilage damage with longer
follow-up), partial lateral meniscal resection (P = .004;
OR = 6.929), partial medial meniscal resection (P = .004;
OR = 6.032), and quadriceps muscle strength <80% of the contralateral
side (P = .001; OR = 4.745) were risk factors for the
progression of patellar cartilage damage. Conclusion: Cartilage damage at the patellofemoral joint, especially the patellar
cartilage, still progresses after ACLR. At a mean follow-up of 24.69 months
after ACLR, partial meniscal resection and quadriceps femoris muscle
strength were found to be the main risk factors for the progression of
patellofemoral articular cartilage damage after ACLR.
Collapse
Affiliation(s)
- Hui Huang
- Department of Sports Medicine, Hainan General Hospital (Hainan Affiliated Hospital of Hainan Medical University), Haikou City, Hainan Province, China
| | - Zhengzhao Li
- Department of Emergency Surgery, Hainan General Hospital (Hainan Affiliated Hospital of Hainan Medical University), Haikou City, Hainan Province, China
| | - Shishi Luo
- Department of Radiology, Hainan General Hospital (Hainan Affiliated Hospital of Hainan Medical University), Haikou City, Hainan Province, China
| | - Jiaxuan Zheng
- Department of Pathology, Hainan General Hospital (Hainan Affiliated Hospital of Hainan Medical University), Haikou City, Hainan Province, China
| | - Gang Zhou
- Department of Joint Surgery, Hainan General Hospital (Hainan Affiliated Hospital of Hainan Medical University), Haikou City, Hainan Province, China
| | - Guangji Wang
- Department of Sports Medicine, Hainan General Hospital (Hainan Affiliated Hospital of Hainan Medical University), Haikou City, Hainan Province, China
| |
Collapse
|
14
|
Donnenfield JI, Karamchedu NP, Fleming BC, Molino J, Proffen BL, Murray MM. Articular cartilage and synovium may be important sources of post-surgical synovial fluid inflammatory mediators. Am J Transl Res 2022; 14:1640-1651. [PMID: 35422952 PMCID: PMC8991160] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2021] [Accepted: 02/01/2022] [Indexed: 06/14/2023]
Abstract
The primary source of synovial fluid inflammatory mediators is currently unknown and may include different tissues comprising the joint, including the synovium and articular cartilage. Prior work in a porcine model has demonstrated that anterior cruciate ligament (ACL) surgery leads to significant changes in early gene expression in the synovium and articular cartilage, which are the same whether concomitant ligament restoration is performed or not. In this study, 36 Yucatan minipigs underwent ACL surgery, and a custom multiplex assay was used to measure synovial fluid protein levels of MMP-1, MMP-2, MMP-3, MMP-7, MMP-9, MMP-12, MMP-13, IL-1α, IL-2, IL-4, IL-6, IL-8, IL-10, IL-12, IL-18, GM-CSF, and TNFα in 18 animals at 1 and 4 weeks after surgery. Linear regressions were used to evaluate the relationships between synovial fluid protein levels and the previously reported gene expression levels in the articular cartilage and synovium from the same animal cohort. Synovial fluid levels of MMP-13 and IL-6 were significantly correlated with synovial gene expression (P=.003 and P<.001 respectively), while IL-1α levels were significantly correlated with articular cartilage gene expression (P=.037). The synovium may be an important source of MMP-13 and IL-6, and the articular cartilage may be an important source of IL-1α in post-surgical inflammation. In developing treatments for post-surgical inflammation, the synovium may therefore be a promising target for modulating inflammatory mediators such as MMP-13 and IL-6 in the synovial fluid.
Collapse
Affiliation(s)
- Jonah I Donnenfield
- Division of Sports Medicine, Department of Orthopaedic Surgery, Boston Children’s Hospital, Harvard Medical SchoolBoston, MA 02115, USA
| | - Naga Padmini Karamchedu
- Department of Orthopaedics, Warren Alpert Medical School of Brown University/Rhode Island HospitalProvidence, RI 02903, USA
| | - Braden C Fleming
- Department of Orthopaedics, Warren Alpert Medical School of Brown University/Rhode Island HospitalProvidence, RI 02903, USA
| | - Janine Molino
- Department of Orthopaedics, Warren Alpert Medical School of Brown University/Rhode Island HospitalProvidence, RI 02903, USA
| | - Benedikt L Proffen
- Division of Sports Medicine, Department of Orthopaedic Surgery, Boston Children’s Hospital, Harvard Medical SchoolBoston, MA 02115, USA
| | - Martha M Murray
- Division of Sports Medicine, Department of Orthopaedic Surgery, Boston Children’s Hospital, Harvard Medical SchoolBoston, MA 02115, USA
| |
Collapse
|
15
|
Rzeczycki P, Rasner C, Lammlin L, Junginger L, Goldman S, Bergman R, Redding S, Knights AJ, Elliott M, Maerz T. Cannabinoid receptor type 2 is upregulated in synovium following joint injury and mediates anti-inflammatory effects in synovial fibroblasts and macrophages. Osteoarthritis Cartilage 2021; 29:1720-1731. [PMID: 34537380 PMCID: PMC8883578 DOI: 10.1016/j.joca.2021.09.003] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/11/2021] [Revised: 08/09/2021] [Accepted: 09/06/2021] [Indexed: 02/02/2023]
Abstract
OBJECTIVE Joint injury-induced perturbations to the endocannabinoid system (ECS), a regulator of both inflammation and nociception, remain largely uncharacterized. We employed a mouse model of ACL rupture to assess alterations to nociception, inflammation, and the ECS while using in vitro models to determine whether CB2 agonism can mitigate inflammatory signaling in macrophages and fibroblast-like synoviocytes (FLS). DESIGN Mice underwent noninvasive ACL rupture (ACLR) via tibial compression-based loading. Nociception was measured longitudinally using mechanical allodynia and knee hyperalgesia testing. Synovitis was assessed using histological scoring and histomorphometry. Gene and protein markers of inflammation were characterized in whole joints and synovium. Immunohistochemistry assessed injury-induced alterations to CB1+, CB2+, and F4/80+ cells in synovium. To assess whether CB2 agonism can inhibit pro-inflammatory macrophage polarization, murine bone marrow-derived macrophages (mBMDM) were stimulated with IL-1β or conditioned medium from IL-1β-treated FLS and treated with vehicle (DMSO), the CB2 agonist HU308, or cannabidiol (CBD). Macrophage polarization was assessed as the ratio of M1-associated (IL1b, MMP1b, and IL6) to M2-associated (IL10, IL4, and CD206) gene expression. Human FLS (hFLS) isolated from synovial tissue of OA patients were treated with vehicle (DMSO) or HU308 following TNF-α or IL-1β stimulation to assess inhibition of catabolic/inflammatory gene expression. RESULTS ACLR induces synovitis, progressively-worsening PTOA severity, and an immediate and sustained increase in both mechanical allodynia and knee hyperalgesia, which persist beyond the resolution of molecular inflammation. Enrichment of CB2, but not CB1, was observed in ACLR synovium at 3d, 14d, and 28d, and CB2 was found to be associated with F4/80 (+) cells, which are increased in number in ACLR synovium at all time points. The CB2 agonist HU308 strongly inhibited mBMDM M1-type polarization following stimulation with either IL-1β or conditioned medium from IL-1β-treated mFLS, which was characterized by reductions in Il1b, Mmp1b, and Il6 and increases in Cd206 gene expression. Cannabidiol similarly inhibited IL-1β-induced mBMDM M1 polarization via a reduction in Il1b and an increase in Cd206 and Il4 gene expression. Lastly, in OA hFLS, HU308 treatment inhibited IL-1β-induced CCL2, MMP1, MMP3, and IL6 expression and further inhibited TNF-α-induced CCL2, MMP1, and GMCSF expression, demonstrating human OA-relevant anti-inflammatory effects by targeting CB2. CONCLUSIONS Joint injury perturbs the intra-articular ECS, characterized by an increase in synovial F4/80(+) cells, which express CB2, but not CB1. Targeting CB2 in murine macrophages and human FLS induced potent anti-inflammatory and anti-catabolic effects, which indicates that the CB2 receptor plays a key role in regulating inflammatory signaling in the two primary effector cells in the synovium. The intraarticular ECS is therefore a potential therapeutic target for blocking pathological inflammation in future disease-modifying PTOA treatments.
Collapse
Affiliation(s)
- P Rzeczycki
- Orthopaedic Research Laboratories, Department of Orthopaedic Surgery, University of Michigan, Ann Arbor, MI, USA
| | - C Rasner
- Orthopaedic Research Laboratories, Department of Orthopaedic Surgery, University of Michigan, Ann Arbor, MI, USA
| | - L Lammlin
- Orthopaedic Research Laboratories, Department of Orthopaedic Surgery, University of Michigan, Ann Arbor, MI, USA
| | - L Junginger
- Orthopaedic Research Laboratories, Department of Orthopaedic Surgery, University of Michigan, Ann Arbor, MI, USA
| | - S Goldman
- Orthopaedic Research Laboratories, Department of Orthopaedic Surgery, University of Michigan, Ann Arbor, MI, USA
| | - R Bergman
- Orthopaedic Research Laboratories, Department of Orthopaedic Surgery, University of Michigan, Ann Arbor, MI, USA
| | - S Redding
- Orthopaedic Research Laboratories, Department of Orthopaedic Surgery, University of Michigan, Ann Arbor, MI, USA
| | - A J Knights
- Orthopaedic Research Laboratories, Department of Orthopaedic Surgery, University of Michigan, Ann Arbor, MI, USA
| | - M Elliott
- Orthopaedic Research Laboratories, Department of Orthopaedic Surgery, University of Michigan, Ann Arbor, MI, USA
| | - T Maerz
- Orthopaedic Research Laboratories, Department of Orthopaedic Surgery, University of Michigan, Ann Arbor, MI, USA.
| |
Collapse
|
16
|
O’Brien MH, Dutra EH, Mehta S, Chen PJ, Yadav S. BMP2 Is Required for Postnatal Maintenance of Osteochondral Tissues of the Temporomandibular Joint. Cartilage 2021; 13:734S-743S. [PMID: 33307770 PMCID: PMC8804803 DOI: 10.1177/1947603520980158] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
Abstract
OBJECTIVE Bone morphogenetic protein 2 (BMP2) plays important roles in cartilage growth and development. Paradoxically, elevated levels of BMP2 leads to hypertrophic differentiation and osteoarthritis of cartilage. We examined the in vivo loss of BMP2 in cells expressing aggrecan of the mandibular condyle and knee. DESIGN Three-week-old BMP2 flox/flox-CreER-positive mice and their Cre-negative littermates were treated with tamoxifen and raised until 3 or 6 months. We also investigated the direct effects of BMP2 on chondrocytes in vitro. Cells from the mandibular condyle of mice were treated with recombinant human BMP2 (rhBMP2) or rhNoggin (inhibitor of BMP2 signaling). RESULTS Conditional deletion of BMP2 caused breakage of the cartilage integrity in the mandibular condyle of mice from both age groups, accompanied by a decrease in cartilage thickness, matrix synthesis, mineralization, chondrocyte proliferation, and increased expression of degeneration markers, while the effects at articular cartilage were not significant. In vitro results revealed that rhBMP2 increased chondrocyte proliferation, mineralization, and differentiation, while noggin induced opposite effects. CONCLUSIONS In conclusion, BMP2 is essential for postnatal maintenance of the osteochondral tissues of the mandibular condyle.
Collapse
Affiliation(s)
- Mara H. O’Brien
- Division of Orthodontics,
University of Connecticut Health Center, Farmington, CT, USA
| | - Eliane H. Dutra
- Division of Orthodontics,
University of Connecticut Health Center, Farmington, CT, USA
| | - Shivam Mehta
- Division of Orthodontics,
University of Connecticut Health Center, Farmington, CT, USA
| | - Po-Jung Chen
- Division of Orthodontics,
University of Connecticut Health Center, Farmington, CT, USA
| | - Sumit Yadav
- Division of Orthodontics,
University of Connecticut Health Center, Farmington, CT, USA,Sumit Yadav, Department of
Orthodontics, University of Connecticut Health Center, 263 Farmington
Avenue, MC1725, Farmington, CT 06030, USA.
| |
Collapse
|
17
|
Lee S, Chae DS, Song BW, Lim S, Kim SW, Kim IK, Hwang KC. ADSC-Based Cell Therapies for Musculoskeletal Disorders: A Review of Recent Clinical Trials. Int J Mol Sci 2021; 22:ijms221910586. [PMID: 34638927 PMCID: PMC8508846 DOI: 10.3390/ijms221910586] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2021] [Revised: 09/24/2021] [Accepted: 09/25/2021] [Indexed: 01/04/2023] Open
Abstract
Recently published clinical trials involving the use of adipose-derived stem cells (ADSCs) indicated that approximately one-third of the studies were conducted on musculoskeletal disorders (MSD). MSD refers to a wide range of degenerative conditions of joints, bones, and muscles, and these conditions are the most common causes of chronic disability worldwide, being a major burden to the society. Conventional treatment modalities for MSD are not sufficient to correct the underlying structural abnormalities. Hence, ADSC-based cell therapies are being tested as a form of alternative, yet more effective, therapies in the management of MSDs. Therefore, in this review, MSDs subjected to the ADSC-based therapy were further categorized as arthritis, craniomaxillofacial defects, tendon/ligament related disorders, and spine disorders, and their brief characterization as well as the corresponding conventional therapeutic approaches with possible mechanisms with which ADSCs produce regenerative effects in disease-specific microenvironments were discussed to provide an overview of under which circumstances and on what bases the ADSC-based cell therapy was implemented. Providing an overview of the current status of ADSC-based cell therapy on MSDs can help to develop better and optimized strategies of ADSC-based therapeutics for MSDs as well as help to find novel clinical applications of ADSCs in the near future.
Collapse
Affiliation(s)
- Seahyoung Lee
- Institute for Bio-Medical Convergence, College of Medicine, Catholic Kwandong University, Gangneung 210-701, Korea; (S.L.); (B.-W.S.); (S.L.); (S.W.K.)
| | - Dong-Sik Chae
- Department of Orthopedic Surgery, International St. Mary’s Hospital, Catholic Kwandong University, Gangneung 210-701, Korea;
| | - Byeong-Wook Song
- Institute for Bio-Medical Convergence, College of Medicine, Catholic Kwandong University, Gangneung 210-701, Korea; (S.L.); (B.-W.S.); (S.L.); (S.W.K.)
| | - Soyeon Lim
- Institute for Bio-Medical Convergence, College of Medicine, Catholic Kwandong University, Gangneung 210-701, Korea; (S.L.); (B.-W.S.); (S.L.); (S.W.K.)
| | - Sang Woo Kim
- Institute for Bio-Medical Convergence, College of Medicine, Catholic Kwandong University, Gangneung 210-701, Korea; (S.L.); (B.-W.S.); (S.L.); (S.W.K.)
| | - Il-Kwon Kim
- Institute for Bio-Medical Convergence, College of Medicine, Catholic Kwandong University, Gangneung 210-701, Korea; (S.L.); (B.-W.S.); (S.L.); (S.W.K.)
- Correspondence: (I.-K.K.); (K.-C.H.); Fax: +82-32-290-2774 (K.-C.H.)
| | - Ki-Chul Hwang
- Institute for Bio-Medical Convergence, College of Medicine, Catholic Kwandong University, Gangneung 210-701, Korea; (S.L.); (B.-W.S.); (S.L.); (S.W.K.)
- Correspondence: (I.-K.K.); (K.-C.H.); Fax: +82-32-290-2774 (K.-C.H.)
| |
Collapse
|
18
|
Fleming BC, Fadale PD, Hulstyn MJ, Shalvoy RM, Tung GA, Badger GJ. Long-term outcomes of anterior cruciate ligament reconstruction surgery: 2020 OREF clinical research award paper. J Orthop Res 2021; 39:1041-1051. [PMID: 32639610 PMCID: PMC7790866 DOI: 10.1002/jor.24794] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/17/2020] [Revised: 06/09/2020] [Accepted: 06/25/2020] [Indexed: 02/04/2023]
Abstract
ACL injuries place the knee at risk for post-traumatic osteoarthritis (PTOA) despite surgical anterior cruciate ligament (ACL) reconstruction. One parameter thought to affect PTOA risk is the initial graft tension. This randomized controlled trial (RCT) was designed to compare outcomes between two graft tensioning protocols that bracket the range commonly used. At 7 years postsurgery, we determined that most outcomes between the two tension groups were not significantly different, that they were inferior to an uninjured matched control group, and that PTOA was progressing in both groups relative to controls. The trial database was also leveraged to gain insight into mechanisms of PTOA following ACL injury. We determined that the inflammatory response at the time of injury undermines one of the joint's lubricating mechanisms. We learned that patients continue to protect their surgical knee 5 years postinjury compared to controls during a jump-pivot activity. We also established that presurgical knee function and mental health were correlated with symptomatic PTOA at 7 years, that there were specific anatomical factors associated with poor outcomes, and that there were no changes in outcomes due to tunnel widening in patients receiving hamstring tendon autografts. We also validated a magnetic resonance imaging technique to noninvasively assess graft strength. In conclusion, the RCT determined that initial graft tensioning does not have a major influence on 7-year outcomes. Therefore, surgeons can reconstruct the ACL using a graft tensioning protocol that is within the window of the two graft tensioning techniques evaluated in this RCT.
Collapse
Affiliation(s)
- Braden C. Fleming
- Department of Orthopaedics, Warren Alpert Medical School of Brown University,Center for Biomedical Engineering, Brown University
| | - Paul D. Fadale
- Department of Orthopaedics, Warren Alpert Medical School of Brown University
| | - Michael J. Hulstyn
- Department of Orthopaedics, Warren Alpert Medical School of Brown University
| | - Robert M. Shalvoy
- Department of Orthopaedics, Warren Alpert Medical School of Brown University
| | - Glenn A. Tung
- Department of Orthopaedics, Warren Alpert Medical School of Brown University
| | - Gary J. Badger
- Department of Medical Biostatistics, University of Vermont
| |
Collapse
|
19
|
ACL Repair: A Game Changer or Will History Repeat Itself? A Critical Appraisal. J Clin Med 2021; 10:jcm10050912. [PMID: 33652689 PMCID: PMC7956607 DOI: 10.3390/jcm10050912] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2020] [Revised: 02/05/2021] [Accepted: 02/22/2021] [Indexed: 01/13/2023] Open
Abstract
Until the past decade the common thought was that the anterior cruciate ligament (ACL) was not able to heal and restore knee stability. In this manuscript a brief review of studies of the developers and the early adaptors of four different modern ACL repair techniques are presented. The present status and considerations for the future of ACL repair and its research are shared. After promising short- to midterm ACL healing results by the developers, the results of the early adaptors show more variety in terms of rerupture and reintervention for other reasons. Risk factors for failure are a young age, high preinjury sports activity level, midsubstance ruptures and impaired integrity of the ACL bundles and the synovial sheath. There is a call for more clinical data and randomized clinical trials. Conclusion: an important finding of the past decade is that the ACL is able to heal and subsequently restabilize the knee. Patient selection is emphasized: the ideal patient is a non-high athlete older than 25 and has an acute proximal one bundle ACL rupture. Further research will have to show if ACL repair could be a game changer or if history will repeat itself.
Collapse
|
20
|
Zheng L, Wang Y, Qiu P, Xia C, Fang Y, Mei S, Fang C, Shi Y, Wu K, Chen Z, Fan S, He D, Lin X, Chen P. Primary chondrocyte exosomes mediate osteoarthritis progression by regulating mitochondrion and immune reactivity. Nanomedicine (Lond) 2020; 14:3193-3212. [PMID: 31855117 DOI: 10.2217/nnm-2018-0498] [Citation(s) in RCA: 42] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Aim: We aimed to investigate the proteomics of primary chondrocyte exosomes and the effect of exosomes in osteoarthritis (OA) treatment. Materials & methods: We isolated exosomes from primary chondrocytes cultured in normal (D0) and inflammatory environments induced by IL-1β and determined the proteomics of these exosomes. Next, we investigated what effect and mechanism D0 chondrocytes exosomes have in OA treatment. Results: There were more proteins that belonged to mitochondrion and were involved in immune system processes in D0 exosomes. Notably, intra-articular administration of D0 exosomes successfully prevented the development of OA. D0 chondrocyte exosomes could restore mitochondrial dysfunction and polarize macrophage response toward an M2 phenotype. Conclusion: Our findings demonstrated that primary chondrocyte exosomes are efficient in OA treatment.
Collapse
Affiliation(s)
- Lin Zheng
- Department of Orthopaedic Surgery, Sir Run Run Shaw Hospital, Medical College of Zhejiang University, Hangzhou, PR China.,Key Laboratory of Musculoskeletal System Degeneration & Regeneration Translational Research of Zhejiang Province, Hangzhou, PR China.,Department of Orthopedics, 5th Affiliated Hospital, Lishui Municipal Central Hospital, Wenzhou Medical University, Lishui, PR China
| | - Yiyun Wang
- Department of Orthopaedic Surgery, Sir Run Run Shaw Hospital, Medical College of Zhejiang University, Hangzhou, PR China.,Key Laboratory of Musculoskeletal System Degeneration & Regeneration Translational Research of Zhejiang Province, Hangzhou, PR China
| | - Pengcheng Qiu
- Department of Orthopaedic Surgery, Sir Run Run Shaw Hospital, Medical College of Zhejiang University, Hangzhou, PR China.,Key Laboratory of Musculoskeletal System Degeneration & Regeneration Translational Research of Zhejiang Province, Hangzhou, PR China
| | - Chen Xia
- Department of Orthopaedic Surgery, Sir Run Run Shaw Hospital, Medical College of Zhejiang University, Hangzhou, PR China.,Key Laboratory of Musculoskeletal System Degeneration & Regeneration Translational Research of Zhejiang Province, Hangzhou, PR China
| | - Yifan Fang
- Hangzhou Foreign Languages School, Hangzhou, PR China
| | - Sheng Mei
- Department of Orthopaedic Surgery, Sir Run Run Shaw Hospital, Medical College of Zhejiang University, Hangzhou, PR China.,Key Laboratory of Musculoskeletal System Degeneration & Regeneration Translational Research of Zhejiang Province, Hangzhou, PR China
| | - Chen Fang
- Department of Orthopaedic Surgery, Sir Run Run Shaw Hospital, Medical College of Zhejiang University, Hangzhou, PR China.,Key Laboratory of Musculoskeletal System Degeneration & Regeneration Translational Research of Zhejiang Province, Hangzhou, PR China
| | - Yiling Shi
- Department of Orthopaedic Surgery, Sir Run Run Shaw Hospital, Medical College of Zhejiang University, Hangzhou, PR China.,Key Laboratory of Musculoskeletal System Degeneration & Regeneration Translational Research of Zhejiang Province, Hangzhou, PR China
| | - Kaiwei Wu
- Department of Orthopaedic Surgery, Sir Run Run Shaw Hospital, Medical College of Zhejiang University, Hangzhou, PR China.,Key Laboratory of Musculoskeletal System Degeneration & Regeneration Translational Research of Zhejiang Province, Hangzhou, PR China
| | - Zhijun Chen
- Department of Orthopaedic Surgery, Sir Run Run Shaw Hospital, Medical College of Zhejiang University, Hangzhou, PR China.,Key Laboratory of Musculoskeletal System Degeneration & Regeneration Translational Research of Zhejiang Province, Hangzhou, PR China
| | - Shunwu Fan
- Department of Orthopaedic Surgery, Sir Run Run Shaw Hospital, Medical College of Zhejiang University, Hangzhou, PR China.,Key Laboratory of Musculoskeletal System Degeneration & Regeneration Translational Research of Zhejiang Province, Hangzhou, PR China
| | - Dengwei He
- Department of Orthopedics, 5th Affiliated Hospital, Lishui Municipal Central Hospital, Wenzhou Medical University, Lishui, PR China
| | - Xianfeng Lin
- Department of Orthopaedic Surgery, Sir Run Run Shaw Hospital, Medical College of Zhejiang University, Hangzhou, PR China.,Key Laboratory of Musculoskeletal System Degeneration & Regeneration Translational Research of Zhejiang Province, Hangzhou, PR China
| | - Pengfei Chen
- Department of Orthopaedic Surgery, Sir Run Run Shaw Hospital, Medical College of Zhejiang University, Hangzhou, PR China.,Key Laboratory of Musculoskeletal System Degeneration & Regeneration Translational Research of Zhejiang Province, Hangzhou, PR China
| |
Collapse
|
21
|
Ayturk UM, Sieker JT, Haslauer CM, Proffen BL, Weissenberger MH, Warman ML, Fleming BC, Murray MM. Proteolysis and cartilage development are activated in the synovium after surgical induction of post traumatic osteoarthritis. PLoS One 2020; 15:e0229449. [PMID: 32107493 PMCID: PMC7046188 DOI: 10.1371/journal.pone.0229449] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2019] [Accepted: 02/06/2020] [Indexed: 12/26/2022] Open
Abstract
Anterior cruciate ligament (ACL) transection surgery in the minipig induces post-traumatic osteoarthritis (PTOA) in a pattern similar to that seen in human patients after ACL injury. Prior studies have reported the presence of cartilage matrix-degrading proteases, such as Matrix metalloproteinase-1 (MMP-1) and A disintegrin and metalloproteinase with thrombospondin motifs 4 (ADAMTS-4), in the synovial fluid of injured or arthritic joints; however, the tissue origin of these proteases is unknown. The objective of this study was to identify transcriptional processes activated in the synovium after surgical induction of PTOA with ACL transection, and to determine if processes associated with proteolysis were enriched in the synovium after ACL transection. Unilateral ACL transection was performed in adolescent Yucatan minipigs and synovium samples were collected at 1, 5, 9, and 14 days post-injury. Transcriptome-wide gene expression levels were determined using bulk RNA-Sequencing in the surgical animals and control animals with healthy knees. The greatest number of transcripts with significant changes was observed 1 day after injury. These changes were primarily associated with cellular proliferation, consistent with measurements of increased cellularity of the synovium at the two-week time point. At five to 14 days, the expression of transcripts relating to proteolysis and cartilage development was significantly enriched. While protease inhibitor-encoding transcripts (TIMP2, TIMP3) represented the largest fraction of protease-associated transcripts in the uninjured synovium, protease-encoding transcripts (including MMP1, MMP2, ADAMTS4) predominated after surgery. Cartilage development-associated transcripts that are typically not expressed by synovial cells, such as ACAN and COMP, were enriched in the synovium following ACL-transection. The upregulation in both catabolic processes (proteolysis) and anabolic processes (cartilage development) suggests that the synovium plays a complex, balancing role in the early response to PTOA induction.
Collapse
Affiliation(s)
- Ugur M. Ayturk
- Department of Orthopaedic Surgery, Boston Children’s Hospital, Harvard Medical School, Boston, Massachusetts, United States of America
- Department of Genetics, Harvard Medical School, Boston, Massachusetts, United States of America
| | - Jakob T. Sieker
- Department of Orthopaedic Surgery, Boston Children’s Hospital, Harvard Medical School, Boston, Massachusetts, United States of America
| | - Carla M. Haslauer
- Department of Orthopaedic Surgery, Boston Children’s Hospital, Harvard Medical School, Boston, Massachusetts, United States of America
| | - Benedikt L. Proffen
- Department of Orthopaedic Surgery, Boston Children’s Hospital, Harvard Medical School, Boston, Massachusetts, United States of America
| | | | - Matthew L. Warman
- Department of Orthopaedic Surgery, Boston Children’s Hospital, Harvard Medical School, Boston, Massachusetts, United States of America
- Department of Genetics, Harvard Medical School, Boston, Massachusetts, United States of America
| | - Braden C. Fleming
- Department of Orthopaedics, Rhode Island Hospital, Warren Alpert Medical School of Brown University, Providence, Rhode Island, United States of America
| | - Martha M. Murray
- Department of Orthopaedic Surgery, Boston Children’s Hospital, Harvard Medical School, Boston, Massachusetts, United States of America
| |
Collapse
|
22
|
Lee YH, Park HK, Auh QS, Nah H, Lee JS, Moon HJ, Heo DN, Kim IS, Kwon IK. Emerging Potential of Exosomes in Regenerative Medicine for Temporomandibular Joint Osteoarthritis. Int J Mol Sci 2020; 21:ijms21041541. [PMID: 32102392 PMCID: PMC7073204 DOI: 10.3390/ijms21041541] [Citation(s) in RCA: 44] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2019] [Revised: 02/20/2020] [Accepted: 02/22/2020] [Indexed: 02/06/2023] Open
Abstract
Exosomes are nanosized vesicles (30–140 nm) of endocytic origin that play important roles in regenerative medicine. They are derived from cell membranes during endocytic internalization and stabilize in biological fluids such as blood and synovia. Temporomandibular joint osteoarthritis (TMJ OA) is a degenerative disease, which, in addition to chronic pain, is characterized by progressive cartilage breakdown, condylar bone remodeling, and synovitis. However, traditional clinical treatments have limited symptom- and structure-modifying effects to restore damaged cartilage and other TMJ tissues. This is due to the limited self-healing capacity of condylar cartilage. Recently, stem-cell-derived exosomes have been studied as an alternative therapeutic approach to tissue repair and regeneration. It is known that trophic regulation of mesenchymal stem cells (MSCs) has anti-inflammatory and immunomodulatory effects under pathological conditions, and research on MSC-derived exosomes is rapidly accumulating. MSC-derived exosomes mimic the major therapeutic effects of MSCs. They affect the activity of immune effector cells and possess multilineage differentiation potential, including chondrogenic and osteogenic differentiation. Furthermore, exosomes are capable of regenerating cartilage or osseous compartments and restoring injured tissues and can treat dysfunction and pain caused by TMJ OA. In this review, we looked at the uniqueness of TMJ, the pathogenesis of TMJ OA, and the potential role of MSC-derived exosomes for TMJ cartilage and bone regeneration.
Collapse
Affiliation(s)
- Yeon-Hee Lee
- Department of Orofacial Pain and Oral Medicine, Kyung Hee University Dental Hospital, #26 Kyunghee-daero, Dongdaemun-gu, Seoul 02447, Korea; (Y.-H.L.); (Q.-S.A.)
| | - Hee-Kyung Park
- Department of Oral Medicine and Oral Diagnosis, Dental Research Institute, Seoul National University School of Dentistry, Seoul 03080, Korea;
| | - Q-Schick Auh
- Department of Orofacial Pain and Oral Medicine, Kyung Hee University Dental Hospital, #26 Kyunghee-daero, Dongdaemun-gu, Seoul 02447, Korea; (Y.-H.L.); (Q.-S.A.)
| | - Haram Nah
- Department of Dentistry, Graduate School, Kyung Hee University, Seoul 02447, Korea; (H.N.); (J.S.L.)
| | - Jae Seo Lee
- Department of Dentistry, Graduate School, Kyung Hee University, Seoul 02447, Korea; (H.N.); (J.S.L.)
| | - Ho-Jin Moon
- Department of Dental Materials, School of Dentistry, Kyung Hee University, Seoul 02447, Korea; (H.-J.M.); (D.N.H.)
| | - Dong Nyoung Heo
- Department of Dental Materials, School of Dentistry, Kyung Hee University, Seoul 02447, Korea; (H.-J.M.); (D.N.H.)
| | - In San Kim
- Center for Theragnosis, Biomedical Research Institute, Korea Institute of Science and Technology (KIST), Seoul 02792, Korea;
| | - Il Keun Kwon
- Department of Dental Materials, School of Dentistry, Kyung Hee University, Seoul 02447, Korea; (H.-J.M.); (D.N.H.)
- Correspondence: ; Tel.: +82-2-958-9409; Fax: +82-2-958-9454
| |
Collapse
|
23
|
Cheung EC, DiLallo M, Feeley BT, Lansdown DA. Osteoarthritis and ACL Reconstruction-Myths and Risks. Curr Rev Musculoskelet Med 2020; 13:115-122. [PMID: 31894466 DOI: 10.1007/s12178-019-09596-w] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
PURPOSE OF REVIEW Anterior cruciate ligament (ACL) injury is one of the most common ligamentous injuries suffered by athletes participating in cutting sports. A common misperception is that ACL reconstruction can prevent osteoarthritis (OA). The goal of this paper is to review and discuss the contributing factors for the development of OA following ACL injury. RECENT FINDINGS There has been interesting new research related to ACL reconstruction. As understanding of knee biomechanics following ACL injury and reconstruction has changed over time, many surgeons have changed their surgical techniques to low anterior drilling to position their femoral tunnel in an attempt to place the ACL in a more anatomic position. Even with this change in the femoral tunnel position, 85% of knees following ACL reconstruction have abnormal tibial motion compared to contralateral non-injured knees. Studies have shown increases in inflammatory cytokines in the knee following ACL injury, and newer MRI sequences have allowed for earlier objective detection of degenerative changes to cartilage following injury. Recent studies have shown that injecting IL-1 receptor antagonist and corticosteroids can modulate the post-injury inflammatory cascade. ACL reconstruction does not prevent the development of OA but can improve knee kinematics and reduce secondary injury to the cartilage and meniscus. Advancements in imaging studies has allowed for earlier detection of degenerative changes in the knee, which has allowed researchers to study how new interventions can alter the course of degenerative change in the knee following ACL injury.
Collapse
Affiliation(s)
- Edward C Cheung
- Department of Orthopaedic Surgery, University of California, San Francisco, 500 Parnassus Avenue, MU-320W, San Francisco, CA, 94143, USA.
| | - Marcus DiLallo
- Department of Orthopaedic Surgery, University of California, San Francisco, 500 Parnassus Avenue, MU-320W, San Francisco, CA, 94143, USA
| | - Brian T Feeley
- Department of Orthopaedic Surgery, University of California, San Francisco, 500 Parnassus Avenue, MU-320W, San Francisco, CA, 94143, USA
| | - Drew A Lansdown
- Department of Orthopaedic Surgery, University of California, San Francisco, 500 Parnassus Avenue, MU-320W, San Francisco, CA, 94143, USA
| |
Collapse
|
24
|
Allogeneic Versus Autologous Injectable Mesenchymal Stem Cells for Knee Osteoarthritis: Review and Current Status. Tech Orthop 2019. [DOI: 10.1097/bto.0000000000000357] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
|
25
|
Bascuñán AL, Biedrzycki A, Banks SA, Lewis DD, Kim SE. Large Animal Models for Anterior Cruciate Ligament Research. Front Vet Sci 2019; 6:292. [PMID: 31555675 PMCID: PMC6727067 DOI: 10.3389/fvets.2019.00292] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2019] [Accepted: 08/15/2019] [Indexed: 12/13/2022] Open
Abstract
Large animal (non-rodent mammal) models are commonly used in ACL research, but no species is currently considered the gold standard. Important considerations when selecting a large animal model include anatomical differences, the natural course of ACL pathology in that species, and biomechanical differences between humans and the chosen model. This article summarizes recent reports related to anatomy, pathology, and biomechanics of the ACL for large animal species (dog, goat, sheep, pig, and rabbit) commonly used in ACL research. Each species has unique features and benefits as well as potential drawbacks, which are highlighted in this review. This information may be useful in the selection process when designing future studies.
Collapse
Affiliation(s)
- Ana Luisa Bascuñán
- Department of Small Animal Clinical Sciences, College of Veterinary Medicine, University of Florida, Gainesville, FL, United States
| | - Adam Biedrzycki
- Department of Large Animal Clinical Sciences, College of Veterinary Medicine, University of Florida, Gainesville, FL, United States
| | - Scott A Banks
- Department of Mechanical and Aerospace Engineering, University of Florida, Gainesville, FL, United States
| | - Daniel D Lewis
- Department of Small Animal Clinical Sciences, College of Veterinary Medicine, University of Florida, Gainesville, FL, United States
| | - Stanley E Kim
- Department of Small Animal Clinical Sciences, College of Veterinary Medicine, University of Florida, Gainesville, FL, United States
| |
Collapse
|
26
|
Long Noncoding RNA H19 Participates in the Regulation of Adipose-Derived Stem Cells Cartilage Differentiation. Stem Cells Int 2019; 2019:2139814. [PMID: 31191668 PMCID: PMC6525810 DOI: 10.1155/2019/2139814] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2018] [Revised: 01/28/2019] [Accepted: 02/13/2019] [Indexed: 12/22/2022] Open
Abstract
Adipose-derived stem cells (ADSCs) are multipotent and have received increasing attention for their applications in medicine. Cell-based therapies are optimal for diseases with loss or damage to tissues or organs. ADSCs and bone marrow mesenchymal stem cells (BMSCs) can differentiate into many cell lineages. Because of their advantages in accessibility and volume, ADSCs are regarded as a desirable alternative to BMSCs. In this study, we focused on the chondrocytic differentiation potential of ADSCs and the underlying mechanism. We found that the long noncoding RNA H19 plays an important role in this process. Overexpression of H19 in ADSCs induced differentiation towards chondrocytes. H19 is abundantly expressed during embryonic development and downregulated after birth, implying its regulatory role in determining cell fate. However, in our experiments, H19 exerted its regulatory function during cartilage differentiation of ADSCs through competing miRNA regulation of STAT2.
Collapse
|
27
|
Piluso S, Li Y, Abinzano F, Levato R, Moreira Teixeira L, Karperien M, Leijten J, van Weeren R, Malda J. Mimicking the Articular Joint with In Vitro Models. Trends Biotechnol 2019; 37:1063-1077. [PMID: 31000204 DOI: 10.1016/j.tibtech.2019.03.003] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2018] [Revised: 02/21/2019] [Accepted: 03/04/2019] [Indexed: 12/18/2022]
Abstract
Treating joint diseases remains a significant clinical challenge. Conventional in vitro cultures and animal models have been helpful, but suffer from limited predictive power for the human response. Advanced models are therefore required to mimic the complex biological interactions within the human joint. However, the intricate structure of the joint microenvironment and the complex nature of joint diseases have challenged the development of in vitro models that can faithfully mimic the in vivo physiological and pathological environments. In this review, we discuss the current in vitro models of the joint and the progress achieved in the development of novel and potentially more predictive models, and highlight the application of new technologies to accurately emulate the articular joint.
Collapse
Affiliation(s)
- Susanna Piluso
- Department of Orthopaedics, University Medical Center Utrecht, Utrecht University, Utrecht, The Netherlands; Department of Developmental BioEngineering, Technical Medical Centre, University of Twente, Enschede, The Netherlands; Regenerative Medicine Utrecht, Utrecht University, Utrecht, The Netherlands
| | - Yang Li
- Department of Orthopaedics, University Medical Center Utrecht, Utrecht University, Utrecht, The Netherlands; Regenerative Medicine Utrecht, Utrecht University, Utrecht, The Netherlands
| | - Florencia Abinzano
- Department of Orthopaedics, University Medical Center Utrecht, Utrecht University, Utrecht, The Netherlands; Regenerative Medicine Utrecht, Utrecht University, Utrecht, The Netherlands
| | - Riccardo Levato
- Department of Orthopaedics, University Medical Center Utrecht, Utrecht University, Utrecht, The Netherlands; Regenerative Medicine Utrecht, Utrecht University, Utrecht, The Netherlands
| | - Liliana Moreira Teixeira
- Department of Developmental BioEngineering, Technical Medical Centre, University of Twente, Enschede, The Netherlands; Regenerative Medicine Utrecht, Utrecht University, Utrecht, The Netherlands; Department of Equine Sciences, Faculty of Veterinary Medicine, Utrecht University, Utrecht, The Netherlands
| | - Marcel Karperien
- Department of Developmental BioEngineering, Technical Medical Centre, University of Twente, Enschede, The Netherlands
| | - Jeroen Leijten
- Department of Developmental BioEngineering, Technical Medical Centre, University of Twente, Enschede, The Netherlands
| | - René van Weeren
- Regenerative Medicine Utrecht, Utrecht University, Utrecht, The Netherlands; Department of Equine Sciences, Faculty of Veterinary Medicine, Utrecht University, Utrecht, The Netherlands
| | - Jos Malda
- Department of Orthopaedics, University Medical Center Utrecht, Utrecht University, Utrecht, The Netherlands; Regenerative Medicine Utrecht, Utrecht University, Utrecht, The Netherlands; Department of Equine Sciences, Faculty of Veterinary Medicine, Utrecht University, Utrecht, The Netherlands.
| |
Collapse
|
28
|
Jia D, Li Y, Han R, Wang K, Cai G, He C, Yang L. miR‑146a‑5p expression is upregulated by the CXCR4 antagonist TN14003 and attenuates SDF‑1‑induced cartilage degradation. Mol Med Rep 2019; 19:4388-4400. [PMID: 30942441 PMCID: PMC6472139 DOI: 10.3892/mmr.2019.10076] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2018] [Accepted: 03/06/2019] [Indexed: 12/20/2022] Open
Abstract
Osteoarthritis (OA) is an aseptic inflammatory disease which is associated with the stromal cell-derived factor 1/C-X-C chemokine receptor type 4 (SDF-1/CXCR4) axis. Accumulating studies have identified numbers of microRNAs (miRNAs) that serve important roles in the pathogenesis of OA. However, whether and how the inhibition of the SDF-1/CXCR4 axis induces alterations in miRNA expression remains largely unclear. miRNA profiling was performed in OA chondrocytes stimulated with SDF-1 alone, or SDF-1 with the CXCR4 antagonist TN14003 by miRNA microarray. Candidate miRNAs were verified by reverse transcription quantitative polymerase chain reaction. Bioinformatic analyses including target prediction, gene ontology (GO) and pathway analysis were performed to explore the potential functions of candidate miRNAs. Notably, 7 miRNAs (miR-146a-5p, miR-221-3p, miR-126-3p, miR-185-5p, miR-155-5p, miR-124-3p and miR-130a-3p) were significantly differentially expressed. GO analysis indicated that miR-146a-5p and its associated genes were enriched in receptor regulatory activity, nuclear factor-kappa-light-chain-enhancer of activated B cells (NF-κB)-inducing kinase activity, cellular response to interleukin-1, cytokine-cytokine receptor interaction, NF-κB signaling pathway and osteoclast differentiation pathways. CXCR4 was predicted to be a target of miR-146a-5p with high importance. The mRNA and protein levels of key factors involved in cartilage degeneration were measured following manipulation of the expression levels of miR-146a-5p in OA chondrocytes. CXCR4 and MMP-3 levels were negatively associated with miR-146a-5p expression, while the levels of type II collagen and aggrecan were positively associated. These data reveal that TN14003 upregulates miR-146a-5p expression, and also pinpoints a novel role of miR-146a-5p in inhibiting cartilage degeneration by directly targeting the SDF-1/CXCR4 axis.
Collapse
Affiliation(s)
- Di Jia
- Department of Sports Medicine, The First Affiliated Hospital, Kunming Medical University, Kunming, Yunnan 650000, P.R. China
| | - Yanlin Li
- Department of Sports Medicine, The First Affiliated Hospital, Kunming Medical University, Kunming, Yunnan 650000, P.R. China
| | - Rui Han
- Department of Diabetology, The First Affiliated Hospital, Kunming Medical University, Kunming, Yunnan 650000, P.R. China
| | - Kun Wang
- Department of Sports Medicine, The First Affiliated Hospital, Kunming Medical University, Kunming, Yunnan 650000, P.R. China
| | - Guofeng Cai
- Department of Sports Medicine, The First Affiliated Hospital, Kunming Medical University, Kunming, Yunnan 650000, P.R. China
| | - Chuan He
- Department of Sports Medicine, The First Affiliated Hospital, Kunming Medical University, Kunming, Yunnan 650000, P.R. China
| | - Lingjian Yang
- Department of Sports Medicine, The First Affiliated Hospital, Kunming Medical University, Kunming, Yunnan 650000, P.R. China
| |
Collapse
|
29
|
Tanaka T, Matsushita T, Nishida K, Takayama K, Nagai K, Araki D, Matsumoto T, Tabata Y, Kuroda R. Attenuation of osteoarthritis progression in mice following intra‐articular administration of simvastatin‐conjugated gelatin hydrogel. J Tissue Eng Regen Med 2019; 13:423-432. [DOI: 10.1002/term.2804] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2018] [Revised: 10/23/2018] [Accepted: 12/17/2018] [Indexed: 12/13/2022]
Affiliation(s)
- Toshikazu Tanaka
- Department of Orthopaedic SurgeryKobe University Graduate School of Medicine Kobe Hyogo Japan
| | - Takehiko Matsushita
- Department of Orthopaedic SurgeryKobe University Graduate School of Medicine Kobe Hyogo Japan
| | - Kyohei Nishida
- Department of Orthopaedic SurgeryKobe University Graduate School of Medicine Kobe Hyogo Japan
| | - Koji Takayama
- Department of Orthopaedic SurgeryKobe University Graduate School of Medicine Kobe Hyogo Japan
| | - Kanto Nagai
- Department of Orthopaedic SurgeryKobe University Graduate School of Medicine Kobe Hyogo Japan
| | - Daisuke Araki
- Department of Orthopaedic SurgeryKobe University Graduate School of Medicine Kobe Hyogo Japan
| | - Tomoyuki Matsumoto
- Department of Orthopaedic SurgeryKobe University Graduate School of Medicine Kobe Hyogo Japan
| | - Yasuhiko Tabata
- Department of Biomaterials, Field of Tissue Engineering, Institute for Frontier Medical SciencesKyoto University Kyoto Kyoto Japan
| | - Ryosuke Kuroda
- Department of Orthopaedic SurgeryKobe University Graduate School of Medicine Kobe Hyogo Japan
| |
Collapse
|
30
|
Michalek J, Vrablikova A, Darinskas A, Lukac L, Prucha J, Skopalik J, Travnik J, Cibulka M, Dudasova Z. Stromal vascular fraction cell therapy for osteoarthritis in elderly: Multicenter case-control study. J Clin Orthop Trauma 2019; 10:76-80. [PMID: 30705536 PMCID: PMC6349628 DOI: 10.1016/j.jcot.2018.11.010] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/26/2018] [Revised: 11/21/2018] [Accepted: 11/22/2018] [Indexed: 12/13/2022] Open
Affiliation(s)
- Jaroslav Michalek
- Internal Consortium for Cell Therapy and Immunotherapy, Brno, Czech Republic
- Cellthera Clinic, Brno, Czech Republic
- Department of Pediatrics, University Hospital Brno, Brno, Czech Republic
| | | | - Adas Darinskas
- Internal Consortium for Cell Therapy and Immunotherapy, Brno, Czech Republic
- Department of Pharmacology, Lithuanian University of Health Sciences, Kaunas, Lithuania
| | | | - Jaroslav Prucha
- Department of Health Care Disciplines and Population Protection, Faculty of Biomedical Engineering, Czech Technical University in Prague, Prague, Czech Republic
| | - Josef Skopalik
- Cellthera Clinic, Brno, Czech Republic
- Department of Human Pharmacology and Toxicology, Faculty of Pharmacy, University of Veterinary and Pharmaceutical Sciences, Brno, Czech Republic
| | - Jan Travnik
- Cellthera Clinic, Brno, Czech Republic
- Department of Orthopedics, Traumatology Hospital, Brno, Czech Republic
| | | | - Zuzana Dudasova
- Internal Consortium for Cell Therapy and Immunotherapy, Brno, Czech Republic
- Cellthera Clinic, Brno, Czech Republic
| |
Collapse
|
31
|
Osteoarthritis following meniscus and ligament injury: insights from translational studies and animal models. Curr Opin Rheumatol 2019; 31:70-79. [DOI: 10.1097/bor.0000000000000566] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
|
32
|
Brophy RH, Rothermich MA, Tycksen ED, Cai L, Rai MF. Presence of meniscus tear alters gene expression profile of anterior cruciate ligament tears. J Orthop Res 2018; 36:2612-2621. [PMID: 29668032 DOI: 10.1002/jor.24025] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/22/2018] [Accepted: 04/07/2018] [Indexed: 02/04/2023]
Abstract
Anterior cruciate ligament (ACL) tears occur in isolation or in tandem with other intra-articular injuries such as meniscus tears. The impact of injury pattern on the molecular biology of the injured ACL is unknown. Here, we tested the hypothesis that the biological response of the ACL to injury varies based on the presence or absence of concomitant meniscus tear. We performed RNA-seq on 28 ACL tears remnants (12 isolated, 16 combined). In total, 16,654 transcripts were differentially expressed between isolated and combined injury groups at false discovery rate of 0.05. Due to the large number of differentially expressed transcripts, we undertook an Ensembl approach to discover features that acted as hub genes that did not necessarily have large fold changes or high statistical significance, but instead had high biological significance. Our data revealed a negatively correlated module containing 5,960 transcripts (down-regulated in combined injury) and a positively correlated module containing 2,260 transcripts (up-regulated in combined injury). TNS1, MEF2D, NOTCH3, SOGA1, and MLXIP were highly-connected hub genes in the negatively correlated module and SCN2A, CSMD3, LRC44, USH2A, and LRP1B were critical hub genes in the positively correlated module. Transcripts in the negatively correlated module were associated with biological adhesion, actin-filament organization, cell junction assembly, and cell matrix adhesion. The positively correlated module transcripts were enriched for neuron migration and exocytosis regulation. These findings indicate genes and pathways reflective of healing deficiency and gain of neurogenic signaling in combined ACL and meniscus tears, suggesting their diminished repair potential. The biological response of ACL to injury could have implications for healing potential of the ligament and the long term health of the knee. © 2018 Orthopaedic Research Society. Published by Wiley Periodicals, Inc. J Orthop Res 36:2612-2621, 2018.
Collapse
Affiliation(s)
- Robert H Brophy
- Department of Orthopaedic Surgery, Washington University School of Medicine, Musculoskeletal Research Center, St. Louis, Missouri, 63110
| | - Marcus A Rothermich
- Department of Orthopaedic Surgery, Washington University School of Medicine, Musculoskeletal Research Center, St. Louis, Missouri, 63110
| | - Eric D Tycksen
- Washington University School of Medicine, Genome Technology Access Center, St. Louis, Missouri, 63110
| | - Lei Cai
- Department of Orthopaedic Surgery, Washington University School of Medicine, Musculoskeletal Research Center, St. Louis, Missouri, 63110
| | - Muhammad Farooq Rai
- Department of Orthopaedic Surgery, Washington University School of Medicine, Musculoskeletal Research Center, St. Louis, Missouri, 63110
- Department of Cell Biology & Physiology, Washington University School of Medicine, St. Louis, Missouri, 63110
| |
Collapse
|
33
|
Pak J, Lee JH, Pak N, Pak Y, Park KS, Jeon JH, Jeong BC, Lee SH. Cartilage Regeneration in Humans with Adipose Tissue-Derived Stem Cells and Adipose Stromal Vascular Fraction Cells: Updated Status. Int J Mol Sci 2018; 19:ijms19072146. [PMID: 30041472 PMCID: PMC6073159 DOI: 10.3390/ijms19072146] [Citation(s) in RCA: 55] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2018] [Revised: 07/18/2018] [Accepted: 07/21/2018] [Indexed: 02/07/2023] Open
Abstract
Adipose tissue-derived stem cells (ASCs) in the form of stromal vascular fraction (SVF) and cultured expansion have been applied in clinical settings in some countries to treat osteoarthritis (OA) of knees, one of the most common debilitating, incurable disorders. Since the first report of successful cartilage-like tissue regeneration with autologous adipose SVF containing ASCs, there has been a gradual increase in the number of publications confirming such results. Thus far, most of the reports have been limited to treatments of OA of knees. Recently, successful applications of adipose SVF in treating OA of ankles and hips have been reported. In addition, several groups have reported modified methods of applying adipose SVF, such as combining bone marrow stimulation with adipose SVF or adding additional extracellular matrix (ECM) in treating OA. Here, we present an updated, systematic review of clinical effectiveness and safety in treating OA of knees, ankles, and one hip since 2016 using ASCs in the form of adipose SVF or in cultured expansion, along with a description and suggestion of potential biological mechanisms of cartilage regeneration.
Collapse
Affiliation(s)
- Jaewoo Pak
- Mipro Medical Clinic, 32-3 Chungdamdong, Gangnamgu, Seoul 06068, Korea.
| | - Jung Hun Lee
- National Leading Research Laboratory, Department of Biological Sciences, Myongji University, 116 Myongjiro, Yongin, Gyeonggido 17058, Korea.
| | - Natalie Pak
- Mipro Medical Clinic, 32-3 Chungdamdong, Gangnamgu, Seoul 06068, Korea.
| | - Yoon Pak
- First Medical Center, 11841 South St., Cerritos, CA 90703, USA.
| | - Kwang Seung Park
- National Leading Research Laboratory, Department of Biological Sciences, Myongji University, 116 Myongjiro, Yongin, Gyeonggido 17058, Korea.
| | - Jeong Ho Jeon
- National Leading Research Laboratory, Department of Biological Sciences, Myongji University, 116 Myongjiro, Yongin, Gyeonggido 17058, Korea.
| | - Byeong Chul Jeong
- National Leading Research Laboratory, Department of Biological Sciences, Myongji University, 116 Myongjiro, Yongin, Gyeonggido 17058, Korea.
| | - Sang Hee Lee
- National Leading Research Laboratory, Department of Biological Sciences, Myongji University, 116 Myongjiro, Yongin, Gyeonggido 17058, Korea.
| |
Collapse
|
34
|
Chinzei N, Brophy RH, Duan X, Cai L, Nunley RM, Sandell LJ, Rai MF. Molecular influence of anterior cruciate ligament tear remnants on chondrocytes: a biologic connection between injury and osteoarthritis. Osteoarthritis Cartilage 2018; 26:588-599. [PMID: 29391276 PMCID: PMC5871587 DOI: 10.1016/j.joca.2018.01.017] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/19/2017] [Revised: 01/15/2018] [Accepted: 01/22/2018] [Indexed: 02/08/2023]
Abstract
OBJECTIVE Anterior cruciate ligament (ACL) injury initiates a cascade of events often leading to osteoarthritis (OA). ACL reconstruction does not alter the course of OA, suggesting that heightened OA risk is likely due to factors in addition to the joint instability. We showed that torn ACL remnants express periostin (POSTN) in the acute phase of injury. Considering that ACL injury predisposes to OA and that POSTN is associated with cartilage metabolism, we hypothesize that ACL injury affects chondrocytes via POSTN. DESIGN Cartilage was obtained from osteoarthritic patients and ACL remnants were collected from patients undergoing ACL reconstruction. Crosstalk between ACL remnants and chondrocytes was studied in a transwell co-culture system. Expression of POSTN and other anabolic and catabolic genes was assessed via real-time polymerase chain reaction (PCR). Immunostaining for periostin was performed in human and mouse cartilage. The impact of exogenous periostin and siRNA-mediated ablation of periostin on matrix metabolism and cell migration was examined. Furthermore, the effect of anabolic (transforming growth factor beta 1 [TGF-β1]) and catabolic (interleukin 1 beta [IL-1β]) factors on POSTN expression was investigated. RESULTS ACL remnants induced expression of POSTN, MMP13 and ADAMTS4. Periostin levels were significantly higher in osteoarthritic compared to normal cartilage. Exogenous periostin induced MMP13 expression and cell migration, and repressed COL1A1 expression while POSTN knockdown inhibited expression of both anabolic and catabolic genes and impeded cell migration. TGF-β1 and IL-1β treatment did not alter POSTN expression but influenced chondrocyte metabolism as determined by quantification of anabolic and catabolic genes via real-time PCR. CONCLUSIONS ACL remnants can exert paracrine effects on cartilage, altering cellular homeostasis. Over time, this metabolic imbalance could contribute to OA development.
Collapse
Affiliation(s)
- N Chinzei
- Department of Orthopaedic Surgery, Musculoskeletal Research Center, Washington University School of Medicine, St. Louis, MO 63110, United States.
| | - R H Brophy
- Department of Orthopaedic Surgery, Musculoskeletal Research Center, Washington University School of Medicine, St. Louis, MO 63110, United States.
| | - X Duan
- Department of Orthopaedic Surgery, Musculoskeletal Research Center, Washington University School of Medicine, St. Louis, MO 63110, United States.
| | - L Cai
- Department of Orthopaedic Surgery, Musculoskeletal Research Center, Washington University School of Medicine, St. Louis, MO 63110, United States.
| | - R M Nunley
- Department of Orthopaedic Surgery, Musculoskeletal Research Center, Washington University School of Medicine, St. Louis, MO 63110, United States.
| | - L J Sandell
- Department of Orthopaedic Surgery, Musculoskeletal Research Center, Washington University School of Medicine, St. Louis, MO 63110, United States; Department of Cell Biology and Physiology, Washington University School of Medicine, St. Louis, MO 63110, United States; Department of Biomedical Engineering, Washington University School of Engineering and Applied Science, St. Louis, MO 63130, United States.
| | - M F Rai
- Department of Orthopaedic Surgery, Musculoskeletal Research Center, Washington University School of Medicine, St. Louis, MO 63110, United States; Department of Cell Biology and Physiology, Washington University School of Medicine, St. Louis, MO 63110, United States.
| |
Collapse
|
35
|
Abstract
Osteoarthritis is characterized by a chronic, progressive and irreversible degradation of the articular cartilage associated with joint inflammation and a reparative bone response. More than 100 million people are affected by this condition worldwide with significant health and welfare costs. Our available treatment options in osteoarthritis are extremely limited. Chondral or osteochondral grafts have shown some promising results but joint replacement surgery is by far the most common therapeutic approach. The difficulty lies on the limited regeneration capacity of the articular cartilage, poor blood supply and the paucity of resident progenitor stem cells. In addition, our poor understanding of the molecular signalling pathways involved in the senescence and apoptosis of chondrocytes is a major factor restricting further progress in the area. This review focuses on molecules and approaches that can be implemented to delay or even rescue chondrocyte apoptosis. Ways of modulating the physiologic response to trauma preventing chondrocyte death are proposed. The use of several cytokines, growth factors and advances made in altering several of the degenerative genetic pathways involved in chondrocyte apoptosis and degradation are also presented. The suggested approaches can help clinicians to improve cartilage tissue regeneration.
Collapse
Affiliation(s)
- Ippokratis Pountos
- Academic Department of Trauma & Orthopaedics, School of Medicine, University of Leeds, UK.
| | - Peter V Giannoudis
- Academic Department of Trauma & Orthopaedics, School of Medicine, University of Leeds, UK; NIHR Leeds Biomedical Research Center, Chapel Allerton Hospital, Leeds, UK.
| |
Collapse
|
36
|
Chang NJ, Lee KW, Chu CJ, Shie MY, Chou PH, Lin CC, Liang PI. A Preclinical Assessment of Early Continuous Passive Motion and Treadmill Therapeutic Exercises for Generating Chondroprotective Effects After Anterior Cruciate Ligament Rupture. Am J Sports Med 2017; 45:2284-2293. [PMID: 28520463 DOI: 10.1177/0363546517704847] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
BACKGROUND Anterior cruciate ligament (ACL) injury is a well-known risk factor for the development of posttraumatic osteoarthritis (PTOA). However, whether using continuous passive motion (CPM) with or without additional treadmill exercise (TRE) in early ACL injury might provide chondroprotective effects and further decrease the risk of PTOA has yet to be determined. HYPOTHESIS CPM may offer an enhanced chondroprotective effect, but TRE may attenuate that effect due to the mechanical stress on the joint and inflammatory cytokines in the joint. STUDY DESIGN Controlled laboratory study. METHODS Thirty adult New Zealand White male rabbits were randomly allocated to sedentary (SED), CPM, TRE, or CPM+TRE groups. Each rabbit underwent an ACL transection (ACLT) on the right knee, with the contralateral knee used as an internal control (sham). The 4 joint surfaces (ie, medial and lateral femoral condyles and tibial plateaus) were evaluated 4 weeks after surgery for gross appearance, histological characteristics, and quantitative osteoarthritis (OA) scores. RESULTS Overall, at the end of testing, the CPM group experienced the best protective therapeutic effects in all compartments. In gross appearance, CPM resulted in normal articular surfaces, while the TRE and SED groups exhibited surface abrasion. Histological analysis showed significant differences in articular cartilage status. The CPM group had significantly better histological OA scores ( P < .01), corresponding to the smoothest cartilage surface and sound chondrocyte and collagen arrangement. This group also showed abundant glycosaminoglycan (GAG) content and a sound growth microenvironment, with significantly lower expression levels of the inflammatory cytokine tumor necrosis factor α and the apoptotic marker caspase 3. In contrast, the TRE and SED groups showed several features of damage: distinct graded cartilage abrasion; damaged collagen fibers, corresponding to noticeable collagen type X (osteoarthritic cartilage); reduced cartilage thickness; fewer cartilaginous cells; and the appearance of chondrocyte clusters. These groups also showed loss of GAG, corresponding to higher levels of inflammatory cytokines and apoptosis of articular chondrocytes. Furthermore, the CPM+TRE group displayed visible pathological changes in the superficial cartilage, indicating that early loading exercise may contribute to osteoarthritis. The sham treatment showed no difference in the changes in all compartments between groups. CONCLUSION Immediate CPM therapy produces a superior in situ microenvironment for reducing the occurrence of PTOA after ACL injury without reconstruction in rabbits. CLINICAL RELEVANCE These data suggest that immediate application of CPM therapy may be necessary to create a sound microenvironment in joints and possibly to decrease the risk of PTOA without or while awaiting ACL reconstruction. In contrast, both early active loading exercise and inactivity lead to the development of PTOA.
Collapse
Affiliation(s)
- Nai-Jen Chang
- Department of Sports Medicine, Kaohsiung Medical University, Kaohsiung City, Taiwan
| | - Kuan-Wei Lee
- Department of Sports Medicine, Kaohsiung Medical University, Kaohsiung City, Taiwan
| | - Chih-Jou Chu
- Department of Sports Medicine, Kaohsiung Medical University, Kaohsiung City, Taiwan
| | - Ming-You Shie
- 3D Printing Medical Research Center, China Medical University Hospital, North District, Taichung City, Taiwan
| | - Pei-Hsi Chou
- Department of Sports Medicine, Kaohsiung Medical University, Kaohsiung City, Taiwan
| | - Chih-Chan Lin
- Laboratory Animal Center, Department of Medical Research, Chi-Mei Medical Center, Yongkang District, Tainan City, Taiwan
| | - Peir-In Liang
- Department of Pathology, Kaohsiung Medical University Hospital, Kaohsiung City, Taiwan
| |
Collapse
|
37
|
Sieker JT, Ayturk UM, Proffen BL, Weissenberger MH, Kiapour AM, Murray MM. Immediate Administration of Intraarticular Triamcinolone Acetonide After Joint Injury Modulates Molecular Outcomes Associated With Early Synovitis. Arthritis Rheumatol 2017; 68:1637-47. [PMID: 26866935 DOI: 10.1002/art.39631] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2015] [Accepted: 02/04/2016] [Indexed: 01/15/2023]
Abstract
OBJECTIVE To test whether intraarticular corticosteroid injection mitigates injury-induced synovitis and collagen degradation after anterior cruciate ligament transection (ACLT) and to characterize the synovial response using a functional genomics approach in a preclinical model of posttraumatic osteoarthritis. METHODS Yorkshire pigs underwent unilateral ACLT without subsequent corticosteroid injection (the ACLT group; n = 6) or ACLT with immediate injection of 20 mg triamcinolone acetonide (the steroid group; n = 6). A control group of pigs (the intact group; n = 6) did not undergo surgery. Total synovial membrane cellularity and synovial fluid concentration of C1,2C neoepitope-bearing collagen fragments 14 days after injury were primary end points and were compared between the ACLT, steroid, and intact groups. Cells were differentiated by histologic phenotype and counted, while RNA sequencing was used to quantify transcriptome-wide gene expression and monocyte, macrophage, and lymphocyte markers. RESULTS In the intact group, total cellularity was 13% (95% confidence interval [95% CI] 9-16) and the C1,2C concentration was 0.24 μg/ml (95% CI 0.08-0.39). In the ACLT group, significant increases were observed in total cellularity (to 21% [95% CI 16-27]) and C1,2C concentration (to 0.49 μg/ml [95% CI 0.39-0.59]). Compared to values in the ACLT group, total cellularity in the steroid group was nonsignificantly decreased to 17% (95% CI 15-18) (P = 0.26) and C1,2C concentration in the steroid group was significantly decreased to 0.29 μg/ml (95% CI 0.23-0.35) (P = 0.04). A total of 255 protein-coding transcripts were differentially expressed between the ACLT group and the intact group. These genes mainly enriched pathways related to cellular immune response, proteolysis, and angiogenesis. Mononuclear leukocytes were the dominant cell type in cell-dense areas. MARCO, SOCS3, CCR1, IL4R, and MMP2 expression was significantly associated with C1,2C levels. CONCLUSION Early intraarticular immunosuppression mitigated injury-induced increases in collagen fragments, an outcome better predicted by specific marker expression than by histologic measures of synovitis.
Collapse
Affiliation(s)
- Jakob T Sieker
- Boston Children's Hospital, Harvard Medical School, Boston, Massachusetts, and Orthopaedic Clinic König-Ludwig-Haus, Julius Maximilian University of Würzburg, Würzburg, Germany
| | - Ugur M Ayturk
- Boston Children's Hospital, Harvard Medical School, Boston, Massachusetts
| | - Benedikt L Proffen
- Boston Children's Hospital, Harvard Medical School, Boston, Massachusetts
| | - Manuela H Weissenberger
- Orthopaedic Clinic König-Ludwig-Haus, Julius Maximilian University of Würzburg, Würzburg, Germany, and Goethe University Hospital Frankfurt, Frankfurt, Germany
| | - Ata M Kiapour
- Boston Children's Hospital, Harvard Medical School, Boston, Massachusetts
| | - Martha M Murray
- Boston Children's Hospital, Harvard Medical School, Boston, Massachusetts
| |
Collapse
|
38
|
Carbone A, Rodeo S. Review of current understanding of post-traumatic osteoarthritis resulting from sports injuries. J Orthop Res 2017; 35:397-405. [PMID: 27306867 DOI: 10.1002/jor.23341] [Citation(s) in RCA: 121] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/15/2016] [Accepted: 06/14/2016] [Indexed: 02/04/2023]
Abstract
Certain types of joint injuries, common in athletes, are known to have a high association with the development of osteoarthritis (OA). Post-traumatic osteoarthritis (PTOA) is especially debilitating due to its earlier onset than traditional OA, and its predisposition to affect a younger and more active population. Five common athletic injuries have been demonstrated to be risk factors for the development of OA. These include ACL rupture, meniscus tear, glenohumeral instability, patellar dislocation, and ankle instability. Though the mechanisms responsible for the development of PTOA are not entirely clear, certain kinematic, biologic, and mechanical factors have been implicated. In addition, there has been an increased emphasis on development of new methods to detect early OA changes in patients with known risk factors, as early intervention may prevent the development of end-stage OA. New imaging modalities as well as the identification of specific biomarkers may allow earlier detection. Though these developments hold promise, it is not entirely known what steps we can take today to prevent the future development of OA, even with early detection. © 2016 Orthopaedic Research Society. Published by Wiley Periodicals, Inc. J Orthop Res 35:397-405, 2017.
Collapse
Affiliation(s)
- Andrew Carbone
- Department of Orthopaedics, Rutgers New Jersey Medical School, Newark, New Jersey
| | - Scott Rodeo
- Soft Tissue Research Laboratory, Hospital for Special Surgery, 535 E. 70th St., New York, 10021, New York
| |
Collapse
|
39
|
Bigoni M, Turati M, Sacerdote P, Gaddi D, Piatti M, Castelnuovo A, Franchi S, Gandolla M, Pedrocchi A, Omeljaniuk RJ, Bresciani E, Locatelli V, Torsello A. Characterization of synovial fluid cytokine profiles in chronic meniscal tear of the knee. J Orthop Res 2017; 35:340-346. [PMID: 27107410 DOI: 10.1002/jor.23272] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/16/2015] [Accepted: 04/17/2016] [Indexed: 02/04/2023]
Abstract
Concentrations of pro- and anti-inflammatory cytokines in synovial fluid samples collected from patients with chronic meniscal tears were investigated. An acute inflammatory response is generally reported 24-48 h after knee injury, but the largest body of data available in literature concerns anterior cruciate ligament injury and very little information is available about the balance of soluble factors in the synovial fluid of knees with chronic meniscal tears. Sixty-nine patients (46 males and 23 females) with meniscal tear that occurred more than 3 months earlier were enrolled. According to cartilage integrity assessment by arthroscopic examination, patients were assigned to one of the following groups: (i) no chondral damage (n = 18); (ii) chondral damage graded from I to II (n = 15); and (iii) chondral damage graded from III to IV (n = 37). In all groups, levels of IL-10 and inflammatory cytokines IL-6, TNF-α, and IL-8 where greater compared with those reported in the intact population; by contrast, levels of IL-1ra and IL-1β were significantly lower. Interestingly, IL-6 levels were higher in female than male patients. Cytokine levels did not correlate with degree of chondral damage. IL-6 and IL-1ra levels positively correlated with IL-1β, and negatively correlated with TNF-α. Interestingly, levels of IL-1β and TNF-α were inversely correlated. Our data demonstrate increased levels of pro-inflammatory cytokines (IL-6, IL-8, and TNF-α) in the chronic phase of meniscal trauma. This pro-inflammatory state is maintained in the joint from the time of initial injury to several months later and could be a key factor in hampering cartilage regeneration. © 2016 Orthopaedic Research Society. Published by Wiley Periodicals, Inc. J Orthop Res 35:340-346, 2017.
Collapse
Affiliation(s)
- Marco Bigoni
- Department of Orthopedic, San Gerardo Hospital, Monza, Italy.,Department of Medicine and Surgery, University of Milano-Bicocca, Monza, Italy
| | - Marco Turati
- Department of Orthopedic, San Gerardo Hospital, Monza, Italy
| | - Paola Sacerdote
- Department of Pharmacological and Biomolecular Sciences, University of Milan, Milan, Italy
| | - Diego Gaddi
- Department of Orthopedic, San Gerardo Hospital, Monza, Italy
| | | | | | - Silvia Franchi
- Department of Pharmacological and Biomolecular Sciences, University of Milan, Milan, Italy
| | - Marta Gandolla
- Politecnico di Milano, NearLab, Department of Electronics, Information and Bioengineering, Milan, Italy
| | - Alessandra Pedrocchi
- Politecnico di Milano, NearLab, Department of Electronics, Information and Bioengineering, Milan, Italy
| | | | - Elena Bresciani
- Department of Medicine and Surgery, University of Milano-Bicocca, Monza, Italy
| | - Vittorio Locatelli
- Department of Medicine and Surgery, University of Milano-Bicocca, Monza, Italy
| | - Antonio Torsello
- Department of Medicine and Surgery, University of Milano-Bicocca, Monza, Italy
| |
Collapse
|
40
|
Kraeutler MJ, Mitchell JJ, Chahla J, McCarty EC, Pascual-Garrido C. Intra-articular Implantation of Mesenchymal Stem Cells, Part 1: A Review of the Literature for Prevention of Postmeniscectomy Osteoarthritis. Orthop J Sports Med 2017; 5:2325967116680815. [PMID: 28203597 PMCID: PMC5298518 DOI: 10.1177/2325967116680815] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
Osteoarthritis (OA) after a partial or total meniscectomy procedure is a common pathology. Because of the high incidence of meniscectomy in the general population, as well as the significant burden of knee OA, there is increasing interest in determining methods for delaying postmeniscectomy OA. Biological therapies, including mesenchymal stem cells (MSCs), induced pluripotent stem cells (iPSCs), and platelet-rich plasma (PRP), have been proposed as possible therapies that could delay OA in this and other settings. Several studies in various animal models have evaluated the effect of injecting MSCs into the knee joints of animals with OA induced either by meniscal excision with or without anterior cruciate ligament transection. When compared with control groups receiving injections without progenitor cells, short-term benefits in the experimental groups have been reported. In human subjects, there are limited data to determine the effect of biological therapies for use in delaying or preventing the onset of OA after a meniscectomy procedure. The purpose of this review is to highlight the findings in the presently available literature on the use of intra-articular implantation of MSCs postmeniscectomy and to offer suggestions for future research with the goal of delaying or treating early OA postmeniscectomy with MSCs.
Collapse
Affiliation(s)
- Matthew J Kraeutler
- Department of Orthopedics, University of Colorado School of Medicine, Aurora, Colorado, USA
| | - Justin J Mitchell
- Gundersen Health System, Department of Sports Medicine, La Crosse, Wisconsin, USA
| | - Jorge Chahla
- Steadman Philippon Research Institute, Vail, Colorado, USA
| | - Eric C McCarty
- Department of Orthopedics, University of Colorado School of Medicine, Aurora, Colorado, USA
| | | |
Collapse
|
41
|
Toh WS, Lai RC, Hui JHP, Lim SK. MSC exosome as a cell-free MSC therapy for cartilage regeneration: Implications for osteoarthritis treatment. Semin Cell Dev Biol 2016; 67:56-64. [PMID: 27871993 DOI: 10.1016/j.semcdb.2016.11.008] [Citation(s) in RCA: 335] [Impact Index Per Article: 41.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2016] [Revised: 11/17/2016] [Accepted: 11/18/2016] [Indexed: 02/07/2023]
Abstract
Mesenchymal stem cell (MSC) therapies have demonstrated efficacy in cartilage repair in animal and clinical studies. The efficacy of MSC-based therapies which was previously predicated on the chondrogenic potential of MSC is increasingly attributed to the paracrine secretion, particularly exosomes. Exosomes are thought to function primarily as intercellular communication vehicles to transfer bioactive lipids, nucleic acids (mRNAs and microRNAs) and proteins between cells to elicit biological responses in recipient cells. For MSC exosomes, many of these biological responses translated to a therapeutic outcome in injured or diseased cells. Here, we review the current understanding of MSC exosomes, discuss the possible mechanisms of action in cartilage repair within the context of the widely reported immunomodulatory and regenerative potency of MSC exosomes, and provide new perspectives for development of an off-the-shelf and cell-free MSC therapy for treatment of cartilage injuries and osteoarthritis.
Collapse
Affiliation(s)
- Wei Seong Toh
- Faculty of Dentistry, National University of Singapore, Singapore; Tissue Engineering Program, Life Sciences Institute National University of Singapore, Singapore.
| | - Ruenn Chai Lai
- Institute of Medical Biology, Agency for Science, Technology and Research, Singapore
| | - James Hoi Po Hui
- Tissue Engineering Program, Life Sciences Institute National University of Singapore, Singapore; Cartilage Repair Program, Therapeutic Tissue Engineering Laboratory, Department of Orthopaedic Surgery, National University Health System, National University of Singapore, Singapore
| | - Sai Kiang Lim
- Institute of Medical Biology, Agency for Science, Technology and Research, Singapore; Department of Surgery, Yong Loo Lin School of Medicine, National University of Singapore, Singapore.
| |
Collapse
|
42
|
Reisig G, Kreinest M, Richter W, Wagner-Ecker M, Dinter D, Attenberger U, Schneider-Wald B, Fickert S, Schwarz ML. Osteoarthritis in the Knee Joints of Göttingen Minipigs after Resection of the Anterior Cruciate Ligament? Missing Correlation of MRI, Gene and Protein Expression with Histological Scoring. PLoS One 2016; 11:e0165897. [PMID: 27820852 PMCID: PMC5098790 DOI: 10.1371/journal.pone.0165897] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2016] [Accepted: 10/19/2016] [Indexed: 12/14/2022] Open
Abstract
Introduction The Göttingen Minipig (GM) is used as large animal model in articular cartilage research. The aim of the study was to introduce osteoarthritis (OA) in the GM by resecting the anterior cruciate ligament (ACLR) according to Pond and Nuki, verified by histological and magnetic resonance imaging (MRI) scoring as well as analysis of gene and protein expression. Materials and Methods The eight included skeletally mature female GM were assessed after ACLR in the left and a sham operation in the right knee, which served as control. 26 weeks after surgery the knee joints were scanned using a 3-Tesla high-field MR tomography unit with a 3 T CP Large Flex Coil. Standard proton-density weighted fat saturated sequences in coronal and sagittal direction with a slice thickness of 3 mm were used. The MRI scans were assessed by two radiologists according to a modified WORMS-score, the X-rays of the knee joints by two evaluators. Osteochondral plugs with a diameter of 4mm were taken for histological examination from either the main loading zone or the macroscopic most degenerated parts of the tibia plateau or condyle respectively. The histological sections were blinded and scored by three experts according to Little et al. Gene expression analysis was performed from surrounding cartilage. Expression of adamts4, adamts5, acan, col1A1, col2, il-1ß, mmp1, mmp3, mmp13, vegf was determined by qRT-PCR. Immunohistochemical staining (IH) of Col I and II was performed. IH was scored using a 4 point grading (0—no staining; 3-intense staining). Results and Discussion Similar signs of OA were evident both in ACLR and sham operated knee joints with the histological scoring result of the ACLR joints with 6.48 ± 5.67 points and the sham joints with 6.86 ± 5.84 points (p = 0.7953) The MRI scoring yielded 0.34 ± 0.89 points for the ACLR and 0.03 ± 0.17 for the sham knee joints. There was no correlation between the histological and MRI scores (r = 0.10021). The gene expression profiles as well as the immunohistochemical findings showed no significant differences between ACLR and sham knee joints. In conclusion, both knee joints showed histological signs of OA after 26 weeks irrespective of whether the ACL was resected or not. As MRI results did not match the histological findings, MRI was obviously unsuitable to diagnose the OA in GM. The analysis of the expression patterns of the 10 genes could not shed light on the question, whether sham operation also induced cartilage erosion or if the degeneration was spontaneous. The modified Pond-Nuki model may be used with reservation in the adult minipig to induce an isolated osteoarthritis.
Collapse
Affiliation(s)
- Gregor Reisig
- Department for experimental Orthopaedics and Trauma Surgery, Orthopaedic and Trauma Surgery Centre (OUZ), Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | - Michael Kreinest
- Department for experimental Orthopaedics and Trauma Surgery, Orthopaedic and Trauma Surgery Centre (OUZ), Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | - Wiltrud Richter
- Research Centre for Experimental Orthopaedics, Orthopaedic University Hospital Heidelberg, Heidelberg, Germany
| | - Mechthild Wagner-Ecker
- Research Centre for Experimental Orthopaedics, Orthopaedic University Hospital Heidelberg, Heidelberg, Germany
| | - Dietmar Dinter
- Institute of Clinical Radiology and Nuclear Medicine, University Medical Center Mannheim, Mannheim, Germany
| | - Ulrike Attenberger
- Institute of Clinical Radiology and Nuclear Medicine, University Medical Center Mannheim, Mannheim, Germany
| | - Barbara Schneider-Wald
- Department for experimental Orthopaedics and Trauma Surgery, Orthopaedic and Trauma Surgery Centre (OUZ), Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | - Stefan Fickert
- Department for experimental Orthopaedics and Trauma Surgery, Orthopaedic and Trauma Surgery Centre (OUZ), Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | - Markus L. Schwarz
- Department for experimental Orthopaedics and Trauma Surgery, Orthopaedic and Trauma Surgery Centre (OUZ), Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
- * E-mail:
| |
Collapse
|
43
|
Coughlin TR, Kennedy OD. The role of subchondral bone damage in post-traumatic osteoarthritis. Ann N Y Acad Sci 2016; 1383:58-66. [DOI: 10.1111/nyas.13261] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2016] [Revised: 08/19/2016] [Accepted: 08/23/2016] [Indexed: 12/13/2022]
Affiliation(s)
- Thomas R. Coughlin
- Department of Orthopedic Surgery; New York University School of Medicine; New York New York
| | - Oran D. Kennedy
- Department of Orthopedic Surgery; New York University School of Medicine; New York New York
- Department of Mechanical and Aerospace Engineering; New York University Tandon School of Engineering; New York New York
| |
Collapse
|
44
|
Brophy RH, Tycksen ED, Sandell LJ, Rai MF. Changes in Transcriptome-Wide Gene Expression of Anterior Cruciate Ligament Tears Based on Time From Injury. Am J Sports Med 2016; 44:2064-75. [PMID: 27159315 DOI: 10.1177/0363546516643810] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
BACKGROUND Anterior cruciate ligament (ACL) tears are a common injury. The healing potential of the injured ACL is poorly understood and is considered limited. Therefore, most ACL tears that are treated surgically undergo reconstruction rather than repair. However, there has been renewed interest recently in repairing ACL tears despite unanswered questions regarding the healing capacity of the ACL. HYPOTHESIS Gene expression in the injured ACL varies with time from injury. STUDY DESIGN Descriptive laboratory study. METHODS Transcriptome-wide expression profiles of 24 human ACL remnants recovered at the time of surgical reconstruction were analyzed using the Agilent human 8x60K microarray platform. Gene ontology was performed on differentially expressed transcripts based on time from injury (acute, <3 months; intermediate, 3-12 months; chronic, >12 months). A subset of transcripts with large fold changes in expression between any 2 categories was validated via microfluidic digital polymerase chain reaction. RESULTS Numerous transcripts representing important biological processes were differentially expressed by time from injury. The most significant changes were noted between the acute and chronic groups. Expression of several extracellular matrix genes- namely, POSTN, COL5A1, COL1A1, and COL12A1-was lower in the chronic tears compared with acute and intermediate tears. In acute tears, processes representing angiogenesis and stem cell differentiation were affected. In intermediate tears, processes representing stem cell proliferation concomitant with cellular component organization/cellular localization were altered. In ACL tears more than 12 months out from injury, processes denoting myosin filament organization, cellular component organization/cell localization, and extracellular matrix organization were affected. CONCLUSION These findings are consistent with initial repair activity in the injured ACL, which declines with time from injury. Individual genes identified in this study, such as periostin, deserve further investigation into their role in tissue repair. CLINICAL RELEVANCE The decreased healing capacity of ACL tears over time is relevant to the development of effective techniques for repairing ACL tears and may have some significance for ACL reconstruction techniques as well. The potential for healing appears to be greatest in acute ACL tears, suggesting this window should be the focus of research for ACL repair.
Collapse
Affiliation(s)
- Robert H Brophy
- Department of Orthopaedic Surgery, Musculoskeletal Research Center, Washington University School of Medicine at Barnes-Jewish Hospital, St Louis, Missouri, USA
| | - Eric D Tycksen
- Genome Technology Access Center, Washington University in St Louis, St Louis, Missouri, USA
| | - Linda J Sandell
- Department of Orthopaedic Surgery, Musculoskeletal Research Center, Washington University School of Medicine at Barnes-Jewish Hospital, St Louis, Missouri, USA Department of Biomedical Engineering, Washington University in St Louis at Engineering and Applied Sciences, St Louis, Missouri, USA Department of Cell Biology and Physiology, Washington University School of Medicine at Barnes-Jewish Hospital, St Louis, Missouri, USA
| | - Muhammad Farooq Rai
- Department of Orthopaedic Surgery, Musculoskeletal Research Center, Washington University School of Medicine at Barnes-Jewish Hospital, St Louis, Missouri, USA
| |
Collapse
|
45
|
Akelman MR, Fadale PD, Hulstyn MJ, Shalvoy RM, Garcia A, Chin KE, Duryea J, Badger GJ, Tung GA, Fleming BC. Effect of Matching or Overconstraining Knee Laxity During Anterior Cruciate Ligament Reconstruction on Knee Osteoarthritis and Clinical Outcomes: A Randomized Controlled Trial With 84-Month Follow-up. Am J Sports Med 2016; 44:1660-70. [PMID: 27159308 PMCID: PMC4930731 DOI: 10.1177/0363546516638387] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
BACKGROUND The "initial graft tension" applied at the time of graft fixation during anterior cruciate ligament (ACL) reconstruction surgery modulates joint contact mechanics, which in turn may promote posttraumatic osteoarthritis (OA). PURPOSE/HYPOTHESES The study objectives were to compare clinical, functional, patient-reported, and OA imaging outcomes between 2 different initial laxity-based graft tension cohorts and a matched uninjured control group as well as to evaluate the effects of laxity-based graft tension on OA development at 84-month follow-up. The 2 laxity-based tension protocols were (1) to restore normal anteroposterior (AP) laxity at the time of surgery relative to the contralateral uninjured knee (low-tension group) or (2) to overconstrain AP laxity by 2 mm relative to the contralateral uninjured knee (high-tension group). The hypotheses were that (1) the high-tension group would have improved outcomes and decreased OA compared with the low-tension group after 84 months, and (2) the outcomes for the high-tension group would be equivalent to those for an age-, sex-, race-, and activity-matched group of control participants with uninjured knees. STUDY DESIGN Randomized controlled trial; Level of evidence, 1. METHODS Patients had their ACLs reconstructed with either a bone-patellar tendon-bone or 4-stranded hamstring autograft, and outcomes were compared with a matched control group. Outcomes were evaluated preoperatively and at 60 and 84 months postoperatively and included clinical (KT-1000 arthrometer AP laxity measurement and International Knee Documentation Committee [IKDC] examination score), functional (1-legged hop for distance and knee extensor torque), patient-reported (Knee injury and Osteoarthritis Outcome Score [KOOS], Short Form-36 [SF-36], and patient satisfaction survey), and OA imaging (measurement of joint space width [JSW], Osteoarthritis Research Society International [OARSI] radiographic score, and Whole-Organ Magnetic Resonance Imaging Score [WORMS]) components. Repeated-measures analyses of variance were used to evaluate differences in outcomes between the treatment groups and the control group. RESULTS There were significant differences between the 2 tension groups in 1 of 5 KOOS subscales (sports and recreation; P = .04) and 2 of 8 SF-36 subscales (vitality, mental health; P < .04) at 84 and 60 months, respectively. Both tension groups scored significantly worse than the control group in the IKDC examination (P < .001), 1-legged hop (P ≤ .017), KOOS quality of life and symptoms subscales (P < .03), and OARSI radiographic score (P ≤ .02) at 84 months. The low-tension group performed significantly worse than the control group on the KOOS pain subscale (P = .03), SF-36 general health and social functioning (P < .04), OARSI radiographic score (P < .001), and WORMS (P = .001), while the high-tension group had statistically different results than the control group in AP knee laxity (P < .001), radiographic JSW (P = .003), and OARSI radiographic score (P = .02) as well as significantly more subsequent knee injuries (P = .02) at 84 months. CONCLUSION The results do not support the hypotheses that the high-tension group would have improved outcomes when compared with the low-tension group after 84 months of healing or that the outcomes for the high-tension group would be equivalent to those for the matched control group. While there were minor differences in patient-reported outcomes between the 2 laxity-based tension groups, all other outcomes were similar. REGISTRATION NCT00434837.
Collapse
Affiliation(s)
- Matthew R. Akelman
- College of Medicine, Medical University of South Carolina, Charleston, SC
| | - Paul D. Fadale
- Dept of Orthopaedics, Brown University/Rhode Island Hospital, Providence, RI
| | - Michael J. Hulstyn
- Dept of Orthopaedics, Brown University/Rhode Island Hospital, Providence, RI
| | - Robert M. Shalvoy
- Dept of Orthopaedics, Brown University/Memorial Hospital, Providence RI
| | - Arlene Garcia
- Dept of Orthopaedics, Brown University/Rhode Island Hospital, Providence, RI
| | - Kaitlyn E. Chin
- Dept of Orthopaedics, Brown University/Rhode Island Hospital, Providence, RI
| | - Jeffrey Duryea
- Dept of Radiology, Brigham and Women’s Hospital/Harvard, Boston MA
| | - Gary J. Badger
- Dept of Medical Biostatistics, University of Vermont, Burlington, VM
| | - Glenn A. Tung
- Dept of Diagnostic Imaging, Brown University/Rhode Island Hospital, Providence, RI
| | - Braden C. Fleming
- Dept of Orthopaedics, Brown University/Rhode Island Hospital, Providence, RI
| |
Collapse
|
46
|
Proffen B, Sieker J, Murray M, Akelman M, Chin K, Perrone G, Patel T, Fleming B. Extracellular matrix-blood composite injection reduces post-traumatic osteoarthritis after anterior cruciate ligament injury in the rat. J Orthop Res 2016; 34:995-1003. [PMID: 26629963 PMCID: PMC4882220 DOI: 10.1002/jor.23117] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/21/2015] [Accepted: 11/25/2015] [Indexed: 02/04/2023]
Abstract
The objective of this study was to determine if an injection of a novel extracellular matrix scaffold and blood composite (EMBC) after anterior cruciate ligament (ACL) injury would have a mitigating effect on post-traumatic osteoarthritis (PTOA) development in rat knees. Lewis rats underwent unilateral ACL transection and were divided into three groups as follows: (1) no further treatment (ACLT; n = 10); (2) an intra-articular injection of EMBC on day 0 (INJ0; n = 11); and (3) an intra-articular injection of EMBC on day 14 (INJ14; n = 11). Ten additional animals received capsulotomy only (n = 10, SHAM group). The OARSI histology scoring of the tibial cartilage and micro-CT of the tibial epiphysis were performed after 35 days. The ratio of intact/treated hind limb forces during gait was determined using a variable resistor walkway. The OARSI cartilage degradation sum score and total degeneration width were significantly greater in the ACLT group when compared to the INJ0 (p = 0.031, and p = 0.005) and INJ14 (p = 0.022 and p = 0.04) group. Weight bearing on the operated limb only decreased significantly in the ACLT group (p = 0.048). In the rat ACL transection model, early or delayed injection of EMBC ameliorated the significant decrease in weight bearing and cartilage degradation seen in knees subjected to ACL transection without injection. The results indicate that the injection of EMBC may slow the process of PTOA following ACL injury and may provide a promising treatment for PTOA. © 2015 Orthopaedic Research Society. Published by Wiley Periodicals, Inc. J Orthop Res 34:995-1003, 2016.
Collapse
Affiliation(s)
- B.L. Proffen
- Department of Orthopaedic Surgery, Boston Children’s Hospital, Harvard Medical School, Boston, MA,Address correspondence and reprint requests to: B.L. Proffen, Department of Orthopaedic Surgery, Children’s Hospital Boston, Enders 270.4, 300 Longwood Avenue, Boston, MA 02115. USA, Tel: 1-617-919-2540; Fax: 1-617-730-0789
| | - J.T. Sieker
- Department of Orthopaedic Surgery, Boston Children’s Hospital, Harvard Medical School, Boston, MA
| | - M.M. Murray
- Department of Orthopaedic Surgery, Boston Children’s Hospital, Harvard Medical School, Boston, MA
| | - M.R. Akelman
- Department of Orthopaedics, Warren Alpert Medical School of Brown University/Rhode Island Hospital, Providence RI
| | - K.E. Chin
- Department of Orthopaedics, Warren Alpert Medical School of Brown University/Rhode Island Hospital, Providence RI
| | - G.S. Perrone
- Department of Orthopaedic Surgery, Boston Children’s Hospital, Harvard Medical School, Boston, MA
| | - T.K. Patel
- Department of Orthopaedics, Warren Alpert Medical School of Brown University/Rhode Island Hospital, Providence RI
| | - B.C. Fleming
- Department of Orthopaedics, Warren Alpert Medical School of Brown University/Rhode Island Hospital, Providence RI
| |
Collapse
|
47
|
Papathanasiou I, Michalitsis S, Hantes ME, Vlychou M, Anastasopoulou L, Malizos KN, Tsezou A. Molecular changes indicative of cartilage degeneration and osteoarthritis development in patients with anterior cruciate ligament injury. BMC Musculoskelet Disord 2016; 17:21. [PMID: 26762166 PMCID: PMC4712525 DOI: 10.1186/s12891-016-0871-8] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/16/2015] [Accepted: 01/05/2016] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND Anterior cruciate ligament (ACL) tear is considered a risk factor for osteoarthritis development. The purpose of our study was to investigate the expression levels of the apoptotic enzyme caspase 3, pro-inflammatory cytokines interleukin-1β (IL-1β) and interleukin-6 (IL-6) and degrading enzyme matrix metalloproteinase 13 (MMP-13), all indicative of cartilage degeneration and osteoarthritis development in patients' chondrocytes after ACL rupture. METHODS We investigated the correlation between grade of cartilage degradation and time from injury or patients' age. IL-1β, IL-6 and MMP-13 mRNA expression levels were investigated in normal (n = 4) and chondrocytes from patients with ACL rupture (n = 33) using real-time polymerase chain reaction (PCR). Moreover, MMP-13 and caspase-3 protein expression levels were evaluated by western blot analysis. Trend analysis and correlation coefficient were performed to derive the relations between gene expression (MMP13, IL-6, IL-1β) and grading of cartilage defects and between gene expression (MMP13, IL-6, IL-1β) and patients' age, respectively. RESULTS Correlations were established between grade of cartilage degradation and time from injury. MMP-13, IL-6, IL-1β and caspase 3 expression levels were significantly upregulated in chondrocytes from ACL-deficient knee compared to normal. Among the patients with ACL-deficient knees, a significant upregulation of MMP-13 was observed in patients with ACL-rupture > 18 months from the time of injury to arthroscopy compared to patients with ACL-injury up to 18 months, whereas IL-6 and IL-1β expression was higher in chondrocytes from patients with more than 10 months ACL injury compared to those that underwent surgery within the first 10 months after injury. Νο association was observed between IL-1β, IL-6 and MMP-13 expression levels and cartilage defects or patients' age. CONCLUSION Our results showed that increased levels of apoptotic, inflammatory and catabolic factors in chondrocytes are associated with time from injury and could contribute to cartilage degradation and osteoarthritis development after ACL rupture.
Collapse
Affiliation(s)
- Ioanna Papathanasiou
- Laboratory of Cytogenetics and Molecular Genetics, University of Thessaly, Faculty of Medicine, Biopolis, 41500, Larissa, Greece.
| | - Sotirios Michalitsis
- Department of Orthopaedic Surgery, University of Thessaly, Faculty of Medicine, Biopolis, 41500, Larissa, Greece.
| | - Michael E Hantes
- Department of Orthopaedic Surgery, University of Thessaly, Faculty of Medicine, Biopolis, 41500, Larissa, Greece.
| | - Marianna Vlychou
- Department of Radiology, University of Thessaly, Faculty of Medicine, Biopolis, 41500, Larissa, Greece.
| | - Lydia Anastasopoulou
- Laboratory of Cytogenetics and Molecular Genetics, University of Thessaly, Faculty of Medicine, Biopolis, 41500, Larissa, Greece.
| | - Konstantinos N Malizos
- Department of Orthopaedic Surgery, University of Thessaly, Faculty of Medicine, Biopolis, 41500, Larissa, Greece.
| | - Aspasia Tsezou
- Laboratory of Cytogenetics and Molecular Genetics, University of Thessaly, Faculty of Medicine, Biopolis, 41500, Larissa, Greece. .,Department of Biology, University of Thessaly, Faculty of Medicine, Biopolis, 41500, Larissa, Greece.
| |
Collapse
|
48
|
Yan F, Xie F, Gong X, Wang F, Yang L. Effect of anterior cruciate ligament rupture on secondary damage to menisci and articular cartilage. Knee 2016; 23:102-5. [PMID: 26298288 DOI: 10.1016/j.knee.2015.07.008] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/04/2015] [Revised: 06/05/2015] [Accepted: 07/14/2015] [Indexed: 02/02/2023]
Abstract
OBJECTIVE The aim of this study was to evaluate the effect of anterior cruciate ligament (ACL) rupture on secondary damage to menisci and articular cartilage. METHOD A total of 366 patients with knee ACL rupture were divided into the following six groups based on the time span from the initial injury to ACL reconstruction: (1) <1.5months; (2) between 1.5 and three months; (3) between three and six months; (4) between six and 12months; (5) between 12 and 24months, and (6) >24months. During ACL reconstruction, impairment of meniscal or chondral integrity was systematically documented. RESULTS Of the 366 patients involved in this study, meniscal and chondral damage were found in 223 (60.9%) and 75 (20.5%) patients, respectively. In addition, the incidence of medial meniscal and chondral damage was significantly increased when ACL reconstruction was delayed. The incidence of medial meniscal and chondral damage was found to be 6.1 and 9.9 times higher in patients with a time from initial injury (TFI) of >24months than those with a TFI of <1.5months, respectively. CONCLUSION In this study, correlations between secondary damage to the menisci and/or the articular cartilage and time after initial injury were found in Chinese population. Our data suggested that ACL reconstruction should be performed as early as possible after ACL rupture to avoid secondary meniscal and/or chondral damage. It is recommended that the best time range for ACL reconstruction is between four and six weeks after initial injury.
Collapse
Affiliation(s)
- Fei Yan
- Center of Joint Surgery, Southwest Hospital, Third Military Medical University, Chongqing, Shapingba, People's Republic of China
| | - Feng Xie
- Military Training Medicine Institute in the 150th Hospital of PLA, Luoyang, Henan, People's Republic of China
| | - Xiaoyuan Gong
- Center of Joint Surgery, Southwest Hospital, Third Military Medical University, Chongqing, Shapingba, People's Republic of China
| | - Fuyou Wang
- Center of Joint Surgery, Southwest Hospital, Third Military Medical University, Chongqing, Shapingba, People's Republic of China
| | - Liu Yang
- Center of Joint Surgery, Southwest Hospital, Third Military Medical University, Chongqing, Shapingba, People's Republic of China.
| |
Collapse
|
49
|
Clinical Trial and In Vitro Study for the Role of Cartilage and Synovia in Acute Articular Infection. Mediators Inflamm 2015; 2015:430324. [PMID: 26640325 PMCID: PMC4657131 DOI: 10.1155/2015/430324] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2015] [Revised: 10/08/2015] [Accepted: 10/12/2015] [Indexed: 01/04/2023] Open
Abstract
OBJECTIVE Osteoarthritis is a long-term complication of acute articular infections. However, the roles of cartilage and synovia in this process are not yet fully understood. METHODS Patients with acute joint infections were enrolled in a prospective clinical trial and the cytokine composition of effusions compared in patients with arthroplasty (n = 8) or with intact joints (n = 67). Cytokines and cell function were also analyzed using a human in vitro model of joint infection. RESULTS Synovial IL-1β levels were significantly higher in patients with arthroplasty (p = 0.004). Higher IL-1β concentrations were also found in the in vitro model without chondrocytes (p < 0.05). The anti-inflammatory cytokines IL-4 and IL-10 were consistently expressed in vivo and in vitro, showing no association with the presence of cartilage or chondrocytes. In contrast, FasL levels increased steadily in vitro, reaching higher levels without chondrocytes (p < 0.05). Likewise, the viability of synovial fibroblasts (SFB) during infection was higher in the presence of chondrocytes. The cartilage-metabolism markers aggrecan and bFGF were at higher concentrations in intact joints, but also synthesized by SFB. CONCLUSIONS Our data suggest an anti-inflammatory effect of cartilage associated with the SFBs' increased resistance to infections, which displayed the ability to effectively synthesize cartilage metabolites.The trial is registered with DRKS 00003536, MISSinG.
Collapse
|
50
|
Deligne C, Casulli S, Pigenet A, Bougault C, Campillo-Gimenez L, Nourissat G, Berenbaum F, Elbim C, Houard X. Differential expression of interleukin-17 and interleukin-22 in inflamed and non-inflamed synovium from osteoarthritis patients. Osteoarthritis Cartilage 2015; 23:1843-52. [PMID: 26521730 DOI: 10.1016/j.joca.2014.12.007] [Citation(s) in RCA: 60] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/10/2014] [Revised: 11/05/2014] [Accepted: 12/04/2014] [Indexed: 02/02/2023]
Abstract
OBJECTIVE Synovitis associated with osteoarthritis (OA) is directly responsible for several clinical symptoms and reflects OA's structural progression. This study sought to analyze the expression of proinflammatory mediations, including Interleukin (IL)-17 and IL-22, which play key roles in regulating inflammatory processes, in inflamed and non-inflamed areas of osteoarthritic synovium. METHODS Synovium from knees of 32 OA patients were collected at surgery. Macroscopic evaluation of inflammation enabled inflamed and non-inflamed areas to be separated. Samples were incubated to obtain tissue-conditioned media. Quantitative mRNA expression of proinflammatory mediators was analyzed by RT-PCR and protein levels by ELISA and gelatin zymography. Immunohistochemistry and histology were performed. RESULTS Inflamed synovium were characterized by increased leukocyte infiltration and a higher vessel-to-tissue area ratio than non-inflamed tissues. Macrophages, T and B lymphocytes, and some neutrophils were found only in the inflamed tissue, and only in the subintimal layer. Levels of proinflammatory cytokines and MMP-9 were significantly higher in tissue-conditioned media from inflamed than non-inflamed tissues. Inflamed areas were associated with higher expression of IL-17 and IL-22, both correlated with the combined release of IL-6, IL-23, and TGFβ1. CONCLUSION Our results showed that inflammatory cytokines, including IL-17 and IL-22, are expressed at higher levels by inflamed OA synovium and suggest IL-22 involvement in OA pathophysiology. This study will help identify new therapeutic strategies for OA, especially the targeting of IL-22 to decrease inflammation.
Collapse
Affiliation(s)
- C Deligne
- Sorbonne University, UPMC Univ Paris 06, UMR_S 938, F-75005 Paris, France; INSERM UMR_S938, UPMC Univ Paris 06, F-75012 Paris, France; Inflammation-Immunopathology-Biotherapy Department (DHU i2B), 184 rue du Faubourg Saint-Antoine, F-75012 Paris, France
| | - S Casulli
- Sorbonne University, UPMC Univ Paris 06, UMR_S 938, F-75005 Paris, France; INSERM UMR_S938, UPMC Univ Paris 06, F-75012 Paris, France
| | - A Pigenet
- Sorbonne University, UPMC Univ Paris 06, UMR_S 938, F-75005 Paris, France; INSERM UMR_S938, UPMC Univ Paris 06, F-75012 Paris, France; Inflammation-Immunopathology-Biotherapy Department (DHU i2B), 184 rue du Faubourg Saint-Antoine, F-75012 Paris, France
| | - C Bougault
- Sorbonne University, UPMC Univ Paris 06, UMR_S 938, F-75005 Paris, France; INSERM UMR_S938, UPMC Univ Paris 06, F-75012 Paris, France; Inflammation-Immunopathology-Biotherapy Department (DHU i2B), 184 rue du Faubourg Saint-Antoine, F-75012 Paris, France
| | - L Campillo-Gimenez
- Sorbonne University, UPMC Univ Paris 06, UMR_S 938, F-75005 Paris, France; INSERM UMR_S938, UPMC Univ Paris 06, F-75012 Paris, France
| | - G Nourissat
- Sorbonne University, UPMC Univ Paris 06, UMR_S 938, F-75005 Paris, France; INSERM UMR_S938, UPMC Univ Paris 06, F-75012 Paris, France; Inflammation-Immunopathology-Biotherapy Department (DHU i2B), 184 rue du Faubourg Saint-Antoine, F-75012 Paris, France; Department of Orthopaedic Surgery and Traumatology, Assistance Publique - Hôpitaux de Paris, Saint-Antoine Hospital, 184 rue du Faubourg Saint-Antoine, F-75012 Paris, France
| | - F Berenbaum
- Sorbonne University, UPMC Univ Paris 06, UMR_S 938, F-75005 Paris, France; INSERM UMR_S938, UPMC Univ Paris 06, F-75012 Paris, France; Inflammation-Immunopathology-Biotherapy Department (DHU i2B), 184 rue du Faubourg Saint-Antoine, F-75012 Paris, France; Department of Rheumatology, Assistance Publique - Hôpitaux de Paris, Saint-Antoine Hospital, 184 rue du Faubourg Saint-Antoine, F-75012 Paris, France.
| | - C Elbim
- Sorbonne University, UPMC Univ Paris 06, UMR_S 938, F-75005 Paris, France; INSERM UMR_S938, UPMC Univ Paris 06, F-75012 Paris, France
| | - X Houard
- Sorbonne University, UPMC Univ Paris 06, UMR_S 938, F-75005 Paris, France; INSERM UMR_S938, UPMC Univ Paris 06, F-75012 Paris, France; Inflammation-Immunopathology-Biotherapy Department (DHU i2B), 184 rue du Faubourg Saint-Antoine, F-75012 Paris, France
| |
Collapse
|