1
|
Coleman LJ, Byrne JL, Edwards S, O’Hara R. Patient-Specific Variability in Interleukin-6 and Myeloperoxidase Responses in Osteoarthritis: Insights from Synthetic Data and Clustering Analysis. J Pers Med 2025; 15:17. [PMID: 39852209 PMCID: PMC11766770 DOI: 10.3390/jpm15010017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2024] [Revised: 12/23/2024] [Accepted: 01/02/2025] [Indexed: 01/26/2025] Open
Abstract
Objectives: This study investigated the inflammatory responses of fibroblast-like synoviocytes (FLS) isolated from osteoarthritis (OA) patients, stimulated with lipopolysaccharide (LPS) and interleukin-6 (IL-6). Both experimental and synthetic data were utilised to investigate the variability in IL-6 and myeloperoxidase (MPO) production and its implications for OA pathogenesis. Methods: Synovial biopsies were obtained from OA patients undergoing joint replacement surgery. FLS were isolated, cultured, and stimulated with varying concentrations of LPS and IL-6. The production of IL-6 and MPO was measured using enzyme-linked immunosorbent assays (ELISA). Synthetic data generation techniques expanded the dataset to support comprehensive statistical analyses. Results: The patterns of inflammatory responses revealed distinct patient subgroups, highlighting individual variability. The integration of synthetic data with experimental observations validated their reliability and demonstrated dose-dependent differences in IL-6 and MPO production across patients. Conclusions: The results highlighted the importance of patient-specific factors in OA inflammation and demonstrated the utility of combining experimental and synthetic data to model individual variability. The results support the development of personalised treatment strategies in OA. Future research should include larger patient datasets and an exploration of molecular mechanisms underlying these responses.
Collapse
Affiliation(s)
- Laura Jane Coleman
- Department of Applied Science, South East Technological University, R93 V960 Carlow, Ireland; (J.L.B.); (R.O.)
| | - John L. Byrne
- Department of Applied Science, South East Technological University, R93 V960 Carlow, Ireland; (J.L.B.); (R.O.)
| | | | - Rosemary O’Hara
- Department of Applied Science, South East Technological University, R93 V960 Carlow, Ireland; (J.L.B.); (R.O.)
| |
Collapse
|
2
|
Keeble AR, Thomas NT, Balawender PJ, Brightwell CR, Gonzalez-Velez S, O'Daniel MG, Conley CE, Stone AV, Johnson DL, Noehren B, Jacobs CA, Fry CS, Owen AM. CSF1-R inhibition attenuates posttraumatic osteoarthritis and quadriceps atrophy following ligament injury. J Physiol 2024. [PMID: 39709528 DOI: 10.1113/jp286815] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2024] [Accepted: 11/22/2024] [Indexed: 12/23/2024] Open
Abstract
Knee osteoarthritis contributes substantially to worldwide disability. Post-traumatic osteoarthritis (PTOA) develops secondary to joint injury, such as ligament rupture, and there is increasing evidence suggesting a key role for inflammation in the aetiology of PTOA and associated functional deficits. Colony stimulating factor 1 receptor (CSF1-R) has been implicated in the pathogenesis of musculoskeletal degeneration following anterior cruciate ligament (ACL) injury. We sought to assess the efficacy of CSF1-R inhibition to mitigate muscle and joint pathology in a mouse model of PTOA. Four-month-old mice were randomized to receive a CSF1-R inhibitor and studied for 7 or 28 days after joint injury. Additionally, we profiled synovial fluid samples for CSF1-R from patients with injury to their ACL. Transcriptomic analysis of quadriceps muscle and articular cartilage in CSF1-R inhibitor-treated animals at 7 days after injury revealed elevated chondrocyte differentiation within articular cartilage and enhanced metabolic and contractile gene expression within skeletal muscle. At 28 days post-injury, CSF1-R inhibition attenuated PTOA severity and mitigated skeletal muscle atrophy. Patient synovial fluid CSF1-R levels correlated with matrix metalloproteinase 13, a prognostic marker and molecular effector of PTOA. Our findings support an opportunity for CSF1-R targeting to mitigate the severity of PTOA and muscle atrophy after joint injury. KEY POINTS: Posttraumatic osteoarthritis (PTOA) of the knee commonly results from direct injury to the joint, which is characterized by pain, weakness, and disability. Induction of colony stimulating factor one receptor (CSF1-R) is positively associated with knee trauma severity, and the initial acute inflammatory state suppresses muscle recovery and degrades articular cartilage. Skeletal muscle and articular cartilage transcriptomic response following direct joint injury in a murine model of PTOA is rescued by pharmacological inhibition of CSF1-R. CSF1-R inhibition mitigated skeletal muscle atrophy and attenuated PTOA severity and synovitis. Patient synovial fluid CSF1-R levels correlated with matrix metalloproteinase 13, a prognostic marker and molecular effector of PTOA, offering further evidence for CSF1-R as a therapeutic target across musculoskeletal tissues after injury.
Collapse
Affiliation(s)
- Alexander R Keeble
- Center for Muscle Biology, University of Kentucky, Lexington, KY, USA
- Department of Physiology, College of Medicine, University of Kentucky, Lexington, KY, USA
| | - Nicholas T Thomas
- Center for Muscle Biology, University of Kentucky, Lexington, KY, USA
- Department of Athletic Training and Clinical Nutrition, College of Health Sciences, University of Kentucky, Lexington, KY, USA
| | | | - Camille R Brightwell
- Center for Muscle Biology, University of Kentucky, Lexington, KY, USA
- Department of Athletic Training and Clinical Nutrition, College of Health Sciences, University of Kentucky, Lexington, KY, USA
| | - Sara Gonzalez-Velez
- Center for Muscle Biology, University of Kentucky, Lexington, KY, USA
- Department of Physiology, College of Medicine, University of Kentucky, Lexington, KY, USA
| | | | - Caitlin E Conley
- Department of Orthopaedic Surgery and Sports Medicine, College of Medicine, University of Kentucky, Lexington, KY, USA
| | - Austin V Stone
- Department of Orthopaedic Surgery and Sports Medicine, College of Medicine, University of Kentucky, Lexington, KY, USA
| | - Darren L Johnson
- Department of Orthopaedic Surgery and Sports Medicine, College of Medicine, University of Kentucky, Lexington, KY, USA
| | - Brian Noehren
- Center for Muscle Biology, University of Kentucky, Lexington, KY, USA
- Department of Orthopaedic Surgery and Sports Medicine, College of Medicine, University of Kentucky, Lexington, KY, USA
- Department of Physical Therapy, College of Health Sciences, University of Kentucky, Lexington, KY, USA
| | - Cale A Jacobs
- Department of Orthopaedic Surgery and Sports Medicine, College of Medicine, University of Kentucky, Lexington, KY, USA
- Mass General Brigham Sports Medicine, Harvard Medical School, Boston, MA, USA
| | - Christopher S Fry
- Center for Muscle Biology, University of Kentucky, Lexington, KY, USA
- Department of Athletic Training and Clinical Nutrition, College of Health Sciences, University of Kentucky, Lexington, KY, USA
| | - Allison M Owen
- Center for Muscle Biology, University of Kentucky, Lexington, KY, USA
- Department of Physical Therapy, College of Health Sciences, University of Kentucky, Lexington, KY, USA
| |
Collapse
|
3
|
Betsch K, Martinez VG, Lyons LP, Weinberg JB, Wittstein JR, McNulty AL. Shedding light on the effects of blood on meniscus tissue: the role of mononuclear leukocytes in mediating meniscus catabolism. Osteoarthritis Cartilage 2024; 32:938-949. [PMID: 38782253 PMCID: PMC11254574 DOI: 10.1016/j.joca.2024.04.022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Revised: 04/12/2024] [Accepted: 04/23/2024] [Indexed: 05/25/2024]
Abstract
OBJECTIVE Traumatic meniscal injuries can cause acute pain, hemarthrosis (bleeding into the joint), joint immobility, and post-traumatic osteoarthritis (PTOA). However, the exact mechanism(s) by which PTOA develops following meniscal injuries is unknown. Since meniscus tears commonly coincide with hemarthrosis, investigating the direct effects of blood and its constituents on meniscus tissue is warranted. The goal of this study was to determine the direct effects of blood and blood components on meniscus tissue catabolism. METHODS Porcine meniscus explants or primary meniscus cells were exposed to whole blood or various fractions of blood for 3 days to simulate blood exposure following injury. Explants were then washed and cultured for an additional 3 days prior to collection for biochemical analyses. RESULTS Whole blood increased matrix metalloproteinase (MMP) activity. Fractionation experiments revealed blood-derived red blood cells did not affect meniscus catabolism. Conversely, viable mononuclear leukocytes induced MMP activity, nitric oxide (NO) production, and loss of tissue sulfated glycosaminoglycan (sGAG) content, suggesting that these cells are mediating meniscus catabolism. CONCLUSIONS These findings highlight the potential challenges of meniscus healing in the presence of hemarthrosis and the need for further research to elucidate the in vivo effects of blood and blood-derived mononuclear leukocytes due to both hemarthrosis and blood-derived therapeutics.
Collapse
Affiliation(s)
- Kevin Betsch
- Department of Orthopaedic Surgery, Duke University School of Medicine, Durham, NC, USA.
| | - Vianna G Martinez
- Department of Pathology, Duke University School of Medicine, Durham, NC, USA.
| | - Lucas P Lyons
- Department of Orthopaedic Surgery, Duke University School of Medicine, Durham, NC, USA.
| | - J Brice Weinberg
- Department of Medicine, VA Medical Center, Durham, NC, USA; Department of Medicine, Duke University School of Medicine, Durham, NC, USA.
| | - Jocelyn R Wittstein
- Department of Orthopaedic Surgery, Duke University School of Medicine, Durham, NC, USA.
| | - Amy L McNulty
- Department of Orthopaedic Surgery, Duke University School of Medicine, Durham, NC, USA; Department of Pathology, Duke University School of Medicine, Durham, NC, USA; Department of Biomedical Engineering, Duke University, Durham, NC, USA.
| |
Collapse
|
4
|
De Marziani L, Orazi S, Boffa A, Andriolo L, Di Martino A, Zaffagnini S, Filardo G. Knee temperature remains abnormal in patients successfully treated with anterior cruciate ligament reconstruction: An infrared thermography analysis. J Exp Orthop 2024; 11:e70012. [PMID: 39253542 PMCID: PMC11382133 DOI: 10.1002/jeo2.70012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/26/2024] [Accepted: 07/01/2024] [Indexed: 09/11/2024] Open
Abstract
Purpose The aim of this study was to evaluate if the operated knee environment remains abnormal in patients successfully treated with anterior cruciate ligament reconstruction (ACL-R). Methods Thirty asymptomatic patients were enrolled (28 men, 2 women, age 28.6 ± 6.54 years, body mass index: 24.9 ± 3.0 kg/m2) and evaluated at 42.2 ± 12.5 months after surgery. Patients were assessed with patient-reported outcome measurements and with a triaxial accelerometer. The temperature of the knees as well as four regions of interest were evaluated with an infrared thermographic camera FLIR T1020 (FLIR® Systems) according to a standardised protocol including a baseline evaluation and further evaluations immediately after exercise and after 5, 10 and 20 min. The temperature of the ACL-R knee was compared to that of the contralateral healthy knee for the purpose of the study. Results The mean temperature of the knee was higher (p = 0.010) for the ACL-R knees (31.4 ± 1.4°C) compared to the healthy knees (31.1 ± 1.6°C), as well as for the patellar area (p = 0.005), the lateral area (p = 0.016) and the medial area (p = 0.014). The analysis of the response to the exercises of the ACL-R knees showed similar trends to the healthy knees but higher temperature values at all time points (p < 0.05). Patients who underwent ACL-R with concomitant meniscal treatment showed higher knee temperatures compared to ACL-R knees without concomitant meniscal treatment after 5 (p = 0.047), 10 (p = 0.027) and 20 min (p = 0.048). Conclusions The temperature of asymptomatic knees previously treated with ACL-R is higher than the contralateral healthy knee, both at rest and after exercise, with a further increase in knees that underwent both ACL-R and meniscal treatment. These results suggest an inflammatory state persisting years after the surgery, which could predispose to the early onset of knee degeneration. Level of Evidence III, Case-control study.
Collapse
Affiliation(s)
- Luca De Marziani
- Clinica Ortopedica e Traumatologica 2 IRCCS Istituto Ortopedico Rizzoli Bologna Italy
| | - Simone Orazi
- Clinica Ortopedica e Traumatologica 2 IRCCS Istituto Ortopedico Rizzoli Bologna Italy
| | - Angelo Boffa
- Clinica Ortopedica e Traumatologica 2 IRCCS Istituto Ortopedico Rizzoli Bologna Italy
| | - Luca Andriolo
- Clinica Ortopedica e Traumatologica 2 IRCCS Istituto Ortopedico Rizzoli Bologna Italy
| | - Alessandro Di Martino
- Clinica Ortopedica e Traumatologica 2 IRCCS Istituto Ortopedico Rizzoli Bologna Italy
| | - Stefano Zaffagnini
- Clinica Ortopedica e Traumatologica 2 IRCCS Istituto Ortopedico Rizzoli Bologna Italy
| | - Giuseppe Filardo
- Applied and Translational Research (ATR) Center IRCCS Istituto Ortopedico Rizzoli Bologna Italy
- Faculty of Biomedical Sciences Università della Svizzera Italiana Lugano Switzerland
| |
Collapse
|
5
|
Minton DM, Ailiani AR, Focht MDK, Kersh ME, Marolf AJ, Santangelo KS, Salmon AB, Konopka AR. The common marmoset as a translational model of age-related osteoarthritis. GeroScience 2024; 46:2827-2847. [PMID: 38466454 PMCID: PMC11009185 DOI: 10.1007/s11357-024-01103-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Accepted: 02/15/2024] [Indexed: 03/13/2024] Open
Abstract
Age-related osteoarthritis (OA) is a degenerative joint disease characterized by pathological changes in nearly every intra- and peri-articular tissue that contributes to disability in older adults. Studying the etiology of age-related OA in humans is difficult due to an unpredictable onset and insidious nature. A barrier in developing OA modifying therapies is the lack of translational models that replicate human joint anatomy and age-related OA progression. The purpose of this study was to determine whether the common marmoset is a faithful model of human age-related knee OA. Semi-quantitative microCT scoring revealed greater radiographic OA in geriatric versus adult marmosets, and the age-related increase in OA prevalence was similar between marmosets and humans. Quantitative assessments indicate greater medial tibial cortical and trabecular bone thickness and heterogeneity in geriatric versus adult marmosets which is consistent with an age-related increase in focal subchondral bone sclerosis. Additionally, marmosets displayed an age-associated increase in synovitis and calcification of the meniscus and patella. Histological OA pathology in the medial tibial plateau was greater in geriatric versus adult marmosets driven by articular cartilage damage, proteoglycan loss, and altered chondrocyte cellularity. The age-associated increase in medial tibial cartilage OA pathology and meniscal calcification was greater in female versus male geriatric marmosets. Overall, marmosets largely replicate human OA as evident by similar 1) cartilage and skeletal morphology, 2) age-related progression in OA pathology, and 3) sex differences in OA pathology with increasing age. Collectively, these data suggest that the common marmoset is a highly translatable model of the naturally occurring, age-related OA seen in humans.
Collapse
Affiliation(s)
- Dennis M Minton
- Division of Geriatrics and Gerontology, Department of Medicine, University of Wisconsin-Madison, Madison, WI, USA
- Geriatric Research Education and Clinical Center, William S. Middleton Memorial Veterans Hospital, Madison, WI, USA
| | - Aditya R Ailiani
- Division of Geriatrics and Gerontology, Department of Medicine, University of Wisconsin-Madison, Madison, WI, USA
- Geriatric Research Education and Clinical Center, William S. Middleton Memorial Veterans Hospital, Madison, WI, USA
| | - Michael D K Focht
- Department of Mechanical Science and Engineering, University of Illinois Urbana-Champaign, Champaign, IL, USA
| | - Mariana E Kersh
- Department of Mechanical Science and Engineering, University of Illinois Urbana-Champaign, Champaign, IL, USA
- Beckman Institute for Advanced Science and Technology, University of Illinois Urbana-Champaign, Champaign, IL, USA
| | - Angela J Marolf
- Department of Veterinary Clinical Sciences, Ohio State University, Columbus, OH, USA
| | - Kelly S Santangelo
- Department of Microbiology, Immunology, and Pathology, College of Veterinary Medicine and Biomedical Sciences, Colorado State University, Fort Collins, CO, USA
| | - Adam B Salmon
- Barshop Institute for Longevity and Aging Studies, San Antonio, TX, USA
- Department of Molecular Medicine, University of Texas Health San Antonio, San Antonio, TX, USA
- Geriatric Research, Education, and Clinical Center, South Texas Veterans Healthcare System, San Antonio, TX, USA
| | - Adam R Konopka
- Division of Geriatrics and Gerontology, Department of Medicine, University of Wisconsin-Madison, Madison, WI, USA.
- Geriatric Research Education and Clinical Center, William S. Middleton Memorial Veterans Hospital, Madison, WI, USA.
| |
Collapse
|
6
|
Takase R, Ichinose T, Hashimoto S, Amano I, Ohsawa T, Koibuchi N, Chikuda H. Protective Effects of Extracorporeal Shockwave Therapy on the Degenerated Meniscus in a Rat Model. Am J Sports Med 2024; 52:374-382. [PMID: 38174366 DOI: 10.1177/03635465231214697] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/05/2024]
Abstract
BACKGROUND Loss of meniscal function in association with degenerative changes affects the development and progression of knee osteoarthritis, for which there is currently no effective treatment. Extracorporeal shockwave therapy (ESWT) is an established treatment for musculoskeletal disorders. However, the therapeutic effect of ESWT on meniscal degeneration remains unclear. PURPOSE To evaluate the therapeutic effect of ESWT on the degenerated meniscus in an anterior cruciate ligament transection (ACLT) model. STUDY DESIGN Controlled laboratory study. METHODS Twelve-week-old male Wistar rats were randomly assigned to 3 groups (normal, ESWT-, and ESWT+). Unilateral ACLT of the right knee was performed in the latter 2 groups. At 4 weeks after ACLT, the ESWT+ group received 800 shockwave impulses at an energy flux density of 0.22 mJ/mm2 in a single session. Histological changes were examined in the posterior portion of the medial meniscus after ESWT (n = 15 per group). Real-time polymerase chain reaction (PCR) was performed after ESWT (n = 5 per group) to analyze the expression of connective tissue growth factor/CCN family member 2 (CTGF/CCN2), sex determining region Y-box 9, vascular endothelial growth factor α, aggrecan, collagen type 1 alpha 2, and collagen type 2 alpha 1 (Col2α1). Immunohistochemistry was used to analyze the expression of CTGF/CCN2 and Ki-67 (n = 5 per group) after ESWT. RESULTS The meniscal histopathological score at 4 weeks after ACLT was significantly higher than that in the normal group, and the score in the ESWT+ group was significantly lower than that in the ESWT- group at 4 and 12 weeks after ESWT. Real-time PCR revealed that the mRNA expression of CTGF/CCN2 and Col2α1 decreased 4 weeks after ACLT. In the ESWT+ group, real-time PCR revealed that the mRNA expression of CTGF/CCN2 increased 24 hours after ESWT, and the expression of Col2α1 increased 4 weeks after ESWT (all significant data were P < .05). The ratio of CTGF/CCN2-positive cells and Ki67-positive cells was significantly higher in the ESWT+ group after ESWT. CONCLUSION The present study revealed that ESWT might suppress ACLT-induced meniscal degeneration by stimulating cartilage repair factors and inducing collagen type 2. CLINICAL RELEVANCE ESWT can be an effective treatment to protect the degenerated meniscus in a rat model of ACLT.
Collapse
Affiliation(s)
- Ryota Takase
- Department of Orthopaedic Surgery, Gunma University Graduate School of Medicine, Maebashi, Japan
| | - Tsuyoshi Ichinose
- Department of Orthopaedic Surgery, Gunma University Graduate School of Medicine, Maebashi, Japan
| | - Shogo Hashimoto
- Department of Orthopaedic Surgery, Gunma University Graduate School of Medicine, Maebashi, Japan
| | - Izuki Amano
- Department of Integrative Physiology, Gunma University Graduate School of Medicine, Maebashi, Japan
| | - Takashi Ohsawa
- Department of Orthopaedic Surgery, Gunma University Graduate School of Medicine, Maebashi, Japan
| | - Noriyuki Koibuchi
- Department of Integrative Physiology, Gunma University Graduate School of Medicine, Maebashi, Japan
| | - Hirotaka Chikuda
- Department of Orthopaedic Surgery, Gunma University Graduate School of Medicine, Maebashi, Japan
| |
Collapse
|
7
|
Iacobescu GL, Iacobescu L, Popa MIG, Covache-Busuioc RA, Corlatescu AD, Cirstoiu C. Genomic Determinants of Knee Joint Biomechanics: An Exploration into the Molecular Basis of Locomotor Function, a Narrative Review. Curr Issues Mol Biol 2024; 46:1237-1258. [PMID: 38392197 PMCID: PMC10888373 DOI: 10.3390/cimb46020079] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2023] [Revised: 01/20/2024] [Accepted: 01/25/2024] [Indexed: 02/24/2024] Open
Abstract
In recent years, the nexus between genetics and biomechanics has garnered significant attention, elucidating the role of genomic determinants in shaping the biomechanical attributes of human joints, specifically the knee. This review seeks to provide a comprehensive exploration of the molecular basis underlying knee joint locomotor function. Leveraging advancements in genomic sequencing, we identified specific genetic markers and polymorphisms tied to key biomechanical features of the knee, such as ligament elasticity, meniscal resilience, and cartilage health. Particular attention was devoted to collagen genes like COL1A1 and COL5A1 and their influence on ligamentous strength and injury susceptibility. We further investigated the genetic underpinnings of knee osteoarthritis onset and progression, as well as the potential for personalized rehabilitation strategies tailored to an individual's genetic profile. We reviewed the impact of genetic factors on knee biomechanics and highlighted the importance of personalized orthopedic interventions. The results hold significant implications for injury prevention, treatment optimization, and the future of regenerative medicine, targeting not only knee joint health but joint health in general.
Collapse
Affiliation(s)
- Georgian-Longin Iacobescu
- Orthopaedics and Traumatology Department, "Carol Davila" University of Medicine and Pharmacy, 050474 Bucharest, Romania
- University Emergency Hospital, 050098 Bucharest, Romania
| | - Loredana Iacobescu
- Orthopaedics and Traumatology Department, "Carol Davila" University of Medicine and Pharmacy, 050474 Bucharest, Romania
- University Emergency Hospital, 050098 Bucharest, Romania
| | - Mihnea Ioan Gabriel Popa
- Orthopaedics and Traumatology Department, "Carol Davila" University of Medicine and Pharmacy, 050474 Bucharest, Romania
- University Emergency Hospital, 050098 Bucharest, Romania
| | - Razvan-Adrian Covache-Busuioc
- Orthopaedics and Traumatology Department, "Carol Davila" University of Medicine and Pharmacy, 050474 Bucharest, Romania
| | - Antonio-Daniel Corlatescu
- Orthopaedics and Traumatology Department, "Carol Davila" University of Medicine and Pharmacy, 050474 Bucharest, Romania
| | - Catalin Cirstoiu
- Orthopaedics and Traumatology Department, "Carol Davila" University of Medicine and Pharmacy, 050474 Bucharest, Romania
- University Emergency Hospital, 050098 Bucharest, Romania
| |
Collapse
|
8
|
Rydén M, Lindblom K, Yifter-Lindgren A, Turkiewicz A, Aspberg A, Tillgren V, Englund M, Önnerfjord P. A human meniscus explant model for studying early events in osteoarthritis development by proteomics. J Orthop Res 2023; 41:2765-2778. [PMID: 37218349 DOI: 10.1002/jor.25633] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/24/2023] [Revised: 05/05/2023] [Accepted: 05/18/2023] [Indexed: 05/24/2023]
Abstract
Degenerative meniscus lesions have been associated with both osteoarthritis etiology and its progression. We, therefore, sought to establish a human meniscus ex vivo model to study the meniscal response to cytokine treatment using a proteomics approach. Lateral menisci were obtained from five knee-healthy donors. The meniscal body was cut into vertical slices and further divided into an inner (avascular) and outer region. Explants were either left untreated (controls) or stimulated with cytokines. Medium changes were conducted every 3 days up to Day 21 and liquid chromatography-mass spectrometry was performed at all the time points for the identification and quantification of proteins. Mixed-effect linear regression models were used for statistical analysis to estimate the effect of treatments versus control on protein abundance. Treatment by IL1ß increased release of cytokines such as interleukins, chemokines, and matrix metalloproteinases but a limited catabolic effect in healthy human menisci explants. Further, we observed an increased release of matrix proteins (collagens, integrins, prolargin, tenascin) in response to oncostatin M (OSM) + tumor necrosis factor (TNF) and TNF+interleukin-6 (IL6) + sIL6R treatments, and analysis of semitryptic peptides provided additional evidence of increased catabolic effects in response to these treatments. The induced activation of catabolic processes may play a role in osteoarthritis development.
Collapse
Affiliation(s)
- Martin Rydén
- Department of Clinical Sciences Lund, Orthopaedics, Clinical Epidemiology Unit, Faculty of Medicine, Lund University, Lund, Sweden
| | - Karin Lindblom
- Department of Clinical Sciences Lund, Section for Rheumatology and Molecular Skeletal Biology, Faculty of Medicine, Lund University, Lund, Sweden
| | - Aida Yifter-Lindgren
- Department of Clinical Sciences Lund, Section for Rheumatology and Molecular Skeletal Biology, Faculty of Medicine, Lund University, Lund, Sweden
| | - Aleksandra Turkiewicz
- Department of Clinical Sciences Lund, Orthopaedics, Clinical Epidemiology Unit, Faculty of Medicine, Lund University, Lund, Sweden
| | - Anders Aspberg
- Department of Clinical Sciences Lund, Section for Rheumatology and Molecular Skeletal Biology, Faculty of Medicine, Lund University, Lund, Sweden
| | - Viveka Tillgren
- Department of Clinical Sciences Lund, Section for Rheumatology and Molecular Skeletal Biology, Faculty of Medicine, Lund University, Lund, Sweden
| | - Martin Englund
- Department of Clinical Sciences Lund, Orthopaedics, Clinical Epidemiology Unit, Faculty of Medicine, Lund University, Lund, Sweden
| | - Patrik Önnerfjord
- Department of Clinical Sciences Lund, Section for Rheumatology and Molecular Skeletal Biology, Faculty of Medicine, Lund University, Lund, Sweden
| |
Collapse
|
9
|
Barceló X, Eichholz K, Gonçalves I, Kronemberger GS, Dufour A, Garcia O, Kelly DJ. Bioprinting of scaled-up meniscal grafts by spatially patterning phenotypically distinct meniscus progenitor cells within melt electrowritten scaffolds. Biofabrication 2023; 16:015013. [PMID: 37939395 DOI: 10.1088/1758-5090/ad0ab9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2023] [Accepted: 11/07/2023] [Indexed: 11/10/2023]
Abstract
Meniscus injuries are a common problem in orthopedic medicine and are associated with a significantly increased risk of developing osteoarthritis. While developments have been made in the field of meniscus regeneration, the engineering of cell-laden constructs that mimic the complex structure, composition and biomechanics of the native tissue remains a significant challenge. This can be linked to the use of cells that are not phenotypically representative of the different zones of the meniscus, and an inability to direct the spatial organization of engineered meniscal tissues. In this study we investigated the potential of zone-specific meniscus progenitor cells (MPCs) to generate functional meniscal tissue following their deposition into melt electrowritten (MEW) scaffolds. We first confirmed that fibronectin selected MPCs from the inner and outer regions of the meniscus maintain their differentiation capacity with prolonged monolayer expansion, opening their use within advanced biofabrication strategies. By depositing MPCs within MEW scaffolds with elongated pore shapes, which functioned as physical boundaries to direct cell growth and extracellular matrix production, we were able to bioprint anisotropic fibrocartilaginous tissues with preferentially aligned collagen networks. Furthermore, by using MPCs isolated from the inner (iMPCs) and outer (oMPCs) zone of the meniscus, we were able to bioprint phenotypically distinct constructs mimicking aspects of the native tissue. An iterative MEW process was then implemented to print scaffolds with a similar wedged-shaped profile to that of the native meniscus, into which we deposited iMPCs and oMPCs in a spatially controlled manner. This process allowed us to engineer sulfated glycosaminoglycan and collagen rich constructs mimicking the geometry of the meniscus, with MPCs generating a more fibrocartilage-like tissue compared to the mesenchymal stromal/stem cells. Taken together, these results demonstrate how the convergence of emerging biofabrication platforms with tissue-specific progenitor cells can enable the engineering of complex tissues such as the meniscus.
Collapse
Affiliation(s)
- Xavier Barceló
- Trinity Centre for Biomedical Engineering, Trinity Biomedical Sciences Institute, Trinity College Dublin, Dublin D02 R590, Ireland
- Department of Mechanical, Manufacturing, & Biomedical Engineering, School of Engineering, Trinity College Dublin, Dublin D02 R590, Ireland
- Advanced Materials & Bioengineering Research Centre (AMBER), Royal College of Surgeons in Ireland & Trinity College Dublin, Dublin D02 F6N2, Ireland
| | - Kian Eichholz
- Trinity Centre for Biomedical Engineering, Trinity Biomedical Sciences Institute, Trinity College Dublin, Dublin D02 R590, Ireland
- Department of Mechanical, Manufacturing, & Biomedical Engineering, School of Engineering, Trinity College Dublin, Dublin D02 R590, Ireland
- Advanced Materials & Bioengineering Research Centre (AMBER), Royal College of Surgeons in Ireland & Trinity College Dublin, Dublin D02 F6N2, Ireland
| | - Inês Gonçalves
- Trinity Centre for Biomedical Engineering, Trinity Biomedical Sciences Institute, Trinity College Dublin, Dublin D02 R590, Ireland
- Department of Mechanical, Manufacturing, & Biomedical Engineering, School of Engineering, Trinity College Dublin, Dublin D02 R590, Ireland
- Advanced Materials & Bioengineering Research Centre (AMBER), Royal College of Surgeons in Ireland & Trinity College Dublin, Dublin D02 F6N2, Ireland
| | - Gabriela S Kronemberger
- Trinity Centre for Biomedical Engineering, Trinity Biomedical Sciences Institute, Trinity College Dublin, Dublin D02 R590, Ireland
- Department of Mechanical, Manufacturing, & Biomedical Engineering, School of Engineering, Trinity College Dublin, Dublin D02 R590, Ireland
- Advanced Materials & Bioengineering Research Centre (AMBER), Royal College of Surgeons in Ireland & Trinity College Dublin, Dublin D02 F6N2, Ireland
| | - Alexandre Dufour
- Trinity Centre for Biomedical Engineering, Trinity Biomedical Sciences Institute, Trinity College Dublin, Dublin D02 R590, Ireland
- Department of Mechanical, Manufacturing, & Biomedical Engineering, School of Engineering, Trinity College Dublin, Dublin D02 R590, Ireland
- Advanced Materials & Bioengineering Research Centre (AMBER), Royal College of Surgeons in Ireland & Trinity College Dublin, Dublin D02 F6N2, Ireland
| | - Orquidea Garcia
- Johnson & Johnson 3D Printing Innovation & Customer Solutions, Johnson & Johnson Services, Inc, Dublin D02 R590, Ireland
| | - Daniel J Kelly
- Trinity Centre for Biomedical Engineering, Trinity Biomedical Sciences Institute, Trinity College Dublin, Dublin D02 R590, Ireland
- Department of Mechanical, Manufacturing, & Biomedical Engineering, School of Engineering, Trinity College Dublin, Dublin D02 R590, Ireland
- Advanced Materials & Bioengineering Research Centre (AMBER), Royal College of Surgeons in Ireland & Trinity College Dublin, Dublin D02 F6N2, Ireland
- Department of Anatomy and Regenerative Medicine, Royal College of Surgeons in Ireland, Dublin D02 YN77, Ireland
| |
Collapse
|
10
|
Su J, Yu M, Wang H, Wei Y. Natural anti-inflammatory products for osteoarthritis: From molecular mechanism to drug delivery systems and clinical trials. Phytother Res 2023; 37:4321-4352. [PMID: 37641442 DOI: 10.1002/ptr.7935] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2023] [Revised: 06/19/2023] [Accepted: 06/21/2023] [Indexed: 08/31/2023]
Abstract
Osteoarthritis (OA) is a degenerative joint disease that affects millions globally. The present nonsteroidal anti-inflammatory drug treatments have different side effects, leading researchers to focus on natural anti-inflammatory products (NAIPs). To review the effectiveness and mechanisms of NAIPs in the cellular microenvironment, examining their impact on OA cell phenotype and organelles levels. Additionally, we summarize relevant research on drug delivery systems and clinical randomized controlled trials (RCTs), to promote clinical studies and explore natural product delivery options. English-language articles were searched on PubMed using the search terms "natural products," "OA," and so forth. We categorized search results based on PubChem and excluded "natural products" which are mix of ingredients or compounds without the structure message. Then further review was separately conducted for molecular mechanisms, drug delivery systems, and RCTs later. At present, it cannot be considered that NAIPs can thoroughly prevent or cure OA. Further high-quality studies on the anti-inflammatory mechanism and drug delivery systems of NAIPs are needed, to determine the appropriate drug types and regimens for clinical application, and to explore the combined effects of different NAIPs to prevent and treat OA.
Collapse
Affiliation(s)
- Jianbang Su
- Department of Orthopedics, Shengjing Hospital of China Medical University, Shenyang, China
| | - Minghao Yu
- Department of Orthopedics, Shengjing Hospital of China Medical University, Shenyang, China
| | - Haochen Wang
- Department of Orthopedics, Shengjing Hospital of China Medical University, Shenyang, China
| | - Yingliang Wei
- Department of Orthopedics, Shengjing Hospital of China Medical University, Shenyang, China
| |
Collapse
|
11
|
Chen MF, Hu CC, Hsu YH, Chiu YT, Chen KL, Ueng SWN, Chang Y. Characterization and Advancement of an Evaluation Method for the Treatment of Spontaneous Osteoarthritis in STR/ort Mice: GRGDS Peptides as a Potential Treatment for Osteoarthritis. Biomedicines 2023; 11:biomedicines11041111. [PMID: 37189729 DOI: 10.3390/biomedicines11041111] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Revised: 03/31/2023] [Accepted: 04/03/2023] [Indexed: 05/17/2023] Open
Abstract
STR/ort mice spontaneously exhibit the typical osteoarthritis (OA) phenotype. However, studies describing the relationship between cartilage histology, epiphyseal trabecular bone, and age are lacking. We aimed to evaluate the typical OA markers and quantify the subchondral bone trabecular parameters in STR/ort male mice at different weeks of age. We then developed an evaluation model for OA treatment. We graded the knee cartilage damage using the Osteoarthritis Research Society International (OARSI) score in STR/ort male mice with or without GRGDS treatment. We measured the levels of typical OA markers, including aggrecan fragments, matrix metallopeptidase-13 (MMP-13), collagen type X alpha 1 chain (COL10A1), and SRY-box transcription factor 9 (Sox9), and quantified epiphyseal trabecular parameters. Compared to the young age group, elderly mice showed an increased OARSI score, decreased chondrocyte columns of the growth plate, elevated expression of OA markers (aggrecan fragments, MMP13, and COL10A1), and decreased expression of Sox9 at the articular cartilage region in elderly STR/ort mice. Aging also significantly enhanced the subchondral bone remodeling and microstructure change in the tibial plateau. Moreover, GRGDS treatment mitigated these subchondral abnormalities. Our study presents suitable evaluation methods to characterize and measure the efficacy of cartilage damage treatments in STR/ort mice with spontaneous OA.
Collapse
Affiliation(s)
- Mei-Feng Chen
- Bone and Joint Research Center, Chang Gung Memorial Hospital, Taoyuan 33305, Taiwan
| | - Chih-Chien Hu
- Bone and Joint Research Center, Chang Gung Memorial Hospital, Taoyuan 33305, Taiwan
- Department of Orthopedic Surgery, Chang Gung Memorial Hospital, Taoyuan 33305, Taiwan
- College of Medicine, Chang Gung University, Taoyuan 33302, Taiwan
| | - Yung-Heng Hsu
- Bone and Joint Research Center, Chang Gung Memorial Hospital, Taoyuan 33305, Taiwan
- Department of Orthopedic Surgery, Chang Gung Memorial Hospital, Taoyuan 33305, Taiwan
- College of Medicine, Chang Gung University, Taoyuan 33302, Taiwan
| | - Yu-Tien Chiu
- Bone and Joint Research Center, Chang Gung Memorial Hospital, Taoyuan 33305, Taiwan
| | - Kai-Lin Chen
- Bone and Joint Research Center, Chang Gung Memorial Hospital, Taoyuan 33305, Taiwan
| | - Steve W N Ueng
- Bone and Joint Research Center, Chang Gung Memorial Hospital, Taoyuan 33305, Taiwan
- Department of Orthopedic Surgery, Chang Gung Memorial Hospital, Taoyuan 33305, Taiwan
- College of Medicine, Chang Gung University, Taoyuan 33302, Taiwan
| | - Yuhan Chang
- Bone and Joint Research Center, Chang Gung Memorial Hospital, Taoyuan 33305, Taiwan
- Department of Orthopedic Surgery, Chang Gung Memorial Hospital, Taoyuan 33305, Taiwan
- College of Medicine, Chang Gung University, Taoyuan 33302, Taiwan
| |
Collapse
|
12
|
Li M, Yin H, Chen M, Deng H, Tian G, Guo W, Yi G, Guo Q, Chen Z, Liu S. STS loaded PCL-MECM based hydrogel hybrid scaffolds promote meniscal regeneration via modulating macrophage phenotype polarization. Biomater Sci 2023; 11:2759-2774. [PMID: 36810435 DOI: 10.1039/d2bm00526c] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
Meniscus injury has a limited ability to heal itself and often results in the progression to osteoarthritis. After a meniscus injury, there is an obvious acute or chronic inflammatory response in the articular cavity, which is not conducive to tissue regeneration. M2 macrophages are involved in tissue repair and remodeling. Regenerative medicine strategies for tissue regeneration by enhancing the phenotypic ratio of M2 : M1 macrophages have been demonstrated in a variety of tissues. However, there are no relevant reports in the field of meniscus tissue regeneration. In this study, we confirmed that sodium tanshinone IIA sulfonate (STS) could transform macrophages from M1 to M2 polarization. STS protects meniscal fibrochondrocytes (MFCs) against the effects of macrophage conditioned medium (CM). Moreover, STS attenuates interleukin (IL)-1β-induced inflammation, oxidative stress, apoptosis, and extracellular matrix (ECM) degradation in MFCs, possibly by inhibiting the interleukin-1 receptor-associated kinase 4 (IRAK4)/TNFR-associated factor 6 (TRAF6)/nuclear factor-kappaB (NF-κB) signaling pathway. An STS loaded polycaprolactone (PCL)-meniscus extracellular matrix (MECM) based hydrogel hybrid scaffold was fabricated. PCL provides mechanical support, the MECM based hydrogel provides a microenvironment conducive to cell proliferation and differentiation, and STS is used to drive M2 polarization and protect MFCs against the effects of inflammatory stimuli, thus providing an immune microenvironment conducive to regeneration. The results of subcutaneous implantation in vivo showed that hybrid scaffolds could induce M2 polarization in the early stage. In addition, the hybrid scaffolds seeded with MFCs could achieve good meniscus regeneration and chondroprotective effects in rabbits.
Collapse
Affiliation(s)
- Muzhe Li
- Institute of Orthopedics, The First Medical Center, Chinese PLA General Hospital, Beijing Key Lab of Regenerative Medicine in Orthopedics, Key Laboratory of Musculoskeletal Trauma and War Injuries PLA, No. 28 Fuxing Road, Haidian District, Beijing 100853, China. .,Department of Orthopedics, The First Affiliated Hospital, Hengyang Medical School, University of South China, No. 69, Chuanshan Road, Hengyang 421000, Hunan Province, China.
| | - Han Yin
- Institute of Orthopedics, The First Medical Center, Chinese PLA General Hospital, Beijing Key Lab of Regenerative Medicine in Orthopedics, Key Laboratory of Musculoskeletal Trauma and War Injuries PLA, No. 28 Fuxing Road, Haidian District, Beijing 100853, China.
| | - Mingxue Chen
- Department of Orthopedic Surgery, Beijing Jishuitan Hospital, Fourth Clinical College of Peking University, Beijing 100035, China
| | - Haotian Deng
- Institute of Orthopedics, The First Medical Center, Chinese PLA General Hospital, Beijing Key Lab of Regenerative Medicine in Orthopedics, Key Laboratory of Musculoskeletal Trauma and War Injuries PLA, No. 28 Fuxing Road, Haidian District, Beijing 100853, China.
| | - Guangzhao Tian
- Institute of Orthopedics, The First Medical Center, Chinese PLA General Hospital, Beijing Key Lab of Regenerative Medicine in Orthopedics, Key Laboratory of Musculoskeletal Trauma and War Injuries PLA, No. 28 Fuxing Road, Haidian District, Beijing 100853, China.
| | - Weimin Guo
- Department of Orthopaedic Surgery, Guangdong Provincial Key Laboratory of Orthopedics and Traumatology, First Affiliated Hospital, Sun Yat-Sen University, No. 58, Zhongshan Second Road, Yuexiu District, Guangzhou 510080, Guangdong, China
| | - Guoliang Yi
- Department of Orthopedics, The First Affiliated Hospital, Hengyang Medical School, University of South China, No. 69, Chuanshan Road, Hengyang 421000, Hunan Province, China.
| | - Quanyi Guo
- Institute of Orthopedics, The First Medical Center, Chinese PLA General Hospital, Beijing Key Lab of Regenerative Medicine in Orthopedics, Key Laboratory of Musculoskeletal Trauma and War Injuries PLA, No. 28 Fuxing Road, Haidian District, Beijing 100853, China.
| | - Zhiwei Chen
- Department of Orthopedics, The First Affiliated Hospital, Hengyang Medical School, University of South China, No. 69, Chuanshan Road, Hengyang 421000, Hunan Province, China.
| | - Shuyun Liu
- Institute of Orthopedics, The First Medical Center, Chinese PLA General Hospital, Beijing Key Lab of Regenerative Medicine in Orthopedics, Key Laboratory of Musculoskeletal Trauma and War Injuries PLA, No. 28 Fuxing Road, Haidian District, Beijing 100853, China.
| |
Collapse
|
13
|
Wang Z, Winzenberg T, Singh A, Aitken D, Blizzard L, Boesen M, Oei EHG, van Zadelhoff TA, Parameswaran V, Ding C, Jones R, Antony B. Effect of Curcuma longa extract on serum inflammatory markers and MRI-based synovitis in knee osteoarthritis: secondary analyses from the CurKOA randomised trial. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2023; 109:154616. [PMID: 36610110 DOI: 10.1016/j.phymed.2022.154616] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/07/2022] [Revised: 11/20/2022] [Accepted: 12/17/2022] [Indexed: 06/17/2023]
Abstract
BACKGROUND Curcuma longa (CL) extract is modestly effective for relieving knee symptoms in knee osteoarthritis (OA) patients; however, its mechanism of action is unclear. PURPOSE We aimed to determine the effects of CL treatment on serum inflammatory markers over 12 weeks and to explore its potential effects on synovitis assessed by contrast-enhanced magnetic resonance imaging (CE-MRI) of the knee. METHODS Secondary analyses were conducted on the CL for knee OA (CurKOA) trial, which compared CL (n = 36) and placebo (n = 34) over 12 weeks for the treatment of knee OA. Systemic inflammatory markers (TNFα, IL6, and hsCRP) and a cartilage extracellular matrix degradative enzyme (MMP-3) were measured. A subgroup of participants (CL, n = 7; placebo, n = 5) underwent CE-MRI at baseline and a 12-week follow-up. RESULTS Over 12 weeks, there were no between-group differences in change in hsCRP, IL-6, and TNFα levels. MMP-3 levels decreased in both CL (-1.31 ng/ml [95%CI: -1.89 to -0.73]) and placebo (-2.34 ng/ml [95%CI: -2.95 to -1.73]) groups, with the placebo group having a slightly greater decrease (1.03 ng/ml [95%CI: 0.19 to 1.88]). Most (10 of 12) sub-study participants had normal synovial thickness scores at baseline. One participant had mild synovitis in each of the placebo and CL groups. Synovitis status was stable for all except two participants, one each in the CL and placebo group, whose synovitis score increased. CONCLUSION This is the first study that explored the effect of CL treatment on local and systemic inflammation using biochemical markers and CE-MRI outcomes on knee OA patients. Secondary analyses from this pilot study suggest that CL is unlikely to have clinically significant effects on systemic (inflammatory and cartilage) or local synovitis (CE-MRI) biomarkers compared to placebo. The mechanism of action for CL effect on pain remains unclear.
Collapse
Affiliation(s)
- Zhiqiang Wang
- Menzies Institute for Medical Research, University of Tasmania, Hobart, Australia; Clinical Research Centre, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| | - Tania Winzenberg
- Menzies Institute for Medical Research, University of Tasmania, Hobart, Australia
| | - Ambrish Singh
- Menzies Institute for Medical Research, University of Tasmania, Hobart, Australia
| | - Dawn Aitken
- Menzies Institute for Medical Research, University of Tasmania, Hobart, Australia
| | - Leigh Blizzard
- Menzies Institute for Medical Research, University of Tasmania, Hobart, Australia
| | - Mikael Boesen
- Department of Radiology, Bispebjerg and Frederiksberg Hospital, Copenhagen, Denmark
| | - Edwin H G Oei
- Department of Radiology & Nuclear Medicine, Erasmus MC, University Medical Center, Rotterdam, the Netherlands
| | - Tijmen A van Zadelhoff
- Department of Radiology & Nuclear Medicine, Erasmus MC, University Medical Center, Rotterdam, the Netherlands
| | | | - Changhai Ding
- Clinical Research Centre, Zhujiang Hospital, Southern Medical University, Guangzhou, China; Department of Epidemiology and Preventive Medicine, School of Public Health and Preventive Medicine, Monash University, Melbourne, Australia
| | - Robert Jones
- Royal Hobart Hospital, Hobart, TAS, 7000 Australia
| | - Benny Antony
- Menzies Institute for Medical Research, University of Tasmania, Hobart, Australia.
| |
Collapse
|
14
|
Ashruf OS, Ansari MY. Natural Compounds: Potential Therapeutics for the Inhibition of Cartilage Matrix Degradation in Osteoarthritis. LIFE (BASEL, SWITZERLAND) 2022; 13:life13010102. [PMID: 36676051 PMCID: PMC9866583 DOI: 10.3390/life13010102] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/24/2022] [Revised: 12/24/2022] [Accepted: 12/26/2022] [Indexed: 12/31/2022]
Abstract
Osteoarthritis (OA) is the most common degenerative joint disease characterized by enzymatic degradation of the cartilage extracellular matrix (ECM) causing joint pain and disability. There is no disease-modifying drug available for the treatment of OA. An ideal drug is expected to stop cartilage ECM degradation and restore the degenerated ECM. The ECM primarily contains type II collagen and aggrecan but also has minor quantities of other collagen fibers and proteoglycans. In OA joints, the components of the cartilage ECM are degraded by matrix-degrading proteases and hydrolases which are produced by chondrocytes and synoviocytes. Matrix metalloproteinase-13 (MMP-13) and a disintegrin and metalloproteinase with thrombospondin motifs 4 and 5 (ADAMTS5) are the major collagenase and aggrecanase, respectively, which are highly expressed in OA cartilage and promote cartilage ECM degradation. Current studies using various in vitro and in vivo approaches show that natural compounds inhibit the expression and activity of MMP-13, ADAMTS4, and ADAMTS5 and increase the expression of ECM components. In this review, we have summarized recent advancements in OA research with a focus on natural compounds as potential therapeutics for the treatment of OA with emphasis on the prevention of cartilage ECM degradation and improvement of joint health.
Collapse
Affiliation(s)
- Omer S. Ashruf
- Department of Anatomy and Neurobiology, Northeast Ohio Medical University, 4209, State Route 44, Rootstown, OH 44272, USA
- College of Medicine, Northeast Ohio Medical University, 4209, State Route 44, Rootstown, OH 44272, USA
| | - Mohammad Yunus Ansari
- Department of Anatomy and Neurobiology, Northeast Ohio Medical University, 4209, State Route 44, Rootstown, OH 44272, USA
- Musculoskeletal Research Focus Area, Northeast Ohio Medical University, 4209, State Route 44, Rootstown, OH 44272, USA
- Correspondence:
| |
Collapse
|
15
|
Jrad AIS, Trad M, Bzeih W, El Hasbani G, Uthman I. Role of pro-inflammatory interleukins in osteoarthritis: a narrative review. Connect Tissue Res 2022; 64:238-247. [PMID: 36541851 DOI: 10.1080/03008207.2022.2157270] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
PURPOSE This manuscript will summarize the role of pro-inflammatory cytokines and tackle newly discussed ones within the scope of OA pathogenesis as mentioned in the recent literature. This will allow for a better understanding of the mechanisms behind such a complicated disease. MATERIAL AND METHODS Relevant articles were obtained by searching key terms including "pro-inflammatory cytokines," "inflammation," "pathophysiology," "cartilage damage," and "OA" in PubMed and Google Scholar databases. The year ranges set for the selection of the articles was between 2015 -2021. Inclusion criteria was based on the relevance and contribution to the field of the study. RESULTS Osteoarthritis (OA) has a complex multifactorial pathophysiology which is attributed to molecular and biomechanical changes that disrupt the normal balance of synthesis and degradation of articular cartilage and subchondral bone. Pro-inflammatory cytokines, with their wide range of action and intricate signaling pathways, are the constant subject of new discoveries revolving around this inflammatory disease. The available literature indicates that some of these cytokines such as IL-33, IL-17, IL-6, and IL-22 have a direct relation to cartilage degradation, while others like IL-15, IL-1, IL-7, and IL-34 have an indirect one. CONCLUSIONS Inflammation has an essential role in the manifestation of osteoarthritis clinical events. Specifically, certain cytokines exhibit pro-inflammatory properties that are markedly activated during the course of the disease and notably alter the homeostasis of the joint environment. However, clinical trials and observational studies remain insufficient to navigate the varying nature of this disease in humans.
Collapse
Affiliation(s)
| | - Maha Trad
- Faculty of Medical Sciences, Lebanese University, Hadath, Lebanon
| | - Wafaa Bzeih
- Faculty of Medical Sciences, Lebanese University, Hadath, Lebanon
| | - Georges El Hasbani
- Department of Internal Medicine, St. Vincent's Medical Center, Bridgeport, CT, USA
| | - Imad Uthman
- Department of Internal Medicine, American University of Beirut Medical Center, Beirut, Lebanon
| |
Collapse
|
16
|
RNA-Seq of Dermal Fibroblasts from Patients with Hypermobile Ehlers-Danlos Syndrome and Hypermobility Spectrum Disorders Supports Their Categorization as a Single Entity with Involvement of Extracellular Matrix Degrading and Proinflammatory Pathomechanisms. Cells 2022; 11:cells11244040. [PMID: 36552803 PMCID: PMC9777098 DOI: 10.3390/cells11244040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2022] [Revised: 12/02/2022] [Accepted: 12/12/2022] [Indexed: 12/15/2022] Open
Abstract
Hypermobile Ehlers-Danlos syndrome (hEDS) and hypermobility spectrum disorders (HSD) are clinically overlapping connective tissue disorders of unknown etiology and without any validated diagnostic biomarker and specific therapies. Herein, we in-depth characterized the cellular phenotype and gene expression profile of hEDS and HSD dermal fibroblasts by immunofluorescence, amplicon-based RNA-seq, and qPCR. We demonstrated that both cell types show a common cellular trait, i.e., generalized extracellular matrix (ECM) disarray, myofibroblast differentiation, and dysregulated gene expression. Functional enrichment and pathway analyses clustered gene expression changes in different biological networks that are likely relevant for the disease pathophysiology. Specifically, the complex gene expression dysregulation (mainly involving growth factors, structural ECM components, ECM-modifying enzymes, cytoskeletal proteins, and different signal transducers), is expected to perturb many ECM-related processes including cell adhesion, migration, proliferation, and differentiation. Based on these findings, we propose a disease model in which an unbalanced ECM remodeling triggers a vicious cycle with a synergistic contribution of ECM degradation products and proinflammatory mediators leading to a functional impairment of different connective tissues reflecting the multisystemic presentation of hEDS/HSD patients. Our results offer many promising clues for translational research aimed to define molecular bases, diagnostic biomarkers, and specific therapies for these challenging connective tissue disorders.
Collapse
|
17
|
A Study on the Potential Mechanism of Shujin Dingtong Recipe against Osteoarthritis Based on Network Pharmacology and Molecular Docking. COMPUTATIONAL AND MATHEMATICAL METHODS IN MEDICINE 2022; 2022:1873004. [DOI: 10.1155/2022/1873004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/23/2022] [Revised: 10/15/2022] [Accepted: 10/28/2022] [Indexed: 11/28/2022]
Abstract
Background. With the aging of the social population, Osteoarthritis (OA) has already become a vital health and economic problem globally. Shujin Dingtong recipe (SJDTR) is an effective formula to treat OA in China. Although studies have shown that SJDTR can significantly alleviate OA symptoms, its mechanism still remains unclear. Purpose. This study is aimed at investigating the potential mechanism of SJDTR for the treatment of OA based on network pharmacology and molecular docking. Methods. Main ingredients of SJDTR were retrieved from the Traditional Chinese Medicine Systems Pharmacology (TCMSP) database. OA disease targets were obtained from the Gene Expression Omnibus (GEO) database. The overlapped targets and signaling pathways were explored using Protein-Protein Interaction (PPI) network, Gene Ontology (GO), and Kyoto Encyclopedia of Genes and Genomes (KEGG). Following this, the core targets were employed to dock with corresponding components via molecular docking in order to further explore the mechanism of SJDTR in the treatment of OA. Results. From network pharmacology, we found 100 active components of SJDTR, 31 drug and OA-related targets, 1161 GO items, and 91 signaling pathways. Based on the analysis with PPI network and molecular docking, TP53, CCNB1, and MMP-2 were selected for the core targets of SJDTR against OA. Molecular docking demonstrated that Quercetin, Baicalein, and Luteolin, had good binding with the TP53, CCNB1, and MMP-2 protein, respectively. Conclusion. To conclude, our study suggested the main ingredients of SJDTR might alleviate the progression of OA through multiple targets and pathways. Additionally, network pharmacology and molecular docking, as new approaches, were adopted for systematically exploring the potential mechanism of SJDTR for the treatment of OA.
Collapse
|
18
|
Wang M, Li Y, Feng L, Zhang X, Wang H, Zhang N, Viohl I, Li G. Pulsed Electromagnetic Field Enhances Healing of a Meniscal Tear and Mitigates Posttraumatic Osteoarthritis in a Rat Model. Am J Sports Med 2022; 50:2722-2732. [PMID: 35834942 DOI: 10.1177/03635465221105874] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
BACKGROUND Meniscal tears in the avascular region are thought to rarely heal and are a considerable challenge to treat. Although the therapeutic effects of a pulsed electromagnetic field (PEMF) have been extensively studied in a variety of orthopaedic disorders, the effect of a PEMF on meniscal healing has not been reported. HYPOTHESIS PEMF treatment would promote meniscal healing and prevent osteoarthritis progression. STUDY DESIGN Controlled laboratory study. METHODS A total of 72 twelve-week-old male Sprague-Dawley rats with full-thickness longitudinal medial meniscal tears in the avascular region were divided into 3 groups: control (Gcon), treatment with a classic signal PEMF (Gclassic), and treatment with a high-slew rate signal PEMF (GHSR). Macroscopic observation and histological analysis of the meniscus and articular cartilage were performed to evaluate the meniscal healing and progression of osteoarthritis. The synovium was harvested for histological and immunofluorescent analysis to evaluate the intra-articular inflammation. Meniscal healing, articular cartilage degeneration, and synovitis were quantitatively evaluated according to their scoring systems. RESULTS Dramatic degenerative changes of the meniscus and articular cartilage were noticed during gross observation and histological evaluation in Gcon at 8 weeks. However, the menisci in the 2 treatment groups were restored to normal morphology, with a smooth surface and shiny white color. Particularly, the HSR signal remarkably enhanced the fibrochondrogenesis and accelerated the remodeling process of the regenerated tissue. The meniscal healing scores of the PEMF treatment groups were significantly higher than those in Gcon at 8 weeks. Specifically, the HSR signal showed a significantly higher meniscal repair score than did the classic signal at week 8 (P < .01). Additionally, the HSR signal significantly downregulated the secretion levels of interleukin 1 beta (IL-1β) and tumor necrosis factor alpha (TNF-α) in the meniscus and synovium as compared with the control group. When compared with the 2 treatment groups, Gcon had significantly higher degeneration scores (Gcon vs Gclassic, P < .0001; Gcon vs GHSR, P < .0001). The HSR signal also exhibited significantly lower synovitis scores compared with the other two groups (Gcon vs Gclassic, P < .0001; Gclassic vs GHSR, P = .0002). CONCLUSION A PEMF promoted the healing of meniscal tears in the avascular region and restored the injured meniscus to its structural integrity in a rat model. As compared with the classic signal, the HSR signal showed increased capability to promote fibrocartilaginous tissue formation and modulate the inflammatory environment, therefore protecting the knee joint from posttraumatic osteoarthritis development. CLINICAL RELEVANCE Adjuvant PEMF therapy may offer a new approach for the treatment of meniscal tears attributed to the enhanced meniscal repair and ameliorated osteoarthritis progression.
Collapse
Affiliation(s)
- Ming Wang
- Department of Orthopaedics and Traumatology, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong, China.,Stem Cells and Regenerative Medicine Laboratory, Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Prince of Wales Hospital, Hong Kong, China
| | - Yucong Li
- Department of Orthopaedics and Traumatology, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong, China.,Stem Cells and Regenerative Medicine Laboratory, Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Prince of Wales Hospital, Hong Kong, China
| | - Lu Feng
- Department of Orthopaedics and Traumatology, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong, China.,Stem Cells and Regenerative Medicine Laboratory, Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Prince of Wales Hospital, Hong Kong, China
| | - Xiaoting Zhang
- Department of Orthopaedics and Traumatology, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong, China.,Stem Cells and Regenerative Medicine Laboratory, Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Prince of Wales Hospital, Hong Kong, China
| | - Haixing Wang
- Department of Orthopaedics and Traumatology, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong, China.,Stem Cells and Regenerative Medicine Laboratory, Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Prince of Wales Hospital, Hong Kong, China
| | - Nianli Zhang
- Research and Clinical Affairs, Orthofix Medical Inc, Lewisville, Texas, USA
| | - Ingmar Viohl
- Research and Clinical Affairs, Orthofix Medical Inc, Lewisville, Texas, USA
| | - Gang Li
- Department of Orthopaedics and Traumatology, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong, China.,Stem Cells and Regenerative Medicine Laboratory, Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Prince of Wales Hospital, Hong Kong, China
| |
Collapse
|
19
|
Mahmoud EE, Mawas AS, Mohamed AA, Noby MA, Abdel-Hady ANA, Zayed M. Treatment strategies for meniscal lesions: from past to prospective therapeutics. Regen Med 2022; 17:547-560. [PMID: 35638397 DOI: 10.2217/rme-2021-0080] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Menisci play an important role in the biomechanics of knee joint function, including loading transmission, joint lubrication, prevention of soft tissue impingement during motion and joint stability. Meniscal repair presents a challenge due to a lack of vascularization that limits the healing capacity of meniscal tissue. In this review, the authors aimed to untangle the available treatment options for repairing meniscal tears. Various surgical procedures have been developed to treat meniscal tears; however, clinical outcomes are limited. Consequently, numerous researchers have focused on different treatments such as the application of exogenous and/or autologous growth factors, scaffolds including tissue-derived matrix, cell-based therapy and miRNA-210. The authors present current and prospective treatment strategies for meniscal lesions.
Collapse
Affiliation(s)
- Elhussein E Mahmoud
- Department of Surgery, College of Veterinary Medicine, South Valley University, Qena, 83523, Egypt
| | - Amany S Mawas
- Department of Pathology & Clinical Pathology, College of Veterinary Medicine, South Valley University, Qena, 83523, Egypt
| | - Alsayed A Mohamed
- Department of Anatomy & Embryology, College of Veterinary Medicine, South Valley University, Qena, 83523, Egypt
| | - Mohammed A Noby
- Department of Surgery, College of Veterinary Medicine, South Valley University, Qena, 83523, Egypt
| | | | - Mohammed Zayed
- Department of Surgery, College of Veterinary Medicine, South Valley University, Qena, 83523, Egypt
| |
Collapse
|
20
|
Monibi FA, Pannellini T, Croen B, Otero M, Warren R, Rodeo SA. Targeted transcriptomic analyses of RNA isolated from formalin-fixed and paraffin-embedded human menisci. J Orthop Res 2022; 40:1104-1112. [PMID: 34370349 PMCID: PMC8825887 DOI: 10.1002/jor.25153] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/02/2021] [Revised: 06/14/2021] [Accepted: 08/03/2021] [Indexed: 02/04/2023]
Abstract
Formalin-fixed and paraffin-embedded (FFPE) biospecimens are a valuable and widely-available resource for diagnostic and research applications. With biobanks of tissue samples available in many institutions, FFPE tissues could prove to be a valuable resource for translational orthopaedic research. The purpose of this study was to characterize the molecular profiles and degree of histologic degeneration on archival fragments of FFPE human menisci obtained during arthroscopic partial meniscectomy. We used FFPE menisci for multiplexed gene expression analysis using the NanoString nCounter® platform, and for histological assessment using a quantitative scoring system. In total, 17 archival specimens were utilized for integrated histologic and molecular analyses. The median patient age was 22 years (range: 14-62). We found that the genes with the highest normalized counts were those typically expressed in meniscal fibrocartilage. Gene expression differences were identified in patient cohorts based on age (≤40 years), including genes associated with the extracellular matrix and tissue repair. The majority of samples showed mild to moderate histologic degeneration. Based on these data, we conclude that FFPE human menisci can be effectively utilized for molecular evaluation following a storage time as long as 11 years. Statement of Clinical Significance: The integration of histological and transcriptomic analyses described in this study will be useful for future studies investigating the basis for biological classification of meniscus specimens in patients. Further exploration into the genes and pathways uncovered by this study may suggest targets for biomarker discovery and identify patients at greater risk for osteoarthritis once the meniscus is torn.
Collapse
Affiliation(s)
| | | | - Brett Croen
- Hospital for Special Surgery, NY, NY,Drexel University College of Medicine, Philadelphia, PA
| | | | | | | |
Collapse
|
21
|
Kingery MT, Adams AC, Manjunath AK, Berlinberg EJ, Markus DH, Strauss EJ. Synovial Fluid Cytokine Profile at the Time of Arthroscopy Explains Intermediate-Term Functional Outcomes. Am J Sports Med 2022; 50:1261-1271. [PMID: 35420497 DOI: 10.1177/03635465221075370] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
BACKGROUND The intra-articular immune response after ligamentous, meniscal, or focal chondral knee injuries likely plays a role in intra-articular healing and the onset and progression of posttraumatic osteoarthritis. PURPOSE To evaluate the association of synovial fluid cytokine concentrations measured at the time of knee arthroscopy with intermediate-term functional outcomes after knee arthroscopy based on the Lysholm score. STUDY DESIGN Cohort study; Level of evidence, 2. METHODS This was a prospective cohort study of patients undergoing arthroscopic knee surgery. Synovial fluid was aspirated from the injured knee immediately before surgical incision, and the concentrations of 10 cytokines were analyzed using immunoassay. Principal component regression was used to create a model to predict patient-reported Lysholm score at a minimum of 5 years postoperatively. Hierarchical clustering was performed to identify groups of patients with similar synovial fluid inflammatory phenotypes. Lysholm scores and cytokine concentrations were compared between clusters. RESULTS A total of 26 patients (mean age, 40.33 ± 16.40 years) were included in the analysis. The mean duration between surgery and follow-up was 6.69 ± 0.72 years. A model consisting of 2 principal components (PC1, PC2) explained 62.48% of the variance in the cytokine data and 52.03% of the variance in intermediate-term Lysholm score. Hierarchical clustering resulted in 3 patient clusters based on the principal components used in the regression model. Despite no baseline differences in Lysholm score, cluster 3 demonstrated significantly greater intermediate-term Lysholm score compared with cluster 2 (94.33 vs 76.09, respectively; 95% CI, 5.96-30.52; P = .006) and cluster 1 (94.33 vs 52.33, respectively; 95% CI, 24.09-59.91; P = .003). Cluster 3, when compared with the overall means, was characterized by greater PC1 value (1.01 vs 0.00, respectively; P = .030) and greater PC2 value (0.86 vs 0.00, respectively; P = .002). CONCLUSION The concentrations of select synovial fluid cytokines assessed at the time of knee arthroscopy can be used to explain more than half of the variance in intermediate-term functional outcomes.
Collapse
Affiliation(s)
- Matthew T Kingery
- Division of Sports Medicine, Department of Orthopedic Surgery, NYU Langone Orthopedic Hospital, New York, New York, USA
| | - Anngela C Adams
- Division of Sports Medicine, Department of Orthopedic Surgery, NYU Langone Orthopedic Hospital, New York, New York, USA
| | - Amit K Manjunath
- Division of Sports Medicine, Department of Orthopedic Surgery, NYU Langone Orthopedic Hospital, New York, New York, USA
| | - Elyse J Berlinberg
- Division of Sports Medicine, Department of Orthopedic Surgery, NYU Langone Orthopedic Hospital, New York, New York, USA
| | - Danielle H Markus
- Division of Sports Medicine, Department of Orthopedic Surgery, NYU Langone Orthopedic Hospital, New York, New York, USA
| | - Eric J Strauss
- Division of Sports Medicine, Department of Orthopedic Surgery, NYU Langone Orthopedic Hospital, New York, New York, USA
| |
Collapse
|
22
|
Do Synovial Inflammation and Meniscal Degeneration Impact Clinical Outcomes of Patients Undergoing Arthroscopic Partial Meniscectomy? A Histological Study. Int J Mol Sci 2022; 23:ijms23073903. [PMID: 35409262 PMCID: PMC8999499 DOI: 10.3390/ijms23073903] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2022] [Revised: 03/28/2022] [Accepted: 03/30/2022] [Indexed: 01/14/2023] Open
Abstract
The menisci exert a prominent role in joint stabilization and in the distribution of mechanical loading. Meniscal damage is associated with increased risk of knee OA. The aim of this study was to characterize the synovial membrane and meniscal tissues in patients undergoing arthroscopic partial meniscectomy for meniscal tear and to evaluate association with clinical outcomes. A total of 109 patients were recruited. Demographic and clinical data were collected. Visual Analogic Scale (VAS) measuring pain and Knee injury and Osteoarthritis Outcome Score (KOOS) were recorded at baseline and at 2-years follow-up. Histological and immunohistochemical characterizations were performed on synovial membranes and meniscal tissues. More than half of the patients demonstrated synovial mononuclear cell infiltration and hyperplasia. Synovial fibrosis was present in most of the patients; marked vascularity and CD68 positivity were observed. Inflammation had an impact on both pain and knee symptoms. Patients with synovial inflammation had higher values of pre-operative VAS and inflammation. Higher pre-operative pain was observed in patients with meniscal MMP-13 production. In conclusion, multivariate analysis showed that synovial inflammation was associated with pre-operative total KOOS scores, knee symptoms, and pain. Moreover, meniscal MMP-13 expression was found to be associated with pre-operative pain in multivariate analysis. Thus, targeting inflammation of the synovial membrane and meniscus might reduce clinical symptoms and dysfunction at the time of surgery.
Collapse
|
23
|
Monibi FA, Pannellini T, Otero M, Warren RF, Rodeo SA. Histologic and molecular features in pathologic human menisci from knees with and without osteoarthritis. J Orthop Res 2022; 40:504-512. [PMID: 33792974 PMCID: PMC8484374 DOI: 10.1002/jor.25047] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/23/2020] [Revised: 03/12/2021] [Accepted: 03/28/2021] [Indexed: 02/04/2023]
Abstract
The objective of this study was to evaluate histologic and molecular features of meniscus degeneration in cohorts of patients with and without osteoarthritis (OA) of the knee. Menisci were obtained from patients undergoing total knee arthroplasty for OA (TKA) or arthroscopic partial meniscectomy (APM) for a torn knee meniscus. Degenerative meniscal tears were among the most common tear type in the APM group based on the pattern. Using an integrative workflow for molecular evaluation of formalin-fixed and paraffin-embedded tissues, human menisci underwent blinded histologic evaluation and NanoString gene expression analyses. Histology revealed increased proteoglycan content in TKA menisci compared to APM menisci, but otherwise no significant differences in the total pathology score or sub-scores between patients based on age or cohort. NanoString analyses revealed differential expression of genes primarily associated with the PI3K-AKT signaling pathway, cell cycle, and apoptosis. These data provide new insights into histological and molecular features of meniscus degeneration in patients with and without knee OA. Histologic assessment of menisci showed similar severity of overall degeneration between cohorts, but there were differences at the molecular level. The dysregulated pathways identified in this study could contribute to early-onset meniscus degeneration, or to a predisposition to meniscus tears and subsequent knee OA. Further studies that validate genes and pathways uncovered in this study will allow us to evaluate novel approaches to assess and treat meniscal degeneration.
Collapse
Affiliation(s)
- Farrah A. Monibi
- Orthopaedic Soft Tissue Research Program, Hospital for Special Surgery, New York, New York, USA
| | - Tania Pannellini
- Hospital for Special Surgery, Pathology and Laboratory Medicine, New York, New York, USA
| | - Miguel Otero
- Hospital for Special Surgery, Tissue Engineering, Regeneration and Repair Program, New York, New York, USA
| | - Russell F. Warren
- Hospital for Special Surgery, Sports Medicine and Shoulder Service, New York, New York, USA
| | - Scott A. Rodeo
- Hospital for Special Surgery, Lab. for Soft Tissue Research, New York, New York, USA
| |
Collapse
|
24
|
Jacobs CA, Conley CEW, Kraus VB, Lansdown DA, Lau BC, Li X, Majumdar S, Spindler KP, Lemaster NG, Stone AV. MOntelukast as a potential CHondroprotective treatment following Anterior cruciate ligament reconstruction (MOCHA Trial): study protocol for a double-blind, randomized, placebo-controlled clinical trial. Trials 2022; 23:98. [PMID: 35101085 PMCID: PMC8802473 DOI: 10.1186/s13063-021-05982-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2021] [Accepted: 12/26/2021] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND After anterior cruciate ligament (ACL) reconstruction, patient-reported outcomes are improved 10 years post-surgery; however, cytokine concentrations remain elevated years after surgery with over 80% of those with combined ACL and meniscus injuries having posttraumatic osteoarthritis (PTOA) within 10-15 years. The purpose of this multicenter, randomized, placebo-controlled trial is to assess whether a 6-month course of oral montelukast after ACL reconstruction reduces systemic markers of inflammation and biochemical and imaging biomarkers of cartilage degradation. METHODS We will enroll 30 individuals undergoing primary ACL reconstruction to participate in this IRB-approved multicenter clinical trial. This trial will target those at greatest risk of a more rapid PTOA onset (age range 25-50 with concomitant meniscus injury). Patients will be randomly assigned to a group instructed to take 10 mg of montelukast daily for 6 months following ACL reconstruction or placebo. Patients will be assessed prior to surgery and 1, 6, and 12 months following surgery. To determine if montelukast alters systemic inflammation following surgery, we will compare systemic concentrations of prostaglandin E2, monocyte chemoattractant protein-1, and pro-inflammatory cytokines between groups. We will also compare degradative changes on magnetic resonance imaging (MRI) collected 1 and 12 months following surgery between groups with reductions in early biomarkers of cartilage degradation assessed with urinary biomarkers of type II collagen breakdown and bony remodeling. DISCUSSION There is a complex interplay between the pro-inflammatory intra-articular environment, underlying bone remodeling, and progressive cartilage degradation. PTOA affects multiple tissues and appears to be more similar to rheumatoid arthritis than osteoarthritis with respect to inflammation. There is currently no treatment to delay or prevent PTOA after ACL injury. Since there is a larger and more persistent inflammatory response after ACL reconstruction than the initial insult of injury, treatment may need to be initiated after surgery, sustained over a period of time, and target multiple mechanisms in order to successfully alter the disease process. This study will assess whether a 6-month postoperative course of oral montelukast affects multiple PTOA mechanisms. Because montelukast administration can be safely sustained for long durations and offers a low-cost treatment option, should it be proven effective in the current trial, these results can be immediately incorporated into clinical practice. TRIAL REGISTRATION ClinicalTrials.gov NCT04572256 . Registered on October 1, 2020.
Collapse
Affiliation(s)
- Cale A Jacobs
- University of Kentucky, 740 S Limestone, Suite K401, Lexington, Kentucky, 40536-0284, USA.
| | - Caitlin E W Conley
- University of Kentucky, 740 S Limestone, Suite K401, Lexington, Kentucky, 40536-0284, USA
| | | | | | | | | | | | | | - Nicole G Lemaster
- University of Kentucky, 740 S Limestone, Suite K401, Lexington, Kentucky, 40536-0284, USA
| | - Austin V Stone
- University of Kentucky, 740 S Limestone, Suite K401, Lexington, Kentucky, 40536-0284, USA
| |
Collapse
|
25
|
IL-1β promotes hypoxic vascular endothelial cell proliferation through the miR-24-3p/NKAP/NF-kB axis. Biosci Rep 2022; 42:230630. [PMID: 35005769 PMCID: PMC8766822 DOI: 10.1042/bsr20212062] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2021] [Revised: 10/26/2021] [Indexed: 11/17/2022] Open
Abstract
Purpose: Our previous data indicated that miR-24-3p is involved in the regulation of vascular endothelial cell (EC) proliferation and migration/invasion. However, whether IL-1β affects hypoxic HUVECs by miR-24-3p is still unclear. Therefore, the present study aimed to investigate the role and underlying mechanism of interleukin 1β (IL-1β) in hypoxic HUVECs. Methods: We assessed the mRNA expression levels of miR-24-3p, hypoxia-inducible factor-1α (HIF1A) and NF-κB-activating protein (NKAP) by quantitative real-time polymerase chain reaction (RT-qPCR). ELISA measured the expression level of IL-1β. Cell counting kit-8 (CCK-8) assays evaluated the effect of miR-24-3p or si-NKAP+miR-24 on cell proliferation (with or without IL-1β). Transwell migration and invasion assays were used to examine the effects of miR-24-3p or si-NKAP+miR-24-3p on cell migration and invasion (with or without IL-1β). Luciferase reporter assays were used to identify the target of miR-24-3p. Results: We demonstrated that in acute myocardial infarction (AMI) patient blood samples, the expression of miR-24-3p is down-regulated, the expression of IL-1β or NKAP is up-regulated, and IL-1β or NKAP is negatively correlated with miR-24-3p. Furthermore, IL-1β promotes hypoxic HUVECs proliferation by down-regulating miR-24-3p. In addition, IL-1β also significantly promotes the migration and invasion of hypoxic HUVECs; overexpression of miR-24-3p can partially rescue hypoxic HUVECs migration and invasion. Furthermore, we discovered that NKAP is a novel target of miR-24-3p in hypoxic HUVECs. Moreover, both the overexpression of miR-24-3p and the suppression of NKAP can inhibit the NF-κB/pro-IL-1β signaling pathway. However, IL-1β mediates suppression of miR-24-3p activity, leading to activation of the NKAP/NF-κB pathway. In conclusion, our results reveal a new function of IL-1β in suppressing miR-24-3p up-regulation of the NKAP/NF-κB pathway.
Collapse
|
26
|
Stone AV, Loeser RF, Callahan MF, McNulty MA, Long DL, Yammani RR, Bean S, Vanderman K, Chubinskaya S, Ferguson CM. Role of the Hypoxia-Inducible Factor Pathway in Normal and Osteoarthritic Meniscus and in Mice after Destabilization of the Medial Meniscus. Cartilage 2021; 13:1442S-1455S. [PMID: 32940061 PMCID: PMC8804812 DOI: 10.1177/1947603520958143] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
OBJECTIVE Meniscus injury and the hypoxia-inducible factor (HIF) pathway are independently linked to osteoarthritis pathogenesis, but the role of the meniscus HIF pathway remains unclear. We sought to identify and evaluate HIF pathway response in normal and osteoarthritic meniscus and to examine the effects of Epas1 (HIF-2α) insufficiency in mice on early osteoarthritis development. METHODS Normal and osteoarthritic human meniscus specimens were obtained and used for immunohistochemical evaluation and cell culture studies for the HIF pathway. Meniscus cells were treated with pro-inflammatory stimuli, including interleukins (IL)-1β, IL-6, transforming growth factor (TGF)-α, and fibronectin fragments (FnF). Target genes were also evaluated with HIF-1α and HIF-2α (Epas1) overexpression and knockdown. Wild-type (n = 36) and Epas1+/- (n = 30) heterozygous mice underwent destabilization of the medial meniscus (DMM) surgery and were evaluated at 2 and 4 weeks postoperatively for osteoarthritis development using histology. RESULTS HIF-1α and HIF-2α immunostaining and gene expression did not differ between normal and osteoarthritic meniscus. While pro-inflammatory stimulation significantly increased both catabolic and anabolic gene expression in the meniscus, HIF-1α and Epas1 expression levels were not significantly altered. Epas1 overexpression significantly increased Col2a1 expression. Both wild-type and Epas1+/- mice developed osteoarthritis following DMM surgery. There were no significant differences between genotypes at either time point. CONCLUSION The HIF pathway is likely not responsible for osteoarthritic changes in the human meniscus. Additionally, Epas1 insufficiency does not protect against osteoarthritis development in the mouse at early time points after DMM surgery. The HIF pathway may be more important for protection against catabolic stress.
Collapse
Affiliation(s)
- Austin V Stone
- Division of Sports Medicine, Department of Orthopaedic Surgery & Sports Medicine, University of Kentucky, Lexington, KY, USA
| | - Richard F Loeser
- Division of Rheumatology, Allergy and Immunology and the Thurston Arthritis Research Center, University of North Carolina, Chapel Hill, NC, USA
| | - Michael F Callahan
- Division of Sports Medicine, Department of Orthopaedic Surgery, Wake Forest School of Medicine, Winston-Salem, NC, USA
| | - Margaret A McNulty
- Department of Anatomy, Cell Biology, & Physiology, Indiana University School of Medicine, Indianapolis, IN, USA
| | - David L Long
- Division of Molecular Medicine, Department of Internal Medicine, Wake Forest School of Medicine, Winston-Salem, NC, USA
| | - Raghunatha R Yammani
- Division of Molecular Medicine, Department of Internal Medicine, Wake Forest School of Medicine, Winston-Salem, NC, USA
| | - Sara Bean
- University of Kentucky School of Medicine, Lexington, KY, USA
| | - Kadie Vanderman
- Division of Molecular Medicine, Department of Internal Medicine, Wake Forest School of Medicine, Winston-Salem, NC, USA
| | - Susan Chubinskaya
- Department of Pediatrics, Rush University Medical Center, Chicago, IL, USA
| | - Cristin M Ferguson
- Division of Sports Medicine, Department of Orthopaedic Surgery, Wake Forest School of Medicine, Winston-Salem, NC, USA
| |
Collapse
|
27
|
Li Q, Wen Y, Wang L, Chen B, Chen J, Wang H, Chen L. Hyperglycemia-induced accumulation of advanced glycosylation end products in fibroblast-like synoviocytes promotes knee osteoarthritis. Exp Mol Med 2021; 53:1735-1747. [PMID: 34759325 PMCID: PMC8639977 DOI: 10.1038/s12276-021-00697-6] [Citation(s) in RCA: 45] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2021] [Revised: 09/04/2021] [Accepted: 09/12/2021] [Indexed: 01/15/2023] Open
Abstract
Osteoarthritis (OA) is significantly associated with diabetes, but how hyperglycemia induces or aggravates OA has not been shown. The synovium plays a critical role in cartilage metabolism and substance exchange. Herein, we intended to investigate whether and how hyperglycemia affects the occurrence and progression of OA by influencing the synovium. In patients with knee OA and diabetes (DM OA), we found a more severe inflammatory response, higher endoplasmic reticulum stress (ERS) levels, and more advanced glycosylation end products (AGEs) accumulation in the synovium than in patients without diabetes. Subsequently, we found similar results in the DM OA group in a rat model. In the in vitro cocultivation system, high glucose-stimulated AGEs accumulation, ERS, and inflammation in rat fibroblast-like synoviocytes (FLSs), which resulted in chondrocyte degeneration due to inflammatory factors from FLSs. Furthermore, in the synovium of the DM OA group and FLSs treated with high glucose, the expression of glucose transporter 1 (GLUT1) and its regulatory factor hypoxia-inducible factor (HIF)-1α was increased significantly. Inhibitors of HIF-1α, GLUT1 or AGEs receptors attenuated the effect of high glucose on chondrocyte degradation in the FLS-chondrocyte coculture system. In summary, we demonstrated that hyperglycemia caused AGEs accumulation in FLSs via the HIF-1α-GLUT1 pathway, which increases the release of inflammatory factors from FLSs, subsequently inducing chondrocyte degradation and promoting OA progression.
Collapse
Affiliation(s)
- Qingxian Li
- Division of Joint Surgery and Sports Medicine, Department of Orthopedic Surgery, Zhongnan Hospital of Wuhan University, Wuhan, 430071, China
| | - Yinxian Wen
- Division of Joint Surgery and Sports Medicine, Department of Orthopedic Surgery, Zhongnan Hospital of Wuhan University, Wuhan, 430071, China.,Hubei Provincial Key Laboratory of Developmentally Originated Disease, Wuhan, 430071, China.,Joint Disease Research Center of Wuhan University, Wuhan, 430071, China
| | - Linlong Wang
- Division of Joint Surgery and Sports Medicine, Department of Orthopedic Surgery, Zhongnan Hospital of Wuhan University, Wuhan, 430071, China
| | - Biao Chen
- Division of Joint Surgery and Sports Medicine, Department of Orthopedic Surgery, Zhongnan Hospital of Wuhan University, Wuhan, 430071, China
| | - Jun Chen
- Division of Joint Surgery and Sports Medicine, Department of Orthopedic Surgery, Zhongnan Hospital of Wuhan University, Wuhan, 430071, China
| | - Hui Wang
- Hubei Provincial Key Laboratory of Developmentally Originated Disease, Wuhan, 430071, China. .,Department of Pharmacology, School of Basic Medical Sciences, Wuhan University, Wuhan, 430071, China.
| | - Liaobin Chen
- Division of Joint Surgery and Sports Medicine, Department of Orthopedic Surgery, Zhongnan Hospital of Wuhan University, Wuhan, 430071, China. .,Hubei Provincial Key Laboratory of Developmentally Originated Disease, Wuhan, 430071, China. .,Joint Disease Research Center of Wuhan University, Wuhan, 430071, China.
| |
Collapse
|
28
|
Markus DH, Berlinberg EJ, Strauss EJ. Current State of Synovial Fluid Biomarkers in Sports Medicine. JBJS Rev 2021; 9:01874474-202108000-00003. [PMID: 34398863 DOI: 10.2106/jbjs.rvw.21.00024] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022]
Abstract
» While the gross mechanical abnormalities contributing to posttraumatic osteoarthritis (PTOA) have been well described, new research is demonstrating that these insults to the articular cartilage may also initiate changes in the joint microenvironment that seed the development of PTOA. » A growing amount of literature has identified key biomarkers that exhibit altered expression in the synovial fluid following a knee injury, with a portion of these molecules remaining elevated in the years following an injury. » These biomarkers have the potential to aid in the early detection of PTOA before radiographic evidence becomes apparent. Furthermore, deciphering the processes that occur within the articular microenvironment after trauma may allow for better identification of therapeutic targets for the prevention and earlier treatment of PTOA.
Collapse
|
29
|
Bansal S, Floyd ER, Kowalski MA, Aikman E, Elrod P, Burkey K, Chahla J, LaPrade RF, Maher SA, Robinson JL, Patel JM. Meniscal repair: The current state and recent advances in augmentation. J Orthop Res 2021; 39:1368-1382. [PMID: 33751642 PMCID: PMC8249336 DOI: 10.1002/jor.25021] [Citation(s) in RCA: 60] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/14/2020] [Revised: 02/04/2021] [Accepted: 03/02/2021] [Indexed: 02/04/2023]
Abstract
Meniscal injuries represent one of the most common orthopedic injuries. The most frequent treatment is partial resection of the meniscus, or meniscectomy, which can affect joint mechanics and health. For this reason, the field has shifted gradually towards suture repair, with the intent of preservation of the tissue. "Save the Meniscus" is now a prolific theme in the field; however, meniscal repair can be challenging and ineffective in many scenarios. The objectives of this review are to present the current state of surgical management of meniscal injuries and to explore current approaches being developed to enhance meniscal repair. Through a systematic literature review, we identified meniscal tear classifications and prevalence, approaches being used to improve meniscal repair, and biological- and material-based systems being developed to promote meniscal healing. We found that biologic augmentation typically aims to improve cellular incorporation to the wound site, vascularization in the inner zones, matrix deposition, and inflammatory relief. Furthermore, materials can be used, both with and without contained biologics, to further support matrix deposition and tear integration, and novel tissue adhesives may provide the mechanical integrity that the meniscus requires. Altogether, evaluation of these approaches in relevant in vitro and in vivo models provides new insights into the mechanisms needed to salvage meniscal tissue, and along with regulatory considerations, may justify translation to the clinic. With the need to restore long-term function to injured menisci, biologists, engineers, and clinicians are developing novel approaches to enhance the future of robust and consistent meniscal reparative techniques.
Collapse
Affiliation(s)
- Sonia Bansal
- University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | | | | | | | | | - Kyley Burkey
- University of Kansas Medical Center, Kansas City, Kansas, USA
| | | | | | | | | | - Jay M. Patel
- Emory University, Atlanta, Georgia, USA
- Atlanta VA Medical Center, Decatur, Georgia, USA
| |
Collapse
|
30
|
Hunt ER, Jacobs CA, Conley CEW, Ireland ML, Johnson DL, Lattermann C. Anterior cruciate ligament reconstruction reinitiates an inflammatory and chondrodegenerative process in the knee joint. J Orthop Res 2021; 39:1281-1288. [PMID: 32558951 DOI: 10.1002/jor.24783] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/19/2019] [Revised: 06/04/2020] [Accepted: 06/12/2020] [Indexed: 02/04/2023]
Abstract
Anterior cruciate ligament (ACL) injury leads to a sustained increase in synovial fluid concentrations of inflammatory cytokines and biomarkers of cartilage breakdown. While this has been documented post-injury, it remains unclear whether ACL reconstruction surgery contributes to the inflammatory process and/or cartilage breakdown. This study is a secondary analysis of 14 patients (nine males/five females, mean age = 9, mean BMI = 28) enrolled in an IRB-approved randomized clinical trial. Arthrocentesis was performed at initial presentation (mean = 6 days post-injury), immediately prior to surgery (mean = 23 days post-injury), 1-week post-surgery, and 1-month post-surgery. Enzyme-linked immunosorbant assay kits were used to determine concentrations of carboxy-terminal telopeptides of type II collagen (CTXII), interleukin-6 (IL-6), and IL-1β in the synovial fluid. The log-transformed IL-1β was not normally distributed; therefore, changes between time points were evaluated using a non-parametric Kruskal-Wallis one-way ANOVA. IL-1β concentrations significantly increased from the day of surgery to the first postoperative time point (P ≤ .001) and significantly decreased at the 4-week postoperative visit (P = .03). IL-1β concentrations at the 4-week postoperative visit remained significantly greater than both preoperative time points (P > .05). IL-6 concentrations at 1-week post-surgery were significantly higher than at initial presentation (P = .013), the day of surgery (P < .001), and 4 weeks after surgery (P = .002). CTX-II concentrations did not differ between the first three-time points (P > .99) but significantly increased at 4 weeks post-surgery (P < .01). ACL reconstruction appears to reinitiate an inflammatory response followed by an increase in markers for cartilage degradation. ACL reconstruction appears to initiate a second "inflammatory hit" resulting in increased chondral breakdown suggesting that post-operative chondroprotection may be needed.
Collapse
Affiliation(s)
- Emily R Hunt
- Department of Orthopedic Surgery and Sports Medicine, University of Kentucky, Lexington, Kentucky
| | - Cale A Jacobs
- Department of Orthopedic Surgery and Sports Medicine, University of Kentucky, Lexington, Kentucky
| | - Caitlin E-W Conley
- Department of Orthopedic Surgery and Sports Medicine, University of Kentucky, Lexington, Kentucky
| | - Mary L Ireland
- Department of Orthopedic Surgery and Sports Medicine, University of Kentucky, Lexington, Kentucky
| | - Darren L Johnson
- Department of Orthopedic Surgery and Sports Medicine, University of Kentucky, Lexington, Kentucky
| | | |
Collapse
|
31
|
Rim YA, Nam Y, Park N, Lee K, Jung H, Jung SM, Lee J, Ju JH. Characterization of Early-Onset Finger Osteoarthritis-Like Condition Using Patient-Derived Induced Pluripotent Stem Cells. Cells 2021; 10:cells10020317. [PMID: 33557199 PMCID: PMC7913990 DOI: 10.3390/cells10020317] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2020] [Revised: 01/10/2021] [Accepted: 01/27/2021] [Indexed: 12/23/2022] Open
Abstract
Early osteoarthritis (OA)-like symptoms are difficult to study owing to the lack of disease samples and animal models. In this study, we generated induced pluripotent stem cell (iPSC) lines from a patient with a radiographic early-onset finger osteoarthritis (efOA)-like condition in the distal interphalangeal joint and her healthy sibling. We differentiated those cells with similar genetic backgrounds into chondrogenic pellets (CPs) to confirm efOA. CPs generated from efOA-hiPSCs (efOA-CPs) showed lower levels of COL2A1, which is a key marker of hyaline cartilage after complete differentiation, for 21 days. Increase in pellet size and vacuole-like morphologies within the pellets were observed in the efOA-CPs. To analyze the changes occurred during the development of vacuole-like morphology and the increase in pellet size in efOA-CPs, we analyzed the expression of OA-related markers on day 7 of differentiation and showed an increase in the levels of COL1A1, RUNX2, VEGFA, and AQP1 in efOA-CPs. IL-6, MMP1, and MMP10 levels were also increased in the efOA-CPs. Taken together, we present proof-of-concept regarding disease modeling of a unique patient who showed OA-like symptoms.
Collapse
Affiliation(s)
- Yeri Alice Rim
- Catholic iPSC Research Center, College of Medicine, The Catholic University of Korea, Seoul 06591, Korea; (Y.A.R.); (Y.N.); (N.P.); (K.L.); (H.J.); (S.M.J.)
| | - Yoojun Nam
- Catholic iPSC Research Center, College of Medicine, The Catholic University of Korea, Seoul 06591, Korea; (Y.A.R.); (Y.N.); (N.P.); (K.L.); (H.J.); (S.M.J.)
| | - Narae Park
- Catholic iPSC Research Center, College of Medicine, The Catholic University of Korea, Seoul 06591, Korea; (Y.A.R.); (Y.N.); (N.P.); (K.L.); (H.J.); (S.M.J.)
| | - Kijun Lee
- Catholic iPSC Research Center, College of Medicine, The Catholic University of Korea, Seoul 06591, Korea; (Y.A.R.); (Y.N.); (N.P.); (K.L.); (H.J.); (S.M.J.)
| | - Hyerin Jung
- Catholic iPSC Research Center, College of Medicine, The Catholic University of Korea, Seoul 06591, Korea; (Y.A.R.); (Y.N.); (N.P.); (K.L.); (H.J.); (S.M.J.)
| | - Seung Min Jung
- Catholic iPSC Research Center, College of Medicine, The Catholic University of Korea, Seoul 06591, Korea; (Y.A.R.); (Y.N.); (N.P.); (K.L.); (H.J.); (S.M.J.)
| | - Jennifer Lee
- Department of Internal Medicine, Division of Rheumatology, Institute of Medical Science, College of Medicine, Seoul St. Mary’s Hospital, The Catholic University of Korea, Seoul 06591, Korea;
| | - Ji Hyeon Ju
- Catholic iPSC Research Center, College of Medicine, The Catholic University of Korea, Seoul 06591, Korea; (Y.A.R.); (Y.N.); (N.P.); (K.L.); (H.J.); (S.M.J.)
- Department of Internal Medicine, Division of Rheumatology, Institute of Medical Science, College of Medicine, Seoul St. Mary’s Hospital, The Catholic University of Korea, Seoul 06591, Korea;
- Correspondence: ; Tel.: +82-2-2258-6895
| |
Collapse
|
32
|
Platt BN, Jacobs CA, Conley CEW, Stone AV. Tetracycline use in treating osteoarthritis: a systematic review. Inflamm Res 2021; 70:249-259. [PMID: 33512569 DOI: 10.1007/s00011-021-01435-4] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2020] [Revised: 12/11/2020] [Accepted: 01/11/2021] [Indexed: 11/27/2022] Open
Abstract
BACKGROUND AND AIMS The purpose of the review was to synthesize the current literature regarding tetracyclines in the treatment of osteoarthritis. METHODS Using multiple databases, a systematic review was performed with customized search terms crafted to identify studies examining doxycycline or minocycline in the treatment of osteoarthritis. Results were classified into basic science mechanistic studies, in vivo animal studies, and human clinical trials. A total of 1446 potentially relevant studies were reviewed, and after exclusion criteria were applied, 23 investigations were included in the final analysis. RESULTS From 12 basic science mechanistic studies, we report on three main mechanisms by which tetracyclines may exert benefit in osteoarthritis progression: matrix metalloproteinase inhibition, immunomodulation, and nitric oxide synthase inhibition. Seven animal studies showed generally encouraging results. Four articles reported human clinical studies, showing mixed results in the treatment of osteoarthritis, potentially related to the choice of patient population, primary outcomes, and timing of treatment. CONCLUSION Tetracyclines have the potential to benefit osteoarthritis patients via multiple mechanisms. Further study is warranted to examine the optimal dose and timing of tetracycline treatment in osteoarthritis.
Collapse
Affiliation(s)
- Brooks N Platt
- Division of Sports Medicine, Department of Orthopaedic Surgery and Sports Medicine, University of Kentucky, 740 S. Limestone, K403, Lexington, KY, 40536, USA
| | - Cale A Jacobs
- Division of Sports Medicine, Department of Orthopaedic Surgery and Sports Medicine, University of Kentucky, 740 S. Limestone, K403, Lexington, KY, 40536, USA
| | - Caitlin E W Conley
- Division of Sports Medicine, Department of Orthopaedic Surgery and Sports Medicine, University of Kentucky, 740 S. Limestone, K403, Lexington, KY, 40536, USA
| | - Austin V Stone
- Division of Sports Medicine, Department of Orthopaedic Surgery and Sports Medicine, University of Kentucky, 740 S. Limestone, K403, Lexington, KY, 40536, USA.
| |
Collapse
|
33
|
Fang Y, Huang H, Zhou G, Wang Q, Gao F, Li C, Liu Y, Lin J. An animal model study on the gene expression profile of meniscal degeneration. Sci Rep 2020; 10:21469. [PMID: 33293598 PMCID: PMC7722855 DOI: 10.1038/s41598-020-78349-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2020] [Accepted: 11/20/2020] [Indexed: 01/16/2023] Open
Abstract
Meniscal degeneration is a very common condition in elderly individuals, but the underlying mechanisms of its occurrence are not completely clear. This study examines the molecular mechanisms of meniscal degeneration. The anterior cruciate ligament (ACL) and lateral collateral ligament (LCL) of the right rear limbs of seven Wuzhishan mini-pigs were resected (meniscal degeneration group), and the left rear legs were sham-operated (control group). After 6 months, samples were taken for gene chip analysis, including differentially expressed gene (DEG) analysis, gene ontology (GO) analysis, clustering analysis, and pathway analysis. The selected 12 DEGs were validated by real time reverse transcription-polymerase chain reaction (RT-PCR). The two groups showed specific and highly clustered DEGs. A total of 893 DEGs were found, in which 537 are upregulated, and 356 are downregulated. The GO analysis showed that the significantly affected biological processes include nitric oxide metabolic process, male sex differentiation, and mesenchymal morphogenesis, the significantly affected cellular components include the endoplasmic reticulum membrane, and the significantly affected molecular functions include transition metal ion binding and iron ion binding. The pathway analysis showed that the significantly affected pathways include type II diabetes mellitus, inflammatory mediator regulation of TRP channels, and AMPK signaling pathway. The results of RT-PCR indicate that the microarray data accurately reflects the gene expression patterns. These findings indicate that several molecular mechanisms are involved in the development of meniscal degeneration, thus improving our understanding of meniscal degeneration and provide molecular therapeutic targets in the future.
Collapse
Affiliation(s)
- Yehan Fang
- Medical School of Chinese PLA and Chinese PLA General Hospital, Beijing, China.,Department of Orthopedic Surgery, Hainan General Hospital (Hainan Affiliated Hospital of Hainan Medical University), Haikou, Hainan, China
| | - Hui Huang
- Department of Orthopedic Surgery, Hainan General Hospital (Hainan Affiliated Hospital of Hainan Medical University), Haikou, Hainan, China
| | - Gang Zhou
- Department of Orthopedic Surgery, Hainan General Hospital (Hainan Affiliated Hospital of Hainan Medical University), Haikou, Hainan, China
| | - Qinghua Wang
- Department of Nursing, Hainan General Hospital (Hainan Affiliated Hospital of Hainan Medical University), Haikou, Hainan, China
| | - Feng Gao
- Department of Sports Injury and Arthroscopy Surgery, National Institute of Sports Medicine, Beijing, China
| | - Chunbao Li
- Medical School of Chinese PLA and Chinese PLA General Hospital, Beijing, China
| | - Yujie Liu
- Medical School of Chinese PLA and Chinese PLA General Hospital, Beijing, China.
| | - Jianping Lin
- Department of Orthopedic Surgery, Hainan General Hospital (Hainan Affiliated Hospital of Hainan Medical University), Haikou, Hainan, China.
| |
Collapse
|
34
|
Jacobs CA, Hunt ER, Conley CEW, Johnson DL, Stone AV, Huebner JL, Kraus VB, Lattermann C. Dysregulated Inflammatory Response Related to Cartilage Degradation after ACL Injury. Med Sci Sports Exerc 2020; 52:535-541. [PMID: 31524832 DOI: 10.1249/mss.0000000000002161] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
PURPOSE Elevated synovial fluid (SF) concentrations of proinflammatory cytokines, degradative enzymes, and cartilage breakdown markers at the time of anterior cruciate ligament (ACL) reconstruction are associated with worse postoperative patient-reported outcomes and cartilage quality. However, it remains unclear if this is due to a more robust or dysregulated inflammatory response or is a function of a more severe injury. The objective of this study was to evaluate the association of the molecular composition of the SF, patient demographics, and injury characteristics to cartilage degradation after acute ACL injury. METHODS We performed a cluster analysis of SF concentrations of proinflammatory and anti-inflammatory cytokines, and biomarkers of cartilage degradation, bony remodeling, and hemarthrosis. We evaluated the association of biomarker clusters with patient demographics, days between injury, Visual Analogue Scale pain, SF aspirate volumes, and bone bruise volumes measured on magnetic resonance imaging. RESULTS Two clusters were identified from the 35 patients included in this analysis, dysregulated inflammation and low inflammation. The dysregulated inflammation cluster consisted of 10 patients and demonstrated significantly greater concentrations of biomarkers of cartilage degradation (P < 0.05) as well as a lower ratio of anti-inflammatory to proinflammatory cytokines (P = 0.053) when compared with the low inflammation cluster. Patient demographics, bone bruise volumes, SF aspirate volumes, pain, and concomitant injuries did not differ between clusters. CONCLUSIONS A subset of patients exhibited dysregulation of the inflammatory response after acute ACL injury which may increase the risk of posttraumatic osteoarthritis. This response does not appear to be a function of injury severity.
Collapse
Affiliation(s)
- Cale A Jacobs
- Department of Orthopaedic Surgery and Sports Medicine, University of Kentucky, Lexington, KY
| | - Emily R Hunt
- Department of Orthopaedic Surgery and Sports Medicine, University of Kentucky, Lexington, KY
| | - Caitlin E-W Conley
- Department of Orthopaedic Surgery and Sports Medicine, University of Kentucky, Lexington, KY
| | - Darren L Johnson
- Department of Orthopaedic Surgery and Sports Medicine, University of Kentucky, Lexington, KY
| | - Austin V Stone
- Department of Orthopaedic Surgery and Sports Medicine, University of Kentucky, Lexington, KY
| | - Janet L Huebner
- Duke Molecular Physiology Institute, Duke University, Durham, NC
| | | | | |
Collapse
|
35
|
Rai MF, Brophy RH, Rosen V. Molecular biology of meniscus pathology: Lessons learned from translational studies and mouse models. J Orthop Res 2020; 38:1895-1904. [PMID: 32068295 PMCID: PMC7802285 DOI: 10.1002/jor.24630] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/28/2019] [Accepted: 02/11/2020] [Indexed: 02/04/2023]
Abstract
Injury to any individual structure in the knee interrupts the overall function of the joint and initiates a cascade of biological and biomechanical changes whose endpoint is often osteoarthritis (OA). The knee meniscus is an integral component of knee biomechanics and may also contribute to the biological homeostasis of the joint. Meniscus injury altering knee function is associated with a high risk of OA progression, and may also be involved in the initiation of OA. As the relationship between meniscus injury and OA is very complex; despite the availability of transcript level data on human meniscus injury and meniscus mediated OA, mechanistic studies are lacking, and available human data are difficult to validate in the absence of patient-matched noninjured control tissues. As similarities exist between human and mouse knee joint structure and function, investigators have begun to use cutting-edge genetic and genomic tools to examine the usefulness of the mouse as a model to study the intricate relationship between meniscus injury and OA. In this review, we use evidence from human meniscus research to identify critical barriers hampering our understanding of meniscus injury induced OA and discuss strategies to overcome these barriers, including those that can be examined in a mouse model of injury-mediated OA.
Collapse
Affiliation(s)
- Muhammad Farooq Rai
- Department of Orthopedic Surgery, Washington University School of Medicine, St. Louis, MO, United States of America,Department of Cell Biology & Physiology, Washington University School of Medicine, St. Louis, MO, United States of America
| | - Robert H. Brophy
- Department of Orthopedic Surgery, Washington University School of Medicine, St. Louis, MO, United States of America
| | - Vicki Rosen
- Department of Developmental Biology, Harvard School of Dental Medicine, Boston, MA, United States of America
| |
Collapse
|
36
|
Brophy RH, Schmidt EJ, Cai L, Rai MF. Duration of symptoms prior to partial meniscectomy is not associated with the expression of osteoarthritis genes in the injured meniscus. J Orthop Res 2020; 38:1268-1278. [PMID: 31876303 PMCID: PMC7225063 DOI: 10.1002/jor.24574] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/29/2019] [Accepted: 12/21/2019] [Indexed: 02/04/2023]
Abstract
While there is emerging data on how duration of symptoms prior to surgery relates to outcomes of patients undergoing arthroscopic partial meniscectomy, little is known about how duration of symptoms relates to the biology of the knee in these patients. The purpose of this study was to test the hypothesis that duration of symptoms prior to arthroscopic partial meniscectomy is associated with expression of osteoarthritis (OA)-related genes in the meniscus. We collected resected meniscus from patients (N = 76) undergoing clinically indicated arthroscopic partial meniscectomy from knees without advanced degenerative changes. RNA from 64 patients was analyzed for 28 candidate OA transcripts by real-time polymerase chain reaction (PCR). RNA was also probed for identification of novel genes by RNA microarray in 12 patients followed by validation of selected candidates by real-time PCR. The association of gene expression with duration of symptoms prior to surgery was tested. Additional screening was performed with known OA genetic risk alleles assembled from published literature and with gene transcripts differentially expressed between non-OA and OA cartilage and menisci. Our data revealed that duration of symptoms did not predict expression of OA genes in the meniscus, other than limited association with CXCL3, BMP2, and HLA-DQA1. Microarray identified new genes and pathways with unknown role(s) in meniscus injury and OA and validation of a subset of genes by real-time PCR showed expression pattern highly concordant with the microarray data. While duration of symptoms prior to arthroscopic partial meniscectomy does not significantly alter the expression of OA related genes, the association with novel genes and pathways deserves further investigation.
Collapse
Affiliation(s)
- Robert H. Brophy
- Department of Orthopedic Surgery, Musculoskeletal Research Center, Washington University School of Medicine, St. Louis, MO, 63110, USA
| | - Eric J. Schmidt
- School of Physician Assistant Medicine, College of Health Sciences, University of Lynchburg College, Lynchburg, VA, USA
| | - Lei Cai
- Department of Orthopedic Surgery, Musculoskeletal Research Center, Washington University School of Medicine, St. Louis, MO, 63110, USA
| | - Muhammad Farooq Rai
- Department of Orthopedic Surgery, Musculoskeletal Research Center, Washington University School of Medicine, St. Louis, MO, 63110, USA,Department of Cell Biology & Physiology, Washington University School of Medicine, St. Louis, MO, 63110, USA
| |
Collapse
|
37
|
Shabestari M, Shabestari YR, Landin MA, Pepaj M, Cleland TP, Reseland JE, Eriksen EF. Altered protein levels in bone marrow lesions of hip osteoarthritis: Analysis by proteomics and multiplex immunoassays. Int J Rheum Dis 2020; 23:788-799. [PMID: 32383346 DOI: 10.1111/1756-185x.13843] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2019] [Revised: 02/28/2020] [Accepted: 03/23/2020] [Indexed: 12/18/2022]
Abstract
AIM To assess tissue level changes of proteome and cytokine profiles of subchondral bone in hip osteoarthritis (OA) affected by bone marrow lesions (BMLs). We compared significant protein level differences in osteoarthritic bone with BMLs to control bone without bone marrow lesions. METHODS Subchondral bone biopsies were taken from femoral heads of end-stage osteoarthritis patients with (BML, n = 21) and without (CON, n = 9) BMLs. Proteins were extracted through a standardized Trizol protocol and used in the subsequent analyses. Angiogenesis and bone markers were assessed using multiplex immunoassays (Luminex). Liquid chromatography tandem mass spectrometry (LC-MS/MS) was performed to detect significant differences in proteome and peptide profiles between BML and CON. RESULTS Multiplex immunoassays revealed increased tissue contents of vascular endothelial growth factors (VEGF-A/C/D), endothelin-1, angiopoietin-2 and interleukin-6 (IL-6) in bone with BMLs compared to control bone, whereas osteoprotegerin levels were reduced. Mass spectrometry demonstrated pronounced increase in the levels of hemoglobin (73-fold), serum albumin (30-fold), alpha-1-antitrypsin (9-fold), apolipoprotein A1 (4.7-fold), pre-laminin-A/C (3.7-fold) and collagen-alpha1-XII (3-fold) in BMLs, while aggrecan core protein (ACAN) and hyaluronan and proteoglycan link protein 1 (HAPL1) decreased 37- and 29-fold respectively. CONCLUSION Reduced osteoprotegerin, ACAN and HAPL1 are consistent with osteoclastic activation and high remodeling activity in BMLs. The pronounced increase in angiogenesis markers, hemoglobin and serum albumin support the presence of increased vascularity in subchondral bone affected by BMLs in OA. VEGFs and IL-6 are known nociceptive modulators, and increased levels are in keeping with pain being a clinical feature frequently associated with BMLs.
Collapse
Affiliation(s)
| | | | - Maria A Landin
- Department of Biomaterials, University of Oslo, Oslo, Norway
| | - Milaim Pepaj
- Department of Medical Biochemistry, Oslo University Hospital, Oslo, Norway
| | | | | | - Erik F Eriksen
- Department of Endocrinology, Oslo University Hospital (Aker), Oslo, Norway.,Faculty of Medicine, Institue of Clinical Medicine, University of Oslo, Oslo, Norway
| |
Collapse
|
38
|
Rodeo SA, Monibi F, Dehghani B, Maher S. Biological and Mechanical Predictors of Meniscus Function: Basic Science to Clinical Translation. J Orthop Res 2020; 38:937-945. [PMID: 31799733 DOI: 10.1002/jor.24552] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/27/2019] [Accepted: 11/03/2019] [Indexed: 02/04/2023]
Abstract
Progressive knee joint degeneration occurs following removal of a torn meniscus. However, there is significant variability in the rate of development of post-meniscectomy osteoarthritis (OA). While there is no current consensus on the risk factors for development of knee OA in patients with meniscus tears, it is likely that both biological and biomechanical factors play critical roles. In this perspective paper, we review the mechanical and the biological predictors of the response of the knee to partial meniscectomy. We review the role of patient-based studies, in vivo animal models, cadaveric models, bioreactor systems, and statistically augmented computational models for the study of meniscus function and post-meniscectomy OA, providing insight into the important interplay between biomechanical and biologic factors. We then discuss the clinical translation of these concepts for "biologic augmentation" of meniscus healing and meniscus replacement. Ultimately, collaborative studies between engineers, biologists, and clinicians is the optimal way to improve our understanding of meniscus pathology and response to injury and/or disease, and to facilitate effective translation of laboratory findings to improved treatments for our patients. © 2019 Orthopaedic Research Society. Published by Wiley Periodicals, Inc. J Orthop Res 38:937-945, 2020.
Collapse
Affiliation(s)
- Scott A Rodeo
- Orthopaedic Soft Tissue Research Program, Hospital for Special Surgery, New York, New York
| | - Farrah Monibi
- Orthopaedic Soft Tissue Research Program, Hospital for Special Surgery, New York, New York
| | - Bijan Dehghani
- Orthopaedic Soft Tissue Research Program, Hospital for Special Surgery, New York, New York
| | - Suzanne Maher
- Orthopaedic Soft Tissue Research Program, Hospital for Special Surgery, New York, New York
| |
Collapse
|
39
|
Cell sources of inflammatory mediators present in bone marrow areas inside the meniscus. PLoS One 2019; 14:e0226986. [PMID: 31860662 PMCID: PMC6924665 DOI: 10.1371/journal.pone.0226986] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2019] [Accepted: 12/09/2019] [Indexed: 02/07/2023] Open
Abstract
Purpose To demonstrate the production of inflammatory mediators by cells located in bone marrow spaces inside rodent menisci. Methods Mice subjected to transection of the medial collateral and anterior cruciate ligaments and meniscotomy (osteoarthritis model) or to a sham procedure, as well as non-operated (naive) mice and rats, had knee joints excised. Tissues were stained with hematoxylin-eosin and tartrate-resistant acid phosphatase (TRAP). CD68+ cells, inducible nitric oxide synthase (iNOS), interleukin (IL)-1β, and tumor necrosis factor (TNF) expression were detected using immunohistochemistry. Results Lamellar ossified areas, bone-entrapped osteocytes and bone marrow spaces were found inside menisci of one week up to 6 months-old naïve mice, regardless of gender. Menisci from naive rats also showed the same pattern with bone marrow areas. CD68+ cells were identified in bone marrow areas inside the meniscus of mice. TRAP+ osteoclasts, and hematogenous precursors expressing IL-1β, TNF, and iNOS were identified inside bone marrow areas in meniscal samples from both naïve and sham operated mice. Quantitative immunoexpression of IL-1 β, TNF and iNOS was more intense, P = 0.0194, 0.0293, 0.0124, respectively, in mouse knees from mice sacrificed 49 days after being subjected to an osteoarthritis (OA) model as compared to sham operated animals. Conclusion We provide novel data showing that rodent menisci display bone marrow areas with cells able to produce inflammatory mediators. Immunoexpression of inflammatory mediators in those bone marrow areas is significantly more pronounced in mice subjected to experimental OA
Collapse
|
40
|
Huan X, Jinhe Y, Rongzong Z. Identification of Pivotal Genes and Pathways in Osteoarthritic Degenerative Meniscal Lesions via Bioinformatics Analysis of the GSE52042 Dataset. Med Sci Monit 2019; 25:8891-8904. [PMID: 31758856 PMCID: PMC6884941 DOI: 10.12659/msm.920636] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Background To better understand the process of osteoarthritic degenerative meniscal lesions (DMLs) formation, this study analyzed the dataset GSE52042 using bioinformatics methods to identify the pivotal genes and pathways related to osteoarthritic DMLs. Material/Methods The GSE52042 dataset, comprising diseased meniscus samples and healthier meniscus samples, was downloaded and the differentially-expressed genes (DEGs) were extracted. The reactome pathways assessment and functional analysis were performed using the “ClusterProfiler” package and “ReactomePA” package of Bioconductor. The protein–protein interaction network was constructed, followed by the extraction of hub genes and modules. Results A set of 154 common DEGs, including 64 upregulated DEGs and 90 downregulated DEGs, were obtained. GO analysis suggested that the DEGs primarily participated in positive regulation of the mitotic cell cycle and extracellular matrix organization. Reactome pathway analysis showed that the DEGs were predominantly enriched in TP53, which regulates transcription of genes involved in G2 cell cycle arrest and extracellular matrix organization. The top 10 hub genes were TYMS, AURKA, CENPN, NUSAP1, CENPM, TPX2, CDK1, UBE2C, BIRC5, and CCNB1. The genes in the 2 modules were primarily associated with M Phase and keratan sulfate degradation. Conclusions A series of pivotal genes and reactome pathways were identified elucidate the molecular mechanisms involved in the formation of osteoarthritic DMLs and to discover potential therapeutic targets.
Collapse
Affiliation(s)
- Xu Huan
- Department of Joint Surgery, Lishui Municipal Central Hospital, Lishui, Zhejiang, China (mainland)
| | - Ying Jinhe
- Department of Joint Surgery, Lishui Municipal Central Hospital, Lishui, Zhejiang, China (mainland)
| | - Zheng Rongzong
- Department of Joint Surgery, Lishui Municipal Central Hospital, Lishui, Zhejiang, China (mainland)
| |
Collapse
|
41
|
Chastain KS, Stoker AM, Bozynski CC, Leary EV, Cook JL. Metabolic responses of meniscal tissue to focal collagenase degeneration. Connect Tissue Res 2019; 61:349-359. [PMID: 31542969 DOI: 10.1080/03008207.2019.1666112] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
Purpose: The objective of this study was to determine the responses of normal meniscus to collagenase activity. It was hypothesized that meniscal explants exposed to collagenase would significantly increase release of pro-inflammatory cytokines and degradative enzymes, in a dose-dependent manner, compared to control.Methods: Menisci were harvested from adult dogs (n = 6) euthanized for reasons unrelated to this study. Meniscal explants were created from the central portion of lateral and medial meniscus. Explants were injected with 100 µl collagenase at a concentration of 50 µg/ml, 5 µg/ml, or 0 µg/ml of collagenase. Explants were cultured for 12 days, and media were changed and collected every 3 days for biomarker analyses. Differences among collagenase concentrations were determined by a three factor ANOVA with adjustment for multiple comparisons, with pre-adjustment statistical significance set at p < 0.05.Results: When data from all explants were compared, the 50 µg group released significantly higher IL-6 and PGE2, and the 5 µg group released significantly higher levels of MMP-3 and CTX-II compared to the 0 µg group. Explants from the medial meniscus released significantly more MMP-1, MMP-2, MMP-3, and MMP-13 in response to stimulation with 5 µg/ml of collagenase compared to explants from the lateral meniscus.Discussion: The data from this study indicate that in response to localized degradative enzyme activity, the meniscus increases the release of pro-inflammatory and degradative biomarkers in a dose-dependent manner. Further, these data indicate potential differences in metabolic responses of lateral versus medial menisci to collagenase insult.
Collapse
Affiliation(s)
- Kamryn S Chastain
- Thompson Laboratory for Regenerative Orthopaedics, University of Missouri, Columbia, MO, USA.,Department of Orthopaedic Surgery, University of Missouri, Columbia, MO, USA
| | - Aaron M Stoker
- Thompson Laboratory for Regenerative Orthopaedics, University of Missouri, Columbia, MO, USA.,Department of Orthopaedic Surgery, University of Missouri, Columbia, MO, USA
| | - Chantelle C Bozynski
- Thompson Laboratory for Regenerative Orthopaedics, University of Missouri, Columbia, MO, USA.,Department of Orthopaedic Surgery, University of Missouri, Columbia, MO, USA
| | - Emily V Leary
- Thompson Laboratory for Regenerative Orthopaedics, University of Missouri, Columbia, MO, USA.,Department of Orthopaedic Surgery, University of Missouri, Columbia, MO, USA
| | - James L Cook
- Thompson Laboratory for Regenerative Orthopaedics, University of Missouri, Columbia, MO, USA.,Department of Orthopaedic Surgery, University of Missouri, Columbia, MO, USA
| |
Collapse
|
42
|
Heard BJ, Barton KI, Agbojo OM, Chung M, Sevick JL, Bader TJ, Martin CR, Shrive NG, Hart DA. Molecular Response of Rabbit Menisci to Surgically Induced Hemarthrosis and a Single Intra-Articular Dexamethasone Treatment. J Orthop Res 2019; 37:2043-2052. [PMID: 31095777 DOI: 10.1002/jor.24346] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/02/2019] [Accepted: 05/02/2019] [Indexed: 02/04/2023]
Abstract
Anterior cruciate ligament reconstructive surgery can restore biomechanical stability, however, such surgery cannot reliably prevent the onset of post-traumatic osteoarthritis. The aim of this study was to elucidate the molecular response that occurs within the menisci following a surgical injury that allows bleeding into the joint space, and then to investigate the effect of dexamethasone (DEX) on this molecular response. Cell viability studies following acute controlled exposure to blood and blood plus DEX were also conducted. Forty-eight New Zealand white rabbits were randomly allocated into control, sham, surgical, and surgical + DEX groups (each group n = 6). Animals were sacrificed at 48 h and 9 weeks, and menisci were harvested. The messenger RNA (mRNA) expression levels for key inflammatory, and degradative proteins, as well as mRNA levels for autophagy pathway molecules were quantified, and statistically significant changes were described. Meniscal cell viability was calculated by incubating groups of medial and lateral menisci in autologous blood, or autologous blood plus DEX for 48 h (each group n = 4; total of eight medial and eight lateral menisci), and then conducting a histological live/dead assay. Results indicated a significant reduction in only medial meniscal cell viability when the tissue was exposed to blood in combination with DEX. A single administration of DEX following surgery significantly suppresses the elevated molecular expression for key inflammatory and degradative markers within menisci at 48 h and 9 weeks post-surgery. In vitro, autologous blood did not affect cell viability, but addition of DEX uniquely impacted the medial menisci. © 2019 Orthopaedic Research Society. Published by Wiley Periodicals, Inc. J Orthop Res 37:2043-2052, 2019.
Collapse
Affiliation(s)
- Bryan J Heard
- Cumming School of Medicine, McCaig Institute for Bone and Joint Health, University of Calgary, Calgary, Alberta, Canada.,Department of Surgery, University of Calgary, Calgary, Alberta, Canada
| | - Kristen I Barton
- Cumming School of Medicine, McCaig Institute for Bone and Joint Health, University of Calgary, Calgary, Alberta, Canada
| | - Omokhowa M Agbojo
- Cumming School of Medicine, McCaig Institute for Bone and Joint Health, University of Calgary, Calgary, Alberta, Canada.,Schulich School of Engineering, University of Calgary, Calgary, Alberta, Canada
| | - May Chung
- Cumming School of Medicine, McCaig Institute for Bone and Joint Health, University of Calgary, Calgary, Alberta, Canada
| | - John L Sevick
- Cumming School of Medicine, McCaig Institute for Bone and Joint Health, University of Calgary, Calgary, Alberta, Canada
| | - Taylor J Bader
- Cumming School of Medicine, McCaig Institute for Bone and Joint Health, University of Calgary, Calgary, Alberta, Canada
| | - C Ryan Martin
- Cumming School of Medicine, McCaig Institute for Bone and Joint Health, University of Calgary, Calgary, Alberta, Canada.,Department of Surgery, University of Calgary, Calgary, Alberta, Canada
| | - Nigel G Shrive
- Cumming School of Medicine, McCaig Institute for Bone and Joint Health, University of Calgary, Calgary, Alberta, Canada.,Schulich School of Engineering, University of Calgary, Calgary, Alberta, Canada
| | - David A Hart
- Cumming School of Medicine, McCaig Institute for Bone and Joint Health, University of Calgary, Calgary, Alberta, Canada.,Department of Surgery, University of Calgary, Calgary, Alberta, Canada.,Faculty of Kinesiology, University of Calgary, Calgary, Alberta, Canada.,Alberta Health Services Bone and Joint Health Strategic Clinical Networks, Calgary, Alberta, Canada
| |
Collapse
|
43
|
McDermott BT, Peffers MJ, McDonagh B, Tew SR. Translational regulation contributes to the secretory response of chondrocytic cells following exposure to interleukin-1β. J Biol Chem 2019; 294:13027-13039. [PMID: 31300557 PMCID: PMC6721953 DOI: 10.1074/jbc.ra118.006865] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2018] [Revised: 06/12/2019] [Indexed: 01/18/2023] Open
Abstract
Osteoarthritis is a chronic disease characterized by the loss of articular cartilage in synovial joints through a process of extracellular matrix destruction that is strongly associated with inflammatory stimuli. Chondrocytes undergo changes to their protein translational capacity during osteoarthritis, but a study of how disease-relevant signals affect chondrocyte protein translation at the transcriptomic level has not previously been performed. In this study, we describe how the inflammatory cytokine interleukin 1-β (IL-1β) rapidly affects protein translation in the chondrocytic cell line SW1353. Using ribosome profiling we demonstrate that IL-1β induced altered translation of inflammatory-associated transcripts such as NFKB1, TNFAIP2, MMP13, CCL2, and CCL7, as well as a number of ribosome-associated transcripts, through differential translation and the use of multiple open reading frames. Proteomic analysis of the cellular layer and the conditioned media of these cells identified changes in a number of the proteins that were differentially translated. Translationally regulated secreted proteins included a number of chemokines and cytokines, underlining the rapid, translationally mediated inflammatory cascade that is initiated by IL-1β. Although fewer cellular proteins were found to be regulated in both ribosome profiling and proteomic data sets, we did find increased levels of SOD2, indicative of redox changes within SW1353 cells being modulated at the translational level. In conclusion, we have produced combined ribosome profiling and proteomic data sets that provide a valuable resource in understanding the processes that occur during cytokine stimulation of chondrocytic cells.
Collapse
Affiliation(s)
- Benjamin T McDermott
- Department of Musculoskeletal Biology, Institute of Ageing and Chronic Disease, University of Liverpool, William Henry Duncan Building, 6 West Derby Street, Liverpool L7 8TX, United Kingdom.
| | - Mandy J Peffers
- Department of Musculoskeletal Biology, Institute of Ageing and Chronic Disease, University of Liverpool, William Henry Duncan Building, 6 West Derby Street, Liverpool L7 8TX, United Kingdom
| | - Brian McDonagh
- Department of Physiology, School of Medicine, National University of Ireland (NUI), Galway H91 TK33, Ireland
| | - Simon R Tew
- Department of Musculoskeletal Biology, Institute of Ageing and Chronic Disease, University of Liverpool, William Henry Duncan Building, 6 West Derby Street, Liverpool L7 8TX, United Kingdom
| |
Collapse
|
44
|
Thorson C, Galicia K, Burleson A, Bouchard O, Hoppensteadt D, Fareed J, Hopkinson W. Matrix Metalloproteinases and Their Inhibitors and Proteoglycan 4 in Patients Undergoing Total Joint Arthroplasty. Clin Appl Thromb Hemost 2019; 25:1076029619828113. [PMID: 30754994 PMCID: PMC6714937 DOI: 10.1177/1076029619828113] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Osteoarthritis, a degenerative disease of the joints, is the most common form of arthritis in the knee. Total joint arthoplasty is a commonly used treatment for joint degeneration and osteoarthritis, and due to these factors, TJA for hip and knee joints is projected to grow by 137% and 601% between 2005 and 2030. Matrix metalloproteases are enzymes found in the extracellular matrix that cleave matrix components. Normally MMPs are downregulated in tissues by Tissue Inhibitors of Metalloproteases, or TIMPs. The relative concentration of TIMPs also may denote some of the activity of the MMPs found in serum. Lubricin (proteoglycan 4) is a molecule found in the synovial fluid that protects joints by dissipating strain energy during locomotion. Lubricin synovial fluid concentration is also diminished in many patients with osteoarthritis, but not all. Given the importance of these three sets of molecules, our lab investigated the correlation between circulating lubricin, MMP levels and TIMPs levels. Blood plasma samples were obtained from de-identified subjects undergoing total joint arthroplasty at Loyola University Medical Center and the University of Utah. Normal blood plasma from pooled healthy individuals served as a control. We analyzed biomarker levels in plasma using ELISA. Our data show that MMP-1 and 9 were increased in TJA patients compared to normal controls, while MMP-2 and 13 were decreased. We also found decreased lubricin and tissue factor in surgical patients relative to controls. These data support the idea that lubricin is vital in protecting the synovial joint and that MMPs play a complex role in the destruction of the joint.
Collapse
Affiliation(s)
- Chase Thorson
- 1 Department of Pathology, Loyola University Medical Center, Maywood, IL, USA
| | - Kevin Galicia
- 1 Department of Pathology, Loyola University Medical Center, Maywood, IL, USA
| | - Andrew Burleson
- 2 Department of Orthopedics, Loyola University Medical Center, Maywood, IL, USA
| | - Olivia Bouchard
- 1 Department of Pathology, Loyola University Medical Center, Maywood, IL, USA
| | - Debra Hoppensteadt
- 1 Department of Pathology, Loyola University Medical Center, Maywood, IL, USA
| | - Jawed Fareed
- 1 Department of Pathology, Loyola University Medical Center, Maywood, IL, USA
| | - William Hopkinson
- 2 Department of Orthopedics, Loyola University Medical Center, Maywood, IL, USA
| |
Collapse
|
45
|
Sahu N, Viljoen HJ, Subramanian A. Continuous low-intensity ultrasound attenuates IL-6 and TNFα-induced catabolic effects and repairs chondral fissures in bovine osteochondral explants. BMC Musculoskelet Disord 2019; 20:193. [PMID: 31054572 PMCID: PMC6499975 DOI: 10.1186/s12891-019-2566-4] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/14/2018] [Accepted: 04/11/2019] [Indexed: 01/02/2023] Open
Abstract
BACKGROUND Cartilage repair outcomes are compromised in a pro-inflammatory environment; therefore, the mitigation of pro-inflammatory responses is beneficial. Treatment with continuous low-intensity ultrasound (cLIUS) at the resonant frequency of 5 MHz is proposed for the repair of chondral fissures under pro-inflammatory conditions. METHODS Bovine osteochondral explants, concentrically incised to create chondral fissures, were maintained under cLIUS (14 kPa (5 MHz, 2.5 Vpp), 20 min, 4 times/day) for a period of 28 days in the presence or absence of cytokines, interleukin-6 (IL-6) or tumor necrosis factor (TNF)α. Outcome assessments included histological and immunohistochemical staining of the explants; and the expression of catabolic and anabolic genes by qRT-PCR in bovine chondrocytes. Cell migration was assessed by scratch assays, and by visualizing migrating cells into the hydrogel core of cartilage-hydrogel constructs. RESULTS Both in the presence and absence of cytokines, higher percent apposition along with closure of fissures were noted in cLIUS-stimulated explants as compared to non-cLIUS-stimulated explants on day 14. On day 28, the percent apposition was not significantly different between unstimulated and cLIUS-stimulated explants exposed to cytokines. As compared to non-cLIUS-stimulated controls, on day 28, cLIUS preserved the distribution of proteoglycans and collagen II in explants despite exposure to cytokines. cLIUS enhanced the cell migration irrespective of cytokine treatment. IL-6 or TNFα-induced increases in MMP13 and ADAMTS4 gene expression was rescued by cLIUS stimulation in chondrocytes. Under cLIUS, TNFα-induced increase in NF-κB expression was suppressed, and the expression of collagen II and TIMP1 genes were upregulated. CONCLUSION cLIUS repaired chondral fissures, and elicited pro-anabolic and anti-catabolic effects, thus demonstrating the potential of cLIUS in improving cartilage repair outcomes.
Collapse
Affiliation(s)
- Neety Sahu
- Department of Chemical and Biomolecular Engineering, University of Nebraska-Lincoln, Lincoln, NE, 68588-0643, USA
| | - Hendrik J Viljoen
- Department of Chemical and Biomolecular Engineering, University of Nebraska-Lincoln, Lincoln, NE, 68588-0643, USA
| | - Anuradha Subramanian
- Department of Chemical and Materials Engineering, University of Alabama at Huntsville, Huntsville, Alabama, 35899, USA.
| |
Collapse
|
46
|
Piluso S, Li Y, Abinzano F, Levato R, Moreira Teixeira L, Karperien M, Leijten J, van Weeren R, Malda J. Mimicking the Articular Joint with In Vitro Models. Trends Biotechnol 2019; 37:1063-1077. [PMID: 31000204 DOI: 10.1016/j.tibtech.2019.03.003] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2018] [Revised: 02/21/2019] [Accepted: 03/04/2019] [Indexed: 12/18/2022]
Abstract
Treating joint diseases remains a significant clinical challenge. Conventional in vitro cultures and animal models have been helpful, but suffer from limited predictive power for the human response. Advanced models are therefore required to mimic the complex biological interactions within the human joint. However, the intricate structure of the joint microenvironment and the complex nature of joint diseases have challenged the development of in vitro models that can faithfully mimic the in vivo physiological and pathological environments. In this review, we discuss the current in vitro models of the joint and the progress achieved in the development of novel and potentially more predictive models, and highlight the application of new technologies to accurately emulate the articular joint.
Collapse
Affiliation(s)
- Susanna Piluso
- Department of Orthopaedics, University Medical Center Utrecht, Utrecht University, Utrecht, The Netherlands; Department of Developmental BioEngineering, Technical Medical Centre, University of Twente, Enschede, The Netherlands; Regenerative Medicine Utrecht, Utrecht University, Utrecht, The Netherlands
| | - Yang Li
- Department of Orthopaedics, University Medical Center Utrecht, Utrecht University, Utrecht, The Netherlands; Regenerative Medicine Utrecht, Utrecht University, Utrecht, The Netherlands
| | - Florencia Abinzano
- Department of Orthopaedics, University Medical Center Utrecht, Utrecht University, Utrecht, The Netherlands; Regenerative Medicine Utrecht, Utrecht University, Utrecht, The Netherlands
| | - Riccardo Levato
- Department of Orthopaedics, University Medical Center Utrecht, Utrecht University, Utrecht, The Netherlands; Regenerative Medicine Utrecht, Utrecht University, Utrecht, The Netherlands
| | - Liliana Moreira Teixeira
- Department of Developmental BioEngineering, Technical Medical Centre, University of Twente, Enschede, The Netherlands; Regenerative Medicine Utrecht, Utrecht University, Utrecht, The Netherlands; Department of Equine Sciences, Faculty of Veterinary Medicine, Utrecht University, Utrecht, The Netherlands
| | - Marcel Karperien
- Department of Developmental BioEngineering, Technical Medical Centre, University of Twente, Enschede, The Netherlands
| | - Jeroen Leijten
- Department of Developmental BioEngineering, Technical Medical Centre, University of Twente, Enschede, The Netherlands
| | - René van Weeren
- Regenerative Medicine Utrecht, Utrecht University, Utrecht, The Netherlands; Department of Equine Sciences, Faculty of Veterinary Medicine, Utrecht University, Utrecht, The Netherlands
| | - Jos Malda
- Department of Orthopaedics, University Medical Center Utrecht, Utrecht University, Utrecht, The Netherlands; Regenerative Medicine Utrecht, Utrecht University, Utrecht, The Netherlands; Department of Equine Sciences, Faculty of Veterinary Medicine, Utrecht University, Utrecht, The Netherlands.
| |
Collapse
|
47
|
Wongwichai T, Teeyakasem P, Pruksakorn D, Kongtawelert P, Pothacharoen P. Anthocyanins and metabolites from purple rice inhibit IL-1β-induced matrix metalloproteinases expression in human articular chondrocytes through the NF-κB and ERK/MAPK pathway. Biomed Pharmacother 2019; 112:108610. [PMID: 30797145 DOI: 10.1016/j.biopha.2019.108610] [Citation(s) in RCA: 49] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2018] [Revised: 01/14/2019] [Accepted: 01/23/2019] [Indexed: 01/03/2023] Open
Abstract
Osteoarthritis (OA) is a common degenerative joint disease, which is closely related to cartilage degradation. Anthocyanins, a natural flavonoid pigments, exhibit strong antioxidant and anti-inflammatory properties. However, the effect of anthocyanin on inflammatory response in OA has not been investigated. Our results showed that cyanidin-3-O-glucoside (C3G) and peonidin-3-O-glucoside (P3G), the main anthocyanins found in three Thai purple rice cultivars, attenuated the inhibition of porcine cartilage degradation in an experimental model. The effects of three Thai purple rice extracts were related to their high concentration of anthocyanins. Moreover, protocatechuic acid (PA), the main metabolite of anthocyanin, has chondroprotective potential by reducing glycosaminoglycans and collagen breakdown in IL-1β/OSM-induced porcine cartilage explants in long-term condition. The induction of matrix metalloproteinases (MMPs) caused by IL-1β-stimulated human chondrocytes was also attenuated by C3G, P3G, and their metabolites. Furthermore, C3G, P3G, and their metabolites pretreatment significantly inhibited IκBα degradation, the level of p-p65, and ERK/MAPK pathway. Additionally, PA pretreatment enhanced the phosphorylation of JNK in IL-1β-stimulated human chondrocytes. These findings indicated that anthocyanin in Thai purple rice exhibited anti-inflammatory effects in IL-1β-stimulated human chondrocytes by inhibiting NF-κB and ERK/MAPK signaling pathway.
Collapse
Affiliation(s)
- Tunchanok Wongwichai
- Thailand Excellence Center for Tissue Engineering and Stem Cell, Department of Biochemistry, Faculty of Medicine, Chiang Mai University, Chiang Mai, 50200, Thailand
| | - Pimpisa Teeyakasem
- Orthopedic Laboratory and Research Network (OLARN), Department of Orthopedics, Faculty of Medicine, Chiang Mai University, Chiang Mai, 50200, Thailand
| | - Dumnoensun Pruksakorn
- Orthopedic Laboratory and Research Network (OLARN), Department of Orthopedics, Faculty of Medicine, Chiang Mai University, Chiang Mai, 50200, Thailand
| | - Prachya Kongtawelert
- Thailand Excellence Center for Tissue Engineering and Stem Cell, Department of Biochemistry, Faculty of Medicine, Chiang Mai University, Chiang Mai, 50200, Thailand
| | - Peraphan Pothacharoen
- Thailand Excellence Center for Tissue Engineering and Stem Cell, Department of Biochemistry, Faculty of Medicine, Chiang Mai University, Chiang Mai, 50200, Thailand.
| |
Collapse
|
48
|
Wasserman A, Matthewson G, MacDonald P. Platelet-Rich Plasma and the Knee-Applications in Orthopedic Surgery. Curr Rev Musculoskelet Med 2018; 11:607-615. [PMID: 30215165 PMCID: PMC6220003 DOI: 10.1007/s12178-018-9521-0] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
PURPOSE OF REVIEW To consolidate and synthesize the most recent evidence on the effects of platelet-rich plasma (PRP) in the knee with respect to osteoarthritis, meniscal injuries, ACL reconstruction, total knee arthroplasty (TKA), and high tibial osteotomy. RECENT FINDINGS PRP has been shown to be more beneficial in the context of knee osteoarthritis compared to both placebo and hyaluronic acid. Direct comparison with corticosteroid injections has been sparsely studied. It has also been shown to improve the clinical postoperative course in meniscal injuries and to a lesser extent TKA. Radiographic improvements without clinically significant benefits have been observed with ACL reconstructions treated with PRP. PRP injections may be more beneficial than other current non-surgical management options for specific knee pathologies. Further research should broaden the knowledge of PRP effects on the knee, and identify the type of PRP, growth factor distribution, and route of administration associated with the most benefit.
Collapse
|
49
|
Favero M, Belluzzi E, Trisolino G, Goldring MB, Goldring SR, Cigolotti A, Pozzuoli A, Ruggieri P, Ramonda R, Grigolo B, Punzi L, Olivotto E. Inflammatory molecules produced by meniscus and synovium in early and end-stage osteoarthritis: a coculture study. J Cell Physiol 2018; 234:11176-11187. [PMID: 30456760 DOI: 10.1002/jcp.27766] [Citation(s) in RCA: 51] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2018] [Accepted: 10/30/2018] [Indexed: 01/15/2023]
Abstract
The aim of this study was to identify the molecules and pathways involved in the cross-talk between meniscus and synovium that may play a critical role in osteoarthritis (OA) pathophysiology. Samples of synovium and meniscus were collected from patients with early and end-stage OA and cultured alone or cocultured. Cytokines, chemokines, metalloproteases, and their inhibitors were evaluated at the gene and protein levels. The extracellular matrix (ECM) changes were also investigated. In early OA cultures, higher levels of interleukin-6 (IL-6) and IL-8 messenger RNA were expressed by synovium and meniscus in coculture compared with meniscus cultured alone. RANTES release was significantly increased when the two tissues were cocultured compared with meniscus cultured alone. Increased levels of matrix metalloproteinase-3 (MMP-3) and MMP-10 proteins, as well as increased release of glycosaminoglycans and aggrecan CS846 epitope, were observed when synovium was cocultured with meniscus. In end-stage OA cultures, increased levels of IL-8 and monocyte chemoattractant protein-1 (MCP-1) proteins were released in cocultures compared with cultures of meniscus alone. Chemokine (C-C motif) ligand 21 (CCL21) protein release was higher in meniscus cultured alone and in coculture compared with synovium cultured alone. Increased levels of MMP-3 and 10 proteins were observed when tissues were cocultured compared with meniscus cultured alone. Aggrecan CS846 epitope release was increased in cocultures compared with cultures of either tissue cultured alone. Our study showed the production of inflammatory molecules by synovium and meniscus which could trigger inflammatory signals in early OA patients, and induce ECM loss in the progressive and final stages of OA pathology.
Collapse
Affiliation(s)
- Marta Favero
- Rheumatology Unit, Department of Medicine-DIMED, University Hospital of Padova, Padova, Italy.,RAMSES Laboratory, RIT Department, IRCCS Istituto Ortopedico Rizzoli, Bologna, Italy
| | - Elisa Belluzzi
- Rheumatology Unit, Department of Medicine-DIMED, University Hospital of Padova, Padova, Italy.,Musculoskeletal Pathology and Oncology Laboratory, Department of Orthopaedics and Orthopaedic Oncology, University of Padova, Padova, Italy
| | - Giovanni Trisolino
- Department of Pediatric Orthopedics and Traumatology, IRCCS Istituto Ortopedico Rizzoli, Bologna, Italy
| | - Mary B Goldring
- HSS Research Institute, Hospital for Special Surgery, New York, New York
| | - Steven R Goldring
- HSS Research Institute, Hospital for Special Surgery, New York, New York
| | - Augusto Cigolotti
- Department of Orthopaedics and Orthopaedic Oncology, University of Padova, Padova, Italy
| | - Assunta Pozzuoli
- Musculoskeletal Pathology and Oncology Laboratory, Department of Orthopaedics and Orthopaedic Oncology, University of Padova, Padova, Italy
| | - Pietro Ruggieri
- Department of Orthopaedics and Orthopaedic Oncology, University of Padova, Padova, Italy
| | - Roberta Ramonda
- Rheumatology Unit, Department of Medicine-DIMED, University Hospital of Padova, Padova, Italy
| | - Brunella Grigolo
- RAMSES Laboratory, RIT Department, IRCCS Istituto Ortopedico Rizzoli, Bologna, Italy
| | - Leonardo Punzi
- Rheumatology Unit, Department of Medicine-DIMED, University Hospital of Padova, Padova, Italy
| | - Eleonora Olivotto
- RAMSES Laboratory, RIT Department, IRCCS Istituto Ortopedico Rizzoli, Bologna, Italy
| |
Collapse
|
50
|
Cook AE, Stoker AM, Leary EV, Pfeiffer FM, Cook JL. Metabolic responses of meniscal explants to injury and inflammation ex vivo. J Orthop Res 2018; 36:2657-2663. [PMID: 29745431 DOI: 10.1002/jor.24045] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/29/2017] [Accepted: 05/07/2018] [Indexed: 02/06/2023]
Abstract
This study was designed to characterize metabolic responses of meniscal tissue explants to injury and inflammation. We hypothesized that impact injury and interleukin (IL-1β) stimulation of meniscal explants would result in significant increases in matrix metalloproteinase (MMP) activity and relevant cytokine production compared to controls. Mature canine meniscal explants (n = 9/group) were randomly assigned to: (i) IL-1β (0.1 ng/ml) treated (IL); (ii) 25% strain (25); (iii) 75% strain (75); (iv) 25% + IL-1β (25IL); (v) 75% + IL-1β (75IL); or (vi) 0% + no IL-1β control (NC). Explants were impacted at 100 mm/s to 0%, 25%, or 75% strain and then cultured for 12 days with or without 0.1 ng/ml rcIL-1β. Media were refreshed every 3 days and analyzed for MMP activity, ADAMTS-4 activity, MMP-1, MMP-2, MMP-3, GAG, NO, PGE2 , IL-6, IL-8, MCP-1, and KC concentrations. Treatment with IL-1β alone significantly increased NO, PGE2, general MMP activity, IL-6, IL-8, KC, and MCP-1 media concentrations compared to negative controls. Impact at 75% significantly increased PGE2, IL-6, IL-8, and KC media concentrations compared to negative controls. The combination of IL-1β and 75% strain significantly increased production of PGE2 compared to IL-1β or 75% strain alone. Impact injury to meniscal explants ex vivo is associated with increased production of pro-inflammatory mediators and degradative enzyme activity, which are exacerbated by stimulation with IL-1β. © 2018 Orthopaedic Research Society. Published by Wiley Periodicals, Inc. J Orthop Res 36:2657-2663, 2018.
Collapse
Affiliation(s)
- Alex E Cook
- Kansas City University of Medicine and Biosciences, Kansas City, Missouri.,Thompson Laboratory for Regenerative Orthopaedics, University of Missouri, Columbia, Missouri
| | - Aaron M Stoker
- Thompson Laboratory for Regenerative Orthopaedics, University of Missouri, Columbia, Missouri.,Department of Orthopaedic Surgery, University of Missouri, 1100 Virginia Ave., DC953.00, Columbia 65212, Missouri
| | - Emily V Leary
- Department of Orthopaedic Surgery, University of Missouri, 1100 Virginia Ave., DC953.00, Columbia 65212, Missouri
| | - Ferris M Pfeiffer
- Thompson Laboratory for Regenerative Orthopaedics, University of Missouri, Columbia, Missouri.,Department of Orthopaedic Surgery, University of Missouri, 1100 Virginia Ave., DC953.00, Columbia 65212, Missouri
| | - James L Cook
- Thompson Laboratory for Regenerative Orthopaedics, University of Missouri, Columbia, Missouri.,Department of Orthopaedic Surgery, University of Missouri, 1100 Virginia Ave., DC953.00, Columbia 65212, Missouri
| |
Collapse
|