1
|
Kust SJ, Meadows KD, Voinier D, Hong JA, Elliott DM, White DK, Moore AC. Walking recovers cartilage compressive strain in vivo. OSTEOARTHRITIS AND CARTILAGE OPEN 2024; 6:100526. [PMID: 39524477 PMCID: PMC11550359 DOI: 10.1016/j.ocarto.2024.100526] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2024] [Accepted: 10/01/2024] [Indexed: 11/16/2024] Open
Abstract
Background Articular cartilage is a fiber reinforced hydrated solid that serves a largely mechanical role of supporting load and enabling low friction joint articulation. Daily activities that load cartilage, lead to fluid exudation and compressive axial strain. To date, the only mechanism shown to recover this cartilage strain in vivo is unloading (e.g., lying supine). Based on recent work in cartilage explants, we hypothesized that loaded joint activity (walking) would also be capable of strain recovery in cartilage. Methods Eight asymptomatic young adults performed a fixed series of tasks, each of which was followed by magnetic resonance imaging to track changes in their knee cartilage thickness. The order of tasks was as follows: 1) stand for 30 min, 2) walk for 10 min, 3) stand for 30 min, and 4) lie supine for 50 min. The change in cartilage thickness was used to compute the axial cartilage strain. Results Standing produced an average axial strain of -5.1 % (compressive) in the tibiofemoral knee cartilage, while lying supine led to strain recovery. In agreement with our hypothesis, walking also led to cartilage strain recovery. Interestingly, the recovery rate during walking (0.19 % strain/min) was nearly 3-fold faster than lying supine (0.07 % strain/min). Conclusions This study represents the first in vivo demonstration that joint activity is capable of recovering compressive strain in cartilage. These findings indicate that joint activities such as walking may play a key role in maintaining and recovering cartilage strain, with implications for maintaining cartilage health and preventing or delaying cartilage degeneration.
Collapse
Affiliation(s)
- Shu-Jin Kust
- Department of Biomedical Engineering, University of Delaware, Newark, DE, USA
| | - Kyle D. Meadows
- Department of Biomedical Engineering, University of Delaware, Newark, DE, USA
| | - Dana Voinier
- Department of Physical Therapy, University of Delaware, Newark, DE, USA
| | - JiYeon A. Hong
- Department of Biomedical Engineering, Carnegie Mellon University, Pittsburgh, PA, USA
| | - Dawn M. Elliott
- Department of Biomedical Engineering, University of Delaware, Newark, DE, USA
| | - Daniel K. White
- Department of Physical Therapy, University of Delaware, Newark, DE, USA
| | - Axel C. Moore
- Department of Biomedical Engineering, University of Delaware, Newark, DE, USA
- Department of Biomedical Engineering, Carnegie Mellon University, Pittsburgh, PA, USA
| |
Collapse
|
2
|
Zhang Y, Putignano C, Qi C, Zhao W, Yu B, Ma S, Dini D, Zhou F. Sliding-Induced Rehydration in Hydrogels for Restoring Lubrication and Anticreeping Capability. J Phys Chem Lett 2024; 15:11328-11334. [PMID: 39499827 DOI: 10.1021/acs.jpclett.4c02383] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2024]
Abstract
Fluid exudation in cartilage under normal loading can be counteracted by a sliding-induced rehydration phenomenon, which has a hydrodynamic origin related to a wedge effect at the contact inlet. Similar to cartilage, hydrogels also exhibit tribological rehydration properties, and we mimic this phenomenon to restore hydration lubrication and overcome creeping. It occurs within a specific velocity range and is mainly dependent on the applied load and hydrogel network structures. Crucially, a certain velocity in the mixed lubrication regime can produce a hydrodynamic pressure peak at the wedge and drive the rehydration inflow to overcome the extrusion. At lower sliding velocities in the boundary lubrication regime, inflows are insufficient to counteract fluid exudation, whereas at higher velocities in the hydrodynamic lubrication regime, the inlet wedge effect would diminish. These results suggest that tribological rehydration offers a novel approach to enhancing load-bearing capacity and maintaining lubrication in the hydrogels.
Collapse
Affiliation(s)
- Yunlei Zhang
- State Key Laboratory of Solid Lubrication, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou 730000, China
| | - Carmine Putignano
- Department of Mechanics, Mathematics and Management, Politecnico di Bari, Via Orabona 4, 70100 Bari, Italy
- Department of Functional Morphology and Biomechanics, Zoological Institute, University of Kiel, Am Botanischen Garten 1-9, 24118 Kiel, Germany
| | - Changmin Qi
- State Key Laboratory of Solid Lubrication, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou 730000, China
- College of Materials Science and Optoelectronic Technology, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Weiyi Zhao
- State Key Laboratory of Solid Lubrication, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou 730000, China
- College of Materials Science and Optoelectronic Technology, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Bo Yu
- State Key Laboratory of Solid Lubrication, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou 730000, China
| | - Shuanhong Ma
- State Key Laboratory of Solid Lubrication, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou 730000, China
| | - Daniele Dini
- Department of Mechanical Engineering, Imperial College London, South Kensington Campus, London SW72AZ, U.K
| | - Feng Zhou
- State Key Laboratory of Solid Lubrication, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou 730000, China
| |
Collapse
|
3
|
Vishwanath K, Su J, Colville MJ, Paszek M, Reesink HL, Bonassar LJ. Bioengineered lubricin alters the lubrication modes of cartilage in a dose-dependent manner. J Orthop Res 2024. [PMID: 39521731 DOI: 10.1002/jor.26009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/13/2024] [Revised: 09/21/2024] [Accepted: 09/27/2024] [Indexed: 11/16/2024]
Abstract
The low friction nature of articular cartilage has been attributed to the synergistic interaction between lubricin and hyaluronic acid in the synovial fluid (SF). Lubricin is a mucinous glycoprotein that lowers the boundary mode coefficient of friction of articular cartilage in a dose-dependent manner. While there have been multiple attempts to produce recombinant lubricin and lubricin mimetic cartilage lubricants over the last two decades, these materials have not found clinical use due to challenges associated with large scale production, manufacturing, and purification. Recently, a novel method using codon scrambling was developed to produce a stable, full-length bioengineered equine lubricin (eLub) in large reproducible quantities. While preliminary frictional analysis of eLub and other recombinantly produced forms revealed they can lubricate cartilage, a complete tribological characterization is lacking, with previous studies evaluating the friction coefficient only at a single dose or a single speed. The objective of this study was to analyze the dose-dependent tribological properties of eLub using the Stribeck framework of tribological analysis. Recombinantly produced eLub at doses greater than 1.5 mg/mL exhibits friction coefficients on par with healthy bovine SF, and a maximal 5 mg/mL dose exhibits a nearly 50% lower friction coefficient than healthy SF. eLub also modulates the shift in lubrication mode of the cartilage from the high friction boundary mode to the low friction minimum mode at high concentrations.
Collapse
Affiliation(s)
- Karan Vishwanath
- Department of Materials Science and Engineering, Cornell University, Ithaca, New York, USA
| | - Jin Su
- Department of Clinical Sciences, College of Veterinary Medicine, Cornell University, Ithaca, New York, USA
| | - Marshall J Colville
- Department of Clinical Sciences, College of Veterinary Medicine, Cornell University, Ithaca, New York, USA
- Robert Frederick Smith School of Chemical and Biomolecular Engineering, Cornell University, Ithaca, New York, USA
| | - Matthew Paszek
- Robert Frederick Smith School of Chemical and Biomolecular Engineering, Cornell University, Ithaca, New York, USA
- Meinig School of Biomedical Engineering, Cornell University, Ithaca, New York, USA
| | - Heidi L Reesink
- Department of Clinical Sciences, College of Veterinary Medicine, Cornell University, Ithaca, New York, USA
| | - Lawrence J Bonassar
- Meinig School of Biomedical Engineering, Cornell University, Ithaca, New York, USA
- Sibley School of Mechanical and Aerospace Engineering, Cornell University, Ithaca, New York, USA
| |
Collapse
|
4
|
Thompson CL, Bonassar LJ. Timing of cartilage articulation following impact injury affects the response of surface zone chondrocytes. J Orthop Res 2024. [PMID: 39482253 DOI: 10.1002/jor.26002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/14/2024] [Revised: 09/09/2024] [Accepted: 10/09/2024] [Indexed: 11/03/2024]
Abstract
Post-traumatic osteoarthritis develops following an inciting injury to a joint and results in cartilage degeneration. Mechanical loading, including articulation, drives anabolic responses in cartilage clinically, in vivo, and in vitro. Tribological articulation, or sliding of cartilage on a glass counterface, has long been used as an in vitro tool to study cartilage tissue behavior. However, it is unclear if tribological articulation affects chondrocyte fate following injury, and if the timing of articulation impacts the resultant effect. The goal of this study was to investigate the effect of tribological articulation on injured cartilage tissue at two time points: (i) performed immediately after injury and (ii) 24 h after injury. Neonatal bovine femoral cartilage explants were injured using a rapid spring-loaded impactor and subsequently subjected to tribological articulation. Cell death due to impact injury was highest near the articular surface, suggesting a strain-dependent mechanism. Immediate articulation following injury mitigated cell death compared to injury alone or delayed articulation; markers for both general cell death and early-stage apoptosis were markedly decreased in the explants that were immediately slid. Interestingly, mitigation of cell death due to sliding was most predominant at the cartilage surface. Tribological articulation is known to create fluid flow within the tissue, predominantly at the articular surface, which could drive the protective response seen here. Altogether, this work shows that perturbations to the cellular environment immediately following cartilage injury significantly impact chondrocyte fate.
Collapse
Affiliation(s)
| | - Lawrence J Bonassar
- Meinig of Biomedical Engineering, Cornell University, Ithaca, New York, USA
- Sibley School of Mechanical and Aerospace Engineering, Cornell University, Ithaca, New York, USA
| |
Collapse
|
5
|
Lee J, Lim J, Park S, Kim S, Park J. Morphologic Response in Femoral Cartilage During and After 40-Minute Treadmill Running. J Athl Train 2024; 59:906-914. [PMID: 39320951 PMCID: PMC11440817 DOI: 10.4085/1062-6050-0659.22] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/27/2024]
Abstract
CONTEXT It is unclear whether the response in femoral cartilage to running at different intensities is different. OBJECTIVE To examine the acute patterns of deformation and recovery in femoral cartilage thickness during and after running at different speeds. DESIGN Crossover study. SETTING Laboratory. PATIENTS OR OTHER PARTICIPANTS A total of 17 healthy men (age = 23.9 ± 2.3 years, height = 173.1 ± 5.5 cm, mass = 73.9 ± 8.0 kg). INTERVENTION(S) Participants performed a 40-minute treadmill run at speeds of 7.5 and 8.5 km/h. MAIN OUTCOME MEASURE(S) Ultrasonographic images of femoral cartilage thickness (intercondylar, lateral condyle, and medial condyle) were obtained every 5 minutes during the experiment (40 minutes of running followed by a 60-minute recovery period) at each session. Data were analyzed using analysis of variance and Bonferroni- and Dunnett-adjusted post hoc t tests. To identify patterns of cartilage response, we extracted principal components (PCs) from the cartilage-thickness data using PC analysis, and PC scores were analyzed using t tests. RESULTS Regardless of time, femoral cartilage thicknesses were greater for the 8.5-km/h run than the 7.5-km/h run (intercondylar: F1,656 = 24.73, P < .001, effect size, 0.15; lateral condyle: F1,649 = 16.60, P < .001, effect size, 0.16; medial condyle: F1,649 = 16.55, P < .001, effect size, 0.12). We observed a time effect in intercondylar thickness (F20,656 = 2.15, P = .003), but the Dunnett-adjusted post hoc t test revealed that none of the time point values differed from the baseline value (P > .38 for all comparisons). Although the PC1 and PC2 captured the magnitudes of cartilage thickness and time shift (eg, earlier versus later response), respectively, t tests showed that the PC scores were not different between 7.5 and 8.5 km/h (intercondylar: P ≥ .32; lateral condyle: P ≥ .78; medial condyle: P ≥ .16). CONCLUSIONS Although the 40-minute treadmill run with different speeds produced different levels of fatigue, morphologic differences (<3%) in the femoral cartilage at both speeds seemed to be negligible.
Collapse
Affiliation(s)
- Jinwoo Lee
- Athletic Training Laboratory, Kyung Hee University, Yongin, Republic of Korea
| | - Junhyeong Lim
- Athletic Training Laboratory, Kyung Hee University, Yongin, Republic of Korea
| | - Sanghyup Park
- Athletic Training Laboratory, Kyung Hee University, Yongin, Republic of Korea
| | - Sojin Kim
- Athletic Training Laboratory, Kyung Hee University, Yongin, Republic of Korea
| | - Jihong Park
- Athletic Training Laboratory, Kyung Hee University, Yongin, Republic of Korea
| |
Collapse
|
6
|
Santos F, Marto-Costa C, Branco AC, Oliveira AS, Galhano Dos Santos R, Salema-Oom M, Diaz RL, Williams S, Colaço R, Figueiredo-Pina C, Serro AP. Tribomechanical Properties of PVA/Nomex ® Composite Hydrogels for Articular Cartilage Repair. Gels 2024; 10:514. [PMID: 39195043 DOI: 10.3390/gels10080514] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2024] [Revised: 07/18/2024] [Accepted: 07/30/2024] [Indexed: 08/29/2024] Open
Abstract
Due to the increasing prevalence of articular cartilage diseases and limitations faced by current therapeutic methodologies, there is an unmet need for new materials to replace damaged cartilage. In this work, poly(vinyl alcohol) (PVA) hydrogels were reinforced with different amounts of Nomex® (known for its high mechanical toughness, flexibility, and resilience) and sterilized by gamma irradiation. Samples were studied concerning morphology, chemical structure, thermal behavior, water content, wettability, mechanical properties, and rheological and tribological behavior. Overall, it was found that the incorporation of aramid nanostructures improved the hydrogel's mechanical performance, likely due to the reinforcement's intrinsic strength and hydrogen bonding to PVA chains. Additionally, the sterilization of the materials also led to superior mechanical properties, possibly related to the increased crosslinking density through the hydrogen bonding caused by the irradiation. The water content, wettability, and tribological performance of PVA hydrogels were not compromised by either the reinforcement or the sterilization process. The best-performing composite, containing 1.5% wt. of Nomex®, did not induce cytotoxicity in human chondrocytes. Plugs of this hydrogel were inserted in porcine femoral heads and tested in an anatomical hip simulator. No significant changes were observed in the hydrogel or cartilage, demonstrating the material's potential to be used in cartilage replacement.
Collapse
Affiliation(s)
- Francisco Santos
- Centro de Química Estrutural (CQE), Institute of Molecular Sciences, Department of Chemical Engineering, Instituto Superior Técnico, University of Lisbon, Av. Rovisco Pais 1, 1049-001 Lisbon, Portugal
| | - Carolina Marto-Costa
- Centro de Química Estrutural (CQE), Institute of Molecular Sciences, Department of Chemical Engineering, Instituto Superior Técnico, University of Lisbon, Av. Rovisco Pais 1, 1049-001 Lisbon, Portugal
- Egas Moniz Center for Interdisciplinary Research (CiiEM), Egas Moniz School of Health & Science, Monte da Caparica, 2829-511 Almada, Portugal
| | - Ana Catarina Branco
- Centro de Química Estrutural (CQE), Institute of Molecular Sciences, Department of Chemical Engineering, Instituto Superior Técnico, University of Lisbon, Av. Rovisco Pais 1, 1049-001 Lisbon, Portugal
- Egas Moniz Center for Interdisciplinary Research (CiiEM), Egas Moniz School of Health & Science, Monte da Caparica, 2829-511 Almada, Portugal
- Escola Superior de Tecnologia de Setúbal, Instituto Politécnico de Setúbal, 2910-761 Setúbal, Portugal
| | - Andreia Sofia Oliveira
- Centro de Química Estrutural (CQE), Institute of Molecular Sciences, Department of Chemical Engineering, Instituto Superior Técnico, University of Lisbon, Av. Rovisco Pais 1, 1049-001 Lisbon, Portugal
- Egas Moniz Center for Interdisciplinary Research (CiiEM), Egas Moniz School of Health & Science, Monte da Caparica, 2829-511 Almada, Portugal
- Instituto de Engenharia Mecânica (IDMEC), Department of Mechanical Engineering, Instituto Superior Técnico, University of Lisbon, Av. Rovisco Pais 1, 1049-001 Lisbon, Portugal
| | - Rui Galhano Dos Santos
- CERENA-Centre for Natural Resources and the Environment, Instituto Superior Técnico, University of Lisbon, Av. Rovisco Pais, 1049-001 Lisboa, Portugal
| | - Madalena Salema-Oom
- Egas Moniz Center for Interdisciplinary Research (CiiEM), Egas Moniz School of Health & Science, Monte da Caparica, 2829-511 Almada, Portugal
| | - Roberto Leonardo Diaz
- Institute of Medical and Biological Engineering, School of Mechanical Engineering, University of Leeds, Woodhouse, Leeds LS2 9JT, UK
| | - Sophie Williams
- Institute of Medical and Biological Engineering, School of Mechanical Engineering, University of Leeds, Woodhouse, Leeds LS2 9JT, UK
| | - Rogério Colaço
- Instituto de Engenharia Mecânica (IDMEC), Department of Mechanical Engineering, Instituto Superior Técnico, University of Lisbon, Av. Rovisco Pais 1, 1049-001 Lisbon, Portugal
| | - Célio Figueiredo-Pina
- Egas Moniz Center for Interdisciplinary Research (CiiEM), Egas Moniz School of Health & Science, Monte da Caparica, 2829-511 Almada, Portugal
- Escola Superior de Tecnologia de Setúbal, Instituto Politécnico de Setúbal, 2910-761 Setúbal, Portugal
- CeFEMA-Center of Physiscs and Engineering of Advanced Materials, Instituto Superior Técnico, University of Lisbon, Av. Rovisco Pais 1, 1049-001 Lisbon, Portugal
| | - Ana Paula Serro
- Centro de Química Estrutural (CQE), Institute of Molecular Sciences, Department of Chemical Engineering, Instituto Superior Técnico, University of Lisbon, Av. Rovisco Pais 1, 1049-001 Lisbon, Portugal
- Egas Moniz Center for Interdisciplinary Research (CiiEM), Egas Moniz School of Health & Science, Monte da Caparica, 2829-511 Almada, Portugal
| |
Collapse
|
7
|
Lim J, Lee J, Park S, Lee J, Kim J, Park J. Change in Femoral Cartilage Cross-Sectional Area After Aerobic and Resistance Exercise. Int J Sports Med 2024; 45:705-711. [PMID: 38631375 DOI: 10.1055/a-2308-3148] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/19/2024]
Abstract
We compared the immediate response and recovery of femoral cartilage morphology following aerobic or resistance exercise to a control condition. Fifteen healthy young males (23.9 years; 170.1 cm; 69.7 kg) visited the laboratory three separate days and randomly performed one of the 30-min exercise aerobic exercises (treadmill running), resistance exercises (leg presses, back squats, and knee extensions), or seated rest as the control, each followed by the 50-min recovery. Ultrasonographic images of the femoral cartilage cross-sectional area (CSA) were obtained before and after exercise and every 5 min thereafter. To test exercise effects over time, a mixed model analysis of variance and Tukey-Kramer post-hoc tests were performed (p<0.05). The femoral cartilage CSA was different (condition×time: F34,742=4.30, p<0.0001) and the femoral cartilage CSA was decreased after the aerobic (-5.8%, p<0.0001) and the resistance (-3.4%, p=0.04) exercises compared to the pre-exercise levels. Deformed femoral cartilage CSA took 35 and 10 min to return to the pre-exercise levels after aerobic and resistance exercises (p+>+0.09), respectively. Thirty minutes of moderate exertion performing aerobic or resistance exercises immediately reduced the femoral cartilage CSA. A rest period ranging from 10 to 35 min was required for cartilage recovery after weight-bearing exercises.
Collapse
Affiliation(s)
- Junhyeong Lim
- Sports Medicine, Kyung Hee University - Global Campus, Yongin, Korea (the Republic of)
| | - Jaewook Lee
- Sports Medicine, Kyung Hee University - Global Campus, Yongin, Korea (the Republic of)
| | - Sanghyup Park
- Sports Medicine, Kyung Hee University - Global Campus, Yongin, Korea (the Republic of)
| | - Jinwoo Lee
- Sports Medicine, Kyung Hee University - Global Campus, Yongin, Korea (the Republic of)
| | - Jaewon Kim
- Sports Medicine, Kyung Hee University - Global Campus, Yongin, Korea (the Republic of)
| | - Jihong Park
- Sports Medicine, Kyung Hee University, Yongin, Korea (the Republic of)
| |
Collapse
|
8
|
Zhao W, Zhang Y, Zhao X, Sheng W, Ma S, Zhou F. Mechanically Robust Lubricating Hydrogels Beyond the Natural Cartilage as Compliant Artificial Joint Coating. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2401000. [PMID: 38884361 PMCID: PMC11336983 DOI: 10.1002/advs.202401000] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/26/2024] [Revised: 05/06/2024] [Indexed: 06/18/2024]
Abstract
Natural cartilage exhibits superior lubricity as well as an ultra-long service lifetime, which is related to its surface hydration, load-bearing, and deformation recovery feature. Until now, it is of great challenge to develop reliable cartilage lubricating materials or coatings with persistent robustness. Inspired by the unique biochemical structure and mechanics of natural cartilage, the study reports a novel cartilage-hydrogel composed of top composite lubrication layer and bottom mechanical load-bearing layer, by covalently manufacturing thick polyelectrolyte brush phase through sub-surface of tough hydrogel matrix with multi-level crystallization phase. Due to multiple network dissipation mechanisms of matrix, this hydrogel can achieve a high compression modulus of 11.8 MPa, a reversible creep recovery (creep strain: ≈2%), along with excellent anti-swelling feature in physiological medium (v/v0 < 5%). Using low-viscosity PBS as lubricant, this hydrogel demonstrates persistent lubricity (average COF: ≈0.027) under a high contact pressure of 2.06 MPa with encountering 100k reciprocating sliding cycles, negligible wear and a deformation recovery of collapse pit in testing area. The extraordinary lubrication performance of this hydrogel is comparable to but beyond the natural animal cartilage, and can be used as compliant coating for implantable articular material of UHMWPE to present, offering more robust lubricity than current commercial system.
Collapse
Affiliation(s)
- Weiyi Zhao
- State Key Laboratory of Solid Lubrication, Lanzhou Institute of Chemical PhysicsChinese Academy of SciencesLanzhou730000China
- Center of Materials Science and Optoelectronics EngineeringUniversity of Chinese Academy of SciencesBeijing100049China
| | - Yunlei Zhang
- State Key Laboratory of Solid Lubrication, Lanzhou Institute of Chemical PhysicsChinese Academy of SciencesLanzhou730000China
| | - Xiaoduo Zhao
- State Key Laboratory of Solid Lubrication, Lanzhou Institute of Chemical PhysicsChinese Academy of SciencesLanzhou730000China
- Shandong Laboratory of Advanced Materials and Green Manufacture at YantaiYantai Zhongke Research Institute of Advanced Materials and Green Chemical EngineeringYantai264006China
| | - Wenbo Sheng
- State Key Laboratory of Solid Lubrication, Lanzhou Institute of Chemical PhysicsChinese Academy of SciencesLanzhou730000China
| | - Shuanhong Ma
- State Key Laboratory of Solid Lubrication, Lanzhou Institute of Chemical PhysicsChinese Academy of SciencesLanzhou730000China
- Shandong Laboratory of Advanced Materials and Green Manufacture at YantaiYantai Zhongke Research Institute of Advanced Materials and Green Chemical EngineeringYantai264006China
| | - Feng Zhou
- State Key Laboratory of Solid Lubrication, Lanzhou Institute of Chemical PhysicsChinese Academy of SciencesLanzhou730000China
| |
Collapse
|
9
|
Kupratis ME, Gonzalez U, Rahman A, Burris DL, Corbin EA, Price C. Exogenous Collagen Crosslinking is Highly Detrimental to Articular Cartilage Lubrication. J Biomech Eng 2024; 146:071001. [PMID: 38323667 PMCID: PMC11005859 DOI: 10.1115/1.4064663] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Revised: 01/29/2024] [Accepted: 01/30/2024] [Indexed: 02/08/2024]
Abstract
Healthy articular cartilage is a remarkable bearing material optimized for near-frictionless joint articulation. Because its limited self-repair capacity renders it susceptible to osteoarthritis (OA), approaches to reinforce or rebuild degenerative cartilage are of significant interest. While exogenous collagen crosslinking (CXL) treatments improve cartilage's mechanical properties and increase its resistance to enzymatic degradation, their effects on cartilage lubrication remain less clear. Here, we examined how the collagen crosslinking agents genipin (GP) and glutaraldehyde (GTA) impact cartilage lubrication using the convergent stationary contact area (cSCA) configuration. Unlike classical configurations, the cSCA sustains biofidelic kinetic friction coefficients (μk) via superposition of interstitial and hydrodynamic pressurization (i.e., tribological rehydration). As expected, glutaraldehyde- and genipin-mediated CXL increased cartilage's tensile and compressive moduli. Although net tribological rehydration was retained after CXL, GP or GTA treatment drastically elevated μk. Both healthy and "OA-like" cartilage (generated via enzymatic digestion) sustained remarkably low μk in saline- (≤0.02) and synovial fluid-lubricated contacts (≤0.006). After CXL, μk increased up to 30-fold, reaching values associated with marked chondrocyte death in vitro. These results demonstrate that mechanical properties (i.e., stiffness) are necessary, but not sufficient, metrics of cartilage function. Furthermore, the marked impairment in lubrication suggests that CXL-mediated stiffening is ill-suited to cartilage preservation or joint resurfacing.
Collapse
Affiliation(s)
- Meghan E. Kupratis
- Biomedical Engineering, University of Delaware, Newark, DE 19713
- University of Delaware
| | - Uriel Gonzalez
- Biomedical Engineering, University of Delaware, Newark, DE 19713
- University of Delaware
| | - Atia Rahman
- Mechanical Engineering, University of Delaware, Newark, DE 19713
- University of Delaware
| | - David L. Burris
- Mechanical Engineering, University of Delaware, Newark, DE 19716
| | - Elise A. Corbin
- Biomedical Engineering, University of Delaware, Newark, DE 19713; Materials Science & Engineering, University of Delaware, Newark, DE 19716
- University of Delaware
| | - Christopher Price
- Biomedical Engineering, University of Delaware, Newark, DE 19713; Mechanical Engineering, University of Delaware, Newark, DE 19716
| |
Collapse
|
10
|
Rajankunte Mahadeshwara M, Al-Jawad M, Hall RM, Pandit H, El-Gendy R, Bryant M. How Do Cartilage Lubrication Mechanisms Fail in Osteoarthritis? A Comprehensive Review. Bioengineering (Basel) 2024; 11:541. [PMID: 38927777 PMCID: PMC11200606 DOI: 10.3390/bioengineering11060541] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2024] [Revised: 05/02/2024] [Accepted: 05/21/2024] [Indexed: 06/28/2024] Open
Abstract
Cartilage degeneration is a characteristic of osteoarthritis (OA), which is often observed in aging populations. This degeneration is due to the breakdown of articular cartilage (AC) mechanical and tribological properties primarily attributed to lubrication failure. Understanding the reasons behind these failures and identifying potential solutions could have significant economic and societal implications, ultimately enhancing quality of life. This review provides an overview of developments in the field of AC, focusing on its mechanical and tribological properties. The emphasis is on the role of lubrication in degraded AC, offering insights into its structure and function relationship. Further, it explores the fundamental connection between AC mechano-tribological properties and the advancement of its degradation and puts forth recommendations for strategies to boost its lubrication efficiency.
Collapse
Affiliation(s)
- Manoj Rajankunte Mahadeshwara
- Institute of Functional Surfaces, Mechanical Engineering, University of Leeds, Leeds LS2 9JT, UK
- Department of Oral Biology, Faculty of Dentistry, University of Leeds, Leeds LS2 9JT, UK; (M.A.-J.); (R.E.-G.)
| | - Maisoon Al-Jawad
- Department of Oral Biology, Faculty of Dentistry, University of Leeds, Leeds LS2 9JT, UK; (M.A.-J.); (R.E.-G.)
| | - Richard M. Hall
- School of Engineering, College of Engineering and Physical Sciences, University of Birmingham, Birmingham B15 2TT, UK;
| | - Hemant Pandit
- Leeds Institute of Rheumatic and Musculoskeletal Medicine (LIRMM), University of Leeds, Chapel Allerton Hospital, Leeds LS7 4SA, UK;
| | - Reem El-Gendy
- Department of Oral Biology, Faculty of Dentistry, University of Leeds, Leeds LS2 9JT, UK; (M.A.-J.); (R.E.-G.)
- Department of Oral Pathology, Faculty of Dentistry, Suez Canal University, Ismailia 3, Ismailia Governorate 8366004, Egypt
| | - Michael Bryant
- Institute of Functional Surfaces, Mechanical Engineering, University of Leeds, Leeds LS2 9JT, UK
- School of Engineering, College of Engineering and Physical Sciences, University of Birmingham, Birmingham B15 2TT, UK;
| |
Collapse
|
11
|
Elkington RJ, Hall RM, Beadling AR, Pandit H, Bryant MG. Brushing Up on Cartilage Lubrication: Polyelectrolyte-Enhanced Tribological Rehydration. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2024; 40:10648-10662. [PMID: 38712915 PMCID: PMC11112737 DOI: 10.1021/acs.langmuir.4c00598] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/19/2024] [Revised: 04/14/2024] [Accepted: 04/18/2024] [Indexed: 05/08/2024]
Abstract
This study presents new insights into the potential role of polyelectrolyte interfaces in regulating low friction and interstitial fluid pressurization of cartilage. Polymer brushes composed of hydrophilic 3-sulfopropyl methacrylate potassium salt (SPMK) tethered to a PEEK substrate (SPMK-g-PEEK) are a compelling biomimetic solution for interfacing with cartilage, inspired by the natural lubricating biopolyelectrolyte constituents of synovial fluid. These SPMK-g-PEEK surfaces exhibit a hydrated compliant layer approximately 5 μm thick, demonstrating the ability to maintain low friction coefficients (μ ∼ 0.01) across a wide speed range (0.1-200 mm/s) under physiological loads (0.75-1.2 MPa). A novel polyelectrolyte-enhanced tribological rehydration mechanism is elucidated, capable of recovering up to ∼12% cartilage strain and subsequently facilitating cartilage interstitial fluid recovery, under loads ranging from 0.25 to 2.21 MPa. This is attributed to the combined effects of fluid confinement within the contact gap and the enhanced elastohydrodynamic behavior of polymer brushes. Contrary to conventional theories that emphasize interstitial fluid pressurization in regulating cartilage lubrication, this work demonstrates that SPMK-g-PEEK's frictional behavior with cartilage is independent of these factors and provides unabating aqueous lubrication. Polyelectrolyte-enhanced tribological rehydration can occur within a static contact area and operates independently of known mechanisms of cartilage interstitial fluid recovery established for converging or migrating cartilage contacts. These findings challenge existing paradigms, proposing a novel polyelectrolyte-cartilage tribological mechanism not exclusively reliant on interstitial fluid pressurization or cartilage contact geometry. The implications of this research extend to a broader understanding of synovial joint lubrication, offering insights into the development of joint replacement materials that more accurately replicate the natural functionality of cartilage.
Collapse
Affiliation(s)
- Robert J. Elkington
- Institute
of Functional Surfaces, Mechanical Engineering, University of Leeds, Leeds LS2 9JT, Yorkshire, U.K.
| | - Richard M. Hall
- School
of Engineering College of Engineering and Physical Sciences, University of Birmingham, Birmingham B15 2TT, West
Midlands, U.K.
| | - Andrew R. Beadling
- Institute
of Functional Surfaces, Mechanical Engineering, University of Leeds, Leeds LS2 9JT, Yorkshire, U.K.
| | - Hemant Pandit
- Leeds
Institute of Rheumatic and Musculoskeletal Medicine, Chapel Allerton Hospital, Chapeltown Road, Leeds LS7 4SA, Yorkshire, U.K.
| | - Michael G. Bryant
- School
of Engineering College of Engineering and Physical Sciences, University of Birmingham, Birmingham B15 2TT, West
Midlands, U.K.
| |
Collapse
|
12
|
Kupratis ME, Rahman A, Burris DL, Corbin EA, Price C. Enzymatic digestion does not compromise sliding-mediated cartilage lubrication. Acta Biomater 2024; 178:196-207. [PMID: 38428511 DOI: 10.1016/j.actbio.2024.02.040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Revised: 02/21/2024] [Accepted: 02/23/2024] [Indexed: 03/03/2024]
Abstract
Articular cartilage's remarkable low-friction properties are essential to joint function. In osteoarthritis (OA), cartilage degeneration (e.g., proteoglycan loss and collagen damage) decreases tissue modulus and increases permeability. Although these changes impair lubrication in fully depressurized and slowly slid cartilage, new evidence suggests such relationships may not hold under biofidelic sliding conditions more representative of those encountered in vivo. Our recent studies using the convergent stationary contact area (cSCA) configuration demonstrate that articulation (i.e., sliding) generates interfacial hydrodynamic pressures capable of replenishing cartilage interstitial fluid/pressure lost to compressive loading through a mechanism termed tribological rehydration. This fluid recovery sustains in vivo-like kinetic friction coefficients (µk<0.02 in PBS and <0.005 in synovial fluid) with little sensitivity to mechanical properties in healthy tissue. However, the tribomechanical function of compromised cartilage under biofidelic sliding conditions remains unknown. Here, we investigated the effects of OA-like changes in cartilage mechanical properties, modeled via enzymatic digestion of mature bovine cartilage, on its tribomechanical function during cSCA sliding. We found no differences in sliding-driven tribological rehydration behaviors or µk between naïve and digested cSCA cartilage (in PBS or synovial fluid). This suggests that OA-like cartilage retains sufficient functional properties to support naïve-like fluid recovery and lubrication under biofidelic sliding conditions. However, OA-like cartilage accumulated greater total tissue strains due to elevated strain accrual during initial load application. Together, these results suggest that elevated total tissue strains-as opposed to activity-mediated strains or friction-driven wear-might be the key biomechanical mediator of OA pathology in cartilage. STATEMENT OF SIGNIFICANCE: Osteoarthritis (OA) decreases cartilage's modulus and increases its permeability. While these changes compromise frictional performance in benchtop testing under low fluid load support (FLS) conditions, whether such observations hold under sliding conditions that better represent the joints' dynamic FLS conditions in vivo is unclear. Here, we leveraged biofidelic benchtop sliding experiments-that is, those mimicking joints' native sliding environment-to examine how OA-like changes in mechanical properties effect cartilage's natural lubrication. We found no differences in sliding-mediated fluid recovery or kinetic friction behaviors between naïve and OA-like cartilage. However, OA-like cartilage experienced greater strain accumulation during load application, suggesting that elevated tissue strains (not friction-driven wear) may be the primary biomechanical mediator of OA pathology.
Collapse
Affiliation(s)
| | - Atia Rahman
- Mechanical Engineering, University of Delaware, Newark, DE, USA
| | - David L Burris
- Mechanical Engineering, University of Delaware, Newark, DE, USA
| | - Elise A Corbin
- Biomedical Engineering, University of Delaware, Newark, DE, USA; Materials Science & Engineering, University of Delaware, Newark, DE, USA
| | - Christopher Price
- Biomedical Engineering, University of Delaware, Newark, DE, USA; Mechanical Engineering, University of Delaware, Newark, DE, USA.
| |
Collapse
|
13
|
Elkington RJ, Hall RM, Beadling AR, Pandit H, Bryant MG. Highly lubricious SPMK-g-PEEK implant surfaces to facilitate rehydration of articular cartilage. J Mech Behav Biomed Mater 2023; 147:106084. [PMID: 37683556 DOI: 10.1016/j.jmbbm.2023.106084] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Revised: 08/16/2023] [Accepted: 08/20/2023] [Indexed: 09/10/2023]
Abstract
To enable long lasting osteochondral defect repairs which preserve the native function of synovial joint counter-face, it is essential to develop surfaces which are optimised to support healthy cartilage function by providing a hydrated, low friction and compliant sliding interface. PEEK surfaces were modified using a biocompatible 3-sulfopropyl methacrylate potassium salt (SPMK) through UV photo-polymerisation, resulting in a ∼350 nm thick hydrophilic coating rich in hydrophilic anionic sulfonic acid groups. Characterisation was done through Fourier Transformed Infrared Spectroscopy, Focused Ion Beam Scanning Electron Microscopy, and Water Contact Angle measurements. Using a Bruker UMT TriboLab, bovine cartilage sliding tests were conducted with real-time strain and shear force measurements, comparing untreated PEEK, SPMK functionalised PEEK (SPMK-g-PEEK), and Cobalt Chrome Molybdenum alloy. Tribological tests over 2.5 h at physiological loads (0.75 MPa) revealed that SPMK-g-PEEK maintains low friction (μ< 0.024) and minimises equilibrium strain, significantly reducing forces on the cartilage interface. Post-test analysis showed no notable damage to the cartilage interfacing against the SPMK functionalised surfaces. The application of a constitutive biphasic cartilage model to the experimental strain data reveals that SPMK surfaces increase the interfacial permeability of cartilage in sliding, facilitating fluid and strain recovery. Unlike previous demonstrations of sliding-induced tribological rehydration requiring specific hydrodynamic conditions, the SPMK-g-PEEK introduces a novel mode of tribological rehydration operating at low speeds and in a stationary contact area. SPMK-g-PEEK surfaces provide an enhanced cartilage counter-surface, which provides a highly hydrated and lubricious boundary layer along with supporting biphasic lubrication. Soft polymer surface functionalisation of orthopaedic implant surfaces are a promising approach for minimally invasive synovial joint repair with an enhanced bioinspired polyelectrolyte interface for sliding against cartilage. These hydrophilic surface coatings offer an enabling technology for the next generation of focal cartilage repair and hemiarthroplasty implant surfaces.
Collapse
Affiliation(s)
- Robert J Elkington
- Institute of Functional Surfaces, Mechanical Engineering, University of Leeds, Leeds, LS2 9JT, Yorkshire, UK.
| | - Richard M Hall
- Institute of Thermofluids, Mechanical Engineering, University of Leeds, Leeds, LS2 9JT, Yorkshire, UK
| | - Andrew R Beadling
- Institute of Functional Surfaces, Mechanical Engineering, University of Leeds, Leeds, LS2 9JT, Yorkshire, UK
| | - Hemant Pandit
- Leeds Institute of Rheumatic and Musculoskeletal Medicine, Chapel Allerton Hospital, Chapeltown Road, Leeds, LS7 4SA, Yorkshire, UK
| | - Michael G Bryant
- Institute of Functional Surfaces, Mechanical Engineering, University of Leeds, Leeds, LS2 9JT, Yorkshire, UK
| |
Collapse
|
14
|
Demott C, Jones MR, Chesney CD, Grunlan MA. Adhesive Hydrogel Building Blocks to Reconstruct Complex Cartilage Tissues. ACS Biomater Sci Eng 2023; 9:1952-1960. [PMID: 36881710 PMCID: PMC10848198 DOI: 10.1021/acsbiomaterials.2c01438] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2022] [Accepted: 02/14/2023] [Indexed: 03/09/2023]
Abstract
Cartilage has an intrinsically low healing capacity, thereby requiring surgical intervention. However, limitations of biological grafting and existing synthetic replacements have prompted the need to produce cartilage-mimetic substitutes. Cartilage tissues perform critical functions that include load bearing and weight distribution, as well as articulation. These are characterized by a range of high moduli (≥1 MPa) as well as high hydration (60-80%). Additionally, cartilage tissues display spatial heterogeneity, resulting in regional differences in stiffness that are paramount to biomechanical performance. Thus, cartilage substitutes would ideally recapitulate both local and regional properties. Toward this goal, triple network (TN) hydrogels were prepared with cartilage-like hydration and moduli as well as adhesivity to one another. TNs were formed with either an anionic or cationic 3rd network, resulting in adhesion upon contact due to electrostatic attractive forces. With the increased concentration of the 3rd network, robust adhesivity was achieved as characterized by shear strengths of ∼80 kPa. The utility of TN hydrogels to form cartilage-like constructs was exemplified in the case of an intervertebral disc (IVD) having two discrete but connected zones. Overall, these adhesive TN hydrogels represent a potential strategy to prepare cartilage substitutes with native-like regional properties.
Collapse
Affiliation(s)
- Connor
J. Demott
- Department
of Biomedical Engineering, Texas A&M
University, College
Station, Texas 77843-3003, United States
| | - McKenzie R. Jones
- Department
of Biomedical Engineering, Texas A&M
University, College
Station, Texas 77843-3003, United States
| | - Caleb D. Chesney
- Department
of Biomedical Engineering, Texas A&M
University, College
Station, Texas 77843-3003, United States
| | - Melissa A. Grunlan
- Department
of Biomedical Engineering, Texas A&M
University, College
Station, Texas 77843-3003, United States
- Department
of Materials Science & Engineering, Texas A&M University, College
Station, Texas 77843-3003, United States
- Department
of Chemistry, Texas A&M University, College Station, Texas 77843-3003, United States
| |
Collapse
|
15
|
Tan WS, Moore AC, Stevens MM. Minimum design requirements for a poroelastic mimic of articular cartilage. J Mech Behav Biomed Mater 2023; 137:105528. [PMID: 36343521 PMCID: PMC7615484 DOI: 10.1016/j.jmbbm.2022.105528] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2022] [Revised: 10/04/2022] [Accepted: 10/14/2022] [Indexed: 11/06/2022]
Abstract
The exceptional functional performance of articular cartilage (load-bearing and lubrication) is attributed to its poroelastic structure and resulting interstitial fluid pressure. Despite this, there remains no engineered cartilage repair material capable of achieving physiologically relevant poroelasticity. In this work we develop in silico models to guide the design approach for poroelastic mimics of articular cartilage. We implement the constitutive models in FEBio, a PDE solver for multiphasic mechanics problems in biological and soft materials. We investigate the influence of strain rate, boundary conditions at the contact interface, and fiber modulus on the reaction force and load sharing between the solid and fluid phases. The results agree with the existing literature that when fibers are incorporated the fraction of load supported by fluid pressure is greatly amplified and increases with the fiber modulus. This result demonstrates that a stiff fibrous phase is a primary design requirement for poroelastic mimics of articular cartilage. The poroelastic model is fit to experimental stress-relaxation data from bovine and porcine cartilage to determine if sufficient design constraints have been identified. In addition, we fit experimental data from FiHy™, an engineered material which is claimed to be poroelastic. The fiber-reinforced poroelastic model was able to capture the primary physics of these materials and demonstrates that FiHy™ is beginning to approach a cartilage-like poroelastic response. We also develop a fiber-reinforced poroelastic model with a bonded interface (rigid contact) to fit stress relaxation data from an osteochondral explant and FiHy™ + bone substitute. The model fit quality is similar for both the chondral and osteochondral configurations and clearly captures the first order physics. Based on this, we propose that physiological poroelastic mimics of articular cartilage should be developed under a fiber-reinforced poroelastic framework.
Collapse
Affiliation(s)
- Wei S Tan
- Department of Materials, Department of Bioengineering and Institute of Biomedical Engineering, Imperial College London, London, UK
| | - Axel C Moore
- Department of Materials, Department of Bioengineering and Institute of Biomedical Engineering, Imperial College London, London, UK; Department of Biomedical Engineering, University of Delaware, Newark, DE, USA.
| | - Molly M Stevens
- Department of Materials, Department of Bioengineering and Institute of Biomedical Engineering, Imperial College London, London, UK.
| |
Collapse
|
16
|
Investigation of the Time-Dependent Friction Behavior of Polyacrylamide Hydrogels. Colloids Surf A Physicochem Eng Asp 2022. [DOI: 10.1016/j.colsurfa.2022.130753] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
17
|
Demott CJ, Grunlan MA. Emerging polymeric material strategies for cartilage repair. J Mater Chem B 2022; 10:9578-9589. [PMID: 36373438 DOI: 10.1039/d2tb02005j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Cartilage is found throughout the body, serving an array of essential functions. Owing to the limited healing capacity of cartilage, damage or degeneration is often permanent and so requires clinical intervention. Established surgical techniques generally rely on biological grafting. However, recent advances in polymeric materials provide an encouraging alternative to overcome limits of auto- and allografts. For regenerative engineering of cartilage, a polymeric scaffold ideally supports and instructs tissue regeneration while also providing mechanical integrity. Scaffolds direct regeneration via chemical and mechanical cues, as well as delivery and support of exogenous cells and bioactive factors. Advanced polymeric scaffolds aim to direct regeneration locally, replicating the heterogeneities of native tissues. Alternatively, new cartilage-mimetic hydrogels have potential to serve as synthetic cartilage replacements. Prepared as multi-network or composite hydrogels, the most promising candidates have simultaneously realized the hydration, mechanical, and tribological properties of native cartilage. Collectively, the recent rise in polymers for cartilage regeneration and replacement proposes a changing paradigm, with a new generation of materials paving the way for improved clinical outcomes.
Collapse
Affiliation(s)
- Connor J Demott
- Department of Biomedical Engineering, Texas A&M University, College Station, TX 77843-3003, USA
| | - Melissa A Grunlan
- Department of Biomedical Engineering, Texas A&M University, College Station, TX 77843-3003, USA.,Department of Materials Science & Engineering, Texas A&M University, College Station, TX 77843-3003, USA.,Department of Chemistry, Texas A&M University, College Station, TX 77843-3003, USA.
| |
Collapse
|
18
|
Demott CJ, Jones MR, Chesney CD, Yeisley DJ, Culibrk RA, Hahn MS, Grunlan MA. Ultra-High Modulus Hydrogels Mimicking Cartilage of the Human Body. Macromol Biosci 2022; 22:e2200283. [PMID: 36040017 DOI: 10.1002/mabi.202200283] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2022] [Revised: 08/12/2022] [Indexed: 12/25/2022]
Abstract
The human body is comprised of numerous types of cartilage with a range of high moduli, despite their high hydration. Owing to the limitations of cartilage tissue healing and biological grafting procedures, synthetic replacements have emerged but are limited by poorly matched moduli. While conventional hydrogels can achieve similar hydration to cartilage tissues, their moduli are substantially inferior. Herein, triple network (TN) hydrogels are prepared to synergistically leverage intra-network electrostatic repulsive and hydrophobic interactions, as well as inter-network electrostatic attractive interactions. They are comprised of an anionic 1st network, a neutral 2nd network (capable of hydrophobic associations), and a cationic 3rd network. Collectively, these interactions act synergistically as effective, yet dynamic crosslinks. By tuning the concentration of the cationic 3rd network, these TN hydrogels achieve high moduli of ≈1.5 to ≈3.5 MPa without diminishing cartilage-like water contents (≈80%), strengths, or toughness values. This unprecedented combination of properties poises these TN hydrogels as cartilage substitutes in applications spanning articulating joints, intervertebral discs (IVDs), trachea, and temporomandibular joint disc (TMJ).
Collapse
Affiliation(s)
- Connor J Demott
- Department of Biomedical Engineering, Texas A&M University, College Station, TX, 77843-3003, USA
| | - McKenzie R Jones
- Department of Biomedical Engineering, Texas A&M University, College Station, TX, 77843-3003, USA
| | - Caleb D Chesney
- Department of Biomedical Engineering, Texas A&M University, College Station, TX, 77843-3003, USA
| | - Daniel J Yeisley
- Department of Biomedical Engineering, Rensselaer Polytechnic Institute, Troy, NY, 12180-3590, USA
| | - Robert A Culibrk
- Department of Biomedical Engineering, Rensselaer Polytechnic Institute, Troy, NY, 12180-3590, USA
| | - Mariah S Hahn
- Department of Biomedical Engineering, Rensselaer Polytechnic Institute, Troy, NY, 12180-3590, USA
| | - Melissa A Grunlan
- Department of Biomedical Engineering, Department of Materials Science & Engineering, and Department of Chemistry, Texas A&M University, College Station, TX, 77843-3003, USA
| |
Collapse
|
19
|
Coefficient of Friction and Height Loss: Two Criteria Used to Determine the Mechanical Property and Stability of Regenerated Versus Natural Articular Cartilage. Biomedicines 2022; 10:biomedicines10112685. [DOI: 10.3390/biomedicines10112685] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Revised: 09/28/2022] [Accepted: 10/12/2022] [Indexed: 11/17/2022] Open
Abstract
Background: The coefficient of friction (CoF) serves as an indicator for the mechanical properties of natural and regenerated articular cartilage (AC). After tribological exposure, a height loss (HL) of the cartilage pair specimens can be measured. Our aim was to determine the CoF and HL of regenerated AC tissue and compare them with those of natural AC from non-operated joints and AC from joints where the regenerated tissues had been created after different treatments. Methods: In partial-thickness defects of the trochleae of the stifle joints of 60 Göttingen Minipigs, regenerated AC was created. In total, 40 animals received a Col I matrix, 20 laden with autologous chondrocytes, and 20 without. The defects of 20 animals were left empty. The healing periods were 24 and 48 weeks. A total of 10 not-operated animals, delivered the “external” control specimens. Osteochondral pins were harvested from defect and non-defect areas, the latter serving as “internal” controls. Using a pin-on-plate tribometer, we measured the CoF and the HL. Results: The CoF of the regenerated AC ranged from 0.0393 to 0.0688, and the HL, from 0.22 mm to 0.3 mm. The differences between the regenerated AC of the six groups and the “external” controls were significant. The comparison with the “internal” controls revealed four significant differences for the CoF and one for the HL in the operated groups. No differences were seen within the operated groups. Conclusions: The mechanical quality of the regenerated AC tissue showed inferior behavior with regard to the CoF and HL in comparison with natural AC. The comparison of regenerated AC tissue with AC from untreated joints was more promising than with AC from the treated joints.
Collapse
|
20
|
Tribological and Rheological Properties of Poly(vinyl alcohol)-Gellan Gum Composite Hydrogels. Polymers (Basel) 2022; 14:polym14183830. [PMID: 36145975 PMCID: PMC9501534 DOI: 10.3390/polym14183830] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2022] [Revised: 08/23/2022] [Accepted: 09/08/2022] [Indexed: 12/02/2022] Open
Abstract
Polymeric poly(vinyl alcohol) (PVA)-based composite hydrogels are promising materials with various biomedical applications. However, their mechanical and tribological properties should be tailored for such applications. In this study, we report the fabrication of PVA-gellan gum (GG) composite hydrogels and determine the effect of GG content on their rheological and tribological properties. The rheology tests revealed an enhanced storage (elastic) modulus with increased gellan gum (GG) concentration. The results showed up to 89% enhancement of the elastic modulus of PVA by adding 0.5 wt% gellan gum. This elastic modulus (12.1 ± 0.8 kPa) was very close to that of chondrocyte and its surrounding pericellular matrix (12 ± 1 kPa), rendering them ideal for cartilage regeneration applications. Furthermore, the friction coefficient was reduced by up to 80% by adding GG to PVA, demonstrating the increased elastic modulus improved chance of survival under mechanical shear stresses. Examining PVA/GG at different concentrations of 0.1, 0.3, and 0.5 wt% of GG, we demonstrate that at a load of 5 N, the friction coefficient decreases by increasing the GG concentration. However, at higher loads of 10 and 15 N, a 0.3 wt% concentration was sufficient to significantly reduce the friction coefficient. For PVA and PVA/GG composites, we observed a reduction in friction coefficient by increasing the load from 5 to 15 N. We also found the friction to be independent of the sliding velocity. Possible mechanisms of achieving a reduced friction coefficient are discussed.
Collapse
|
21
|
Torzilli PA, Allen SN. Effect of Articular Surface Compression on Cartilage Extracellular Matrix Deformation. J Biomech Eng 2022; 144:091007. [PMID: 35292801 PMCID: PMC10782873 DOI: 10.1115/1.4054108] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2021] [Revised: 02/28/2022] [Indexed: 11/08/2022]
Abstract
Early stage osteoarthritis is characterized by disruption of the superficial zone (SZ) of articular cartilage, including collagen damage and proteoglycan loss, resulting in "mechanical softening" of the extracellular matrix (ECM). The role of the SZ in controlling fluid exudation and imbibition during loading and unloading, respectively, was studied using confined creep compression tests. Bovine osteochondral (OC) plugs were subjected to either a static (88 kPa) or cyclic (0-125 kPa at 1 Hz) compressive stress for five minutes, and the cartilage deformation and recovery were measured during tissue loading and unloading, respectively. During unloading, the articular surface of the cartilage was either loaded with a small 1% tare load (∼1 kPa) applied through a porous load platen (covered), or completely unloaded (uncovered). Then the SZ (∼10%) of the cartilage was removed and the creep tests were repeated. Randomized tests were performed on each OC specimen to assess variability within and between plugs. Static creep strain was always greater than cyclic creep strain except at the beginning of loading (10-20 cycles). Uncovering the articular surface after creep deformation resulted in faster thickness recovery compared to the covered recovery. Removal of the SZ resulted in increased static and cyclic creep strains, as well as an increase in the cyclic peak-to-peak strain envelope. Our results indicate that an intact SZ is essential for normal cartilage mechanical function during joint motion by controlling fluid exudation and imbibition, and concomitantly ECM deformation and recovery, when loaded and unloaded, respectively.
Collapse
Affiliation(s)
- Peter A. Torzilli
- Orthopaedic Soft Tissue Research Program, Hospital for Special Surgery, Research Division 535, East 70th Street, New York, NY 10021
| | - Samie N. Allen
- Orthopaedic Soft Tissue Research Program, Hospital for Special Surgery, New York, NY 10021
| |
Collapse
|
22
|
Liao J, Liu X, Miramini S, Zhang L. Influence of variability and uncertainty in vertical and horizontal surface roughness on articular cartilage lubrication. Comput Biol Med 2022; 148:105904. [DOI: 10.1016/j.compbiomed.2022.105904] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2022] [Revised: 07/11/2022] [Accepted: 07/16/2022] [Indexed: 11/30/2022]
|
23
|
Ren K, Wan H, Kaper HJ, Sharma PK. Dopamine-conjugated hyaluronic acid delivered via intra-articular injection provides articular cartilage lubrication and protection. J Colloid Interface Sci 2022; 619:207-218. [PMID: 35397456 DOI: 10.1016/j.jcis.2022.03.119] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2021] [Revised: 03/24/2022] [Accepted: 03/26/2022] [Indexed: 01/27/2023]
Abstract
Due to its high molecular weight and viscosity, hyaluronic acid (HA) is widely used for viscosupplementation to provide joint pain relief in osteoarthritis. However, this benefit is temporary due to poor adhesion of HA on articular surfaces. In this study, we therefore conjugated HA with dopamine to form HADN, which made the HA adhesive while retaining its viscosity enhancement capacity. We hypothesized that HADN could enhance cartilage lubrication through adsorption onto the exposed collagen type II network and repair the lamina splendens. HADN was synthesized by carbodiimide chemistry between hyaluronic acid and dopamine. Analysis of Magnetic Resonance (NMR) and Ultraviolet spectrophotometry (Uv-vis) showed that HADN was successfully synthesized. Adsorption of HADN on collagen was demonstrated using Quartz crystal microbalance with dissipation (QCM-D). Ex vivo tribological tests including measurement of coefficient of friction (COF), dynamic creep, in stance (40 N) and swing (4 N) phases of gait cycle indicated adequate protection of cartilage by HADN with higher lubrication compared to HA alone. HADN solution at the cartilage-glass sliding interface not only retains the same viscosity as HA and provides fluid film lubrication, but also ensures better boundary lubrication through adsorption. To confirm the cartilage surface protection of HADN, we visualized cartilage wear using optical coherence tomography (OCT) and atomic force microscopy (AFM).
Collapse
Affiliation(s)
- Ke Ren
- University of Groningen and University Medical Center Groningen, Department of Biomedical Engineering, Antonius Deusinglaan 1, 9713 AV Groningen, the Netherlands
| | - Hongping Wan
- University of Groningen and University Medical Center Groningen, Department of Biomedical Engineering, Antonius Deusinglaan 1, 9713 AV Groningen, the Netherlands; College of Veterinary Medicine, Sichuan Agricultural University, Department of Animal and Plant Quarantine, Chengdu 611130, China
| | - Hans J Kaper
- University of Groningen and University Medical Center Groningen, Department of Biomedical Engineering, Antonius Deusinglaan 1, 9713 AV Groningen, the Netherlands
| | - Prashant K Sharma
- University of Groningen and University Medical Center Groningen, Department of Biomedical Engineering, Antonius Deusinglaan 1, 9713 AV Groningen, the Netherlands
| |
Collapse
|
24
|
Zimmerman BK, Maas SA, Weiss JA, Ateshian GA. A Finite Element Algorithm for Large Deformation Biphasic Frictional Contact Between Porous-Permeable Hydrated Soft Tissues. J Biomech Eng 2022; 144:1115780. [PMID: 34382640 PMCID: PMC8547016 DOI: 10.1115/1.4052114] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2021] [Indexed: 02/03/2023]
Abstract
The frictional response of porous and permeable hydrated biological tissues such as articular cartilage is significantly dependent on interstitial fluid pressurization. To model this response, it is common to represent such tissues as biphasic materials, consisting of a binary mixture of a porous solid matrix and an interstitial fluid. However, no computational algorithms currently exist in either commercial or open-source software that can model frictional contact between such materials. Therefore, this study formulates and implements a finite element algorithm for large deformation biphasic frictional contact in the open-source finite element software FEBio. This algorithm relies on a local form of a biphasic friction model that has been previously validated against experiments, and implements the model into our recently-developed surface-to-surface (STS) contact algorithm. Contact constraints, including those specific to pressurized porous media, are enforced with the penalty method regularized with an active-passive augmented Lagrangian scheme. Numerical difficulties specific to challenging finite deformation biphasic contact problems are overcome with novel smoothing schemes for fluid pressures and Lagrange multipliers. Implementation accuracy is verified against semi-analytical solutions for biphasic frictional contact, with extensive validation performed using canonical cartilage friction experiments from prior literature. Essential details of the formulation are provided in this paper, and the source code of this biphasic frictional contact algorithm is made available to the general public.
Collapse
Affiliation(s)
| | - Steve A. Maas
- Department of Biomedical Engineering, University of Utah, Salt Lake City, UT 84112
| | - Jeffrey A. Weiss
- Department of Biomedical Engineering, University of Utah, Salt Lake City, UT 84112
| | - Gerard A. Ateshian
- Department of Mechanical Engineering, Columbia University, New York, NY 10027
| |
Collapse
|
25
|
Voinier S, Moore A, Benson J, Price C, Burris D. The modes and competing rates of cartilage fluid loss and recovery. Acta Biomater 2022; 138:390-397. [PMID: 34800716 DOI: 10.1016/j.actbio.2021.11.014] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2021] [Revised: 11/10/2021] [Accepted: 11/11/2021] [Indexed: 11/27/2022]
Abstract
Cartilage loses, recovers, and maintains its thickness, hydration, and biomechanical functions based on competing rates of fluid loss and recovery under varying joint-use conditions. While the mechanics and implications of load-induced fluid loss have been studied extensively, those of fluid recovery have not. This study isolates, quantifies, and compares rates of cartilage recovery from three known modes: (1) passive swelling - fluid recovery within a static unloaded contact area; (2) free swelling - unrestricted fluid recovery by an exposed surface; (3) tribological rehydration - fluid recovery within a loaded contact area during sliding. Following static loading of adult bovine articular cartilage to between 100 and 500 μm of compression, passive swelling, free swelling, and tribological rehydration exhibited average rates of 0.11 ± 0.04, 0.71 ± 0.15, and 0.63 ± 0.22 μm/s, respectively, over the first 100 s of recovery; for comparison, the mean exudation rate just prior to sliding was 0.06 ± 0.04 μm/s. For this range of compressions, we detected no significant difference between free swelling and tribological rehydration rates. However, free swelling and tribological rehydration rates, those associated with joint articulation, were ∼7-fold faster than passive swelling rates. While previous studies show how joint articulation prevents fluid loss indefinitely, this study shows that joint articulation reverses fluid loss following static loading at >10-fold the preceding exudation rate. These competitive recovery rates suggest that joint space and function may be best maintained throughout an otherwise sedentary day using brief but regular physical activity. STATEMENT OF SIGNIFICANCE: Cartilage loses, recovers, and maintains its thickness, hydration, and biomechanical functions based on competing rates of fluid loss and recovery under varying joint-use conditions. While load-induced fluid loss is extremely well studied, this is the first to define the competing modes of fluid recovery and to quantify their rates. The results show that the fluid recovery modes associated with joint articulation are 10-fold faster than exudation during static loading and passive swelling during static unloading. The results suggest that joint space and function are best maintained throughout an otherwise sedentary day using brief but regular physical activities.
Collapse
|
26
|
Kupratis ME, Gure AE, Benson JM, Ortved KF, Burris DL, Price C. Comparative tribology II-Measurable biphasic tissue properties have predictable impacts on cartilage rehydration and lubricity. Acta Biomater 2022; 138:375-389. [PMID: 34728427 DOI: 10.1016/j.actbio.2021.10.049] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2021] [Revised: 10/22/2021] [Accepted: 10/26/2021] [Indexed: 11/16/2022]
Abstract
Healthy articular cartilage supports load bearing and frictional properties unmatched among biological tissues and man-made bearing materials. Balancing fluid exudation and recovery under loaded and articulated conditions is essential to the tissue's biological and mechanical longevity. Our prior tribological investigations, which leveraged the convergent stationary contact area (cSCA) configuration, revealed that sliding alone can modulate cartilage interstitial fluid pressurization and the recovery and maintenance of lubrication under load through a mechanism termed 'tribological rehydration.' Our recent comparative assessment of tribological rehydration revealed remarkably consistent sliding speed-dependent fluid recovery and lubrication behaviors across femoral condyle cartilage from five mammalian species (equine/horse, bovine/cow, porcine/pig, ovine/sheep, and caprine/goat). In the present study, we identified and characterized key predictive relationships among tissue properties, sliding-induced tribological rehydration, and the modulation/recovery of lubrication within healthy articular cartilage. Using correlational analysis, we linked observed speed-dependent tribological rehydration behaviors to cartilage's geometry and biphasic properties (tensile and compressive moduli, and permeability). Together, these findings demonstrate that easily measurable biphasic tissue characteristics (e.g., bulk tissue material properties, compressive strain magnitude, and strain rates) can be used to predict cartilage's rehydration and lubricating abilities, and ultimately its function in vivo. STATEMENT OF SIGNIFICANCE: In healthy cartilage, articulation recovers fluid lost to static loading thereby sustaining tissue lubricity. Osteoarthritis causes changes to cartilage composition, stiffness, and permeability associated with faster fluid exudation and presumably poorer frictional outcomes. Yet, the relationship between mechanical properties and fluid recovery during articulation/sliding remains unclear. Through innovative, high-speed benchtop sliding and indentation experiments, we found that cartilage's tissue properties regulate its exudation/hydration under slow sliding speeds but have minimal effect at high sliding speeds. In fact, cartilage rehydration appears insensitive to permeability and stiffness under high fluid load support conditions. This new understanding of the balance of cartilage exudation and rehydration during activity, based upon comparative tribology studies, may improve prevention and rehabilitation strategies for joint injuries and osteoarthritis.
Collapse
Affiliation(s)
- Meghan E Kupratis
- Biomedical Engineering, University of Delaware, Newark, Delaware, USA
| | - Ahmed E Gure
- Biomedical Engineering, University of Delaware, Newark, Delaware, USA
| | - Jamie M Benson
- Biomedical Engineering, University of Delaware, Newark, Delaware, USA
| | - Kyla F Ortved
- Clinical Studies, New Bolton Center, University of Pennsylvania School of Veterinary Medicine, Kennett Square, Pennsylvania, USA
| | - David L Burris
- Biomedical Engineering, University of Delaware, Newark, Delaware, USA; Mechanical Engineering, University of Delaware, Newark, Delaware, USA
| | - Christopher Price
- Biomedical Engineering, University of Delaware, Newark, Delaware, USA; Mechanical Engineering, University of Delaware, Newark, Delaware, USA.
| |
Collapse
|
27
|
Culliton KN, Speirs AD. Sliding contact accelerates solute transport into the cartilage surface compared to axial loading. Osteoarthritis Cartilage 2021; 29:1362-1369. [PMID: 34082132 DOI: 10.1016/j.joca.2021.05.060] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/11/2020] [Revised: 05/14/2021] [Accepted: 05/25/2021] [Indexed: 02/02/2023]
Abstract
OBJECTIVE The objectives of this study were: first, to compare solute uptake driven by sliding to cyclic uniaxial compression. And secondly, to evaluate the role of the superficial region on passive diffusion to determine if mechanical action is merely overcoming the low permeability of the superficial region or exceeding equilibrium capacity of the tissue. DESIGN Tests were performed on osteochondral plugs under two types of conditions: cyclic loading (sliding vs axial compression) and unloaded passive diffusion (intact vs superficial zone removed). The articular surfaces were exposed to a fluorescent bath and uptake was quantified from the surface to the subchondral bone using fluorescent microscopy. Primary outcome measures were total mass transfer, mass transfer rate, and surface partition factor. RESULTS Mass transfer was 2.1-fold higher at 0.5 h for sliding compared to uniaxial compression (p = 0.004). This increased to 4.4-fold at 2 h (p = 0.002). Solute transport for both loading conditions at 2 h had reached or exceeded intact passive diffusion at 12 h. Total mass transport and mass transport per hour was higher in samples without the superficial region compared to intact samples at equilibrium. Rate of mass transfer was not declining for samples subject to sliding indicating solute uptake induced by sliding would exceed passive tissue capacity. CONCLUSIONS These results are the first to quantify solute uptake between two components of joint articulation. The study demonstrates that sliding is a larger driver of solute transport compared to cyclic uniaxial compression. This has implications for cell nutrition, tissue engineering and biochemical signaling.
Collapse
Affiliation(s)
- K N Culliton
- Department of Mechanical and Aerospace Engineering, Carleton University, Ottawa, Canada
| | - A D Speirs
- Department of Mechanical and Aerospace Engineering, Carleton University, Ottawa, Canada.
| |
Collapse
|
28
|
Yuh C, O'Bryan CS, Angelini TE, Wimmer MA. Microindentation of cartilage before and after articular loading in a bioreactor: assessment of length-scale dependency using two analysis methods. EXPERIMENTAL MECHANICS 2021; 61:1069-1080. [PMID: 35528779 PMCID: PMC9075500 DOI: 10.1007/s11340-021-00742-5] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/24/2020] [Accepted: 06/04/2021] [Indexed: 06/14/2023]
Abstract
BACKGROUND Microindentation is a technique with high sensitivity and spatial resolution, allowing for measurements at small-scale indentation depths. Various methods of indentation analysis to determine output properties exist. OBJECTIVE Here, the Oliver-Pharr Method and Hertzian Method were compared for stiffness analyses of articular cartilage at varying length-scales before and after bioreactor loading. METHODS Using three different conospherical tips with varying radii (20, 100, 793.75 μm), a bioreactor-indenter workflow was performed on cartilage explants to assess changes in stiffness due to articular loading. For all data, both the Oliver-Pharr Method and Hertzian Method were applied for indentation analysis. RESULTS The reduced moduli calculated by the Hertzian Method were found to be similar to those of the Oliver-Pharr Method when the 20 μm tip size was used. The reduced moduli calculated using the Hertzian Method were found to be consistent across the varying length-scales, whereas for the Oliver-Pharr Method, adhesion/suction led to the largest tip exhibiting an increased average reduced modulus compared to the two smaller tips. Loading induced stiffening of articular cartilage was observed consistently, regardless of tip size or indentation analysis applied. CONCLUSIONS Overall, geometric linearity is preserved across all tip sizes for the Hertzian Method and may be assumed for the two smaller tip sizes using the Oliver-Pharr Method. These findings further validate the previously described stiffening response of the superficial zone of cartilage after articular loading and demonstrate that the finding is length-scale independent.
Collapse
Affiliation(s)
- C Yuh
- Rush University Medical Center, Chicago, IL
| | - C S O'Bryan
- University of Florida, Gainesville, FL
- University of Pennsylvania, Philadelphia, PA
| | | | - M A Wimmer
- Rush University Medical Center, Chicago, IL
| |
Collapse
|
29
|
Yang L, Zhao X, Zhang J, Ma S, Jiang L, Wei Q, Cai M, Zhou F. Synthesis of charged chitosan nanoparticles as functional biolubricant. Colloids Surf B Biointerfaces 2021; 206:111973. [PMID: 34303997 DOI: 10.1016/j.colsurfb.2021.111973] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2020] [Revised: 06/17/2021] [Accepted: 07/12/2021] [Indexed: 12/22/2022]
Abstract
Osteoarthritis has been a major disease in recent years, which is mainly related to the breakdown of the lubrication function of the cartilage sliding interface, along with the inflammation of the joint capsule. In this paper, one kind of novel biomimetic nanoparticles (NPs) lubricant, named CS-PS, is synthesized through chemically grafting hydrophilic sulfonic acid (SO3-) groups onto the surface of biocompatible and biodegradable chitosan (CS) NPs. Compared with control CS NPs, the as-synthesized CS-PS NPs exhibits excellent hydration and stability because of negatively charged surface zeta potential, along with extraordinary lubrication performance in water for realizing a super-low friction coefficient (COF) as ∼0.01 at the sliding interface of PDMS elastomer-Ti6Al4V disk. Correspondingly, the CS-PS NPs can also be used as a drug carrier for aspirin, which presents very good drug loading and release behavior in PBS (pH = 7.4). MCS cells culture experiment proves that this kind of novel lubricant is nontoxic and biocompatible, for which may be expected to use as potential articular injective material for the treatment of osteoarthritis.
Collapse
Affiliation(s)
- Lumin Yang
- State Key Laboratory of Solid Lubrication, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou, 730000, China
| | - Xiaoduo Zhao
- State Key Laboratory of Solid Lubrication, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou, 730000, China
| | - Jing Zhang
- Key Laboratory of Tibetan Medicine Research, Northwest Institute of Plateau Biology, Chinese Academy of Sciences/Qinghai Provincial Key Laboratory of Tibetan Medicine Research, Xining, 810008, China
| | - Shuanhong Ma
- State Key Laboratory of Solid Lubrication, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou, 730000, China.
| | - Lei Jiang
- Key Laboratory of Tibetan Medicine Research, Northwest Institute of Plateau Biology, Chinese Academy of Sciences/Qinghai Provincial Key Laboratory of Tibetan Medicine Research, Xining, 810008, China
| | - Qiangbing Wei
- Key Laboratory of Eco-Environmental-Related Polymer Materials, Ministry of Education, Key Laboratory of Polymer Materials of Gansu Province, College of Chemistry and Chemical Engineering, Northwest Normal University, Lanzhou 730070, China
| | - Meirong Cai
- State Key Laboratory of Solid Lubrication, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou, 730000, China
| | - Feng Zhou
- State Key Laboratory of Solid Lubrication, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou, 730000, China.
| |
Collapse
|
30
|
Squeeze-film properties of synovial fluid and hyaluronate-based viscosupplements. Biomech Model Mechanobiol 2021; 20:1919-1940. [PMID: 34213668 DOI: 10.1007/s10237-021-01485-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2021] [Accepted: 06/23/2021] [Indexed: 10/21/2022]
Abstract
The rheological properties of synovial fluid and hyaluronate (HA) solutions have been studied using a variety of viscometers and rheometers. These devices measure the viscosity of the fluid's resistance to shearing forces, which is useful when studying the lubrication and frictional properties of movable joints. Less commonly used is a squeeze-film fluid test, mechanistically similar to when two joint surfaces squeeze interposed fluid. In our study, we used squeeze-film tests to determine the rheological response of normal bovine synovial fluid and 10 mg/ml HA-based solutions, Hyalgan/Hyalovet, commercially available 500-700 kDa HA viscosupplements, and a 1000 kDa sodium hyaluronate (NaHy) solution. We found similar rheological responses (fluid thickness, viscosity, viscosity-pressure relationship) for all three fluids, though synovial fluid's minimum squeeze-film thickness was slightly thicker. Squeeze-film loading speed did not affect these results. Different HA concentrations and molecular weights also did not have a significant or consistent effect on the squeeze-film responses. An unexpected result for the HA-solutions was a linear increase in minimum fluid-film thickness with increasing initial fluid-film thickness. This result was attributed to faster gelling of thicker HA-solutions, which formed at a lower squeeze-film strain and higher squeeze-film strain rate compared to thinner layers. Also included is a review of the literature on viscosity measurements of synovial fluid and HA solutions.
Collapse
|
31
|
Lin W, Klein J. Recent Progress in Cartilage Lubrication. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2021; 33:e2005513. [PMID: 33759245 DOI: 10.1002/adma.202005513] [Citation(s) in RCA: 154] [Impact Index Per Article: 51.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/13/2020] [Revised: 11/23/2020] [Indexed: 05/18/2023]
Abstract
Healthy articular cartilage, covering the ends of bones in major joints such as hips and knees, presents the most efficiently-lubricated surface known in nature, with friction coefficients as low as 0.001 up to physiologically high pressures. Such low friction is indeed essential for its well-being. It minimizes wear-and-tear and hence the cartilage degradation associated with osteoarthritis, the most common joint disease, and, by reducing shear stress on the mechanotransductive, cartilage-embedded chondrocytes (the only cell type in the cartilage), it regulates their function to maintain homeostasis. Understanding the origins of such low friction of the articular cartilage, therefore, is of major importance in order to alleviate disease symptoms, and slow or even reverse its breakdown. This progress report considers the relation between frictional behavior and the cellular mechanical environment in the cartilage, then reviews the mechanism of lubrication in the joints, in particular focusing on boundary lubrication. Following recent advances based on hydration lubrication, a proposed synergy between different molecular components of the synovial joints, acting together in enabling the low friction, has been proposed. Additionally, recent development of natural and bio-inspired lubricants is reviewed.
Collapse
Affiliation(s)
- Weifeng Lin
- Department of Materials and Interfaces, Weizmann Institute of Science, Rehovot, 76100, Israel
| | - Jacob Klein
- Department of Materials and Interfaces, Weizmann Institute of Science, Rehovot, 76100, Israel
| |
Collapse
|
32
|
Articular Cartilage Friction, Strain, and Viability Under Physiological to Pathological Benchtop Sliding Conditions. Cell Mol Bioeng 2021; 14:349-363. [PMID: 34295444 DOI: 10.1007/s12195-021-00671-2] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2021] [Accepted: 04/06/2021] [Indexed: 10/21/2022] Open
Abstract
In vivo, articular cartilage is exceptionally resistant to wear, damage, and dysfunction. However, replicating cartilage's phenomenal in vivo tribomechanics (i.e., high fluid load support, low frictions and strains) and mechanobiology on the benchtop has been difficult, because classical testing approaches tend to minimize hydrodynamic contributors to tissue function. Our convergent stationary contact area (cSCA) configuration retains the ability for hydrodynamically-mediated processes to contribute to interstitial hydration recovery and tribomechanical function via 'tribological rehydration'. Using the cSCA, we investigated how in situ chondrocyte survival is impacted by the presence of tribological rehydration during the reciprocal sliding of a glass counterface against a compressively loaded equine cSCA cartilage explant. When tribological rehydration was compromised during testing, by slow-speed sliding, 'pathophysiological' tribomechanical environments and high surface cell death were observed. When tribological rehydration was preserved, by high-speed sliding, 'semi-physiological' sliding environments and suppressed cell death were realized. Inclusion of synovial fluid during testing fostered 'truly physiological' sliding outcomes consistent with the in vivo environment but had limited influence on cell death compared to high-speed sliding in PBS. Subsequently, path analysis identified friction as a primary driver of cell death, with strain an indirect driver, supporting the contention that articulation mediated rehydration can benefit both the biomechanical properties and biological homeostasis of cartilage. Supplementary Information The online version contains supplementary material available at 10.1007/s12195-021-00671-2.
Collapse
|
33
|
Putignano C, Burris D, Moore A, Dini D. Cartilage rehydration: The sliding-induced hydrodynamic triggering mechanism. Acta Biomater 2021; 125:90-99. [PMID: 33676047 DOI: 10.1016/j.actbio.2021.02.040] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2020] [Revised: 02/24/2021] [Accepted: 02/25/2021] [Indexed: 10/22/2022]
Abstract
Loading-induced cartilage exudation causes loss of fluid from the tissue, joint space thinning and, in a long term prospective, the insurgence of osteoarthritis. Fortunately, experiments show that joints recover interstitial fluid and thicken during articulation after static loading, thus reversing the exudation process. Here, we provide the first original theoretical explanation to this crucial phenomenon, by implementing a numerical model capable of accounting for the multiscale porous lubrication occurring in joints. We prove that sliding-induced rehydration occurs because of hydrodynamic reasons and is specifically related to a wedge effect at the contact inlet. Furthermore, numerically predicted rehydration rates are consistent with experimentally measured rates and corroborate the robustness of the model here proposed. The paper provides key information, in terms of fundamental lubrication multiscale mechanisms, to understand the rehydration of cartilage and, more generally, of any biological tissue exhibiting a significant porosity: such a theoretical framework is, thus, crucial to inform the design of new effective cartilage-mimicking biomaterials. STATEMENT OF SIGNIFICANCE: Motion and, precisely, joints articulation ensures that cartilage tissues preserve adequate level of hydration and, thus, maintain excellent mechanical properties in terms of high resilience, considerable load-carrying capacity and remarkably low friction. Conversely, when statically loaded, cartilage starts to exudate, causing joint space thinning and, in the long term, possible osteoarthritis; joints motion is, thus, the key to prevent the degradation of the tissues. By developing a numerical multiscale lubrication theory, and by corroborating this approach with experiments, we provide the first original theoretical explanation to this motion-induced cartilage rehydration mechanism. Assessing the rehydration hydrodynamic origin is, in fact, fundamental not only to understand the joints physiology, but also to highlight a key requirement for cartilage-mimicking biomaterials.
Collapse
|
34
|
Cartilage lamina splendens inspired nanostructured coating for biomaterial lubrication. J Colloid Interface Sci 2021; 594:435-445. [PMID: 33774399 DOI: 10.1016/j.jcis.2021.03.052] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2020] [Revised: 03/08/2021] [Accepted: 03/09/2021] [Indexed: 11/21/2022]
Abstract
Biomaterials that are used in biological systems, such as polycarbonate urethane (PCU) knee joint implants and contact lenses, generally lack lubrication. This limits their integration with the body and impedes their function. Here, we propose a nanostructured film based on hydrophilic polysaccharide hyaluronic acid conjugated with dopamine (HADN) and zwitterionic reduced glutathione (Glu), which forms a composite coating (HADN-Glu) to enhance the lubrication between cartilage and PCU. HADN was synthesized by carbodiimide chemistry between hyaluronic acid and dopamine and deposited on PCU surface under mild oxidative conditions. Then, zwitterionic peptide-reduced glutathione was bioconjugated to HADN, forming a lubrication film. Analysis based on X-ray photoelectron spectroscopy (XPS), atomic force microscopy (AFM) and wettability indicated that HADN and Glu had grafted successfully onto the PCU surface. Measurements of the coefficient of friction (COF), friction energy dissipation and cartilage roughness indicated that cartilage was effectively protected by the high lubrication of HADN-Glu. Both at low and high applied loads, this effect was likely due to the enhanced boundary lubrication enabled by HADN-Glu on the PCU surface. Moreover, HADN-Glu is highly biocompatible with chondrocyte cells, suggesting that this film will benefit the design of implants where lubrication is needed.
Collapse
|
35
|
Shekhawat VK, Hamilton JL, Pacione CA, Schmid TM, Wimmer MA. A MOVING CONTACT OF ARTICULATION ENHANCES THE BIOSYNTHETIC AND FUNCTIONAL RESPONSES OF ARTICULAR CARTILAGE. ACTA ACUST UNITED AC 2021; 26. [PMID: 33898693 DOI: 10.1016/j.biotri.2021.100180] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
Biomechanical influences play a fundamental role in the structural, functional, and biosynthetic properties of articular cartilage. During physiologic joint loading, the contact area between two surfaces migrates due to the primary and secondary motions of the joint. It has been demonstrated that a migratory contact area plays a critical role in reducing the coefficient of friction at the cartilage surface. However, a detailed analysis of the influences that a migratory contact area plays on the structural, functional, and biosynthetic properties remain to be explored. In this study, bovine cartilage explants were placed in a biotribometer. Explants were subjected to compression and shear forces of migratory contact area, namely moving contact (MC) articulation, or stationary contact area, namely stationary contact (SC) articulation. Free swelling explants were used as control. In a separate study, bovine cartilage-bone grafts were used for frictional testing. On histologic analysis, the SC group had evidence of surface fibrillations, which was not evident in the MC group. Compared to the SC group, the MC group cartilage explants had increased chondrocyte viability, increased lubricin synthesis, and comparable proteoglycan synthesis and release. MC articulation had reduced coefficient of friction as compared to SC articulation. MC articulation led to reduced surface roughness as compared to SC articulation. In conclusion, a migratory contact area can play an important role in maintaining the structural, function, and biosynthetic properties of articular cartilage. This study provides further evidence of the importance of migratory contact area and in vitro assessment of natural joint movement, which can be further evaluated in the context of cartilage homeostasis and disease.
Collapse
Affiliation(s)
- Vivek K Shekhawat
- Department of Orthopedic Surgery, Rush University Medical Center, Chicago, IL.,Department of Bioengineering, University of Illinois at Chicago, Chicago, IL
| | - John L Hamilton
- Department of Orthopedic Surgery, Rush University Medical Center, Chicago, IL
| | - Carol A Pacione
- Department of Orthopedic Surgery, Rush University Medical Center, Chicago, IL
| | - Thomas M Schmid
- Department of Orthopedic Surgery, Rush University Medical Center, Chicago, IL
| | - Markus A Wimmer
- Department of Orthopedic Surgery, Rush University Medical Center, Chicago, IL.,Department of Bioengineering, University of Illinois at Chicago, Chicago, IL
| |
Collapse
|
36
|
Kupratis ME, Gure A, Ortved KF, Burris DL, Price C. Comparative Tribology: Articulation-induced rehydration of cartilage across species. BIOTRIBOLOGY (OXFORD) 2021; 25:100159. [PMID: 37780679 PMCID: PMC10540460 DOI: 10.1016/j.biotri.2020.100159] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/03/2023]
Abstract
Articular cartilage is a robust tissue that facilitates load distribution and wear-free articulation in diarthrodial joints. These biomechanical capabilities are fundamentally tied to tissue hydration, whereby high interstitial fluid pressures and fluid load support facilitate the maintenance of low tissue strains and frictions. Our recent ex vivo studies of cartilage sliding biomechanics using the convergent stationary contact area (cSCA) configuration, first introduced by Dowson and colleagues, unexpectedly demonstrated that sliding alone can promote recovery of interstitial pressure and lubrication lost to static compression through a mechanism termed 'tribological rehydration.' Although exclusively examined in bovine stifle cartilage to date, we hypothesized that tribological rehydration, i.e., the ability to recover/modulate tissue strains and lubrication through sliding, is a universal behavior of articular cartilage. This study aimed to establish if, and to what extent, sliding-induced tribological rehydration is conserved in articular cartilage across a number of preclinical animal species/models and diarthrodial joints. Using a comparative approach, we found that articular cartilage from equine, bovine, ovine, and caprine stifles, and porcine stifle, hip, and tarsal joints all exhibited remarkably consistent sliding speed-dependent compression/strain recovery and lubrication behaviors under matched contact stresses (0.25 MPa). All cartilage specimens tested supported robust, tribological rehydration during high-speed sliding (>30 mm/s), which as a result of competitive recovery of interstitial lubrication, promoted remarkable decreases in kinetic friction during continuous sliding. The conservation of tribological rehydration across mammalian quadruped articular cartilage suggests that sliding-induced recovery of interstitial hydration represents an important tissue adaptation and largely understudied contributor to the biomechanics of cartilage and joints.
Collapse
Affiliation(s)
| | - Ahmed Gure
- Bioengineering, University of Texas Arlington
| | - Kyla F. Ortved
- Clinical Studies, New Bolton Center, University of Pennsylvania
| | - David L. Burris
- Biomedical Engineering, University of Delaware
- Mechanical Engineering, University of Delaware
| | - Christopher Price
- Biomedical Engineering, University of Delaware
- Mechanical Engineering, University of Delaware
| |
Collapse
|
37
|
Benson JM, Kook C, Moore AC, Voinier S, Price C, Burris DL. Range-of-motion affects cartilage fluid load support: functional implications for prolonged inactivity. Osteoarthritis Cartilage 2021; 29:134-142. [PMID: 33227436 DOI: 10.1016/j.joca.2020.11.005] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/21/2020] [Revised: 10/09/2020] [Accepted: 11/11/2020] [Indexed: 02/02/2023]
Abstract
OBJECTIVE Joint movements sustain cartilage fluid load support (FLS) through a combination of contact migration and periodic bath exposure. Although there have been suggestions that small involuntary movements may disrupt load-induced exudation during prolonged inactivity, theoretical studies have shown otherwise. This work used well-controlled explant measurements to experimentally test an existing hypothesis that the range-of-motion must exceed the contact length to sustain non-zero FLS. METHOD Smooth glass spheres (1.2-3.2 mm radius) were slid at 1.5 mm/s (Péclet number >100) against bovine osteochondral explants under varying normal loads (0.05-0.1 N) and migration lengths (0.05-7 mm) using a custom instrument. In situ deformation measurements were used to quantify FLS. RESULTS Non-zero FLS was maintained at migration lengths as small as 0.05 mm or <10% the typical contact diameter. FLS peaked when track lengths exceeded 10 times the contact diameter. For migration lengths below this threshold, FLS decreased with increased contact stress. CONCLUSIONS Migration lengths far smaller than the contact diameter can sustain non-zero FLS, which, from a clinical perspective, indicates that fidgeting and drifting can mitigate exudation and loss of FLS during prolonged sitting and standing. Nonetheless, FLS decreased monotonically with decreased migration length when migration lengths were less than 10 times the contact diameter. The results demonstrate: (1) potential biomechanical benefits from small movement (e.g., drifting and fidgeting); (2) the quantitative limits of those benefits; (3) and how loads, movement patterns, and mobility likely impact long term FLS.
Collapse
Affiliation(s)
- J M Benson
- Department of Biomedical Engineering, USA
| | - C Kook
- Department of Mechanical Engineering, University of Delaware, Newark, DE, USA
| | - A C Moore
- Department of Biomedical Engineering, USA
| | - S Voinier
- Department of Mechanical Engineering, University of Delaware, Newark, DE, USA
| | - C Price
- Department of Biomedical Engineering, USA
| | - D L Burris
- Department of Biomedical Engineering, USA; Department of Mechanical Engineering, University of Delaware, Newark, DE, USA.
| |
Collapse
|
38
|
Porte E, Cann P, Masen M. A lubrication replenishment theory for hydrogels. SOFT MATTER 2020; 16:10290-10300. [PMID: 33047773 DOI: 10.1039/d0sm01236j] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/25/2023]
Abstract
Hydrogels are suggested as less invasive alternatives to total joint replacements, but their inferior tribological performance compared to articular cartilage remains a barrier to implementation. Existing lubrication theories do not fully characterise the friction response of all hydrogels, and a better insight into the lubrication mechanisms must be established to enable optimised hydrogel performance. We therefore studied the lubricating conditions in a hydrogel contact using fluorescent imaging under simulated physiological sliding conditions. A reciprocating configuration was used to examine the effects of contact dimension and stroke length on the lubricant replenishment in the contact. The results show that the lubrication behaviour is strongly dependent on the contact configurations; When the system operates in a 'migrating' configuration, with the stroke length larger than the contact width, the contact is uniformly lubricated and shows low friction; When the contact is in an 'overlapping' configuration with a stroke length smaller than the contact width, the contact is not fully replenished, resulting in high friction. The mechanism of non-replenishment at small relative stroke length was also observed in a cartilage contact, indicating that the theory could be generalised to soft porous materials. The lubrication replenishment theory is important for the development of joint replacement materials, as most physiological joints operate under conditions of overlapping contact, meaning steady-state lubrication does not necessarily occur.
Collapse
Affiliation(s)
- Elze Porte
- Tribology Group, Department of Mechanical Engineering, Imperial College London, SW7 2AZ, UK
| | | | | |
Collapse
|
39
|
Shi Y, Li J, Xiong D, Li L, Liu Q. Mechanical and tribological behaviors of
PVA
/
PAAm
double network hydrogels under varied strains as cartilage replacement. J Appl Polym Sci 2020. [DOI: 10.1002/app.50226] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Affiliation(s)
- Yan Shi
- College of Materials and Metallurgy Guizhou University Guiyang China
- Tribology Group, Department of Mechanical Engineering Imperial College London London UK
| | - Jianliang Li
- School of Materials Science and Engineering Nanjing University of Science and Technology Nanjing China
| | - Dangsheng Xiong
- School of Materials Science and Engineering Nanjing University of Science and Technology Nanjing China
| | - Long Li
- College of Materials and Metallurgy Guizhou University Guiyang China
| | - Qibin Liu
- College of Materials and Metallurgy Guizhou University Guiyang China
| |
Collapse
|
40
|
|
41
|
Transient stiffening of cartilage during joint articulation: A microindentation study. J Mech Behav Biomed Mater 2020; 113:104113. [PMID: 33032010 DOI: 10.1016/j.jmbbm.2020.104113] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2019] [Revised: 08/23/2020] [Accepted: 09/24/2020] [Indexed: 11/21/2022]
Abstract
As a mechanoactive tissue, articular cartilage undergoes compression and shear on a daily basis. With the advent of high resolution and sensitive mechanical testing methods, such as micro- and nanoindentation, it has become possible to assess changes in small-scale mechanical properties due to compression and shear of the tissue. However, investigations on the changes of these properties before and after joint articulation have been limited. To simulate articular loading of cartilage in the context of human gait, a previously developed bioreactor system was used. Immediately after bioreactor testing, the stiffness was measured using microindentation. Specifically, we investigated whether the mechanical response of the tissue was transient or permanent, dependent on counterface material, and an effect limited to the superficial zone of cartilage. We found that cartilage surface stiffness increases immediately after articular loading and returns to baseline values within 3 hr. Cartilage-on-cartilage stiffening was found to be higher compared to both alumina- and cobalt chromium-on-cartilage stiffening, which were not significantly different from each other. This stiffening response was found to be unique to the superficial zone, as articular loading on cartilage with the superficial zone removed showed no changes in stiffness. The findings of this study suggest that the cartilage superficial zone may adapt its stiffness as a response to articular loading. As the superficial zone is often compromised during the course of osteoarthritic disease, this finding is of clinical relevance, suggesting that the load-bearing function deteriorates over time.
Collapse
|
42
|
Mahmood H, Shepherd DE, Espino DM. A technique for measuring the frictional torque of articular cartilage and replacement biomaterials. Med Eng Phys 2020; 83:1-6. [DOI: 10.1016/j.medengphy.2020.07.005] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2019] [Revised: 04/28/2020] [Accepted: 07/02/2020] [Indexed: 10/23/2022]
|
43
|
Osaheni AO, Mather PT, Blum MM. Mechanics and tribology of a zwitterionic polymer blend: Impact of molecular weight. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2020; 111:110736. [DOI: 10.1016/j.msec.2020.110736] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/11/2019] [Revised: 01/31/2020] [Accepted: 02/09/2020] [Indexed: 12/19/2022]
|
44
|
Cuccia NL, Pothineni S, Wu B, Méndez Harper J, Burton JC. Pore-size dependence and slow relaxation of hydrogel friction on smooth surfaces. Proc Natl Acad Sci U S A 2020; 117:11247-11256. [PMID: 32398363 PMCID: PMC7260953 DOI: 10.1073/pnas.1922364117] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Hydrogels consist of a cross-linked polymer matrix imbibed with a solvent such as water at volume fractions that can exceed 90%. They are important in many scientific and engineering applications due to their tunable physiochemical properties, biocompatibility, and ultralow friction. Their multiphase structure leads to a complex interfacial rheology, yet a detailed, microscopic understanding of hydrogel friction is still emerging. Using a custom-built tribometer, here we identify three distinct regimes of frictional behavior for polyacrylic acid (PAA), polyacrylamide (PAAm), and agarose hydrogel spheres on smooth surfaces. We find that at low velocities, friction is controlled by hydrodynamic flow through the porous hydrogel network and is inversely proportional to the characteristic pore size. At high velocities, a mesoscopic, lubricating liquid film forms between the gel and surface that obeys elastohydrodynamic theory. Between these regimes, the frictional force decreases by an order of magnitude and displays slow relaxation over several minutes. Our results can be interpreted as an interfacial shear thinning of the polymers with an increasing relaxation time due to the confinement of entanglements. This transition can be tuned by varying the solvent salt concentration, solvent viscosity, and sliding geometry at the interface.
Collapse
Affiliation(s)
| | | | - Brady Wu
- Department of Physics, Emory University, Atlanta, GA 30322
| | | | | |
Collapse
|
45
|
Bonnevie ED, Bonassar LJ. A Century of Cartilage Tribology Research Is Informing Lubrication Therapies. J Biomech Eng 2020; 142:031004. [PMID: 31956901 DOI: 10.1115/1.4046045] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2019] [Indexed: 07/25/2024]
Abstract
Articular cartilage is one of the most unique materials found in nature. This tissue's ability to provide low friction and low wear over decades of constant use is not surpassed, as of yet, by any synthetic materials. Lubrication of the body's joints is essential to mammalian locomotion, but breakdown and degeneration of cartilage is the leading cause of severe disability in the industrialized world. In this paper, we review how theories of cartilage lubrication have evolved over the past decades and connect how theories of cartilage lubrication have been translated to lubrication-based therapies. Here, we call upon these historical perspectives and highlight the open questions in cartilage lubrication research. Additionally, these open questions within the field's understanding of natural lubrication mechanisms reveal strategic directions for lubrication therapy.
Collapse
Affiliation(s)
- Edward D Bonnevie
- Sibley School of Mechanical and Aerospace Engineering, Cornell University, 151 Weill Hall, 526 Campus Road, Ithaca, NY 14850
| | - Lawrence J Bonassar
- Sibley School of Mechanical and Aerospace Engineering, Cornell University, 151 Weill Hall, 526 Campus Road, Ithaca, NY 14850; Meinig School of Biomedical Engineering, Cornell University, 151 Weill Hall, 526 Campus Road, Ithaca, NY 14850
| |
Collapse
|
46
|
Graham BT, Moore AC, Burris DL, Price C. Detrimental effects of long sedentary bouts on the biomechanical response of cartilage to sliding. Connect Tissue Res 2020; 61:375-388. [PMID: 31910694 DOI: 10.1080/03008207.2019.1673382] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
Purpose/Aim: Epidemiological evidence suggests, contrary to popular mythos, that increased exercise/joint activity does not place articular cartilage at increased risk of disease, but instead promotes joint health. One explanation for this might be activity-induced cartilage rehydration; where joint articulation drives restoration of tissue hydration, thickness, and dependent tribomechanical outcomes (e.g., load support, stiffness, and lubricity) lost to joint loading. However, there have been no studies investigating how patterning of intermittent articulation influences the hydration and biomechanical functions of cartilage.Materials and Methods: Here we leveraged the convergent stationary contact area (cSCA) testing configuration and its unique ability to drive tribological rehydration, to elucidate how intermittency of activity affects the biomechanical functions of bovine stifle cartilage under well-controlled sliding conditions that have been designed to model a typical "day" of human joint activity.Results: For a fixed volume of "daily" activity (30 min) and sedentary time (60 min), breaking up intermittent activity into longer and less-frequent bouts (corresponding to longer continuous sedentary periods) resulted in the exposure of articular cartilage to markedly greater strains, losses of interstitial pressure, and friction coefficients.Conclusions: These results demonstrated that the regularity of ex vivo activity regimens, specifically the duration of sedentary bouts, had a dominant effect on the biomechanical functions of articular cartilage. In more practical terms, the results suggest that brief but regular movement patterns (e.g., every hour) may be biomechanically preferred to long and infrequent movement patterns (e.g., a long walk after a sedentary day) when controlling for daily activity volume (e.g., 30 min).
Collapse
Affiliation(s)
- Brian T Graham
- Department of Mechanical Engineering, University of Delaware, Newark, DE, USA
| | - Axel C Moore
- Department of Biomedical Engineering, University of Delaware, Newark, DE, USA
| | - David L Burris
- Department of Mechanical Engineering, University of Delaware, Newark, DE, USA.,Department of Biomedical Engineering, University of Delaware, Newark, DE, USA
| | - Christopher Price
- Department of Mechanical Engineering, University of Delaware, Newark, DE, USA.,Department of Biomedical Engineering, University of Delaware, Newark, DE, USA
| |
Collapse
|
47
|
Ghnatios C, Alfaro I, González D, Chinesta F, Cueto E. Data-Driven GENERIC Modeling of Poroviscoelastic Materials
. ENTROPY 2019. [PMCID: PMC7514510 DOI: 10.3390/e21121165] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Biphasic soft materials are challenging to model by nature. Ongoing efforts are targeting their effective modeling and simulation. This work uses experimental atomic force nanoindentation of thick hydrogels to identify the indentation forces are a function of the indentation depth. Later on, the atomic force microscopy results are used in a GENERIC general equation for non-equilibrium reversible–irreversible coupling (GENERIC) formalism to identify the best model conserving basic thermodynamic laws. The data-driven GENERIC analysis identifies the material behavior with high fidelity for both data fitting and prediction.
Collapse
Affiliation(s)
- Chady Ghnatios
- Mechanical Engineering Department, Notre Dame University-Louaizé, Zouk Mosbeh P.O. Box 72, Lebanon
- Correspondence: ; Tel.: +961-3-179672
| | - Iciar Alfaro
- Aragon Institute of Engineering Research, Universidad de Zaragoza, Edificio Betancourt, Maria de Luna, s.n., 50018 Zaragoza, Spain; (I.A.); (E.C.)
| | - David González
- Aragon Institute of Engineering Research, Universidad de Zaragoza, Edificio Betancourt, Maria de Luna, s.n., 50018 Zaragoza, Spain; (I.A.); (E.C.)
| | - Francisco Chinesta
- ESI Chair @ ENSAM Arts et Metiers Institute of Technology, 151 Boulevard de l’Hôpital, F-75013 Paris, France;
| | - Elias Cueto
- Aragon Institute of Engineering Research, Universidad de Zaragoza, Edificio Betancourt, Maria de Luna, s.n., 50018 Zaragoza, Spain; (I.A.); (E.C.)
| |
Collapse
|
48
|
Shoaib T, Espinosa-Marzal RM. Influence of Loading Conditions and Temperature on Static Friction and Contact Aging of Hydrogels with Modulated Microstructures. ACS APPLIED MATERIALS & INTERFACES 2019; 11:42722-42733. [PMID: 31623436 DOI: 10.1021/acsami.9b14283] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Biological tribosystems enable diverse functions of the human body by maintaining extremely low coefficients of friction via hydrogel-like surface layers and a water-based lubricant. Although stiction has been proposed as a precursor to damage, there is still a lack of knowledge about its origin and its relation to the hydrogel's microstructure, which impairs the design of soft matter as replacement biomaterials. In this work, the static friction of poly(acrylamide) hydrogels with modulated composition was investigated by colloidal probe lateral force microscopy as a function of load, temperature, and loading time. Temperature-dependent studies enable to build a phase diagram for hydrogel's static friction, which explains stiction via (polymer) viscoelastic and poroelastic relaxation, and a subtle transition from solid- to liquid-like interfacial behavior. At room temperature, the static friction increases with loading time, a phenomenon called contact aging, which stems from the adhesion of the polymer to the colloid and from the drainage-induced increase in contact area. Contact aging is shown to gradually vanish with increase in temperature, but this behavior strongly depends on the hydrogel's composition. This work scrutinizes the relation between the microstructure of hydrogel-like soft matter and interfacial behavior, with implications for diverse areas of inquiry, not only in biolubrication and biomedical applications but also in soft robotics and microelectromechanical devices, where the processes occurring at the migrating hydrogel interface are of relevance. The results support that modulating both the hydrogel's mesh size and the structure of the near-surface region is a means to control static friction and adhesion. This conceptual framework for static friction will foster further understanding of the wear of hydrogel-like materials.
Collapse
Affiliation(s)
- Tooba Shoaib
- The Materials Science and Engineering , University of Illinois at Urbana-Champaign , 1304 W Green Street , Urbana , Illinois 61801 , United States
| | - Rosa M Espinosa-Marzal
- Civil and Environmental Engineering , University of Illinois at Urbana-Champaign , 205 N. Matthews Avenue , Urbana , Illinois 61801 , United States
- The Materials Science and Engineering , University of Illinois at Urbana-Champaign , 1304 W Green Street , Urbana , Illinois 61801 , United States
| |
Collapse
|
49
|
Farnham MS, Larson RE, Burris DL, Price C. Effects of mechanical injury on the tribological rehydration and lubrication of articular cartilage. J Mech Behav Biomed Mater 2019; 101:103422. [PMID: 31527014 DOI: 10.1016/j.jmbbm.2019.103422] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2018] [Revised: 09/05/2019] [Accepted: 09/06/2019] [Indexed: 12/14/2022]
Abstract
Healthy articular cartilage is crucial to joint function, as it provides the low friction and load bearing surface necessary for joint articulation. Nonetheless, joint injury places patients at increased risk of experiencing both accelerated cartilage degeneration and wear, and joint dysfunction due to post-traumatic osteoarthritis (PTOA). In this study, we used our ex vivo convergent stationary contact area (cSCA) explant testing configuration to demonstrate that high-speed sliding of healthy tissues against glass could drive consistent and reproducible recovery of compression-induced cartilage deformation, through the mechanism of 'tribological rehydration'. In contrast, the presence of physical cartilage damage, mimicking those injuries known to precipitate PTOA, could compromise tribological rehydration and the sliding-driven recovery of cartilage function. Full-thickness cartilage injuries (i.e. fissures and chondral defects) markedly suppressed sliding-driven tribological rehydration. In contrast, impaction to cartilage, which caused surface associated damage, had little effect on the immediate tribomechanical response of explants to sliding (deformation/strain, tribological rehydration, and friction/lubricity). By leveraging the unique ability of the cSCA configuration to support tribological rehydration, this study permitted the first direct ex vivo investigation of injury-dependent strain and friction outcomes in cartilage under testing conditions that replicate and maintain physiologically-relevant levels of fluid load support and frictional outcomes under high sliding speeds (80 mm/s) and moderate compressive stresses (~0.3 MPa). Understanding how injury alters cartilage tribomechanics during sliding sheds light on mechanisms by which cartilage's long-term resilience and low frictional properties are maintained, and can guide studies investigating the functional consequences of physical injury and joint articulation on cartilage health, disease, and rehabilitation.
Collapse
Affiliation(s)
- Margot S Farnham
- Department of Biomedical Engineering, University of Delaware, Newark, DE, USA.
| | - Riley E Larson
- Department of Biomedical Engineering, University of Delaware, Newark, DE, USA.
| | - David L Burris
- Department of Biomedical Engineering, University of Delaware, Newark, DE, USA; Department of Mechanical Engineering, University of Delaware, Newark, DE, USA.
| | - Christopher Price
- Department of Biomedical Engineering, University of Delaware, Newark, DE, USA; Department of Mechanical Engineering, University of Delaware, Newark, DE, USA.
| |
Collapse
|
50
|
Pradal C, Yakubov GE, Williams MAK, McGuckin MA, Stokes JR. Lubrication by biomacromolecules: mechanisms and biomimetic strategies. BIOINSPIRATION & BIOMIMETICS 2019; 14:051001. [PMID: 31212257 DOI: 10.1088/1748-3190/ab2ac6] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Biomacromolecules play a key role in protecting human biointerfaces from friction and wear, and thus enable painless motion. Biomacromolecules give rise to remarkable tribological properties that researchers have been eager to emulate. In this review, we examine how molecules such as mucins, lubricin, hyaluronic acid and other components of biotribological interfaces provide a unique set of rheological and surface properties that leads to low friction and wear. We then highlight how researchers have used some of the features of biotribological contacts to create biomimetic systems. While the brush architecture of the glycosylated molecules present at biotribological interfaces has inspired some promising polymer brush systems, it is the recent advance in the understanding of synergistic interaction between biomacromolecules that is showing the most potential in producing surfaces with a high lubricating ability. Research currently suggests that no single biomacromolecule or artificial polymer successfully reproduces the tribological properties of biological contacts. However, by combining molecules, one can enhance their anchoring and lubricating capacity, thus enabling the design of surfaces for use in biomedical applications requiring low friction and wear.
Collapse
Affiliation(s)
- Clementine Pradal
- School of Chemical Engineering, The University of Queensland, St Lucia, Queensland, Australia
| | | | | | | | | |
Collapse
|