1
|
Chou LS, Zhang J, Jildeh TR. Metabolic Functions of the Infrapatellar Fat Pad: Implications for Knee Health and Pathology. JBJS Rev 2024; 12:01874474-202410000-00001. [PMID: 39361777 DOI: 10.2106/jbjs.rvw.24.00110] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/05/2024]
Abstract
» Despite being historically viewed as a vestigial structure, the infrapatellar fat pad (IPFP) is now recognized as a metabolically active structure, influencing knee health through cytokine production and metabolic pathways.» With distinct anatomical regions, the IPFP contains diverse cell types including adipocytes, fibroblasts, and immune cells, influencing its functional roles, pathology, and contributions to knee disorders.» The IPFP acts as an endocrine organ by releasing adipokines such as adiponectin, leptin, and tumor necrosis factor α, regulating energy balance, immune responses, and tissue remodelling, with implications for knee joint health.» The IPFP's metabolic interactions with neighboring tissues influence joint health, clinical conditions such as knee pain, osteoarthritis, postoperative complications, and ganglion cysts, highlighting its therapeutic potential and clinical relevance.» Understanding the multifaceted metabolic role of the IPFP opens avenues for collaborative approaches that integrate orthopaedics, endocrinology, and immunology to develop innovative therapeutic strategies targeting the intricate connections between adipokines, joint health, and immune responses.
Collapse
Affiliation(s)
- Lee S Chou
- Department of Orthopaedic Surgery, Michigan State University, East Lansing, Michigan
| | | | | |
Collapse
|
2
|
Binvignat M, Sellam J, Berenbaum F, Felson DT. The role of obesity and adipose tissue dysfunction in osteoarthritis pain. Nat Rev Rheumatol 2024; 20:565-584. [PMID: 39112603 DOI: 10.1038/s41584-024-01143-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/05/2024] [Indexed: 08/29/2024]
Abstract
Obesity has a pivotal and multifaceted role in pain associated with osteoarthritis (OA), extending beyond the mechanistic influence of BMI. It exerts its effects both directly and indirectly through various modifiable risk factors associated with OA-related pain. Adipose tissue dysfunction is highly involved in OA-related pain through local and systemic inflammation, immune dysfunction, and the production of pro-inflammatory cytokines and adipokines. Adipose tissue dysfunction is intricately connected with metabolic syndrome, which independently exerts specific effects on OA-related pain, distinct from its association with BMI. The interplay among obesity, adipose tissue dysfunction and metabolic syndrome influences OA-related pain through diverse pain mechanisms, including nociceptive pain, peripheral sensitization and central sensitization. These complex interactions contribute to the heightened pain experience observed in individuals with OA and obesity. In addition, pain management strategies are less efficient in individuals with obesity. Importantly, therapeutic interventions targeting obesity and metabolic syndrome hold promise in managing OA-related pain. A deeper understanding of the intricate relationship between obesity, metabolic syndrome and OA-related pain is crucial and could have important implications for improving pain management and developing innovative therapeutic options in OA.
Collapse
Affiliation(s)
- Marie Binvignat
- Department of Rheumatology, Sorbonne University, AP-HP Saint-Antoine hospital, Paris, France
- Sorbonne University, INSERM UMRS_938, Centre de Recherche Saint-Antoine (CRSA), Paris Center for Microbiome Medicine (PaCeMM) FHU, Paris, France
- Sorbonne University, INSERM UMRS_959, I3 Lab Immunology Immunopathology Immunotherapy, Paris, France
| | - Jérémie Sellam
- Department of Rheumatology, Sorbonne University, AP-HP Saint-Antoine hospital, Paris, France.
- Sorbonne University, INSERM UMRS_938, Centre de Recherche Saint-Antoine (CRSA), Paris Center for Microbiome Medicine (PaCeMM) FHU, Paris, France.
| | - Francis Berenbaum
- Department of Rheumatology, Sorbonne University, AP-HP Saint-Antoine hospital, Paris, France
- Sorbonne University, INSERM UMRS_938, Centre de Recherche Saint-Antoine (CRSA), Paris Center for Microbiome Medicine (PaCeMM) FHU, Paris, France
| | - David T Felson
- Boston University School of Medicine, Department of Medicine, Section of Rheumatology, Boston, MA, USA
| |
Collapse
|
3
|
Wei Y, Zhang T, Liu Y, Liu H, Zhou Y, Su J, Chen L, Bai L, Xia Y. Ultra-processed food consumption, genetic susceptibility, and the risk of hip/knee osteoarthritis. Clin Nutr 2024; 43:1363-1371. [PMID: 38678821 DOI: 10.1016/j.clnu.2024.04.030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2023] [Revised: 10/16/2023] [Accepted: 04/19/2024] [Indexed: 05/01/2024]
Abstract
BACKGROUND The associations between ultra-processed food (UPF) consumption, genetic susceptibility, and the risk of osteoarthritis (OA) remain unknown. This study was to examine the effect of UPF consumption, genetic susceptibility, and their interactions on hip/knee OA. METHODS Cohort analyses included 163,987 participants from the UK Biobank. Participants' UPF consumption was derived from their 24-h dietary recall using a questionnaire. Genetic risk scores (GRSs) of 70 and 83 single nucleotide polymorphisms (SNPs) for hip and knee OA were constructed. FINDINGS After 1,461,447 person-years of follow-up, 11,540 patients developed OA. After adjustments, compared to participants in the low quartile of UPF consumption, those in the high quartile had a 10 % (hazard ratio [HR], 1.10; 95% confidence interval [CI], 1.03-1.18) increased risk of knee OA. No significant association was found between UPF consumption and hip OA. Replacing 20% of UPF diet weight with an equivalent proportion of unprocessed or minimally processed food caused a 6% (HR, 0.94; 95% CI, 0.89-0.98) decreased risk of knee OA, respectively. A significant interaction was found between UPF consumption, genetic predisposition, and the risk of knee OA (P = 0.01). Participants with lower OA-GRS scores experienced higher knee OA risks due to UPF consumption. INTERPRETATION UPF consumption was associated with a higher risk of knee OA but not hip OA, particularly in those with lower genetic susceptibility. These results highlight the importance of reducing UPF consumption to prevent knee OA.
Collapse
Affiliation(s)
- Yingliang Wei
- Department of Orthopaedics, Shengjing Hospital of China Medical University, Shenyang, China
| | - Tingjing Zhang
- School of Public Health, Wannan Medical College, Wuhu, China
| | - Yashu Liu
- Department of Clinical Epidemiology, Shengjing Hospital of China Medical University, Shenyang, China; Liaoning Key Laboratory of Precision Medical Research on Major Chronic Disease, Shenyang, China
| | - Huiyuan Liu
- Department of Clinical Epidemiology, Shengjing Hospital of China Medical University, Shenyang, China; Liaoning Key Laboratory of Precision Medical Research on Major Chronic Disease, Shenyang, China
| | - Yuhan Zhou
- Department of Clinical Epidemiology, Shengjing Hospital of China Medical University, Shenyang, China; Liaoning Key Laboratory of Precision Medical Research on Major Chronic Disease, Shenyang, China
| | - Jianbang Su
- Department of Orthopaedics, Shengjing Hospital of China Medical University, Shenyang, China
| | - Liangkai Chen
- Department of Nutrition and Food Hygiene, Hubei Key Laboratory of Food Nutrition and Safety, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.
| | - Lunhao Bai
- Department of Orthopaedics, Shengjing Hospital of China Medical University, Shenyang, China.
| | - Yang Xia
- Department of Clinical Epidemiology, Shengjing Hospital of China Medical University, Shenyang, China; Liaoning Key Laboratory of Precision Medical Research on Major Chronic Disease, Shenyang, China.
| |
Collapse
|
4
|
Zhang Q, Lu C, Lu F, Liao Y, Cai J, Gao J. Challenges and opportunities in obesity: the role of adipocytes during tissue fibrosis. Front Endocrinol (Lausanne) 2024; 15:1365156. [PMID: 38686209 PMCID: PMC11056552 DOI: 10.3389/fendo.2024.1365156] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/03/2024] [Accepted: 04/01/2024] [Indexed: 05/02/2024] Open
Abstract
Obesity is a chronic disease that affects the energy balance of the whole body. In addition to increasing fat mass, tissue fibrosis occurred in white adipose tissue in obese condition. Fibrosis is the over-activation of fibroblasts leading to excessive accumulation of extracellular matrix, which could be caused by various factors, including the status of adipocytes. The morphology of adipocytes responds rapidly and dynamically to nutrient fluctuations. Adaptive hypertrophy of normal adipocytes protects peripheral organs from damage from lipotoxicity. However, the biological behavior of hypertrophic adipocytes in chronic obesity is abnormally altered. Adipocytes lead to fibrotic remodeling of the extracellular matrix by inducing unresolved chronic inflammation, persistent hypoxia, and increasing myofibroblast numbers. Moreover, adipocyte-induced fibrosis not only restricts the flexible expansion and contraction of adipose tissue but also initiates the development of various diseases through cellular autonomic and paracrine effects. Regarding anti-fibrotic therapy, dysregulated intracellular signaling and epigenetic changes represent potential candidate targets. Thus, modulation of adipocytes may provide potential therapeutic avenues for reversing pathological fibrosis in adipose tissue and achieving the anti-obesity purpose.
Collapse
Affiliation(s)
- Qian Zhang
- Department of Plastic and Cosmetic Surgery, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, China
| | - Chongxuan Lu
- The Second School of Clinical Medicine, Southern Medical University, Guangzhou, Guangdong, China
| | - Feng Lu
- Department of Plastic and Cosmetic Surgery, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, China
| | - Yunjun Liao
- Department of Plastic and Cosmetic Surgery, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, China
| | - Junrong Cai
- Department of Plastic and Cosmetic Surgery, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, China
| | - Jianhua Gao
- Department of Plastic and Cosmetic Surgery, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, China
| |
Collapse
|
5
|
Karjalainen K, Tanska P, Collins KH, Herzog W, Korhonen RK, Moo EK. Independent and combined effects of obesity and traumatic joint injury to the structure and composition of rat knee cartilage. Connect Tissue Res 2024; 65:117-132. [PMID: 38530304 DOI: 10.1080/03008207.2024.2310838] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/09/2023] [Accepted: 01/22/2024] [Indexed: 03/27/2024]
Abstract
Osteoarthritis (OA) is a multifactorial joint disease characterized by articular cartilage degradation. Risk factors for OA include joint trauma, obesity, and inflammation, each of which can affect joint health independently, but their interaction and the associated consequences of such interaction were largely unexplored. Here, we studied compositional and structural alterations in knee joint cartilages of Sprague-Dawley rats exposed to two OA risk factors: joint injury and diet-induced obesity. Joint injury was imposed by surgical transection of anterior cruciate ligaments (ACLx), and obesity was induced by a high fat/high sucrose diet. Depth-dependent proteoglycan (PG) content and collagen structural network of cartilage were measured from histological sections collected previously in Collins et al.. (2015). We found that ACLx primarily affected the superficial cartilages. Compositionally, ACLx led to reduced PG content in lean animals, but increased PG content in obese rats. Structurally, ACLx caused disorganization of collagenous network in both lean and obese animals through increased collagen orientation in the superficial tissues and a change in the degree of fibrous alignment. However, the cartilage degradation attributed to joint injury and obesity was not necessarily additive when the two risk factors were present simultaneously, particularly for PG content and collagen orientation in the superficial tissues. Interestingly, sham surgeries caused a through-thickness disorganization of collagen network in lean and obese animals. We conclude that the interactions of multiple OA risk factors are complex and their combined effects cannot be understood by superposition principle. Further research is required to elucidate the interactive mechanism between OA subtypes.
Collapse
Affiliation(s)
- Kalle Karjalainen
- Department of Technical Physics, University of Eastern Finland, Kuopio, Finland
| | - Petri Tanska
- Department of Technical Physics, University of Eastern Finland, Kuopio, Finland
| | - Kelsey H Collins
- Laboratory of Musculoskeletal Crosstalk, Department of Orthopaedic Surgery, University of California San Francisco, San Francisco, USA
| | - Walter Herzog
- Human Performance Laboratory, Faculty of Kinesiology, University of Calgary, Calgary, Canada
| | - Rami K Korhonen
- Department of Technical Physics, University of Eastern Finland, Kuopio, Finland
| | - Eng Kuan Moo
- Department of Technical Physics, University of Eastern Finland, Kuopio, Finland
- Department of Mechanical and Aerospace Engineering, Carleton University, Ottawa, Canada
| |
Collapse
|
6
|
Sun W, Yue J, Xu T, Cui Y, Huang D, Shi H, Xiong J, Sun W, Yi Q. Xanthohumol alleviates palmitate-induced inflammation and prevents osteoarthritis progression by attenuating mitochondria dysfunction/NLRP3 inflammasome axis. Heliyon 2023; 9:e21282. [PMID: 37964828 PMCID: PMC10641167 DOI: 10.1016/j.heliyon.2023.e21282] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Revised: 10/16/2023] [Accepted: 10/18/2023] [Indexed: 11/16/2023] Open
Abstract
Osteoarthritis (OA) is a prevalent chronic degenerative joint disease worldwide. Obesity has been linked to OA, and increased free fatty acid levels (e.g., palmitate) contribute to inflammatory responses and cartilage degradation. Xanthohumol (Xn), a bioactive prenylated chalcone, was shown to exhibit antioxidative, anti-inflammatory, and anti-obesity capacities in multiple diseases. However, a clear description of the preventive effects of Xn on obesity-associated OA is unavailable. This study aimed to assess the chondroprotective function of Xn on obesity-related OA. The in vitro levels of inflammatory and ECM matrix markers in human chondrocytes were assessed after the chondrocytes were treated with PA and Xn. Additionally, in vivo cartilage degeneration was assessed following oral administration of HFD and Xn. This study found that Xn treatment completely reduces the inflammation and extracellular matrix degradation caused by PA. The proposed mechanism involves AMPK signaling pathway activation by Xn, which increases mitochondrial biogenesis, attenuates mitochondrial dysfunction, and inhibits NLRP3 inflammasome and the NF-κB signaling pathway induced by PA. In summary, this study highlights that Xn could decrease inflammation reactions and the degradation of the cartilage matrix induced by PA by inhibiting the NLRP3 inflammasome and attenuating mitochondria dysfunction in human chondrocytes.
Collapse
Affiliation(s)
- Weichao Sun
- Department of Orthopedics, Shenzhen Second People's Hospital (The First Affiliated Hospital of Shenzhen University), Shenzhen, Guangdong, 518035, China
- The Central Laboratory, Shenzhen Second People's Hospital (The First Affiliated Hospital of Shenzhen University), Shenzhen, Guangdong 518035, China
| | - Jiaji Yue
- Department of Orthopedics, Shenzhen Second People's Hospital (The First Affiliated Hospital of Shenzhen University), Shenzhen, Guangdong, 518035, China
| | - Tianhao Xu
- Department of Anesthesiology, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan Province, 646000, China
- Laboratory of Anesthesia and Organ Protection, Southwest Medical University, Luzhou, Sichuan, 646099, China
| | - Yinxing Cui
- Department of Orthopedics, Shenzhen Second People's Hospital (The First Affiliated Hospital of Shenzhen University), Shenzhen, Guangdong, 518035, China
- Department of Physiology, School of Basic Medical Science, Southwest Medical University, Luzhou, Sichuan, 646000, China
| | - Dixi Huang
- Department of Orthopedics, Shenzhen Second People's Hospital (The First Affiliated Hospital of Shenzhen University), Shenzhen, Guangdong, 518035, China
- Department of Physiology, School of Basic Medical Science, Southwest Medical University, Luzhou, Sichuan, 646000, China
| | - Houyin Shi
- Department of Orthopedics, The Affiliated Traditional Chinese Medicine Hospital of Southwest Medical University, China
| | - Jianyi Xiong
- Department of Orthopedics, Shenzhen Second People's Hospital (The First Affiliated Hospital of Shenzhen University), Shenzhen, Guangdong, 518035, China
| | - Wei Sun
- Department of Orthopedics, Shenzhen Second People's Hospital (The First Affiliated Hospital of Shenzhen University), Shenzhen, Guangdong, 518035, China
| | - Qian Yi
- Laboratory of Anesthesia and Organ Protection, Southwest Medical University, Luzhou, Sichuan, 646099, China
- Department of Physiology, School of Basic Medical Science, Southwest Medical University, Luzhou, Sichuan, 646000, China
| |
Collapse
|
7
|
Shin H, Prasad V, Lupancu T, Malik S, Achuthan A, Biondo M, Kingwell BA, Thiem M, Gottschalk M, Weighardt H, Förster I, de Steiger R, Hamilton JA, Lee KMC. The GM-CSF/CCL17 pathway in obesity-associated osteoarthritic pain and disease in mice. Osteoarthritis Cartilage 2023; 31:1327-1341. [PMID: 37225052 DOI: 10.1016/j.joca.2023.05.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Revised: 05/08/2023] [Accepted: 05/18/2023] [Indexed: 05/26/2023]
Abstract
OBJECTIVES We have previously identified a granulocyte macrophage-colony stimulating factor (GM-CSF)/C-C motif ligand 17 (CCL17) pathway in monocytes/macrophages, in which GM-CSF regulates the formation of CCL17, and it is important for an experimental osteoarthritis (OA) model. We explore here additional OA models, including in the presence of obesity, such as a requirement for this pathway. DESIGN The roles of GM-CSF, CCL17, CCR4, and CCL22 in various experimental OA models, including those incorporating obesity (eight-week high-fat diet), were investigated using gene-deficient male mice. Pain-like behavior and arthritis were assessed by relative static weight distribution and histology, respectively. Cell populations (flow cytometry) and cytokine messenger RNA (mRNA) expression (qPCR) in knee infrapatellar fat pad were analyzed. Human OA sera were collected for circulating CCL17 levels (ELISA) and OA knee synovial tissue for gene expression (qPCR). RESULTS We present evidence that: i) GM-CSF, CCL17, and CCR4, but not CCL22, are required for the development of pain-like behavior and optimal disease in three experimental OA models, as well as for exacerbated OA development due to obesity, ii) obesity alone leads to spontaneous knee joint damage in a GM-CSF- and CCL17-dependent manner, and iii) in knee OA patients, early indications are that BMI correlates with a lower Oxford Knee Score (r = -0.458 and p = 0.0096), with elevated circulating CCL17 levels (r = 0.2108 and p = 0.0153) and with elevated GM-CSF and CCL17 gene expression in OA synovial tissue. CONCLUSIONS The above findings indicate that GM-CSF, CCL17, and CCR4 are involved in obesity-associated OA development, broadening their potential as targets for possible treatments for OA.
Collapse
Affiliation(s)
- Heonsu Shin
- Department of Medicine, Royal Melbourne Hospital, The University of Melbourne, Parkville, Victoria 3050 Australia; Department of Microbiology and Immunology, The Peter Doherty Institute for Infection and Immunity, The University of Melbourne, Melbourne, Victoria 3000, Australia
| | - Varun Prasad
- Department of Medicine, Royal Melbourne Hospital, The University of Melbourne, Parkville, Victoria 3050 Australia; Department of Microbiology and Immunology, The Peter Doherty Institute for Infection and Immunity, The University of Melbourne, Melbourne, Victoria 3000, Australia
| | - Tanya Lupancu
- Department of Medicine, Royal Melbourne Hospital, The University of Melbourne, Parkville, Victoria 3050 Australia; Department of Microbiology and Immunology, The Peter Doherty Institute for Infection and Immunity, The University of Melbourne, Melbourne, Victoria 3000, Australia
| | - Shveta Malik
- Department of Medicine, Royal Melbourne Hospital, The University of Melbourne, Parkville, Victoria 3050 Australia; Department of Microbiology and Immunology, The Peter Doherty Institute for Infection and Immunity, The University of Melbourne, Melbourne, Victoria 3000, Australia
| | - Adrian Achuthan
- Department of Medicine, Royal Melbourne Hospital, The University of Melbourne, Parkville, Victoria 3050 Australia; Department of Microbiology and Immunology, The Peter Doherty Institute for Infection and Immunity, The University of Melbourne, Melbourne, Victoria 3000, Australia
| | - Mark Biondo
- CSL Ltd, Bio21 Institute, Parkville, Victoria 3050 Australia; Department of Microbiology and Immunology, The Peter Doherty Institute for Infection and Immunity, The University of Melbourne, Melbourne, Victoria 3000, Australia
| | - Bronwyn A Kingwell
- CSL Ltd, Bio21 Institute, Parkville, Victoria 3050 Australia; Department of Microbiology and Immunology, The Peter Doherty Institute for Infection and Immunity, The University of Melbourne, Melbourne, Victoria 3000, Australia
| | - Manja Thiem
- Immunology and Environment, Life and Medical Sciences Institute, University of Bonn, Bonn, Germany; Department of Microbiology and Immunology, The Peter Doherty Institute for Infection and Immunity, The University of Melbourne, Melbourne, Victoria 3000, Australia
| | - Marlene Gottschalk
- Immunology and Environment, Life and Medical Sciences Institute, University of Bonn, Bonn, Germany; Department of Microbiology and Immunology, The Peter Doherty Institute for Infection and Immunity, The University of Melbourne, Melbourne, Victoria 3000, Australia
| | - Heike Weighardt
- Immunology and Environment, Life and Medical Sciences Institute, University of Bonn, Bonn, Germany; Department of Microbiology and Immunology, The Peter Doherty Institute for Infection and Immunity, The University of Melbourne, Melbourne, Victoria 3000, Australia
| | - Irmgard Förster
- Immunology and Environment, Life and Medical Sciences Institute, University of Bonn, Bonn, Germany; Department of Microbiology and Immunology, The Peter Doherty Institute for Infection and Immunity, The University of Melbourne, Melbourne, Victoria 3000, Australia
| | - Richard de Steiger
- Department of Surgery, Epworth Healthcare, University of Melbourne, Richmond, Victoria 3121, Australia; Department of Microbiology and Immunology, The Peter Doherty Institute for Infection and Immunity, The University of Melbourne, Melbourne, Victoria 3000, Australia
| | - John A Hamilton
- Department of Medicine, Royal Melbourne Hospital, The University of Melbourne, Parkville, Victoria 3050 Australia; Australian Institute for Musculoskeletal Science (AIMSS), The University of Melbourne and Western Health, St. Albans, Victoria 3021, Australia; Department of Microbiology and Immunology, The Peter Doherty Institute for Infection and Immunity, The University of Melbourne, Melbourne, Victoria 3000, Australia
| | - Kevin M-C Lee
- Department of Medicine, Royal Melbourne Hospital, The University of Melbourne, Parkville, Victoria 3050 Australia; Department of Microbiology and Immunology, The Peter Doherty Institute for Infection and Immunity, The University of Melbourne, Melbourne, Victoria 3000, Australia.
| |
Collapse
|
8
|
Li J, Li X, Zhou S, Wang Y, Ying T, Wang Q, Wu Y, Zhao F. Circular RNA circARPC1B functions as a stabilisation enhancer of Vimentin to prevent high cholesterol-induced articular cartilage degeneration. Clin Transl Med 2023; 13:e1415. [PMID: 37740460 PMCID: PMC10517209 DOI: 10.1002/ctm2.1415] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Revised: 09/01/2023] [Accepted: 09/05/2023] [Indexed: 09/24/2023] Open
Abstract
BACKGROUND Osteoarthritis (OA) is a prevalent and debilitating condition, that is, directly associated with cholesterol metabolism. Nevertheless, the molecular mechanisms of OA remain largely unknown, and the role of cholesterol in this process has not been thoroughly investigated. This study aimed to investigate the role of a novel circular RNA, circARPC1B in the relationship between cholesterol and OA progression. METHODS We measured total cholesterol (TC) levels in the synovial fluid of patients with or without OA to determine the diagnostic role of cholesterol in OA. The effects of cholesterol were explored in human and mouse chondrocytes in vitro. An in vivo OA model was also established in mice fed a high-cholesterol diet (HCD) to explore the role of cholesterol in OA. RNAseq analysis was used to study the influence of cholesterol on circRNAs in chondrocytes. The role of circARPC1B in the OA development was verified through circARPC1B overexpression and knockdown. Additionally, RNA pulldown assays and RNA binding protein immunoprecipitation were used to determine the interaction between circARPC1B and Vimentin. CircARPC1B adeno-associated virus (AAV) was used to determine the role of circARPC1B in cholesterol-induced OA. RESULTS TC levels in synovial fluid of OA patients were found to be elevated and exhibited high sensitivity and specificity as predictors of OA diagnosis. Moreover, elevated cholesterol accelerated OA progression. CircARPC1B was downregulated in chondrocytes treated with cholesterol and played a crucial role in preserving the extracellular matrix (ECM). Mechanistically, circARPC1B is competitively bound to the E3 ligase synoviolin 1 (SYVN1) binding site on Vimentin, inhibiting the proteasomal degradation of Vimentin. Furthermore, circARPC1B AAV infection alleviates Vimentin degradation and OA progression caused by high cholesterol. CONCLUSIONS These findings indicate that the cholesterol-circARPC1B-Vimentin axis plays a crucial role in OA progression, and circARPC1B gene therapy has the opportunity to provide a potential therapeutic approach for OA.
Collapse
Affiliation(s)
- Jiarui Li
- Department of Orthopaedic Surgery, The First Affiliated HospitalZhejiang University School of MedicineHangzhouChina
| | - Xiang Li
- Department of Orthopaedic Surgery, The First Affiliated HospitalZhejiang University School of MedicineHangzhouChina
| | - Shengji Zhou
- Department of Orthopaedic Surgery, The First Affiliated HospitalZhejiang University School of MedicineHangzhouChina
| | - Yuxin Wang
- Department of Orthopaedic Surgery, The First Affiliated HospitalZhejiang University School of MedicineHangzhouChina
| | - Tiantian Ying
- Department of Orthopaedic Surgery, The First Affiliated HospitalZhejiang University School of MedicineHangzhouChina
| | - Quan Wang
- Department of Orthopaedic Surgery, The First Affiliated HospitalZhejiang University School of MedicineHangzhouChina
| | - Yizheng Wu
- Department of Orthopaedic Surgery, Sir Run Run Shaw Hospital, Zhejiang UniversitySchool of MedicineHangzhouChina
| | - Fengchao Zhao
- Department of Orthopaedic Surgery, The First Affiliated HospitalZhejiang University School of MedicineHangzhouChina
| |
Collapse
|
9
|
Warmink K, Rios JL, van Valkengoed DR, Vinod P, Korthagen NM, Weinans H. Effects of different obesogenic diets on joint integrity, inflammation and intermediate monocyte levels in a rat groove model of osteoarthritis. Front Physiol 2023; 14:1211972. [PMID: 37520829 PMCID: PMC10372350 DOI: 10.3389/fphys.2023.1211972] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2023] [Accepted: 07/05/2023] [Indexed: 08/01/2023] Open
Abstract
Introduction: Obesogenic diets aggravate osteoarthritis (OA) by inducing low-grade systemic inflammation, and diet composition may affect OA severity. Here, we investigated the effect of diet on joint damage and inflammation in an OA rat model. Methods: Wistar-Han rats (n = 24) were fed a chow, a high-fat (HF) diet, or a high-fat/high-sucrose (HFS) for 24 weeks. OA was induced unilaterally 12 weeks after the diet onset by groove surgery, and compared to sham surgery or no surgical intervention (contralateral limb). Knee OA severity was determined by OARSI histopathology scoring system. At several timepoints monocyte populations were measured using flow cytometry, and joint macrophage response was determined via CD68 immunohistochemistry staining. Results: Groove surgery combined with HF or HFS diet resulted in higher OARSI scores, and both HF and HFS diet showed increased circulating intermediate monocytes compared to chow fed rats. Additionally, in the HFS group, minimal damage by sham surgery resulted in an increased OARSI score. HFS diet resulted in the largest metabolic dysregulation, synovial inflammation and increased CD68 staining in tibia epiphysis bone marrow. Conclusion: Obesogenic diets resulted in aggravated OA development, even with very minimal joint damage when combined with the sucrose/fat-rich diet. We hypothesize that diet-induced low-grade inflammation primes monocytes and macrophages in the blood, bone marrow, and synovium, resulting in joint damage when triggered by groove OA inducing surgery. When the metabolic dysregulation is larger, as observed here for the HFS diet, the surgical trigger required to induce joint damage may be smaller, or even redundant.
Collapse
Affiliation(s)
- K. Warmink
- Department of Orthopedics, University Medical Center Utrecht (UMCU), Utrecht, Netherlands
| | - J. L. Rios
- Department of Orthopedics, University Medical Center Utrecht (UMCU), Utrecht, Netherlands
| | - D. R. van Valkengoed
- Department of Orthopedics, University Medical Center Utrecht (UMCU), Utrecht, Netherlands
| | - P. Vinod
- Department of Orthopedics, University Medical Center Utrecht (UMCU), Utrecht, Netherlands
| | - N. M. Korthagen
- Department of Orthopedics, University Medical Center Utrecht (UMCU), Utrecht, Netherlands
- Department of Equine Sciences, Utrecht University, Utrecht, Netherlands
| | - H. Weinans
- Department of Orthopedics, University Medical Center Utrecht (UMCU), Utrecht, Netherlands
- Department of Biomechanical Engineering, TU Delft, Delft, Netherlands
| |
Collapse
|
10
|
Gambari L, Cellamare A, Grassi F, Grigolo B, Panciera A, Ruffilli A, Faldini C, Desando G. Targeting the Inflammatory Hallmarks of Obesity-Associated Osteoarthritis: Towards Nutraceutical-Oriented Preventive and Complementary Therapeutic Strategies Based on n-3 Polyunsaturated Fatty Acids. Int J Mol Sci 2023; 24:ijms24119340. [PMID: 37298291 DOI: 10.3390/ijms24119340] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2023] [Revised: 05/15/2023] [Accepted: 05/23/2023] [Indexed: 06/12/2023] Open
Abstract
Obesity (Ob), which has dramatically increased in the last decade, is one of the main risk factors that contribute to the incidence and progression of osteoarthritis (OA). Targeting the characteristics of obesity-associated osteoarthritis (ObOA) may offer new chances for precision medicine strategies in this patient cohort. First, this review outlines how the medical perspective of ObOA has shifted from a focus on biomechanics to the significant contribution of inflammation, mainly mediated by changes in the adipose tissue metabolism through the release of adipokines and the modification of fatty acid (FA) compositions in joint tissues. Preclinical and clinical studies on n-3 polyunsaturated FAs (PUFAs) are critically reviewed to outline the strengths and weaknesses of n-3 PUFAs' role in alleviating inflammatory, catabolic and painful processes. Emphasis is placed on potential preventive and therapeutic nutritional strategies based on n-3 PUFAs, with a focus on ObOA patients who could specifically benefit from reformulating the dietary composition of FAs towards a protective phenotype. Finally, tissue engineering approaches that involve the delivery of n-3 PUFAs directly into the joint are explored to address the perspectives and current limitations, such as safety and stability issues, for implementing preventive and therapeutic strategies based on dietary compounds in ObOA patients.
Collapse
Affiliation(s)
- Laura Gambari
- Laboratorio Ramses, IRCCS Istituto Ortopedico Rizzoli, via di Barbiano 1/10, 40136 Bologna, Italy
| | - Antonella Cellamare
- Laboratorio Ramses, IRCCS Istituto Ortopedico Rizzoli, via di Barbiano 1/10, 40136 Bologna, Italy
| | - Francesco Grassi
- Laboratorio Ramses, IRCCS Istituto Ortopedico Rizzoli, via di Barbiano 1/10, 40136 Bologna, Italy
| | - Brunella Grigolo
- Laboratorio Ramses, IRCCS Istituto Ortopedico Rizzoli, via di Barbiano 1/10, 40136 Bologna, Italy
| | - Alessandro Panciera
- 1st Orthopedic and Traumatology Clinic, IRCCS Istituto Ortopedico Rizzoli, via G.C. Pupilli 1, 40136 Bologna, Italy
| | - Alberto Ruffilli
- 1st Orthopedic and Traumatology Clinic, IRCCS Istituto Ortopedico Rizzoli, via G.C. Pupilli 1, 40136 Bologna, Italy
| | - Cesare Faldini
- 1st Orthopedic and Traumatology Clinic, IRCCS Istituto Ortopedico Rizzoli, via G.C. Pupilli 1, 40136 Bologna, Italy
| | - Giovanna Desando
- Laboratorio Ramses, IRCCS Istituto Ortopedico Rizzoli, via di Barbiano 1/10, 40136 Bologna, Italy
| |
Collapse
|
11
|
Warmink K, Vinod P, Korthagen NM, Weinans H, Rios JL. Macrophage-Driven Inflammation in Metabolic Osteoarthritis: Implications for Biomarker and Therapy Development. Int J Mol Sci 2023; 24:ijms24076112. [PMID: 37047082 PMCID: PMC10094694 DOI: 10.3390/ijms24076112] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2023] [Revised: 03/19/2023] [Accepted: 03/21/2023] [Indexed: 04/14/2023] Open
Abstract
Osteoarthritis (OA) is a common and debilitating joint disorder that leads to progressive joint breakdown and loss of articular cartilage. Accompanied by a state of low-grade inflammation, its etiology extends beyond that of a wear-and-tear disease, and the immune system might have a role in its initiation and progression. Obesity, which is directly associated with an increased incidence of OA, alters adipokine release, increases pro-inflammatory macrophage activity, and affects joint immune regulation. Studying inflammatory macrophage expression and strategies to inhibit inflammatory macrophage phenotype polarization might provide insights into disease pathogenesis and therapeutic applications. In pre-clinical studies, the detection of OA in its initial stages was shown to be possible using imaging techniques such as SPECT-CT, and advances are made to detect OA through blood-based biomarker analysis. In this review, obesity-induced osteoarthritis and its mechanisms in inducing joint degeneration are summarized, along with an analysis of the current developments in patient imaging and biomarker use for diagnostic and therapeutic strategies.
Collapse
Affiliation(s)
- Kelly Warmink
- Department of Orthopedics, University Medical Center Utrecht, 3584 CX Utrecht, The Netherlands
| | - Prateeksha Vinod
- Department of Orthopedics, University Medical Center Utrecht, 3584 CX Utrecht, The Netherlands
| | - Nicoline M Korthagen
- Department of Orthopedics, University Medical Center Utrecht, 3584 CX Utrecht, The Netherlands
- Department of Equine Sciences, Faculty of Veterinary Medicine, Utrecht University, 3584 CL Utrecht, The Netherlands
| | - Harrie Weinans
- Department of Orthopedics, University Medical Center Utrecht, 3584 CX Utrecht, The Netherlands
- Department of Biomechanical Engineering, TU Delft, 2628 CD Delft, The Netherlands
| | - Jaqueline L Rios
- Department of Orthopedics, University Medical Center Utrecht, 3584 CX Utrecht, The Netherlands
| |
Collapse
|
12
|
van Gemert Y, Blom AB, Di Ceglie I, Walgreen B, Helsen M, Sloetjes A, Vogl T, Roth J, Kruisbergen NNL, Pieterman EJ, Princen HMG, van der Kraan PM, van Lent PLEM, van den Bosch MHJ. Intensive cholesterol-lowering treatment reduces synovial inflammation during early collagenase-induced osteoarthritis, but not pathology at end-stage disease in female dyslipidemic E3L.CETP mice. Osteoarthritis Cartilage 2023:S1063-4584(23)00703-3. [PMID: 36898656 DOI: 10.1016/j.joca.2023.01.577] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/28/2022] [Revised: 01/12/2023] [Accepted: 01/31/2023] [Indexed: 03/12/2023]
Abstract
INTRODUCTION The association between metabolic syndrome (MetS) and osteoarthritis (OA) development has become increasingly recognized. In this context, the exact role of cholesterol and cholesterol-lowering therapies in OA development has remained elusive. Recently, we did not observe beneficial effects of intensive cholesterol-lowering treatments on spontaneous OA development in E3L.CETP mice. We postulated that in the presence of local inflammation caused by a joint lesion, cholesterol-lowering therapies may ameliorate OA pathology. MATERIALS AND METHODS Female ApoE3∗Leiden.CETP mice were fed a cholesterol-supplemented Western type diet. After 3 weeks, half of the mice received intensive cholesterol-lowering treatment consisting of atorvastatin and the anti-PCSK9 antibody alirocumab. Three weeks after the start of the treatment, OA was induced via intra-articular injections of collagenase. Serum levels of cholesterol and triglycerides were monitored throughout the study. Knee joints were analyzed for synovial inflammation, cartilage degeneration, subchondral bone sclerosis and ectopic bone formation using histology. Inflammatory cytokines were determined in serum and synovial washouts. RESULTS Cholesterol-lowering treatment strongly reduced serum cholesterol and triglyceride levels. Mice receiving cholesterol-lowering treatment showed a significant reduction in synovial inflammation (P = 0.008, WTD: 95% CI: 1.4- 2.3; WTD + AA: 95% CI: 0.8- 1.5) and synovial lining thickness (WTD: 95% CI: 3.0-4.6, WTD + AA: 95% CI: 2.1-3.2) during early-stage collagenase-induced OA. Serum levels of S100A8/A9, MCP-1 and KC were significantly reduced after cholesterol-lowering treatment (P = 0.0005, 95% CI: -46.0 to -12.0; P = 2.8 × 10-10, 95% CI: -398.3 to -152.1; P = 2.1 × 10-9, -66.8 to -30.4, respectively). However, this reduction did not reduce OA pathology, determined by ectopic bone formation, subchondral bone sclerosis and cartilage damage at end-stage disease. CONCLUSION This study shows that intensive cholesterol-lowering treatment reduces joint inflammation after induction of collagenase-induced OA, but this did not reduce end stage pathology in female mice.
Collapse
Affiliation(s)
- Y van Gemert
- Experimental Rheumatology, Radboud University Medical Center, Nijmegen, the Netherlands
| | - A B Blom
- Experimental Rheumatology, Radboud University Medical Center, Nijmegen, the Netherlands
| | - I Di Ceglie
- Experimental Rheumatology, Radboud University Medical Center, Nijmegen, the Netherlands
| | - B Walgreen
- Experimental Rheumatology, Radboud University Medical Center, Nijmegen, the Netherlands
| | - M Helsen
- Experimental Rheumatology, Radboud University Medical Center, Nijmegen, the Netherlands
| | - A Sloetjes
- Experimental Rheumatology, Radboud University Medical Center, Nijmegen, the Netherlands
| | - T Vogl
- Institute of Immunology, University of Münster, Germany
| | - J Roth
- Institute of Immunology, University of Münster, Germany
| | - N N L Kruisbergen
- Experimental Rheumatology, Radboud University Medical Center, Nijmegen, the Netherlands
| | - E J Pieterman
- Metabolic Health Research, TNO, Leiden, the Netherlands
| | - H M G Princen
- Metabolic Health Research, TNO, Leiden, the Netherlands
| | - P M van der Kraan
- Experimental Rheumatology, Radboud University Medical Center, Nijmegen, the Netherlands
| | - P L E M van Lent
- Experimental Rheumatology, Radboud University Medical Center, Nijmegen, the Netherlands
| | - M H J van den Bosch
- Experimental Rheumatology, Radboud University Medical Center, Nijmegen, the Netherlands.
| |
Collapse
|
13
|
van Gemert Y, Kruisbergen NNL, Blom AB, van den Bosch MHJ, van der Kraan PM, Pieterman EJ, Princen HMG, van Lent PLEM. IL-1β inhibition combined with cholesterol-lowering therapies decreases synovial lining thickness and spontaneous cartilage degeneration in a humanized dyslipidemia mouse model. Osteoarthritis Cartilage 2023; 31:340-350. [PMID: 36442605 DOI: 10.1016/j.joca.2022.09.014] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/13/2022] [Revised: 09/02/2022] [Accepted: 09/26/2022] [Indexed: 11/26/2022]
Abstract
INTRODUCTION Both systemic inflammation and dyslipidemia contribute to osteoarthritis (OA) development and have been suggested as a possible link between metabolic disease and OA development. Recently, the CANTOS trial showed a reduction in knee and hip replacements after inhibition of IL-1β in patients with a history of cardiovascular disease and high inflammatory risk. In this light, we investigated whether inhibition of IL-1β combined with cholesterol-lowering therapies can reduce OA development in dyslipidemic APOE∗3Leiden mice under pro-inflammatory dietary conditions. MATERIALS AND METHODS Female ApoE3∗Leiden mice were fed a cholesterol-supplemented Western-Type diet (WTD) for 38 weeks. After 14 weeks, cholesterol-lowering and anti-inflammatory treatments were started. Treatments included atorvastatin alone or with an anti-IL1β antibody, and atorvastatin combined with proprotein convertase subtilisin-kexin type 9 (PCSK9) inhibitor alirocumab without or with the anti-IL1β antibody. Knee joints were analyzed for cartilage degradation, synovial inflammation and ectopic bone formation using histology at end point. RESULTS Cholesterol-lowering treatment successfully decreased systemic inflammation in dyslipidemic mice, which was not further affected by inhibition of IL-1β. Synovial thickening and cartilage degeneration were significantly decreased in mice that received cholesterol-lowering treatment combined with inhibition of IL-1β (P < 0.01, P < 0.05, respectively) compared to mice fed a WTD alone. Ectopic bone formation was comparable between all groups. CONCLUSION These results indicate that inhibition of IL-1β combined with cholesterol-lowering therapy diminishes synovial thickening and cartilage degeneration in mice and may imply that this combination therapy could be beneficial in patients with metabolic inflammation.
Collapse
Affiliation(s)
- Y van Gemert
- Experimental Rheumatology, Radboud University Medical Center, Nijmegen, the Netherlands
| | - N N L Kruisbergen
- Experimental Rheumatology, Radboud University Medical Center, Nijmegen, the Netherlands
| | - A B Blom
- Experimental Rheumatology, Radboud University Medical Center, Nijmegen, the Netherlands
| | - M H J van den Bosch
- Experimental Rheumatology, Radboud University Medical Center, Nijmegen, the Netherlands
| | - P M van der Kraan
- Experimental Rheumatology, Radboud University Medical Center, Nijmegen, the Netherlands
| | - E J Pieterman
- Metabolic Health Research, TNO, Leiden, the Netherlands
| | - H M G Princen
- Metabolic Health Research, TNO, Leiden, the Netherlands
| | - P L E M van Lent
- Experimental Rheumatology, Radboud University Medical Center, Nijmegen, the Netherlands.
| |
Collapse
|
14
|
Min Y, Ahn D, Truong TMT, Kim M, Heo Y, Jee Y, Son YO, Kang I. Excessive sucrose exacerbates high fat diet-induced hepatic inflammation and fibrosis promoting osteoarthritis in mice model. J Nutr Biochem 2023; 112:109223. [PMID: 36410638 DOI: 10.1016/j.jnutbio.2022.109223] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2022] [Revised: 10/11/2022] [Accepted: 10/12/2022] [Indexed: 11/21/2022]
Abstract
Osteoarthritis (OA) is marked by chronic low-grade systemic inflammation and cartilage destruction. High fat diet causes obesity and increases the risk of knee OA-development. However, the impact of high dietary sugar intake on OA pathogenesis has not been elucidated yet. Therefore, we investigated the effects of a high-fat and high-sucrose (HF+HS) diet in experimental OA mouse models. Eight-week-old male C57BL/6J mice were fed a standard chow (n=6), high-fat (HF) (n=5), or HF+HS (n=7) diets for 12 weeks; thereafter, the mice underwent surgical destabilization of the medial meniscus (DMM) and received the same experimental diets for an additional 8 weeks. The pathogenesis of knee OA, obesogenic parameters, and inflammation levels in the liver and adipose tissue were investigated. HF+HS diet induced severe cartilage erosion with osteophyte development and subchondral bone plate thickening, indicating that HF+HS diet exacerbated OA. Despite marginal differences in metabolic parameters, hepatic free cholesterol accumulation increased in mice with DMM-induced OA fed on HF+HS diet than in those fed HF diet. Notably, the levels of inflammatory cytokines and fibrosis markers were greater in the livers of mice with DMM-induced OA, fed on HF+HS diet than those in the control group. However, adipose tissue remodeling was not affected by the HF+HS diet. These findings indicate that excess sucrose intake along with a HF diet triggers hepatic inflammation and fibrosis, thereby, contributing to OA pathogenesis.
Collapse
Affiliation(s)
- Yunhui Min
- Interdisciplinary Graduate Program in Advanced Convergence Technology and Science, Jeju National University, Jeju Special Self-Governing Province, Republic of Korea
| | - Dohyun Ahn
- Department of Food Science and Nutrition, Jeju National University Jeju Special Self-Governing Province, Republic of Korea
| | - Thi My Tien Truong
- Interdisciplinary Graduate Program in Advanced Convergence Technology and Science, Jeju National University, Jeju Special Self-Governing Province, Republic of Korea
| | - Mangeun Kim
- Department of Animal Biotechnology, Faculty of Biotechnology, College of Applied Life Sciences, Jeju National University, Jeju Special Self-Governing Province, Republic of Korea
| | - Yunji Heo
- Department of Animal Biotechnology, Faculty of Biotechnology, College of Applied Life Sciences, Jeju National University, Jeju Special Self-Governing Province, Republic of Korea
| | - Youngheun Jee
- Interdisciplinary Graduate Program in Advanced Convergence Technology and Science, Jeju National University, Jeju Special Self-Governing Province, Republic of Korea; Department of Veterinary Medicine and Veterinary Medical Research Institute, Jeju National University, Jeju Special Self-Governing Province, Republic of Korea
| | - Young-Ok Son
- Interdisciplinary Graduate Program in Advanced Convergence Technology and Science, Jeju National University, Jeju Special Self-Governing Province, Republic of Korea; Department of Animal Biotechnology, Faculty of Biotechnology, College of Applied Life Sciences, Jeju National University, Jeju Special Self-Governing Province, Republic of Korea; Bio-Health Materials Core-Facility Center, Jeju National University, Jeju Special Self-Governing Province, Republic of Korea; Practical Translational Research Center, Jeju National University, Jeju Special Self-Governing Province,, Republic of Korea.
| | - Inhae Kang
- Interdisciplinary Graduate Program in Advanced Convergence Technology and Science, Jeju National University, Jeju Special Self-Governing Province, Republic of Korea; Department of Food Science and Nutrition, Jeju National University Jeju Special Self-Governing Province, Republic of Korea.
| |
Collapse
|
15
|
Cholesterol-induced LRP3 downregulation promotes cartilage degeneration in osteoarthritis by targeting Syndecan-4. Nat Commun 2022; 13:7139. [PMID: 36414669 PMCID: PMC9681739 DOI: 10.1038/s41467-022-34830-4] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2021] [Accepted: 11/08/2022] [Indexed: 11/23/2022] Open
Abstract
Emerging evidence suggests that osteoarthritis is associated with high cholesterol levels in some osteoarthritis patients. However, the specific mechanism under this metabolic osteoarthritis phenotype remains unclear. We find that cholesterol metabolism-related gene, LRP3 (low-density lipoprotein receptor-related protein 3) is significantly reduced in high-cholesterol diet mouse's cartilage. By using Lrp3-/- mice in vivo and LRP3 lentiviral-transduced chondrocytes in vitro, we identify that LRP3 positively regulate chondrocyte extracellular matrix metabolism, and its deficiency aggravate the degeneration of cartilage. Regardless of diet, LRP3 overexpression in cartilage attenuate anterior cruciate ligament transection induced osteoarthritis progression in rats and Lrp3 knockout-induced osteoarthritis progression in mice. LRP3 knockdown upregulate syndecan-4 by activating the Ras signaling pathway. We identify syndecan-4 as a downstream molecular target of LRP3 in osteoarthritis pathogenesis. These findings suggest that cholesterol-LRP3- syndecan-4 axis plays critical roles in osteoarthritis development, and LRP3 gene therapy may provide a therapeutic regimen for osteoarthritis treatment.
Collapse
|
16
|
Zhou S, Maleitzke T, Geissler S, Hildebrandt A, Fleckenstein FN, Niemann M, Fischer H, Perka C, Duda GN, Winkler T. Source and hub of inflammation: The infrapatellar fat pad and its interactions with articular tissues during knee osteoarthritis. J Orthop Res 2022; 40:1492-1504. [PMID: 35451170 DOI: 10.1002/jor.25347] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/04/2021] [Revised: 02/28/2022] [Accepted: 04/20/2022] [Indexed: 02/04/2023]
Abstract
Knee osteoarthritis, the most prevalent degenerative joint disorder worldwide, is driven by chronic low-grade inflammation and subsequent cartilage degradation. Clinical data on the role of the Hoffa or infrapatellar fat pad in knee osteoarthritis are, however, scarce. The infrapatellar fat pad is a richly innervated intracapsular, extrasynovial adipose tissue, and an abundant source of adipokines and proinflammatory and catabolic cytokines, which may contribute to chronic synovial inflammation, cartilage destruction, and subchondral bone remodeling during knee osteoarthritis. How the infrapatellar fat pad interacts with neighboring tissues is poorly understood. Here, we review available literature with regard to the infrapatellar fat pad's interactions with cartilage, synovium, bone, menisci, ligaments, and nervous tissue during the development and progression of knee osteoarthritis. Signaling cascades are described with a focus on immune cell populations, pro- and anti-inflammatory cytokines, adipokines, mesenchymal stromal cells, and molecules derived from conditioned media from the infrapatellar fat pad. Understanding the complex interplay between the infrapatellar fat pad and its neighboring articular tissues may help to better understand and treat the multifactorial pathogenesis of osteoarthritis.
Collapse
Affiliation(s)
- Sijia Zhou
- Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Center for Musculoskeletal Surgery, Berlin, Germany.,Berlin Institute of Health at Charité - Universitätsmedizin Berlin, Julius Wolff Institute, Berlin, Germany
| | - Tazio Maleitzke
- Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Center for Musculoskeletal Surgery, Berlin, Germany.,Berlin Institute of Health at Charité - Universitätsmedizin Berlin, Julius Wolff Institute, Berlin, Germany.,Berlin Institute of Health at Charité - Universitätsmedizin Berlin, BIH Biomedical Innovation Academy, BIH Charité Clinician Scientist Program, Berlin, Germany
| | - Sven Geissler
- Berlin Institute of Health at Charité - Universitätsmedizin Berlin, Julius Wolff Institute, Berlin, Germany.,Berlin Institute of Health at Charité - Universitätsmedizin Berlin, Berlin Institute of Health Center for Regenerative Therapies, Berlin, Germany
| | - Alexander Hildebrandt
- Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Center for Musculoskeletal Surgery, Berlin, Germany.,Berlin Institute of Health at Charité - Universitätsmedizin Berlin, Julius Wolff Institute, Berlin, Germany
| | - Florian Nima Fleckenstein
- Berlin Institute of Health at Charité - Universitätsmedizin Berlin, BIH Biomedical Innovation Academy, BIH Charité Clinician Scientist Program, Berlin, Germany.,Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Department of Diagnostic and Interventional Radiology, Berlin, Germany
| | - Marcel Niemann
- Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Center for Musculoskeletal Surgery, Berlin, Germany.,Berlin Institute of Health at Charité - Universitätsmedizin Berlin, Julius Wolff Institute, Berlin, Germany.,Berlin Institute of Health at Charité - Universitätsmedizin Berlin, Berlin Institute of Health Center for Regenerative Therapies, Berlin, Germany
| | - Heilwig Fischer
- Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Center for Musculoskeletal Surgery, Berlin, Germany.,Berlin Institute of Health at Charité - Universitätsmedizin Berlin, Julius Wolff Institute, Berlin, Germany
| | - Carsten Perka
- Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Center for Musculoskeletal Surgery, Berlin, Germany
| | - Georg N Duda
- Berlin Institute of Health at Charité - Universitätsmedizin Berlin, Julius Wolff Institute, Berlin, Germany.,Berlin Institute of Health at Charité - Universitätsmedizin Berlin, Berlin Institute of Health Center for Regenerative Therapies, Berlin, Germany
| | - Tobias Winkler
- Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Center for Musculoskeletal Surgery, Berlin, Germany.,Berlin Institute of Health at Charité - Universitätsmedizin Berlin, Julius Wolff Institute, Berlin, Germany.,Berlin Institute of Health at Charité - Universitätsmedizin Berlin, Berlin Institute of Health Center for Regenerative Therapies, Berlin, Germany
| |
Collapse
|
17
|
Sanchez-Lopez E, Coras R, Torres A, Lane NE, Guma M. Synovial inflammation in osteoarthritis progression. Nat Rev Rheumatol 2022; 18:258-275. [PMID: 35165404 PMCID: PMC9050956 DOI: 10.1038/s41584-022-00749-9] [Citation(s) in RCA: 291] [Impact Index Per Article: 145.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/14/2022] [Indexed: 02/06/2023]
Abstract
Osteoarthritis (OA) is a progressive degenerative disease resulting in joint deterioration. Synovial inflammation is present in the OA joint and has been associated with radiographic and pain progression. Several OA risk factors, including ageing, obesity, trauma and mechanical loading, play a role in OA pathogenesis, likely by modifying synovial biology. In addition, other factors, such as mitochondrial dysfunction, damage-associated molecular patterns, cytokines, metabolites and crystals in the synovium, activate synovial cells and mediate synovial inflammation. An understanding of the activated pathways that are involved in OA-related synovial inflammation could form the basis for the stratification of patients and the development of novel therapeutics. This Review focuses on the biology of the OA synovium, how the cells residing in or recruited to the synovium interact with each other, how they become activated, how they contribute to OA progression and their interplay with other joint structures.
Collapse
Affiliation(s)
- Elsa Sanchez-Lopez
- Department of Orthopaedic Surgery, University of California San Diego, San Diego, CA, USA
| | - Roxana Coras
- Division of Rheumatology, Allergy and Immunology, Department of Medicine, University of California San Diego, San Diego, CA, USA
- Department of Medicine, Autonomous University of Barcelona, Barcelona, Spain
| | - Alyssa Torres
- Division of Rheumatology, Allergy and Immunology, Department of Medicine, University of California San Diego, San Diego, CA, USA
| | - Nancy E Lane
- Division of Rheumatology, Department of Medicine, University of California Davis, Davis, CA, USA
| | - Monica Guma
- Division of Rheumatology, Allergy and Immunology, Department of Medicine, University of California San Diego, San Diego, CA, USA.
- Department of Medicine, Autonomous University of Barcelona, Barcelona, Spain.
- San Diego VA Healthcare Service, San Diego, CA, USA.
| |
Collapse
|
18
|
Batushansky A, Zhu S, Komaravolu RK, South S, Mehta-D'souza P, Griffin TM. Fundamentals of OA. An initiative of Osteoarthritis and Cartilage. Obesity and metabolic factors in OA. Osteoarthritis Cartilage 2022; 30:501-515. [PMID: 34537381 PMCID: PMC8926936 DOI: 10.1016/j.joca.2021.06.013] [Citation(s) in RCA: 46] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/08/2021] [Revised: 05/14/2021] [Accepted: 06/07/2021] [Indexed: 02/02/2023]
Abstract
OBJECTIVE Obesity was once considered a risk factor for knee osteoarthritis (OA) primarily for biomechanical reasons. Here we provide an additional perspective by discussing how obesity also increases OA risk by altering metabolism and inflammation. DESIGN This narrative review is presented in four sections: 1) metabolic syndrome and OA, 2) metabolic biomarkers of OA, 3) evidence for dysregulated chondrocyte metabolism in OA, and 4) metabolic inflammation: joint tissue mediators and mechanisms. RESULTS Metabolic syndrome and its components are strongly associated with OA. However, evidence for a causal relationship is context dependent, varying by joint, gender, diagnostic criteria, and demographics, with additional environmental and genetic interactions yet to be fully defined. Importantly, some aspects of the etiology of obesity-induced OA appear to be distinct between men and women, especially regarding the role of adipose tissue. Metabolomic analyses of serum and synovial fluid have identified potential diagnostic biomarkers of knee OA and prognostic biomarkers of disease progression. Connecting these biomarkers to cellular pathophysiology will require future in vivo studies of joint tissue metabolism. Such studies will help reveal when a metabolic process or a metabolite itself is a causal factor in disease progression. Current evidence points towards impaired chondrocyte metabolic homeostasis and metabolic-immune dysregulation as likely factors connecting obesity to the increased risk of OA. CONCLUSIONS A deeper understanding of how obesity alters metabolic and inflammatory pathways in synovial joint tissues is expected to provide new therapeutic targets and an improved definition of "metabolic" and "obesity" OA phenotypes.
Collapse
Affiliation(s)
- A Batushansky
- Aging and Metabolism Research Program, Oklahoma Medical Research Foundation, Oklahoma City, OK, 73104, USA.
| | - S Zhu
- Department of Biomedical Sciences, Ohio Musculoskeletal and Neurological Institute (OMNI), Ohio University, Athens, OH, 45701, USA.
| | - R K Komaravolu
- Aging and Metabolism Research Program, Oklahoma Medical Research Foundation, Oklahoma City, OK, 73104, USA.
| | - S South
- Aging and Metabolism Research Program, Oklahoma Medical Research Foundation, Oklahoma City, OK, 73104, USA.
| | - P Mehta-D'souza
- Aging and Metabolism Research Program, Oklahoma Medical Research Foundation, Oklahoma City, OK, 73104, USA.
| | - T M Griffin
- Aging and Metabolism Research Program, Oklahoma Medical Research Foundation, Oklahoma City, OK, 73104, USA; Reynolds Oklahoma Center on Aging, Department of Biochemistry and Molecular Biology, Department of Physiology, University of Oklahoma Health Sciences Center, Oklahoma City, OK, 73104, USA; Veterans Affairs Medical Center, Oklahoma City, OK, 73104, USA.
| |
Collapse
|
19
|
Sprague Dawley Rats Show More Severe Bone Loss, Osteophytosis and Inflammation Compared toWistar Han Rats in a High-Fat, High-Sucrose Diet Model of Joint Damage. Int J Mol Sci 2022; 23:ijms23073725. [PMID: 35409085 PMCID: PMC8999132 DOI: 10.3390/ijms23073725] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2022] [Revised: 03/21/2022] [Accepted: 03/22/2022] [Indexed: 02/01/2023] Open
Abstract
In animal models, joint degeneration observed in response to obesogenic diet varies in nature and severity. In this study, we compare joint damage in Sprague Dawley and Wistar-Han rats in response to a high-fat, high-sucrose (HFS) diet groove model of osteoarthritis (OA). Wistar Han (n = 5) and Sprague Dawley (n = 5) rats were fed an HFS diet for 24 weeks. OA was induced 12 weeks after the diet onset by groove surgery in the right knee joint. The left knee served as a control. Outcomes were OARSI histopathology scoring, bone changes by µCT imaging, local (synovial and fat pad) and systemic (blood cytokine) inflammation markers. In both rat strains, the HFS diet resulted in a similar change in metabolic parameters, but only Sprague Dawley rats showed a large, osteoporosis-like decrease in trabecular bone volume. Osteophyte count and local joint inflammation were higher in Sprague Dawley rats. In contrast, cartilage degeneration and systemic inflammatory marker levels were similar between the rat strains. The difference in bone volume loss, osteophytosis and local inflammation suggest that both rat strains show a different joint damage phenotype and could, therefore, potentially represent different OA phenotypes observed in humans.
Collapse
|
20
|
Zaki S, Blaker CL, Little CB. OA foundations - experimental models of osteoarthritis. Osteoarthritis Cartilage 2022; 30:357-380. [PMID: 34536528 DOI: 10.1016/j.joca.2021.03.024] [Citation(s) in RCA: 25] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/08/2020] [Revised: 03/01/2021] [Accepted: 03/10/2021] [Indexed: 02/02/2023]
Abstract
Osteoarthritis (OA) is increasingly recognised as a disease of diverse phenotypes with variable clinical presentation, progression, and response to therapeutic intervention. This same diversity is readily apparent in the many animal models of OA. However, model selection, study design, and interpretation of resultant findings, are not routinely done in the context of the target human (or veterinary) patient OA sub-population or phenotype. This review discusses the selection and use of animal models of OA in discovery and therapeutic-development research. Beyond evaluation of the different animal models on offer, this review suggests focussing the approach to OA-animal model selection on study objective(s), alignment of available models with OA-patient sub-types, and the resources available to achieve valid and translatable results. How this approach impacts model selection is discussed and an experimental design checklist for selecting the optimal model(s) is proposed. This approach should act as a guide to new researchers and a reminder to those already in the field, as to issues that need to be considered before embarking on in vivo pre-clinical research. The ultimate purpose of using an OA animal model is to provide the best possible evidence if, how, when and where a molecule, pathway, cell or process is important in clinical disease. By definition this requires both model and study outcomes to align with and be predictive of outcomes in patients. Keeping this at the forefront of research using pre-clinical OA models, will go a long way to improving the quality of evidence and its translational value.
Collapse
Affiliation(s)
- S Zaki
- Sydney School of Veterinary Science, Faculty of Science, University of Sydney, Australia; Raymond Purves Bone and Joint Research Laboratory, Australia.
| | - C L Blaker
- Raymond Purves Bone and Joint Research Laboratory, Australia; Murray Maxwell Biomechanics Laboratory, The Kolling Institute, University of Sydney Faculty of Medicine and Health, At Royal North Shore Hospital, Australia.
| | - C B Little
- Raymond Purves Bone and Joint Research Laboratory, Australia.
| |
Collapse
|
21
|
Haubruck P, Pinto MM, Moradi B, Little CB, Gentek R. Monocytes, Macrophages, and Their Potential Niches in Synovial Joints - Therapeutic Targets in Post-Traumatic Osteoarthritis? Front Immunol 2021; 12:763702. [PMID: 34804052 PMCID: PMC8600114 DOI: 10.3389/fimmu.2021.763702] [Citation(s) in RCA: 37] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2021] [Accepted: 10/18/2021] [Indexed: 12/21/2022] Open
Abstract
Synovial joints are complex structures that enable normal locomotion. Following injury, they undergo a series of changes, including a prevalent inflammatory response. This increases the risk for development of osteoarthritis (OA), the most common joint disorder. In healthy joints, macrophages are the predominant immune cells. They regulate bone turnover, constantly scavenge debris from the joint cavity and, together with synovial fibroblasts, form a protective barrier. Macrophages thus work in concert with the non-hematopoietic stroma. In turn, the stroma provides a scaffold as well as molecular signals for macrophage survival and functional imprinting: “a macrophage niche”. These intricate cellular interactions are susceptible to perturbations like those induced by joint injury. With this review, we explore how the concepts of local tissue niches apply to synovial joints. We introduce the joint micro-anatomy and cellular players, and discuss their potential interactions in healthy joints, with an emphasis on molecular cues underlying their crosstalk and relevance to joint functionality. We then consider how these interactions are perturbed by joint injury and how they may contribute to OA pathogenesis. We conclude by discussing how understanding these changes might help identify novel therapeutic avenues with the potential of restoring joint function and reducing post-traumatic OA risk.
Collapse
Affiliation(s)
- Patrick Haubruck
- Centre for Orthopaedics, Trauma Surgery and Spinal Cord Injury, Trauma and Reconstructive Surgery, Heidelberg University Hospital, Heidelberg, Germany.,Raymond Purves Bone and Joint Research Laboratory, Kolling Institute, Institute of Bone and Joint Research, Faculty of Medicine and Health University of Sydney, Royal North Shore Hospital, St. Leonards, NSW, Australia
| | - Marlene Magalhaes Pinto
- Centre for Inflammation Research & Centre for Reproductive Health, University of Edinburgh, Edinburgh, United Kingdom
| | - Babak Moradi
- Clinic of Orthopaedics and Trauma Surgery, University Clinic of Schleswig-Holstein, Kiel, Germany
| | - Christopher B Little
- Raymond Purves Bone and Joint Research Laboratory, Kolling Institute, Institute of Bone and Joint Research, Faculty of Medicine and Health University of Sydney, Royal North Shore Hospital, St. Leonards, NSW, Australia
| | - Rebecca Gentek
- Centre for Inflammation Research & Centre for Reproductive Health, University of Edinburgh, Edinburgh, United Kingdom
| |
Collapse
|
22
|
Papathanasiou I, Anastasopoulou L, Tsezou A. Cholesterol metabolism related genes in osteoarthritis. Bone 2021; 152:116076. [PMID: 34174501 DOI: 10.1016/j.bone.2021.116076] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/27/2021] [Revised: 06/16/2021] [Accepted: 06/17/2021] [Indexed: 02/07/2023]
Abstract
Cholesterol homeostasis plays a significant role in skeletal development and the dysregulation of cholesterol-related mechanism has been shown to be involved in the development of cartilage diseases including osteoarthritis (OA). Epidemiological studies have shown an association between elevated serum cholesterol levels and OA. Furthermore, abnormal lipid accumulation in chondrocytes as a result of abnormal regulation of cholesterol homeostasis has been demonstrated to be involved in the development of OA. Although, many in vivo and in vitro studies support the connection between cholesterol and cartilage degradation, the mechanisms underlying the complex interactions between lipid metabolism, especially HDL cholesterol metabolism, and OA remain unclear. The current review aims to address this problem and focuses on key molecular players of the HDL metabolism pathway and their role in ΟΑ pathogenesis. Understanding the complexity of biological processes implicated in OA pathogenesis, such as cholesterol metabolism, may lead to new targets for drug therapy of OA patients.
Collapse
Affiliation(s)
- Ioanna Papathanasiou
- Department of Biology, University of Thessaly, Faculty of Medicine, Larisa, Greece; Department of Cytogenetics and Molecular Genetics, University of Thessaly, Faculty of Medicine, Larisa, Greece
| | - Lydia Anastasopoulou
- Department of Trauma, Hand and Reconstructive Surgery, University Hospital Giessen, 35392 Giessen, Germany
| | - Aspasia Tsezou
- Department of Biology, University of Thessaly, Faculty of Medicine, Larisa, Greece; Department of Cytogenetics and Molecular Genetics, University of Thessaly, Faculty of Medicine, Larisa, Greece.
| |
Collapse
|
23
|
Nox2 Deficiency Reduces Cartilage Damage and Ectopic Bone Formation in an Experimental Model for Osteoarthritis. Antioxidants (Basel) 2021; 10:antiox10111660. [PMID: 34829531 PMCID: PMC8614813 DOI: 10.3390/antiox10111660] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2021] [Revised: 10/18/2021] [Accepted: 10/20/2021] [Indexed: 11/17/2022] Open
Abstract
Osteoarthritis (OA) is a destructive disease of the joint with age and obesity being its most important risk factors. Around 50% of OA patients suffer from inflammation of the synovial joint capsule, which is characterized by increased abundance and activation of synovial macrophages that produce reactive oxygen species (ROS) via NADPH-oxidase 2 (NOX2). Both ROS and high blood levels of low-density lipoprotein (LDL) are implicated in OA pathophysiology, which may interact to form oxidized LDL (oxLDL) and thereby promote disease. Therefore, targeting NOX2 could be a viable treatment strategy for OA. Collagenase-induced OA (CiOA) was used to compare pathology between wild-type (WT) and Nox2 knockout (Nox2−/−) C57Bl/6 mice. Mice were either fed a standard diet or Western diet (WD) to study a possible interaction between NOX2-derived ROS and LDL. Synovial inflammation, cartilage damage and ectopic bone size were assessed on histology. Extracellular ROS production by macrophages was measured in vitro using the Amplex Red assay. Nox2−/− macrophages produced basal levels of ROS but were unable to increase ROS production in response to the alarmin S100A8 or the phorbol ester PMA. Interestingly, Nox2 deficiency reduced cartilage damage, synovial lining thickness and ectopic bone size, whereas these disease parameters were not affected by WD-feeding. These results suggest that NOX2-derived ROS are involved in CiOA development.
Collapse
|
24
|
van Gemert Y, Kozijn AE, Pouwer MG, Kruisbergen NNL, van den Bosch MHJ, Blom AB, Pieterman EJ, Weinans H, Stoop R, Princen HMG, van Lent PLEM. Novel high-intensive cholesterol-lowering therapies do not ameliorate knee OA development in humanized dyslipidemic mice. Osteoarthritis Cartilage 2021; 29:1314-1323. [PMID: 33722697 DOI: 10.1016/j.joca.2021.02.570] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/29/2020] [Revised: 02/03/2021] [Accepted: 02/25/2021] [Indexed: 02/02/2023]
Abstract
OBJECTIVE High systemic cholesterol levels have been associated with osteoarthritis (OA) development. Therefore, cholesterol lowering by statins has been suggested as a potential treatment for OA. We investigated whether therapeutic high-intensive cholesterol-lowering attenuated OA development in dyslipidemic APOE∗3Leiden.CETP mice. METHODS Female mice (n = 13-16 per group) were fed a Western-type diet (WTD) for 38 weeks. After 13 weeks, mice were divided into a baseline group and five groups receiving WTD alone or with treatment: atorvastatin alone, combined with PCSK9 inhibitor alirocumab and/or ANGPTL3 inhibitor evinacumab. Knee joints were analysed for cartilage degradation, synovial inflammation and ectopic bone formation using histology. Aggrecanase activity in articular cartilage and synovial S100A8 expression were determined as markers of cartilage degradation/regeneration and inflammation. RESULTS Cartilage degradation and active repair were significantly increased in WTD-fed mice, but cholesterol-lowering strategies did not ameliorate cartilage destruction. This was supported by comparable aggrecanase activity and S100A8 expression in all treatment groups. Ectopic bone formation was comparable between groups and independent of cholesterol levels. CONCLUSIONS Intensive therapeutic cholesterol lowering per se did not attenuate progression of cartilage degradation in dyslipidemic APOE∗3Leiden.CETP mice, with minor joint inflammation. We propose that inflammation is a key feature in the disease and therapeutic cholesterol-lowering strategies may still be promising for OA patients presenting both dyslipidemia and inflammation.
Collapse
Affiliation(s)
- Y van Gemert
- Experimental Rheumatology, Radboud University Medical Center, Nijmegen, the Netherlands
| | - A E Kozijn
- Metabolic Health Research, TNO, Leiden, the Netherlands; Department of Orthopaedics, UMC Utrecht, Utrecht University, Utrecht, the Netherlands; Department of Rheumatology & Clinical Immunology, UMC Utrecht, Utrecht University, Utrecht, the Netherlands
| | - M G Pouwer
- Metabolic Health Research, TNO, Leiden, the Netherlands; Department of Cardiology, Leiden UMC, Leiden, the Netherlands
| | - N N L Kruisbergen
- Experimental Rheumatology, Radboud University Medical Center, Nijmegen, the Netherlands
| | - M H J van den Bosch
- Experimental Rheumatology, Radboud University Medical Center, Nijmegen, the Netherlands
| | - A B Blom
- Experimental Rheumatology, Radboud University Medical Center, Nijmegen, the Netherlands
| | - E J Pieterman
- Metabolic Health Research, TNO, Leiden, the Netherlands
| | - H Weinans
- Department of Orthopaedics, UMC Utrecht, Utrecht University, Utrecht, the Netherlands; Department of Biomechanical Engineering, Delft University of Technology, Delft, the Netherlands
| | - R Stoop
- Metabolic Health Research, TNO, Leiden, the Netherlands
| | - H M G Princen
- Metabolic Health Research, TNO, Leiden, the Netherlands
| | - P L E M van Lent
- Experimental Rheumatology, Radboud University Medical Center, Nijmegen, the Netherlands.
| |
Collapse
|
25
|
Systemic versus local adipokine expression differs in a combined obesity and osteoarthritis mouse model. Sci Rep 2021; 11:17001. [PMID: 34417537 PMCID: PMC8379250 DOI: 10.1038/s41598-021-96545-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2020] [Accepted: 08/02/2021] [Indexed: 12/23/2022] Open
Abstract
Osteoarthritis (OA) is a degenerative joint disease characterized by cartilage loss and reduced joint function. OA risk factors are age and obesity. Many adipokines are altered by obesity but also OA although systemic adipokine regulation in OA is not always clear. Therefore, metabolic effects of diet-induced obesity on OA development as well as the influence of obesity and OA progression on systemic vs. local adipokine expression in joints were compared. C57Bl/6-mice fed with HFD (high fat diet) or normal diet prior to destabilization of the medial meniscus (DMM) were sacrificed 4/6/8 weeks after surgery. Sera were evaluated for adiponectin, leptin, visfatin, cytokines. Liver grading and staging for non-alcoholic steatohepatitis (NASH) was performed and crown-like structures (CLS) in adipose tissue measured. OA progression was scored histologically. Adipokine-expressing cells and types were evaluated by immunohistochemistry. Time-dependent changes in DMM-progression were reflected by increased systemic adiponectin levels in DMM especially combined with HFD. While HFD increased serum leptin, DMM reduced systemic leptin significantly. OA scores correlated with bodyweight, leptin and hepatic scoring. Locally, increased numbers of adiponectin- and leptin-producing fibroblasts were observed in damaged menisci but visfatin was not changed. Local adipokine expression was independent from systemic levels, suggesting different mechanisms of action.
Collapse
|
26
|
Zeng N, Liao T, Chen XY, Yan ZP, Li JT, Ni GX. Treadmill running induces remodeling of the infrapatellar fat pad in an intensity-dependent manner. J Orthop Surg Res 2021; 16:354. [PMID: 34074301 PMCID: PMC8167986 DOI: 10.1186/s13018-021-02501-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/24/2021] [Accepted: 05/23/2021] [Indexed: 02/08/2023] Open
Abstract
OBJECTIVE To investigate the response of the infrapatellar fat pad (IFP) to running at different intensities and further explore the underlying mechanisms of these responses under different running-induced loadings. METHODS Animals were randomly assigned into the sedentary (SED), low-intensity running (LIR), medium-intensity running (MIR), and high-intensity running (HIR) groups. The rats in the LIR, MIR, and HIR groups were subjected to an 8-week treadmill running protocol. In each group, the IFP was examined at the baseline and at the 8th week to perform histomorphology, immunohistochemistry, and mRNA expression analyses. RESULTS Compared with LIR and MIR, HIR for 8 weeks led to a substantial increase in the surface cellularity (1.67 ± 1.15), fibrosis (1.29 ± 0.36), and vascularity (33.31 ± 8.43) of the IFP but did not increase IFP inflammation or M1 macrophage polarization. Low-to-medium-intensity running resulted in unchanged or decreased fibrosis, vascularity, and surface cellularity in the IFP compared to those of the SED group. Furthermore, serum leptin and visfatin levels were significantly lower in the LIR and MIR groups than in the SED group or the HIR group (P < 0.05). CONCLUSION The effect of running on IFP remodeling was intensity dependent. In contrast to LIR and MIR, HIR increased the fibrosis and vascularity of the IFP. HIR-induced IFP fibrosis was probably due to mechanical stress, rather than pathological proinflammatory M1/M2 polarization.
Collapse
Affiliation(s)
- Ni Zeng
- Department of Rehabilitation Medicine, The First Affiliated Hospital of Fujian Medical University, Fuzhou, People's Republic of China
| | - Tao Liao
- Department of Rehabilitation Medicine, The First Affiliated Hospital of Fujian Medical University, Fuzhou, People's Republic of China
| | - Xin-Yuan Chen
- Department of Rehabilitation Medicine, The First Affiliated Hospital of Fujian Medical University, Fuzhou, People's Republic of China
| | - Zhi-Peng Yan
- Department of Rehabilitation Medicine, The First Affiliated Hospital of Fujian Medical University, Fuzhou, People's Republic of China
| | - Jie-Ting Li
- Department of Rehabilitation Medicine, The First Affiliated Hospital of Fujian Medical University, Fuzhou, People's Republic of China
| | - Guo-Xin Ni
- Department of Rehabilitation Medicine, The First Affiliated Hospital of Fujian Medical University, Fuzhou, People's Republic of China.
- School of Sport Medicine and Rehabilitation, Beijing Sport University, Beijing, People's Republic of China.
| |
Collapse
|
27
|
Tan Q, Jiang A, Li W, Song C, Leng H. Metabolic syndrome and osteoarthritis: Possible mechanisms and management strategies. MEDICINE IN NOVEL TECHNOLOGY AND DEVICES 2021. [DOI: 10.1016/j.medntd.2020.100052] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022] Open
|
28
|
Abstract
PURPOSE OF REVIEW Epidemiologic studies reveal that the link between obesity and osteoarthritis cannot be uniquely explained by overweight-associated mechanical overload. For this reason, much attention focuses on the endocrine activity of adipose tissues. In addition to the systemic role of visceral and subcutaneous adipose tissues, many arguments highlight the involvement of local adipose tissues in osteoarthritis. RECENT FINDINGS Alteration in MRI signal intensity of the infrapatellar fat pad may predict both accelerated knee osteoarthritis and joint replacement. In this context, recent studies show that mesenchymal stromal cells could play a pivotal role in the pathological remodelling of intra-articular adipose tissues (IAATs) in osteoarthritis. In parallel, recent findings underline bone marrow adipose tissue as a major player in the control of the bone microenvironment, suggesting its possible role in osteoarthritis. SUMMARY The recent description of adipose tissues of various phenotypes within an osteoarthritic joint allows us to evoke their direct involvement in the initiation and progression of the osteoarthritic process. We can expect in the near future the discovery of novel molecules targeting these tissues.
Collapse
Affiliation(s)
| | - Florent Eymard
- Department of Rheumatology, AP-HP Henri Mondor Hospital
- Gly-CRRET Research Unit 4397, Université Paris-Est Créteil
| | - Francis Berenbaum
- Sorbonne Université, INSERM, Centre de Recherche Saint-Antoine (CRSA)
- Sorbonne Université, INSERM CRSA, AP-HP Hopital Saint Antoine, Paris, France
| | - Xavier Houard
- Sorbonne Université, INSERM, Centre de Recherche Saint-Antoine (CRSA)
| |
Collapse
|
29
|
Sun AR, Udduttula A, Li J, Liu Y, Ren PG, Zhang P. Cartilage tissue engineering for obesity-induced osteoarthritis: Physiology, challenges, and future prospects. J Orthop Translat 2021; 26:3-15. [PMID: 33437618 PMCID: PMC7773977 DOI: 10.1016/j.jot.2020.07.004] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/10/2020] [Revised: 06/25/2020] [Accepted: 07/21/2020] [Indexed: 12/14/2022] Open
Abstract
Osteoarthritis (OA) is a multifactorial joint disease with pathological changes that affect whole joint tissue. Obesity is acknowledged as the most influential risk factor for both the initiation and progression of OA in weight-bearing and non-weight-bearing joints. Obesity-induced OA is a newly defined phenotypic group in which chronic low-grade inflammation has a central role. Aside from persistent chronic inflammation, abnormal mechanical loading due to increased body weight on weight-bearing joints is accountable for the initiation and progression of obesity-induced OA. The current therapeutic approaches for OA are still evolving. Tissue-engineering-based strategy for cartilage regeneration is one of the most promising treatment breakthroughs in recent years. However, patients with obesity-induced OA are often excluded from cartilage repair attempts due to the abnormal mechanical demands, altered biomechanical and biochemical activities of cells, persistent chronic inflammation, and other obesity-associated factors. With the alarming increase in the number of obese populations globally, the need for an innovative therapeutic approach that could effectively repair and restore the damaged synovial joints is of significant importance for this sub-population of patients. In this review, we discuss the involvement of the systemic and localized inflammatory response in obesity-induced OA and the impact of altered mechanical loading on pathological changes in the synovial joint. Moreover, we examine the current strategies in cartilage tissue engineering and address the critical challenges of cell-based therapies for OA. Besides, we provide examples of innovative ways and potential strategies to overcome the obstacles in the treatment of obesity-induced OA. THE TRANSLATIONAL POTENTIAL OF THIS ARTICLE Altogether, this review delivers insight into obesity-induced OA and offers future research direction on the creation of tissue engineering-based therapies for obesity-induced OA.
Collapse
Affiliation(s)
- Antonia RuJia Sun
- Center for Translational Medicine Research and Development, Shenzhen Institutes of Advanced Technology, Chinese Academy of Science, Shenzhen, Guangdong, 518055, China
| | - Anjaneyulu Udduttula
- Center for Energy Metabolism and Reproduction, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, Guangdong, 518055, China
| | - Jian Li
- Center for Translational Medicine Research and Development, Shenzhen Institutes of Advanced Technology, Chinese Academy of Science, Shenzhen, Guangdong, 518055, China
| | - Yanzhi Liu
- Center for Translational Medicine Research and Development, Shenzhen Institutes of Advanced Technology, Chinese Academy of Science, Shenzhen, Guangdong, 518055, China
- Guangdong Key Laboratory for Research and Development of Natural Drugs, Department of Pharmacology, Guangdong Medical University, Zhanjiang, Guangdong, 524023, China
| | - Pei-Gen Ren
- Center for Energy Metabolism and Reproduction, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, Guangdong, 518055, China
| | - Peng Zhang
- Center for Translational Medicine Research and Development, Shenzhen Institutes of Advanced Technology, Chinese Academy of Science, Shenzhen, Guangdong, 518055, China
- Shenzhen Engineering Research Center for Medical Bioactive Materials, Shenzhen, Guangdong, 518055, China
| |
Collapse
|
30
|
Griffin TM, Lories RJ. Cracking the code on the innate immune program in OA. Osteoarthritis Cartilage 2020; 28:529-531. [PMID: 32278072 DOI: 10.1016/j.joca.2020.03.013] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/30/2020] [Accepted: 03/31/2020] [Indexed: 02/02/2023]
Affiliation(s)
- T M Griffin
- Aging and Metabolism Research Program, Oklahoma Medical Research Foundation (OMRF), Oklahoma City, OK, 73104, USA; Reynolds Oklahoma Center on Aging, Department of Biochemistry and Molecular Biology, Department of Physiology, University of Oklahoma Health Sciences Center, Oklahoma City, OK, 73104, USA; Veterans Affairs Medical Center, Oklahoma City, OK, 73104, USA.
| | - R J Lories
- Skeletal Biology and Engineering Research Center, Department of Development and Regeneration, KU Leuven, Leuven, 3000, Belgium; University Hospitals Leuven, Division of Rheumatology, Leuven, 3000, Belgium.
| |
Collapse
|