1
|
Wang H, Li W, Lai Q, Huang Q, Ding H, Deng Z. Inflammatory Markers and Risk of Parkinson's Disease: A Population-Based Analysis. PARKINSON'S DISEASE 2024; 2024:4192853. [PMID: 39780847 PMCID: PMC11707066 DOI: 10.1155/padi/4192853] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Revised: 11/05/2024] [Accepted: 12/11/2024] [Indexed: 01/11/2025]
Abstract
Objected: Parkinson's disease (PD) is an important cause of neurological dysfunction, and the aim of this study was to explore whether neutrophil-to-lymphocyte ratio (NLR), platelet-to-lymphocyte ratio (PLR), lymphocyte-to-monocyte ratio (LMR), systemic inflammatory response (SIRI), and systemic immune inflammation (SII) are associated with the risk of developing PD. Based on this, we may identify people at high risk for PD and intervene early. Method: Our study included 31,480 participants from the National Health and Nutrition Examination Survey (NHANES) between 2001 and 2018. Basic information and inflammation-related indicators were obtained by questionnaires and laboratory tests, respectively. NLR, PLR, LMR, SIRI, SII, and PD risk were analyzed using weighted logistic regression models. Results: There were 261 and 31,219 in the PD and non-PD groups, respectively, and the prevalence of PD was 0.83%. Separate analyses of NLR and PLR were conducted after fully adjusting for confounding factors. According to our analysis, there was an increased risk of PD for both NLR and PLR in the higher level group (Q4) as compared with the lower level group (Q1) (OR = 1.83 and 95% confidence interval (CI) = 1.09-3.07, and OR = 1.92 and 95% CI = 1.20-3.08). However, we did not find similar relationships in LMR, SIRI, and SII. Conclusions: There was a significant association between elevated levels of NLR, PLR, and PD risk, while LMR, SIRI, and SII were not statistically significant. It suggests that NLR or PLR could be used to screen people at risk of PD at an early stage. It is essential to conduct more large-scale prospective studies to investigate the role that NLR and PLR play in PD.
Collapse
Affiliation(s)
- Hongping Wang
- Department of Neurosurgery, Zigong Fourth People's Hospital, 19 Tanmulin Street, Zigong, Sichuan, China
| | - Wenqiang Li
- Department of Pulmonary and Critical Care Medicine, Zigong First People's Hospital, 42 Shangyihao Yizhi Street, Zigong, Sichuan, China
| | - Qun Lai
- Department of Hematology, Rheumatology and Immunology, Zigong Fourth People's Hospital, 19 Tanmulin Street, Zigong, Sichuan, China
| | - Qian Huang
- Department of Pulmonary and Critical Care Medicine, Dazhou Third People's Hospital, Dazhou, Sichuan, China
| | - Hao Ding
- Department of Neurosurgery, Zigong Fourth People's Hospital, 19 Tanmulin Street, Zigong, Sichuan, China
| | - Zhiping Deng
- Department of Pulmonary and Critical Care Medicine, Zigong First People's Hospital, 42 Shangyihao Yizhi Street, Zigong, Sichuan, China
| |
Collapse
|
2
|
Vallese A, Cordone V, Ferrara F, Guiotto A, Gemmo L, Cervellati F, Hayek J, Pecorelli A, Valacchi G. NLRP3 inflammasome-mitochondrion loop in autism spectrum disorder. Free Radic Biol Med 2024; 225:581-594. [PMID: 39433111 DOI: 10.1016/j.freeradbiomed.2024.10.297] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/16/2024] [Revised: 10/17/2024] [Accepted: 10/18/2024] [Indexed: 10/23/2024]
Abstract
Autism spectrum disorder (ASD) is a neurodevelopmental disorder characterized by deficits in social communication and the presence of restricted interests and repetitive behavior. To date, no single cause has been demonstrated but both genetic and environmental factors are believed to be involved in abnormal brain development. In recent years, immunological and mitochondrial dysfunctions acquired particular interest in the study of the molecular mechanisms underlying the pathophysiology of ASD. For this reason, our study focused on evaluating the mitochondrial component and activation of the NLRP3 inflammasome, a critical player of the innate immune system. The assembly of NLRP3 with ASC mediates activation of Caspase-1, which in turn, by proteolytic cleavage, activates Gasdermin D and the proinflammatory cytokines IL-1β/IL-18 with their subsequent secretion. Using primary fibroblasts of autistic and control patients we studied basal and stimulated conditions. Specifically, LPS and ATP were used to activate the NLRP3 inflammasome and MCC950 for its inhibition. In addition, FCCP was used as a mitochondrial stressor and MitoTEMPO as a scavenger of mitochondrial ROS. Our results showed a hyperactivation of NLRP3 inflammasome in ASDs, as evidenced by the co-localization of the two main components, NLRP3 and ASC, by the higher levels of ASC specks, oligomers and dimers and by the increased amounts of active Caspase-1 and IL-1β. In addition, increased mitochondrial superoxide anion and reduced mitochondrial membrane potential were detected in ASD cells. These data are in accordance with the abnormal mitochondrial morphology evidenced by transmission electron microscopy analysis. Interestingly, NLRP3 inflammasome inhibition with MCC950 improved mitochondrial parameters, while the use of MitoTEMPO, in addition to decrease mitochondrial ROS production, was able to prevent NLRP3 inflammasome activation suggesting for the first time an abnormal bidirectional crosstalk between mitochondria and NLRP3 inflammasome in ASD.
Collapse
Affiliation(s)
- Andrea Vallese
- Dept. of Environmental and Prevention Sciences, University of Ferrara, Ferrara, Italy; Animal Science Dept., Plants for Human Health Institute, North Carolina State University, Kannapolis, NC, USA
| | - Valeria Cordone
- Dept. of Environmental and Prevention Sciences, University of Ferrara, Ferrara, Italy
| | - Francesca Ferrara
- Dept. of Chemical, Pharmaceutical and Agricultural Sciences, University of Ferrara, Ferrara, Italy
| | - Anna Guiotto
- Dept. of Environmental and Prevention Sciences, University of Ferrara, Ferrara, Italy; Animal Science Dept., Plants for Human Health Institute, North Carolina State University, Kannapolis, NC, USA
| | - Laura Gemmo
- Dept. of Environmental and Prevention Sciences, University of Ferrara, Ferrara, Italy
| | - Franco Cervellati
- Dept. of Neuroscience and Rehabilitation, University of Ferrara, Ferrara, Italy
| | | | - Alessandra Pecorelli
- Dept. of Environmental and Prevention Sciences, University of Ferrara, Ferrara, Italy; Dept. of Food, Bioprocessing and Nutrition Sciences, Plants for Human Health Institute, North Carolina State University, Kannapolis, NC, USA.
| | - Giuseppe Valacchi
- Dept. of Environmental and Prevention Sciences, University of Ferrara, Ferrara, Italy; Animal Science Dept., Plants for Human Health Institute, North Carolina State University, Kannapolis, NC, USA; Dept. of Food and Nutrition, Kyung Hee University, Seoul, South Korea.
| |
Collapse
|
3
|
Moon S, Sarmento CVM, Smirnova IV, Colgrove Y, Lai SM, Lyons KE, Liu W. A pilot randomized clinical trial examining the effects of Qigong on inflammatory status and sleep quality in people with Parkinson's disease. J Bodyw Mov Ther 2024; 40:1002-1007. [PMID: 39593404 PMCID: PMC11602653 DOI: 10.1016/j.jbmt.2024.07.025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2022] [Revised: 05/31/2024] [Accepted: 07/07/2024] [Indexed: 11/28/2024]
Abstract
BACKGROUND Neuroinflammation contributes to degeneration of neurons in people with Parkinson's disease (PD). The concentrations of inflammatory cytokines, IL-1β, IL-6, and TNF-α, are often increased in people with PD and are associated with various non-motor symptoms. Qigong exercise is a mind-body practice which has been used as a rehabilitation intervention for people with PD. A previous study showed a strong association between sleep quality and inflammatory status. This study investigated the effect of Qigong on inflammatory status in people with PD and explored potential relationships between inflammatory status and sleep quality in this population. METHODS The study was a randomized controlled trial. A total of 17 participants completed the 12-week intervention (Qigong (n = 8), sham Qigong (n = 9)). Questionnaires were utilized to assess non-motor symptoms, including sleep quality. Inflammatory cytokines were measured by a high sensitivity antibody-based multiplex assay. RESULTS After the 12-week intervention, a decreasing trend in the concentrations of IL-1β and IL-6 was found in the Qigong group. Moderate to strong correlations were found between changes in IL-1β concentrations and sleep quality. CONCLUSION Inflammation is an important aspect of PD. This study explored the inflammatory status after a mind-body exercise. Further studies need to extend our findings to confirm the effect of Qigong in people with PD.
Collapse
Affiliation(s)
- Sanghee Moon
- Department of Kinesiology, University of New Hampshire, Durham, NH, USA; Department of Physical Therapy, Rehabilitation Science, and Athletic Training, University of Kansas Medical Center, Kansas City, KS, USA.
| | - Caio V M Sarmento
- Department of Physical Therapy, Rehabilitation Science, and Athletic Training, University of Kansas Medical Center, Kansas City, KS, USA; Department of Physical Therapy, California State University, Fresno, CA, USA
| | - Irina V Smirnova
- Department of Physical Therapy, Rehabilitation Science, and Athletic Training, University of Kansas Medical Center, Kansas City, KS, USA
| | - Yvonne Colgrove
- Department of Physical Therapy, Rehabilitation Science, and Athletic Training, University of Kansas Medical Center, Kansas City, KS, USA
| | - Sue-Min Lai
- Department of Population Health, University of Kansas Medical Center, Kansas City, KS, USA
| | - Kelly E Lyons
- Department of Neurology, University of Kansas Medical Center, Kansas City, KS, USA
| | - Wen Liu
- Department of Physical Therapy, Rehabilitation Science, and Athletic Training, University of Kansas Medical Center, Kansas City, KS, USA
| |
Collapse
|
4
|
Woo KA, Kim HJ, Lee CY, Shin JH, Sun C, Im H, An H, Lim J, Choi SY, Koh Y, Jeon B. Parkinson's disease is associated with clonal hematopoiesis with TET2 mutation. NPJ Parkinsons Dis 2024; 10:168. [PMID: 39242596 PMCID: PMC11379878 DOI: 10.1038/s41531-024-00784-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Accepted: 08/27/2024] [Indexed: 09/09/2024] Open
Abstract
Clonal hematopoiesis of indeterminate potential (CHIP), a premalignant expansion of mutated hematopoietic stem cells, is linked to immune alterations. Given the role of neuroinflammation and immune dysfunction in Parkinson's disease (PD), we hypothesized a connection between CHIP and PD. We analyzed peripheral blood DNA from 341 PD, 92 isolated REM sleep behavior disorder (iRBD) patients, and 5003 controls using targeted sequencing of 24 genes associated with hematologic neoplasms. PD cases were classified by clinical progression mode: fast, slow, and typical. Using multivariable logistic regression models, CHIP prevalence was assessed against controls with a 1.0% variant allele fraction threshold. CHIP with TET2 mutations was more prevalent in PD than controls (aOR 1.75, 95% CI 1.11-2.77, p = 0.017), particularly in the fast motor progression subgroup (aOR 3.19, p = 0.004). No distinct associations were observed with iRBD. PD is linked to increased odds of CHIP with TET2 mutations, suggesting immune dysregulation in PD pathophysiology.
Collapse
Affiliation(s)
- Kyung Ah Woo
- Department of Neurology, Seoul National University Hospital, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - Han-Joon Kim
- Department of Neurology, Seoul National University Hospital, Seoul National University College of Medicine, Seoul, Republic of Korea.
| | - Chan Young Lee
- Department of Neurology, Ewha Womans University Mokdong Hospital, Ewha Womans University College of Medicine, Seoul, Republic of Korea
| | - Jung Hwan Shin
- Department of Neurology, Seoul National University Hospital, Seoul National University College of Medicine, Seoul, Republic of Korea
| | | | - Hogune Im
- NOBO Medicine Inc, Seoul, Republic of Korea
| | - Hongyul An
- NOBO Medicine Inc, Seoul, Republic of Korea
| | - Jiwoo Lim
- NOBO Medicine Inc, Seoul, Republic of Korea
| | - Su-Yeon Choi
- Department of Internal Medicine, Seoul National University College of Medicine, Seoul National University Hospital Healthcare System Gangnam Center, Seoul, Republic of Korea
| | - Youngil Koh
- NOBO Medicine Inc, Seoul, Republic of Korea
- Department of Internal Medicine, Seoul National University Hospital, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - Beomseok Jeon
- Department of Neurology, Seoul National University Hospital, Seoul National University College of Medicine, Seoul, Republic of Korea
| |
Collapse
|
5
|
Sun X, Gu R, Bai J. Differentiation and regulation of CD4 + T cell subsets in Parkinson's disease. Cell Mol Life Sci 2024; 81:352. [PMID: 39153043 PMCID: PMC11335276 DOI: 10.1007/s00018-024-05402-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2024] [Revised: 08/06/2024] [Accepted: 08/07/2024] [Indexed: 08/19/2024]
Abstract
Parkinson's disease (PD) is the second most common neurodegenerative disease, and its hallmark pathological features are the loss of dopaminergic (DA) neurons in the midbrain substantia nigra pars compacta (SNpc) and the accumulation of alpha-synuclein (α-syn). It has been shown that the integrity of the blood-brain barrier (BBB) is damaged in PD patients, and a large number of infiltrating T cells and inflammatory cytokines have been detected in the cerebrospinal fluid (CSF) and brain parenchyma of PD patients and PD animal models, including significant change in the number and proportion of different CD4+ T cell subsets. This suggests that the neuroinflammatory response caused by CD4+ T cells is an important risk factor for the development of PD. Here, we systematically review the differentiation of CD4+ T cell subsets, and focus on describing the functions and mechanisms of different CD4+ T cell subsets and their secreted cytokines in PD. We also summarize the current immunotherapy targeting CD4+ T cells with a view to providing assistance in the diagnosis and treatment of PD.
Collapse
Affiliation(s)
- Xiaowei Sun
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming, 650500, China
- Medical School, Kunming University of Science and Technology, Kunming, 650500, China
- Southwest United Graduate School, Kunming, 650500, China
| | - Rou Gu
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming, 650500, China
- Medical School, Kunming University of Science and Technology, Kunming, 650500, China
| | - Jie Bai
- Medical School, Kunming University of Science and Technology, Kunming, 650500, China.
- Southwest United Graduate School, Kunming, 650500, China.
| |
Collapse
|
6
|
Sadowski K, Zając W, Milanowski Ł, Koziorowski D, Figura M. Exploring Fecal Microbiota Transplantation for Modulating Inflammation in Parkinson's Disease: A Review of Inflammatory Markers and Potential Effects. Int J Mol Sci 2024; 25:7741. [PMID: 39062985 PMCID: PMC11277532 DOI: 10.3390/ijms25147741] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2024] [Revised: 07/11/2024] [Accepted: 07/13/2024] [Indexed: 07/28/2024] Open
Abstract
Parkinson's disease (PD) is a complex neurodegenerative disorder characterized by numerous motor and non-motor symptoms. Recent data highlight a potential interplay between the gut microbiota and the pathophysiology of PD. The degeneration of dopaminergic neurons in PD leads to motor symptoms (tremor, rigidity, and bradykinesia), with antecedent gastrointestinal manifestations, most notably constipation. Consequently, the gut emerges as a plausible modulator in the neurodegenerative progression of PD. Key molecular changes in PD are discussed in the context of the gut-brain axis. Evidence suggests that the alterations in the gut microbiota composition may contribute to gastroenteric inflammation and influence PD symptoms. Disturbances in the levels of inflammatory markers, including tumor necrosis factor-α (TNF α), interleukin -1β (IL-1β), and interleukin-6 (IL-6), have been observed in PD patients. These implicate the involvement of systemic inflammation in disease pathology. Fecal microbiota transplantation emerges as a potential therapeutic strategy for PD. It may mitigate inflammation by restoring gut homeostasis. Preclinical studies in animal models and initial clinical trials have shown promising results. Overall, understanding the interplay between inflammation, the gut microbiota, and PD pathology provides valuable insights into potential therapeutic interventions. This review presents recent data about the bidirectional communication between the gut microbiome and the brain in PD, specifically focusing on the involvement of inflammatory biomarkers.
Collapse
Affiliation(s)
- Karol Sadowski
- Students Scientific Group NEKON by the Department of Neurology, Faculty of Health Science, Medical University of Warsaw, 03-242 Warsaw, Poland; (K.S.); (W.Z.)
| | - Weronika Zając
- Students Scientific Group NEKON by the Department of Neurology, Faculty of Health Science, Medical University of Warsaw, 03-242 Warsaw, Poland; (K.S.); (W.Z.)
| | - Łukasz Milanowski
- Department of Neurology, Faculty of Health Science, Medical University of Warsaw, 03-242 Warsaw, Poland; (Ł.M.); (D.K.)
| | - Dariusz Koziorowski
- Department of Neurology, Faculty of Health Science, Medical University of Warsaw, 03-242 Warsaw, Poland; (Ł.M.); (D.K.)
| | - Monika Figura
- Department of Neurology, Faculty of Health Science, Medical University of Warsaw, 03-242 Warsaw, Poland; (Ł.M.); (D.K.)
| |
Collapse
|
7
|
Oyovwi MO, Ben-Azu B, Falajiki FY, Onome OB, Rotu RA, Rotu RA, Oyeleke AA, Okwute GP, Moke EG. D-ribose-L-cysteine exhibits restorative neurobehavioral functions through modulation of neurochemical activities and inhibition oxido-inflammatory perturbations in rats exposed to polychlorinated biphenyl. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2024; 397:931-945. [PMID: 37542532 DOI: 10.1007/s00210-023-02637-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/25/2023] [Accepted: 07/18/2023] [Indexed: 08/07/2023]
Abstract
Polychlorinated biphenyl (PCB) is potentially harmful environmental toxicant causing cognitive decline with depressive features. PCB-induced behavioral deficits are associated with neurochemical dysfunctions, immune changes, and oxidative stress. This study investigated the neuroprotective effects of D-ribose-L-cysteine (DRLC), a neuroprotective precursor element of glutathione on PCB-induced neurobehavioral impairments. Following the initial 15 days of PCB (2 mg/kg) exposure to rats, DRLC (50 mg/kg) was given orally for an additional 15 days, from days 16 to 30. Animals were assessed for behavioral effect such as changes in locomotion, cognition, and depression. Oxidative/nitrergic stress markers; antioxidant regulatory proteins paraoxonase-1 (PON-1), heme oxygenase-1 (HO-1), nuclear factor erythroid 2-related factor 2 (Nfr2), NADPH oxidase-1 (NOX-1), NAD(P)H quinone oxidoreductase 1 (NQO1), and neuroinflammation (NF-kβ, and TNF-α); and neurochemical metabolizing enzymes (acetylcholinesterase (AChE), monoamine oxidase-A and -B (MAO-A, MAO-B)) were carried out. The PCB-induced decline in locomotion, cognitive performance, and depressive-like features were reversed by DRLC. More specifically, PCB-induced oxidative and nitrergic stress, typified by reduced levels GSH, CAT, and SOD, accompanied by elevated MDA and nitrite were attenuated by DRLC. Additionally, DRLC restored the neuroinflammatory milieu indicated by decreased NF-kβ and TNF-α levels toward normal. Hyperactivities of AChE, MAO-A, MAO-B, PON-1, and NOX-1 levels as well as Nfr2, NQO1, and PON-1 due to PCB exposure were mitigated by DLRC. Our results suggest DRLC as a prospective neurotherapeutic agent against PCB-induced neurobehavioral impairments such as cognitive deficit and depressive-like feature through antioxidative and anti-nitrergic stress, anti-neuroinflammation, inhibition of brain metabolizing enzymes, and normalization of neurochemical homeostasis.
Collapse
Affiliation(s)
- Mega O Oyovwi
- Department of Human Physiology, Adeleke University, Ede, Osun State, Nigeria
| | - Benneth Ben-Azu
- Department of Pharmacology, Faculty of Basic Medical Sciences, College of Health Sciences, Delta State University, Abraka, Delta State, Nigeria.
| | - Faith Y Falajiki
- Department of Human Physiology, Adeleke University, Ede, Osun State, Nigeria
| | - Oghenetega B Onome
- Department of Physiology, School of Basic Medical Science, Babcock University, Ilishan-Remo, Ogun State, Nigeria
| | - Rume A Rotu
- Department of Physiology, Faculty of Basic Medical Science, College of Health Sciences, University of Ibadan, Ibadan, Oyo State, Nigeria
| | - Rotu A Rotu
- Department of Industrial Safety and Environmental Management, School of Maritime Technology, Burutu, Delta State, Nigeria
| | - Abioye A Oyeleke
- Department of Physiology, Federal University Oye-Ekiti, Oye-Are Road, Oye-Ekiti, Ekiti State, Nigeria
| | - Godwin P Okwute
- Department of Physiology, School of Basic Medical Science, Babcock University, Ilishan-Remo, Ogun State, Nigeria
| | - Emuesiri G Moke
- Department of Pharmacology, Faculty of Basic Medical Sciences, College of Health Sciences, Delta State University, Abraka, Delta State, Nigeria
| |
Collapse
|
8
|
Liang J, Wan Z, Qian C, Rasheed M, Cao C, Sun J, Wang X, Chen Z, Deng Y. The pyroptosis mediated biomarker pattern: an emerging diagnostic approach for Parkinson's disease. Cell Mol Biol Lett 2024; 29:7. [PMID: 38172670 PMCID: PMC10765853 DOI: 10.1186/s11658-023-00516-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Accepted: 11/24/2023] [Indexed: 01/05/2024] Open
Abstract
BACKGROUND Parkinson's disease (PD) affects 1% of people over 60, and long-term levodopa treatment can cause side effects. Early diagnosis is of great significance in slowing down the pathological process of PD. Multiple pieces of evidence showed that non-coding RNAs (ncRNAs) could participate in the progression of PD pathology. Pyroptosis is known to be regulated by ncRNAs as a key pathological feature of PD. Therefore, evaluating ncRNAs and pyroptosis-related proteins in serum could be worthy biomarkers for early diagnosis of PD. METHODS NcRNAs and pyroptosis/inflammation mRNA levels were measured with reverse transcriptase quantitative polymerase chain reaction (RT-qPCR). Luciferase assays were performed to confirm GSDME as a target of miR-675-5p and HMGB1 as a target of miR-1247-5p. In the serum of healthy controls (n = 106) and PD patients (n = 104), RT-qPCR was utilized to assess miR-675-5p, miR-1247-5p, and two related ncRNAs (circSLC8A1and lncH19) levels. The enzyme-linked immunosorbent assay measured serum levels of pyroptosis-related proteins in controls (n = 54) and PD patients (n = 70). RESULTS Our data demonstrated that miR-675-5p and miR-1247-5p significantly changed in PD neuron and animal models. Overexpressed miR-675-5p or downregulated miR-1247-5p could regulate pyroptosis and inflammation in PD neuron models. Using the random forest algorithm, we constructed a classifier based on PD neuron-pyroptosis pathology (four ncRNAs and six proteins) having better predictive power than single biomarkers (AUC = 92%). Additionally, we verified the performance of the classifier in early-stage PD patients (AUC ≥ 88%). CONCLUSION Serum pyroptosis-related ncRNAs and proteins could serve as reliable, inexpensive, and non-invasive diagnostic biomarkers for PD. LIMITATIONS All participants were from the same region. Additionally, longitudinal studies in the aged population are required to explore the practical application value of the classifier.
Collapse
Affiliation(s)
- Junhan Liang
- Beijing Key Laboratory for Separation and Analysis in Biomedicine and Pharmaceuticals, School of Medical Technology, Beijing Institute of Technology, Zhongguancun South Street, Haidian District, Beijing, 100081, People's Republic of China
| | - Zhirong Wan
- Department of Neurology, Aerospace Center Hospital, Beijing, 100049, People's Republic of China
| | - Cheng Qian
- Beijing Key Laboratory for Separation and Analysis in Biomedicine and Pharmaceuticals, School of Medical Technology, Beijing Institute of Technology, Zhongguancun South Street, Haidian District, Beijing, 100081, People's Republic of China
| | - Madiha Rasheed
- Beijing Key Laboratory for Separation and Analysis in Biomedicine and Pharmaceuticals, School of Medical Technology, Beijing Institute of Technology, Zhongguancun South Street, Haidian District, Beijing, 100081, People's Republic of China
| | - Changling Cao
- Beijing Key Laboratory for Separation and Analysis in Biomedicine and Pharmaceuticals, School of Medical Technology, Beijing Institute of Technology, Zhongguancun South Street, Haidian District, Beijing, 100081, People's Republic of China
| | - Jingyan Sun
- School of Life Sciences, Beijing Institute of Technology, Beijing, 100081, People's Republic of China
| | - Xuezhe Wang
- Beijing Key Laboratory for Separation and Analysis in Biomedicine and Pharmaceuticals, School of Medical Technology, Beijing Institute of Technology, Zhongguancun South Street, Haidian District, Beijing, 100081, People's Republic of China
| | - Zixuan Chen
- Beijing Key Laboratory for Separation and Analysis in Biomedicine and Pharmaceuticals, School of Medical Technology, Beijing Institute of Technology, Zhongguancun South Street, Haidian District, Beijing, 100081, People's Republic of China.
| | - Yulin Deng
- Beijing Key Laboratory for Separation and Analysis in Biomedicine and Pharmaceuticals, School of Medical Technology, Beijing Institute of Technology, Zhongguancun South Street, Haidian District, Beijing, 100081, People's Republic of China.
| |
Collapse
|
9
|
Dzamko N. Cytokine activity in Parkinson's disease. Neuronal Signal 2023; 7:NS20220063. [PMID: 38059210 PMCID: PMC10695743 DOI: 10.1042/ns20220063] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Revised: 11/14/2023] [Accepted: 11/16/2023] [Indexed: 12/08/2023] Open
Abstract
The contribution of the immune system to the pathophysiology of neurodegenerative Parkinson's disease (PD) is increasingly being recognised, with alterations in the innate and adaptive arms of the immune system underlying central and peripheral inflammation in PD. As chief modulators of the immune response, cytokines have been intensely studied in the field of PD both in terms of trying to understand their contribution to disease pathogenesis, and if they may comprise much needed therapeutic targets for a disease with no current modifying therapy. This review summarises current knowledge on key cytokines implicated in PD (TNFα, IL-6, IL-1β, IL-10, IL-4 and IL-1RA) that can modulate both pro-inflammatory and anti-inflammatory effects. Cytokine activity in PD is clearly a complicated process mediated by substantial cross-talk of signalling pathways and the need to balance pro- and anti-inflammatory effects. However, understanding cytokine activity may hold promise for unlocking new insight into PD and how it may be halted.
Collapse
Affiliation(s)
- Nicolas Dzamko
- School of Medical Sciences, Faculty of Medicine and Health and the Charles Perkins Centre, University of Sydney, Camperdown, NSW, 2050, Australia
| |
Collapse
|
10
|
Vijiaratnam N, Foltynie T. How should we be using biomarkers in trials of disease modification in Parkinson's disease? Brain 2023; 146:4845-4869. [PMID: 37536279 PMCID: PMC10690028 DOI: 10.1093/brain/awad265] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2023] [Revised: 07/18/2023] [Accepted: 07/22/2023] [Indexed: 08/05/2023] Open
Abstract
The recent validation of the α-synuclein seed amplification assay as a biomarker with high sensitivity and specificity for the diagnosis of Parkinson's disease has formed the backbone for a proposed staging system for incorporation in Parkinson's disease clinical studies and trials. The routine use of this biomarker should greatly aid in the accuracy of diagnosis during recruitment of Parkinson's disease patients into trials (as distinct from patients with non-Parkinson's disease parkinsonism or non-Parkinson's disease tremors). There remain, however, further challenges in the pursuit of biomarkers for clinical trials of disease modifying agents in Parkinson's disease, namely: optimizing the distinction between different α-synucleinopathies; the selection of subgroups most likely to benefit from a candidate disease modifying agent; a sensitive means of confirming target engagement; and the early prediction of longer-term clinical benefit. For example, levels of CSF proteins such as the lysosomal enzyme β-glucocerebrosidase may assist in prognostication or allow enrichment of appropriate patients into disease modifying trials of agents with this enzyme as the target; the presence of coexisting Alzheimer's disease-like pathology (detectable through CSF levels of amyloid-β42 and tau) can predict subsequent cognitive decline; imaging techniques such as free-water or neuromelanin MRI may objectively track decline in Parkinson's disease even in its later stages. The exploitation of additional biomarkers to the α-synuclein seed amplification assay will, therefore, greatly add to our ability to plan trials and assess the disease modifying properties of interventions. The choice of which biomarker(s) to use in the context of disease modifying clinical trials will depend on the intervention, the stage (at risk, premotor, motor, complex) of the population recruited and the aims of the trial. The progress already made lends hope that panels of fluid biomarkers in tandem with structural or functional imaging may provide sensitive and objective methods of confirming that an intervention is modifying a key pathophysiological process of Parkinson's disease. However, correlation with clinical progression does not necessarily equate to causation, and the ongoing validation of quantitative biomarkers will depend on insightful clinical-genetic-pathophysiological comparisons incorporating longitudinal biomarker changes from those at genetic risk with evidence of onset of the pathophysiology and those at each stage of manifest clinical Parkinson's disease.
Collapse
Affiliation(s)
- Nirosen Vijiaratnam
- Department of Clinical and Movement Neurosciences, UCL Queen Square Institute of Neurology, London WC1N 3BG, UK
| | - Thomas Foltynie
- Department of Clinical and Movement Neurosciences, UCL Queen Square Institute of Neurology, London WC1N 3BG, UK
| |
Collapse
|
11
|
Zaichick S, Caraveo G. Harnessing IGF-1 and IL-2 as biomarkers for calcineurin activity to tailor optimal FK506 dosage in α-synucleinopathies. Front Mol Biosci 2023; 10:1292555. [PMID: 38094080 PMCID: PMC10716490 DOI: 10.3389/fmolb.2023.1292555] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Accepted: 11/16/2023] [Indexed: 02/01/2024] Open
Abstract
Introduction: Rise in Calcium (Ca2+) and hyperactive Ca2+-dependent phosphatase calcineurin represent two key determinants of a-synuclein (a-syn) pathobiology implicated in Parkinson's Disease (PD) and other neurodegenerative diseases. Calcineurin activity can be inhibited with FK506, a Food and Drug Administration (FDA)-approved compound. Our previous work demonstrated a protective effect of low doses of FK506 against a-syn pathology in various models of a-syn related pathobiology. Methods: Control and a-syn-expressing mice (12-18 months old) were injected with vehicle or two single doses of FK506 administered 4 days apart. Cerebral cortex and serum from these mice were collected and assayed using a meso scale discovery quickplex SQ 120 for cytokines and Enzyme-linked immunosorbent assay for IGF-1. Results: In this study we present evidence that reducing calcineurin activity with FK506 in a-syn transgenic mice increased insulin growth factor (IGF-1), while simultaneously decreasing IL-2 levels in both cerebral cortex and serum. Discussion: The highly conserved Ca2+/calcineurin signaling pathway is known to be affected in a-syn-dependent human disease. FK506, an already approved drug for other uses, exhibits high brain penetrance and a proven safety profile. IL-2 and IGF-1 are produced throughout life and can be measured using standard clinical methods. Our findings provide two potential biomarkers that could guide a clinical trial of FK506 in PD patients, without posing significant logistical or regulatory challenges.
Collapse
Affiliation(s)
| | - Gabriela Caraveo
- Department of Neurology, Feinberg School of Medicine, Northwestern University, Chicago, IL, United States
| |
Collapse
|
12
|
Wang L, Sun Z, Shan X, Peng C, Ding H, Feng S, Zhao C, Wang X, Wu J. MicroRNA-223 Inhibits Soybean Glycinin- and β-Conglycinin-Induced Apoptosis of IPEC-J2 Cells by Targeting NLRP-3 in the IEL/IPEC-J2 Co-culture System. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2023; 71:13745-13756. [PMID: 37682935 DOI: 10.1021/acs.jafc.3c01581] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/10/2023]
Abstract
The apoptosis of intestinal porcine epithelial cells induced by soybean antigen protein allergy is one of the most important mechanisms responsible for enteritis. MicroRNAs (miRNAs) affect the cellular and physiological functions of all multicellular organisms. We hypothesize that microRNA-223 inhibits soybean glycinin- and β-conglycinin-induced apoptosis of intestinal porcine enterocytes (IPEC-J2) by targeting the NLR family pyrin domain containing 3 (NLRP-3). Using the intestinal interepithelial lymphocyte (IEL)/IPEC-J2 co-culture system as an in vitro model, we investigate the role of microRNA-223 in the regulation of soybean glycinin- and β-conglycinin-induced apoptosis. In co-cultured IEL/IPEC-J2 cells incubated with glycinin or β-conglycinin, microRNA-223 decreased NLRP-3, ASC, caspase-1, caspase-3, FAS, BCL-2, and APAF-1 expressions in IPEC-J2 cells; decreased cytokine and cyclooxygenase-2 levels; significantly increased cell activity; and inhibited apoptosis. These data supported a novel antiallergic mechanism to mitigate the sensitization of soybean antigenic protein, which involves the upregulation of microRNA-223-targeting NLRP-3.
Collapse
Affiliation(s)
- Lei Wang
- College of Animal Science and Technology, Anhui Agricultural University, Hefei 230061, China
| | - Zhifeng Sun
- College of Animal Science and Technology, Anhui Agricultural University, Hefei 230061, China
| | - Xinggen Shan
- College of Animal Science and Technology, Anhui Agricultural University, Hefei 230061, China
| | - Chenglu Peng
- Department of Food Science and Engineering, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Hongyan Ding
- College of Animal Science and Technology, Anhui Agricultural University, Hefei 230061, China
| | - Shibin Feng
- College of Animal Science and Technology, Anhui Agricultural University, Hefei 230061, China
| | - Chang Zhao
- College of Animal Science and Technology, Anhui Agricultural University, Hefei 230061, China
| | - Xichun Wang
- College of Animal Science and Technology, Anhui Agricultural University, Hefei 230061, China
| | - Jinjie Wu
- College of Animal Science and Technology, Anhui Agricultural University, Hefei 230061, China
| |
Collapse
|
13
|
Bytowska ZK, Korewo-Labelle D, Kowalski K, Libionka W, Przewłócka K, Kloc W, Kaczor JJ. Impact of 12 Weeks of Vitamin D 3 Administration in Parkinson's Patients with Deep Brain Stimulation on Kynurenine Pathway and Inflammatory Status. Nutrients 2023; 15:3839. [PMID: 37686871 PMCID: PMC10490466 DOI: 10.3390/nu15173839] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Revised: 08/29/2023] [Accepted: 08/31/2023] [Indexed: 09/10/2023] Open
Abstract
The current study aimed to investigate whether a 12-week Body Mass Index (BMI)-based (the higher the BMI, the higher the dosage) vitamin D3 administration may affect both the kynurenine pathway (KP) and the inflammatory state in Parkinson's disease (PD) patients with deep brain stimulation (DBS) and may be useful for developing novel therapeutic targets against PD. Patients were randomly assigned to two groups: supplemented with vitamin D3 (VitD, n = 15) and treated with vegetable oil (PL, n = 21). Administration lasted for 12 weeks. The isotope dilution method by LC-MS/MS was applied to measure KP and vitamin D metabolites. Serum concentrations of cytokines such as IL-6 and TNF-α were measured using ELISA kits. After administration, the serum concentration of TNF-α decreased in PD patients with DBS. Moreover, in KP: 3-hydroksykynurenine (3-HK) was increased in the PL group, picolinic acid was decreased in the PL group, and kynurenic acid tended to be higher after administration. Furthermore, a negative correlation between 3-HK and 25(OH)D3 and 24,25(OH)2D3 was noticed. Our preliminary results provide further evidence regarding a key link between the KP substances, inflammation status, and metabolites of vitamin D in PD patients with DBS. These findings may reflect the neuroprotective abilities of vitamin D3 in PD patients with DBS.
Collapse
Affiliation(s)
- Zofia Kinga Bytowska
- Division of Bioenergetics and Physiology of Exercise, Faculty of Health Sciences, Medical University of Gdansk, 80-211 Gdansk, Poland; (Z.K.B.); (K.P.)
| | - Daria Korewo-Labelle
- Department of Physiology, Faculty of Medicine, Medical University of Gdansk, 80-211 Gdansk, Poland;
| | - Konrad Kowalski
- Masdiag-Diagnostic Mass Spectrometry Laboratory, Stefana Żeromskiego 33, 01-882 Warsaw, Poland;
| | - Witold Libionka
- Department of Neurosurgery, University Clinical Centre in Gdansk, 80-952 Gdansk, Poland;
| | - Katarzyna Przewłócka
- Division of Bioenergetics and Physiology of Exercise, Faculty of Health Sciences, Medical University of Gdansk, 80-211 Gdansk, Poland; (Z.K.B.); (K.P.)
| | - Wojciech Kloc
- Department of Neurosurgery, Copernicus Medical Center, 80-803 Gdansk, Poland;
- Department of Psychology and Sociology of Health and Public Health, University of Warmia and Mazury in Olsztyn, 10-719 Olsztyn, Poland
| | - Jan Jacek Kaczor
- Department of Animal and Human Physiology, Faculty of Biology, University of Gdansk, 80-309 Gdansk, Poland
| |
Collapse
|
14
|
Di Stadio A, De Luca P, Koohi N, Kaski D, Ralli M, Giesemann A, Hartung HP, Altieri M, Messineo D, Warnecke A, Frohman T, Frohman EM. Neuroinflammatory disorders of the brain and inner ear: a systematic review of auditory function in patients with migraine, multiple sclerosis, and neurodegeneration to support the idea of an innovative 'window of discovery'. Front Neurol 2023; 14:1204132. [PMID: 37662038 PMCID: PMC10471191 DOI: 10.3389/fneur.2023.1204132] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2023] [Accepted: 07/24/2023] [Indexed: 09/05/2023] Open
Abstract
Background Hearing can be impaired in many neurological conditions and can even represent a forme fruste of specific disorders. Auditory function can be measured by either subjective or objective tests. Objective tests are more useful in identifying which auditory pathway (superior or inferior) is most affected by disease. The inner ear's perilymphatic fluid communicates with the cerebrospinal fluid (CSF) via the cochlear aqueduct representing a window from which pathological changes in the contents of the CSF due to brain inflammation could, therefore, spread to and cause inflammation in the inner ear, damaging inner hair cells and leading to hearing impairment identifiable on tests of auditory function. Methods A systematic review of the literature was performed, searching for papers with case-control studies that analyzed the hearing and migraine function in patients with neuro-inflammatory, neurodegenerative disorders. With data extracted from these papers, the risk of patients with neurological distortion product otoacoustic emission (DPOAE) was then calculated. Results Patients with neurological disorders (headache, Parkinson's disease, and multiple sclerosis) had a higher risk of having peripheral auditory deficits when compared to healthy individuals. Conclusion Existing data lend credence to the hypothesis that inflammatory mediators transmitted via fluid exchange across this communication window, thereby represents a key pathobiological mechanism capable of culminating in hearing disturbances associated with neuroimmunological and neuroinflammatory disorders of the nervous system.
Collapse
Affiliation(s)
- Arianna Di Stadio
- GF Ingrassia Department, University of Catania, Catania, Italy
- IRCCS Santa Lucia, Rome, Italy
| | - Pietro De Luca
- Head and Neck Department, San Giovanni-Addolorata Hospital, Rome, Italy
| | - Nehzat Koohi
- The UCL Queen Square Institute of Neurology, London, United Kingdom
| | - Diego Kaski
- The UCL Queen Square Institute of Neurology, London, United Kingdom
| | - Massimo Ralli
- Department of Sense Organs, University Sapienza, Rome, Italy
| | - Anja Giesemann
- Department of Interventional Neuroradiologie, Hannover Medical School, Hannover, Germany
| | - Hans-Peter Hartung
- Klinik für Neurologie UKD Heinrich Heine Universität Düsseldorf, Düsseldorf, Germany
| | - Marta Altieri
- Department of Neurology, University Sapienza, Rome, Italy
| | - Daniela Messineo
- Department of Radiology and Pathology, University Sapienza, Rome, Italy
| | - Athanasia Warnecke
- Department of Otolaryngology-Head and Neck Surgery, Hannover Medical School, Hannover, Germany
| | - Teresa Frohman
- Distinguished Senior Fellows (Sabbatical), Laboratory of Neuroimmunology of Professor Lawrence Steinman, Stanford University School of Medicine, Palo Alto, CA, United States
| | - Elliot M. Frohman
- Distinguished Senior Fellows (Sabbatical), Laboratory of Neuroimmunology of Professor Lawrence Steinman, Stanford University School of Medicine, Palo Alto, CA, United States
| |
Collapse
|
15
|
Jun JS, Kim R. Peripheral blood inflammatory cytokines in prodromal and overt α-synucleinopathies: a review of current evidence. ENCEPHALITIS 2023; 3:81-86. [PMID: 37500099 PMCID: PMC10368523 DOI: 10.47936/encephalitis.2023.00031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Accepted: 04/27/2023] [Indexed: 07/29/2023] Open
Abstract
While the pathomechanisms of α-synucleinopathies are not completely understood, accumulating evidence suggests a role of neuroinflammation in the development and progression of the diseases. In addition, emerging data provide insights into the potential role of central neuroinflammation in prodromal α-synucleinopathies. Given the considerable bidirectional crosstalk between peripheral and central inflammation, peripheral blood inflammatory cytokines may be a useful tool to understand immune responses in association with α-synucleinopathies. Indeed, the accessibility and practicality of using blood samples have facilitated multiple investigations evaluating peripheral blood inflammatory cytokines in overt α-synucleinopathies, whereas the associations between these biomarkers and prodromal α-synucleinopathies remain unclear. In this review, we provide an overview of the current evidence available for the role of peripheral blood inflammatory cytokines in prodromal and overt α-synucleinopathies.
Collapse
Affiliation(s)
- Jin-Sun Jun
- Department of Neurology, Kangnam Sacred Heart Hospital, Hallym University College of Medicine, Seoul, Korea
| | - Ryul Kim
- Department of Neurology, Inha University Hospital, Inha University College of Medicine, Incheon, Korea
| |
Collapse
|
16
|
Bytowska ZK, Korewo-Labelle D, Berezka P, Kowalski K, Przewłócka K, Libionka W, Kloc W, Kaczor JJ. Effect of 12-Week BMI-Based Vitamin D 3 Supplementation in Parkinson's Disease with Deep Brain Stimulation on Physical Performance, Inflammation, and Vitamin D Metabolites. Int J Mol Sci 2023; 24:10200. [PMID: 37373347 DOI: 10.3390/ijms241210200] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2023] [Revised: 06/10/2023] [Accepted: 06/14/2023] [Indexed: 06/29/2023] Open
Abstract
Parkinson's disease (PD) is the second most common neurodegenerative disease. To manage motor symptoms not controlled adequately with medication, deep brain stimulation (DBS) is used. PD patients often manifest vitamin D deficiency, which may be connected with a higher risk of falls. We administered a 12-week vitamin D3 supplementation based on BMI (with higher doses given to patients with higher BMI) to investigate its effects on physical performance and inflammation status in PD patients with DBS. Patients were randomly divided into two groups: treated with vitamin D3 (VitD, n = 13), and supplemented with vegetable oil as the placebo group (PL, n = 16). Patients underwent functional tests to assess their physical performance three times during this study. The serum 25(OH)D3 concentration increased to the recommended level of 30 ng/mL in the VitD group, and a significant elevation in vitamin D metabolites in this group was found. We observed significant improvement in the Up and Go and the 6 MWT in the VitD group. In inflammation status, we noticed a trend toward a decrease in the VitD group. To conclude, achieving the optimal serum 25(OH)D3 concentration is associated with better functional test performance and consequently may have a positive impact on reducing falling risk in PD.
Collapse
Affiliation(s)
- Zofia Kinga Bytowska
- Division of Bioenergetics and Physiology of Exercise, Faculty of Health Sciences with Institute of Maritime and Tropical Medicine, Medical University of Gdansk, 80-211 Gdansk, Poland
| | - Daria Korewo-Labelle
- Department of Physiology, Faculty of Medicine, Medical University of Gdansk, 80-210 Gdansk, Poland
| | - Paweł Berezka
- Department of Animal and Human Physiology, Faculty of Biology, University of Gdansk, 80-309 Gdansk, Poland
| | - Konrad Kowalski
- Masdiag-Diagnostic Mass Spectrometry Laboratory, Stefana Żeromskiego 33, 01-882 Warsaw, Poland
| | - Katarzyna Przewłócka
- Division of Bioenergetics and Physiology of Exercise, Faculty of Health Sciences with Institute of Maritime and Tropical Medicine, Medical University of Gdansk, 80-211 Gdansk, Poland
| | - Witold Libionka
- Department of Neurosurgery, University Clinical Centre in Gdansk, 80-952 Gdansk, Poland
| | - Wojciech Kloc
- Department of Neurosurgery, Copernicus Medical Center, 80-803 Gdansk, Poland
- Department of Psychology and Sociology of Health and Public Health, University of Warmia and Mazury in Olsztyn, 10-719 Olsztyn, Poland
| | - Jan Jacek Kaczor
- Department of Animal and Human Physiology, Faculty of Biology, University of Gdansk, 80-309 Gdansk, Poland
| |
Collapse
|
17
|
Nour M, Senturk U, Polat K. Diagnosis and classification of Parkinson's disease using ensemble learning and 1D-PDCovNN. Comput Biol Med 2023; 161:107031. [PMID: 37211002 DOI: 10.1016/j.compbiomed.2023.107031] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Revised: 05/05/2023] [Accepted: 05/10/2023] [Indexed: 05/23/2023]
Abstract
In this paper, we proposed a novel approach to diagnose and classify Parkinson's Disease (PD) using ensemble learning and 1D-PDCovNN, a novel deep learning technique. PD is a neurodegenerative disorder; early detection and correct classification are essential for better disease management. The primary aim of this study is to develop a robust approach to diagnosing and classifying PD using EEG signals. As the dataset, we have used the San Diego Resting State EEG dataset to evaluate our proposed method. The proposed method mainly consists of three stages. In the first stage, the Independent Component Analysis (ICA) method has been used as the pre-processing method to filter out the blink noises from the EEG signals. Also, the effect of the band showing motor cortex activity in the 7-30 Hz frequency band of EEG signals in diagnosing and classifying Parkinson's disease from EEG signals has been investigated. In the second stage, the Common Spatial Pattern (CSP) method has been used as the feature extraction to extract useful information from EEG signals. Finally, an ensemble learning approach, Dynamic Classifier Selection (DCS) in Modified Local Accuracy (MLA), has been employed in the third stage, consisting of seven different classifiers. As the classifier method, DCS in MLA, XGBoost, and 1D-PDCovNN classifier has been used to classify the EEG signals as the PD and healthy control (HC). We first used dynamic classifier selection to diagnose and classify Parkinson's disease (PD) from EEG signals, and promising results have been obtained. The performance of the proposed approach has been evaluated using the classification accuracy, F-1 score, kappa score, Jaccard score, ROC curve, recall, and precision values in the classification of PD with the proposed models. In the classification of PD, the combination of DCS in MLA achieved an accuracy of 99,31%. The results of this study demonstrate that the proposed approach can be used as a reliable tool for early diagnosis and classification of PD.
Collapse
Affiliation(s)
- Majid Nour
- Department of Electrical and Computer Engineering, Faculty of Engineering, King Abdulaziz University, Jeddah, 21589, Saudi Arabia.
| | - Umit Senturk
- Department of Computer Engineering, Bolu Abant Izzet Baysal University, Bolu, Turkey.
| | - Kemal Polat
- Department of Electrical and Electronics Engineering, Bolu Abant Izzet Baysal University, Bolu, Turkey.
| |
Collapse
|
18
|
Guedes BFS, Cardoso SM, Esteves AR. The Impact of microRNAs on Mitochondrial Function and Immunity: Relevance to Parkinson's Disease. Biomedicines 2023; 11:biomedicines11051349. [PMID: 37239020 DOI: 10.3390/biomedicines11051349] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2023] [Revised: 04/21/2023] [Accepted: 04/28/2023] [Indexed: 05/28/2023] Open
Abstract
Parkinson's Disease (PD), the second most common neurodegenerative disorder, is characterised by the severe loss of dopaminergic neurons in the Substantia Nigra pars compacta (SNpc) and by the presence of Lewy bodies. PD is diagnosed upon the onset of motor symptoms, such as bradykinesia, resting tremor, rigidity, and postural instability. It is currently accepted that motor symptoms are preceded by non-motor features, such as gastrointestinal dysfunction. In fact, it has been proposed that PD might start in the gut and spread to the central nervous system. Growing evidence reports that the gut microbiota, which has been found to be altered in PD patients, influences the function of the central and enteric nervous systems. Altered expression of microRNAs (miRNAs) in PD patients has also been reported, many of which regulate key pathological mechanisms involved in PD pathogenesis, such as mitochondrial dysfunction and immunity. It remains unknown how gut microbiota regulates brain function; however, miRNAs have been highlighted as important players. Remarkably, numerous studies have depicted the ability of miRNAs to modulate and be regulated by the host's gut microbiota. In this review, we summarize the experimental and clinical studies implicating mitochondrial dysfunction and immunity in PD. Moreover, we gather recent data on miRNA involvement in these two processes. Ultimately, we discuss the reciprocal crosstalk between gut microbiota and miRNAs. Studying the bidirectional interaction of gut microbiome-miRNA might elucidate the aetiology and pathogenesis of gut-first PD, which could lead to the application of miRNAs as potential biomarkers or therapeutical targets for PD.
Collapse
Affiliation(s)
- Beatriz F S Guedes
- CNC-Center for Neuroscience and Cell Biology and CIBB-Center for Innovative Biomedicine and Biotechnology, University of Coimbra, 3004-504 Coimbra, Portugal
| | - Sandra Morais Cardoso
- CNC-Center for Neuroscience and Cell Biology and CIBB-Center for Innovative Biomedicine and Biotechnology, University of Coimbra, 3004-504 Coimbra, Portugal
- Institute of Cellular and Molecular Biology, Faculty of Medicine, University of Coimbra, 3004-504 Coimbra, Portugal
| | - Ana Raquel Esteves
- CNC-Center for Neuroscience and Cell Biology and CIBB-Center for Innovative Biomedicine and Biotechnology, University of Coimbra, 3004-504 Coimbra, Portugal
- IIIUC-Institute for Interdisciplinary Research, University of Coimbra, 3004-504 Coimbra, Portugal
| |
Collapse
|
19
|
Al-Kuraishy HM, Al-Gareeb AI, Elewa YHA, Zahran MH, Alexiou A, Papadakis M, Batiha GES. Parkinson's Disease Risk and Hyperhomocysteinemia: The Possible Link. Cell Mol Neurobiol 2023:10.1007/s10571-023-01350-8. [PMID: 37074484 DOI: 10.1007/s10571-023-01350-8] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2023] [Accepted: 04/09/2023] [Indexed: 04/20/2023]
Abstract
Parkinson's disease (PD) is one of the most common degenerative brain disorders caused by the loss of dopaminergic neurons in the substantia nigra (SN). Lewy bodies and -synuclein accumulation in the SN are hallmarks of the neuropathology of PD. Due to lifestyle changes and prolonged L-dopa administration, patients with PD frequently have vitamin deficiencies, especially folate, vitamin B6, and vitamin B12. These disorders augment circulating levels of Homocysteine with the development of hyperhomocysteinemia, which may contribute to the pathogenesis of PD. Therefore, this review aimed to ascertain if hyperhomocysteinemia may play a part in oxidative and inflammatory signaling pathways that contribute to PD development. Hyperhomocysteinemia is implicated in the pathogenesis of neurodegenerative disorders, including PD. Hyperhomocysteinemia triggers the development and progression of PD by different mechanisms, including oxidative stress, mitochondrial dysfunction, apoptosis, and endothelial dysfunction. Particularly, the progression of PD is linked with high inflammatory changes and systemic inflammatory disorders. Hyperhomocysteinemia induces immune activation and oxidative stress. In turn, activated immune response promotes the development and progression of hyperhomocysteinemia. Therefore, hyperhomocysteinemia-induced immunoinflammatory disorders and abnormal immune response may aggravate abnormal immunoinflammatory in PD, leading to more progression of PD severity. Also, inflammatory signaling pathways like nuclear factor kappa B (NF-κB) and nod-like receptor pyrin 3 (NLRP3) inflammasome and other signaling pathways are intricate in the pathogenesis of PD. In conclusion, hyperhomocysteinemia is involved in the development and progression of PD neuropathology either directly via induction degeneration of dopaminergic neurons or indirectly via activation of inflammatory signaling pathways.
Collapse
Affiliation(s)
- Hayder M Al-Kuraishy
- Department of Clinical Pharmacology and Medicine, College of Medicine, Al-Mustansiriya University, Baghdad, Iraq
| | - Ali I Al-Gareeb
- Department of Clinical Pharmacology and Medicine, College of Medicine, Al-Mustansiriya University, Baghdad, Iraq
| | - Yaser Hosny Ali Elewa
- Department of Histology and Cytology, Faculty of Veterinary Medicine, Zagazig University, Zagazig, Egypt.
- Faculty of Veterinary medicine , Hokkaido University, Sapporo, Japan.
| | - Mahmoud Hosny Zahran
- Internal Medicine Department, Faculty of Medicine, Zagazig University, Zagazig, 44519, Egypt
| | - Athanasios Alexiou
- Department of Science and Engineering, Novel Global Community Educational Foundation, Hebersham, NSW, 2770, Australia
- AFNP Med, 1030, Vienna, Austria
| | - Marios Papadakis
- Department of Surgery II, University Hospital Witten-Herdecke, University of Witten-Herdecke, Heusnerstrasse 40, 42283, Wuppertal, Germany.
| | - Gaber El-Saber Batiha
- Department of Pharmacology and Therapeutics, Faculty of Veterinary Medicine, Damanhur University, Damanhur, AlBeheira, 22511, Egypt.
| |
Collapse
|
20
|
Chan L, Chung CC, Yu RC, Hong CT. Cytokine profiles of plasma extracellular vesicles as progression biomarkers in Parkinson's disease. Aging (Albany NY) 2023; 15:1603-1614. [PMID: 36897204 PMCID: PMC10042681 DOI: 10.18632/aging.204575] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2022] [Accepted: 03/01/2023] [Indexed: 03/11/2023]
Abstract
BACKGROUND Inflammation contributes substantially to the pathogenesis of Parkinson's disease (PD). Plasma extracellular vesicle (EV)-derived cytokines are emerging biomarkers of inflammation. We conducted a longitudinal study of the plasma EV-derived cytokine profiles of people with PD (PwP). METHODS A total of 101 people with mild to moderate PD and 45 healthy controls (HCs) were recruited, and they completed motor assessments (Unified Parkinson Disease Rating Scale [UPDRS]) and cognitive tests at baseline and 1-year follow-up. We isolated the participants' plasma EVs and analyzed their levels of cytokines, including interleukin (IL)-1β, IL-6, IL-10, tumor necrosis factor (TNF)-α, and transforming growth factor (TGF)-β. RESULTS We noted no significant changes in the plasma EV-derived cytokine profiles of the PwPs and HCs between baseline and the 1-year follow-up. Among the PwP, changes in plasma EV-derived IL-1β, TNF-α and IL-6 levels were significantly associated with changes in the severity of postural instability and gait disturbance (PIGD) and cognition. Baseline plasma EV-derived IL-1β, TNF-α, IL-6, and IL-10 levels were significantly associated with the severity of PIGD and cognitive symptoms at follow-up, and PwP with elevated IL-1β and IL-6 levels exhibited significant progression of PIGD over the study period. CONCLUSION These results suggested the role of inflammation in PD progression. In addition, baseline levels of plasma EV-derived proinflammatory cytokines can be used to predict the progression of PIGD, the most severe motor symptom of PD. Additional studies with longer follow-up periods are necessary, and plasma EV-derived cytokines may serve as effective biomarkers of PD progression.
Collapse
Affiliation(s)
- Lung Chan
- Department of Neurology, Shuang Ho Hospital, Taipei Medical University, Taipei, Taiwan
- Department of Neurology, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan
- Taipei Neuroscience Institute, Taipei Medical University, Taipei, Taiwan
| | - Chen-Chih Chung
- Department of Neurology, Shuang Ho Hospital, Taipei Medical University, Taipei, Taiwan
- Department of Neurology, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan
- Taipei Neuroscience Institute, Taipei Medical University, Taipei, Taiwan
| | - Ruan-Ching Yu
- Division of Psychiatry, University College London, London, UK
| | - Chien-Tai Hong
- Department of Neurology, Shuang Ho Hospital, Taipei Medical University, Taipei, Taiwan
- Department of Neurology, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan
- Taipei Neuroscience Institute, Taipei Medical University, Taipei, Taiwan
| |
Collapse
|
21
|
The Role of Bacteria-Mitochondria Communication in the Activation of Neuronal Innate Immunity: Implications to Parkinson's Disease. Int J Mol Sci 2023; 24:ijms24054339. [PMID: 36901773 PMCID: PMC10001700 DOI: 10.3390/ijms24054339] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Revised: 02/13/2023] [Accepted: 02/15/2023] [Indexed: 02/24/2023] Open
Abstract
Mitochondria play a key role in regulating host metabolism, immunity and cellular homeostasis. Remarkably, these organelles are proposed to have evolved from an endosymbiotic association between an alphaproteobacterium and a primitive eukaryotic host cell or an archaeon. This crucial event determined that human cell mitochondria share some features with bacteria, namely cardiolipin, N-formyl peptides, mtDNA and transcription factor A, that can act as mitochondrial-derived damage-associated molecular patterns (DAMPs). The impact of extracellular bacteria on the host act largely through the modulation of mitochondrial activities, and often mitochondria are themselves immunogenic organelles that can trigger protective mechanisms through DAMPs mobilization. In this work, we demonstrate that mesencephalic neurons exposed to an environmental alphaproteobacterium activate innate immunity through toll-like receptor 4 and Nod-like receptor 3. Moreover, we show that mesencephalic neurons increase the expression and aggregation of alpha-synuclein that interacts with mitochondria, leading to their dysfunction. Mitochondrial dynamic alterations also affect mitophagy which favors a positive feedback loop on innate immunity signaling. Our results help to elucidate how bacteria and neuronal mitochondria interact and trigger neuronal damage and neuroinflammation and allow us to discuss the role of bacterial-derived pathogen-associated molecular patterns (PAMPs) in Parkinson's disease etiology.
Collapse
|
22
|
Blood Biomarkers in Patients with Parkinson's Disease: A Review in Context of Anesthetic Care. Diagnostics (Basel) 2023; 13:diagnostics13040693. [PMID: 36832181 PMCID: PMC9955162 DOI: 10.3390/diagnostics13040693] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Revised: 02/08/2023] [Accepted: 02/10/2023] [Indexed: 02/15/2023] Open
Abstract
Parkinson's disease (PD) is the second most common inflammatory neurodegenerative disorder after dementia. Preclinical and epidemiological data strongly suggest that chronic neuroinflammation slowly induces neuronal dysfunction. Activated microglia secrete several neurotoxic substances, such as chemokines and proinflammatory cytokines, which may promote blood-brain barrier (BBB) permeabilization. CD4+ T cells comprise proinflammatory cells such as T helper (Th) 1 and Th17 cells, as well as anti-inflammatory cells such as Th2 and T regulatory cells (Tregs). Th1 and Th17 cells can be detrimental to dopamine neurons, whereas Th2 and Tregs are neuroprotective. The results of studies on the serum levels of cytokines such as IFN-γ and TNF-α secreted by Th1 T cells, IL-8 and IL-10 secreted by Th2 T cells, and IL-17 secreted by Th17 cells in PD patients are not uniform. In addition, the relationships between serum cytokine levels and motor and non-motor symptoms of PD are controversial. Surgical stress and anesthesia induce inflammatory responses by disturbing the balance between pro- and anti-inflammatory cytokines, which may exacerbate the neuroinflammatory response in PD patients. Here we review studies on blood inflammatory biomarkers in PD patients and discuss the roles of surgery and anesthesia in PD progression.
Collapse
|
23
|
Claudino Dos Santos JC, Lima MPP, Brito GADC, Viana GSDB. Role of enteric glia and microbiota-gut-brain axis in parkinson disease pathogenesis. Ageing Res Rev 2023; 84:101812. [PMID: 36455790 DOI: 10.1016/j.arr.2022.101812] [Citation(s) in RCA: 24] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Revised: 11/24/2022] [Accepted: 11/25/2022] [Indexed: 11/30/2022]
Abstract
The microbiota-gut-brain axis or simple gut-brain axis (GBA) is a complex and interactive bidirectional communication network linking the gut to the brain. Alterations in the composition of the gut microbiome have been linked to GBA dysfunction, central nervous system (CNS) inflammation, and dopaminergic degeneration, as those occurring in Parkinson's disease (PD). Besides inflammation, the activation of brain microglia is known to play a central role in the damage of dopaminergic neurons. Inflammation is attributed to the toxic effect of aggregated α-synuclein, in the brain of PD patients. It has been suggested that the α-synuclein misfolding might begin in the gut and spread "prion-like", via the vagus nerve into the lower brainstem and ultimately to the midbrain, known as the Braak hypothesis. In this review, we discuss how the microbiota-gut-brain axis and environmental influences interact with the immune system to promote a pro-inflammatory state that is involved in the initiation and progression of misfolded α-synuclein proteins and the beginning of the early non-motor symptoms of PD. Furthermore, we describe a speculative bidirectional model that explains how the enteric glia is involved in the initiation and spreading of inflammation, epithelial barrier disruption, and α-synuclein misfolding, finally reaching the central nervous system and contributing to neuroinflammatory processes involved with the initial non-motor symptoms of PD.
Collapse
Affiliation(s)
- Júlio César Claudino Dos Santos
- Medical School of the Christus University Center - UNICHRISTUS, Fortaleza, CE, Brazil; Graduate Program in Morphofunctional Sciences, Federal University of Ceará - UFC, Fortaleza, CE, Brazil.
| | | | - Gerly Anne de Castro Brito
- Physiology and Pharmacology Department of the Federal University of Ceará - UFC, Fortaleza, CE, Brazil; Morphology Department of the Federal University of Ceará - UFC, Fortaleza, CE, Brazil
| | | |
Collapse
|
24
|
Moradi S, Zamani A, Mazdeh M, Ramezani M, Komaki A, Talebi-Ghane E, Mahdi Eftekharian M. An inclusive study on cytokine gene expression in Parkinson's disease: Advanced analysis using Bayesian regression model. Hum Immunol 2023; 84:123-129. [PMID: 36400640 DOI: 10.1016/j.humimm.2022.11.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2022] [Revised: 10/22/2022] [Accepted: 11/01/2022] [Indexed: 11/17/2022]
Abstract
BACKGROUND Parkinson's disease (PD) is the second most prevalent neurodegenerative disease throughout the globe whose specific pathophysiology is unknown. Researchers believe that inflammation and oxidative stress contribute to PD development. Also, alterations in cytokines production appear to have a key role in the pathogenesis of PD. The aim of the current study was to evaluate gene expression levels of nine cytokines in the peripheral blood of PD patients compared to a healthy control group. METHODS Real-time PCR was used to analyze cytokines gene expression followed by advanced statistical analysis performed using Bayesian regression model in R (version 4.1.0) statistical software. RESULTS TNF-α, IL-1β, IL-2, IL-4, IFN-γ, IL-17 and IL-6 transcript levels were upregulated in patients compared to healthy controls. However, CXCL8 expression was downregulated in patients compared to controls and IFN-β expression was not statistically different between the two groups. While we found no significant difference between the groups based on gender and age regarding TNF-α, IL-1β, CXCL8, IL-2, IL-4, IFN-γ and IFN-β gene expression, IL-6 and IL-17 transcript levels showed significant upregulations in older subjects and in females, respectively. In addition, we found that the interaction effects between gender and group on gene expression levels were not significant. In this way, the subgroup analysis within gender revealed that in each gender, expression levels of TNF-α, IL-2, IL-4, IL-6, IFN-γ and IL-17 were significantly higher in patients than controls. However, IFN-β expression level did not show any significant difference between groups and subgroups. CONCLUSION The present study provides evidence on significant alterations in cytokine expression with different patterns and points to immune system dysregulation in PD.
Collapse
Affiliation(s)
- Shadi Moradi
- Department of Immunology, School of Medicine, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Alireza Zamani
- Department of Immunology, School of Medicine, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Mehrdokht Mazdeh
- Department of Neurology, School of Medicine, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Mahdi Ramezani
- Department of Anatomy, School of Medicine, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Alireza Komaki
- Neurophysiology Research Center, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Elahe Talebi-Ghane
- Modeling of Noncommunicable Diseases Research Center, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Mohammad Mahdi Eftekharian
- Department of Immunology, School of Medicine, Hamadan University of Medical Sciences, Hamadan, Iran; Neurophysiology Research Center, Hamadan University of Medical Sciences, Hamadan, Iran.
| |
Collapse
|
25
|
Minchev D, Kazakova M, Sarafian V. Neuroinflammation and Autophagy in Parkinson's Disease-Novel Perspectives. Int J Mol Sci 2022; 23:ijms232314997. [PMID: 36499325 PMCID: PMC9735607 DOI: 10.3390/ijms232314997] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2022] [Revised: 11/22/2022] [Accepted: 11/28/2022] [Indexed: 12/02/2022] Open
Abstract
Parkinson's disease (PD) is the second most prevalent neurodegenerative disorder. It is characterized by the accumulation of α-Synuclein aggregates and the degeneration of dopaminergic neurons in substantia nigra in the midbrain. Although the exact mechanisms of neuronal degeneration in PD remain largely elusive, various pathogenic factors, such as α-Synuclein cytotoxicity, mitochondrial dysfunction, oxidative stress, and pro-inflammatory factors, may significantly impair normal neuronal function and promote apoptosis. In this context, neuroinflammation and autophagy have emerged as crucial processes in PD that contribute to neuronal loss and disease development. They are regulated in a complex interconnected manner involving most of the known PD-associated genes. This review summarizes evidence of the implication of neuroinflammation and autophagy in PD and delineates the role of inflammatory factors and autophagy-related proteins in this complex condition. It also illustrates the particular significance of plasma and serum immune markers in PD and their potential to provide a personalized approach to diagnosis and treatment.
Collapse
Affiliation(s)
- Danail Minchev
- Department of Medical Biology, Medical University-Plovdiv, 4000 Plovdiv, Bulgaria
- Research Institute at Medical University-Plovdiv, 4000 Plovdiv, Bulgaria
- Correspondence:
| | - Maria Kazakova
- Department of Medical Biology, Medical University-Plovdiv, 4000 Plovdiv, Bulgaria
- Research Institute at Medical University-Plovdiv, 4000 Plovdiv, Bulgaria
| | - Victoria Sarafian
- Department of Medical Biology, Medical University-Plovdiv, 4000 Plovdiv, Bulgaria
- Research Institute at Medical University-Plovdiv, 4000 Plovdiv, Bulgaria
| |
Collapse
|
26
|
Tönges L, Buhmann C, Klebe S, Klucken J, Kwon EH, Müller T, Pedrosa DJ, Schröter N, Riederer P, Lingor P. Blood-based biomarker in Parkinson's disease: potential for future applications in clinical research and practice. J Neural Transm (Vienna) 2022; 129:1201-1217. [PMID: 35428925 PMCID: PMC9463345 DOI: 10.1007/s00702-022-02498-1] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2022] [Accepted: 03/27/2022] [Indexed: 12/12/2022]
Abstract
The clinical presentation of Parkinson's disease (PD) is both complex and heterogeneous, and its precise classification often requires an intensive work-up. The differential diagnosis, assessment of disease progression, evaluation of therapeutic responses, or identification of PD subtypes frequently remains uncertain from a clinical point of view. Various tissue- and fluid-based biomarkers are currently being investigated to improve the description of PD. From a clinician's perspective, signatures from blood that are relatively easy to obtain would have great potential for use in clinical practice if they fulfill the necessary requirements as PD biomarker. In this review article, we summarize the knowledge on blood-based PD biomarkers and present both a researcher's and a clinician's perspective on recent developments and potential future applications.
Collapse
Affiliation(s)
- Lars Tönges
- Department of Neurology, Ruhr-University Bochum, St. Josef Hospital, Gudrunstr. 56, 44791, Bochum, Germany.
- Center for Protein Diagnostics (ProDi), Ruhr University Bochum, 44801, Bochum, Nordrhein-Westfalen, Germany.
| | - Carsten Buhmann
- Department of Neurology, University Medical Center Hamburg-Eppendorf, 20246, Hamburg, Germany
| | - Stephan Klebe
- Department of Neurology, University Hospital Essen, 45147, Essen, Germany
| | - Jochen Klucken
- Department of Digital Medicine, University Luxembourg, LCSB, L-4367, Belval, Luxembourg
- Digital Medicine Research Group, Luxembourg Institute of Health, L-1445, Strassen, Luxembourg
- Centre Hospitalier de Luxembourg, Digital Medicine Research Clinic, L-1210, Luxembourg, Luxembourg
| | - Eun Hae Kwon
- Department of Neurology, Ruhr-University Bochum, St. Josef Hospital, Gudrunstr. 56, 44791, Bochum, Germany
| | - Thomas Müller
- Department of Neurology, St. Joseph Hospital Berlin-Weissensee, 13088, Berlin, Germany
| | - David J Pedrosa
- Department of Neurology, Universitätsklinikum Gießen and Marburg, Marburg Site, 35043, Marburg, Germany
- Center of Mind, Brain and Behaviour (CMBB), Philipps-Universität Marburg, 35043, Marburg, Germany
| | - Nils Schröter
- Department of Neurology and Clinical Neuroscience, University of Freiburg, 79106, Freiburg, Germany
| | - Peter Riederer
- Psychosomatics and Psychotherapy, University Hospital Wuerzburg, Clinic and Policlinic for Psychiatry, 97080, Wuerzburg, Germany
- University of Southern Denmark Odense, 5000, Odense, Denmark
| | - Paul Lingor
- School of Medicine, Klinikum Rechts Der Isar, Department of Neurology, Technical University of Munich, 81675, München, Germany
| |
Collapse
|
27
|
Cavalheiro EKFF, da Silva LE, Oliveira MP, Silva MG, Damiani AP, Ribeiro CB, Magenis ML, Cucker L, Michels M, Joaquim L, Machado RS, Vilela TC, Bitencourt RM, Andrade VM, Dal-Pizzol F, Petronilho F, Tuon T, Rezin GT. Effects of obesity on neuroinflammatory and neurochemical parameters in an animal model of reserpine-induced Parkinson's disease. Behav Brain Res 2022; 434:114019. [PMID: 35872330 DOI: 10.1016/j.bbr.2022.114019] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2022] [Revised: 06/30/2022] [Accepted: 07/19/2022] [Indexed: 12/06/2022]
Abstract
Obesity is associated with low-grade chronic inflammation and oxidative stress, affecting the brain's reward system by decreasing dopaminergic neurotransmission. It is known that dopaminergic neurotransmission is also reduced in Parkinson's disease (PD), and high adiposity is considered a risk factor for the development of several neurodegenerative diseases, including PD. This study aimed to assess the effects of obesity on neuroinflammatory and neurochemical parameters in an animal model of reserpine-induced PD. The obese group showed increased inflammation and oxidative damage as well as inhibition of mitochondrial respiratory chain complexes I and II and DNA damage in the evaluated structures. The PD group did not show inflammation or mitochondrial dysfunction but exhibited oxidative damage in the hippocampus. The combination group (obesity + PD) showed reduced inflammation and oxidative stress and increased activity of complexes I and II of the mitochondrial respiratory chain in most of the analyzed structures. On the other hand, obesity + PD caused oxidative damage to proteins in the liver, prefrontal cortex, striatum, and cerebral cortex and oxidative stress in the hypothalamus, resulting in reduced catalase activity. Furthermore, the combination group showed DNA damage in blood, liver, and cerebral cortex. In conclusion, it was observed that the association of obesity and PD did not increase inflammation, oxidative stress, or mitochondrial dysfunction in most of the evaluated structures but increased oxidative damage and induced mechanisms that led to DNA damage in peripheral tissues and brain structures.
Collapse
Affiliation(s)
- Eulla Keimili Fernandes Ferreira Cavalheiro
- Laboratory of Neurobiology of Inflammatory and Metabolic Processes, Postgraduate Program in Health Sciences, University of Southern Santa Catarina, Tubarão, Santa Catarina, Brazil
| | - Larissa Espindola da Silva
- Laboratory of Neurobiology of Inflammatory and Metabolic Processes, Postgraduate Program in Health Sciences, University of Southern Santa Catarina, Tubarão, Santa Catarina, Brazil
| | - Mariana P Oliveira
- Laboratory of Neurobiology of Inflammatory and Metabolic Processes, Postgraduate Program in Health Sciences, University of Southern Santa Catarina, Tubarão, Santa Catarina, Brazil
| | - Marina G Silva
- Laboratory of Behavioral Neuroscience, Postgraduate Program in Health Sciences, University of Southern Santa Catarina, Tubarão, Santa Catarina, Brazil
| | - Adriani P Damiani
- Laboratório de Biologia Celular e Molecular, Universidade do Extremo Sul Catarinense, UNESC, Avenida Universitária, 1105, Criciúma, SC, Brazil
| | - Catharina B Ribeiro
- Laboratório de Biologia Celular e Molecular, Universidade do Extremo Sul Catarinense, UNESC, Avenida Universitária, 1105, Criciúma, SC, Brazil
| | - Marina L Magenis
- Laboratório de Biologia Celular e Molecular, Universidade do Extremo Sul Catarinense, UNESC, Avenida Universitária, 1105, Criciúma, SC, Brazil
| | - Luana Cucker
- Laboratory of Experimental Pathophysiology, Graduate Program in Health Sciences, University of Southern Santa Catarina, Criciúma, SC, Brazil
| | - Monique Michels
- Laboratory of Experimental Pathophysiology, Graduate Program in Health Sciences, University of Southern Santa Catarina, Criciúma, SC, Brazil
| | - Larissa Joaquim
- Laboratory of Neurobiology of Inflammatory and Metabolic Processes, Postgraduate Program in Health Sciences, University of Southern Santa Catarina, Tubarão, Santa Catarina, Brazil
| | - Richard Simon Machado
- Laboratory of Neurobiology of Inflammatory and Metabolic Processes, Postgraduate Program in Health Sciences, University of Southern Santa Catarina, Tubarão, Santa Catarina, Brazil
| | - Thais C Vilela
- Laboratory of Neurobiology of Inflammatory and Metabolic Processes, Postgraduate Program in Health Sciences, University of Southern Santa Catarina, Tubarão, Santa Catarina, Brazil
| | - Rafael M Bitencourt
- Laboratory of Behavioral Neuroscience, Postgraduate Program in Health Sciences, University of Southern Santa Catarina, Tubarão, Santa Catarina, Brazil
| | - Vanessa M Andrade
- Laboratório de Biologia Celular e Molecular, Universidade do Extremo Sul Catarinense, UNESC, Avenida Universitária, 1105, Criciúma, SC, Brazil
| | - Felipe Dal-Pizzol
- Laboratory of Experimental Pathophysiology, Graduate Program in Health Sciences, University of Southern Santa Catarina, Criciúma, SC, Brazil
| | - Fabrícia Petronilho
- Laboratory of Neurobiology of Inflammatory and Metabolic Processes, Postgraduate Program in Health Sciences, University of Southern Santa Catarina, Tubarão, Santa Catarina, Brazil
| | - Talita Tuon
- Laboratory of Neurobiology of Inflammatory and Metabolic Processes, Postgraduate Program in Health Sciences, University of Southern Santa Catarina, Tubarão, Santa Catarina, Brazil
| | - Gislaine Tezza Rezin
- Laboratory of Neurobiology of Inflammatory and Metabolic Processes, Postgraduate Program in Health Sciences, University of Southern Santa Catarina, Tubarão, Santa Catarina, Brazil.
| |
Collapse
|
28
|
Li C, Hou B, Li X, Yang Z, Xie A. Role of CD36 rs1761667 AA genotype in the expression of inflammatory cytokines and Parkinson's disease progression: A case-control study in a northern Han Chinese population. Neurosci Lett 2022; 784:136736. [PMID: 35709881 DOI: 10.1016/j.neulet.2022.136736] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2022] [Revised: 05/28/2022] [Accepted: 06/10/2022] [Indexed: 11/28/2022]
Abstract
OBJECTIVE This study aimed to investigate the effect of CD36 rs1761667 gene polymorphisms on the expression of CD36 and inflammatory cytokines and the progression of Parkinson's disease (PD). METHODS A total of 138 patients with PD (60 men and 78 women) and 132 healthy controls (48 men and 84 women) from a northern Han Chinese population were enrolled in this case-control study. Polymerase chain reaction-restriction fragment length polymorphism was used to detect the CD36 rs1761667 genotype. An enzyme-linked immunosorbent assay was used to determine the expression of CD36, interleukin (IL)-6, IL-1β, and tumor necrosis factor (TNF)-α in the plasma. RESULTS The frequency of the rs1761667 AA genotype was significantly higher in patients with PD than that in healthy controls, suggesting AA genotype to be a risk factor for PD. When compared with those in healthy controls, CD36 levels were significantly lower in patients with PD, whereas IL-6, IL-1β, and TNF-α levels were significantly higher in patients with PD. Furthermore, GA and AA carriers with PD showed lower levels of CD36, and GG, GA, and AA carriers showed higher levels of IL-6, IL-1β, and TNF-α than those in healthy controls. In the PD patient group, AA and GA carriers had lower expression levels of CD36 than GG carriers did, and CD36 levels were lower in AA carriers than in GA carriers. Conversely, AA carriers had elevated expression levels of IL-6 compared with that of GG and GA carriers. Logistic regression analysis revealed that IL-6, IL-1β, and TNF-α levels were risk factors for PD in a northern Han Chinese population. CONCLUSION The CD36 rs1761667 AA genotype may increase susceptibility to PD and the expression of inflammatory cytokines.
Collapse
Affiliation(s)
- Chengqian Li
- Department of Neurology, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Binghui Hou
- Department of Neurology, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Xiaoyuan Li
- Department of Traditional Chinese Medicine, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Zhengjie Yang
- Department of Neurology, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Anmu Xie
- Department of Neurology, The Affiliated Hospital of Qingdao University, Qingdao, China.
| |
Collapse
|
29
|
Bottigliengo D, Foco L, Seibler P, Klein C, König IR, Del Greco M F. A Mendelian randomization study investigating the causal role of inflammation on Parkinson’s disease. Brain 2022; 145:3444-3453. [PMID: 35656776 PMCID: PMC9586538 DOI: 10.1093/brain/awac193] [Citation(s) in RCA: 38] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2022] [Revised: 04/10/2022] [Accepted: 05/10/2022] [Indexed: 11/13/2022] Open
Abstract
There is increasing evidence for inflammation as a determinant in the pathogenesis of Parkinson’s disease, but its role in parkinsonian neurodegeneration remains elusive. It is not clear whether inflammatory cascades are causes or consequences of dopamine neuron death. In the present study, we aim to perform an in-depth statistical investigation of the causal relationship between inflammation and Parkinson’s disease using a two-sample Mendelian randomization design. Genetic instruments were selected using summary-level data from the largest genome-wide association studies to date (sample size ranging from 13 955 to 204 402 individuals) conducted on a European population for the following inflammation biomarkers: C-reactive protein, interleukin-6, interleukin 1 receptor antagonist and tumour necrosis factor α. Genetic association data on Parkinson’s disease (56 306 cases and 1 417 791 controls) and age at onset of Parkinson’s disease (28 568 cases) were obtained from the International Parkinson’s Disease Genomics Consortium. On primary analysis, causal associations were estimated on sets of strong (P-value < 5 × 10−8; F-statistic > 10) and independent (linkage disequilibrium r2 < 0.001) genetic instruments using the inverse-variance weighted method. In sensitivity analysis, we estimated causal effects using robust Mendelian randomization methods and after removing pleiotropic genetic variants. Reverse causation was also explored. We repeated the analysis on different data sources for inflammatory biomarkers to check the consistency of the findings. In all the three data sources selected for interleukin-6, we found statistical evidence for an earlier age at onset of Parkinson’s disease associated with increased interleukin-6 concentration [years difference per 1 log-unit increase = −2.364, 95% confidence interval (CI) = −4.789–0.060; years difference per 1 log-unit increase = −2.011, 95% CI = −3.706 to −0.317; years difference per 1 log-unit increase = −1.569, 95% CI = −2.891 to −0.247]. We did not observe any statistical evidence for causal effects of C-reactive protein, interleukin 1 receptor antagonist and tumour necrosis factor α on both Parkinson’s disease and its age at onset. Results after excluding possible pleiotropic genetic variants were consistent with findings from primary analyses. When investigating reverse causation, we did not find evidence for a causal effect of Parkinson’s disease or age at onset on any biomarkers of inflammation. We found evidence for a causal association between the onset of Parkinson’s disease and interleukin-6. The findings of this study suggest that the pro-inflammatory activity of the interleukin-6 cytokine could be a determinant of prodromal Parkinson’s disease.
Collapse
Affiliation(s)
| | - Luisa Foco
- Institute for Biomedicine, Eurac Research , Bolzano (39100), Italy
| | - Philip Seibler
- Institute of Neurogenetics, University of Lübeck and University Hospital of Schleswig-Holstein , Lübeck, Germany
| | - Christine Klein
- Institute of Neurogenetics, University of Lübeck and University Hospital of Schleswig-Holstein , Lübeck, Germany
- Department of Psychiatry and Psychotherapy, University of Lübeck , Germany
| | - Inke R. König
- Institute of Medical Biometry and Statistics, University of Lübeck and University Hospital of Schleswig-Holstein , Lübeck, Germany
| | | |
Collapse
|
30
|
Kim R, Kim HJ, Shin JH, Lee CY, Jeon SH, Jeon B. Serum Inflammatory Markers and Progression of Nonmotor Symptoms in Early Parkinson's Disease. Mov Disord 2022; 37:1535-1541. [PMID: 35596676 DOI: 10.1002/mds.29056] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2021] [Revised: 03/03/2022] [Accepted: 03/21/2022] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND The influence of peripheral inflammation on nonmotor symptoms (NMSs) in Parkinson's disease (PD) remains unclear. OBJECTIVE The aim of this study was to explore whether serum inflammatory marker profiles are associated with the progression of NMSs in early PD. METHODS We included 45 patients with early PD and 20 healthy control subjects. Six inflammatory markers, including interleukin (IL)-1β, IL-2, IL-6, IL-10, tumor necrosis factor-α, and high-sensitivity C-reactive protein, were measured. NMSs were assessed using the Non-Motor Symptoms Scale, Montreal Cognitive Assessment, and Composite Autonomic Symptom Score-31 at baseline and after 3 years. RESULTS Principal component (PC) analysis showed that only PC3 scores, mainly loaded by IL-2 and IL-6, were significantly elevated in the PD group compared with the control group. Higher PC3 scores in the PD group were associated with faster progression of Non-Motor Symptoms Scale total and mood/apathy domain scores. There were no significant associations of PC scores with Montreal Cognitive Assessment and Composite Autonomic Symptom Score-31 score changes. CONCLUSIONS Peripheral inflammation may be related to the evolution of NMSs, particularly mood symptoms, in the early stages of PD. © 2022 International Parkinson and Movement Disorder Society.
Collapse
Affiliation(s)
- Ryul Kim
- Department of Neurology, Inha University Hospital, Inha University College of Medicine, Incheon, South Korea
| | - Han-Joon Kim
- Department of Neurology and Movement Disorder Center, Seoul National University Hospital, Seoul National University College of Medicine, Seoul, South Korea
| | - Jung Hwan Shin
- Department of Neurology and Movement Disorder Center, Seoul National University Hospital, Seoul National University College of Medicine, Seoul, South Korea
| | - Chan Young Lee
- Department of Neurology, School of Medicine, Ewha Womans University Mokdong Hospital, Seoul, South Korea
| | | | - Beomseok Jeon
- Department of Neurology and Movement Disorder Center, Seoul National University Hospital, Seoul National University College of Medicine, Seoul, South Korea
| |
Collapse
|
31
|
Diaz K, Kohut ML, Russell DW, Stegemöller EL. Peripheral inflammatory cytokines and motor symptoms in persons with Parkinson's disease. Brain Behav Immun Health 2022; 21:100442. [PMID: 35308082 PMCID: PMC8927904 DOI: 10.1016/j.bbih.2022.100442] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2021] [Revised: 02/28/2022] [Accepted: 03/03/2022] [Indexed: 12/11/2022] Open
Abstract
Background Many of the motor symptoms of Parkinson's disease (PD) impact quality of life and are not fully ameliorated by current pharmacological and surgical treatments. A better understanding of the pathophysiology underlying these symptoms is needed. Previous research has suggested that inflammation may play a significant role in PD pathophysiology and progression, but there is limited research exploring how inflammation directly relates to motor symptoms in PD. Thus, the purpose of this study was to evaluate associations between peripheral immune inflammatory markers and motor symptoms of PD, specifically, tremor, bradykinesia, and postural and gait instability. We hypothesized that peripheral inflammatory cytokines would predict the severity of motor symptoms in persons with PD, and that there will be higher levels of peripheral inflammatory cytokine markers in persons with PD when compared to age-matched healthy older adults. Methods Twenty-six participants with PD and fourteen healthy older adults completed the study. For participants with PD, the motor section of the Unified Parkinson's Disease Rating Scale (UPDRS) was recorded and scored by two Movement Disorders Neurologists masked to the study. A blood sample was collected from both participants with PD and the healthy older adults. Through the MILLIPLEX® map High Sensitivity Human Cytokine Kit, key inflammation-related markers were analyzed (TNF-α, IFN-γ, IL-1β, IL-8, IL-2, IL-7, IL-5, IL-13, IL, 4, IL-10 IL-12p70, GM-CSF, and IL-6). Results Results revealed significantly higher levels of IL-6 in persons with PD when compared to healthy older adults (p = 0.005). Moreover, results revealed that higher levels of IL-4 (p = 0.011) and lower levels of IFNγ (p = 0.003) significantly predicted more severe tremor in persons with PD. No other associations between the peripheral inflammation markers and other motor symptoms were observed. Conclusions Overall, these results are consistent with a growing body of literature that implicates inflammatory cytokines in the PD, and further suggests that inflammatory cytokines, or lack thereof, may be associated with tremor in persons with PD.
Collapse
Affiliation(s)
- K Diaz
- Department of Kinesiology, Iowa State University, Ames, IA, USA
| | - M L Kohut
- Department of Kinesiology, Iowa State University, Ames, IA, USA
| | - D W Russell
- Department of Human Development & Family Studies, Iowa State University, Ames, IA, USA
| | - E L Stegemöller
- Department of Kinesiology, Iowa State University, Ames, IA, USA
| |
Collapse
|
32
|
Bartl M, Xylaki M, Bähr M, Weber S, Trenkwalder C, Mollenhauer B. Evidence for immune system alterations in peripheral biological fluids in Parkinson's disease. Neurobiol Dis 2022; 170:105744. [DOI: 10.1016/j.nbd.2022.105744] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2022] [Revised: 04/19/2022] [Accepted: 04/26/2022] [Indexed: 12/16/2022] Open
|
33
|
Manzine PR, Vatanabe IP, Grigoli MM, Pedroso RV, de Almeida MPOMEP, de Oliveira DDSMS, Crispim Nascimento CM, Peron R, de Souza Orlandi F, Cominetti MR. Potential Protein Blood-Based Biomarkers in Different Types of Dementia: A Therapeutic Overview. Curr Pharm Des 2022; 28:1170-1186. [DOI: 10.2174/1381612828666220408124809] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2021] [Accepted: 02/24/2022] [Indexed: 11/22/2022]
Abstract
Abstract:
Biomarkers capable of identifying and distinguishing types of dementia such as Alzheimer's disease (AD), Parkinson's disease dementia (PDD), Lewy body dementia (LBD), and frontotemporal dementia (FTD) have been become increasingly relentless. Studies of possible biomarker proteins in the blood that can help formulate new diagnostic proposals and therapeutic visions of different types of dementia are needed. However, due to several limitations of these biomarkers, especially in discerning dementia, their clinical applications are still undetermined. Thus, the updating of biomarker blood proteins that can help in the diagnosis and discrimination of these main dementia conditions is essential to enable new pharmacological and clinical management strategies, with specificities for each type of dementia. To review the literature concerning protein blood-based AD and non-AD biomarkers as new pharmacological targets and/or therapeutic strategies. Recent findings for protein-based AD, PDD, LBD, and FTD biomarkers are focused on in this review. Protein biomarkers were classified according to the pathophysiology of the dementia types. The diagnosis and distinction of dementia through protein biomarkers is still a challenge. The lack of exclusive biomarkers for each type of dementia highlights the need for further studies in this field. Only after this, blood biomarkers may have a valid use in clinical practice as they are promising to help in diagnosis and in the differentiation of diseases.
Collapse
Affiliation(s)
- Patricia Regina Manzine
- Department of Gerontology, Federal University of Sao Carlos, Brazil. Highway Washington Luis, Km 235. Monjolinho
| | - Izabela Pereira Vatanabe
- Department of Gerontology, Federal University of Sao Carlos, Brazil. Highway Washington Luis, Km 235. Monjolinho
| | - Marina Mantellatto Grigoli
- Department of Gerontology, Federal University of Sao Carlos, Brazil. Highway Washington Luis, Km 235. Monjolinho
| | - Renata Valle Pedroso
- Department of Gerontology, Federal University of Sao Carlos, Brazil. Highway Washington Luis, Km 235. Monjolinho
| | | | | | | | - Rafaela Peron
- Department of Gerontology, Federal University of Sao Carlos, Brazil. Highway Washington Luis, Km 235. Monjolinho
| | - Fabiana de Souza Orlandi
- Department of Gerontology, Federal University of Sao Carlos, Brazil. Highway Washington Luis, Km 235. Monjolinho
| | - Márcia Regina Cominetti
- Department of Gerontology, Federal University of Sao Carlos, Brazil. Highway Washington Luis, Km 235. Monjolinho
| |
Collapse
|
34
|
Lawrie S, Coe S, Mansoubi M, Welch J, Razzaque J, Hu MT, Dawes H. Dietary Patterns and Nonmotor Symptoms in Parkinson's Disease: A Cross-Sectional Analysis. JOURNAL OF THE AMERICAN NUTRITION ASSOCIATION 2022; 42:393-402. [PMID: 35512773 DOI: 10.1080/07315724.2022.2056544] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
OBJECTIVE Evidence-based treatment for nonmotor symptoms in Parkinson's disease (PD) is limited. Lifestyle-based improvements including dietary changes may be a potential management strategy. The intent of this research was to investigate the extent to which 3 dietary indices (Mediterranean-DASH Diet Intervention for Neurodegenerative Delay [MIND], Dietary Inflammation Index [DII], and Healthy Diet Indicator [HDI-2020]) are associated with overall and individual nonmotor symptom severity among individuals with PD. METHOD An exploratory cross-sectional analysis of dietary (food frequency questionnaire) and clinical data was undertaken, including measures of overall nonmotor symptom severity, such as fatigue, depression, anxiety, apathy, sleep problems, daytime sleepiness, and cognitive impairment. The relationship between each dietary score and symptom outcome was assessed by linear regression for continuous variables and through general linear model analysis for tertiles of dietary adherence. RESULTS None of the dietary indices significantly predicted the total nonmotor symptom severity score. The HDI predicted a significant decrease in fatigue scores as measured by the NeuroQoL fatigue item (standardized β = -.19, p = 0.022), after adjusting for age, sex, energy intake, years since diagnosis, physical activity level, education, and smoking. Self-reported depression symptoms reduced by .17 (standardized β) for each unit increase in HDI score (p = 0.035), after controlling for age, gender, energy intake, and years since diagnosis. No other significant associations were evident between dietary scores and any other nonmotor symptoms. CONCLUSIONS Our results indicate that fatigue and depression in PD may be modified by diet; however, more research is needed using a larger sample to replicate these findings. Supplemental data for this article is available online at https://doi.org/10.1080/07315724.2022.2056544 .
Collapse
Affiliation(s)
- Sophie Lawrie
- Centre for Movement, Occupational and Rehabilitation Sciences (MOReS), Oxford Brookes University, Oxford, UK
| | - Shelly Coe
- Centre for Movement, Occupational and Rehabilitation Sciences (MOReS), Oxford Brookes University, Oxford, UK
- Oxford Brookes Centre for Nutrition and Health, Oxford Brookes University, Oxford, UK
| | - Maedeh Mansoubi
- College of Medicine and Health, University of Exeter, Exeter, UK
| | - Jessica Welch
- Oxford Parkinson's Disease Centre Clinical Cohort Team, Oxford, UK
| | - Jamil Razzaque
- Oxford Parkinson's Disease Centre Clinical Cohort Team, Oxford, UK
| | - Michele T Hu
- Division of Clinical Neurology, Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, UK
| | - Helen Dawes
- Centre for Movement, Occupational and Rehabilitation Sciences (MOReS), Oxford Brookes University, Oxford, UK
- College of Medicine and Health, University of Exeter, Exeter, UK
- Oxford Health BRC, University of Oxford, Oxford, UK
| |
Collapse
|
35
|
Balomenos V, Bounou L, Charisis S, Stamelou M, Ntanasi E, Georgiadi K, Mourtzinos I, Tzima K, Anastasiou CA, Xiromerisiou G, Maraki M, Yannakoulia M, Kosmidis MH, Dardiotis E, Hadjigeorgiou G, Sakka P, Stefanis L, Scarmeas N. Dietary Inflammatory Index score and prodromal Parkinson's disease incidence: The HELIAD study. J Nutr Biochem 2022; 105:108994. [PMID: 35341916 DOI: 10.1016/j.jnutbio.2022.108994] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2021] [Revised: 12/21/2021] [Accepted: 02/22/2022] [Indexed: 11/30/2022]
Abstract
AIM The aim of the present study was to investigate the association of the inflammatory potential of diet with prodromal Parkinson's disease (pPD) probability and incidence among community-dwelling older individuals without clinical features of parkinsonism at baseline. METHODS The sample consisted of 1,030 participants 65 years old or older, drawn from a population-based cohort study of older adults in Greece (Hellenic Longitudinal Investigation of Aging and Diet - HELIAD). We calculated pPD probability, according to International Parkinson and Movement Disorder Society research criteria. Dietary Inflammatory Index (DII) was used to measure the dietary inflammatory potential, with higher index score reflecting a more pro-inflammatory diet. Associations of baseline DII with pPD probability cross-sectionally, and with possible/probable pPD incidence (pPD probability ≥30%) during the follow-up period, were examined via general linear models and generalized estimating equations, respectively. RESULTS Cross-sectionally, one unit increase of DII score[DII (min, max) = -5.83, 6.01]was associated with 4.9% increased pPD probability [β=0.049, 95%CI (0.025-0.090), p<0.001]. Prospectively, 62 participants developed pPD during 3.1±0.9 (mean±SD) years of follow-up. One unit increase in DII was associated with 20.3% increased risk for developing pPD [RR=1.203, 95%CI (1.070-1.351), p=0.002]. Participants in the highest tertile of DII score were 2.6 times more likely to develop pPD [β=2.594, 95%CI (1.332-5.050), p=0.005], compared to those in the lowest tertile. CONCLUSION More pro-inflammatory diet was related with higher pPD probability and pPD incidence (pPD probability ≥30%) in a community-dwelling older adult population. Further studies are needed to confirm these findings.
Collapse
Affiliation(s)
- Vassilis Balomenos
- School of Medicine, Democritus University of Thrace, Dragana, Alexandroupolis, GR-68100, Greece
| | - Lamprini Bounou
- 1st Department of Neurology, Aiginition Hospital, National and Kapodistrian University of Athens, Medical School, 72-74 Vasilissis Sofias Str., Athens, GR-115 28, Greece
| | - Socratis Charisis
- 1st Department of Neurology, Aiginition Hospital, National and Kapodistrian University of Athens, Medical School, 72-74 Vasilissis Sofias Str., Athens, GR-115 28, Greece; Department of Neurology, Health Science Center at San Antonio, University of Texas, 7703 Floyd Curl Drive, San Antonio, Texas, TX 78229, USA
| | - Maria Stamelou
- 1st Department of Neurology, Aiginition Hospital, National and Kapodistrian University of Athens, Medical School, 72-74 Vasilissis Sofias Str., Athens, GR-115 28, Greece; Parkinson's Disease and Movement Disorders Department, Hygeia Hospital, 4, Erythrou Stavrou Str. & Kifisias Av., Marousi, Athens, GR-151 23, Greece; Medical School, University of Cyprus, 93 Ayiou Nikolaou Str., Egkomi Nicosia, CY-2408, Cyprus
| | - Eva Ntanasi
- 1st Department of Neurology, Aiginition Hospital, National and Kapodistrian University of Athens, Medical School, 72-74 Vasilissis Sofias Str., Athens, GR-115 28, Greece
| | - Kyriaki Georgiadi
- School of Medicine, Democritus University of Thrace, Dragana, Alexandroupolis, GR-68100, Greece
| | - Ioannis Mourtzinos
- Department of Food Science and Technology, Faculty of Agriculture, Aristotle University of Thessaloniki, P.O. Box 256, Thessaloniki, GR-54124, Greece
| | - Katerina Tzima
- Department of Food Biosciences, Teagasc Food Research Centre, Ashtown, D15 DY05, Dublin, Ireland
| | - Costas A Anastasiou
- Department of Nutrition and Dietetics, Harokopio University, 70 Eleftheriou Venizelou Str., Kallithea, Athens, GR-176 76, Greece
| | - Georgia Xiromerisiou
- School of Medicine, University of Thessaly, 22 Papakiriazi Str., Larissa, GR-41222, Greece
| | - Maria Maraki
- Department of Nutrition and Dietetics, Harokopio University, 70 Eleftheriou Venizelou Str., Kallithea, Athens, GR-176 76, Greece; Section of Sport Medicine and Biology of Exercise, School of Physical Education and Sport Science, National and Kapodistrian University of Athens, 41 Ethnikis Antistasis Str., Dafni, Athens, GR-17237, Greece
| | - Mary Yannakoulia
- Department of Nutrition and Dietetics, Harokopio University, 70 Eleftheriou Venizelou Str., Kallithea, Athens, GR-176 76, Greece.
| | - Mary H Kosmidis
- Laboratory of Cognitive Neuroscience, School of Psychology, Aristotle University of Thessaloniki, University Campus, Thessaloniki, GR- 54124, Greece
| | - Efthimios Dardiotis
- School of Medicine, University of Thessaly, 22 Papakiriazi Str., Larissa, GR-41222, Greece
| | - Georgios Hadjigeorgiou
- Medical School, University of Cyprus, 93 Ayiou Nikolaou Str., Egkomi Nicosia, CY-2408, Cyprus
| | - Paraskevi Sakka
- Athens Association of Alzheimer's Disease and Related Disorders, 8 Zinonos Eleatou Str., Marousi, GR-151 23, Greece
| | - Leonidas Stefanis
- 1st Department of Neurology, Aiginition Hospital, National and Kapodistrian University of Athens, Medical School, 72-74 Vasilissis Sofias Str., Athens, GR-115 28, Greece; Center of Clinical, Experimental Surgery and Translational Research, Biomedical Research Foundation of the Academy of Athens, 4 Soranou Ephessiou Str., Athens, GR-115 27, Greece
| | - Nikolaos Scarmeas
- 1st Department of Neurology, Aiginition Hospital, National and Kapodistrian University of Athens, Medical School, 72-74 Vasilissis Sofias Str., Athens, GR-115 28, Greece; Taub Institute for Research in Alzheimer's Disease and the Aging Brain, The Gertrude H. Sergievsky Center, Department of Neurology, Columbia University, 630 West 168th Str., New York, NY 10032, USA
| |
Collapse
|
36
|
Chung LYR, Lin YT, Liu C, Tai YC, Lin HY, Lin CH, Chen CC. Neuroinflammation Upregulated Neuronal Toll-Like Receptors 2 and 4 to Drive Synucleinopathy in Neurodegeneration. Front Pharmacol 2022; 13:845930. [PMID: 35401198 PMCID: PMC8987529 DOI: 10.3389/fphar.2022.845930] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2021] [Accepted: 02/01/2022] [Indexed: 11/16/2022] Open
Abstract
Background: Parkinson’s disease (PD) is characterized by intraneuronal α-synuclein aggregation called Lewy bodies and progressive dopaminergic neurodegeneration. Toll-like receptor (TLR) signaling is a major pathway mediating inflammation. The molecular link on how neuroinflammation upregulates neuronal TLRs and induces accumulation of α-synuclein aggregates to drive synucleinopathy remains to be determined. Objective: Despite conditioned medium from microglia and TLR agonists were utilized to study their effects on neuronal cells, a Transwell coculture system, comprising lipopolysaccharide-activated microglia on top and retinoic acid-differentiated SH-SY5Y cells at the bottom more mimicking in vivo neuroinflammation, was employed to elucidate the mechanism of activated microglia on neuronal cells. Methods: Genetic variants of TLRs in PD patients were genotyped and the multiplex cytokines, sRAGE, and HMGB1were assessed. A coculture system was employed to measure α-synuclein aggregates and neurite shortening by confocal microscope. The expression of TLR2/4 and autophagy flux was detected by western blot and immunofluorescence. Results: PD patients showed higher plasma levels of proinflammatory cytokines and genetic TLR4 variant, c.896 A > G (p. D299G). Elevated proinflammatory cytokines in coculture medium was also seen. Phosphorylation and aggregation of α-synuclein, shortening of neurite, upregulation of TLR2/4 expression, activation of downstream p38 and JNK, and dampening of autophagic flux were seen in SH-SY5Y cells cocultured with activated microglia. Those were prevented by inhibiting TLR2/4 and p38/JNK signaling. Conclusion: Activated microglia-derived neuroinflammation induced neuronal TLR2/4-p38/JNK activation to perturb autophagy, causing accumulation of α-synuclein aggregates and neurite shortening. Targeting neuronal TLR2/4 pathway might be a mechanistic-based therapy for neurodegenerative disease, such as PD.
Collapse
Affiliation(s)
- Lucia Yi-Ru Chung
- Department of Pharmacology, College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Yi-Ting Lin
- Department of Pharmacology, College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Chi Liu
- Department of Pharmacology, College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Yi-Cheng Tai
- Department of Neurology, E-Da Hospital, Kaohsiung, Taiwan
- Department of Neurology, National Taiwan University Hospital, Taipei, Taiwan
| | - Han-Yi Lin
- Department of Neurology, National Taiwan University Hospital, Taipei, Taiwan
| | - Chin-Hsien Lin
- Department of Neurology, National Taiwan University Hospital, Taipei, Taiwan
- *Correspondence: Ching-Chow Chen, ; Chin-Hsien Lin,
| | - Ching-Chow Chen
- Department of Pharmacology, College of Medicine, National Taiwan University, Taipei, Taiwan
- *Correspondence: Ching-Chow Chen, ; Chin-Hsien Lin,
| |
Collapse
|
37
|
Ghit A, Deeb HE. Cytokines, miRNAs, and Antioxidants as Combined Non-invasive Biomarkers for Parkinson's Disease. J Mol Neurosci 2022; 72:1133-1140. [PMID: 35199307 DOI: 10.1007/s12031-022-01984-1] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2021] [Accepted: 02/04/2022] [Indexed: 01/11/2023]
Abstract
Parkinson's disease (PD) is one of the most common long-term degenerative disorders of the CNS that primarily affects the human locomotor system. Owing to the heterogeneity of PD etiology and the lack of appropriate diagnostic tests, blood-based biomarkers became the most promising method for diagnosing PD. Even though various biomarkers for PD have been found, their specificity and sensitivity are not optimum when used alone. Therefore, the aim of this study was directed to evaluate changes in a group of sensitive blood-based biomarkers in the same PD patients compared to healthy individuals. Serum samples were collected from 20 PD patients and 15 age-matched healthy controls. We analyzed serum levels of cytokines (IL10, IL12, and TNF-α), α-synuclein proteins, miRNAs (miR-214, miR-221, and miR-141), and antioxidants (UA, PON1, ARE). Our results showed an increase in sera levels of cytokines in PD patients as well as a positive correlation among them. Also, we found a significant increase in sera levels of α-synuclein protein associated with a decrease in miR-214 which regulates its gene expression. Lastly, we observed a decrease in sera levels of miR-221, miR-141, UA, PON1, and ARE, which have a prominent role against oxidative stress. Because of the many etiologies of PD, a single measure is unlikely to become a useful biomarker. Therefore, to correctly predict disease state and progression, a mix of noninvasive biomarkers is required. Although considerable work has to be done, this study sheds light on the role of certain biomarkers in the diagnosis of PD.
Collapse
Affiliation(s)
- Amr Ghit
- Department of Biotechnology, Institute of Graduate Studies and Research (IGSR), Alexandria University, Alexandria, Egypt.
- Department of Biology and Biotechnology, University of Pavia, Pavia, Italy.
| | - Hany El Deeb
- Department of Neuropsychiatry, Faculty of Medicine, Alexandria University, Alexandria, Egypt
| |
Collapse
|
38
|
Perez Visñuk D, Teran MDM, Savoy de Giori G, LeBlanc JG, de Moreno de LeBlanc A. Neuroprotective Effect of Riboflavin Producing Lactic Acid Bacteria in Parkinsonian Models. Neurochem Res 2022; 47:1269-1279. [PMID: 35113305 DOI: 10.1007/s11064-021-03520-w] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2021] [Revised: 12/23/2021] [Accepted: 12/27/2021] [Indexed: 12/14/2022]
Abstract
Oxidative stress and inflammatory processes might contribute to the cascade of events leading Parkinson disease (PD); and vitamins such as riboflavin can exert protection on vulnerable neurons in neurodegenerative conditions. Previously, it was demonstrated that a mixture of lactic acid bacteria (including a riboflavin-producing strain) improved motor skills in a parkinsonian model. The aim of the present work was to investigate the neuroprotective potential of Lactiplantibacillus (L.) plantarum CRL2130, a riboflavin-producing strain in PD models. In vitro, N2a differentiated neurons were exposed the neurotoxin 1-methyl-4-phenylpyridinium (MPP+) and treated with intracellular bacterial extracts or commercial riboflavin. In vivo, adult male C57BL/6 mice were injected with 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) and probenecid, and received orally L. plantarum CRL2130, L. plantarum CRL725 (parent strain that produces low levels of riboflavin) or commercial vitamin. Results showed that when N2a cells were incubated with intracellular extract from L. plantarum CRL2130 maintained the viability, and significantly decreased the release of IL-6 and the formation of reactive oxygen species (ROS), all affected by MPP+. In vivo, the administration of L. plantarum CRL2130 attenuated motor deficits and prevented dopaminergic neuronal death. Decrease of pro-inflammatory cytokines and increase of IL-10 in both serum and brain were observed in samples from mice that received L. plantarum CRL2130 compared to MPTP control group (without treatment). In addition, these beneficial effects were similar or improved when compared with animals that received commercial riboflavin. In conclusion, L. plantarum CRL2130 showed a neuroprotective effect in both PD models through anti-oxidant/anti-inflammatory mechanisms.
Collapse
Affiliation(s)
- Daiana Perez Visñuk
- Centro de Referencia para Lactobacilos (CERELA-CONICET), Chacabuco 145, T4000ILC, San Miguel de Tucumán, Tucumán, Argentina
| | - María Del Milagro Teran
- Centro de Referencia para Lactobacilos (CERELA-CONICET), Chacabuco 145, T4000ILC, San Miguel de Tucumán, Tucumán, Argentina
| | - Graciela Savoy de Giori
- Centro de Referencia para Lactobacilos (CERELA-CONICET), Chacabuco 145, T4000ILC, San Miguel de Tucumán, Tucumán, Argentina.,Cátedra de Microbiología Superior, Facultad de Bioquímica, Química y Farmacia, Universidad Nacional de Tucumán, San Miguel de Tucumán, Tucumán, Argentina
| | - Jean Guy LeBlanc
- Centro de Referencia para Lactobacilos (CERELA-CONICET), Chacabuco 145, T4000ILC, San Miguel de Tucumán, Tucumán, Argentina.
| | - Alejandra de Moreno de LeBlanc
- Centro de Referencia para Lactobacilos (CERELA-CONICET), Chacabuco 145, T4000ILC, San Miguel de Tucumán, Tucumán, Argentina.
| |
Collapse
|
39
|
Xu J, He X, Xu Y, Chen X, Li M, Zhang L, Fu X, Pan M, Wang Q, Hu X. Characteristics of systemic inflammation and brain iron deposition in Parkinson's disease patients. Ann Clin Transl Neurol 2022; 9:276-285. [PMID: 35078271 PMCID: PMC8935274 DOI: 10.1002/acn3.51512] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2021] [Revised: 12/04/2021] [Accepted: 01/04/2022] [Indexed: 12/19/2022] Open
Abstract
Objective This study aimed at determining the characteristics of systemic inflammation and brain iron deposition in Parkinson's disease (PD) patients. Methods Thirty two PD patients and 30 gender‐ as well as age‐matched controls were enrolled. Serum interleukin (IL)‐1β, IL‐33, tumor necrosis factor (TNF)‐α, IL‐6, IL‐10, ferritin, iron, and total iron binding capacity (TIBC) levels were assayed. Quantitative susceptibility mapping (QSM) was used to quantitatively analyze brain iron accumulation in the regions of interest (ROIs). Correlations between concentrations of inflammatory cytokines and biomarkers for peripheral iron metabolism, brain iron deposition were evaluated in the PD group. Results Serum concentrations of IL‐1β and IL‐33 were found to be significantly elevated in the PD group compared to the control group, and in early‐stage PD group compared to advanced‐stage PD group. Total QSM value for bilateral ROIs was significantly elevated in the PD group compared to the control group, and in advanced‐stage PD group compared to early‐stage PD group. There was a significant inverse correlation between serum IL‐1β concentration and total QSM value for bilateral ROIs, between serum ferritin, iron, TIBC concentrations, and total QSM value for bilateral ROIs in PD patients. However, there was no significant correlation between serum IL‐1β concentrations and serum ferritin, iron, TIBC concentrations in PD patients. Interpretation The inflammatory state and chronic brain iron deposition progression in PD patients might be asynchronous. Alterations in systemic inflammation were not correlated with peripheral iron metabolism and might not contribute to the aggravation of brain iron deposition in PD patients.
Collapse
Affiliation(s)
- Jinghui Xu
- Department of Rehabilitation Medicine, The Third Affiliated Hospital, Sun Yat-sen University, Guangzhou, China.,Department of Neurology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Xiaofei He
- Department of Rehabilitation Medicine, The Third Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Yunqi Xu
- Department of Neurology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Xi Chen
- Department of Rehabilitation Medicine, The Third Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Mingyue Li
- Department of Rehabilitation Medicine, The Third Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Liying Zhang
- Department of Rehabilitation Medicine, The Third Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Xiaodi Fu
- Department of Neurology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Mengqiu Pan
- Department of Neurology, Guangdong 999 Brain Hospital, Guangzhou, China
| | - Qun Wang
- Department of Neurology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Xiquan Hu
- Department of Rehabilitation Medicine, The Third Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| |
Collapse
|
40
|
Klann EM, Dissanayake U, Gurrala A, Farrer M, Shukla AW, Ramirez-Zamora A, Mai V, Vedam-Mai V. The Gut-Brain Axis and Its Relation to Parkinson's Disease: A Review. Front Aging Neurosci 2022; 13:782082. [PMID: 35069178 PMCID: PMC8776990 DOI: 10.3389/fnagi.2021.782082] [Citation(s) in RCA: 70] [Impact Index Per Article: 23.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2021] [Accepted: 11/18/2021] [Indexed: 02/02/2023] Open
Abstract
Parkinson's disease is a chronic neurodegenerative disease characterized by the accumulation of misfolded alpha-synuclein protein (Lewy bodies) in dopaminergic neurons of the substantia nigra and other related circuitry, which contribute to the development of both motor (bradykinesia, tremors, stiffness, abnormal gait) and non-motor symptoms (gastrointestinal issues, urinogenital complications, olfaction dysfunction, cognitive impairment). Despite tremendous progress in the field, the exact pathways and mechanisms responsible for the initiation and progression of this disease remain unclear. However, recent research suggests a potential relationship between the commensal gut bacteria and the brain capable of influencing neurodevelopment, brain function and health. This bidirectional communication is often referred to as the microbiome-gut-brain axis. Accumulating evidence suggests that the onset of non-motor symptoms, such as gastrointestinal manifestations, often precede the onset of motor symptoms and disease diagnosis, lending support to the potential role that the microbiome-gut-brain axis might play in the underlying pathological mechanisms of Parkinson's disease. This review will provide an overview of and critically discuss the current knowledge of the relationship between the gut microbiota and Parkinson's disease. We will discuss the role of α-synuclein in non-motor disease pathology, proposed pathways constituting the connection between the gut microbiome and the brain, existing evidence related to pre- and probiotic interventions. Finally, we will highlight the potential opportunity for the development of novel preventative measures and therapeutic options that could target the microbiome-gut-brain axis in the context of Parkinson's disease.
Collapse
Affiliation(s)
- Emily M. Klann
- Department of Epidemiology, College of Public Health and Health Professions & College of Medicine, University of Florida, Gainesville, FL, United States
- Emerging Pathogens Institute, University of Florida, Gainesville, FL, United States
| | - Upuli Dissanayake
- Department of Epidemiology, College of Public Health and Health Professions & College of Medicine, University of Florida, Gainesville, FL, United States
- Emerging Pathogens Institute, University of Florida, Gainesville, FL, United States
| | - Anjela Gurrala
- Department of Neurology, College of Medicine, University of Florida, Gainesville, FL, United States
| | - Matthew Farrer
- Department of Neurology, College of Medicine, University of Florida, Gainesville, FL, United States
| | - Aparna Wagle Shukla
- Department of Neurology, College of Medicine, University of Florida, Gainesville, FL, United States
- Norman Fixel Institute for Neurological Diseases, University of Florida, Gainesville, FL, United States
| | - Adolfo Ramirez-Zamora
- Department of Neurology, College of Medicine, University of Florida, Gainesville, FL, United States
- Norman Fixel Institute for Neurological Diseases, University of Florida, Gainesville, FL, United States
| | - Volker Mai
- Department of Epidemiology, College of Public Health and Health Professions & College of Medicine, University of Florida, Gainesville, FL, United States
- Emerging Pathogens Institute, University of Florida, Gainesville, FL, United States
| | - Vinata Vedam-Mai
- Department of Neurology, College of Medicine, University of Florida, Gainesville, FL, United States
- Norman Fixel Institute for Neurological Diseases, University of Florida, Gainesville, FL, United States
| |
Collapse
|
41
|
Zimmermann M, Brockmann K. Blood and Cerebrospinal Fluid Biomarkers of Inflammation in Parkinson's Disease. JOURNAL OF PARKINSON'S DISEASE 2022; 12:S183-S200. [PMID: 35661021 PMCID: PMC9535573 DOI: 10.3233/jpd-223277] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Accepted: 05/09/2022] [Indexed: 02/07/2023]
Abstract
Given the clear role of inflammation in the pathogenesis of Parkinson's disease (PD) and its impact on incidence and phenotypical characteristics, this review provides an overview with focus on inflammatory biofluid markers in blood and cerebrospinal fluid (CSF) in PD patient cohorts. In preparation for clinical trials targeting the immune system, we specifically address the following questions: 1) What evidence do we have for pro-inflammatory profiles in blood and in CSF of sporadic and genetic PD patients? 2) Is there a role of anti-inflammatory mediators in blood/CSF? 3) Do inflammatory profiles in blood reflect those in CSF indicative of a cross-talk between periphery and brain? 4) Do blood/CSF inflammatory profiles change over the disease course as assessed in repeatedly taken biosamples? 5) Are blood/CSF inflammatory profiles associated with phenotypical trajectories in PD? 6) Are blood/CSF inflammatory profiles associated with CSF levels of neurodegenerative/PD-specific biomarkers? Knowledge on these questions will inform future strategies for patient stratification and cohort enrichment as well as suitable outcome measures for clinical trials.
Collapse
Affiliation(s)
- Milan Zimmermann
- Center of Neurology, Department of Neurodegeneration and Hertie Institute for Clinical Brain Research, University of Tuebingen, Tuebingen, Germany
- German Center for Neurodegenerative Diseases, University of Tuebingen, Tuebingen, Germany
| | - Kathrin Brockmann
- Center of Neurology, Department of Neurodegeneration and Hertie Institute for Clinical Brain Research, University of Tuebingen, Tuebingen, Germany
- German Center for Neurodegenerative Diseases, University of Tuebingen, Tuebingen, Germany
| |
Collapse
|
42
|
Zhang L, Yao X, Ma M, Ding Y, Zhang H, He X, Song Z. Protective Effect of l-Theanine against DSS-Induced Colitis by Regulating the Lipid Metabolism and Reducing Inflammation via the NF-κB Signaling Pathway. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2021; 69:14192-14203. [PMID: 34784210 DOI: 10.1021/acs.jafc.1c05839] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/26/2023]
Abstract
The present study revealed the phylactic effects of l-theanine on a DSS-induced colitis mice model. The results showed that 3% DSS treatment significantly induced intestinal damage as reflected by DAI, histopathological feature, and colon length, while l-theanine pretreatment markedly prevented these trends to exert protective effects. Meanwhile, l-theanine pretreatment decreased the levels of TNF-α, IL-1β, IL-6, iNOS, and COX2 on DSS-induced colitis. Notably, DSS inhibited the proliferation and promoted the apoptosis of intestinal epithelial cells, thereby damaging the integrity of the intestinal epithelial barrier, whereas l-theanine also played a protective role by attenuating these deteriorated effects. It was also observed that l-theanine treatment downregulated the levels of p-p65, p65, p-p53, p53, and p-AKT protein expression in acute DSS-induced colitis, which showed the protective function of l-theanine, mainly via the NF-κB signaling pathway. Furthermore, the results of lipid analysis and transcriptome analysis show that l-theanine reversed transcriptional profiles and lipid profiles of colitis models, mainly via the inflammatory reactivity-related pathway. Interestingly, the correlation analysis between transcriptional profiles and lipid profiles showed that inflammatory response-related genes were almost significantly correlated with differential lipid metabolites. In summary, l-theanine plays a protective role in DSS-induced colitis via downregulating the NF-κB signaling pathway and regulating lipid metabolism disorders.
Collapse
Affiliation(s)
- Longlin Zhang
- College of Animal Science and Technology, Hunan Agricultural University, Hunan 410128, China
| | - Xiaofeng Yao
- College of Animal Science and Technology, Hunan Agricultural University, Hunan 410128, China
| | - Mengmeng Ma
- College of Animal Science and Technology, Hunan Agricultural University, Hunan 410128, China
| | - Yanan Ding
- College of Animal Science and Technology, Hunan Agricultural University, Hunan 410128, China
| | - Haihan Zhang
- College of Animal Science and Technology, Hunan Agricultural University, Hunan 410128, China
| | - Xi He
- College of Animal Science and Technology, Hunan Agricultural University, Hunan 410128, China
| | - Zehe Song
- College of Animal Science and Technology, Hunan Agricultural University, Hunan 410128, China
| |
Collapse
|
43
|
Singh K, Cheung BM, Xu A. Ultrasensitive detection of blood biomarkers of Alzheimer's and Parkinson's diseases: a systematic review. Biomark Med 2021; 15:1693-1708. [PMID: 34743546 DOI: 10.2217/bmm-2021-0219] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Purpose: Neurodegenerative disorders are a global health burden with costly and invasive diagnoses relying on brain imaging technology or CSF-based biomarkers. Therefore, considerable efforts to identify blood-biomarkers for Alzheimer's (AD) and Parkinson's diseases (PD) are ongoing. Objectives: This review evaluates the blood biomarkers for AD and PD for their diagnostic value. Methods: This study systematically reviewed articles published between July 1984 and February 2021. Among 1266 papers, we selected 42 studies for a systematic review and 23 studies for meta-analysis. Results & conclusion: Our analysis highlights P-tau181, T-tau and Nfl as promising blood biomarkers for AD diagnosis. Nfl levels were consistently raised in 16 AD and three PD cohorts. P-tau181 and T-tau were also significantly increased in 12 and eight AD cohorts, respectively.
Collapse
Affiliation(s)
- Kailash Singh
- State Key Laboratory of Pharmaceutical Biotechnology, The University of Hong Kong, Hong Kong, China
| | - Bernard My Cheung
- State Key Laboratory of Pharmaceutical Biotechnology, The University of Hong Kong, Hong Kong, China.,Department of Medicine, The University of Hong Kong, Queen Mary Hospital, Hong Kong, China
| | - Aimin Xu
- State Key Laboratory of Pharmaceutical Biotechnology, The University of Hong Kong, Hong Kong, China.,Department of Medicine, The University of Hong Kong, Queen Mary Hospital, Hong Kong, China.,Department of Pharmacy & Pharmacology, The University of Hong Kong, Hong Kong, China
| |
Collapse
|
44
|
Zhang H, Wang Z, Hu K, Liu H. Downregulation of long noncoding RNA SNHG7 protects against inflammation and apoptosis in Parkinson's disease model by targeting the miR-425-5p/TRAF5/NF-κB axis. J Biochem Mol Toxicol 2021; 35:e22867. [PMID: 34369042 DOI: 10.1002/jbt.22867] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2020] [Revised: 03/15/2021] [Accepted: 07/21/2021] [Indexed: 12/13/2022]
Abstract
Accumulated evidence has manifested that long noncoding RNA (lncRNA) is involved in the progress of Parkinson's disease (PD). SNHG7, a novel lncRNA, has been found to be involved in tumorigenesis. However, SNHG7 expression and its functional effects on PD remain uncharted. Rotenone (Rot) was adopted to construct PD models in Sprague-Dawley (SD) rats and SH-SY5Y cells, respectively. The expression levels of caspase 3, tyrosine hydroxylase (TH), ionized calcium-binding adapter molecule 1 (Iba1) in SD rat striatum were measured via immunohistochemistry and western blot. Additionally, the expressions of inflammatory cytokines (interleukin 1β [IL-1β], IL-6, tumor necrosis factor α) and oxidative stress factors (malondialdehyde, superoxide dismutase, and glutathione peroxidase) in the brain tissues were examined using real-time polymerase chain reaction and enzyme-linked immunosorbent assay, respectively. Moreover, the protein levels of tumor necrosis factor receptor-associated factor (TRAF5), I-κB, nuclear factor-κB (NF-κB), HO-1, Nrf2 were detected via western blot. Bioinformatics was applied to predict the targeting relationship between SNHG7, miR-425-5p, and TRAF5. Dual-luciferase activity assay and RNA immunoprecipitation assays were conducted to verify their interactions. In comparison to healthy donors, SNHG7 was found upregulated while miR-425-5p expression was downregulated in PD patients. Functional experiments confirmed that SNHG7 downregulation or miR-425-5p overexpression attenuated neuronal apoptosis in the Rot-mediated PD model, TH-positive cell loss, and microglial activation by mitigating inflammation and oxidative stress. Mechanistically, SNHG7 served as a competitive endogenous RNA by sponging miR-425-5p and promoted TRAF5 mediated inflammation and oxidative stress. Inhibition of SNHG7 ameliorated neuronal apoptosis in PD through relieving miR-425-5p/TRAF5/NF-κB signaling pathway modulated inflammation and oxidative stress, and similar results were observed in the Rot-mediated rat model of PD.
Collapse
Affiliation(s)
- Haiquan Zhang
- Department of Neurosurgery, XiangYang Center Hospital, Xiangyang, China.,Department of Neurosurgery, Affiliated Hospital of Hubei University of Arts and Sciences, Xiangyang, China
| | - Zhiyong Wang
- Department of Neurosurgery, XiangYang Center Hospital, Xiangyang, China.,Department of Neurosurgery, Affiliated Hospital of Hubei University of Arts and Sciences, Xiangyang, China
| | - Keqi Hu
- Department of Neurosurgery, XiangYang Center Hospital, Xiangyang, China.,Department of Neurosurgery, Affiliated Hospital of Hubei University of Arts and Sciences, Xiangyang, China
| | - Handong Liu
- Department of Neurosurgery, XiangYang Center Hospital, Xiangyang, China.,Department of Neurosurgery, Affiliated Hospital of Hubei University of Arts and Sciences, Xiangyang, China
| |
Collapse
|
45
|
Izvolskaia M, Sharova V, Zakharova L. Perinatal Inflammation Reprograms Neuroendocrine, Immune, and Reproductive Functions: Profile of Cytokine Biomarkers. Inflammation 2021; 43:1175-1183. [PMID: 32279161 DOI: 10.1007/s10753-020-01220-1] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Viral and bacterial infections causing systemic inflammation are significant risk factors for developing body. Inflammatory processes can alter physiological levels of regulatory factors and interfere with developmental mechanisms. The brain is the main target for the negative impact of inflammatory products during critical ontogenetic periods. Subsequently, the risks of various neuropsychiatric diseases such as Alzheimer's and Parkinson's diseases, schizophrenia, and depression are increased in the offspring. Inflammation-induced physiological disturbances can cause immune and behavioral disorders, reproductive deficiencies, and infertility. The influence of maternal immune stress is mediated by the regulation of pro-inflammatory cytokines such as interleukin (IL)-1β, IL-6, monocyte chemotactic protein 1, leukemia-inhibiting factor, and tumor necrosis factor-alpha secretion in the maternal-fetal system. The increasing number of patients with neuronal and reproductive disorders substantiates the identification of biomarkers for these disorders targeted at their therapy.
Collapse
Affiliation(s)
- Marina Izvolskaia
- Koltzov Institute of Developmental Biology, Russian Academy of Sciences, 26 Vavilov Street, Moscow, 119334, Russia
| | - Viktoriya Sharova
- Koltzov Institute of Developmental Biology, Russian Academy of Sciences, 26 Vavilov Street, Moscow, 119334, Russia.
| | - Liudmila Zakharova
- Koltzov Institute of Developmental Biology, Russian Academy of Sciences, 26 Vavilov Street, Moscow, 119334, Russia
| |
Collapse
|
46
|
Muñoz-Delgado L, Macías-García D, Jesús S, Martín-Rodríguez JF, Labrador-Espinosa MÁ, Jiménez-Jaraba MV, Adarmes-Gómez A, Carrillo F, Mir P. Peripheral Immune Profile and Neutrophil-to-Lymphocyte Ratio in Parkinson's Disease. Mov Disord 2021; 36:2426-2430. [PMID: 34101890 DOI: 10.1002/mds.28685] [Citation(s) in RCA: 45] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2021] [Revised: 05/06/2021] [Accepted: 05/17/2021] [Indexed: 12/30/2022] Open
Abstract
BACKGROUND The neutrophil-to-lymphocyte ratio (NLR) in peripheral blood is a well-established inflammatory marker, but its role in Parkinson's disease (PD) remains unclear. OBJECTIVES To determine whether a different peripheral immune profile and NLR were present in PD patients. METHODS We conducted a case-control study that included 377 PD patients and 355 healthy controls (HCs). Leukocytes, subpopulations, and the NLR were measured. Multivariate linear regression analyses were applied to determine the differences between groups and the association between NLR and clinical characteristics in PD. A meta-analysis was performed to clarify the association between NLR and PD. RESULTS In our case-control study, the NLR was significantly higher in PD patients compared with HCs (2.47 ± 1.1 vs. 1.98 ± 0.91, P < 0.001). No association between NLR and age at onset, disease severity, or disease duration was found. The meta-analysis showed that the NLR was likely to be higher in PD patients. CONCLUSIONS PD patients had an altered peripheral immune profile and a higher NLR compared with HCs. © 2021 International Parkinson and Movement Disorder Society.
Collapse
Affiliation(s)
- Laura Muñoz-Delgado
- Unidad de Trastornos del Movimiento, Servicio de Neurología y Neurofisiología Clínica, Instituto de Biomedicina de Sevilla, Hospital Universitario Virgen del Rocío/CSIC/Universidad de Sevilla, Seville, Spain.,Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), Madrid, Spain
| | - Daniel Macías-García
- Unidad de Trastornos del Movimiento, Servicio de Neurología y Neurofisiología Clínica, Instituto de Biomedicina de Sevilla, Hospital Universitario Virgen del Rocío/CSIC/Universidad de Sevilla, Seville, Spain.,Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), Madrid, Spain
| | - Silvia Jesús
- Unidad de Trastornos del Movimiento, Servicio de Neurología y Neurofisiología Clínica, Instituto de Biomedicina de Sevilla, Hospital Universitario Virgen del Rocío/CSIC/Universidad de Sevilla, Seville, Spain.,Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), Madrid, Spain
| | - Juan Francisco Martín-Rodríguez
- Unidad de Trastornos del Movimiento, Servicio de Neurología y Neurofisiología Clínica, Instituto de Biomedicina de Sevilla, Hospital Universitario Virgen del Rocío/CSIC/Universidad de Sevilla, Seville, Spain.,Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), Madrid, Spain.,Departamento de Psicología Experimental, Facultad de Psicología, Universidad de Sevilla, Seville, Spain
| | - Miguel Ángel Labrador-Espinosa
- Unidad de Trastornos del Movimiento, Servicio de Neurología y Neurofisiología Clínica, Instituto de Biomedicina de Sevilla, Hospital Universitario Virgen del Rocío/CSIC/Universidad de Sevilla, Seville, Spain.,Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), Madrid, Spain.,Departamento de Medicina, Facultad de Medicina, Universidad de Sevilla, Seville, Spain
| | - María Valle Jiménez-Jaraba
- Unidad de Trastornos del Movimiento, Servicio de Neurología y Neurofisiología Clínica, Instituto de Biomedicina de Sevilla, Hospital Universitario Virgen del Rocío/CSIC/Universidad de Sevilla, Seville, Spain
| | - Astrid Adarmes-Gómez
- Unidad de Trastornos del Movimiento, Servicio de Neurología y Neurofisiología Clínica, Instituto de Biomedicina de Sevilla, Hospital Universitario Virgen del Rocío/CSIC/Universidad de Sevilla, Seville, Spain.,Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), Madrid, Spain
| | - Fátima Carrillo
- Unidad de Trastornos del Movimiento, Servicio de Neurología y Neurofisiología Clínica, Instituto de Biomedicina de Sevilla, Hospital Universitario Virgen del Rocío/CSIC/Universidad de Sevilla, Seville, Spain.,Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), Madrid, Spain
| | - Pablo Mir
- Unidad de Trastornos del Movimiento, Servicio de Neurología y Neurofisiología Clínica, Instituto de Biomedicina de Sevilla, Hospital Universitario Virgen del Rocío/CSIC/Universidad de Sevilla, Seville, Spain.,Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), Madrid, Spain.,Departamento de Medicina, Facultad de Medicina, Universidad de Sevilla, Seville, Spain
| |
Collapse
|
47
|
Laguna A, Xicoy H, Tolosa E, Serradell M, Vilas D, Gaig C, Fernández M, Yanes O, Santamaria J, Amigó N, Iranzo A, Vila M. Serum metabolic biomarkers for synucleinopathy conversion in isolated REM sleep behavior disorder. NPJ PARKINSONS DISEASE 2021; 7:40. [PMID: 33986284 PMCID: PMC8119407 DOI: 10.1038/s41531-021-00184-9] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/31/2020] [Accepted: 02/19/2021] [Indexed: 12/14/2022]
Abstract
Isolated rapid eye movement (REM) sleep behavior disorder (iRBD) is a prodromal stage of Lewy-type synucleinopathies (LTS), which can present either with an initial predominant parkinsonism (Parkinson’s disease (PD)) or dementia (dementia with Lewy bodies (DLB)). To provide insights into the underlying pathogenic mechanisms, the lipoprotein and protein glycosylation profile of 82 iRBD patients, collected before and/or after their conversion to an overt LTS, and 29 matched control serum samples were assessed by nuclear magnetic resonance (NMR) spectroscopy. Data were statistically analyzed to identify altered metabolites and construct predictive models. Univariant analysis detected no differences between iRBD patients with an LTS compared to controls. However, significant differences were found when the analysis distinguished between iRBD patients that manifested initially predominant parkinsonism (pre-PD) or dementia (pre-DLB). Significant differences were also found in the analysis of paired iRBD samples pre- and post-LTS diagnosis. Predictive models were built and distinguished between controls and pre-DLB patients, and between pre-DLB and pre-PD patients. This allowed a prediction of the possible future clinical outcome of iRBD patients. We provide evidence of altered lipoprotein and glycosylation profiles in subgroups of iRBD patients. Our results indicate that metabolic alterations and inflammation are involved in iRBD pathophysiology, and suggest biological differences underlying the progression of LTS in iRBD patients. Our data also indicate that profiling of serum samples by NMR may be a useful tool for identifying short-term high-risk iRBD patients for conversion to parkinsonism or dementia.
Collapse
Affiliation(s)
- Ariadna Laguna
- Neurodegenerative Diseases Research Group, Vall d'Hebron Research Institute (VHIR)-Network Center for Biomedical Research in Neurodegenerative Diseases (CIBERNED), Barcelona, Spain.
| | - Helena Xicoy
- Neurodegenerative Diseases Research Group, Vall d'Hebron Research Institute (VHIR)-Network Center for Biomedical Research in Neurodegenerative Diseases (CIBERNED), Barcelona, Spain.,Department of Cell Biology, Radboud Institute for Molecular Life Sciences, Radboud University Medical Centre, Nijmegen, The Netherlands.,Department of Molecular Animal Physiology, Donders Institute for Brain, Cognition and Behaviour, Donders Centre for Neuroscience, Faculty of Science, Nijmegen, The Netherlands
| | - Eduardo Tolosa
- Parkinson Disease and Movement Disorders Unit, Neurology Service, Hospital Clinic de Barcelona, Universitat de Barcelona IDIBAPS, CIBERNED: CB06/05/0018-ISCIII, Barcelona, Spain
| | - Mònica Serradell
- Center for Sleep Disorders, Neurology Service, Hospital Clinic Barcelona, Universitat de Barcelona, IDIBAPS, CIBERNED: CB06/05/0018-ISCIII, Barcelona, Spain
| | - Dolores Vilas
- Parkinson Disease and Movement Disorders Unit, Neurology Service, Hospital Clinic de Barcelona, Universitat de Barcelona IDIBAPS, CIBERNED: CB06/05/0018-ISCIII, Barcelona, Spain
| | - Carles Gaig
- Center for Sleep Disorders, Neurology Service, Hospital Clinic Barcelona, Universitat de Barcelona, IDIBAPS, CIBERNED: CB06/05/0018-ISCIII, Barcelona, Spain
| | - Manel Fernández
- Parkinson Disease and Movement Disorders Unit, Neurology Service, Hospital Clinic de Barcelona, Universitat de Barcelona IDIBAPS, CIBERNED: CB06/05/0018-ISCIII, Barcelona, Spain
| | - Oscar Yanes
- Metabolomics Platform, IISPV, Department of Electronic Engineering, Universitat Rovira i Virgili-Spanish Biomedical Research Center in Diabetes and Associated Metabolic Disorders (CIBERDEM), Tarragona, Spain
| | - Joan Santamaria
- Center for Sleep Disorders, Neurology Service, Hospital Clinic Barcelona, Universitat de Barcelona, IDIBAPS, CIBERNED: CB06/05/0018-ISCIII, Barcelona, Spain
| | - Núria Amigó
- Metabolomics Platform, IISPV, Department of Electronic Engineering, Universitat Rovira i Virgili-Spanish Biomedical Research Center in Diabetes and Associated Metabolic Disorders (CIBERDEM), Tarragona, Spain.,Biosfer Teslab, Reus, Spain
| | - Alex Iranzo
- Center for Sleep Disorders, Neurology Service, Hospital Clinic Barcelona, Universitat de Barcelona, IDIBAPS, CIBERNED: CB06/05/0018-ISCIII, Barcelona, Spain.
| | - Miquel Vila
- Neurodegenerative Diseases Research Group, Vall d'Hebron Research Institute (VHIR)-Network Center for Biomedical Research in Neurodegenerative Diseases (CIBERNED), Barcelona, Spain. .,Department of Biochemistry and Molecular Biology, Autonomous University of Barcelona, Barcelona, Spain. .,Catalan Institution for Research and Advanced Studies (ICREA), Barcelona, Spain.
| |
Collapse
|
48
|
Fleury V, Zekeridou A, Lazarevic V, Gaïa N, Giannopoulou C, Genton L, Cancela J, Girard M, Goldstein R, Bally JF, Mombelli A, Schrenzel J, Burkhard PR. Oral Dysbiosis and Inflammation in Parkinson's Disease. JOURNAL OF PARKINSONS DISEASE 2021; 11:619-631. [PMID: 33646178 PMCID: PMC8150470 DOI: 10.3233/jpd-202459] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Background: Oral microbiota has largely escaped attention in Parkinson’s disease (PD), despite its pivotal role in maintaining oral and systemic health. Objective: The aim of our study was to examine the composition of the oral microbiota and the degree of oral inflammation in PD. Methods: Twenty PD patients were compared to 20 healthy controls. Neurological, periodontal and dental examinations were performed as well as dental scaling and gingival crevicular fluid sampling for cytokines measurement (interleukine (IL)-1β, IL-6, IL-1 receptor antagonist (RA), interferon-γ and tumor necrosis factor (TNF)-α). Two months later, oral microbiota was sampled from saliva and subgingival dental plaque. A 16S rRNA gene amplicon sequencing was used to assess bacterial communities. Results: PD patients were in the early and mid-stage phases of their disease (Hoehn & Yahr 2–2.5). Dental and periodontal parameters did not differ between groups. The levels of IL-1β and IL-1RA were significantly increased in patients compared to controls with a trend for an increased level of TNF-α in patients. Both saliva and subgingival dental plaque microbiota differed between patients and controls. Streptococcus mutans, Kingella oralis, Actinomyces AFQC_s, Veillonella AFUJ_s, Scardovia, Lactobacillaceae, Negativicutes and Firmicutes were more abundant in patients, whereas Treponema KE332528_s, Lachnospiraceae AM420052_s, and phylum SR1 were less abundant. Conclusion: Our findings show that the oral microbiome is altered in early and mid-stage PD. Although PD patients had good dental and periodontal status, local inflammation was already present in the oral cavity. The relationship between oral dysbiosis, inflammation and the pathogenesis of PD requires further study.
Collapse
Affiliation(s)
- Vanessa Fleury
- Faculty of Medicine, University of Geneva, CMU, Geneva, Switzerland.,Division of Neurology, Geneva University Hospitals, Geneva, Switzerland
| | - Alkisti Zekeridou
- University Clinic of Dental Medicine, Division of Periodontology, University of Geneva, Geneva, Switzerland
| | - Vladimir Lazarevic
- Genomic Research Laboratory, Service of Infectious Diseases, Geneva University Hospitals, Geneva, Switzerland
| | - Nadia Gaïa
- Genomic Research Laboratory, Service of Infectious Diseases, Geneva University Hospitals, Geneva, Switzerland
| | - Catherine Giannopoulou
- University Clinic of Dental Medicine, Division of Periodontology, University of Geneva, Geneva, Switzerland
| | - Laurence Genton
- Clinical Nutrition, Geneva University Hospitals and University of Geneva, Geneva, Switzerland
| | - José Cancela
- University Clinic of Dental Medicine, Division of Periodontology, University of Geneva, Geneva, Switzerland
| | - Myriam Girard
- Genomic Research Laboratory, Service of Infectious Diseases, Geneva University Hospitals, Geneva, Switzerland
| | - Rachel Goldstein
- Division of Neurology, Geneva University Hospitals, Geneva, Switzerland
| | - Julien F Bally
- Division of Neurology, Geneva University Hospitals, Geneva, Switzerland
| | - Andrea Mombelli
- University Clinic of Dental Medicine, Division of Periodontology, University of Geneva, Geneva, Switzerland
| | - Jacques Schrenzel
- Faculty of Medicine, University of Geneva, CMU, Geneva, Switzerland.,Genomic Research Laboratory, Service of Infectious Diseases, Geneva University Hospitals, Geneva, Switzerland
| | - Pierre R Burkhard
- Faculty of Medicine, University of Geneva, CMU, Geneva, Switzerland.,Division of Neurology, Geneva University Hospitals, Geneva, Switzerland
| |
Collapse
|
49
|
Harms AS, Ferreira SA, Romero-Ramos M. Periphery and brain, innate and adaptive immunity in Parkinson's disease. Acta Neuropathol 2021; 141:527-545. [PMID: 33555429 PMCID: PMC7952334 DOI: 10.1007/s00401-021-02268-5] [Citation(s) in RCA: 158] [Impact Index Per Article: 39.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2020] [Revised: 12/29/2020] [Accepted: 01/18/2021] [Indexed: 12/21/2022]
Abstract
Parkinson’s disease (PD) is a neurodegenerative disorder where alpha-synuclein plays a central role in the death and dysfunction of neurons, both, in central, as well as in the peripheral nervous system. Besides the neuronal events observed in patients, PD also includes a significant immune component. It is suggested that the PD-associated immune response will have consequences on neuronal health, thus opening immunomodulation as a potential therapeutic strategy in PD. The immune changes during the disease occur in the brain, involving microglia, but also in the periphery with changes in cells of the innate immune system, particularly monocytes, as well as those of adaptive immunity, such as T-cells. This realization arises from multiple patient studies, but also from data in animal models of the disease, providing strong evidence for innate and adaptive immune system crosstalk in the central nervous system and periphery in PD. Here we review the data showing that alpha-synuclein plays a crucial role in the activation of the innate and adaptive immune system. We will also describe the studies suggesting that inflammation in PD includes early changes in innate and adaptive immune cells that develop dynamically through time during disease, contributing to neuronal degeneration and symptomatology in patients. This novel finding has contributed to the definition of PD as a multisystem disease that should be approached in a more integratory manner rather than a brain-focused classical approach.
Collapse
Affiliation(s)
- Ashley S Harms
- Department of Neurology and Center for Neurodegeneration and Experimental Therapeutics, The University of Alabama at Birmingham, Birmingham, AL, USA
| | - Sara A Ferreira
- Department of Biomedicine and CNS Disease Modelling Group, Aarhus University, Høegh-Guldbergsgade 10, 8000C, Aarhus, Denmark
| | - Marina Romero-Ramos
- Department of Biomedicine and CNS Disease Modelling Group, Aarhus University, Høegh-Guldbergsgade 10, 8000C, Aarhus, Denmark.
| |
Collapse
|
50
|
Roy A, Mondal B, Banerjee R, Choudhury S, Chatterjee K, Dey S, Kumar H. Do peripheral immune and neurotrophic markers correlate with motor severity of Parkinson's disease? J Neuroimmunol 2021; 354:577545. [PMID: 33756415 DOI: 10.1016/j.jneuroim.2021.577545] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2020] [Revised: 03/07/2021] [Accepted: 03/07/2021] [Indexed: 12/25/2022]
Abstract
BACKGROUND Inflammation along with oxidative stress alters neuroplasticity which might contribute to neurodegeneration in Parkinson's disease (PD). OBJECTIVES We aimed to explore the correlation of inflammatory-oxidative and neurotrophic changes in PD and their association with clinical staging and motor severity. METHODS Serum oxidative markers, pro and anti-inflammatory cytokines and BDNF levels were estimated by spectrophotometric and ELISA techniques. RESULTS Redox-Inflammatory and neurotrophic markers significantly altered in PD and strongly correlated with motor severity and stagings of PD. CONCLUSION This study establishes a link between peripheral immune-neurotrophic markers and disease severity in PD. This can lead to novel future therapeutics.
Collapse
Affiliation(s)
- Akash Roy
- Department of Neurology, Institute of Neurosciences Kolkata, Kolkata, India; Department of Physiology, University of Calcutta, Kolkata, India
| | - Banashree Mondal
- Department of Neurology, Institute of Neurosciences Kolkata, Kolkata, India
| | - Rebecca Banerjee
- Department of Neurology, Institute of Neurosciences Kolkata, Kolkata, India
| | - Supriyo Choudhury
- Department of Neurology, Institute of Neurosciences Kolkata, Kolkata, India
| | - Koustav Chatterjee
- Department of Neurology, Institute of Neurosciences Kolkata, Kolkata, India
| | - Sanjit Dey
- Department of Physiology, University of Calcutta, Kolkata, India; UGC Centre for Nanoscience and Nanotechnology and UGC Centre with Potential for Excellence in Particular Area (CPEPA), University of Calcutta, Kolkata, India.
| | - Hrishikesh Kumar
- Department of Neurology, Institute of Neurosciences Kolkata, Kolkata, India.
| |
Collapse
|