1
|
Liu R, Luo Y, Liu P, Xiao S, Fan W, Fan B. The potential regulatory role of mannose phosphotransferase system EII in alkaline resistance of Enterococcus faecalis. J Oral Microbiol 2025; 17:2487944. [PMID: 40206098 PMCID: PMC11980212 DOI: 10.1080/20002297.2025.2487944] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2024] [Revised: 03/24/2025] [Accepted: 03/28/2025] [Indexed: 04/11/2025] Open
Abstract
Objective To investigate the role of mannose phosphotransferase system (Man-PTS) EII in the alkaline resistance of Enterococcus faecalis (E. faecalis). Methods The Man-PTS EIID (mptD) deletion (ΔmptD) and overexpressing (+mptD) strains of E. faecalis were constructed. The contribution of the Man-PTS EII to alkaline resistance was investigated by assessing growth and biofilm formation of E. faecalis at pH 7 and 10, as well as changes in intracellular ATP levels, pH, potassium ion concentration, membrane potential and membrane permeability. The effects of mptD on the expression of other Man-PTS EII components and membrane transport-related genes were evaluated by RT-qPCR at pH 10. In addition, six clinical strains were isolated. Three strains of E. faecalis with high to low alkaline resistance were screened, and RNA sequencing was performed to further explore the role of Man-PTS EII in the alkaline resistance. Results mptD enhanced the alkaline resistance of E. faecalis by maintaining pH homeostasis in an alkaline environment. Overexpression of mptD induced membrane hyperpolarization, reduced membrane permeability, decreased intracellular K+ levels, lowered cytoplasmic pH, and elevated ATP production, while the loss of mptD reversed these effects (p < 0.05). mptD coordinated the expression of Man-PTS EII components and upregulated genes encoding membrane transporter components (p < 0.01). All Man-PTS EII components were positively related to the degree of alkaline resistance of E. faecalis (p < 0.05). Conclusion Man-PTS EII is a key factor in the interaction between metabolism and ion membrane transport during the alkaline resistance process of E. faecalis. This study may provide new insights for understanding the alkaline resistance of E. faecalis.
Collapse
Affiliation(s)
- Runze Liu
- The State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, Wuhan, China
| | - Yi Luo
- The State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, Wuhan, China
| | - Pei Liu
- The State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, Wuhan, China
| | - Shuo Xiao
- The State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, Wuhan, China
| | - Wei Fan
- The State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, Wuhan, China
| | - Bing Fan
- The State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, Wuhan, China
| |
Collapse
|
2
|
Gunasekaran G, Madhubala MM, Nayanthara GS, Mahalaxmi S. Photodynamic antibacterial evaluation of polydopamine nanoparticle optimised Curcumin Longa against endodontic biofilm-An in-vitro study. AUST ENDOD J 2025; 51:90-102. [PMID: 39670561 DOI: 10.1111/aej.12910] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2024] [Revised: 09/30/2024] [Accepted: 11/27/2024] [Indexed: 12/14/2024]
Abstract
This study aims to evaluate the effect of antimicrobial photodynamic therapy(aPDT) with polydopamine nanoparticle functionalised with Curcuma longa(nPD-Cur) against root canal biofilm. nPD-Cur was prepared and characterised using Scanning Electron Microscopy(SEM), dynamic light scattering(DLS), Fourier-transform infrared spectroscopy(FTIR) and Ultraviolet visual(UV/Vis) spectrophotometry. Root sections (10 mm length) were obtained from 53 single-rooted human premolars and chemo-mechanically prepared followed by inoculation with E. faecalis. All the specimens were randomly divided into five groups(n = 10) and irrigated (Group 1-Saline; Group 2-2.5% Sodium hypochlorite(NaOCl); Group 3-Cur; Group 4-nPD; and Group 5-nPD-Cur) followed by diode irradiation and analysed for reduction in colony-forming units(CFU)/mL, bacterial viability using Confocal Laser Scanning Microscopy(CLSM) and SEM for biofilm disruption. Results were analysed using one-way ANOVA followed by post hoc Tukey's test for pairwise comparison (p < 0.05). nPD-Cur revealed the characteristic absorption patterns. The antimicrobial potency was highest for NaOCl followed by nPD > Cur-nPD > Cur.
Collapse
Affiliation(s)
- Gokul Gunasekaran
- Department of Conservative Dentistry and Endodontics, SRM Dental College, Ramapuram, SRM Institute of Science and Technology, Chennai, India
| | - Manavalan Madhana Madhubala
- Department of Conservative Dentistry and Endodontics, SRM Dental College, Ramapuram, SRM Institute of Science and Technology, Chennai, India
| | - G S Nayanthara
- Department of Conservative Dentistry and Endodontics, SRM Dental College, Ramapuram, SRM Institute of Science and Technology, Chennai, India
| | - Sekar Mahalaxmi
- Department of Conservative Dentistry and Endodontics, SRM Dental College, Ramapuram, SRM Institute of Science and Technology, Chennai, India
| |
Collapse
|
3
|
Liu C, Li Y, Li Y, Li Z, Han G. Synergistic antibacterial effect of ginsenoside Rh2 and calcium hydroxide on Enterococcus faecalis. Odontology 2025; 113:111-125. [PMID: 38762821 DOI: 10.1007/s10266-024-00951-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2024] [Accepted: 05/04/2024] [Indexed: 05/20/2024]
Abstract
Treatment of root canal infections becomes more challenging due to the extremely high tolerance of Enterococcus faecalis (E. faecalis) to calcium hydroxide (Ca(OH)2). Ginsenoside is a Chinese herbal extract that has been proven to have antimicrobial properties and synergistic activities. And this study evaluated the antibacterial activity of ginsenoside Rh2 in combination with Ca(OH)2 against E. faecalis and its preliminary mechanism of action. Broth microdilution method, checkerboard dilution method, time-inhibition curve, drug resistance assays, scanning electron microscopy, and biofilm inhibition and removal assays indicated that Rh2 in combination with Ca(OH)2 exhibited potent antibacterial activity against E. faecalis. Rh2 exerted significant in vitro antibacterial activity against E. faecalis, with a minimum inhibitory concentration (MIC) of 3.125 μg/mL and minimum bactericidal concentration (MBC) of 6.25 μg/mL, and significantly enhanced the susceptibility of E. faecalis to Ca(OH)2 (FICI = 0.5). Furthermore, cell membrane permeability assays, surface hydrophobicity assays, ATPase activity assays, and intra-biofilm extracellular polysaccharides (EPS) assays revealed that Rh2 and Ca(OH)2 synergistically inhibit bacteria mainly by increasing membrane permeability. Ultimately, cytotoxicity assays showed that Rh2 exhibited only low toxicity, the half maximal inhibitory concentration (IC50) of Rh2 was 19.75 μg/mL. This study confirmed the synergistic antibacterial activities of Rh2 and Ca(OH)2 against E. faecalis. Our findings indicate that the Rh2 and Ca(OH)2 combination may be a promising alternative approach to treating root canal infections.
Collapse
Affiliation(s)
- Chaoran Liu
- Department of Oral Geriatrics, Hospital of Stomatology, Jilin University, 1500# Qinghua Road, Chaoyang District, Changchun, 130021, People's Republic of China
- Jilin Provincial Key Laboratory of Tooth Development and Bone Remodeling, Changchun, 130021, People's Republic of China
| | - Yang Li
- Key Laboratory of Molecular Enzyme Engineering, Ministry of Education, College of Life Sciences, Jilin University, Changchun, 130012, People's Republic of China
| | - Yanan Li
- Department of Oral Geriatrics, Hospital of Stomatology, Jilin University, 1500# Qinghua Road, Chaoyang District, Changchun, 130021, People's Republic of China
| | - Ze Li
- Department of Oral Geriatrics, Hospital of Stomatology, Jilin University, 1500# Qinghua Road, Chaoyang District, Changchun, 130021, People's Republic of China
| | - Guanghong Han
- Department of Oral Geriatrics, Hospital of Stomatology, Jilin University, 1500# Qinghua Road, Chaoyang District, Changchun, 130021, People's Republic of China.
| |
Collapse
|
4
|
Lins RX, Freitas FS, Vicente ACP. Diversity of Endodontic Enterococcus faecalis from Brazil with a High Occurrence of the ST 397 Clone. Braz Dent J 2024; 35:e246104. [PMID: 39699502 DOI: 10.1590/0103-644020246104] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2024] [Accepted: 09/24/2024] [Indexed: 12/20/2024] Open
Abstract
Enterococcus faecalis is a common cause of nosocomial infections and is frequently associated with endodontic infections. However, there is a scarcity of studies addressing the genetic characterization of E. faecalis lineages most commonly associated with root canals. The aim of this study was to assess the genetic relatedness of E. faecalis strains from primary endodontic infections in Southeast Brazil, test the hypothesis of clones infecting unrelated individuals, and examine the antimicrobial resistance profile. The genetic relationship of 32 endodontic E. faecalis isolates was investigated using multilocus sequence typing (MLST). These isolates were collected from unrelated patients with primary endodontic infections treated in Brazil between 2010 and 2023. Antimicrobial susceptibility testing was performed using the disk diffusion method in accordance with the Clinical Laboratory Standards Institute guidelines. Twelve sequence types (STs) were detected, of which eight STs contained only a single strain. Clones of ST 30, ST 40, ST 97, and ST 397 were identified, with a notably high frequency of ST 397 (15/32). Susceptibility to the antimicrobial agents tested varied, with the highest resistance rates observed for clindamycin (100%), tetracycline (34.4%), azithromycin (31.2%), and ciprofloxacin (19.2%). One isolate was found to be multidrug-resistant. MLST analysis of endodontic E. faecalis revealed clones infecting different individuals in various cities over a span of up to 10 years, with a high occurrence of ST 397. Therefore, there appears to be a predominant E. faecalis lineage associated with endodontic infections in Southeast Brazil. These findings, together with existing literature, raise concerns that certain lineages may be specialized in causing endodontic infections.
Collapse
Affiliation(s)
- Renata Ximenes Lins
- Federal Fluminense University, Post-Graduation Program in Dentistry, Healthy Institute of Nova Friburgo, Nova Friburgo, Brazil
- Instituto Oswaldo Cruz, Laboratório de Genética Molecular de Microrganismos, FIOCRUZ, Rio de Janeiro, Brazil
| | - Fernanda Santos Freitas
- Instituto Oswaldo Cruz, Laboratório de Genética Molecular de Microrganismos, FIOCRUZ, Rio de Janeiro, Brazil
| | - Ana Carolina Paulo Vicente
- Instituto Oswaldo Cruz, Laboratório de Genética Molecular de Microrganismos, FIOCRUZ, Rio de Janeiro, Brazil
| |
Collapse
|
5
|
Suriyanarayanan T, Lee LS, Han SHY, Ching J, Seneviratne CJ. Targeted metabolomics analysis approach to unravel the biofilm formation pathways of Enterococcus faecalis clinical isolates. Int Endod J 2024; 57:1505-1520. [PMID: 38888425 DOI: 10.1111/iej.14110] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2024] [Revised: 05/20/2024] [Accepted: 06/03/2024] [Indexed: 06/20/2024]
Abstract
AIM (i) To characterize Enterococcus faecalis biofilm formation pathways by semi-targeted metabolomics and targeted nitrogen panel analysis of strong (Ef63) and weak (Ef 64) biofilm forming E. faecalis clinical isolates and (ii) to validate the identified metabolic markers using targeted inhibitors. METHODOLOGY Previous proteomics profiling of E. faecalis clinical isolates with strong and weak biofilm formation revealed that differences in metabolic activity levels of small molecule, nucleotide and nitrogen compound metabolic processes and biosynthetic pathways, cofactor metabolic process, cellular amino acid and derivative metabolic process and lyase activity were associated with differences in biofilm formation. Hence, semi-targeted analysis of Ef 63, Ef 64 and ATC control strain Ef 29212 was performed by selecting metabolites that were part of both the previously identified pathways and a curated library with confirmed physical and chemical identity, followed by confirmatory targeted nitrogen panel analysis. Significantly regulated metabolites (p < .05) were selected based on fold change cut-offs of 1.2 and 0.8 for upregulation and downregulation, respectively, and subjected to pathway enrichment analysis. The identified metabolites and pathways were validated by minimum biofilm inhibitory concentration (MBIC) and colony forming unit (CFU) assays with targeted inhibitors. RESULTS Metabolomics analysis showed upregulation of betaine, hypoxanthine, glycerophosphorylcholine, tyrosine, inosine, allantoin and citrulline in Ef 63 w.r.t Ef 64 and Ef 29212, and thesemetabolites mapped to purinemetabolism, urea cycle and aspartate metabolism pathways. MBIC and CFU assays using compounds against selected metabolites and metabolic pathways, namely glutathione against hypoxanthine and hydroxylamine against aspartate metabolism showed inhibitory effects against E. faecalis biofilm formation. CONCLUSIONS The study demonstrated the importance of oxidative stress inducers such as hypoxanthine and aspartate metabolism pathway in E. faecalis biofilm formation. Targeted therapeutics against these metabolic markers can reduce the healthcare burden associated with E. faecalis infections.
Collapse
Affiliation(s)
- Tanujaa Suriyanarayanan
- Singapore Oral Multiomics Initiative (SOMI), National Dental Research Institute Singapore, National Dental Centre Singapore, Singapore, Singapore
- Oral Health ACP, Duke NUS Medical School, Singapore, Singapore
| | - Lye Siang Lee
- Cardiovascular and Metabolic Disorders Programme, Duke-NUS Medical School, Singapore, Singapore
| | - Sharon Hong Yu Han
- Cardiovascular and Metabolic Disorders Programme, Duke-NUS Medical School, Singapore, Singapore
| | - Jianhong Ching
- Cardiovascular and Metabolic Disorders Programme, Duke-NUS Medical School, Singapore, Singapore
- KK Research Centre, KK Women's and Children's Hospital, Singapore, Singapore
| | - Chaminda J Seneviratne
- Singapore Oral Multiomics Initiative (SOMI), National Dental Research Institute Singapore, National Dental Centre Singapore, Singapore, Singapore
- School of Dentistry, University of Queensland, Brisbane, Queensland, Australia
| |
Collapse
|
6
|
Liu R, Liu P, Luo Y, Fan W, Fan B. Metformin reduced the alkaline resistance of Enterococcus faecalis against calcium hydroxide via Man-PTS EII: in vitro and in vivo studies. Clin Oral Investig 2024; 28:520. [PMID: 39254714 DOI: 10.1007/s00784-024-05909-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2024] [Accepted: 09/01/2024] [Indexed: 09/11/2024]
Abstract
OBJECTIVES The mannose phosphotransferase system (Man-PTS) plays crucial roles in the adaptive metabolic activity of Enterococcus faecalis (E. faecalis) in adverse environments. The aim of this study was to evaluate the role of Man-PTS in the alkaline resistance of E. faecalis against calcium hydroxide (CH) and the effect of metformin (Met) on the alkaline resistance of E. faecalis to CH. MATERIALS AND METHODS The regulatory role of Man-PTS EII in the alkaline resistance of E. faecalis was firstly investigated using a wild-type highly alkaline-resistant E. faecalis XS 003, standard ATCC 29212 and Man-PTS EIID gene deficient (△mptD) and overexpressing (+mptD) strains of E. faecalis. RNA sequencing of Met-treated E. faecalis was performed to further validate the effect of Met on Man-PTS. The effect of Met on CH resistance of E. faecalis was verified by evaluating the survival, membrane potential and permeability, intracellular pH and ATP, and the expression of Man-PTS EII and membrane transporter-related genes of E. faecalis. The effect of Met on the ability of CH to remove E. faecalis biofilm on the dentin surface was also tested. The in vivo therapeutic effect of Met plus CH (CHM) was further investigated in a rat apical periodontitis model induced by E. faecalis XS 003. RESULTS Man-PTS EII significantly promoted the survival ability of E. faecalis in CH and enhanced its resistance to CH. The inhibition of Man-PTS EII by Met resulted in reduced alkaline resistance of E. faecalis in the presence of CH, while also enhancing the antimicrobial properties of CH against E. faecalis biofilm on dentin. Additionally, Met plus CH showed the synergistically promoted intra-canal E. faecalis infection control and healing of periapical lesion in rats. CONCLUSIONS Met could significantly reduce the alkaline resistance of E. faecalis against CH through the modulation of Man-PTS EII, and improved the antibacterial effect of CH against E. faecalis infection both in vitro and in vivo. CLINICAL RELEVANCE Met could significantly enhance the ability of CH to control E. faecalis infection through reducing the alkaline resistance of E. faecalis.
Collapse
Affiliation(s)
- Runze Liu
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, 237# Luoyu Road, Wuhan, 430079, People's Republic of China
| | - Pei Liu
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, 237# Luoyu Road, Wuhan, 430079, People's Republic of China
| | - Yi Luo
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, 237# Luoyu Road, Wuhan, 430079, People's Republic of China
| | - Wei Fan
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, 237# Luoyu Road, Wuhan, 430079, People's Republic of China.
| | - Bing Fan
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, 237# Luoyu Road, Wuhan, 430079, People's Republic of China.
| |
Collapse
|
7
|
Hu Z, Ren H, Min Y, Li Y, Zhang Y, Mao M, Leng W, Xia L. The effects of antimicrobial peptides buCaTHL4B and Im-4 on infectious root canal biofilms. Front Bioeng Biotechnol 2024; 12:1409487. [PMID: 39219619 PMCID: PMC11361941 DOI: 10.3389/fbioe.2024.1409487] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2024] [Accepted: 07/18/2024] [Indexed: 09/04/2024] Open
Abstract
Purpose The primary cause of pulp and periapical diseases is the invasion of bacteria into the root canal, which results from the continuous destruction of dental hard tissues. Effective management of infections during root canal therapy necessitates effectively irrigation. This study aims to investigate the effects of two antimicrobial peptides (AMPs), buCaTHL4B and Im-4, on root canal biofilms in vitro. Methods Two-species biofilms (Enterococcus faecalis and Fusobacterium nucleatum) were selected and anaerobically cultivated. The following treatments were applied: 10 μg/mL buCaTHL4B, 10 μg/mL Im-4, 5 μg/mL buCaTHL4B, 5 μg/mL Im-4, 1 μg/mL buCaTHL4B, 1 μg/mL Im-4, 1% NaOCl, and sterile water. Each group was treated for 3 min. Subsequently, the two strains were co-cultured with 10 μg/mL buCaTHL4B, 10 μg/mL Im-4, 1% NaOCl, and sterile water for 24, 48, and 72 h. The biofilms were examined using confocal laser scanning microscopy (CLSM) with fluorescent staining, and the percentages of dead bacteria were calculated. Quantitative real-time PCR (qRT-PCR) was employed to assess the variations in bacterial proportions during biofilm formation. Results Compared to 1% NaOCl, 10 μg/mL buCaTHL4B or Im-4 exhibited significantly greater bactericidal effects on the two-species biofilms (p < 0.05), leading to their selection for subsequent experiments. Over a 48-hour period, 10 μg/mL Im-4 demonstrated a stronger antibiofilm effect than buCaTHL4B (p < 0.05). Following a 24-hour biofilm formation period, the proportion of F. nucleatum decreased while the proportion of E. faecalis increased in the sterile water group. In the buCaTHL4B and 1% NaOCl groups, the proportion of F. nucleatum was lower than that of E. faecalis (p < 0.05), whereas in the Im-4 group, the proportion of F. nucleatum was higher than that of E. faecalis (p < 0.05). The proportions of bacteria in the two AMPs groups gradually stabilized after 24 h of treatment. Conclusion buCaTHL4B and Im-4 exhibited remarkable antibacterial and anti-biofilm capabilities against pathogenic root canal biofilms in vitro, indicating their potential as promising additives to optimize the effectiveness of root canal treatment as alternative irrigants.
Collapse
Affiliation(s)
- Ziqiu Hu
- Department of Stomatology, Taihe Hospital, Hubei University of Medicine, Shiyan, China
- Institute of Oral Diseases, School of Dentistry, Hubei University of Medicine, Shiyan, China
| | - Haixia Ren
- Department of Stomatology, Taihe Hospital, Hubei University of Medicine, Shiyan, China
- Institute of Oral Diseases, School of Dentistry, Hubei University of Medicine, Shiyan, China
| | - Yifan Min
- Department of Stomatology, Zhushan County People’s Hospital, Shiyan, China
| | - Yixin Li
- Department of Stomatology, Taihe Hospital, Hubei University of Medicine, Shiyan, China
- Institute of Oral Diseases, School of Dentistry, Hubei University of Medicine, Shiyan, China
| | - Yuyuan Zhang
- Department of Stomatology, Taihe Hospital, Hubei University of Medicine, Shiyan, China
- Institute of Oral Diseases, School of Dentistry, Hubei University of Medicine, Shiyan, China
| | - Min Mao
- Department of Stomatology, Taihe Hospital, Hubei University of Medicine, Shiyan, China
- Institute of Oral Diseases, School of Dentistry, Hubei University of Medicine, Shiyan, China
| | - Weidong Leng
- Department of Stomatology, Taihe Hospital, Hubei University of Medicine, Shiyan, China
- Institute of Oral Diseases, School of Dentistry, Hubei University of Medicine, Shiyan, China
| | - Lingyun Xia
- Department of Stomatology, Taihe Hospital, Hubei University of Medicine, Shiyan, China
- Institute of Oral Diseases, School of Dentistry, Hubei University of Medicine, Shiyan, China
| |
Collapse
|
8
|
Thammasitboon K, Teanpaisan R, Pahumunto N. Prevalence and virulence factors of haemolytic Enterococcus faecalis isolated from root filled teeth associated with periradicular lesions: A laboratory investigation in Thailand. Int Endod J 2024; 57:769-783. [PMID: 38483342 DOI: 10.1111/iej.14059] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Revised: 11/26/2023] [Accepted: 02/21/2024] [Indexed: 05/07/2024]
Abstract
AIM Previous endodontic research has provided limited understanding of the prevalence and roles of haemolytic and non-haemolytic Enterococcus faecalis strains in root filled teeth. This study aimed to determine the prevalence of these strains in root filled teeth with periradicular lesions and investigate their associated virulence factors. METHODOLOGY A total of 36 root canal samples were collected from 36 subjects. The prevalence of E. faecalis was determined using culture and PCR methods. Antibiotic susceptibility of haemolytic and non-haemolytic E. faecalis strains was assessed using the broth dilution assay. The cytokine stimulation in periodontal ligament (PDL) cells and neutrophil migration were evaluated using real-time PCR and migration assay, respectively. Cell invasion ability of the strains was assessed using a cell culture model. Additionally, the virulence gene expression of the haemolytic and non-haemolytic strains was investigated using real-time PCR. The Mann-Whitney U and Spearman's ρ tests were used to examine the significant difference between the two strains and to analyse the correlation between phenotype and gene expression, respectively. RESULTS Enterococcus faecalis was detected in 33.3% and 88.9% of samples by culture and real-time PCR, respectively. Haemolytic strains were found in 36.4% of subjects. Non-haemolytic strains exhibited susceptibility to erythromycin and varying susceptibility to tetracycline, while all haemolytic strains were resistant to both antibiotics. Haemolytic strains significantly upregulated the expression of IL-8, OPG and RANKL in PDL cells (p < .05). Notably, the fold increases in these genes were higher: IL-8 (556.1 ± 82.9 vs. 249.6 ± 81.8), OPG (2.2 ± 0.5 vs. 1.3 ± 0.2) and RANKL (1.8 ± 0.3 vs. 1.2 ± 0.1). Furthermore, haemolytic strains had a greater effect on neutrophil migration (68.7 ± 15.2% vs. 46.9 ± 11.4%) and demonstrated a higher level of internalization into oral keratinocyte cells (68.6 ± 0.4% vs. 33.8 ± 0.5%) (p < .05). They also showed enhanced expression of virulence genes associated with haemolysin, surface proteins, collagen-binding and aggregation substances. Gelatinase activity was only detectable in non-haemolytic strains. CONCLUSIONS This study revealed that haemolytic strains E. faecalis possessed enhanced abilities in host invasion and a higher abundance of virulence factors, suggesting their potential contribution to more severe disease manifestations.
Collapse
Affiliation(s)
- Kewalin Thammasitboon
- Department of Conservative Dentistry, Faculty of Dentistry, Prince of Songkla University, Hat Yai, Thailand
- Research Center of Excellence for Oral Health, Faculty of Dentistry, Prince of Songkla University, Hat Yai, Thailand
| | - Rawee Teanpaisan
- Research Center of Excellence for Oral Health, Faculty of Dentistry, Prince of Songkla University, Hat Yai, Thailand
| | - Nuntiya Pahumunto
- Research Center of Excellence for Oral Health, Faculty of Dentistry, Prince of Songkla University, Hat Yai, Thailand
- Department of Oral Diagnostic Sciences, Faculty of Dentistry, Prince of Songkla University, Hat Yai, Thailand
| |
Collapse
|
9
|
Chepchumba B, Asudi GO, Katana J, Ngayo MO, Khayeli JA. Isolation of phages against Streptococcus species in the oral cavity for potential control of dental diseases and associated systemic complications. Arch Microbiol 2024; 206:175. [PMID: 38493441 DOI: 10.1007/s00203-024-03897-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2023] [Revised: 02/07/2024] [Accepted: 02/12/2024] [Indexed: 03/19/2024]
Abstract
Dental infections and systemic complications caused by Streptococcus species in the oral cavity are increasingly exhibiting resistance to commonly used antibiotics, posing a potential threat to global public health. Phage therapy may offer a superior alternative, given that bacteriophages can be easily isolated and rapidly replicate in large numbers. In this study, six Streptococcus species from the oral cavity were characterized. Bacteriophages isolated from wastewater using five of these species as hosts produced plaques ranging from 0.2 to 2.4 mm in size. The phages demonstrated stability within a temperature range of 4 ℃ to 37 ℃. However, at temperatures exceeding 45 ℃, a noticeable reduction in bacteriophage titer was observed. Similarly, the phages showed greater stability within a pH range of 5 to 10. The isolated phages exhibited latency periods ranging from 15 to 20 min and had burst sizes varying from 10 to 200 viral particles. This study supports the potential use of bacteriophages in controlling infections caused by Streptococcus species.
Collapse
Affiliation(s)
- Beatrice Chepchumba
- Department of Biochemistry, Microbiology and Biotechnology, Kenyatta University, Nairobi, Kenya.
| | - George O Asudi
- Department of Biochemistry, Microbiology and Biotechnology, Kenyatta University, Nairobi, Kenya
| | - Japhet Katana
- Center for Microbiology Research, Kenya Medical Research Institute, Nairobi, Kenya
| | - Musa O Ngayo
- Center for Microbiology Research, Kenya Medical Research Institute, Nairobi, Kenya
| | | |
Collapse
|
10
|
Barbosa-Ribeiro M, Gomes BPFA, Arruda-Vasconcelos R, Monteiro IDA, Costa MJF, Sette-de-Souza PH. Antibiotic Resistance Profile of Clinical Strains of Enterococci from Secondary/Persistent Endodontic Infections: What do We Know? A Systematic Review of Clinical Studies. J Endod 2024; 50:299-309. [PMID: 38171449 DOI: 10.1016/j.joen.2023.12.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Revised: 11/30/2023] [Accepted: 12/22/2023] [Indexed: 01/05/2024]
Abstract
INTRODUCTION Enterococcus faecalis is the most common enterococcal species associated with infective endocarditis and 1 of the most commonly detected bacteria in cases of secondary/persistent endodontic infection (SPEI). Antimicrobial resistance is a global public health concern. This review aimed to answer the following research question: "Is there a change in the antibiotic resistance profile in clinical strains of E. faecalis over the years?". P (population) - patients with SPEI, I (intervention) -endodontic retreatment, C (comparison) -not included, O (outcome) - profile of Enterococci resistance and susceptibility to systemic antibiotics used. METHODS Two authors independently performed study selection, data extraction, and risk of bias assessment. The literature search was conducted using the following electronic databases: PubMed, Scopus, EMBASE, Web of Science, and Medline. Clinical studies in which Enterococci strains were isolated to assess their antimicrobial resistance were included. RESULTS Eleven clinical trials were included. Overall, E. faecalis isolated from teeth with SPEI presented an intermediate resistance to 16 antibiotics. In recent years, E. faecalis showed a little resistance to amoxicillin (without clavulanate) and benzylpenicillin. Erythromycin and rifampicin presented an increase in the intermediate-resistance status between the first and the last studies. E. faecium presented intermediate-resistance results. CONCLUSION The most effective drugs remain the combination of amoxicillin and clavulanate, followed by amoxicillin and benzylpenicillin. In patients allergic to penicillin derivatives, moxifloxacin and azithromycin may be indicated with caution. The antibiotics with the highest pattern of resistance against E. faecalis are clindamycin, gentamicin, metronidazole, and rifampicin and are therefore, contraindicated in cases of SPEI. Very few clinical studies using a microbiological approach in teeth with endodontic failure have been carried out to improve the efficacy of prophylactic regimens. However, as bacteria periodically develop resistance to the main drugs used, regular studies should be carried out on the action of these drugs in infection control.
Collapse
Affiliation(s)
| | - Brenda P F A Gomes
- Division of Endodontics, Department of Restorative Dentistry, Piracicaba Dental School, Universidade Estadual de Campinas - Piracicaba, São Paulo, Brazil
| | - Rodrigo Arruda-Vasconcelos
- Division of Endodontics, Department of Restorative Dentistry, Piracicaba Dental School, Universidade Estadual de Campinas - Piracicaba, São Paulo, Brazil; São Leopoldo Mandic School of Dentistry, Campinas, São Paulo, Brazil; School of Dentistry, Nossa Senhora do Patrocínio University Center, Itu, São Paulo, Brazil
| | | | | | - Pedro Henrique Sette-de-Souza
- School of Dentistry, Universidade de Pernambuco - Arcoverde, Pernambuco, Brazil; Graduate Program in Health and Socioambiental Development, Universidade de Pernambuco - Garanhuns, Pernambuco, Brazil
| |
Collapse
|
11
|
Li M, Qiu Y, Wang Y, Zhang S, Duan L, Zhao W, Shi Y, Zhang Z, Tay FR, Fu B. A glycol chitosan derivative with extrafibrillar demineralization potential for self-etch dentin bonding. Dent Mater 2024; 40:327-339. [PMID: 38065798 DOI: 10.1016/j.dental.2023.11.020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2023] [Revised: 11/22/2023] [Accepted: 11/23/2023] [Indexed: 02/12/2024]
Abstract
OBJECTIVES Extrafibrillar demineralization is an etching technique that removes only minerals from around the collagen fibrils for resin infiltration. The intrafibrillar minerals are left intact to avoid their replacement by water that is hard for adhesive resin monomers to displace. The present work reported the synthesis of a water-soluble methacryloyloxy glycol chitosan-EDTA conjugate (GCE-MA) and evaluated its potential as an extrafibrillar demineralization agent for self-etch dentin bonding. METHODS Glycol chitosan-EDTA was functionalized with a methacryloyloxy functionality. Conjugation was confirmed using Fourier transform-infrared spectroscopy. The GCE-MA was used to prepare experimental self-etch primers. Extrafibrillar demineralization of the primers was evaluated with scaning electron microscopy and transmission electron microscopy. The feasibility of this new self-etch bonding approach was evaluated using microtensile bond strength testing and inhibition of dentin gelatinolytic activity. The antibacterial activity and cytotoxicity of GCE-MA were also analyzed. RESULTS Conjugation of EDTA and the methacryloyloxy functionality to glycol chitosan was successful. The functionalized conjugate was capable of extrafibrillar demineralization of mineralized collagen fibrils. Tensile bond strength of the experimental self-etch primer to dentin was comparable to that of phosphoric acid-etched dentin and the commercial self-etch primer Clearfil SE Bond 2. The GCE-MA also inhibited soluble rhMMP-9. In-situ zymography detected minimal fluorescence in hybrid layers conditioned with the experimental primer. The GCE-MA was noncytotoxic and possessed antibacterial activities against planktonic bacteria. SIGNIFICANCE Synthesis of GCE-MA brought into fruition a self-etch conditioner that selectively demineralizes the extrafibrillar mineral component of dentin. A self-etch primer prepared with GCE-MA achieved bond strengths comparable to commercial reference adhesive systems.
Collapse
Affiliation(s)
- Mingxing Li
- Stomatology Hospital, School of Stomatology, Zhejiang University School of Medicine, Clinical Research Center for Oral Diseases of Zhejiang Province, Key Laboratory of Oral Biomedical Research of Zhejiang Province, Cancer Center of Zhejiang University, Hangzhou, China
| | - Yuan Qiu
- Stomatology Hospital, School of Stomatology, Zhejiang University School of Medicine, Clinical Research Center for Oral Diseases of Zhejiang Province, Key Laboratory of Oral Biomedical Research of Zhejiang Province, Cancer Center of Zhejiang University, Hangzhou, China
| | - Yinlin Wang
- Stomatology Hospital, School of Stomatology, Zhejiang University School of Medicine, Clinical Research Center for Oral Diseases of Zhejiang Province, Key Laboratory of Oral Biomedical Research of Zhejiang Province, Cancer Center of Zhejiang University, Hangzhou, China
| | - Sisi Zhang
- Stomatology Hospital, School of Stomatology, Zhejiang University School of Medicine, Clinical Research Center for Oral Diseases of Zhejiang Province, Key Laboratory of Oral Biomedical Research of Zhejiang Province, Cancer Center of Zhejiang University, Hangzhou, China
| | - Lian Duan
- College of Sericulture, Textile and Biomass Sciences, Southwest University, Chongqing, China
| | - Weijia Zhao
- Stomatology Hospital, School of Stomatology, Zhejiang University School of Medicine, Clinical Research Center for Oral Diseases of Zhejiang Province, Key Laboratory of Oral Biomedical Research of Zhejiang Province, Cancer Center of Zhejiang University, Hangzhou, China
| | - Ying Shi
- Stomatology Hospital, School of Stomatology, Zhejiang University School of Medicine, Clinical Research Center for Oral Diseases of Zhejiang Province, Key Laboratory of Oral Biomedical Research of Zhejiang Province, Cancer Center of Zhejiang University, Hangzhou, China
| | - Zhengyi Zhang
- Stomatology Hospital, School of Stomatology, Zhejiang University School of Medicine, Clinical Research Center for Oral Diseases of Zhejiang Province, Key Laboratory of Oral Biomedical Research of Zhejiang Province, Cancer Center of Zhejiang University, Hangzhou, China
| | - Franklin R Tay
- The Dental College of Georgia, Augusta University, Augusta, GA, USA.
| | - Baiping Fu
- Stomatology Hospital, School of Stomatology, Zhejiang University School of Medicine, Clinical Research Center for Oral Diseases of Zhejiang Province, Key Laboratory of Oral Biomedical Research of Zhejiang Province, Cancer Center of Zhejiang University, Hangzhou, China.
| |
Collapse
|
12
|
Zhang W, Xu T, Li X, Zhang Y, Zou X, Chen F, Yue L. Single-cell atlas of dental pulp stem cells exposed to the oral bacteria Porphyromonas gingivalis and Enterococcus faecalis. Front Cell Dev Biol 2023; 11:1166934. [PMID: 37287452 PMCID: PMC10242116 DOI: 10.3389/fcell.2023.1166934] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Accepted: 05/09/2023] [Indexed: 06/09/2023] Open
Abstract
Introduction: Porphyromonas gingivalis and Enterococcus faecalis promote the development of pulpitis and periapical periodontitis. These bacteria are difficult to eliminate from the root canal systems, leading to persistent infection and poor treatment outcomes. We explored the response of human dental pulp stem cells (hDPSCs) to bacterial invasion and the mechanisms underlying the impact of residual bacteria on dental pulp regeneration. Methods: Single-cell sequencing was used to categorize the hDPSCs into clusters based on their response to P. gingivalis and E. faecalis. We depicted a single-cell transcriptome atlas of hDPSCs stimulated by P. gingivalis or E. faecalis. Results: The most differentially expressed genes in the Pg samples were THBS1, COL1A2, CRIM1, and STC1, which are related to matrix formation and mineralization, and HILPDA and PLIN2, which are related to the cellular response to hypoxia. A cell cluster characterized by high expression levels of THBS1 and PTGS2 was increased after P. gingivalis stimulation. Further signaling pathway analysis showed that hDPSCs prevented P. gingivalis infection by regulating the TGF-β/SMAD, NF-κB, and MAPK/ERK signaling pathways. Differentiation potency and pseudotime trajectory analyses showed that hDPSCs infected by P. gingivalis undergo multidirectional differentiation, particularly to the mineralization-related cell lineage. Furthermore, P. gingivalis can create a hypoxia environment to effect cell differentiation. The Ef samples were characterized by the expression of CCL2, which is related to leukocyte chemotaxis, and ACTA2, which is related to actin. There was an increased proportion of a cell cluster that was similar to myofibroblasts and exhibited significant ACTA2 expression. The presence of E. faecalis promoted the differentiation of hDPSCs into fibroblast-like cells, which highlights the role of fibroblast-like cells and myofibroblasts in tissue repair. Discussion: hDPSCs do not maintain their stem cell status in the presence of P. gingivalis and E. faecalis. They differentiate into mineralization-related cells in the presence of P. gingivalis and into fibroblast-like cells in the presence of E. faecalis. We identified the mechanism underlying the infection of hDPSCs by P. gingivalis and E. faecalis. Our results will improve understanding of the pathogenesis of pulpitis and periapical periodontitis. Furthermore, the presence of residual bacteria can have adverse effects on the outcomes of regenerative endodontic treatment.
Collapse
Affiliation(s)
- Wen Zhang
- Department Cariology, Endodontology and Operative Dentistry, Peking University School and Hospital of Stomatology & National Center for Stomatology & National Clinical Research Center for Oral Diseases & National Engineering Research Center of Oral Biomaterials and Digital Medical Devices, Beijing, China
| | - Tiansong Xu
- Central Laboratory, Peking University School and Hospital of Stomatology, & National Center for Stomatology & National Clinical Research Center for Oral Diseases & National Engineering Research Center of Oral Biomaterials and Digital Medical Devices, Beijing, China
| | - Xueying Li
- Department Cariology, Endodontology and Operative Dentistry, Peking University School and Hospital of Stomatology & National Center for Stomatology & National Clinical Research Center for Oral Diseases & National Engineering Research Center of Oral Biomaterials and Digital Medical Devices, Beijing, China
| | - Yifei Zhang
- Central Laboratory, Peking University School and Hospital of Stomatology, & National Center for Stomatology & National Clinical Research Center for Oral Diseases & National Engineering Research Center of Oral Biomaterials and Digital Medical Devices, Beijing, China
| | - Xiaoying Zou
- Department Cariology, Endodontology and Operative Dentistry, Peking University School and Hospital of Stomatology & National Center for Stomatology & National Clinical Research Center for Oral Diseases & National Engineering Research Center of Oral Biomaterials and Digital Medical Devices, Beijing, China
- Center of Stomatology, Peking University Hospital, Beijing, China
| | - Feng Chen
- Central Laboratory, Peking University School and Hospital of Stomatology, & National Center for Stomatology & National Clinical Research Center for Oral Diseases & National Engineering Research Center of Oral Biomaterials and Digital Medical Devices, Beijing, China
| | - Lin Yue
- Department Cariology, Endodontology and Operative Dentistry, Peking University School and Hospital of Stomatology & National Center for Stomatology & National Clinical Research Center for Oral Diseases & National Engineering Research Center of Oral Biomaterials and Digital Medical Devices, Beijing, China
| |
Collapse
|
13
|
Gaeta C, Marruganti C, Ali IAA, Fabbro A, Pinzauti D, Santoro F, Neelakantan P, Pozzi G, Grandini S. The presence of Enterococcus faecalis in saliva as a risk factor for endodontic infection. Front Cell Infect Microbiol 2023; 13:1061645. [PMID: 37091670 PMCID: PMC10118032 DOI: 10.3389/fcimb.2023.1061645] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2022] [Accepted: 03/02/2023] [Indexed: 04/09/2023] Open
Abstract
AimThe aim of the present study was to investigate and correlate the prevalence of Enterococcus faecalis in saliva and in root canals with different pulpal and periapical conditions.MethodologySixty-seven patients were divided into five groups based on pulpal and periapical tissue status: healthy vital teeth (HVT, n=7), healthy treated teeth without lesion (HTT, n=9), irreversible pulpitis (IP, n=13), necrosis (N, n=18), and post-treatment apical periodontitis (PTAP, n=20). Saliva, rubber dam, sterility control and pre-treatment root canal samples were collected and microbiologically processed by culture method. The phylogenetic relationship of E. faecalis isolates collected from root canals and saliva were investigated by whole genome sequencing. Fisher’s exact test was used to correlate the presence of E. faecalis in root canals or saliva with clinical and/or radiographic findings. Linear/logistic regression analyses were performed to establish the relationship between the presence of E. faecalis in root canals, saliva, and the status of periapical tissues.ResultsE. faecalis was found in 18 root canal and saliva samples. E. faecalis root canal isolates were recovered with the highest frequency from post-treatment apical periodontitis. The occurrence of E. faecalis in saliva was strongly associated with its detection in the root canals (P < 0.001). The pretreatment presence of E. faecalis in root canals was associated with significantly higher odds of having periapical lesions (OR=11.03; 95% CI, 1.27-95.70; p < 0.05). Saliva and root canal isolates from the same patient were highly correlated at the phylogenetic level (Jaccard index >0.95).ConclusionThis pilot study confirms the role of E. faecalis in developing peri-radicular lesions in secondary endodontic infections and suggests that saliva could be the main source of infection. Further studies are needed to investigate the exact origin of this bacteria and its true role in the pathogenesis of secondary/persistent endodontic infections.
Collapse
Affiliation(s)
- Carlo Gaeta
- Unit of Periodontology, Endodontic and Restorative Dentistry, Department of Medical Biotechnology, University of Siena, Siena, Italy
- *Correspondence: Carlo Gaeta,
| | - Crystal Marruganti
- Unit of Periodontology, Endodontic and Restorative Dentistry, Department of Medical Biotechnology, University of Siena, Siena, Italy
| | - Islam A. A. Ali
- Department of Endodontics, Faculty of Dentistry, Mansoura University, Mansoura, Egypt
| | - Andrea Fabbro
- Unit of Periodontology, Endodontic and Restorative Dentistry, Department of Medical Biotechnology, University of Siena, Siena, Italy
| | - David Pinzauti
- Unit of Periodontology, Endodontic and Restorative Dentistry, Department of Medical Biotechnology, University of Siena, Siena, Italy
| | - Francesco Santoro
- Unit of Periodontology, Endodontic and Restorative Dentistry, Department of Medical Biotechnology, University of Siena, Siena, Italy
| | - Prasanna Neelakantan
- Faculty of Dentistry, The University of Hong Kong, Sai Ying Pun, Hong Kong, Hong Kong SAR, China
| | - Gianni Pozzi
- Unit of Periodontology, Endodontic and Restorative Dentistry, Department of Medical Biotechnology, University of Siena, Siena, Italy
| | - Simone Grandini
- Unit of Periodontology, Endodontic and Restorative Dentistry, Department of Medical Biotechnology, University of Siena, Siena, Italy
| |
Collapse
|
14
|
Zhou F, Li X, Chang X, Geng Z, Hao W, Deng J, Wong HM, Wang S. Effect of Enterococcus faecalis on osteoclastogenesis under cobalt-mimicked hypoxia in vitro. Microb Pathog 2023; 175:105964. [PMID: 36587925 DOI: 10.1016/j.micpath.2022.105964] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2022] [Revised: 12/16/2022] [Accepted: 12/27/2022] [Indexed: 12/31/2022]
Abstract
OBJECTIVE The bone destruction in persistent apical periodontitis associated with infection and a periapical hypoxic microenvironment is not well known. Thus, we aimed to investigate the effects of Enterococcus faecalis on osteoclastogenesis under cobalt-mimicked hypoxia. MATERIALS AND METHODS Mouse bone marrow-derived macrophages (BMMs) were isolated as osteoclast precursors and stimulated by heat-killed E. faecalis in an environment of cobalt-mimicked hypoxia environment. The cell proliferation and apoptosis were detected using CCK-8 and flow cytometry, respectively. Osteoclast differentiation was determined via tartrate-resistant acid phosphatase staining (TRAP) and immunofluorescence staining. The osteoclastogenic protein and gene expressions were measured by western blotting and real-time PCR. RESULTS Under cobalt-mimicked hypoxia, E. faecalis markedly inhibited the proliferation of the BMMs and significantly promoted the apoptosis of the BMMs. The differentiation of the BMMs into osteoclasts was enhanced in the presence of the E. faecalis under hypoxia, and the expression of Blimp, c-Fos, and NFATc1 was up-regulated, while the expression of RBP-J was inhibited. CONCLUSIONS E. faecalis markedly promotes osteoclast differentiation under cobalt-mimicked hypoxia in vitro.
Collapse
Affiliation(s)
- Fengyi Zhou
- Department of Stomatology, the Affiliated Hospital of Qingdao University, Qingdao, China; School of Stomatology of Qingdao University, Qingdao, China; Dental Digital Medicine & 3D Printing Engineering Laboratory of Qingdao, Qingdao, China
| | - Xin Li
- Department of Stomatology, Shenzhen University General Hospital, Shenzhen University Clinical Medical Academy, Shenzhen, China; Institute of Stomatological Research, Shenzhen University, China
| | - Xiaochi Chang
- Department of Stomatology, the Affiliated Hospital of Qingdao University, Qingdao, China; School of Stomatology of Qingdao University, Qingdao, China; Dental Digital Medicine & 3D Printing Engineering Laboratory of Qingdao, Qingdao, China
| | - Zhihao Geng
- Department of Stomatology, the Affiliated Hospital of Qingdao University, Qingdao, China
| | - Wenjing Hao
- Department of Stomatology, the Affiliated Hospital of Qingdao University, Qingdao, China; School of Stomatology of Qingdao University, Qingdao, China
| | - Jing Deng
- Department of Stomatology, the Affiliated Hospital of Qingdao University, Qingdao, China; School of Stomatology of Qingdao University, Qingdao, China; Dental Digital Medicine & 3D Printing Engineering Laboratory of Qingdao, Qingdao, China
| | - Hai Ming Wong
- Department of Paediatric Dentistry, Faculty of Dentistry, The University of Hong Kong, Hong Kong, China.
| | - Shuai Wang
- Department of Stomatology, the Affiliated Hospital of Qingdao University, Qingdao, China; School of Stomatology of Qingdao University, Qingdao, China; Dental Digital Medicine & 3D Printing Engineering Laboratory of Qingdao, Qingdao, China.
| |
Collapse
|
15
|
Deng Z, Lin B, Liu F, Zhao W. Role of Enterococcus faecalis in refractory apical periodontitis: from pathogenicity to host cell response. J Oral Microbiol 2023; 15:2184924. [PMID: 36891193 PMCID: PMC9987735 DOI: 10.1080/20002297.2023.2184924] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/06/2023] Open
Abstract
BACKGROUND Refractory apical periodontitis (RAP) is an oral infectious disease characterised by persistent inflammation, progressive alveolar bone destruction, and delayed bone healing. RAP has received increasing attention, because it cannot be cured after repeated root canal therapies. The aetiology of RAP is related to the complex interplay between the pathogen and its host. However, the exact pathogenesis of RAP remains unclarified and includes several factors, such as microorganism immunogenicity, host immunity and inflammation, and tissue destruction and repair. Enterococcus faecalis is the dominant pathogen involved in RAP, and has evolved multiple strategies to ensure survival, which cause persistent intraradicular and extraradicular infections. OBJECTIVE To review the crucial role of E. faecalis in the pathogenesis of RAP, and open new avenues for prevention and treatment of RAP. METHODS The PubMed and Web of Science databases were searched for pertinent publications, employing the search terms "Enterococcus faecalis", "refractory apical periodontitis", "persistent periapical periodontitis", "pathogenicity", "virulence", "biofilm formation", "dentine tubule", "immune cell", "macrophage", and "osteoblast". RESULTS AND CONCLUSION Besides its high pathogenicity due to various virulence mechanisms, E. faecalis modulates the macrophage and osteoblast responses, including regulated cell death, cell polarisation, cell differentiation, and inflammatory response. An in-depth understanding of the multifaceted host cell responses modulated by E. faecalis will help to design potential future therapeutic strategies and overcome the challenges of sustained infection and delayed tissue healing in RAP.
Collapse
Affiliation(s)
- Zilong Deng
- Department of Stomatology, Nanfang Hospital, Southern Medical University, Guangzhou, China.,School of Stomatology, Southern Medical University, Guangzhou, China
| | - Binbin Lin
- Department of Stomatology, Nanfang Hospital, Southern Medical University, Guangzhou, China.,School of Stomatology, Southern Medical University, Guangzhou, China
| | - Fan Liu
- School of Stomatology, Southern Medical University, Guangzhou, China
| | - Wanghong Zhao
- Department of Stomatology, Nanfang Hospital, Southern Medical University, Guangzhou, China.,School of Stomatology, Southern Medical University, Guangzhou, China
| |
Collapse
|
16
|
Isolation, characterization and complete genome analysis of a novel bacteriophage vB_EfaS-SRH2 against Enterococcus faecalis isolated from periodontitis patients. Sci Rep 2022; 12:13268. [PMID: 35918375 PMCID: PMC9346004 DOI: 10.1038/s41598-022-16939-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2022] [Accepted: 07/18/2022] [Indexed: 11/09/2022] Open
Abstract
Periodontitis is a chronic inflammatory condition that can damage soft tissues and supporting teeth. Enterococcus faecalis is an opportunistic pathogen usually living in the oral cavity and plays a critical role in apical periodontitis that significantly threatens human health. The use of bacteriophages as an alternative way to eliminate bacterial infections is a promising approach. E. faecalis was isolated from the depth of dental packets of patients with periodontitis. Antimicrobial susceptibility was tested using 16 antimicrobial agents. Also, a specific virulent bacteriophage (vB_EfaS-SRH2) with an irregular pentagonal morphology of the head and a non-contractile tail belonging to the Siphoviridae, was isolated from wastewater in East of Isfahan, Iran, and its physiological and genomic specifications were investigated. The genome was double-strand DNA with 38,746 bp length and encoded 62 putative ORFs. In addition, eight Anti-CRISPERs and 30 Rho-dependent terminators were found. No tRNA was found. It had a short latent period of 15 min and a large burst size of ~ 125. No undesirable genes (antibiotic resistance, lysogenic dependence, and virulence factors) were identified in the genome. Based on physiological properties and genomic characteristics, this phage can be used as a suitable choice in phage therapy for periodontitis and root canal infection.
Collapse
|
17
|
Brooks L, Narvekar U, McDonald A, Mullany P. Prevalence of antibiotic resistance genes in the oral cavity and mobile genetic elements that disseminate antimicrobial resistance: A systematic review. Mol Oral Microbiol 2022; 37:133-153. [DOI: 10.1111/omi.12375] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2022] [Revised: 05/23/2022] [Accepted: 06/01/2022] [Indexed: 11/30/2022]
Affiliation(s)
- Laura Brooks
- UCL Eastman Dental Institute University College London 47–49 Huntley St London WC1E 6DG UK
| | - Unnati Narvekar
- UCL Eastman Dental Institute University College London 47–49 Huntley St London WC1E 6DG UK
| | - Ailbhe McDonald
- UCL Eastman Dental Institute University College London 47–49 Huntley St London WC1E 6DG UK
| | - Peter Mullany
- UCL Eastman Dental Institute University College London 47–49 Huntley St London WC1E 6DG UK
| |
Collapse
|
18
|
Jarkhi A, Lee AHC, Sun Z, Hu M, Neelakantan P, Li X, Zhang C. Antimicrobial Effects of L-Chg10-Teixobactin against Enterococcus faecalis In Vitro. Microorganisms 2022; 10:microorganisms10061099. [PMID: 35744616 PMCID: PMC9228388 DOI: 10.3390/microorganisms10061099] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2022] [Revised: 05/22/2022] [Accepted: 05/22/2022] [Indexed: 11/18/2022] Open
Abstract
Objective: Teixobactin and its analogues are a new class of antibiotics that have no detectable bacterial resistance. This study was designed to determine the antibacterial and antibiofilm activities of a novel teixobactin analogue, L-Chg10-teixobactin, against two strains of Enterococcus faecalis (E. faecalis). Materials and Methods: The efficacy of L-Chg10-teixobactin against two strains of E. faecalis (ATCC 29212 and 47077) was determined using Clinical and Laboratory Standards Institute methods. L-Chg10-teixobactin was prepared at a stock concentration of 1 mg/mL in 5% DMSO. The minimum inhibitory concentration (MIC) was calculated using a two-fold serial broth dilution method, utilizing a 96-well plate. The minimum bactericidal concentration (MBC) was determined by plating the bacteria onto agar to define the concentration that resulted in 99.9% of bacterial death. Ampicillin was used as the control. The effect of L-Chg10-teixobactin on the inhibition of ATCC 47077 strain biofilm formation was determined by measuring the minimum biofilm inhibitory concentration (MBIC) using the safranin assay, while the eradication of the preformed biofilm was determined by measuring the minimum biofilm eradication concentration (MBEC) using the XTT assay. For nonlinear data, the log dose–response curve was plotted to calculate the optimum concentration using Excel (version 16.51, Microsoft® excel. 2021, Microsoft Corporation, Reymond, WA, USA). The data are presented as mean ± standard deviation (SD). Results: The MIC and MBC values of L-Chg10-teixobactin against both strains of E. faecalis were 0.8 μg/mL. The MIC of ampicillin was 1.25 μg/mL for ATCC 29212 and ranged from 1.25 to 5 μg/mL for ATCC 47077. The MBC of ampicillin for ATCC 29212 and ATCC 47077 was 10 and 20 μg/mL, respectively. The MIC and MBC of ampicillin were much higher compared with those of L-Chg10-teixobactin. The MBEC80 of L-Chg10-teixobactin was 4.60 μg/mL for ATCC 47077, which was much lower than that of ampicillin (20 μg/mL). Conclusions:L-Chg10-teixobactin demonstrated potent antibacterial and antibiofilm effects against E. faecalis, suggesting its potential role an effective antibacterial and antibiofilm agent in endodontic treatment.
Collapse
|
19
|
Rahimi S, Ghasemi N, Davoudi P, Taleb I, Farajollahi M, Rahimi Darehchi N, Kazeminejad E. Antimicrobial effects of different concentrations of simvastatin versus triple antibiotic paste on Enterococcus faecalis biofilms at different stages of development. J Dent Res Dent Clin Dent Prospects 2022; 16:153-158. [PMID: 36704189 PMCID: PMC9871176 DOI: 10.34172/joddd.2022.026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2022] [Accepted: 09/09/2022] [Indexed: 01/20/2023] Open
Abstract
Background. This study assessed the antimicrobial effects of different concentrations of simvastatin versus triple antibiotic paste (TAP) on Enterococcus faecalis biofilms at different stages of development. Methods. In this in vitro study, 70 human single-rooted mature premolars were decoronated, instrumented, and autoclave-sterilized. Next, an E. faecalis suspension was prepared and inoculated into the canals to obtain 4- and 6-week biofilms. After ensuring biofilm formation, the samples in each group were randomly assigned to 5 subgroups (n=12): 1 mg/mL TAP, 10 mg/ mL TAP, 1 mg/mL simvastatin, 10 mg/mL simvastatin, and positive control (phosphate-buffered saline solution). The medicaments were applied in the canals, and the teeth were incubated for one week. Dentin samples were collected by a rotary file, cultured, and the number of E. faecalis colonies was counted. The Kruskal-Wallis, Mann-Whitney U, and Wilcoxon tests were used for data analysis (α=0.05). Results. There were significant differences in colony counts between the two concentrations of TAP and the control group against both 4- and 6-week biofilms (P<0.05). The antibacterial effect of 10 mg/mL TAP and simvastatin was stronger than that of 1 mg/mL concentration against the 4- and 6-week E. faecalis biofilms (P<0.05). Furthermore, 10 mg/mL TAP and simvastatin were more effective against the 4-week biofilms than the 6-week biofilms (P<0.05). Conclusion. According to the present results and since biofilms may remain viable in the root canal system for weeks to months, applying 10 mg/mL TAP and simvastatin might be more effective.
Collapse
Affiliation(s)
- Saeed Rahimi
- Dental and Periodontal Research Center, Department of Endodontics, Faculty of Dentistry, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Negin Ghasemi
- Department of Endodontics, Faculty of Dentistry, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Paria Davoudi
- Department of Endodontics, Faculty of Dentistry, Shahid Beheshti Medical University, Tehran, Iran
| | | | - Mehran Farajollahi
- Department of Endodontics, Faculty of Dentistry, Shahid Beheshti Medical University, Tehran, Iran,Corresponding author: Mehran Farajollahi,
| | | | | |
Collapse
|
20
|
Dos Santos VR, Caiaffa KS, Oliveira WCD, Pereira JA, Abuna GF, Polaquini CR, Regasini LO, Guiotti AM, Duque C. Cytotoxicity and effects of curcumin and cinnamaldehyde hybrids on biofilms of oral pathogens. BIOFOULING 2021; 37:591-605. [PMID: 34210215 DOI: 10.1080/08927014.2021.1942859] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/03/2020] [Revised: 06/04/2021] [Accepted: 06/07/2021] [Indexed: 06/13/2023]
Abstract
The objective of the study was to evaluate the cytotoxicity and effect of curcumin-cinnamaldehyde hybrids (CCHs) on the biofilm of oral pathogens. Of the 18 hybrids tested, nine had an inhibitory effect on at least one of the bacterial species tested, with minimal inhibitory and bactericidal concentrations ranging from 9 to 625 μg ml-1. CCH 7 promoted a potent inhibitory effect against all the bacterial species tested and better compatibility than chlorhexidine (CHX). CCH 7 also presented a similar or improved effect over that of CHX, causing a reduction in bacterial metabolism and viability in single and dual-species biofilms. CCH 7 reduced by 86% and 34% the viability of multispecies biofilms formed by collection and clinical strains. It can be concluded that CCH 7 was cytocompatible at the minimal inhibitory concentration, presented anti-biofilm action against oral pathogens, and could act as an antimicrobial agent for application in endodontics.
Collapse
Affiliation(s)
- Vanessa Rodrigues Dos Santos
- Department of Preventive and Restorative Dentistry, Araçatuba School of Dentistry, São Paulo State University (UNESP), Araçatuba, São Paulo, Brazil
| | - Karina Sampaio Caiaffa
- Department of Preventive and Restorative Dentistry, Araçatuba School of Dentistry, São Paulo State University (UNESP), Araçatuba, São Paulo, Brazil
| | - Warlley Campos de Oliveira
- Department of Preventive and Restorative Dentistry, Araçatuba School of Dentistry, São Paulo State University (UNESP), Araçatuba, São Paulo, Brazil
| | - Jesse Augusto Pereira
- Department of Preventive and Restorative Dentistry, Araçatuba School of Dentistry, São Paulo State University (UNESP), Araçatuba, São Paulo, Brazil
| | - Gabriel Flores Abuna
- Department of Restorative Dentistry, Faculty of Dentistry of Piracicaba, University of Campinas (UNICAMP), Piracicaba, São Paulo, Brazil
| | - Carlos Roberto Polaquini
- Department of Chemistry and Environmental Sciences, Institute of Biosciences, Humanities and Exact Sciences, São Paulo State University (UNESP), São José do Rio Preto, São Paulo, Brazil
| | - Luís Octávio Regasini
- Department of Chemistry and Environmental Sciences, Institute of Biosciences, Humanities and Exact Sciences, São Paulo State University (UNESP), São José do Rio Preto, São Paulo, Brazil
| | - Aimée Maria Guiotti
- Department of Dental Materials and Prosthodontics, Araçatuba School of Dentistry, São Paulo State University (UNESP), Araçatuba, São Paulo, Brazil
| | - Cristiane Duque
- Department of Preventive and Restorative Dentistry, Araçatuba School of Dentistry, São Paulo State University (UNESP), Araçatuba, São Paulo, Brazil
| |
Collapse
|
21
|
Trans-Cinnamaldehyde Attenuates Enterococcus faecalis Virulence and Inhibits Biofilm Formation. Antibiotics (Basel) 2021; 10:antibiotics10060702. [PMID: 34208134 PMCID: PMC8230787 DOI: 10.3390/antibiotics10060702] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2021] [Revised: 06/09/2021] [Accepted: 06/09/2021] [Indexed: 11/21/2022] Open
Abstract
Enterococcus faecalis as an important nosocomial pathogen is critically implicated in the pathogenesis of endocarditis, urinary tract, and persistent root canal infections. Its major virulence attributes (biofilm formation, production of proteases, and hemolytic toxins) enable it to cause extensive host tissue damage. With the alarming increase in enterococcal resistance to antibiotics, novel therapeutics are required to inhibit E. faecalis biofilm formation and virulence. Trans-cinnamaldehyde (TC), the main phytochemical in cinnamon essential oils, has demonstrated promising activity against a wide range of pathogens. Here, we comprehensively investigated the effect of TC on planktonic growth, biofilm formation, proteolytic and hemolytic activities, as well as gene regulation in E. faecalis. Our findings revealed that sub-inhibitory concentrations of TC reduced biofilm formation, biofilm exopolysaccharides, as well as its proteolytic and hemolytic activities. Mechanistic studies revealed significant downregulation of the quorum sensing fsr locus and downstream gelE, which are major virulence regulators in E. faecalis. Taken together, our study highlights the potential of TC to inhibit E. faecalis biofilm formation and its virulence.
Collapse
|
22
|
Antimicrobial Resistance and Virulence Factor Gene Profiles of Enterococcus spp. Isolated from Giant Panda Oral Cavities. J Vet Res 2021; 65:147-154. [PMID: 34250298 PMCID: PMC8256466 DOI: 10.2478/jvetres-2021-0030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2020] [Accepted: 05/14/2021] [Indexed: 11/20/2022] Open
Abstract
Introduction The objective of this study was to determine the prevalence and characteristics of antimicrobial-resistant Enterococcus faecalis and E. faecium isolated from the oral cavities of captive giant pandas in China. Material and Methods The virulence-associated determinant and antimicrobial resistance genes were detected and antimicrobial susceptibility tests were performed on 54 strains of each bacterium. Results All isolates showed 100% multidrug resistance. E. faecalis isolates showed a higher percentage of strains resistant to gentamicin (48.1%), vancomycin (55.6%), linezolid (100%), and streptomycin (33.3%) than E. faecium isolates. The resistance genes of Enterococcus spp. were present to highly varying extents according to antibiotic type, their presence breaking down for E. faecalis and E. faecium respectively as aac(6')/aph(2″) 5.56% and 5.56%; aph(3')-Ⅲ 0% and 14.81%; ant(6)-I 0% and 3.7%; ant(4')-Ia 0% and 64.81%; tetL 20.37% and 100%; vanA 92.59% and 46.3%; vanB 0% and 0%; cfr 0% and 90.74%; optrA 96.3% and 3.7%; blaZ 0% and 1.85%; blaTEM 0% and 0%; tetA 20.37% and 0%; tetC 24.07% and 100%; tetM 0% and 0%; ermA 12.96% and 100%; ermB 5.56% and 3.7%; and ermC 0% and 1.85%.Virulence-associated determinants were detected in this research, which typically include efaA, gelE, asa1, ace, cylA, esp and hyl; however, the latter three were not detected. High proportions of the isolates carried the efaA, gelE, asa1, and ace genes. Respectively for E. faecalis and E. faecium their detection was efaA 98.1% and 85.2%; gelE 98.1% and 87%; asa1 92.6% and 87%; and ace 87% and 85.2%. Conclusion This is the first study on the potential disease risk and antimicrobial-resistant characteristics of E. faecalis and E. faecium isolates in giant panda oral cavities. The results of this study show that the antimicrobial resistance rate of Enterococcus spp. isolated from the oral cavity of captive pandas is very high, and thus needs to be monitored.
Collapse
|
23
|
Presence of non-oral bacteria in the oral cavity. Arch Microbiol 2021; 203:2747-2760. [PMID: 33791834 PMCID: PMC8012020 DOI: 10.1007/s00203-021-02300-y] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2020] [Revised: 11/20/2020] [Accepted: 03/22/2021] [Indexed: 12/30/2022]
Abstract
A homeostatic balance exists between the resident microbiota in the oral cavity and the host. Perturbations of the oral microbiota under particular conditions can contribute to the growth of non-oral pathogens that are hard to kill because of their higher resistance to antimicrobials, raising the probability of treatment failure and reinfection. The presence of these bacteria in the oral cavity has been proven to be associated with several oral diseases such as periodontitis, caries, and gingivitis, and systemic diseases of importance in clinical medicine such as cystic fibrosis, HIV, and rheumatoid arthritis. However, it is still controversial whether these species are merely transient members or unique to the oral cavity. Mutualistic and antagonistic interactions between the oral microbiota and non-oral pathogens can also occur, though the mechanisms used by these bacteria are not clear. Therefore, this review presents an overview of the current knowledge about the presence of non-oral bacteria in the oral cavity, their relationship with systemic and oral diseases, and their interactions with oral bacteria.
Collapse
|
24
|
Francisco PA, Fagundes PIDG, Lemes-Junior JC, Lima AR, Passini MRZ, Gomes BPFA. Pathogenic potential of Enterococcus faecalis strains isolated from root canals after unsuccessful endodontic treatment. Clin Oral Investig 2021; 25:5171-5179. [PMID: 33559751 DOI: 10.1007/s00784-021-03823-w] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2020] [Accepted: 02/01/2021] [Indexed: 12/12/2022]
Abstract
OBJECTIVES To evaluate strains of Enterococcus faecalis isolated from endodontic failures cases for (a) presence of virulence genes, namely, gelatinase production (gelE), surface protein (esp), collagen-binding adhesin (ace), cytolysin activator (cylA), E. faecalis antigen A (efaA) and aggregation substance (asa), all by using PCR; (b) biofilm formation capacity; and (c) activity of gelatinase and β-lactamase. MATERIALS AND METHODS Twenty-five strains of E. faecalis were tested. The DNA extracted from these strains was used for identification of virulence genes by PCR and 1% agarose gel. Biofilm formation was performed on polystyrene microplates by using the violet crystal staining method. For assessment of the gelatinase activity, inoculum of pure cultures was deposited in tubes containing gelatin and a nutrient broth, whereas nitrocefin disks were used to assess the β-lactamase action. RESULTS The virulence genes efaA and cylA were detected in 100% of the strains, whereas gelE was present in 84%, ace in 68%, esp in 56% and asa in 48%. Four strains had no biofilm formation, 17 had poor formation and four had moderate formation. Gelatinase production was observed in three strains and β-lactamase resistance in five strains of E. faecalis. TOPIC Diverse patterns of virulence gene detection were observed among the E. faecalis strains, with predominance of those capable of forming biofilm. A few strains have been found to hydrolyze gelatin proteins, whereas β-lactamase resistance was detected in different isolates. CLINICAL RELEVANCE To understand the influence of virulence factors in E. faecalis on the host heath status.
Collapse
Affiliation(s)
- Priscila Amanda Francisco
- Department of Restorative Dentistry, Division of Endodontics, Piracicaba Dental School, State University of Campinas, Av Limeira 901, Bairro Areiao, Piracicaba, São Paulo, Brazil
| | - Pedro Ivo da Graça Fagundes
- Department of Restorative Dentistry, Division of Endodontics, Piracicaba Dental School, State University of Campinas, Av Limeira 901, Bairro Areiao, Piracicaba, São Paulo, Brazil
| | - João Carlos Lemes-Junior
- Department of Restorative Dentistry, Division of Endodontics, Piracicaba Dental School, State University of Campinas, Av Limeira 901, Bairro Areiao, Piracicaba, São Paulo, Brazil
| | - Augusto Rodrigues Lima
- Department of Restorative Dentistry, Division of Endodontics, Piracicaba Dental School, State University of Campinas, Av Limeira 901, Bairro Areiao, Piracicaba, São Paulo, Brazil
| | - Maicon Ricardo Zieberg Passini
- Department of Restorative Dentistry, Division of Endodontics, Piracicaba Dental School, State University of Campinas, Av Limeira 901, Bairro Areiao, Piracicaba, São Paulo, Brazil
| | - Brenda P F A Gomes
- Department of Restorative Dentistry, Division of Endodontics, Piracicaba Dental School, State University of Campinas, Av Limeira 901, Bairro Areiao, Piracicaba, São Paulo, Brazil.
| |
Collapse
|
25
|
Primathena I, Nurdin D, Hermawan H, Cahyanto A. Synthesis, Characterization, and Antibacterial Evaluation of a Cost-Effective Endodontic Sealer Based on Tricalcium Silicate-White Portland Cement. MATERIALS 2021; 14:ma14020417. [PMID: 33467680 PMCID: PMC7829748 DOI: 10.3390/ma14020417] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/16/2020] [Revised: 01/07/2021] [Accepted: 01/12/2021] [Indexed: 11/16/2022]
Abstract
Mineral trioxide aggregate (MTA) is an ideal yet costly endodontic sealer material. Tricalcium silicate-white Portland cement (TS-WPC) seems to have similar characteristics to those of MTA. This work aims to characterize a modified TS-WPC and evaluate its antibacterial properties as a potential endodontic sealer material. The modified TS-WPC was synthesized from a 4:1 mixture of sterilized Indocement TS-WPC and bismuth trioxide using a simple solution method with 99.9% isopropanol. The mixture was stirred until it was homogenous, centrifuged, and dried. The material was then characterized using infrared spectroscopy, X-ray diffraction, and electron microscopy and subjected to antibacterial evaluation against Enterococcus faecalis using a Mueller-Hinton agar inhibition test. The results showed that the material was characterized by main functional groups of hydroxyls, silicate, bismuth trioxide, and tricalcium silicate, like those of a commercial MTA-based sealer, both tested after hydration. Modified TS-WPC before hydration showed similar powder morphology and size to the commercial one, indicating the ease of manipulation. Both materials exhibited antibacterial activity due to calcium dihydroxide's ability to absorb carbon dioxide, which is essential for the anaerobic E. faecalis, with minimum inhibitory effect and bactericidal concentrations of 12,500 ppm and 25,000 ppm, respectively. The modified TS-WPC has the potential to become a cost-effective alternative endodontic sealer material.
Collapse
Affiliation(s)
- Indra Primathena
- Department of Conservative Dentistry, Faculty of Dentistry, Universitas Padjadjaran, Bandung 40132, West Java, Indonesia; (I.P.); (D.N.)
| | - Denny Nurdin
- Department of Conservative Dentistry, Faculty of Dentistry, Universitas Padjadjaran, Bandung 40132, West Java, Indonesia; (I.P.); (D.N.)
| | - Hendra Hermawan
- Department of Mining, Metallurgical and Materials Engineering, Faculty of Sciences and Engineering, Université Laval, Quebec City, QC G1V0A6, Canada;
- Medical Devices and Technology Centre (MEDiTEC), Institute Human Centred Engineering (iHumEn), Universiti Teknologi Malaysia, Johor Bahru 81310, Malaysia
| | - Arief Cahyanto
- Oral Biomaterials Study Centre, Faculty of Dentistry, Universitas Padjadjaran, Bandung 40132, West Java, Indonesia
- Department of Dental Material Science and Technology, Faculty of Dentistry, Universitas Padjadjaran, Bandung 40132, West Java, Indonesia
- Correspondence: ; Tel.: +62-22-2504985
| |
Collapse
|
26
|
Krishnamoorthy AL, Lemus AA, Solomon AP, Valm AM, Neelakantan P. Interactions between Candida albicans and Enterococcus faecalis in an Organotypic Oral Epithelial Model. Microorganisms 2020; 8:E1771. [PMID: 33187237 PMCID: PMC7696566 DOI: 10.3390/microorganisms8111771] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2020] [Revised: 11/06/2020] [Accepted: 11/10/2020] [Indexed: 12/23/2022] Open
Abstract
Candida albicans as an opportunistic pathogen exploits the host immune system and causes a variety of life-threatening infections. The polymorphic nature of this fungus gives it tremendous advantage to breach mucosal barriers and cause oral and disseminated infections. Similar to C. albicans, Enterococcus faecalis is a major opportunistic pathogen, which is of critical concern in immunocompromised patients. There is increasing evidence that E. faecalis co-exists with C. albicans in the human body in disease samples. While the interactive profiles between these two organisms have been studied on abiotic substrates and mouse models, studies on their interactions on human oral mucosal surfaces are non-existent. Here, for the first time, we comprehensively characterized the interactive profiles between laboratory and clinical isolates of C. albicans (SC5314 and BF1) and E. faecalis (OG1RF and P52S) on an organotypic oral mucosal model. Our results demonstrated that the dual species biofilms resulted in profound surface erosion and significantly increased microbial invasion into mucosal compartments, compared to either species alone. Notably, several genes of C. albicans involved in tissue adhesion, hyphal formation, fungal invasion, and biofilm formation were significantly upregulated in the presence of E. faecalis. By contrast, E. faecalis genes involved in quorum sensing, biofilm formation, virulence, and mammalian cell invasion were downregulated. This study highlights the synergistic cross-kingdom interactions between E. faecalis and C. albicans in mucosal tissue invasion.
Collapse
Affiliation(s)
- Akshaya Lakshmi Krishnamoorthy
- Faculty of Dentistry, The University of Hong Kong, Pok Fu Lam, Hong Kong;
- Quorum Sensing Laboratory, Center of Research in Infectious Diseases, School of Chemical and Biotechnology, SASTRA Deemed to be University, Thanjavur 613401, India;
| | - Alex A. Lemus
- Department of Biological Sciences, University at Albany, State University of New York, Albany, NY 12222, USA; (A.A.L.); (A.M.V.)
| | - Adline Princy Solomon
- Quorum Sensing Laboratory, Center of Research in Infectious Diseases, School of Chemical and Biotechnology, SASTRA Deemed to be University, Thanjavur 613401, India;
| | - Alex M. Valm
- Department of Biological Sciences, University at Albany, State University of New York, Albany, NY 12222, USA; (A.A.L.); (A.M.V.)
- The RNA Institute, University at Albany, State University of New York, Albany, NY 12222, USA
| | | |
Collapse
|
27
|
Djorić D, Minton NE, Kristich CJ. The enterococcal PASTA kinase: A sentinel for cell envelope stress. Mol Oral Microbiol 2020; 36:132-144. [PMID: 32945615 DOI: 10.1111/omi.12313] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2020] [Revised: 09/05/2020] [Accepted: 09/08/2020] [Indexed: 12/12/2022]
Abstract
Enterococci are Gram-positive, opportunistic pathogens that reside throughout the gastrointestinal tracts of most terrestrial organisms. Enterococci are resistant to many antibiotics, which makes enterococcal infections difficult to treat. Enterococci are also particularly hardy bacteria that can tolerate a variety of environmental stressors. Understanding how enterococci sense and respond to the extracellular environment to enact adaptive biological responses may identify new targets that can be exploited for development of treatments for enterococcal infections. Bacterial eukaryotic-like serine/threonine kinases (eSTKs) and cognate phosphatases (STPs) are important signaling systems that mediate biological responses to extracellular stimuli. Some bacterial eSTKs are transmembrane proteins that contain a series of extracellular repeats of the penicillin-binding and Ser/Thr kinase-associated (PASTA) domain, leading to their designation as "PASTA kinases." Enterococcal genomes encode a single PASTA kinase and its cognate phosphatase. Investigations of the enterococcal PASTA kinase revealed its importance in resistance to antibiotics and other cell wall stresses, in enterococcal colonization of the mammalian gut, clues about its mechanism of signal transduction, and its integration with other enterococcal signal transduction systems. In this review, we describe the current state of knowledge of PASTA kinase signaling in enterococci and describe important gaps that still need to be addressed to provide a better understanding of this important signaling system.
Collapse
Affiliation(s)
- Dušanka Djorić
- Department of Microbiology and Immunology, Center for Infectious Disease Research, Medical College of Wisconsin, Milwaukee, WI, USA
| | - Nicole E Minton
- Department of Microbiology and Immunology, Center for Infectious Disease Research, Medical College of Wisconsin, Milwaukee, WI, USA
| | - Christopher J Kristich
- Department of Microbiology and Immunology, Center for Infectious Disease Research, Medical College of Wisconsin, Milwaukee, WI, USA
| |
Collapse
|
28
|
Gomes BP, Louzada LM, Almeida-Gomes RF, Pinheiro ET, Sousa EL, Jacinto RC, Arruda-Vasconcelos R. Investigation of Filifactor alocis in primary and in secondary endodontic infections: A molecular study. Arch Oral Biol 2020; 118:104826. [DOI: 10.1016/j.archoralbio.2020.104826] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2020] [Revised: 06/27/2020] [Accepted: 06/28/2020] [Indexed: 12/24/2022]
|
29
|
Xiao B, Zou Z, Bhandari J, Zhang Y, Yan G. Exposure to diode laser (810nm) affects the bacterial adherence and biofilm formation in a E. faecalis biofilm model. Photodiagnosis Photodyn Ther 2020; 31:101772. [DOI: 10.1016/j.pdpdt.2020.101772] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2020] [Revised: 03/14/2020] [Accepted: 04/02/2020] [Indexed: 10/24/2022]
|
30
|
Barbosa-Ribeiro M, Arruda-Vasconcelos R, Louzada LM, Dos Santos DG, Andreote FD, Gomes BPFA. Microbiological analysis of endodontically treated teeth with apical periodontitis before and after endodontic retreatment. Clin Oral Investig 2020; 25:2017-2027. [PMID: 32860137 DOI: 10.1007/s00784-020-03510-2] [Citation(s) in RCA: 47] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2020] [Accepted: 08/06/2020] [Indexed: 12/19/2022]
Abstract
OBJECTIVE To characterize the microbiota of teeth with endodontic treatment failure by 16S ribosomal RNA genetic sequencing (GS) and PCR at the different phases of the endodontic retreatment and to associate the presence of specific bacteria with clinical and radiographic features in teeth with apical periodontitis. MATERIALS AND METHODS Twenty infected root canals of single-rooted teeth were selected. Samples were collected with sterile paper points before chemo-mechanical preparation (CMP) (S1), after CMP (S2) and after 30 days of intracanal medication (ICM) (S3). Microbial identification was performed using GS and PCR. Tukey-Kramer post hoc test and post hoc ANOVA were used for intergroup analysis. Paired t test and repeated-measures ANOVA were applied for intragroup analysis, at a significance level of 5%. RESULTS A total of 89 strains were identified using GS. Sixty-five strains were recovered in S1 and 15 strains in S2, and 9 strains remained in S3. Enterococcus faecalis was the most predominant bacteria. Gram-positive cocci bacteria predominated. Gram-negative species were also detected. Using species-specific PCR primers to detect seven species, the most prevalent ones at all the phases of the endodontic retreatment were E. faecalis and Porphyromonas gingivalis. However, Parvimonas micra and P. gingivalis were associated with previous pain, P. gingivalis was associated with tenderness to percussion and E. faecalis, Fusobacterium nucleatum and P. gingivalis were associated with periapical lesion > 3 mm. CONCLUSIONS In conclusion, the microbiota of persistent infection is polymicrobial with predominance of E. faecalis and P. gingivalis in all phases of the endodontic retreatment, regardless of the method used for microbial identification. Associations were found between specific bacteria and clinical/radiographic features. CLINICAL RELEVANCE The characterization of the bacteria present at all phases of the endodontic retreatment is important for the monitoring of the effectiveness of the techniques used and to better understand the susceptibility of these species to the disinfection agent used during the procedures.
Collapse
Affiliation(s)
- Marlos Barbosa-Ribeiro
- Department of Restorative Dentistry, Division of Endodontics, Piracicaba Dental School, State University of Campinas (UNICAMP), Av. Limeira 901, Bairro Areao, Piracicaba, São Paulo, Brazil.,Department of Endodontics School of Dentistry , University Center UniRuy- Wyden , BA, Salvador, Brazil
| | - Rodrigo Arruda-Vasconcelos
- Department of Restorative Dentistry, Division of Endodontics, Piracicaba Dental School, State University of Campinas (UNICAMP), Av. Limeira 901, Bairro Areao, Piracicaba, São Paulo, Brazil
| | - Lidiane M Louzada
- Department of Restorative Dentistry, Division of Endodontics, Piracicaba Dental School, State University of Campinas (UNICAMP), Av. Limeira 901, Bairro Areao, Piracicaba, São Paulo, Brazil
| | - Danielle G Dos Santos
- Department of Soil Science, Luiz de Queiroz College of Agriculture, University of São Paulo (USP), Piracicaba, SP, Brazil
| | - Fernando D Andreote
- Department of Soil Science, Luiz de Queiroz College of Agriculture, University of São Paulo (USP), Piracicaba, SP, Brazil
| | - Brenda P F A Gomes
- Department of Restorative Dentistry, Division of Endodontics, Piracicaba Dental School, State University of Campinas (UNICAMP), Av. Limeira 901, Bairro Areao, Piracicaba, São Paulo, Brazil.
| |
Collapse
|
31
|
Liu Y, Ping Y, Xiong Y, Zhou R, Xu F, Wang J, Li J. Genotype, biofilm formation ability and specific gene transcripts characteristics of endodontic Enterococcus faecalis under glucose deprivation condition. Arch Oral Biol 2020; 118:104877. [PMID: 32828986 DOI: 10.1016/j.archoralbio.2020.104877] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2020] [Revised: 08/03/2020] [Accepted: 08/04/2020] [Indexed: 12/01/2022]
Abstract
OBJECTIVE To study the relationship between the specific gene and biofilm formation ability of seven wild type Enterococcus faecalis (E. faecalis) under glucose deprivation conditions. DESIGN Wild type E. faecalis (3RC, 5RC, 25RC, 31RC, 33RC, 37RC, 58RC) extracted from the teeth with persistent apical periodontitis were cultured under glucose deprivation conditions and then resequenced. The biofilm formation ability was compared using primary adherence assay, confocal laser scanning microscopy (CLSM) and scanning electron microscopy (SEM). The transcriptional level of biofilm formation-related genes (ace, gelE, efa, esp and fsrB) were detected. RESULTS Genomic resequencing showed that 3RC and 58RC (Class B) were similar, while 5RC, 25RC, 31RC, 33RC and 37RC (Class A) were similar. Based on primary adherence assay, CLSM and SEM results, biofilm formation ability of Class B strains was lower, while Class A strains were higher when compared with control group (0.25 % glucose). Furthermore, compared with control group (0.25 % glucose), the transcriptional levels of ace, efa and fsrB genes were upregulated in all strains; the transcriptional levels of gelE were downregulated in Class B strains, upregulated in Class A strains; the transcriptional levels of esp of Class B strains were downregulated, while upregulated in 25RC, 31RC and 37RC (Class A), and not observed in 5RC and 33RC. CONCLUSION The genotypes of wild type E. faecalis of different persistent periapical periodontitis teeth are different. The genotype differences and the transcription levels of related virulence genes (ace, gelE, efa, esp and fsrB) are related to the biological phenotype.
Collapse
Affiliation(s)
- Yawen Liu
- Jiangsu Key Laboratory of Oral Disease, Nanjing Medical University, Nanjing, China; Stomatological Hospital of Lianyungang, The First People's Hospital of Lianyungang, Lianyungang, Jiangsu, China
| | - Yifan Ping
- Jiangsu Key Laboratory of Oral Disease, Nanjing Medical University, Nanjing, China; Department of Endodontics and Operative Dentistry, Affiliated Hospital of Stomatology, Nanjing Medical University, Nanjing, China
| | - Yuhua Xiong
- Jiangsu Key Laboratory of Oral Disease, Nanjing Medical University, Nanjing, China
| | - Ruyu Zhou
- Jiangsu Key Laboratory of Oral Disease, Nanjing Medical University, Nanjing, China
| | - Fulu Xu
- Jiangsu Key Laboratory of Oral Disease, Nanjing Medical University, Nanjing, China
| | - Juan Wang
- Jiangsu Key Laboratory of Oral Disease, Nanjing Medical University, Nanjing, China; Department of Endodontics and Operative Dentistry, Affiliated Hospital of Stomatology, Nanjing Medical University, Nanjing, China.
| | - Jin Li
- Jiangsu Key Laboratory of Oral Disease, Nanjing Medical University, Nanjing, China; Department of VIP Clinic, Affiliated Hospital of Stomatology, Nanjing Medical University, Nanjing, China.
| |
Collapse
|
32
|
Dioguardi M, Quarta C, Alovisi M, Crincoli V, Aiuto R, Crippa R, Angiero F, Laneve E, Sovereto D, De Lillo A, Troiano G, Lo Muzio L. Microbial Association with Genus Actinomyces in Primary and Secondary Endodontic Lesions, Review. Antibiotics (Basel) 2020; 9:E433. [PMID: 32707891 PMCID: PMC7460180 DOI: 10.3390/antibiotics9080433] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2020] [Revised: 07/14/2020] [Accepted: 07/21/2020] [Indexed: 12/26/2022] Open
Abstract
The main reason for root canal treatment failure is the persistence of microorganisms after therapy, or the recontamination of the root canal system due to an inadequate seal. In the mouth, Actinomyces spp. constitute a significant part of the normal flora, which is indicative of their ability to adhere to oral tissue and resist cleansing mechanisms, such as salivary flow. This review, performed according to the Preferred Reporting Items for Systematic Reviews and Meta-Analysis (PRISMA), aims to clarify the prevalence of microbial genera that are associated with the genus Actinomyces in primary and secondary endodontic infections (primary outcome), and to identify the most prevalent species of the Actinomyces genus in endodontic lesions (secondary outcome). A total of 11 studies were included in the qualitative and quantitative analysis, and a total of 331 samples were analyzed. Bacteria of the genus Actinomyces were found in 58 samples, and 46 bacterial genera were detected in association with bacteria of the genus Actinomyces. Bacteria of the genus Streptococcus and Propionibacterium were those most frequently associated with Actinomyces in the endodontic lesions considered, and Actinomyces israelii was the most frequently involved species.
Collapse
Affiliation(s)
- Mario Dioguardi
- Department of Clinical and Experimental Medicine, University of Foggia, Via Rovelli 50, 71122 Foggia, Italy; (C.Q.); (E.L.); (D.S.); (A.D.L.); (G.T.); (L.L.M.)
| | - Cristian Quarta
- Department of Clinical and Experimental Medicine, University of Foggia, Via Rovelli 50, 71122 Foggia, Italy; (C.Q.); (E.L.); (D.S.); (A.D.L.); (G.T.); (L.L.M.)
| | - Mario Alovisi
- Department of Surgical Sciences, Dental School, University of Turin, 10127 Turin, Italy;
| | - Vito Crincoli
- Department of Basic Medical Sciences, Neurosciences and Sensory Organs, Division of Complex Operating Unit of Dentistry, “Aldo Moro” University of Bari, Piazza G. Cesare 11, 70124 Bari, Italy;
| | - Riccardo Aiuto
- Department of Biomedical, Surgical, and Dental Science, University of Milan, 20122 Milan, Italy;
| | - Rolando Crippa
- Department of Oral Pathology, Italian Stomatological Institute, 20122 Milan, Italy;
| | - Francesca Angiero
- Department of Medical Sciences and Diagnostic Integrated, S. Martino Hospital, University of Genova, 16132 Genova, Italy;
| | - Enrica Laneve
- Department of Clinical and Experimental Medicine, University of Foggia, Via Rovelli 50, 71122 Foggia, Italy; (C.Q.); (E.L.); (D.S.); (A.D.L.); (G.T.); (L.L.M.)
| | - Diego Sovereto
- Department of Clinical and Experimental Medicine, University of Foggia, Via Rovelli 50, 71122 Foggia, Italy; (C.Q.); (E.L.); (D.S.); (A.D.L.); (G.T.); (L.L.M.)
| | - Alfredo De Lillo
- Department of Clinical and Experimental Medicine, University of Foggia, Via Rovelli 50, 71122 Foggia, Italy; (C.Q.); (E.L.); (D.S.); (A.D.L.); (G.T.); (L.L.M.)
| | - Giuseppe Troiano
- Department of Clinical and Experimental Medicine, University of Foggia, Via Rovelli 50, 71122 Foggia, Italy; (C.Q.); (E.L.); (D.S.); (A.D.L.); (G.T.); (L.L.M.)
| | - Lorenzo Lo Muzio
- Department of Clinical and Experimental Medicine, University of Foggia, Via Rovelli 50, 71122 Foggia, Italy; (C.Q.); (E.L.); (D.S.); (A.D.L.); (G.T.); (L.L.M.)
| |
Collapse
|
33
|
Wang N, Ji Y, Zhu Y, Wu X, Mei L, Zhang H, Deng J, Wang S. Antibacterial effect of chitosan and its derivative on Enterococcus faecalis associated with endodontic infection. Exp Ther Med 2020; 19:3805-3813. [PMID: 32346445 PMCID: PMC7185077 DOI: 10.3892/etm.2020.8656] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2019] [Accepted: 03/10/2020] [Indexed: 12/13/2022] Open
Abstract
Chitosan and its derivatives have been increasingly used for bacteriostasis. To date, the effect of chitosan and N-(2-hydroxyl) propyl-3-trimethyl ammonium chitosan chloride (HTCC) on Enterococcus faecalis (E. faecalis) associated with endodontic infection has remained to be determined. Chitosan and HTCC were serially diluted with double-distilled water (DDW) or PBS at concentrations of 20-2,500 µg/ml. Various strains of E. faecalis (American Type Tissue Collection no. 29212, as well as isolated strains P25RC and P52Sa) in plankton were adjusted to an optical density at 600 nm of 0.10 and treated with chitosan or HTCC. A colony-forming unit assay was used to determine the concentration of residual bacteria after treatment. Furthermore, E. faecalis biofilms were cultured on coverslips and treated with chitosan or HTCC. The coverslips were rinsed, stained using Live/dead® BacLight™ bacterial viability kit and observed under an inverted fluorescence microscope. In addition, biofilms on dentine blocks were prepared and observed under a scanning electron microscope. MC3T3-E1 pre-osteoblasts were seeded on 96-well plates and treated with chitosan or HTCC at various concentrations. The cytotoxicity of chitosan and HTCC on MC3T3-E1 pre-osteoblasts was detected using a Cell Counting Kit-8 assay after 24, 48 and 72 h of treatment. The results revealed that the final minimum bactericidal concentrations (MBC) of chitosan and HTCC dissolved in DDW were 70 and 140 µg/ml, respectively. Chitosan and HTCC in DDW exerted a significantly greater antibacterial effect as compared with that in PBS (P<0.05). At the MBC, chitosan and HTCC in DDW, but particularly chitosan, had a significant antibacterial effect on E. faecalis biofilm. Chitosan exhibited no cytotoxicity to MC3T3-E1 pre-osteoblasts at a concentration of <625 µg/ml, while HTCC inhibited the proliferation of the cells in the concentration range of 39-10,000 µg/ml. In conclusion, chitosan and HTCC exhibited prominent antibacterial properties on E. faecalis in the planktonic state and as a biofilm via charge interaction, indicating their potential for application in root canal disinfection and fillings.
Collapse
Affiliation(s)
- Nan Wang
- Department of Stomatology, The Affiliated Hospital of Qingdao University, Qingdao, Shandong 266003, P.R. China.,Department of Operative Dentistry and Endodontics, School of Stomatology, Qingdao University, Qingdao, Shandong 266003, P.R. China
| | - Yanjing Ji
- Department of Stomatology, The Affiliated Hospital of Qingdao University, Qingdao, Shandong 266003, P.R. China.,Department of Operative Dentistry and Endodontics, School of Stomatology, Qingdao University, Qingdao, Shandong 266003, P.R. China
| | - Yanli Zhu
- Department of Stomatology, The Affiliated Hospital of Qingdao University, Qingdao, Shandong 266003, P.R. China.,Department of Operative Dentistry and Endodontics, School of Stomatology, Qingdao University, Qingdao, Shandong 266003, P.R. China
| | - Xinyi Wu
- Department of Operative Dentistry and Endodontics, School of Stomatology, Qingdao University, Qingdao, Shandong 266003, P.R. China
| | - Li Mei
- Department of Operative Dentistry and Endodontics, School of Stomatology, Qingdao University, Qingdao, Shandong 266003, P.R. China
| | - Hongzhe Zhang
- Department of Stomatology, The Affiliated Hospital of Qingdao University, Qingdao, Shandong 266003, P.R. China.,Department of Operative Dentistry and Endodontics, School of Stomatology, Qingdao University, Qingdao, Shandong 266003, P.R. China
| | - Jing Deng
- Department of Stomatology, The Affiliated Hospital of Qingdao University, Qingdao, Shandong 266003, P.R. China.,Department of Operative Dentistry and Endodontics, School of Stomatology, Qingdao University, Qingdao, Shandong 266003, P.R. China
| | - Shuai Wang
- Department of Stomatology, The Affiliated Hospital of Qingdao University, Qingdao, Shandong 266003, P.R. China.,Department of Operative Dentistry and Endodontics, School of Stomatology, Qingdao University, Qingdao, Shandong 266003, P.R. China
| |
Collapse
|
34
|
Exploring Needle-Like Zinc Oxide Nanostructures for Improving Dental Resin Sealers: Design and Evaluation of Antibacterial, Physical and Chemical Properties. Polymers (Basel) 2020; 12:polym12040789. [PMID: 32252272 PMCID: PMC7240750 DOI: 10.3390/polym12040789] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2020] [Revised: 03/24/2020] [Accepted: 03/25/2020] [Indexed: 11/22/2022] Open
Abstract
This study aimed to evaluate the effect of needle-like zinc oxide nanostructures (ZnO-NN) on the physical, chemical, and antibacterial properties of experimental methacrylate-based dental sealers. ZnO-NN was synthesized and characterized. ZnO-NN was added to a co-monomer blend at 20, 30, and 40 wt.%. One group without ZnO-NN was used as a control. The dental resin sealers were evaluated for their flow, film thickness, water sorption, solubility, radiopacity, degree of conversion (DC), dental-sealer interface characterization via micro-Raman, and antibacterial activity. ZnO-NN presented a mean needle diameter of 40 nm and 16 m2/g of surface area. There was no difference among groups containing ZnO-NN regarding their flow. The ZnO-NN addition significantly increased the film thickness. Water sorption and solubility tests showed no difference among groups. The radiopacity increased, and DC decreased with higher concentrations of ZnO-NN. Micro-Raman suggested that ZnO-NN was in close contact with root canal dentin. Overall, the incorporation of ZnO-NN provided an antibacterial effect against Enterococcus faecalis without a significant detrimental impact on the physical and chemical functionality of the material. The use of ZnO-NN as an inorganic filler is a potential application within dental materials intended for root canal treatment.
Collapse
|
35
|
Maliszewska I, Wróbel J, Wanarska E, Podhorodecki A, Matczyszyn K. Synergistic effect of methylene blue and biogenic gold nanoparticles against Enterococcus faecalis. Photodiagnosis Photodyn Ther 2019; 27:218-226. [DOI: 10.1016/j.pdpdt.2019.05.042] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2019] [Revised: 04/26/2019] [Accepted: 05/31/2019] [Indexed: 12/20/2022]
|
36
|
Neves SO, Magalhães LMD, Corrêa JD, Dutra WO, Gollob KJ, Silva TA, Horta MCR, Souza PEA. Composite-derived monomers affect cell viability and cytokine expression in human leukocytes stimulated with Porphyromonas gingivalis. J Appl Oral Sci 2019; 27:e20180529. [PMID: 31166413 PMCID: PMC6546269 DOI: 10.1590/1678-7757-2018-0529] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2018] [Revised: 12/09/2018] [Accepted: 12/30/2018] [Indexed: 12/17/2022] Open
Abstract
OBJECTIVES Dental composites release unreacted resin monomers into the oral environment, even after polymerization. Periodontal cells are, therefore, exposed to substances that potentially elicit the immune inflammatory response. The underlying molecular mechanisms associated with the interaction between resin monomers and human immune cells found in the gingival crevicular fluid are not fully understood yet. This study investigated the ability of bisphenol A-glycidyl methacrylate (BISGMA), urethane dimethacrylate (UDMA) and triethylene glycol dimethacrylate (TEGDMA) to induce apoptosis and cytokine release by human leukocytes stimulated with a periodontal pathogen. METHODOLOGY Peripheral blood mononuclear cells (PBMC) from 16 healthy individuals were included in this study. To determine the toxicity, the PBMC were incubated for 20 hours, with monomers, for the analysis of cell viability using MTT assay. To evaluate cell death in the populations of monocytes and lymphocytes, they were exposed to sub-lethal doses of each monomer and of heat-inactivated Porphyromonas gingivalis (P. gingivalis) for 5 hours. Secretions of IL-1β, IL-6, IL-10 and TNF-α were determined by ELISA after 20 hours. RESULTS UDMA and TEGDMA induced apoptosis after a short-time exposure. Bacterial challenge induced significant production of IL-1β and TNF-α (p<0.05). TEGDMA reduced the bacterial-induced release of IL-1β and TNF-α, whereas UDMA reduced IL-1β release (p<0.05). These monomers did not affect IL-10 and IL-6 secretion. BISGMA did not significantly interfere in cytokine release. CONCLUSIONS These results show that resin monomers are toxic to PBMC in a dose-dependent manner, and may influence the local immune inflammatory response and tissue damage mechanisms via regulation of bacterial-induced IL-1β and TNF-α secretion by PBMC.
Collapse
Affiliation(s)
- Sheyla Omonte Neves
- Pontifícia Universidade Católica de Minas Gerais, Departamento de Odontologia, Programa de Pós-graduação em Odontologia, Belo Horizonte, Minas Gerais, Brasil
| | - Luísa Mourão Dias Magalhães
- Universidade Federal de Minas Gerais, Instituto de Ciências Biológicas, Departmento de Morfologia, Belo Horizonte, Minas Gerais, Brasil
| | - Jôice Dias Corrêa
- Pontifícia Universidade Católica de Minas Gerais, Departamento de Odontologia, Programa de Pós-graduação em Odontologia, Belo Horizonte, Minas Gerais, Brasil
- Universidade Federal de Minas Gerais, Faculdade de Odontologia, Belo Horizonte, Minas Gerais, Brasil
| | - Walderez Ornelas Dutra
- Universidade Federal de Minas Gerais, Instituto de Ciências Biológicas, Departmento de Morfologia, Belo Horizonte, Minas Gerais, Brasil
- Instituto Nacional de Ciência e Tecnologia em Doenças Tropicais – INCT-DT, Belo Horizonte, Minas Gerais, Brasil
| | - Kenneth John Gollob
- International Research Center, A.C.Camargo Cancer Center, São Paulo, SP, Brasil
- Instituto Nacional de Ciência e Tecnologia em Doenças Tropicais – INCT-DT, Belo Horizonte, Minas Gerais, Brasil
| | - Tarcília Aparecida Silva
- Universidade Federal de Minas Gerais, Faculdade de Odontologia, Belo Horizonte, Minas Gerais, Brasil
| | - Martinho Campolina Rebello Horta
- Pontifícia Universidade Católica de Minas Gerais, Departamento de Odontologia, Programa de Pós-graduação em Odontologia, Belo Horizonte, Minas Gerais, Brasil
| | - Paulo Eduardo Alencar Souza
- Pontifícia Universidade Católica de Minas Gerais, Departamento de Odontologia, Programa de Pós-graduação em Odontologia, Belo Horizonte, Minas Gerais, Brasil
| |
Collapse
|
37
|
Guo JM, Makvandi P, Wei CC, Chen JH, Xu HK, Breschi L, Pashley DH, Huang C, Niu LN, Tay FR. Polymer conjugation optimizes EDTA as a calcium-chelating agent that exclusively removes extrafibrillar minerals from mineralized collagen. Acta Biomater 2019; 90:424-440. [PMID: 30953801 DOI: 10.1016/j.actbio.2019.04.011] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2019] [Revised: 03/29/2019] [Accepted: 04/02/2019] [Indexed: 01/22/2023]
Abstract
During development of mineralized collagenous tissues, intrafibrillar mineralization is achieved by preventing mineralization precursor inhibitors that are larger than 40 kDa from entering the collagen fibrils. Such a property is incorporated in the design of a calcium chelator for dentin bonding in the etch-and-rinse technique that selectively demineralizes extrafibrillar apatite while leaving the intrafibrillar minerals intact. This strategy prevents complete demineralization of collagen fibrils, avoids collapse of collagen that blocks resin infiltration after air-drying, and protects the completely demineralized fibrils from bacteria colonization and degradation by endogenous proteases after resin bonding. In the present study, a water-soluble glycol chitosan-EDTA (GCE) conditioner was synthesized by conjugation of EDTA, an effective calcium chelator, to high molecular weight glycol chitosan, which exhibits weak chelation property. The GCE conjugate was purified, characterized by FTIR, 1H NMR, isothermal titration calorimetry and ICP-AES, and subjected to size exclusion dialysis to recover molecules that are >40 kDa. The optimal concentration and application time for etching dentin were determined by bond strength testing to ensure that the dentin bonding results were comparable to phosphoric acid etching, and maintained equivalent bond strength after air-drying of the conditioned collagen matrix. Extrafibrillar demineralization was validated with transmission electron microscopy. Inhibition of endogenous dentin proteases was confirmed using in-situ zymography. The water-soluble GCE dentin conditioner was non-cytotoxic and possessed antibacterial activities against planktonic and single-species biofilms, supporting its ongoing development as a dentin conditioner with air-drying, anti-proteolytic and antibacterial properties to enhance the durability of bonds created using the etch-and-rinse bonding technique. STATEMENT OF SIGNIFICANCE: The current state-of-the-art techniques for filling decayed teeth with plastic tooth-colored materials require conditioning the mineralized, biofilm-covered, decayed dentin with acids or acid resin monomers to create a surface layer of completely- or partially-demineralized collagen matrix for the infiltration of adhesive resin monomers. Nevertheless, fillings prepared using these strategies are not as durable as consumers have anticipated. Conjugation of polymeric glycol chitosan with EDTA produces a new conditioner for dentin bonding that demineralizes only extrafibrillar dentin, reduces endogenous protease activities and kills biofilm bacteria. The high molecular weight glycol chitosan-EDTA is non-cytotoxic to the key regenerative players within the dentin-pulp complex. This advance permits dry bonding and the use of hydrophobic resins.
Collapse
|
38
|
Comparison of genotypes, antimicrobial resistance and virulence profiles of oral and non oral Enterococcus faecalis from Brazil, Japan and the United Kingdom. J Dent 2019; 84:49-54. [PMID: 30862557 DOI: 10.1016/j.jdent.2019.03.002] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2018] [Revised: 03/02/2019] [Accepted: 03/06/2019] [Indexed: 01/12/2023] Open
Abstract
OBJECTIVES To determine whether phenotypic and genotypic differences amongst isolates ofEnterococcus faecalis relate to geographical and clinical origin. METHODS E. faecalis from primary endodontic infections in Brazilian patients (n = 20), oral infections in UK patients (n = 10), and non-oral infections in Japanese patients (n = 9) were studied. In addition, 20 environmental vancomycin resistant Enterococcus faecalis (VRE) isolates from a UK hospital were analysed. For all isolates, polymerase chain reaction (PCR) was used to detect genes associated with antibiotic resistance and virulence, whilst randomly amplified polymorphic DNA-PCR (RAPD-PCR) was used to produce molecular profiles. RESULTS Gelatinase gene (gelE) was prevalent amongst isolates (77-100%) and for oral isolates, genes of aggregation substances (agg), immune evasion protein (esp), cytolysin (cylB), tetracycline resistance (tetM; tetL) and erythromycin resistance (ermB) were detected to varying extent. Japanese non-oral isolates had a similar genetic profile to oral isolates, but with higher prevalence of ermB and cylB. All VRE isolates were positive for gelE, esp, agg, vanA, ermB and tetM, 95% were positive for cylB and 17% positive for tetL. All isolates were negative for ermA, asa373 vanB, vanC1 and vanC2/3. RAPD-PCR revealed clustering of VRE isolates. CONCLUSIONS RAPD-PCR analysis revealed extensive genetic variability among the tested isolates. Oral isolates carried antibiotic resistance genes for tetracycline and whilst they possessed genes that could contribute to pathogenicity, these were detected at lower incidence compared with non-oral and VRE isolates. RAPD-PCR proved to be a useful approach to elucidate relatedness of disparate isolates.
Collapse
|
39
|
YU MK, KIM MA, ROSA V, HWANG YC, DEL FABBRO M, SOHN WJ, MIN KS. Role of extracellular DNA in Enterococcus faecalis biofilm formation and its susceptibility to sodium hypochlorite. J Appl Oral Sci 2019; 27:e20180699. [PMID: 31411265 PMCID: PMC9648955 DOI: 10.1590/1678-7757-2018-0699] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2018] [Accepted: 03/25/2019] [Indexed: 12/04/2022] Open
Abstract
Objective This study investigated the role of extracellular deoxyribonucleic acid (eDNA) on Enterococcus faecalis ( E. faecalis ) biofilm and the susceptibility of E. faecalis to sodium hypochlorite (NaOCl). Methodology E. faecalis biofilm was formed in bovine tooth specimens and the biofilm was cultured with or without deoxyribonuclease (DNase), an inhibitor of eDNA. Then, the role of eDNA in E. faecalis growth and biofilm formation was investigated using colony forming unit (CFUs) counting, eDNA level assay, crystal violet staining, confocal laser scanning microscopy, and scanning electron microscopy. The susceptibility of E. faecalis biofilm to low (0.5%) or high (5%) NaOCl concentrations was also analyzed by CFU counting. Results CFUs and biofilm formation decreased significantly with DNase treatment (p<0.05). The microstructure of DNase-treated biofilms exhibited less structured features when compared to the control. The volume of exopolysaccharides in the DNase-treated biofilm was significantly lower than that of control (p<0.05). Moreover, the CFUs, eDNA level, biofilm formation, and exopolysaccharides volume were lower when the biofilm was treated with DNase de novo when compared to when DNase was applied to matured biofilm (p<0.05). E. faecalis in the biofilm was more susceptible to NaOCl when it was cultured with DNase (p<0.05). Furthermore, 0.5% NaOCl combined with DNase treatment was as efficient as 5% NaOCl alone regarding susceptibility (p>0.05). Conclusions Inhibition of eDNA leads to decrease of E. faecalis biofilm formation and increase of susceptibility of E. faecalis to NaOCl even at low concentrations. Therefore, our results suggest that inhibition of eDNA would be beneficial in facilitating the efficacy of NaOCl and reducing its concentration.
Collapse
Affiliation(s)
- Mi-Kyung YU
- Chonbuk National University, Korea; Chonbuk National University, Korea; Chonbuk National University Hospital, Korea
| | | | | | | | - Massimo DEL FABBRO
- Università degli Studi di Milano, Italy; IRCCS Istituto Ortopedico Galeazzi, Italy
| | | | - Kyung-San MIN
- Chonbuk National University, Korea; Chonbuk National University, Korea; Chonbuk National University Hospital, Korea
| |
Collapse
|
40
|
Wang S, Heng BC, Qiu S, Deng J, Shun Pan Cheung G, Jin L, Zhao B, Zhang C. Lipoteichoic acid of Enterococcus faecalis inhibits osteoclastogenesis via transcription factor RBP-J. Innate Immun 2018; 25:13-21. [PMID: 30463464 PMCID: PMC6830893 DOI: 10.1177/1753425918812646] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Lipoteichoic acid (LTA) of Enterococcus faecalis is a potent
stimulator of inflammatory responses, but the effects of E.
faecalis LTA on osteoclastogenesis remains far from well
understood. This study showed that E. faecalis LTA
significantly inhibited osteoclastogenesis of wild type murine bone
marrow-derived macrophages (BMMs) in the presence of a high dose of RANKL, while
the inhibition of osteoclastogenesis by E. faecalis LTA was
significantly removed in BMMs with deficient expression of the transcription
factor RBP-J. In addition, a few small osteoclasts were generated in BMMs with
only E. faecalis LTA stimulation, presumably due to the
production of TNF-α and IL-6. Furthermore, both p38 and ERK1/2 MAPK signaling
pathways were activated after 24 h of E. faecalis LTA
treatment, but these signaling pathways were not activated after 6 d of
treatment with RANKL in mature osteoclasts. In conclusion, E.
faecalis LTA, which induces inflammatory response, could inhibit
RANKL-induced osteoclastogenesis via RBP-J in BMMs.
Collapse
Affiliation(s)
- Shuai Wang
- 1 Department of Stomatology, The Affiliated Hospital of Qingdao University, School of Stomatology of Qingdao University, Qingdao, China.,2 Endodontology, Faculty of Dentistry, The University of Hong Kong, Hong Kong SAR, China.,3 HKU Shenzhen Institute of Research and Innovation, Shenzhen, China
| | - Boon Chin Heng
- 2 Endodontology, Faculty of Dentistry, The University of Hong Kong, Hong Kong SAR, China
| | - Shuqi Qiu
- 4 Shenzhen Key Laboratory of ENT, Institute of ENT & Longgang ENT hospital, Shenzhen, China
| | - Jing Deng
- 1 Department of Stomatology, The Affiliated Hospital of Qingdao University, School of Stomatology of Qingdao University, Qingdao, China
| | - Gary Shun Pan Cheung
- 2 Endodontology, Faculty of Dentistry, The University of Hong Kong, Hong Kong SAR, China
| | - Lijian Jin
- 5 Periodontology, Faculty of Dentistry, The University of Hong Kong, Hong Kong SAR, China
| | - Baohong Zhao
- 6 Arthritis and Tissue Degeneration Program, and David Z. Rosensweig Genomics Research Center, Hospital for Special Surgery, New York, USA.,7 Department of Medicine, Weill Cornell Medical College, New York, USA
| | - Chengfei Zhang
- 2 Endodontology, Faculty of Dentistry, The University of Hong Kong, Hong Kong SAR, China.,3 HKU Shenzhen Institute of Research and Innovation, Shenzhen, China
| |
Collapse
|
41
|
Yang Y, Li W, Hou B, Zhang C. Quorum sensing LuxS/autoinducer-2 inhibits Enterococcus faecalis biofilm formation ability. J Appl Oral Sci 2018; 26:e20170566. [PMID: 30304123 PMCID: PMC6172024 DOI: 10.1590/1678-7757-2017-0566] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2017] [Revised: 01/30/2018] [Accepted: 02/20/2018] [Indexed: 01/14/2023] Open
Abstract
OBJECTIVE To investigate the relation between biofilm formation ability and quorum sensing gene LuxS/AI-2. MATERIALS AND METHODS Enterococcus faecalis (E. faecalis) standard strain ATCC 29212 was used in the study. Long flanking homology polymerase chain reaction method was used to build the LuxS gene knockout strain. Sequential culture turbidity measurement and CFU counting were used to assess the proliferation ability of E. faecalis after the depletion of LuxS. 96-well plate assay was used to quantify the biofilm formation ability; CLSM was used to observe the attached bacteria areas, while scanning electron microscopy (SEM) was performed to observe biofilm microstructure conditions. RESULTS LuxS gene knockout strains were successfully constructed and identified. The results showed that proliferation ability of E. faecalis was not affected by the depletion of the luxS gene, and the biofilm formation ability of ΔLuxS 29212 significantly decreased (P<0.05). CONCLUSIONS Collectively, our studies provide the LuxS gene's key role in controlling biofilm formation of E. faecalis, which presented a negative regulation, and furthermore, providing us a possible way to conquer the persistent apical periodontitis.
Collapse
Affiliation(s)
- Yue Yang
- Capital Medical University School of Stomatology, Department of Endodontics, Beijing, China
| | - Wenzhi Li
- Capital Medical University School of Stomatology, Department of Endodontics, Beijing, China
| | - Benxiang Hou
- Capital Medical University School of Stomatology, Department of Endodontics, Beijing, China
| | - Chen Zhang
- Capital Medical University School of Stomatology, Department of Endodontics, Beijing, China
| |
Collapse
|
42
|
Suriyanarayanan T, Qingsong L, Kwang LT, Mun LY, Truong T, Seneviratne CJ. Quantitative Proteomics of Strong and Weak Biofilm Formers of Enterococcus faecalis Reveals Novel Regulators of Biofilm Formation. Mol Cell Proteomics 2018; 17:643-654. [PMID: 29358339 DOI: 10.1074/mcp.ra117.000461] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2017] [Revised: 12/21/2017] [Indexed: 11/06/2022] Open
Abstract
Enterococcus faecalis is a bacterial pathogen associated with both endodontic and systemic infections. The biofilm formation ability of E. faecalis plays a key role in its virulence and drug resistance attributes. The formation of E. faecalis biofilms on implanted medical devices often results in treatment failure. In the present study, we report protein markers associated with the biofilm formation ability of E. faecalis using iTRAQ-based quantitative proteomics approach. In order to elucidate the biofilm-associated protein markers, we investigated the proteome of strong and weak biofilm-forming E. faecalis clinical isolates in comparison with standard American Type Culture Collection (ATCC) control strains. Comparison of E. faecalis strong and weak biofilm-forming clinical isolates with ATCC control strains showed that proteins associated with shikimate kinase pathway and sulfate transport were up-regulated in the strong biofilm former, while proteins associated with secondary metabolites, cofactor biosynthesis, and tetrahydrofolate biosynthesis were down-regulated. In the weak biofilm former, proteins associated with nucleoside and nucleotide biosynthesis were up-regulated, whereas proteins associated with sulfate and sugar transport were down-regulated. Further pathway and gene ontology analyses revealed that the major differences in biofilm formation arise from differences in metabolic activity levels of the strong and weak biofilm formers, with higher levels of metabolic activity observed in the weak biofilm former. The differences in metabolic activity could therefore be a major determinant of the biofilm ability of E. faecalis The new markers identified from this study can be further characterized in order to understand their exact role in E. faecalis biofilm formation ability. This, in turn, can lead to numerous therapeutic benefits in the treatment of this oral and systemic pathogen. The data has been deposited to the ProteomeXchange with identifier PXD006542.
Collapse
Affiliation(s)
| | - Lin Qingsong
- Department of Biological Sciences, Faculty of Science, National University of Singapore
| | - Lim Teck Kwang
- Department of Biological Sciences, Faculty of Science, National University of Singapore
| | - Lee Yew Mun
- Department of Biological Sciences, Faculty of Science, National University of Singapore
| | - Thuyen Truong
- From the Oral Sciences, Faculty of Dentistry, National University of Singapore
| | | |
Collapse
|
43
|
Wang L, Jin H, Ye D, Wang J, Ao X, Dong M, Niu W. Enterococcus faecalis Lipoteichoic Acid-induced NLRP3 Inflammasome via the Activation of the Nuclear Factor Kappa B Pathway. J Endod 2017; 42:1093-100. [PMID: 27325457 DOI: 10.1016/j.joen.2016.04.018] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2015] [Revised: 04/11/2016] [Accepted: 04/28/2016] [Indexed: 11/29/2022]
Abstract
INTRODUCTION We wished to examine the effects of the nucleotide-binding oligomerization domain-like receptor protein 3 (NLRP3) inflammasome on periapical periodontitis induced by Enterococcus faecalis and to investigate the molecular mechanisms of lipoteichoic acid (LTA) derived from E. faecalis on the expression of the NLRP3 inflammasome. METHODS A model of periapical periodontitis by sealing E. faecalis into the pulp chambers of rats was established. We then examined the relationship between the expression, location, distribution, and concentration of NLRP3, caspase-1, and interleukin 1β with the inflammatory progression by immunohistochemistry and undertook correlation analyses. RAW264.7 cells were cultured in the absence or presence of LTA together with or without nuclear factor kappa B (NF-κB) inhibitor BAY 11-7082; NLRP3 inflammasome expression was measured by Western blotting, the enzyme-linked immunosorbent assay, and real-time quantitative polymerase chain reaction. An immunofluorescence study was conducted to further detect whether NF-κB can be completely inhibited by BAY 11-7082 or activated by LTA. RESULTS An animal model of periapical periodontitis was established successfully. Expression of NLRP3, caspase-1, and interleukin 1β protein was observed in the inflamed area. The expression of these 3 proteins had a significant positive correlation (P < .05). Overall, our results showed that, compared with the negative control group, LTA could directly activate expression of messenger RNA and protein of the NLRP3 inflammasome (P < .05), whereas BAY 11-7082 inhibited it (P < .05). CONCLUSIONS Our results suggested that LTA can act as a directly stimulating factor associated with expression of the NLRP3 inflammasome during periapical periodontitis, which is mainly linked with the NF-κB signaling activation pathway.
Collapse
Affiliation(s)
- Lina Wang
- Department of Endodontics and Periodontics, College of Stomatology, Dalian Medical University, Dalian, Liaoning Province, China
| | - Haiwei Jin
- Department of Oral Basic Science, College of Stomatology, Dalian Medical University, Dalian, Liaoning Province, China
| | - Dandan Ye
- Department of Endodontics and Periodontics, College of Stomatology, Dalian Medical University, Dalian, Liaoning Province, China
| | - Jiaojiao Wang
- Department of Endodontics and Periodontics, College of Stomatology, Dalian Medical University, Dalian, Liaoning Province, China
| | - Xiang Ao
- Department of Endodontics and Periodontics, College of Stomatology, Dalian Medical University, Dalian, Liaoning Province, China
| | - Ming Dong
- Department of Endodontics and Periodontics, College of Stomatology, Dalian Medical University, Dalian, Liaoning Province, China
| | - Weidong Niu
- Department of Endodontics and Periodontics, College of Stomatology, Dalian Medical University, Dalian, Liaoning Province, China.
| |
Collapse
|
44
|
Prado ACC, De Barros PP, Santos JDD, De Oliveira LD, Carvalho CAT, Valera MC, Jorge AOC, Junqueira JC. Enterococcus faecium and Enterococcus faecalis in endodontic infections: antibiotic resistance profile and susceptibility to photodynamic therapy. ACTA ACUST UNITED AC 2017. [DOI: 10.1007/s41547-017-0011-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
|
45
|
Bachtiar BM, Bachtiar EW. Proinflammatory MG-63 cells response infection with Enterococcus faecalis cps2 evaluated by the expression of TLR-2, IL-1β, and iNOS mRNA. BMC Res Notes 2017; 10:401. [PMID: 28800779 PMCID: PMC5553915 DOI: 10.1186/s13104-017-2740-4] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2017] [Accepted: 08/08/2017] [Indexed: 02/05/2023] Open
Abstract
OBJECTIVE We have previously demonstrated that unencapsulated Enterococcus faecalis cps2 inhibits biofilm formation of Candida albicans, a fungus commonly found with E. faecalis in periapical lesion. In this study, we compared encapsulated and unencapsulated E. faecalis cps2 strains relationship with osteoblastic (MG-63) cells, whereas E. faecalis ATCC 29212 were used as a reference strain. RESULTS The binding capacity of E. faecalis to MG-63 cells as shown by each tested strain was comparable, but the unencapsulated strain was less invasive compared to the encapsulated and the reference strains. Moreover, quantitative real time-PCR (qPCR) results showed that infecting unencapsulated E. faecalis cps2 is a stronger stimulator for toll like receptor 2 (TLR2) and interleukin-1β (IL-1β) mRNAs, but not for inducible nitric oxide synthase (iNOS) mRNA in osteoblastic cells. In conclusion, the performance of unencapsulated E. faecalis cps2 when the bacterium interacts with osteoblastic cells is quite different from that of encapsulated E. faecalis cps2 and reference strains. It appears that the unencapsulated strain might contribute to the persistence of the periapical inflammatory response, depending on down-regulation of iNOS mRNA expression.
Collapse
Affiliation(s)
- Boy M Bachtiar
- Department of Oral Biology and Oral Science Research Center, Faculty of Dentistry, Universitas Indonesia, Jl. Salemba Raya 4, Jakarta, 10430, Indonesia.
| | - Endang W Bachtiar
- Department of Oral Biology and Oral Science Research Center, Faculty of Dentistry, Universitas Indonesia, Jl. Salemba Raya 4, Jakarta, 10430, Indonesia
| |
Collapse
|
46
|
Cheng X, Xiang D, He W, Qiu J, Han B, Yu Q, Tian Y. Bactericidal Effect of Er:YAG Laser-Activated Sodium Hypochlorite Irrigation Against Biofilms of Enterococcus faecalis Isolate from Canal of Root-Filled Teeth with Periapical Lesions. Photomed Laser Surg 2017. [PMID: 28622484 DOI: 10.1089/pho.2017.4293] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
OBJECTIVE This study was to evaluate the bactericidal effect of Er:YAG laser-activated sodium hypochlorite irrigation (Er:YAG + NaOCl) on biofilms of Enterococcus faecalis clinical isolate. BACKGROUND DATA It was reported that Er:YAG + NaOCl had effective bactericidal effect on laboratory-adapted E. faecalis strain, while no study has reported its effect on the clinical isolate. METHODS Eighteen E. faecalis strains were isolated from 39 root-filled teeth with periapical lesions, and their biofilm formation abilities were evaluated using the crystal violet staining method. Extracted human root canals were prepared to a 40#/.04 K3 instrument and contaminated with the E. faecalis isolate that presented the strongest biofilm formation ability for 4 weeks. The infected canals then received treatments of syringe irrigation with normal saline (NS) or NaOCl, ultrasonic activated irrigations US + NS and US + NaOCl, and Er:YAG laser-activated irrigations Er:YAG + NS and Er:YAG + NaOCl. The root canals were examined using scanning electron microscopy (SEM). The bacterial reductions were evaluated using the cell count method. RESULTS SEM results showed that biofilm-like structures formed on the root canal walls after 4-week bacterial incubation. Er:YAG + NaOCl completely removed the E. faecalis biofilm from the root canal wall and made it the cleanest and most smooth surface among the treatment groups. Bacterial reductions in the treatment groups were presented in a descending order of Er:YAG + NaOCl (98.8%), US + NaOCl (98.6%) > NaOCl (94.0%) > Er:YAG + NS (91.9%) > US + NS (78.1%) > NS (51.1%) (p < 0.05). CONCLUSIONS The Er:YAG + NaOCl showed an effective bactericidal effect on biofilms of E. faecalis isolate, which may be considered an effective protocol for root canal treatment.
Collapse
Affiliation(s)
- Xiaogang Cheng
- State Key Laboratory of Military Stomatology and National Clinical Research Center for Oral Diseases and Shaanxi Key Laboratory of Stomatology, Department of Operative Dentistry and Endodontics, School of Stomatology, The Fourth Military Medical University , Xi'an, P.R. China
| | - Doudou Xiang
- State Key Laboratory of Military Stomatology and National Clinical Research Center for Oral Diseases and Shaanxi Key Laboratory of Stomatology, Department of Operative Dentistry and Endodontics, School of Stomatology, The Fourth Military Medical University , Xi'an, P.R. China
| | - Wenxi He
- State Key Laboratory of Military Stomatology and National Clinical Research Center for Oral Diseases and Shaanxi Key Laboratory of Stomatology, Department of Operative Dentistry and Endodontics, School of Stomatology, The Fourth Military Medical University , Xi'an, P.R. China
| | - Jun Qiu
- State Key Laboratory of Military Stomatology and National Clinical Research Center for Oral Diseases and Shaanxi Key Laboratory of Stomatology, Department of Operative Dentistry and Endodontics, School of Stomatology, The Fourth Military Medical University , Xi'an, P.R. China
| | - Bing Han
- State Key Laboratory of Military Stomatology and National Clinical Research Center for Oral Diseases and Shaanxi Key Laboratory of Stomatology, Department of Operative Dentistry and Endodontics, School of Stomatology, The Fourth Military Medical University , Xi'an, P.R. China
| | - Qing Yu
- State Key Laboratory of Military Stomatology and National Clinical Research Center for Oral Diseases and Shaanxi Key Laboratory of Stomatology, Department of Operative Dentistry and Endodontics, School of Stomatology, The Fourth Military Medical University , Xi'an, P.R. China
| | - Yu Tian
- State Key Laboratory of Military Stomatology and National Clinical Research Center for Oral Diseases and Shaanxi Key Laboratory of Stomatology, Department of Operative Dentistry and Endodontics, School of Stomatology, The Fourth Military Medical University , Xi'an, P.R. China
| |
Collapse
|
47
|
Transcriptomics Analysis Reveals Putative Genes Involved in Biofilm Formation and Biofilm-associated Drug Resistance of Enterococcus faecalis. J Endod 2017; 43:949-955. [DOI: 10.1016/j.joen.2017.01.020] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2016] [Revised: 01/12/2017] [Accepted: 01/13/2017] [Indexed: 11/19/2022]
|
48
|
Abstract
Enterococcus faecalis appears in many tooth root infections and is not eliminated by root canal therapy. It can reside in tooth root canals and the surrounding bone. This species may vegetate in bone after extraction of an infected tooth and colonize a dental implant after placement in the healed site. A colonization may cause fixture loss or marginal bone loss. These colonizations are generally multibacterial and pathogenic properties can be shared via plasmids. However, E faecalis is not detectable with some culture techniques and thus can be missed. It is usually not a dominant species in these infections. Nonetheless, E faecalis may be a "keystone" player in dental implant bone loss or peri-implantitis. That is, E faecalis may be the pathogenic determinant for any particular peri-implantitis infection of a multiple-species infection.
Collapse
|
49
|
Gao Y, Jiang X, Lin D, Chen Y, Tong Z. The Starvation Resistance and Biofilm Formation of Enterococcus faecalis in Coexistence with Candida albicans, Streptococcus gordonii, Actinomyces viscosus, or Lactobacillus acidophilus. J Endod 2016; 42:1233-8. [DOI: 10.1016/j.joen.2016.05.002] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2016] [Revised: 05/06/2016] [Accepted: 05/06/2016] [Indexed: 02/06/2023]
|
50
|
Wojnicz D, Tichaczek-Goska D, Korzekwa K, Kicia M, Hendrich AB. Study of the impact of cranberry extract on the virulence factors and biofilm formation by Enterococcus faecalis strains isolated from urinary tract infections. Int J Food Sci Nutr 2016; 67:1005-16. [PMID: 27456160 DOI: 10.1080/09637486.2016.1211996] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Drinking of cranberry fruit juice and application of commercial preparations containing the cranberry extracts are recommended in the prevention and treatment of urinary tract infections (UTIs), especially in women with recurrent UTIs. Many studies focus on the activity of cranberries against uropathogenic Escherichia coli (E. coli) strains. However, the knowledge of the cranberry effect on Gram-positive Enterococcus faecalis (E. faecalis) is limited. Therefore, the aim of our study was to establish the activity of commercial concentrated cranberry extract on the growth, virulence factors and biofilm formation of E. faecalis strains isolated from urine. Minimal inhibitory concentrations (MICs) of cranberry extract were determined by the broth microdilution method. Disc diffusion method was used to determine antimicrobial susceptibility. The impact of cranberry extract on bacterial survival, hydrophobicity, synthesis of lipase, lecithinase, DNase, hemolysin, gelatinase and biofilm mass was determined. Results show that cranberry extract inhibits the growth, enzymatic activities of bacteria and limits biofilm formation. The antibacterial activities of the studied cranberry extract confirm that it could be successfully used in prevention of UTIs caused by E. faecalis.
Collapse
Affiliation(s)
- Dorota Wojnicz
- a Department of Biology and Medical Parasitology , Wroclaw Medical University , Wroclaw , Poland
| | - Dorota Tichaczek-Goska
- a Department of Biology and Medical Parasitology , Wroclaw Medical University , Wroclaw , Poland
| | - Kamila Korzekwa
- b Department of Microbiology , Institute of Genetics and Microbiology, University of Wroclaw , Wroclaw , Poland
| | - Marta Kicia
- a Department of Biology and Medical Parasitology , Wroclaw Medical University , Wroclaw , Poland
| | - Andrzej B Hendrich
- a Department of Biology and Medical Parasitology , Wroclaw Medical University , Wroclaw , Poland
| |
Collapse
|