1
|
Koç S, Gümüşderelioğlu M. Versatile cell cultivation on injectable poly(butylene adipate-co-terephthalate) microcarriers: Impact of surface properties across different cell types. J Biomed Mater Res B Appl Biomater 2024; 112:e35464. [PMID: 39194038 DOI: 10.1002/jbm.b.35464] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2024] [Revised: 05/12/2024] [Accepted: 07/30/2024] [Indexed: 08/29/2024]
Abstract
Injectable cell therapies offer several advantages compared with traditional open surgery, including less trauma to the patient, shorter recovery time, and lower risk of infection. However, a significant problem is the difficulty in developing effective cell delivery carriers that are cyto-compatible and maintain cell viability both during and after injection. In the presented study, it was aimed to develop poly(butylene adipate-co-terephthalate) (PBAT) microcarriers using the emulsion preparation-solvent evaporation technique. The optimized diameter of the PBAT microcarriers was determined as 104 ± 15 μm at 700 rpm and there would be no blockage after injection due to the nonswelling feature of microcarriers. Furthermore, the cellular activities of PBAT microcarriers were evaluated in static culture for 7 days using L929 mouse fibroblasts, MC3T3-E1 mouse pre-osteoblasts, and rat adipose-derived mesenchymal cells (AdMSCs). 3-[4,5-Dimethylthiazol-2-yl]-2,5-diphenyltetrazolium bromide results and Sscanning electron microscope images showed that PBAT microcarriers increased the adhesion and proliferation properties of pre-osteoblasts and stem cells, while L929 fibroblasts formed aggregates by adhering to certain regions of the microcarrier surface and did not spread on the surface. These results emphasize that PBAT microcarriers can be used as injectable carriers, especially in stem cell therapies, but their surface properties need to be modified for some cells.
Collapse
Affiliation(s)
- Sena Koç
- Graduate School of Science and Engineering, Hacettepe University, Ankara, Turkey
- Chemical Engineering Department, Hacettepe University, Ankara, Turkey
| | - Menemşe Gümüşderelioğlu
- Chemical Engineering Department, Hacettepe University, Ankara, Turkey
- Bioengineering Department, Hacettepe University, Ankara, Turkey
| |
Collapse
|
2
|
Veiga A, Foster O, Kaplan DL, Oliveira AL. Expanding the boundaries of silk sericin biomaterials in biomedical applications. J Mater Chem B 2024; 12:7020-7040. [PMID: 38935038 DOI: 10.1039/d4tb00386a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/28/2024]
Abstract
Silk sericin (SS) has a long history as a by-product of the textile industry. SS has emerged as a sustainable material for biomedical engineering due to its material properties including water solubility, diverse impact on biological activities including antibacterial and antioxidant properties, and ability to promote cell adhesion and proliferation. This review addresses the origin, structure, properties, extraction, and underlying functions of this protein. An overview of the growing research studies and market evolution is presented, along with highlights of the most common fabrication matrices (hydrogels, bioinks, porous and fibrous scaffolds) and tissue engineering applications. Finally, the future trends with this protein as a multifaceted toolbox for bioengineering are explored, along with the challenges with SS. Overall, the present review can serve as a foundation for the creation of innovative biomaterials utilizing SS as a fundamental building block that hold market potential.
Collapse
Affiliation(s)
- Anabela Veiga
- CBQF-Centro de Biotecnologia e Química Fina-Laboratório Associado, Universidade Católica Portuguesa, Escola Superior de Biotecnologia, Rua Diogo Botelho 1327, 4169-005 Porto, Portugal
- LEPABE-Laboratory for Process Engineering, Environment, Biotechnology & Energy, Department of Chemical Engineering, Faculty of Engineering of the University of Porto, R. Dr. Roberto Frias, 4200-465 Porto, Portugal
- ALiCE-Associate Laboratory in Chemical Engineering, Faculty of Engineering, University of Porto, Rua Dr. Roberto Frias, 4200-465 Porto, Portugal.
- Department of Biomedical Engineering, Tufts University, 4 Colby St., Medford, MA 02155, USA
| | - Olivia Foster
- Department of Biomedical Engineering, Tufts University, 4 Colby St., Medford, MA 02155, USA
| | - David L Kaplan
- Department of Biomedical Engineering, Tufts University, 4 Colby St., Medford, MA 02155, USA
| | - Ana Leite Oliveira
- ALiCE-Associate Laboratory in Chemical Engineering, Faculty of Engineering, University of Porto, Rua Dr. Roberto Frias, 4200-465 Porto, Portugal.
| |
Collapse
|
3
|
Zhu Y, Yi D, Wang J, Zhang Y, Li M, Ma J, Ji Y, Peng J, Wang Y, Luo Y. Harnessing three-dimensional porous chitosan microsphere embedded with adipose-derived stem cells to promote nerve regeneration. Stem Cell Res Ther 2024; 15:158. [PMID: 38824568 PMCID: PMC11144330 DOI: 10.1186/s13287-024-03753-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2023] [Accepted: 05/05/2024] [Indexed: 06/03/2024] Open
Abstract
BACKGROUND Nerve guide conduits are a promising strategy for reconstructing peripheral nerve defects. Improving the survival rate of seed cells in nerve conduits is still a challenge and microcarriers are an excellent three-dimensional (3D) culture scaffold. Here, we investigate the effect of the 3D culture of microcarriers on the biological characteristics of adipose mesenchymal stem cells (ADSCs) and to evaluate the efficacy of chitosan nerve conduits filled with microcarriers loaded with ADSCs in repairing nerve defects. METHODS In vitro, we prepared porous chitosan microspheres by a modified emulsion cross-linking method for loading ADSCs and evaluated the growth status and function of ADSCs. In vivo, ADSCs-loaded microcarriers were injected into chitosan nerve conduits to repair a 12 mm sciatic nerve defect in rats. RESULTS Compared to the conventional two-dimensional (2D) culture, the prepared microcarriers were more conducive to the proliferation, migration, and secretion of trophic factors of ADSCs. In addition, gait analysis, neuro-electrophysiology, and histological evaluation of nerves and muscles showed that the ADSC microcarrier-loaded nerve conduits were more effective in improving nerve regeneration. CONCLUSIONS The ADSCs-loaded chitosan porous microcarrier prepared in this study has a high cell engraftment rate and good potential for peripheral nerve repair.
Collapse
Affiliation(s)
- Yaqiong Zhu
- Department of Ultrasound, the First Medical Centre, Chinese PLA General Hospital, Beijing, 100853, China
- Beijing Key Lab of Regenerative Medicine in Orthopaedics, Chinese PLA General Hospital, Beijing, China
- Key Lab of Musculoskeletal Trauma & War Injuries, Chinese PLA General Hospital, Beijing, China
- Beijing Key Laboratory of Chronic Heart Failure Precision Medicine, Chinese PLA General Hospital, Beijing, China
| | - Dan Yi
- Department of Ultrasound, the First Medical Centre, Chinese PLA General Hospital, Beijing, 100853, China
- Medical School of Chinese PLA, Beijing, 100853, China
| | - Jing Wang
- Department of Orthopaedic Surgery, The First Affiliated Hospital of University of Science and Technology of China, Hefei, Anhui Province, China
| | - Yongyi Zhang
- Medical School of Chinese PLA, Beijing, 100853, China
- Department of Rehabilitation Medicine, the Second Medical Centre, Chinese PLA General Hospital, Beijing, China
- No.962 Hospital of the PLA Joint Logistic Support Force, Harbin, China
| | - Molin Li
- Department of Ultrasound, the First Medical Centre, Chinese PLA General Hospital, Beijing, 100853, China
- Medical School of Chinese PLA, Beijing, 100853, China
| | - Jun Ma
- Department of Ultrasound, the First Medical Centre, Chinese PLA General Hospital, Beijing, 100853, China
| | - Yongjiao Ji
- Department of Ultrasound, the First Medical Centre, Chinese PLA General Hospital, Beijing, 100853, China
| | - Jiang Peng
- Beijing Key Lab of Regenerative Medicine in Orthopaedics, Chinese PLA General Hospital, Beijing, China.
- Key Lab of Musculoskeletal Trauma & War Injuries, Chinese PLA General Hospital, Beijing, China.
- Department of Orthopaedics, The Fourth Centre of Chinese PLA General Hospital, Beijing, China.
| | - Yuexiang Wang
- Department of Ultrasound, the First Medical Centre, Chinese PLA General Hospital, Beijing, 100853, China.
| | - Yukun Luo
- Department of Ultrasound, the First Medical Centre, Chinese PLA General Hospital, Beijing, 100853, China.
| |
Collapse
|
4
|
Jiang Y, Lv H, Shen F, Fan L, Zhang H, Huang Y, Liu J, Wang D, Pan H, Yang J. Strategies in product engineering of mesenchymal stem cell-derived exosomes: unveiling the mechanisms underpinning the promotive effects of mesenchymal stem cell-derived exosomes. Front Bioeng Biotechnol 2024; 12:1363780. [PMID: 38756412 PMCID: PMC11096451 DOI: 10.3389/fbioe.2024.1363780] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2023] [Accepted: 04/08/2024] [Indexed: 05/18/2024] Open
Abstract
Articular cartilage injuries present a significant global challenge, particularly in the aging population. These injuries not only restrict movement due to primary damage but also exacerbate elderly degenerative lesions, leading to secondary cartilage injury and osteoarthritis. Addressing osteoarthritis and cartilage damage involves overcoming several technical challenges in biological treatment. The use of induced mesenchymal stem cells (iMSCs) with functional gene modifications emerges as a solution, providing a more stable and controllable source of Mesenchymal Stem Cells (MSCs) with reduced heterogeneity. Furthermore, In addition, this review encompasses strategies aimed at enhancing exosome efficacy, comprising the cultivation of MSCs in three-dimensional matrices, augmentation of functional constituents within MSC-derived exosomes, and modification of their surface characteristics. Finally, we delve into the mechanisms through which MSC-exosomes, sourced from diverse tissues, thwart osteoarthritis (OA) progression and facilitate cartilage repair. This review lays a foundational framework for engineering iMSC-exosomes treatment of patients suffering from osteoarthritis and articular cartilage injuries, highlighting cutting-edge research and potential therapeutic pathways.
Collapse
Affiliation(s)
- Yudong Jiang
- Orthopedics Department, The Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Hanning Lv
- Orthopedics Department, Longgang District People’s Hospital of Shenzhen and the Second Affiliated Hospital, The Chinese University of Hong Kong, Shenzhen, China
| | - Fuguo Shen
- Orthopedics Department, The Third Affiliated Hospital of Qiqihar Medical University, Qiqihar, China
| | - Lei Fan
- Orthopedics Department, Longgang District People’s Hospital of Shenzhen and the Second Affiliated Hospital, The Chinese University of Hong Kong, Shenzhen, China
| | - Hongjun Zhang
- Orthopedics Department, Longgang District People’s Hospital of Shenzhen and the Second Affiliated Hospital, The Chinese University of Hong Kong, Shenzhen, China
| | - Yong Huang
- Orthopedics Department, Longgang District People’s Hospital of Shenzhen and the Second Affiliated Hospital, The Chinese University of Hong Kong, Shenzhen, China
| | - Jia Liu
- Central Laboratory, Longgang District People’s Hospital of Shenzhen and the Second Affiliated Hospital, The Chinese University of Hong Kong, Shenzhen, China
| | - Dong Wang
- The Biomechanics Group, Department of Mechanical Engineering, Imperial College London, London, United Kingdom
- Department of Engineering, Faculty of Environment, Science and Economy, University of Exeter, Exeter, United Kingdom
| | - Haile Pan
- Orthopedics Department, The Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Jianhua Yang
- Orthopedics Department, Longgang District People’s Hospital of Shenzhen and the Second Affiliated Hospital, The Chinese University of Hong Kong, Shenzhen, China
| |
Collapse
|
5
|
Huang H, Li J, Wang C, Xing L, Cao H, Wang C, Leung CY, Li Z, Xi Y, Tian H, Li F, Sun D. Using Decellularized Magnetic Microrobots to Deliver Functional Cells for Cartilage Regeneration. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2304088. [PMID: 37939310 DOI: 10.1002/smll.202304088] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Revised: 09/25/2023] [Indexed: 11/10/2023]
Abstract
The use of natural cartilage extracellular matrix (ECM) has gained widespread attention in the field of cartilage tissue engineering. However, current approaches for delivering functional scaffolds for osteoarthritis (OA) therapy rely on knee surgery, which is limited by the narrow and complex structure of the articular cavity and carries the risk of injuring surrounding tissues. This work introduces a novel cell microcarrier, magnetized cartilage ECM-derived scaffolds (M-CEDSs), which are derived from decellularized natural porcine cartilage ECM. Human bone marrow mesenchymal stem cells are selected for their therapeutic potential in OA treatments. Owing to their natural composition, M-CEDSs have a biomechanical environment similar to that of human cartilage and can efficiently load functional cells while maintaining high mobility. The cells are released spontaneously at a target location for at least 20 days. Furthermore, cell-seeded M-CEDSs show better knee joint function recovery than control groups 3 weeks after surgery in preclinical experiments, and ex vivo experiments reveal that M-CEDSs can rapidly aggregate inside tissue samples. This work demonstrates the use of decellularized microrobots for cell delivery and their in vivo therapeutic effects in preclinical tests.
Collapse
Affiliation(s)
- Hanjin Huang
- Department of Biomedical Engineering, City University of Hong Kong, Hong Kong SAR, 999077, China
| | - Junyang Li
- Department of Electronic Engineering, Ocean University of China, Qingdao, 266100, China
| | - Cheng Wang
- Beijing Key Laboratory of Spinal Disease Research, Engineering Research Center of Bone and Joint Precision Medicine, Ministry of Education, Department of Orthopaedics, Peking University Third Hospital, Beijing, 100191, China
| | - Liuxi Xing
- Department of Biomedical Engineering, City University of Hong Kong, Hong Kong SAR, 999077, China
| | - Hui Cao
- Department of Biomedical Engineering, City University of Hong Kong, Hong Kong SAR, 999077, China
| | - Chang Wang
- Department of Biomedical Engineering, City University of Hong Kong, Hong Kong SAR, 999077, China
| | - Chung Yan Leung
- Department of Biomedical Engineering, City University of Hong Kong, Hong Kong SAR, 999077, China
| | - Zongze Li
- Department of Biomedical Engineering, City University of Hong Kong, Hong Kong SAR, 999077, China
| | - Yue Xi
- Department of Biomedical Engineering, City University of Hong Kong, Hong Kong SAR, 999077, China
| | - Hua Tian
- Beijing Key Laboratory of Spinal Disease Research, Engineering Research Center of Bone and Joint Precision Medicine, Ministry of Education, Department of Orthopaedics, Peking University Third Hospital, Beijing, 100191, China
| | - Feng Li
- Beijing Key Laboratory of Spinal Disease Research, Engineering Research Center of Bone and Joint Precision Medicine, Ministry of Education, Department of Orthopaedics, Peking University Third Hospital, Beijing, 100191, China
| | - Dong Sun
- Department of Biomedical Engineering, City University of Hong Kong, Hong Kong SAR, 999077, China
| |
Collapse
|
6
|
Aboulkhair AG, AboZeid AA, Beherei HH, Kamar SS. Regenerative effect of microcarrier form of acellular dermal matrix versus bone matrix bio-scaffolds loaded with adipose stem cells on rat bone defect. Ann Anat 2024; 252:152203. [PMID: 38128745 DOI: 10.1016/j.aanat.2023.152203] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2023] [Revised: 12/03/2023] [Accepted: 12/15/2023] [Indexed: 12/23/2023]
Abstract
BACKGROUND Bone defects lead to dramatic changes in the quality of life. Acellular dermal matrix (ADM) and decellularized bone matrix (DBM) are natural scaffolds for tissue regeneration. The microcarrier scaffolds enable better vascularization and cell proliferation. This study compared the effect of microcarrier forms of DBM and ADM-loaded with adipose stem cells (ASCs) in the repair of compact bone defect in-vivo. METHODS Fifty-four male rats were divided into 4 groups; (i) Group (Gp) I: sham control; (ii) GpII: underwent femur bone defect induction and left to heal spontaneously; (iii) GpIII (ADM-Gp): included 2 subgroups; IIIa and IIIb: the bone defects were filled with non-loaded ADM and ADM-loaded with ASCs, respectively; (iv) GpIV (DBM-Gp): included 2 subgroups; IVa and IVb: the bone defects were filled with non-loaded DBM and DBM-loaded with ASCs, respectively. Animals were euthanized after 1, 2 and 3 months and their femur sections were stained with H&E, Masson's trichrome and immunohistochemistry for CD31, osteopontin and osteocalcin. RESULTS Histological analysis illustrated limited bone regeneration in the cortical defect of GpII after 3 months. The histomorphometric analysis showed significant delayed mature collagen deposition as well as CD31, osteopontin and osteocalcin expression. Superior capacity of new bone regeneration was detected with bio-scaffold micro-carriers; loaded or non-loaded with ASCs. However, DBM-loaded with ASCs displayed enhanced regeneration properties confirmed by the apparently normal architecture of the new bone and accelerated expression of CD31, osteopontin and osteocalcin in the regenerated bone after 3 months. CONCLUSIONS We concluded that decellularized scaffolds significantly improved compact bone regeneration with superiority of ASCs seeded-bone scaffolds.
Collapse
Affiliation(s)
| | - Asmaa A AboZeid
- Histology Department, Faculty of Medicine, Ain Shams University, Cairo 11591, Egypt
| | - Hanan Hassan Beherei
- Refractories, Ceramics and Building Materials Department, National Research Centre (NRC), Giza 12622, Egypt
| | - Samaa Samir Kamar
- Histology Department, Kasr Al-ainy Faculty of Medicine, Cairo University, Cairo 11562, Egypt.
| |
Collapse
|
7
|
Gu F, Zhang K, Zhu WA, Sui Z, Li J, Xie X, Yu T. Silicone rubber sealed channel induced self-healing of large bone defects: Where is the limit of self-healing of bone? J Orthop Translat 2023; 43:21-35. [PMID: 37965195 PMCID: PMC10641457 DOI: 10.1016/j.jot.2023.09.001] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/13/2023] [Revised: 08/02/2023] [Accepted: 09/12/2023] [Indexed: 11/16/2023] Open
Abstract
Background Large defects of long tubular bones due to severe trauma, bone tumor resection, or osteomyelitis debridement are challenging in orthopedics. Bone non-union and other complications often lead to serious consequences. At present, autologous bone graft is still the gold standard for the treatment of large bone defects. However, autologous bone graft sources are limited. Silicon rubber (SR) materials are widely used in biomedical fields, due to their safety and biocompatibility, and even shown to induce nerve regeneration. Materials and methods We extracted rat bone marrow mesenchymal stem cells (BMMSCs) in vitro and verified the biocompatibility of silicone rubber through cell experiments. Then we designed a rabbit radius critical sized bone defect model to verify the effect of silicone rubber sealed channel inducing bone repair in vivo. Results SR sealed channel could prevent the fibrous tissue from entering the fracture end and forming bone nonunion, thereby inducing self-healing of long tubular bone through endochondral osteogenesis. The hematoma tissue formed in the early stage was rich in osteogenesis and angiogenesis related proteins, and gradually turned into vascularization and endochondral osteogenesis, and finally realized bone regeneration. Conclusions In summary, our study proved that SR sealed channel could prevent the fibrous tissue from entering the fracture end and induce self-healing of long tubular bone through endochondral osteogenesis. In this process, the sealed environment provided by the SR channel was key, and this might indicate that the limit of self-healing of bone exceeded the previously thought. The translational potential of this article This study investigated a new concept to induce the self-healing of large bone defects. It could avoid trauma caused by autologous bone extraction and possible rejection reactions caused by bone graft materials. Further research based on this study, including the innovation of induction materials, might invent a new type of bone inducing production, which could bring convenience to patients. We believed that this study had significant meaning for the treatment of large bone defects in clinical practice.
Collapse
Affiliation(s)
- Feng Gu
- Department of Orthopedics, First Hospital of Jilin University, Changchun, 130021, China
| | - Ke Zhang
- Department of Orthopedics, First Hospital of Jilin University, Changchun, 130021, China
| | - Wan-an Zhu
- Department of Radiology, First Hospital of Jilin University, Changchun, 130021, China
| | - Zhenjiang Sui
- Department of Orthopedics, First Hospital of Jilin University, Changchun, 130021, China
| | - Jiangbi Li
- Department of Orthopedics, First Hospital of Jilin University, Changchun, 130021, China
| | - Xiaoping Xie
- Department of Orthopedics, First Hospital of Jilin University, Changchun, 130021, China
| | - Tiecheng Yu
- Department of Orthopedics, First Hospital of Jilin University, Changchun, 130021, China
| |
Collapse
|
8
|
Kulus M, Jankowski M, Kranc W, Golkar Narenji A, Farzaneh M, Dzięgiel P, Zabel M, Antosik P, Bukowska D, Mozdziak P, Kempisty B. Bioreactors, scaffolds and microcarriers and in vitro meat production-current obstacles and potential solutions. Front Nutr 2023; 10:1225233. [PMID: 37743926 PMCID: PMC10513094 DOI: 10.3389/fnut.2023.1225233] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2023] [Accepted: 08/21/2023] [Indexed: 09/26/2023] Open
Abstract
In vitro meat production presents a potential viable alternative for meat consumption, which could provide the consumer with a product indistinguishable from the original, with very similar nutritional and culinary values. Indeed, the alternative products currently accessible often lack comparable nutritional value or culinary attributes to their animal-derived counterparts. This creates challenges for their global acceptance, particularly in countries where meat consumption holds cultural significance. However, while cultured meat research has been progressing rapidly in recent years, some significant obstacles still need to be overcome before its possible commercialization. Hence, this review summarizes the most current knowledge regarding the history of cultured meat, the currently used cell sources and methods used for the purpose of in vitro meat production, with particular focus on the role of bioreactors, scaffolds and microcarriers in overcoming the current obstacles. The authors put the potential microcarrier and scaffold-based solutions in a context, discussing the ways in which they can impact the way forward for the technology, including the use of considering the potential practical and societal barriers to implementing it as a viable food source worldwide.
Collapse
Affiliation(s)
- Magdalena Kulus
- Department of Veterinary Surgery, Institute of Veterinary Medicine, Nicolaus Copernicus University in Toruń, Toruń, Poland
| | - Maurycy Jankowski
- Department of Computer Science and Statistics, Poznan University of Medical Sciences, Poznan, Poland
- Department of Histology and Embryology, Poznan University of Medical Sciences, Poznan, Poland
| | - Wiesława Kranc
- Department of Anatomy, Poznan University of Medical Sciences, Poznań, Poland
| | - Afsaneh Golkar Narenji
- Prestage Department of Poultry Science, North Carolina State University, Raleigh, NC, United States
| | - Maryam Farzaneh
- Fertility, Infertility and Perinatology Research Center, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Piotr Dzięgiel
- Division of Histology and Embryology, Department of Human Morphology and Embryology, Wroclaw Medical University, Wroclaw, Poland
| | - Maciej Zabel
- Division of Histology and Embryology, Department of Human Morphology and Embryology, Wroclaw Medical University, Wroclaw, Poland
- Division of Anatomy and Histology, University of Zielona Góra, Zielona Góra, Poland
| | - Paweł Antosik
- Department of Veterinary Surgery, Institute of Veterinary Medicine, Nicolaus Copernicus University in Toruń, Toruń, Poland
| | - Dorota Bukowska
- Department of Basic and Preclinical Sciences, Institute of Veterinary Medicine, Nicolaus Copernicus University in Toruń, Toruń, Poland
| | - Paul Mozdziak
- Prestage Department of Poultry Science, North Carolina State University, Raleigh, NC, United States
- Physiology Graduate Faculty, North Carolina State University, Raleigh, NC, United States
| | - Bartosz Kempisty
- Department of Veterinary Surgery, Institute of Veterinary Medicine, Nicolaus Copernicus University in Toruń, Toruń, Poland
- Physiology Graduate Faculty, North Carolina State University, Raleigh, NC, United States
- Division of Anatomy, Department of Human Morphology and Embryology, Wroclaw Medical University, Wroclaw, Poland
- Department of Obstetrics and Gynecology, University Hospital and Masaryk University, Brno, Czechia
| |
Collapse
|
9
|
Hu XH, Chen L, Wu H, Tang YB, Zheng QM, Wei XY, Wei Q, Huang Q, Chen J, Xu X. Cell therapy in end-stage liver disease: replace and remodel. Stem Cell Res Ther 2023; 14:141. [PMID: 37231461 DOI: 10.1186/s13287-023-03370-z] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Accepted: 04/26/2023] [Indexed: 05/27/2023] Open
Abstract
Liver disease is prevalent worldwide. When it reaches the end stage, mortality rises to 50% or more. Although liver transplantation has emerged as the most efficient treatment for end-stage liver disease, its application has been limited by the scarcity of donor livers. The lack of acceptable donor organs implies that patients are at high risk while waiting for suitable livers. In this scenario, cell therapy has emerged as a promising treatment approach. Most of the time, transplanted cells can replace host hepatocytes and remodel the hepatic microenvironment. For instance, hepatocytes derived from donor livers or stem cells colonize and proliferate in the liver, can replace host hepatocytes, and restore liver function. Other cellular therapy candidates, such as macrophages and mesenchymal stem cells, can remodel the hepatic microenvironment, thereby repairing the damaged liver. In recent years, cell therapy has transitioned from animal research to early human studies. In this review, we will discuss cell therapy in end-stage liver disease treatment, especially focusing on various cell types utilized for cell transplantation, and elucidate the processes involved. Furthermore, we will also summarize the practical obstacles of cell therapy and offer potential solutions.
Collapse
Affiliation(s)
- Xin-Hao Hu
- The Fourth School of Clinical Medicine, Zhejiang Chinese Medical University, Hangzhou, 310053, China
- Key Laboratory of Integrated Oncology and Intelligent Medicine of Zhejiang Province, Department of Hepatobiliary and Pancreatic Surgery, Affiliated Hangzhou First People's Hospital, Zhejiang University School of Medicine, Hangzhou, 310006, China
| | - Lan Chen
- Zhejiang Chinese Medical University, Hangzhou, 310053, China
| | - Hao Wu
- NHC Key Laboratory of Combined Multi-Organ Transplantation, Hangzhou, 310003, China
| | - Yang-Bo Tang
- NHC Key Laboratory of Combined Multi-Organ Transplantation, Hangzhou, 310003, China
| | - Qiu-Min Zheng
- Life Sciences Institute, Zhejiang University, Hangzhou, 310058, China
| | - Xu-Yong Wei
- Key Laboratory of Integrated Oncology and Intelligent Medicine of Zhejiang Province, Department of Hepatobiliary and Pancreatic Surgery, Affiliated Hangzhou First People's Hospital, Zhejiang University School of Medicine, Hangzhou, 310006, China
| | - Qiang Wei
- Key Laboratory of Integrated Oncology and Intelligent Medicine of Zhejiang Province, Department of Hepatobiliary and Pancreatic Surgery, Affiliated Hangzhou First People's Hospital, Zhejiang University School of Medicine, Hangzhou, 310006, China
| | - Qi Huang
- Zhejiang Chinese Medical University, Hangzhou, 310053, China
| | - Jian Chen
- Key Laboratory of Integrated Oncology and Intelligent Medicine of Zhejiang Province, Department of Hepatobiliary and Pancreatic Surgery, Affiliated Hangzhou First People's Hospital, Zhejiang University School of Medicine, Hangzhou, 310006, China.
| | - Xiao Xu
- The Fourth School of Clinical Medicine, Zhejiang Chinese Medical University, Hangzhou, 310053, China.
- Key Laboratory of Integrated Oncology and Intelligent Medicine of Zhejiang Province, Department of Hepatobiliary and Pancreatic Surgery, Affiliated Hangzhou First People's Hospital, Zhejiang University School of Medicine, Hangzhou, 310006, China.
| |
Collapse
|
10
|
Kuchemüller KB, Pörtner R, Möller J. Design of cell expansion processes for adherent-growing cells with mDoE-workflow. Eng Life Sci 2023; 23:e2200059. [PMID: 37153028 PMCID: PMC10158623 DOI: 10.1002/elsc.202200059] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2022] [Revised: 02/09/2023] [Accepted: 04/01/2023] [Indexed: 05/09/2023] Open
Abstract
Adherent cells, mammalian or human, are ubiquitous for production of viral vaccines, in gene therapy and in immuno-oncology. The development of a cell-expansion process with adherent cells is challenging as scale-up requires the expansion of the cell culture surface. Microcarrier (MC)-based cultures are still predominate. However, the development of MC processes from scratch possesses particular challenges due to their complexity. A novel approach for the reduction of development times and costs of cell propagation processes is the combination of mathematical process models with statistical optimization methods, called model-assisted Design of Experiments (mDoE). In this study, an mDoE workflow was evaluated successfully for the design of a MC-based expansion process of adherent L929 cells at a very early stage of development with limited prior knowledge. At the start, the analytical methods and the screening of appropriate MCs were evaluated. Then, cause-effect relationships (e.g., cell growth related to medium conditions) were worked out, and a mathematical process model was set-up and adapted to experimental data for modeling purposes. The model was subsequently used in mDoE to identify optimized process conditions, which were proven experimentally. An eight-fold increase in cell yield was achieved basically by reducing the initial MC concentration.
Collapse
Affiliation(s)
- Kim B. Kuchemüller
- Bioprocess and Biosystems EngineeringHamburg University of TechnologyHamburgGermany
| | - Ralf Pörtner
- Bioprocess and Biosystems EngineeringHamburg University of TechnologyHamburgGermany
| | - Johannes Möller
- Bioprocess and Biosystems EngineeringHamburg University of TechnologyHamburgGermany
| |
Collapse
|
11
|
Man K, Eisenstein NM, Hoey DA, Cox SC. Bioengineering extracellular vesicles: smart nanomaterials for bone regeneration. J Nanobiotechnology 2023; 21:137. [PMID: 37106449 PMCID: PMC10134574 DOI: 10.1186/s12951-023-01895-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2023] [Accepted: 04/13/2023] [Indexed: 04/29/2023] Open
Abstract
In the past decade, extracellular vesicles (EVs) have emerged as key regulators of bone development, homeostasis and repair. EV-based therapies have the potential to circumnavigate key issues hindering the translation of cell-based therapies including functional tissue engraftment, uncontrolled differentiation and immunogenicity issues. Due to EVs' innate biocompatibility, low immunogenicity, and high physiochemical stability, these naturally-derived nanoparticles have garnered growing interest as potential acellular nanoscale therapeutics for a variety of diseases. Our increasing knowledge of the roles these cell-derived nanoparticles play, has made them an exciting focus in the development of novel pro-regenerative therapies for bone repair. Although these nano-sized vesicles have shown promise, their clinical translation is hindered due to several challenges in the EV supply chain, ultimately impacting therapeutic efficacy and yield. From the biochemical and biophysical stimulation of parental cells to the transition to scalable manufacture or maximising vesicles therapeutic response in vivo, a multitude of techniques have been employed to improve the clinical efficacy of EVs. This review explores state of the art bioengineering strategies to promote the therapeutic utility of vesicles beyond their native capacity, thus maximising the clinical potential of these pro-regenerative nanoscale therapeutics for bone repair.
Collapse
Affiliation(s)
- Kenny Man
- School of Chemical Engineering, University of Birmingham, Birmingham, B15 2TT, UK
| | - Neil M Eisenstein
- Research and Clinical Innovation, Royal Centre for Defence Medicine, ICT Centre, Vincent Drive, Birmingham, B15 2SQ, UK
- Institute of Translational Medicine, University of Birmingham, Heritage Building, Mindelsohn Way, Birmingham, B15 2TH, UK
| | - David A Hoey
- Trinity Centre for Biomedical Engineering, Trinity Biomedical Sciences Institute, Trinity College, Dublin, D02 R590, Ireland
- Dept. of Mechanical, Manufacturing, and Biomedical Engineering, School of Engineering, Trinity College, Dublin 2, D02 DK07, Dublin, Ireland
- Advanced Materials and Bioengineering Research Centre, Trinity College Dublin & RCSI, Dublin 2, D02 VN51, Dublin, Ireland
| | - Sophie C Cox
- School of Chemical Engineering, University of Birmingham, Birmingham, B15 2TT, UK.
| |
Collapse
|
12
|
Ma M, Zou F, Abudureheman B, Han F, Xu G, Xie Y, Qiao K, Peng J, Guan Y, Meng H, Zheng Y. Magnetic Microcarriers with Accurate Localization and Proliferation of Mesenchymal Stem Cell for Cartilage Defects Repairing. ACS NANO 2023; 17:6373-6386. [PMID: 36961738 DOI: 10.1021/acsnano.2c10995] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
Magnetic biomaterials are widely used in the field of tissue engineering because of their functions such as drug delivery and targeted therapy. In this study, a magnetically responsive composite microcarrier was prepared through in situ polymerization of dopamine with Fe3O4 (MS) to form a complex. The magnetic composite microcarriers are paramagnetic and have certain magnetic responsiveness, suitable pore size porosity for cell growth, and good blood compatibility and biocompatibility. The bone marrow mesenchyml stem cells (BMSCs) were cultured on magnetic composite microcarriers, and a static magnetic field (SMF) was applied. The results showed that BMSCs adhered to the microcarriers proliferated under the action of horizontal and vertical forces. Magnetic composite microcarriers loaded with BMSCs were implanted into the SD rat model of cartilage defect, and a magnet was added to the operative side. After 12 weeks, cartilage regeneration was observed. The results of gross observation and histological immunostaining 1 month, 2 months, and 3 mounths after operation showed that the magnetic composite microcarriers of loaded cells promoted the early maturation of cartilage and collagen secretion, and the effect of cartilage repair was significantly better than that of the control group. Gait analysis showed that implanting magnetic composite microcarriers loaded with stem cells can reduce postoperative pain and promote limb recovery in SD rats. In conclusion, this study suggests that magnetic composite microcarriers are promising tissue-engineered scaffolds for cartilage regeneration and repair.
Collapse
Affiliation(s)
- Mengjiao Ma
- School of Material Science and Engineering, University of Science and Technology Beijing, Beijing 100083, China
| | - Faxing Zou
- School of Material Science and Engineering, University of Science and Technology Beijing, Beijing 100083, China
| | - Bahatibieke Abudureheman
- School of Material Science and Engineering, University of Science and Technology Beijing, Beijing 100083, China
| | - Feng Han
- Beijing Key Lab of Regenerative Medicine in Orthopaedics, Key Laboratory of Musculoskeletal Trauma &War Injuries, PLA Institute of Orthopedics, Chinese PLA General Hospital, Beijing 100853, China
| | - Guoli Xu
- School of Material Science and Engineering, University of Science and Technology Beijing, Beijing 100083, China
| | - YaJie Xie
- School of Material Science and Engineering, University of Science and Technology Beijing, Beijing 100083, China
| | - Kun Qiao
- Beijing Gerecov Technology Company Ltd., Beijing 100142, China
| | - Jiang Peng
- Beijing Key Lab of Regenerative Medicine in Orthopaedics, Key Laboratory of Musculoskeletal Trauma &War Injuries, PLA Institute of Orthopedics, Chinese PLA General Hospital, Beijing 100853, China
| | - Yueping Guan
- School of Material Science and Engineering, University of Science and Technology Beijing, Beijing 100083, China
| | - Haoye Meng
- School of Material Science and Engineering, University of Science and Technology Beijing, Beijing 100083, China
- Beijing Key Lab of Regenerative Medicine in Orthopaedics, Key Laboratory of Musculoskeletal Trauma &War Injuries, PLA Institute of Orthopedics, Chinese PLA General Hospital, Beijing 100853, China
| | - Yudong Zheng
- School of Material Science and Engineering, University of Science and Technology Beijing, Beijing 100083, China
| |
Collapse
|
13
|
Tu X, Guo L, Li Y, Tan G, Chen R, Wu J, Miao G, Guo L, Zhang C, Zou T, Zhang Y, Jiang Q. 3D-printed gelatin/sodium alginate/58S bioactive glass scaffolds promote osteogenesis in vitro and in vivo. J Biomater Appl 2023; 37:1758-1766. [DOI: 10.1177/08853282231152128] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/29/2023]
Abstract
Three-dimensional (3D)-printed scaffolds are a new strategy to fabricate biomaterials for treating bone defects. Here, using a 3D-printing technique, we fabricated scaffolds consisting of gelatin (Gel), sodium alginate (SA), and 58S bioactive glass (58S BG). To evaluate mechanical properties and biocompatibility of Gel/SA/58S BG scaffolds, the degradation test, compressive strength test, and cytotoxicity test were performed. The effect of the scaffolds on cell proliferation in vitro was determined by 4′,6-diamidino-2-phenylindole (DAPI) staining. To evaluate osteoinductive properties, rBMSCs were cultured on the scaffolds for 7, 14, and 21 days and the expression of osteogenesis-related genes was analyzed using qRT-PCR. To examine the bone healing properties of Gel/SA/58S BG scaffolds in vivo, we used a rat mandibular critical-size defect bone model. The scaffolds were implanted into the defect area of rat mandible and bone regeneration and new tissue formation were assessed using microcomputed tomography (microCT) and hematoxylin and eosin (H&E) staining. The results showed that Gel/SA/58S BG scaffolds had appropriate mechanical strength as a filling material for bone defects. Furthermore, the scaffolds could be compressed within certain limits and then could recover their shape. The extract of the Gel/SA/58S BG scaffold showed no cytotoxicity. In vitro, the expression levels of Bmp2, Runx2, and OCN were increased in rBMSCs cultured on the scaffolds. In vivo, microCT and H&E staining demonstrated that scaffolds induced the formation of new bone at the mandibular defect area. These results indicated that Gel/SA/58S BG scaffolds have excellent mechanical characteristics, biocompatibility, and osteoinductive properties, suggesting that it could be a promising biomaterial for the repair of bone defects.
Collapse
|
14
|
Xiang Y, Yan J, Bao X, Gleadall A, Roach P, Sun T. Evaluation of Polymeric Particles for Modular Tissue Cultures in Developmental Engineering. Int J Mol Sci 2023; 24:ijms24065234. [PMID: 36982306 PMCID: PMC10049291 DOI: 10.3390/ijms24065234] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Revised: 03/03/2023] [Accepted: 03/07/2023] [Indexed: 03/30/2023] Open
Abstract
Developmental engineering (DE) aims to culture mammalian cells on corresponding modular scaffolds (scale: micron to millimeter), then assemble these into functional tissues imitating natural developmental biology processes. This research intended to investigate the influences of polymeric particles on modular tissue cultures. When poly(methyl methacrylate) (PMMA), poly(lactic acid) (PLA) and polystyrene (PS) particles (diameter: 5-100 µm) were fabricated and submerged in culture medium in tissue culture plastics (TCPs) for modular tissue cultures, the majority of adjacent PMMA, some PLA but no PS particles aggregated. Human dermal fibroblasts (HDFs) could be directly seeded onto large (diameter: 30-100 µm) PMMA particles, but not small (diameter: 5-20 µm) PMMA, nor all the PLA and PS particles. During tissue cultures, HDFs migrated from the TCPs surfaces onto all the particles, while the clustered PMMA or PLA particles were colonized by HDFs into modular tissues with varying sizes. Further comparisons revealed that HDFs utilized the same cell bridging and stacking strategies to colonize single or clustered polymeric particles, and the finely controlled open pores, corners and gaps on 3D-printed PLA discs. These observed cell-scaffold interactions, which were then used to evaluate the adaptation of microcarrier-based cell expansion technologies for modular tissue manufacturing in DE.
Collapse
Affiliation(s)
- Yu Xiang
- Department of Materials, Loughborough University, Epinal Way, Loughborough LE11 3TU, UK
| | - Jiongyi Yan
- Wolfson School of Mechanical, Electrical and Manufacturing Engineering, Loughborough University, Epinal Way, Loughborough LE11 3TU, UK
| | - Xujin Bao
- Department of Materials, Loughborough University, Epinal Way, Loughborough LE11 3TU, UK
| | - Andrew Gleadall
- Wolfson School of Mechanical, Electrical and Manufacturing Engineering, Loughborough University, Epinal Way, Loughborough LE11 3TU, UK
| | - Paul Roach
- Department of Chemistry, Loughborough University, Epinal Way, Loughborough LE11 3TU, UK
| | - Tao Sun
- Department of Chemical Engineering, Loughborough University, Epinal Way, Loughborough LE11 3TU, UK
| |
Collapse
|
15
|
Duan C, Yu M, Hu C, Xia H, Kankala RK. Polymeric microcarriers for minimally-invasive cell delivery. Front Bioeng Biotechnol 2023; 11:1076179. [PMID: 36777246 PMCID: PMC9908582 DOI: 10.3389/fbioe.2023.1076179] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2022] [Accepted: 01/06/2023] [Indexed: 01/27/2023] Open
Abstract
Tissue engineering (TE) aims at restoring tissue defects by applying the three-dimensional (3D) biomimetic pre-formed scaffolds to restore, maintain, and enhance tissue growth. Broadly speaking, this approach has created a potential impact in anticipating organ-building, which could reduce the need for organ replacement therapy. However, the implantation of such cell-laden biomimetic constructs based on substantial open surgeries often results in severe inflammatory reactions at the incision site, leading to the generation of a harsh adverse environment where cell survival is low. To overcome such limitations, micro-sized injectable modularized units based on various biofabrication approaches as ideal delivery vehicles for cells and various growth factors have garnered compelling interest owing to their minimally-invasive nature, ease of packing cells, and improved cell retention efficacy. Several advancements have been made in fabricating various 3D biomimetic microscale carriers for cell delivery applications. In this review, we explicitly discuss the progress of the microscale cell carriers that potentially pushed the borders of TE, highlighting their design, ability to deliver cells and substantial tissue growth in situ and in vivo from different viewpoints of materials chemistry and biology. Finally, we summarize the perspectives highlighting current challenges and expanding opportunities of these innovative carriers.
Collapse
Affiliation(s)
- Chunyan Duan
- School of New Energy and Environmental Protection Engineering, Foshan Polytechnic, Foshan, China,*Correspondence: Ranjith Kumar Kankala, ; Chunyan Duan,
| | - Mingjia Yu
- School of New Energy and Environmental Protection Engineering, Foshan Polytechnic, Foshan, China
| | - Changji Hu
- School of New Energy and Environmental Protection Engineering, Foshan Polytechnic, Foshan, China
| | - Hongying Xia
- Fujian Provincial Key Laboratory of Biochemical Technology, Institute of Biomaterials and Tissue Engineering, College of Chemical Engineering, Huaqiao University, Xiamen, China
| | - Ranjith Kumar Kankala
- Fujian Provincial Key Laboratory of Biochemical Technology, Institute of Biomaterials and Tissue Engineering, College of Chemical Engineering, Huaqiao University, Xiamen, China,*Correspondence: Ranjith Kumar Kankala, ; Chunyan Duan,
| |
Collapse
|
16
|
Current Advances in 3D Dynamic Cell Culture Systems. Gels 2022; 8:gels8120829. [PMID: 36547353 PMCID: PMC9778081 DOI: 10.3390/gels8120829] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2022] [Revised: 12/10/2022] [Accepted: 12/13/2022] [Indexed: 12/23/2022] Open
Abstract
The traditional two-dimensional (2D) cell culture methods have a long history of mimicking in vivo cell growth. However, these methods cannot fully represent physiological conditions, which lack two major indexes of the in vivo environment; one is a three-dimensional 3D cell environment, and the other is mechanical stimulation; therefore, they are incapable of replicating the essential cellular communications between cell to cell, cell to the extracellular matrix, and cellular responses to dynamic mechanical stimulation in a physiological condition of body movement and blood flow. To solve these problems and challenges, 3D cell carriers have been gradually developed to provide a 3D matrix-like structure for cell attachment, proliferation, differentiation, and communication in static and dynamic culture conditions. 3D cell carriers in dynamic culture systems could primarily provide different mechanical stimulations which further mimic the real in vivo microenvironment. In this review, the current advances in 3D dynamic cell culture approaches have been introduced, with their advantages and disadvantages being discussed in comparison to traditional 2D cell culture in static conditions.
Collapse
|
17
|
Kong Y, Jing L, Huang D. Plant proteins as the functional building block of edible microcarriers for cell-based meat culture application. Crit Rev Food Sci Nutr 2022; 64:4966-4976. [PMID: 36384368 DOI: 10.1080/10408398.2022.2147144] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Edible microcarriers are essential for developing cell-based meat in large-scale cell cultures. As they are required to be embedded in the final products, the microcarriers should be edible, biocompatible, cost-effective, and pathogen-free. The invention of edible animal-free microcarriers would be a breakthrough for cell-based meat culture. We reviewed the fabrication techniques and the materials of microcarriers, and found that plant proteins, having diverse structures and composition, could possess the active domains that are hypnotized to replace the animal-based extracellular matrix (ECM) for meat culture applications. In addition, the bioactive peptides in plants have been reviewed and most of them were resulted from enzyme hydrolysis. Therefore, plant proteins with rich bioactive peptides have the potential in the development microcarriers. Our work provided some new trains of thought for developing plant-based biomaterials as ECM materials and advances the fabrication of microcarriers for meat culture.
Collapse
Affiliation(s)
- Yan Kong
- Department of Food Science and Technology, 2 Science Drive 2, National University of Singapore, Singapore, Singapore
| | - Linzhi Jing
- National University of Singapore (Suzhou) Research Institute, Suzhou, China
| | - Dejian Huang
- Department of Food Science and Technology, 2 Science Drive 2, National University of Singapore, Singapore, Singapore
- National University of Singapore (Suzhou) Research Institute, Suzhou, China
| |
Collapse
|
18
|
Zhang Y, Na T, Zhang K, Yang Y, Xu H, Wei L, Xu L, Yan X, Liu W, Liu G, Wang B, Meng S, Du Y. GMP-grade microcarrier and automated closed industrial scale cell production platform for culture of MSCs. J Tissue Eng Regen Med 2022; 16:934-944. [PMID: 35929499 DOI: 10.1002/term.3341] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2022] [Revised: 06/23/2022] [Accepted: 07/11/2022] [Indexed: 11/08/2022]
Abstract
Efficient and large-scale expansion of mesenchymal stem/stromal cells (MSCs) has always been a formidable challenge to researchers in cell-based therapies and regenerative medicine. To reconcile major drawbacks of 2D planar culturing system, we innovatively developed an automated closed industrial scale cell production (ACISCP) platform based on GMP-grade microcarrier for culture of umbilical cord-mesenchymal stem/stromal cells (UCMSCs), in accordance with the criteria of stem cell bank. ACISCP system is a fully closed system, which employs different models of vivaSPIN bioreactors (CytoNiche Biotech, China) for scale-up cell culture and vivaPREP (CytoNiche Biotech, China) for automated cell harvesting and cell dosage preparation. To realize industrial scale expansion of UCMSCs, a three-stage expansion was conducted with 1 L, 5 and 15 L vivaSPIN bioreactors. Using 3D TableTrix® and ACISCP system, we inoculated 1.5 × 107 of UCMSCs into 1 L vivaSPIN bioreactor and finally scaled to two 15 L bioreactor. A final yield of 2.09 × 1010 cells with an overall expansion factor of 1975 within 13 days. The cells were harvested, concentrated, washed and prepared automatically with vivaPREP. The entire process was realized with ACISCP platform and was totally enclosed. Critical quality attributes (CQA) assessments and release tests of MSCs, including sterility, safety, purity, viability, identity, stability and potency were performed accordingly. The quality of cells harvested from 3D culture on the ACISCP and conventional 2D planar culture counterpart has no significant difference. This study provides a bioprocess engineering platform, harnessing GMP-grade 3D TableTrix® microcarriers and ACISCP to achieve industrial-scale manufacturing of clinical-grade hMSCs.
Collapse
Affiliation(s)
- Yuanyuan Zhang
- Department of Biomedical Engineering, School of Medicine, Tsinghua-Peking Center for Life Sciences, Tsinghua University, Beijing, China.,Beijing CytoNiche Biotechnology Co. Ltd, Beijing, China
| | - Tao Na
- National Institutes for Food and Drug Control, Beijing, China
| | - Kehua Zhang
- National Institutes for Food and Drug Control, Beijing, China
| | - Yanping Yang
- Beijing CytoNiche Biotechnology Co. Ltd, Beijing, China
| | - Huanye Xu
- Beijing CytoNiche Biotechnology Co. Ltd, Beijing, China
| | - Lina Wei
- National Institutes for Food and Drug Control, Beijing, China
| | - Liming Xu
- National Institutes for Food and Drug Control, Beijing, China
| | - Xiaojun Yan
- Beijing CytoNiche Biotechnology Co. Ltd, Beijing, China
| | - Wei Liu
- Beijing CytoNiche Biotechnology Co. Ltd, Beijing, China
| | | | - Bin Wang
- Center for Clinic Stem Cell Research, the Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing, Jiangsu, China
| | - Shufang Meng
- National Institutes for Food and Drug Control, Beijing, China
| | - Yanan Du
- Department of Biomedical Engineering, School of Medicine, Tsinghua-Peking Center for Life Sciences, Tsinghua University, Beijing, China
| |
Collapse
|
19
|
Kilic Bektas C, Zhang W, Mao Y, Wu X, Kohn J, Yelick PC. Self-Assembled Hydrogel Microparticle-Based Tooth-Germ Organoids. Bioengineering (Basel) 2022; 9:bioengineering9050215. [PMID: 35621493 PMCID: PMC9137977 DOI: 10.3390/bioengineering9050215] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2022] [Revised: 05/09/2022] [Accepted: 05/11/2022] [Indexed: 11/16/2022] Open
Abstract
Here, we describe the characterization of tooth-germ organoids, three-dimensional (3D) constructs cultured in vitro with the potential to develop into living teeth. To date, the methods used to successfully create tooth organoids capable of forming functional teeth have been quite limited. Recently, hydrogel microparticles (HMP) have demonstrated utility in tissue repair and regeneration based on their useful characteristics, including their scaffolding ability, effective cell and drug delivery, their ability to mimic the natural tissue extracellular matrix, and their injectability. These outstanding properties led us to investigate the utility of using HMPs (average diameter: 158 ± 32 µm) derived from methacrylated gelatin (GelMA) (degree of substitution: 100%) to create tooth organoids. The tooth organoids were created by seeding human dental pulp stem cells (hDPSCs) and porcine dental epithelial cells (pDE) onto the HMPs, which provided an extensive surface area for the cells to effectively attach and proliferate. Interestingly, the cell-seeded HMPs cultured on low-attachment tissue culture plates with gentle rocking self-assembled into organoids, within which the cells maintained their viability and morphology throughout the incubation period. The self-assembled organoids reached a volume of ~50 mm3 within two weeks of the in vitro tissue culture. The co-cultured hDPSC-HMP and pDE-HMP structures effectively attached to each other without any externally applied forces. The presence of polarized, differentiated dental cells in these composite tooth-bud organoids demonstrated the potential of self-assembled dental cell HMPs to form tooth-bud organoid-like structures for potential applications in tooth regeneration strategies.
Collapse
Affiliation(s)
- Cemile Kilic Bektas
- Department of Chemistry and Chemical Biology, Rutgers University, 123 Bevier Rd, Piscataway, NJ 08854, USA; (C.K.B.); (Y.M.); (X.W.); (J.K.)
| | - Weibo Zhang
- Division of Craniofacial and Molecular Genetics, Department of Orthodontics, Tufts University School of Dental Medicine, 1 Kneeland Avenue, Boston, MA 02111, USA;
| | - Yong Mao
- Department of Chemistry and Chemical Biology, Rutgers University, 123 Bevier Rd, Piscataway, NJ 08854, USA; (C.K.B.); (Y.M.); (X.W.); (J.K.)
| | - Xiaohuan Wu
- Department of Chemistry and Chemical Biology, Rutgers University, 123 Bevier Rd, Piscataway, NJ 08854, USA; (C.K.B.); (Y.M.); (X.W.); (J.K.)
| | - Joachim Kohn
- Department of Chemistry and Chemical Biology, Rutgers University, 123 Bevier Rd, Piscataway, NJ 08854, USA; (C.K.B.); (Y.M.); (X.W.); (J.K.)
| | - Pamela C. Yelick
- Division of Craniofacial and Molecular Genetics, Department of Orthodontics, Tufts University School of Dental Medicine, 1 Kneeland Avenue, Boston, MA 02111, USA;
- Correspondence:
| |
Collapse
|
20
|
Teng C, Tong Z, He Q, Zhu H, Wang L, Zhang X, Wei W. Mesenchymal Stem Cells–Hydrogel Microspheres System for Bone Regeneration in Calvarial Defects. Gels 2022; 8:gels8050275. [PMID: 35621573 PMCID: PMC9141522 DOI: 10.3390/gels8050275] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2022] [Revised: 04/23/2022] [Accepted: 04/25/2022] [Indexed: 12/16/2022] Open
Abstract
The repair of large bone defects in clinic is a challenge and urgently needs to be solved. Tissue engineering is a promising therapeutic strategy for bone defect repair. In this study, hydrogel microspheres (HMs) were fabricated to act as carriers for bone marrow mesenchymal stem cells (BMSCs) to adhere and proliferate. The HMs were produced by a microfluidic system based on light-induced gelatin of gelatin methacrylate (GelMA). The HMs were demonstrated to be biocompatible and non-cytotoxic to stem cells. More importantly, the HMs promoted the osteogenic differentiation of stem cells. In vivo, the ability of bone regeneration was studied by way of implanting a BMSC/HM system in the cranial defect of rats for 8 weeks. The results confirmed that the BMSC/HM system can induce superior bone regeneration compared with both the HMs alone group and the untreated control group. This study provides a simple and effective research idea for bone defect repair, and the subsequent optimization study of HMs will provide a carrier material with application prospects for tissue engineering in the future.
Collapse
Affiliation(s)
- Chong Teng
- Department of Orthopaedic Surgery, The Fourth Affiliated Hospital, Zhejiang University School of Medicine, Yiwu 32200, China; (C.T.); (Z.T.); (H.Z.)
| | - Zhicheng Tong
- Department of Orthopaedic Surgery, The Fourth Affiliated Hospital, Zhejiang University School of Medicine, Yiwu 32200, China; (C.T.); (Z.T.); (H.Z.)
| | - Qiulin He
- Key Laboratory of Tissue Engineering and Regenerative Medicine of Zhejiang Province, Zhejiang University School of Medicine, Hangzhou 310058, China;
- Dr. Li Dak Sum & Yip Yio Chin Center for Stem Cells and Regenerative Medicine, and Department of Orthopedic Surgery of the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310058, China
| | - Huangrong Zhu
- Department of Orthopaedic Surgery, The Fourth Affiliated Hospital, Zhejiang University School of Medicine, Yiwu 32200, China; (C.T.); (Z.T.); (H.Z.)
| | - Lu Wang
- Department of Pathology, The Fourth Affiliated Hospital, Zhejiang University School of Medicine, Yiwu 32200, China;
| | - Xianzhu Zhang
- Dr. Li Dak Sum & Yip Yio Chin Center for Stem Cells and Regenerative Medicine, and Department of Orthopedic Surgery of the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310058, China
- Correspondence: (X.Z.); (W.W.)
| | - Wei Wei
- Department of Orthopaedic Surgery, The Fourth Affiliated Hospital, Zhejiang University School of Medicine, Yiwu 32200, China; (C.T.); (Z.T.); (H.Z.)
- Correspondence: (X.Z.); (W.W.)
| |
Collapse
|
21
|
Sherstneva AA, Demina TS, Monteiro APF, Akopova TA, Grandfils C, Ilangala AB. Biodegradable Microparticles for Regenerative Medicine: A State of the Art and Trends to Clinical Application. Polymers (Basel) 2022; 14:1314. [PMID: 35406187 PMCID: PMC9003224 DOI: 10.3390/polym14071314] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Revised: 03/14/2022] [Accepted: 03/22/2022] [Indexed: 12/22/2022] Open
Abstract
Tissue engineering and cell therapy are very attractive in terms of potential applications but remain quite challenging regarding the clinical aspects. Amongst the different strategies proposed to facilitate their implementation in clinical practices, biodegradable microparticles have shown promising outcomes with several advantages and potentialities. This critical review aims to establish a survey of the most relevant materials and processing techniques to prepare these micro vehicles. Special attention will be paid to their main potential applications, considering the regulatory constraints and the relative easiness to implement their production at an industrial level to better evaluate their application in clinical practices.
Collapse
Affiliation(s)
- Anastasia A. Sherstneva
- Enikolopov Institute of Synthetic Polymeric Materials, Russian Academy of Sciences, 70 Profsouznaya Str., 117393 Moscow, Russia; (A.A.S.); (T.A.A.)
| | - Tatiana S. Demina
- Enikolopov Institute of Synthetic Polymeric Materials, Russian Academy of Sciences, 70 Profsouznaya Str., 117393 Moscow, Russia; (A.A.S.); (T.A.A.)
- Institute for Regenerative Medicine, Sechenov First Moscow State Medical University, 8-2 Trubetskaya Str., 119991 Moscow, Russia
| | - Ana P. F. Monteiro
- Interfaculty Research Centre on Biomaterials (CEIB), Chemistry Institute, University of Liège, B6C, 11 Allée du 6 Août, B-4000 Liege, Belgium; (A.P.F.M.); (C.G.); (A.B.I.)
| | - Tatiana A. Akopova
- Enikolopov Institute of Synthetic Polymeric Materials, Russian Academy of Sciences, 70 Profsouznaya Str., 117393 Moscow, Russia; (A.A.S.); (T.A.A.)
| | - Christian Grandfils
- Interfaculty Research Centre on Biomaterials (CEIB), Chemistry Institute, University of Liège, B6C, 11 Allée du 6 Août, B-4000 Liege, Belgium; (A.P.F.M.); (C.G.); (A.B.I.)
| | - Ange B. Ilangala
- Interfaculty Research Centre on Biomaterials (CEIB), Chemistry Institute, University of Liège, B6C, 11 Allée du 6 Août, B-4000 Liege, Belgium; (A.P.F.M.); (C.G.); (A.B.I.)
| |
Collapse
|
22
|
Yu B, Xue X, Yin Z, Cao L, Li M, Huang J. Engineered Cell Membrane-Derived Nanocarriers: The Enhanced Delivery System for Therapeutic Applications. Front Cell Dev Biol 2022; 10:844050. [PMID: 35295856 PMCID: PMC8918578 DOI: 10.3389/fcell.2022.844050] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2022] [Accepted: 02/11/2022] [Indexed: 12/15/2022] Open
Abstract
There has been a rapid development of biomimetic platforms using cell membranes as nanocarriers to camouflage nanoparticles for enhancing bio-interfacial capabilities. Various sources of cell membranes have been explored for natural functions such as circulation and targeting effect. Biomedical applications of cell membranes-based delivery systems are expanding from cancer to multiple diseases. However, the natural properties of cell membranes are still far from achieving desired functions and effects as a nanocarrier platform for various diseases. To obtain multi-functionality and multitasking in complex biological systems, various functionalized modifications of cell membranes are being developed based on physical, chemical, and biological methods. Notably, many research opportunities have been initiated at the interface of multi-technologies and cell membranes, opening a promising frontier in therapeutic applications. Herein, the current exploration of natural cell membrane functionality, the design principles for engineered cell membrane-based delivery systems, and the disease applications are reviewed, with a special focus on the emerging strategies in engineering approaches.
Collapse
Affiliation(s)
- Biao Yu
- The Second Affiliated Hospital, Shanghai University, Shanghai, China
- School of Medicine, Shanghai University, Shanghai, China
| | - Xu Xue
- Institute of Translational Medicine, Shanghai University, Shanghai, China
| | - Zhifeng Yin
- Department of Orthopedics, Shanghai Zhongye Hospital, Shanghai, China
| | - Liehu Cao
- Department of Orthopedics, Luodian Hospital, Shanghai, China
- Department of Orthopedics, Luodian Hospital, Shanghai University, Shanghai, China
| | - Mengmeng Li
- Institute of Translational Medicine, Shanghai University, Shanghai, China
| | - Jianping Huang
- The Second Affiliated Hospital, Shanghai University, Shanghai, China
- Department of Neurology, Wenzhou Central Hospital, Wenzhou, China
| |
Collapse
|
23
|
Pant T, Murarka V, Jain R, Dandekar P. Chitosan based microcarriers for cellular growth and biologics production. CARBOHYDRATE POLYMER TECHNOLOGIES AND APPLICATIONS 2021. [DOI: 10.1016/j.carpta.2021.100154] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022] Open
|
24
|
Sun Y, Chi X, Meng H, Ma M, Wang J, Feng Z, Quan Q, Liu G, Wang Y, Xie Y, Zheng Y, Peng J. Polylysine-decorated macroporous microcarriers laden with adipose-derived stem cells promote nerve regeneration in vivo. Bioact Mater 2021; 6:3987-3998. [PMID: 33997488 PMCID: PMC8082165 DOI: 10.1016/j.bioactmat.2021.03.029] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2020] [Revised: 03/08/2021] [Accepted: 03/12/2021] [Indexed: 12/14/2022] Open
Abstract
Cell transplantation is an effective strategy to improve the repair effect of nerve guide conduits (NGCs). However, problems such as low loading efficiency and cell anoikis undermine the outcomes. Microcarriers are efficient 3D cell culture scaffolds, which can also prevent cell anoikis by providing substrate for adhesion during transplantation. Here, we demonstrate for the first time microcarrier-based cell transplantation in peripheral nerve repair. We first prepared macroporous chitosan microcarriers (CSMCs) by the emulsion-phase separation method, and then decorated the CSMCs with polylysine (pl-CSMCs) to improve cell affinity. We then loaded the pl-CSMCs with adipose-derived stem cells (ADSCs) and injected them into electrospun polycaprolactone/chitosan NGCs to repair rat sciatic nerve defects. The ADSCs-laden pl-CSMCs effectively improved nerve regeneration as demonstrated by evaluation of histology, motor function recovery, electrophysiology, and gastrocnemius recovery. With efficient cell transplantation, convenient operation, and the multiple merits of ADSCs, the ADSCs-laden pl-CSMCs hold good potential in peripheral nerve repair.
Collapse
Affiliation(s)
- Yi Sun
- School of Materials Science and Engineering, University of Science and Technology Beijing, Beijing, 100083, PR China
- Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266237, PR China
| | - Xiaoqi Chi
- School of Materials Science and Engineering, University of Science and Technology Beijing, Beijing, 100083, PR China
| | - Haoye Meng
- School of Materials Science and Engineering, University of Science and Technology Beijing, Beijing, 100083, PR China
- Institute of Orthopedics, Chinese PLA General Hospital, Beijing Key Lab of Regenerative Medicine in Orthopedics, Key Lab of Musculoskeletal Trauma & War Injuries, PLA, No.28 Fuxing Road, Beijing, 100853, PR China
| | - Mengjiao Ma
- School of Materials Science and Engineering, University of Science and Technology Beijing, Beijing, 100083, PR China
| | - Jing Wang
- Institute of Orthopedics, Chinese PLA General Hospital, Beijing Key Lab of Regenerative Medicine in Orthopedics, Key Lab of Musculoskeletal Trauma & War Injuries, PLA, No.28 Fuxing Road, Beijing, 100853, PR China
| | - Zhaoxuan Feng
- School of Materials Science and Engineering, University of Science and Technology Beijing, Beijing, 100083, PR China
| | - Qi Quan
- Institute of Orthopedics, Chinese PLA General Hospital, Beijing Key Lab of Regenerative Medicine in Orthopedics, Key Lab of Musculoskeletal Trauma & War Injuries, PLA, No.28 Fuxing Road, Beijing, 100853, PR China
| | - Guodong Liu
- School of Materials Science and Engineering, University of Science and Technology Beijing, Beijing, 100083, PR China
| | - Yansen Wang
- School of Materials Science and Engineering, University of Science and Technology Beijing, Beijing, 100083, PR China
| | - Yajie Xie
- School of Materials Science and Engineering, University of Science and Technology Beijing, Beijing, 100083, PR China
| | - Yudong Zheng
- School of Materials Science and Engineering, University of Science and Technology Beijing, Beijing, 100083, PR China
| | - Jiang Peng
- Institute of Orthopedics, Chinese PLA General Hospital, Beijing Key Lab of Regenerative Medicine in Orthopedics, Key Lab of Musculoskeletal Trauma & War Injuries, PLA, No.28 Fuxing Road, Beijing, 100853, PR China
- Co-innovation Center of Neuroregeneration, Nantong University, Nantong, Jiangsu Province, 226007, PR China
| |
Collapse
|
25
|
Kornmuller A, Flynn LE. Development and characterization of matrix-derived microcarriers from decellularized tissues using electrospraying techniques. J Biomed Mater Res A 2021; 110:559-575. [PMID: 34581474 DOI: 10.1002/jbm.a.37306] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2021] [Revised: 07/27/2021] [Accepted: 08/31/2021] [Indexed: 12/18/2022]
Abstract
Stirred bioreactor systems integrating microcarriers represent a promising approach for therapeutic cell manufacturing. While a variety of microcarriers are commercially available, current options do not integrate the tissue-specific composition of the extracellular matrix (ECM), which can play critical roles in directing cell function. The current study sought to generate microcarriers comprised exclusively of ECM from multiple tissue sources. More specifically, porcine decellularized dermis, porcine decellularized myocardium, and human decellularized adipose tissue were digested with α-amylase to obtain ECM suspensions that could be electrosprayed into liquid nitrogen to generate 3D microcarriers that were stable over a range of ECM concentrations without the need for chemical crosslinking or other additives. Characterization studies confirmed that all three microcarrier types had similar soft and compliant mechanical properties and were of a similar size range, but that their composition varied depending on the native tissue source. In vivo testing in immunocompetent mice revealed that the microcarriers integrated into the host tissues, supporting the infiltration of host cells including macrophages and endothelial cells at 2 weeks post-implantation. In vitro cell culture studies validated that the novel microcarriers supported the attachment of tissue-specific stromal cell populations under dynamic culture conditions within spinner flasks, with a significant increase in live cell numbers observed over 1 week on the dermal- and adipose-derived microcarriers. Overall, the findings demonstrate the versatility of the electrospraying methods and support the further development of the microcarriers as cell culture and delivery platforms.
Collapse
Affiliation(s)
- Anna Kornmuller
- School of Biomedical Engineering, Amit Chakma Engineering Building, The University of Western Ontario, London, Ontario, Canada
| | - Lauren E Flynn
- School of Biomedical Engineering, Amit Chakma Engineering Building, The University of Western Ontario, London, Ontario, Canada.,Department of Chemical & Biochemical Engineering, Thompson Engineering Building, The University of Western Ontario, London, Ontario, Canada.,Department of Anatomy and Cell Biology, Schulich School of Medicine and Dentistry, The University of Western Ontario, London, Ontario, Canada
| |
Collapse
|
26
|
Reiss J, Robertson S, Suzuki M. Cell Sources for Cultivated Meat: Applications and Considerations throughout the Production Workflow. Int J Mol Sci 2021; 22:7513. [PMID: 34299132 PMCID: PMC8307620 DOI: 10.3390/ijms22147513] [Citation(s) in RCA: 43] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2021] [Revised: 07/08/2021] [Accepted: 07/09/2021] [Indexed: 12/11/2022] Open
Abstract
Cellular agriculture is an emerging scientific discipline that leverages the existing principles behind stem cell biology, tissue engineering, and animal sciences to create agricultural products from cells in vitro. Cultivated meat, also known as clean meat or cultured meat, is a prominent subfield of cellular agriculture that possesses promising potential to alleviate the negative externalities associated with conventional meat production by producing meat in vitro instead of from slaughter. A core consideration when producing cultivated meat is cell sourcing. Specifically, developing livestock cell sources that possess the necessary proliferative capacity and differentiation potential for cultivated meat production is a key technical component that must be optimized to enable scale-up for commercial production of cultivated meat. There are several possible approaches to develop cell sources for cultivated meat production, each possessing certain advantages and disadvantages. This review will discuss the current cell sources used for cultivated meat production and remaining challenges that need to be overcome to achieve scale-up of cultivated meat for commercial production. We will also discuss cell-focused considerations in other components of the cultivated meat production workflow, namely, culture medium composition, bioreactor expansion, and biomaterial tissue scaffolding.
Collapse
Affiliation(s)
- Jacob Reiss
- Department of Comparative Biosciences, University of Wisconsin-Madison, Madison, WI 53706, USA; (J.R.); (S.R.)
- Department of Biomedical Engineering, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - Samantha Robertson
- Department of Comparative Biosciences, University of Wisconsin-Madison, Madison, WI 53706, USA; (J.R.); (S.R.)
| | - Masatoshi Suzuki
- Department of Comparative Biosciences, University of Wisconsin-Madison, Madison, WI 53706, USA; (J.R.); (S.R.)
- Department of Biomedical Engineering, University of Wisconsin-Madison, Madison, WI 53706, USA
- Stem Cell and Regenerative Medicine Center, University of Wisconsin-Madison, Madison, WI 53706, USA
| |
Collapse
|
27
|
Zulkarnain NN, Anuar N, Abd Rahman N, Sheikh Abdullah SR, Alias MN, Yaacob M, Ma Z, Ding G. Cell-based influenza vaccine: current production, halal status assessment, and recommendations towards Islamic-compliant manufacturing. Hum Vaccin Immunother 2021; 17:2158-2168. [PMID: 33539195 DOI: 10.1080/21645515.2020.1865044] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022] Open
Abstract
Influenza virus is a life-threatening pathogen that infects millions of people every year, with annual mortality in the hundreds of thousands. The scenario for controlling infection has worsened with increasing numbers of vaccine hesitancy cases reported worldwide due to objections on safety, religious and other grounds. Uses of haram (impermissible) and mashbooh (doubtful) ingredients in vaccine production has raised doubts among Muslim consumers and consequently stimulated serious vaccine hesitancy. To address this major problem, we have reviewed and recommended some alternatives appropriate for manufacturing cell-based influenza vaccine which comply with Islamic laws and consumers' needs. Intensive assessments of current influenza vaccine production in both scientific and Islamic views have led to the identification of four main ingredients deemed impermissible in novel sharia-compliant (approved by Islamic laws) vaccine manufacturing. Only some of these impermissible components could be replaced with halal (permissible) alternatives, while others remain impermissible due to unavailability and unsuitability.
Collapse
Affiliation(s)
- Nurul Nadiah Zulkarnain
- Department of Chemical and Process Engineering, Faculty of Engineering and Built Environment, Universiti Kebangsaan Malaysia, Bangi, Selangor, Malaysia
| | - Nurina Anuar
- Department of Chemical and Process Engineering, Faculty of Engineering and Built Environment, Universiti Kebangsaan Malaysia, Bangi, Selangor, Malaysia
| | - Norliza Abd Rahman
- Department of Chemical and Process Engineering, Faculty of Engineering and Built Environment, Universiti Kebangsaan Malaysia, Bangi, Selangor, Malaysia
| | - Siti Rozaimah Sheikh Abdullah
- Department of Chemical and Process Engineering, Faculty of Engineering and Built Environment, Universiti Kebangsaan Malaysia, Bangi, Selangor, Malaysia
| | - Muhammad Nazir Alias
- Centre for Contemporary Fiqh and Sharia Compliance, Faculty of Islamic Studies, Universiti Kebangsaan Malaysia, Bangi, Selangor, Malaysia
| | - Mashitoh Yaacob
- Centre for Liberal Education, Universiti Kebangsaan Malaysia, Bangi, Selangor, Malaysia.,Institute of Islam Hadhari, Universiti Kebangsaan Malaysia, Bangi, Selangor, Malaysia
| | - Zhongren Ma
- Biomedical Research Centre, Northwest Minzu University, Lanzhou, Gansu, China
| | - Gongtao Ding
- Biomedical Research Centre, Northwest Minzu University, Lanzhou, Gansu, China
| |
Collapse
|
28
|
Microcarrier-Supported Culture of Chondrocytes in Continuously Rocked Disposable Bioreactor. METHODS IN MOLECULAR BIOLOGY (CLIFTON, N.J.) 2021; 2436:145-156. [PMID: 34155605 DOI: 10.1007/7651_2021_411] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
Disposable wave-assisted bioreactors are devices originally designed for scaling-up cultures of extremely fragile animal cells. In such bioreactors, agitation is achieved by continuous horizontal oscillations of disposable culture bag-like container fixed in a rocker unit. The continuous rocking movement of the container induces waves in the two-phase (i.e., gas-liquid) culture system composed of CO2-enriched air and aqueous culture medium. Such continuously oscillating devices can be utilized for supporting homogeneity in systems for in vitro propagation of animal anchorage-dependent, that is, adherent, cells, like CP5 chondrocytes cells. As most of in vitro cultured cells exhibit anchorage-dependency toward solid surface, the suitable interface can be provided by beads of microcarriers made of polymers and characterized by large surface-to-volume ratio. This chapter describes a methodology for efficient propagation of CP5 chondrocytes on Cytodex 3 microcarriers performed in ReadyToProcess WAVE 25 disposable bioreactor, as well as all useful procedures for daily monitoring the growth of CP5 chondrocytes.
Collapse
|
29
|
A Paradigm Shift in Tissue Engineering: From a Top–Down to a Bottom–Up Strategy. Processes (Basel) 2021. [DOI: 10.3390/pr9060935] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023] Open
Abstract
Tissue engineering (TE) was initially designed to tackle clinical organ shortage problems. Although some engineered tissues have been successfully used for non-clinical applications, very few (e.g., reconstructed human skin) have been used for clinical purposes. As the current TE approach has not achieved much success regarding more broad and general clinical applications, organ shortage still remains a challenging issue. This very limited clinical application of TE can be attributed to the constraints in manufacturing fully functional tissues via the traditional top–down approach, where very limited cell types are seeded and cultured in scaffolds with equivalent sizes and morphologies as the target tissues. The newly proposed developmental engineering (DE) strategy towards the manufacture of fully functional tissues utilises a bottom–up approach to mimic developmental biology processes by implementing gradual tissue assembly alongside the growth of multiple cell types in modular scaffolds. This approach may overcome the constraints of the traditional top–down strategy as it can imitate in vivo-like tissue development processes. However, several essential issues must be considered, and more mechanistic insights of the fundamental, underpinning biological processes, such as cell–cell and cell–material interactions, are necessary. The aim of this review is to firstly introduce and compare the number of cell types, the size and morphology of the scaffolds, and the generic tissue reconstruction procedures utilised in the top–down and the bottom–up strategies; then, it will analyse their advantages, disadvantages, and challenges; and finally, it will briefly discuss the possible technologies that may overcome some of the inherent limitations of the bottom–up strategy.
Collapse
|
30
|
Arifin MA, Mel M, Swan SY, Samsudin N, Hashim YZHY, Salleh HM. Optimization of ultraviolet/ozone (UVO 3) process conditions for the preparation of gelatin coated polystyrene (PS) microcarriers. Prep Biochem Biotechnol 2021; 52:181-196. [PMID: 34010098 DOI: 10.1080/10826068.2021.1923031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
The aim of this study was to develop gelatin coated polystyrene (PS) microcarriers with good cell adhesion and proliferation properties. PS microspheres, prepared using oil-in water (o/w) solvent evaporation method, were loaded with oxygen containing functional groups using an ultraviolet/ozone (UVO3) system. Using water-soluble carbodiimide chemistry, gelatin was subsequently immobilized on UVO3 treated PS microspheres. The amount of immobilized gelatin was found to be directly proportional to the surface carboxyl (COOH) concentration on PS microspheres. Face Centered Central Composite Design (FCCD) was employed to optimize the process conditions of UVO3 treatment to maximize the surface COOH concentration on PS microspheres for allowing higher gelatin immobilization. Statistical results revealed that, the optimized process conditions were ozone flow rate of ∼64,603 ppm, exposure time of ∼60 minutes and sample amount of 5.05 g. Under these conditions, the surface COOH concentration on PS microspheres was ∼1,505 nmol/g with the corresponding amount of immobilized gelatin was ∼2,725 µg/g. Characterization analyses strongly suggest that the optimized UVO3 treatment and successive gelatin immobilization have successfully improved surface wettability and dispersion stability of PS microspheres. Moreover, gelatin coated PS microcarriers were also proven as able to support the growth of CHO-K1 cells in high cell density culture.
Collapse
Affiliation(s)
- Mohd Azmir Arifin
- Faculty of Chemical and Process Engineering Technology, Lebuhraya Tun Razak, Universiti Malaysia Pahang, Kuantan, Malaysia
| | - Maizirwan Mel
- Department of Biotechnology Engineering, International Islamic University Malaysia Kulliyyah of Engineering, Kuala Lumpur, Malaysia
| | - Sia Yiik Swan
- Faculty of Chemical and Process Engineering Technology, Lebuhraya Tun Razak, Universiti Malaysia Pahang, Kuantan, Malaysia
| | - Nurhusna Samsudin
- International Institute for Halal Research and Training, International Islamic University Malaysia, Kuala Lumpur, Malaysia
| | - Yumi Zuhanis Has-Yun Hashim
- International Institute for Halal Research and Training, International Islamic University Malaysia, Kuala Lumpur, Malaysia
| | - Hamzah Mohd Salleh
- International Institute for Halal Research and Training, International Islamic University Malaysia, Kuala Lumpur, Malaysia
| |
Collapse
|
31
|
Gong L, Petchakup C, Shi P, Tan PL, Tan LP, Tay CY, Hou HW. Direct and Label-Free Cell Status Monitoring of Spheroids and Microcarriers Using Microfluidic Impedance Cytometry. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2021; 17:e2007500. [PMID: 33759381 DOI: 10.1002/smll.202007500] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/27/2020] [Revised: 02/11/2021] [Indexed: 05/11/2023]
Abstract
3D cellular spheroids/microcarriers (100 µm-1 mm) are widely used in biomanufacturing, and non-invasive biosensors are useful to monitor cell quality in bioprocesses. In this work, a novel microfluidic approach for label-free and continuous-flow monitoring of single spheroid/microcarrier (hydrogel and Cytodex) based on electrical impedance spectroscopy using co-planar Field's metal electrodes is reported. Through numerical simulation and experimental validation, two unique impedance signatures (|ZLF | (60 kHz), |ZHF | (1 MHz)) which are optimal for spheroid growth and viability monitoring are identified. Using a closed-loop recirculation system, it is demonstrated that |ZLF | increases with breast cancer (MCF-7) spheroid biomass, while higher opacity (impedance ratio |ZHF |/|ZLF |) indicates cell death due to compromised cell membrane. Anti-cancer drug (paclitaxel)-treated spheroids also exhibit lower |ZLF | with increased cell dissociation. Interestingly, impedance characterization of adipose-derived mesenchymal stem cell differentiation on Cytodex microcarriers reveals that adipogenic cells (higher intracellular lipid content) exhibit higher impedance than osteogenic cells (more conductive due to calcium ions) for both microcarriers and single cell level. Taken together, the developed platform offers great versatility for multi-parametric analysis of spheroids/microcarriers at high throughput (≈1 particle/s), and can be readily integrated into bioreactors for long-term and remote monitoring of biomass and cell quality.
Collapse
Affiliation(s)
- Lingyan Gong
- School of Mechanical and Aerospace Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore, 639798
| | - Chayakorn Petchakup
- School of Mechanical and Aerospace Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore, 639798
| | - Pujiang Shi
- School of Materials Science and Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore, 639798
| | - Pei Leng Tan
- School of Materials Science and Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore, 639798
| | - Lay Poh Tan
- School of Materials Science and Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore, 639798
| | - Chor Yong Tay
- School of Materials Science and Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore, 639798
- School of Biological Sciences, Nanyang Technological University, 60 Nanyang Drive, Singapore, 637551
- Environmental Chemistry and Materials Centre, Nanyang Environment and Water Research Institute, 1 CleanTech Loop, CleanTech One, Singapore, 637141
- Energy Research Institute, Nanyang Technological University Singapore, 50 Nanyang Drive, Singapore, 637553
| | - Han Wei Hou
- School of Mechanical and Aerospace Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore, 639798
- Lee Kong Chian School of Medicine, Nanyang Technological University, 11 Mandalay Road, Singapore, 308232
- Critical Analytics for Manufacturing of Personalized Medicine, Singapore-Massachusetts Institute of Technology Alliance for Research and Technology, 1 CREATE Way, #10-01, CREATE Tower, Singapore, 138602
| |
Collapse
|
32
|
Hanga MP, Nienow AW, Murasiewicz H, Pacek AW, Hewitt CJ, Coopman K. Expansion of human mesenchymal stem/stromal cells on temporary liquid microcarriers. JOURNAL OF CHEMICAL TECHNOLOGY AND BIOTECHNOLOGY (OXFORD, OXFORDSHIRE : 1986) 2021; 96:930-940. [PMID: 33776183 PMCID: PMC7984227 DOI: 10.1002/jctb.6601] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/25/2020] [Revised: 10/27/2020] [Accepted: 10/30/2020] [Indexed: 06/12/2023]
Abstract
BACKGROUND Traditional large-scale culture systems for human mesenchymal stem/stromal cells (hMSCs) use solid microcarriers as attachment substrates. Although the use of such substrates is advantageous because of the high surface-to-volume ratio, cell harvest from the same substrates is a challenge as it requires enzymatic treatment, often combined with agitation. Here, we investigated a two-phase system for expansion and non-enzymatic recovery of hMSCs. Perfluorocarbon droplets were dispersed in a protein-rich growth medium and were used as temporary liquid microcarriers for hMSC culture. RESULTS hMSCs successfully attached to these liquid microcarriers, exhibiting similar morphologies to those cultured on solid ones. Fold increases of 3.03 ± 0.98 (hMSC1) and 3.81 ± 0.29 (hMSC2) were achieved on day 9. However, the maximum expansion folds were recorded on day 4 (4.79 ± 0.47 (hMSC1) and 4.856 ± 0.7 (hMSC2)). This decrease was caused by cell aggregation upon reaching confluency due to the contraction of the interface between the two phases. Cell quality, as assessed by differentiation, cell surface marker expression and clonogenic ability, was retained post expansion on the liquid microcarriers. Cell harvesting was achieved non-enzymatically in two steps: first by inducing droplet coalescence and then aspirating the interface. Quality characteristics of hMSCs continued to be retained even after inducing droplet coalescence. CONCLUSION The prospect of a temporary microcarrier that can be used to expand cells and then 'disappear' for cell release without using proteolytic enzymes is a very exciting one. Here, we have demonstrated that hMSCs can attach and proliferate on these perfluorocarbon liquid microcarriers while, very importantly, retaining their quality.
Collapse
Affiliation(s)
- Mariana P Hanga
- Department of Biosciences, School of Life and Health SciencesAston UniversityBirminghamUK
- Centre for Biological Engineering, School of AACME, Chemical Engineering DepartmentLoughborough UniversityLoughboroughUK
| | - Alvin W Nienow
- Department of Biosciences, School of Life and Health SciencesAston UniversityBirminghamUK
- Centre for Biological Engineering, School of AACME, Chemical Engineering DepartmentLoughborough UniversityLoughboroughUK
- School of Chemical EngineeringUniversity of BirminghamBirminghamUK
| | - Halina Murasiewicz
- School of Chemical EngineeringUniversity of BirminghamBirminghamUK
- Faculty of Chemical Technology and EngineeringWest Pomeranian University of TechnologySzczecinPoland
| | - Andrzej W Pacek
- School of Chemical EngineeringUniversity of BirminghamBirminghamUK
| | - Christopher J Hewitt
- Department of Biosciences, School of Life and Health SciencesAston UniversityBirminghamUK
- Centre for Biological Engineering, School of AACME, Chemical Engineering DepartmentLoughborough UniversityLoughboroughUK
| | - Karen Coopman
- Centre for Biological Engineering, School of AACME, Chemical Engineering DepartmentLoughborough UniversityLoughboroughUK
| |
Collapse
|
33
|
Ornelas-González A, González-González M, Rito-Palomares M. Microcarrier-based stem cell bioprocessing: GMP-grade culture challenges and future trends for regenerative medicine. Crit Rev Biotechnol 2021; 41:1081-1095. [PMID: 33730936 DOI: 10.1080/07388551.2021.1898328] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
Recently, stem cell-based therapies have been proposed as an alternative for the treatment of many diseases. Stem cells (SCs) are well known for their capacity to preserve themselves, proliferate, and differentiate into multiple lineages. These characteristics allow stem cells to be a viable option for the treatment of diverse diseases. Traditional methodologies based on 2-dimensional culture techniques (T-flasks and Petri dishes) are simple and well standardized; however, they present disadvantages that limit the production of the cell yield required for regenerative medicine applications. Lately, microcarrier (MC)-based culture techniques have emerged as an attractive platform for expanding stem cells in suspension systems. Although the use of stem cell expansion on MCs has recently shown significant increase, their implementation for medical purposes is been hampered by bottlenecks in upstream and downstream processing. Therefore, there is an urgent need in the development of bioprocesses that simplify stem cell cultures under xeno-free conditions and detachment from MCs without diminishing their pluripotency and viability. A critical analysis of the factors that impact the up and downstream bioprocessing on MC-based stem cell cultures is presented in this review. This analysis aims to raise the awareness of the current drawbacks that limit MC-based stem cell bioprocessing in regenerative medicine and propose alternatives to overcome them.
Collapse
Affiliation(s)
| | | | - Marco Rito-Palomares
- Tecnologico de Monterrey, Escuela de Medicina y Ciencias de la Salud, Monterrey, Mexico
| |
Collapse
|
34
|
Djisalov M, Knežić T, Podunavac I, Živojević K, Radonic V, Knežević NŽ, Bobrinetskiy I, Gadjanski I. Cultivating Multidisciplinarity: Manufacturing and Sensing Challenges in Cultured Meat Production. BIOLOGY 2021; 10:204. [PMID: 33803111 PMCID: PMC7998526 DOI: 10.3390/biology10030204] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/26/2021] [Revised: 02/28/2021] [Accepted: 03/02/2021] [Indexed: 12/11/2022]
Abstract
Meat cultivation via cellular agriculture holds great promise as a method for future food production. In theory, it is an ideal way of meat production, humane to the animals and sustainable for the environment, while keeping the same taste and nutritional values as traditional meat and having additional benefits such as controlled fat content and absence of antibiotics and hormones used in the traditional meat industry. However, in practice, there is still a number of challenges, such as those associated with the upscale of cultured meat (CM). CM food safety monitoring is a necessary factor when envisioning both the regulatory compliance and consumer acceptance. To achieve this, a multidisciplinary approach is necessary. This includes extensive development of the sensitive and specific analytical devices i.e., sensors to enable reliable food safety monitoring throughout the whole future food supply chain. In addition, advanced monitoring options can help in the further optimization of the meat cultivation which may reduce the currently still high costs of production. This review presents an overview of the sensor monitoring options for the most relevant parameters of importance for meat cultivation. Examples of the various types of sensors that can potentially be used in CM production are provided and the options for their integration into bioreactors, as well as suggestions on further improvements and more advanced integration approaches. In favor of the multidisciplinary approach, we also include an overview of the bioreactor types, scaffolding options as well as imaging techniques relevant for CM research. Furthermore, we briefly present the current status of the CM research and related regulation, societal aspects and challenges to its upscaling and commercialization.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Ivana Gadjanski
- BioSense Institute, University of Novi Sad, Dr Zorana Djindjica 1, 21000 Novi Sad, Serbia; (M.Dj.); (T.K.); (I.P.); (K.Ž.); (V.R.); (N.Ž.K.); (I.B.)
| |
Collapse
|
35
|
Veiga A, Castro F, Rocha F, Oliveira A. Silk-based microcarriers: current developments and future perspectives. IET Nanobiotechnol 2020; 14:645-653. [PMID: 33108319 PMCID: PMC8676661 DOI: 10.1049/iet-nbt.2020.0058] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2020] [Revised: 08/04/2020] [Accepted: 08/07/2020] [Indexed: 12/22/2022] Open
Abstract
Cell-seeded microcarriers (MCs) are currently one of the most promising topics in biotechnology. These systems are supportive structures for cell growth and expansion that allow efficient nutrient and gas transfer between the media and the attached cells. Silk proteins have been increasingly used for this purpose in the past few years due to their biocompatibility, biodegradability and non-toxicity. To date, several silk fibroin spherical MCs in combination with alginate, gelatin and calcium phosphates have been reported with very interesting outcomes. In addition, other silk-based three-dimensional structures such as microparticles with chitosan and collagen, as well as organoids, have been increasingly studied. In this study, the physicochemical and biological properties of these biomaterials, as well as the recent methodologies for their processing and for cell culture, are discussed. The potential biomedical applications are also addressed. In addition, an analysis of the future perspectives is presented, where the potential of innovative silk-based MCs processing technologies is highlighted.
Collapse
Affiliation(s)
- Anabela Veiga
- LEPABE - Laboratory for Process Engineering, Environment, Biotechnology & Energy, Faculty of Engineering of Porto, Department of Chemical Engineering, University of Porto, Porto, Portugal
| | - Filipa Castro
- LEPABE - Laboratory for Process Engineering, Environment, Biotechnology & Energy, Faculty of Engineering of Porto, Department of Chemical Engineering, University of Porto, Porto, Portugal.
| | - Fernando Rocha
- LEPABE - Laboratory for Process Engineering, Environment, Biotechnology & Energy, Faculty of Engineering of Porto, Department of Chemical Engineering, University of Porto, Porto, Portugal
| | - Ana Oliveira
- Universidade Católica Portuguesa, CBQF - Centro de Biotecnologia e Química Fina - Laboratório Associado, Escola Superior de Biotecnologia, Rua Diogo Botelho 1327, 4169-005 Porto, Portugal
| |
Collapse
|
36
|
Zhang R, Xie L, Wu H, Yang T, Zhang Q, Tian Y, Liu Y, Han X, Guo W, He M, Liu S, Tian W. Alginate/laponite hydrogel microspheres co-encapsulating dental pulp stem cells and VEGF for endodontic regeneration. Acta Biomater 2020; 113:305-316. [PMID: 32663663 DOI: 10.1016/j.actbio.2020.07.012] [Citation(s) in RCA: 97] [Impact Index Per Article: 24.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2020] [Revised: 07/07/2020] [Accepted: 07/07/2020] [Indexed: 01/11/2023]
Abstract
Considering the complicated and irregular anatomical structure of root canal systems, injectable microspheres have received considerable attention as cell carriers in endodontic regeneration. Herein, we developed injectable hybrid RGD-alginate/laponite (RGD-Alg/Lap) hydrogel microspheres, co-encapsulating human dental pulp stem cells (hDPSCs) and vascular endothelial growth factor (VEGF). These microspheres were prepared by the electrostatic microdroplet method with an average size of 350~450 μm. By adjusting the content of laponite, the rheological properties and the degradation rate of the microspheres in vitro could be conditioned. The release of VEGF from the RGD-Alg/0.5%Lap microspheres was in a sustained manner for 28 days while the bioactivity of VEGF was preserved. In addition, the encapsulated hDPSCs were evenly distributed in microspheres with a cell viability exceeding 85%. The deposition of abundant extracellular matrix such as fibronectin (FN) and collagen type I (Col-I) was shown in microspheres after 7 days. The laponite in the system significantly up-regulated the expression of odontogenic-related genes of hDPSCs at day 7. Furthermore, after subcutaneous implantation with tooth slices in a nude mouse model for 1 month, the hDPSCs-laden RGD-Alg/0.5%Lap+VEGF microspheres significantly promoted the regeneration of pulp-like tissues as well as the formation of new micro-vessels. These results demonstrated the great potential of laponite-enhanced hydrogel microspheres in vascularized dental pulp regeneration. STATEMENT OF SIGNIFICANCE: Injectable cell-laden microspheres have recently gained great attention in endodontic regeneration. Here we first developed hybrid alginate/laponite hydrogel microspheres (size about 350~450 μm) by electrostatic microdroplet method, which exhibited tunability in mechanical property and sustained release ability. The incorporation of laponite and the sustained release of VEGF supported not only dental pulp stem cells differentiation in vitro but neotissue regeneration in vivo. These features combined with the simplicity in preparation, made the microspheres ideally suited to simultaneous cells and growth factors delivery in dental pulp regeneration and even other tissue regeneration application.
Collapse
Affiliation(s)
- Ruitao Zhang
- State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, 610041, China; National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, 610041, China; Engineering Research Center of Oral Translational Medicine, Ministry of Education, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, 610041, China; National Engineering Laboratory for Oral Regenerative Medicine, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, 610041, China; Department of Oral and Maxillofacial Surgery, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, 610041, China
| | - Li Xie
- State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, 610041, China; National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, 610041, China; Engineering Research Center of Oral Translational Medicine, Ministry of Education, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, 610041, China; National Engineering Laboratory for Oral Regenerative Medicine, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, 610041, China.
| | - Hao Wu
- State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, 610041, China; National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, 610041, China; Engineering Research Center of Oral Translational Medicine, Ministry of Education, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, 610041, China; National Engineering Laboratory for Oral Regenerative Medicine, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, 610041, China; Department of Oral and Maxillofacial Surgery, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, 610041, China
| | - Ting Yang
- State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, 610041, China; National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, 610041, China; Engineering Research Center of Oral Translational Medicine, Ministry of Education, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, 610041, China; National Engineering Laboratory for Oral Regenerative Medicine, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, 610041, China; Department of Oral and Maxillofacial Surgery, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, 610041, China
| | - Qingyuan Zhang
- State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, 610041, China; National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, 610041, China; Engineering Research Center of Oral Translational Medicine, Ministry of Education, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, 610041, China; National Engineering Laboratory for Oral Regenerative Medicine, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, 610041, China; Department of Oral and Maxillofacial Surgery, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, 610041, China
| | - Yuan Tian
- State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, 610041, China; National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, 610041, China; Engineering Research Center of Oral Translational Medicine, Ministry of Education, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, 610041, China; National Engineering Laboratory for Oral Regenerative Medicine, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, 610041, China; Department of Oral and Maxillofacial Surgery, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, 610041, China
| | - Yuangang Liu
- College of Chemical Engineering, Huaqiao University, Xiamen, 361021, China
| | - Xue Han
- State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, 610041, China; National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, 610041, China; Engineering Research Center of Oral Translational Medicine, Ministry of Education, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, 610041, China; National Engineering Laboratory for Oral Regenerative Medicine, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, 610041, China; Department of Orthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, 610041, China
| | - Weihua Guo
- State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, 610041, China; National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, 610041, China; Engineering Research Center of Oral Translational Medicine, Ministry of Education, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, 610041, China; National Engineering Laboratory for Oral Regenerative Medicine, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, 610041, China; Department of Orthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, 610041, China
| | - Min He
- State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, 610041, China; National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, 610041, China; Engineering Research Center of Oral Translational Medicine, Ministry of Education, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, 610041, China; National Engineering Laboratory for Oral Regenerative Medicine, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, 610041, China
| | - Suru Liu
- State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, 610041, China; National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, 610041, China; Engineering Research Center of Oral Translational Medicine, Ministry of Education, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, 610041, China; National Engineering Laboratory for Oral Regenerative Medicine, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, 610041, China
| | - Weidong Tian
- State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, 610041, China; National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, 610041, China; Engineering Research Center of Oral Translational Medicine, Ministry of Education, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, 610041, China; National Engineering Laboratory for Oral Regenerative Medicine, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, 610041, China; Department of Oral and Maxillofacial Surgery, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, 610041, China.
| |
Collapse
|
37
|
Deng Z, Chen J, Lin B, Li J, Wang H, Wang D, Pang L, Zeng X, Wang H, Zhang Y. A novel 3D printed bioactive scaffolds with enhanced osteogenic inspired by ancient Chinese medicine HYSA for bone repair. Exp Cell Res 2020; 394:112139. [DOI: 10.1016/j.yexcr.2020.112139] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2020] [Revised: 05/13/2020] [Accepted: 06/07/2020] [Indexed: 12/13/2022]
|
38
|
Haugen HJ, Basu P, Sukul M, Mano JF, Reseland JE. Injectable Biomaterials for Dental Tissue Regeneration. Int J Mol Sci 2020; 21:E3442. [PMID: 32414077 PMCID: PMC7279163 DOI: 10.3390/ijms21103442] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2020] [Accepted: 05/08/2020] [Indexed: 12/17/2022] Open
Abstract
Injectable biomaterials scaffolds play a pivotal role for dental tissue regeneration, as such materials are highly applicable in the dental field, particularly when compared to pre-formed scaffolds. The defects in the maxilla-oral area are normally small, confined and sometimes hard to access. This narrative review describes different types of biomaterials for dental tissue regeneration, and also discusses the potential use of nanofibers for dental tissues. Various studies suggest that tissue engineering approaches involving the use of injectable biomaterials have the potential of restoring not only dental tissue function but also their biological purposes.
Collapse
Affiliation(s)
- Håvard Jostein Haugen
- Department of Biomaterials, Institute of Clinical Dentistry, Faculty of Odontology, University of Oslo, 0317 Oslo, Norway; (P.B.); (M.S.); (J.E.R.)
| | - Poulami Basu
- Department of Biomaterials, Institute of Clinical Dentistry, Faculty of Odontology, University of Oslo, 0317 Oslo, Norway; (P.B.); (M.S.); (J.E.R.)
| | - Mousumi Sukul
- Department of Biomaterials, Institute of Clinical Dentistry, Faculty of Odontology, University of Oslo, 0317 Oslo, Norway; (P.B.); (M.S.); (J.E.R.)
| | - João F Mano
- CICECO – Aveiro Institute of Materials, Department of Chemistry, University of Aveiro, 3810-193 Aveiro, Portugal;
| | - Janne Elin Reseland
- Department of Biomaterials, Institute of Clinical Dentistry, Faculty of Odontology, University of Oslo, 0317 Oslo, Norway; (P.B.); (M.S.); (J.E.R.)
| |
Collapse
|
39
|
Yan X, Zhang K, Yang Y, Deng D, Lyu C, Xu H, Liu W, Du Y. Dispersible and Dissolvable Porous Microcarrier Tablets Enable Efficient Large-Scale Human Mesenchymal Stem Cell Expansion. Tissue Eng Part C Methods 2020; 26:263-275. [PMID: 32268824 DOI: 10.1089/ten.tec.2020.0039] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Human mesenchymal stem cells (hMSCs) have wide applications in regenerative medicine but their clinical translation is largely hindered by limited production capacity of current cell expansion regime. This study utilizes a novel dispersible and dissolvable porous microcarrier tablet, 3D TableTrix™, in stirred bioreactor to demonstrate a scalable expansion protocol for industrial manufacturing of hMSCs. The 3D TableTrix is a ready-to-use tablet that disperses into 10s of 1000s porous microcarriers upon contact with culture media, eliminating the need to prepare microcarriers before cell seeding, hence simplifying operation process. We demonstrate over 500 times expansion of adipose-derived hMSCs using serum-free culture medium in 11 days with bead-to-bead transfer for a partial scale-up from laboratory-scale spinner flasks to a 1-L bioreactor system. A final yield of 1.05 ± 0.11 × 109 hMSCs was achieved, and yield of over 3 × 109 with an overall expansion factor of 1530 could theoretically be realized with full scale-up. Cells were harvested by dissolving microcarriers with 98.6% ± 0.1% recovery rate. Cells retained their immunophenotypic characteristics, trilineage differentiation potential, and genome stability with low indications of senescence phenotype. This study illuminates the potential of industrializing clinical-grade hMSC production using 3D TableTrix microcarrier tablets and stirred tank bioreactors. Impact statement The 3D TableTrix™ is a newly available microcarrier ingeniously designed as dispersible and dissolvable porous microcarrier tablets for human mesenchymal stem cell (hMSC) expansion. This eliminates the need of tedious preparation work usually required for microcarriers and its dissolvable nature allows for high cell recovery rate of 98.6% ± 0.1%. Over 500 times expansion of adipose-derived mesenchymal stem cells in serum-free culture media using a 1-L bioreactor system demonstrates its tremendous potential for industrial production of hMSCs.
Collapse
Affiliation(s)
- Xiaojun Yan
- Department of Biomedical Engineering, School of Medicine, Tsinghua-PKU Center for Life Sciences, Tsinghua University, Beijing, China
| | - Kun Zhang
- Department of Biomedical Engineering, School of Medicine, Tsinghua-PKU Center for Life Sciences, Tsinghua University, Beijing, China
| | - Yanping Yang
- Department of Biomedical Engineering, School of Medicine, Tsinghua-PKU Center for Life Sciences, Tsinghua University, Beijing, China
| | - Dongkai Deng
- Department of Biomedical Engineering, School of Medicine, Tsinghua-PKU Center for Life Sciences, Tsinghua University, Beijing, China
| | - Cheng Lyu
- Beijing CytoNiche Biotechnology Co. Ltd., Beijing, China
| | - Huanye Xu
- Department of Biomedical Engineering, School of Medicine, Tsinghua-PKU Center for Life Sciences, Tsinghua University, Beijing, China
| | - Wei Liu
- Department of Biomedical Engineering, School of Medicine, Tsinghua-PKU Center for Life Sciences, Tsinghua University, Beijing, China.,Beijing CytoNiche Biotechnology Co. Ltd., Beijing, China
| | - Yanan Du
- Department of Biomedical Engineering, School of Medicine, Tsinghua-PKU Center for Life Sciences, Tsinghua University, Beijing, China
| |
Collapse
|
40
|
Demina TS, Drozdova MG, Sevrin C, Compère P, Akopova TA, Markvicheva E, Grandfils C. Biodegradable Cell Microcarriers Based on Chitosan/Polyester Graft-Copolymers. Molecules 2020; 25:E1949. [PMID: 32331458 PMCID: PMC7221781 DOI: 10.3390/molecules25081949] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2020] [Revised: 04/15/2020] [Accepted: 04/21/2020] [Indexed: 11/23/2022] Open
Abstract
Self-stabilizing biodegradable microcarriers were produced via an oil/water solvent evaporation technique using amphiphilic chitosan-g-polyester copolymers as a core material in oil phase without the addition of any emulsifier in aqueous phase. The total yield of the copolymer-based microparticles reached up to 79 wt. %, which is comparable to a yield achievable using traditional emulsifiers. The kinetics of microparticle self-stabilization, monitored during their process, were correlated to the migration of hydrophilic copolymer's moieties to the oil/water interface. With a favorable surface/volume ratio and the presence of bioadhesive natural fragments anchored to their surface, the performance of these novel microcarriers has been highlighted by evaluating cell morphology and proliferation within a week of cell cultivation in vitro.
Collapse
Affiliation(s)
- Tatiana S. Demina
- Enikolopov Institute of Synthetic Polymeric Materials of Russian Academy of Sciences (ISPM RAS), 70 Profsoyuznaya str., 117393 Moscow, Russia;
- Institute for Regenerative Medicine, Sechenov First Moscow State Medical University (Sechenov University), 8–2 Trubetskaya str., 119991 Moscow, Russia
| | - Maria G. Drozdova
- Shemyakin & Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, 16/10 Miklukho-Maklaya str., 117997 Moscow, Russia; (M.G.D.); (E.M.)
| | - Chantal Sevrin
- Interfaculty Research Centre on Biomaterials (CEIB), University of Liège, Chemistry Institute, B6C, 11 Allée du 6 août, B-4000 Liege (Sart-Tilman), Belgium; (C.S.); (P.C.); (C.G.)
| | - Philippe Compère
- Interfaculty Research Centre on Biomaterials (CEIB), University of Liège, Chemistry Institute, B6C, 11 Allée du 6 août, B-4000 Liege (Sart-Tilman), Belgium; (C.S.); (P.C.); (C.G.)
- Centre for Applied Research and Education in Microscopy (CAREM), University of Liege, Chemistry Institute, B6C, 11 Allée du 6 août, B-4000 Liege (Sart-Tilman), Belgium
| | - Tatiana A. Akopova
- Enikolopov Institute of Synthetic Polymeric Materials of Russian Academy of Sciences (ISPM RAS), 70 Profsoyuznaya str., 117393 Moscow, Russia;
| | - Elena Markvicheva
- Shemyakin & Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, 16/10 Miklukho-Maklaya str., 117997 Moscow, Russia; (M.G.D.); (E.M.)
| | - Christian Grandfils
- Interfaculty Research Centre on Biomaterials (CEIB), University of Liège, Chemistry Institute, B6C, 11 Allée du 6 août, B-4000 Liege (Sart-Tilman), Belgium; (C.S.); (P.C.); (C.G.)
| |
Collapse
|
41
|
Suraiya AB, Hun ML, Truong VX, Forsythe JS, Chidgey AP. Gelatin-Based 3D Microgels for In Vitro T Lineage Cell Generation. ACS Biomater Sci Eng 2020; 6:2198-2208. [PMID: 33455336 DOI: 10.1021/acsbiomaterials.9b01610] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
T cells are predominantly produced by the thymus and play a significant role in maintaining our adaptive immune system. Physiological involution of the thymus occurs gradually with age, compromising naive T cell output, which can have severe clinical complications. Also, T cells are utilized as therapeutic agents in cancer immunotherapies. Therefore, there is an increasing need for strategies aimed at generating naive T cells. The majority of in vitro T cell generation studies are performed in two-dimensional (2D) cultures, which ignore the physiological thymic microenvironment and are not scalable; therefore, we applied a new three-dimensional (3D) approach. Here, we use a gelatin-based 3D microgel system for T lineage induction by co-culturing OP9-DL4 cells and mouse fetal-liver-derived hematopoietic stem cells (HSCs). Flow cytometric analysis revealed that microgel co-cultures supported T lineage induction similar to 2D cultures while providing a 3D environment. We also encapsulated mouse embryonic thymic epithelial cells (TECs) within the microgels to provide a defined 3D culture platform. The microgel system supported TEC maintenance and retained their phenotype. Together, these data show that our microgel system has the capacity for TEC maintenance and induction of in vitro T lineage differentiation with potential for scalability.
Collapse
Affiliation(s)
- Anisha B Suraiya
- Department of Materials Science and Engineering, Monash Institute of Medical Engineering, Monash University, Wellington Road, Clayton, Melbourne 3800, Australia.,Department of Anatomy and Developmental Biology, Biomedicine Discovery Institute, Monash University, Wellington Road, Clayton, Melbourne 3800, Australia
| | - Michael L Hun
- Department of Anatomy and Developmental Biology, Biomedicine Discovery Institute, Monash University, Wellington Road, Clayton, Melbourne 3800, Australia
| | - Vinh X Truong
- Department of Materials Science and Engineering, Monash Institute of Medical Engineering, Monash University, Wellington Road, Clayton, Melbourne 3800, Australia
| | - John S Forsythe
- Department of Materials Science and Engineering, Monash Institute of Medical Engineering, Monash University, Wellington Road, Clayton, Melbourne 3800, Australia
| | - Ann P Chidgey
- Department of Anatomy and Developmental Biology, Biomedicine Discovery Institute, Monash University, Wellington Road, Clayton, Melbourne 3800, Australia
| |
Collapse
|
42
|
Huang L, Abdalla AM, Xiao L, Yang G. Biopolymer-Based Microcarriers for Three-Dimensional Cell Culture and Engineered Tissue Formation. Int J Mol Sci 2020; 21:E1895. [PMID: 32164316 PMCID: PMC7084715 DOI: 10.3390/ijms21051895] [Citation(s) in RCA: 50] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2020] [Revised: 03/01/2020] [Accepted: 03/08/2020] [Indexed: 12/20/2022] Open
Abstract
The concept of three-dimensional (3D) cell culture has been proposed to maintain cellular morphology and function as in vivo. Among different approaches for 3D cell culture, microcarrier technology provides a promising tool for cell adhesion, proliferation, and cellular interactions in 3D space mimicking the in vivo microenvironment. In particular, microcarriers based on biopolymers have been widely investigated because of their superior biocompatibility and biodegradability. Moreover, through bottom-up assembly, microcarriers have opened a bright door for fabricating engineered tissues, which is one of the cutting-edge topics in tissue engineering and regeneration medicine. This review takes an in-depth look into the recent advancements of microcarriers based on biopolymers-especially polysaccharides such as chitosan, chitin, cellulose, hyaluronic acid, alginate, and laminarin-for 3D cell culture and the fabrication of engineered tissues based on them. The current limitations and potential strategies were also discussed to shed some light on future directions.
Collapse
Affiliation(s)
- Lixia Huang
- Hubei Key Laboratory of Purification and Application of Plant Anti-Cancer Active Ingredients, School of Chemistry and Life Sciences, Hubei University of Education, Wuhan 430205, China;
| | - Ahmed M.E. Abdalla
- Department of Biomedical Engineering, College of Life Science and Technology, Huazhong University of Science and Technology, 1037 Luoyu Road, Wuhan 430074, China;
| | - Lin Xiao
- Department of Biomedical Engineering, College of Life Science and Technology, Huazhong University of Science and Technology, 1037 Luoyu Road, Wuhan 430074, China;
| | - Guang Yang
- Department of Biomedical Engineering, College of Life Science and Technology, Huazhong University of Science and Technology, 1037 Luoyu Road, Wuhan 430074, China;
| |
Collapse
|
43
|
Bodiou V, Moutsatsou P, Post MJ. Microcarriers for Upscaling Cultured Meat Production. Front Nutr 2020; 7:10. [PMID: 32154261 PMCID: PMC7045063 DOI: 10.3389/fnut.2020.00010] [Citation(s) in RCA: 106] [Impact Index Per Article: 26.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2019] [Accepted: 01/28/2020] [Indexed: 12/19/2022] Open
Abstract
Due to the considerable environmental impact and the controversial animal welfare associated with industrial meat production, combined with the ever-increasing global population and demand for meat products, sustainable production alternatives are indispensable. In 2013, the world's first laboratory grown hamburger made from cultured muscle cells was developed. However, coming at a price of $300.000, and being produced manually, substantial effort is still required to reach sustainable large-scale production. One of the main challenges is scalability. Microcarriers (MCs), offering a large surface/volume ratio, are the most promising candidates for upscaling muscle cell culture. However, although many MCs have been developed for cell lines and stem cells typically used in the medical field, none have been specifically developed for muscle stem cells and meat production. This paper aims to discuss the MCs' design criteria for skeletal muscle cell proliferation and subsequently for meat production based on three scenarios: (1) MCs are serving only as a temporary substrate for cell attachment and proliferation and therefore they need to be separated from the cells at some stage of the bioprocess, (2) MCs serve as a temporary substrate for cell proliferation but are degraded or dissolved during the bioprocess, and (3) MCs are embedded in the final product and therefore need to be edible. The particularities of each of these three bioprocesses will be discussed from the perspective of MCs as well as the feasibility of a one-step bioprocess. Each scenario presents advantages and drawbacks, which are discussed in detail, nevertheless the third scenario appears to be the most promising one for a production process. Indeed, using an edible material can limit or completely eliminate dissociation/degradation/separation steps and even promote organoleptic qualities when embedded in the final product. Edible microcarriers could also be used as a temporary substrate similarly to scenarios 1 and 2, which would limit the risk of non-edible residues.
Collapse
Affiliation(s)
- Vincent Bodiou
- Department of Physiology, Faculty of Health, Medicine and Life Sciences, School for Cardiovascular Diseases, Maastricht University, Maastricht, Netherlands
- Mosa Meat BV, Maastricht, Netherlands
- CARIM, Faculty of Health, Medicine and Life Sciences, School for Cardiovascular Diseases, Maastricht University, Maastricht, Netherlands
| | - Panagiota Moutsatsou
- Department of Physiology, Faculty of Health, Medicine and Life Sciences, School for Cardiovascular Diseases, Maastricht University, Maastricht, Netherlands
- Mosa Meat BV, Maastricht, Netherlands
| | - Mark J. Post
- Department of Physiology, Faculty of Health, Medicine and Life Sciences, School for Cardiovascular Diseases, Maastricht University, Maastricht, Netherlands
- Mosa Meat BV, Maastricht, Netherlands
- CARIM, Faculty of Health, Medicine and Life Sciences, School for Cardiovascular Diseases, Maastricht University, Maastricht, Netherlands
| |
Collapse
|
44
|
Luetchford KA, Chaudhuri JB, De Bank PA. Silk fibroin/gelatin microcarriers as scaffolds for bone tissue engineering. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2020; 106:110116. [PMID: 31753329 PMCID: PMC6891254 DOI: 10.1016/j.msec.2019.110116] [Citation(s) in RCA: 41] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/21/2018] [Revised: 06/06/2019] [Accepted: 08/22/2019] [Indexed: 01/26/2023]
Abstract
Microcarrier cell scaffolds have potential as injectable cell delivery vehicles or as building blocks for tissue engineering. The use of small cell carriers allows for a 'bottom up' approach to tissue assembly when moulding microparticles into larger structures, which can facilitate the introduction of hierarchy by layering different matrices and cell types, while evenly distributing cells through the structure. In this work, silk fibroin (SF), purified from Bombyx mori cocoons, was blended with gelatin (G) to produce materials composed of varying ratios of the two components (SF: G 25:75, 50:50, and 75:25). Cell compatibility to these materials was first confirmed in two-dimensional culture and found to be equivalent to standard tissue culture plastic, and better than SF or G alone. The mechanical properties of the blends were investigated and the blended materials were found to have increased Young's moduli over SF alone. Microcarriers of SF/G blends with defined diameters were generated in a reproducible manner through the use of an axisymmetric flow focussing device, constructed from off-the-shelf parts and fittings. These SF/G microcarriers supported adhesion of rat mesenchymal stem cells with high degrees of efficiency under dynamic culture conditions and, after culturing in osteogenic differentiation medium, cells were shown to have characteristics typical of osteoblasts. This work illustrates that microcarriers composed of SF/G blends are promising building blocks for osteogenic tissue engineering.
Collapse
Affiliation(s)
- Kim A Luetchford
- Department of Pharmacy & Pharmacology, University of Bath, Bath, BA2 7AY, UK
| | - Julian B Chaudhuri
- Department of Chemical Engineering, University of Bath, Bath, BA2 7AY, UK
| | - Paul A De Bank
- Department of Pharmacy & Pharmacology, University of Bath, Bath, BA2 7AY, UK.
| |
Collapse
|
45
|
Chen J, Tu C, Tang X, Li H, Yan J, Ma Y, Wu H, Liu C. The combinatory effect of sinusoidal electromagnetic field and VEGF promotes osteogenesis and angiogenesis of mesenchymal stem cell-laden PCL/HA implants in a rat subcritical cranial defect. Stem Cell Res Ther 2019; 10:379. [PMID: 31842985 PMCID: PMC6915868 DOI: 10.1186/s13287-019-1464-x] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2019] [Revised: 10/13/2019] [Accepted: 10/21/2019] [Indexed: 12/20/2022] Open
Abstract
BACKGROUND Restoration of massive bone defects remains a huge challenge for orthopedic surgeons. Insufficient vascularization and slow bone regeneration limited the application of tissue engineering in bone defect. The effect of electromagnetic field (EMF) on bone defect has been reported for many years. However, sinusoidal EMF (SEMF) combined with tissue engineering in bone regeneration remains poorly investigated. METHODS In the present study, we investigated the effect of SEMF and vascular endothelial growth factor (VEGF) on osteogenic and vasculogenic differentiation of rat bone marrow-derived mesenchymal stem cells (rBMSCs). Furthermore, pretreated rBMSC- laden polycaprolactone-hydroxyapatite (PCL/HA) scaffold was constructed and implanted into the subcritical cranial defect of rats. The bone formation and vascularization were evaluated 4 and 12 weeks after implantation. RESULTS It was shown that SEMF and VEGF could enhance the protein and mRNA expression levels of osteoblast- and endothelial cell-related markers, respectively. The combinatory effect of SEMF and VEGF slightly promoted the angiogenic differentiation of rBMSCs. The proteins of Wnt1, low-density lipoprotein receptor-related protein 6 (LRP-6), and β-catenin increased in all inducted groups, especially in SEMF + VEGF group. The results indicated that Wnt/β-catenin pathway might participate in the osteogenic and angiogenic differentiation of rBMSCs. Histological evaluation and reconstructed 3D graphs revealed that tissue-engineered constructs significantly promoted the new bone formation and angiogenesis compared to other groups. CONCLUSION The combinatory effect of SEMF and VEGF raised an efficient approach to enhance the osteogenesis and vascularization of tissue-engineered constructs, which provided a useful guide for regeneration of bone defects.
Collapse
Affiliation(s)
- Jingyuan Chen
- Department of Orthopedics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Jiefang Avenue 1095, Wuhan, 430030, China
| | - Chang Tu
- Department of Orthopedics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Jiefang Avenue 1095, Wuhan, 430030, China
| | - Xiangyu Tang
- Department of Radiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Jiefang Avenue 1095, Wuhan, 430030, China
| | - Hao Li
- Department of Orthopedics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Jiefang Avenue 1095, Wuhan, 430030, China
| | - Jiyuan Yan
- Department of Orthopedics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Jiefang Avenue 1095, Wuhan, 430030, China
| | - Yongzhuang Ma
- Department of Orthopedics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Jiefang Avenue 1095, Wuhan, 430030, China
| | - Hua Wu
- Department of Orthopedics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Jiefang Avenue 1095, Wuhan, 430030, China.
| | - Chaoxu Liu
- Department of Orthopedics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Jiefang Avenue 1095, Wuhan, 430030, China.
| |
Collapse
|
46
|
John JV, Choksi M, Chen S, Boda SK, Su Y, McCarthy A, Teusink MJ, Reinhardt RA, Xie J. Tethering peptides onto biomimetic and injectable nanofiber microspheres to direct cellular response. NANOMEDICINE : NANOTECHNOLOGY, BIOLOGY, AND MEDICINE 2019; 22:102081. [PMID: 31400571 PMCID: PMC6904511 DOI: 10.1016/j.nano.2019.102081] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/15/2019] [Revised: 07/30/2019] [Accepted: 07/31/2019] [Indexed: 01/05/2023]
Abstract
Biomimetic and injectable nanofiber microspheres (NMs) could be ideal candidate for minimally invasive tissue repair. Herein, we report a facile approach to fabricate peptide-tethered NMs by combining electrospinning, electrospraying, and surface conjugation techniques. The composition and size of NMs can be tuned by varying the processing parameters during the fabrication. Further, bone morphogenic protein-2 (BMP-2) and vascular endothelial growth factor (VEGF) mimicking peptides have been successfully tethered onto poly(ε-caprolactone) (PCL):gelatin:(gelatin-methacryloyl) (GelMA)(1:0.5:0.5) NMs through photocrosslinking of the methacrylic group in GelMA and octenyl alanine (OCTAL) in the modified peptides. The BMP-2-OCTAL peptide-tethered NMs significantly promote osteogenic differentiation of bone marrow-derived stem cells (BMSCs). Moreover, human umbilical vein endothelial cells (HUVECs) seeded on VEGF mimicking peptide QK-OCTAL-tethered NMs significantly up-regulated vascular-specific proteins, leading to microvascularization. The strategy developed in this work holds great potential in developing a biomimetic and injectable carrier to efficiently direct cellular response (Osteogenesis and Angiogenesis) for tissue repair.
Collapse
Affiliation(s)
- Johnson V John
- Department of Surgery-Transplant and Mary & Dick Holland Regenerative Medicine Program, College of Medicine, University of Nebraska Medical Center, Omaha, NE, USA
| | - Meera Choksi
- Department of Surgery-Transplant and Mary & Dick Holland Regenerative Medicine Program, College of Medicine, University of Nebraska Medical Center, Omaha, NE, USA
| | - Shixuan Chen
- Department of Surgery-Transplant and Mary & Dick Holland Regenerative Medicine Program, College of Medicine, University of Nebraska Medical Center, Omaha, NE, USA
| | - Sunil Kumar Boda
- Department of Surgery-Transplant and Mary & Dick Holland Regenerative Medicine Program, College of Medicine, University of Nebraska Medical Center, Omaha, NE, USA
| | - Yajuan Su
- Department of Surgery-Transplant and Mary & Dick Holland Regenerative Medicine Program, College of Medicine, University of Nebraska Medical Center, Omaha, NE, USA
| | - Alec McCarthy
- Department of Surgery-Transplant and Mary & Dick Holland Regenerative Medicine Program, College of Medicine, University of Nebraska Medical Center, Omaha, NE, USA
| | - Matthew J Teusink
- Department of Orthopaedic Surgery and Rehabilitation, College of Medicine, University of Nebraska Medical Center, Omaha, NE, USA
| | - Richard A Reinhardt
- Department of Surgical Specialties, College of Dentistry, University of Nebraska Medical Center, Omaha, NE, USA
| | - Jingwei Xie
- Department of Surgery-Transplant and Mary & Dick Holland Regenerative Medicine Program, College of Medicine, University of Nebraska Medical Center, Omaha, NE, USA; Department of Mechanical and Materials Engineering, College of Engineering, University of Nebraska Lincoln, Lincoln, NE, USA.
| |
Collapse
|
47
|
Recent advances in the use of microcarriers for cell cultures and their ex vivo and in vivo applications. Biotechnol Lett 2019; 42:1-10. [PMID: 31602549 DOI: 10.1007/s10529-019-02738-7] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2019] [Accepted: 09/25/2019] [Indexed: 12/12/2022]
Abstract
Microcarriers are 100- to 300-micron support matrices that permit the growth of adherent cells in bioreactor systems. They have a larger surface area to volume ratio in comparison to single cell monolayers, enabling cost-effective cell production and expansion. Microcarriers are composed of a solid matrix that must be separated from expanded cells during downstream processing stages. The detachment method is chosen on the basis of several factors like cell type, microcarrier surface chemistry, cell confluency and degree of aggregation. The development of microcarriers with a range of physiochemical properties permit controlled cell and protein associations that hold utility for novel therapeutics. In this review, we provide an overview of the recent advances in microcarrier cell culture technology. We also discuss its significance as an ex vivo research tool and the therapeutic potential of newly designed microcarrier systems in vivo.
Collapse
|
48
|
Torizal FG, Horiguchi I, Sakai Y. Physiological Microenvironmental Conditions in Different Scalable Culture Systems for Pluripotent Stem Cell Expansion and Differentiation. Open Biomed Eng J 2019. [DOI: 10.2174/1874120701913010041] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Human Pluripotent Stem Cells (PSCs) are a valuable cell type that has a wide range of biomedical applications because they can differentiate into many types of adult somatic cell. Numerous studies have examined the clinical applications of PSCs. However, several factors such as bioreactor design, mechanical stress, and the physiological environment have not been optimized. These factors can significantly alter the pluripotency and proliferation properties of the cells, which are important for the mass production of PSCs. Nutritional mass transfer and oxygen transfer must be effectively maintained to obtain a high yield. Various culture systems are currently available for optimum cell propagation by maintaining the physiological conditions necessary for cell cultivation. Each type of culture system using a different configuration with various advantages and disadvantages affecting the mechanical conditions in the bioreactor, such as shear stress. These factors make it difficult to preserve the cellular viability and pluripotency of PSCs. Additional limitations of the culture system for PSCs must also be identified and overcome to maintain the culture conditions and enable large-scale expansion and differentiation of PSCs. This review describes the different physiological conditions in the various culture systems and recent developments in culture technology for PSC expansion and differentiation.
Collapse
|
49
|
Afewerki S, Sheikhi A, Kannan S, Ahadian S, Khademhosseini A. Gelatin-polysaccharide composite scaffolds for 3D cell culture and tissue engineering: Towards natural therapeutics. Bioeng Transl Med 2019; 4:96-115. [PMID: 30680322 PMCID: PMC6336672 DOI: 10.1002/btm2.10124] [Citation(s) in RCA: 215] [Impact Index Per Article: 43.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2018] [Revised: 11/23/2018] [Accepted: 11/26/2018] [Indexed: 12/12/2022] Open
Abstract
Gelatin is a promising material as scaffold with therapeutic and regenerative characteristics due to its chemical similarities to the extracellular matrix (ECM) in the native tissues, biocompatibility, biodegradability, low antigenicity, cost-effectiveness, abundance, and accessible functional groups that allow facile chemical modifications with other biomaterials or biomolecules. Despite the advantages of gelatin, poor mechanical properties, sensitivity to enzymatic degradation, high viscosity, and reduced solubility in concentrated aqueous media have limited its applications and encouraged the development of gelatin-based composite hydrogels. The drawbacks of gelatin may be surmounted by synergistically combining it with a wide range of polysaccharides. The addition of polysaccharides to gelatin is advantageous in mimicking the ECM, which largely contains proteoglycans or glycoproteins. Moreover, gelatin-polysaccharide biomaterials benefit from mechanical resilience, high stability, low thermal expansion, improved hydrophilicity, biocompatibility, antimicrobial and anti-inflammatory properties, and wound healing potential. Here, we discuss how combining gelatin and polysaccharides provides a promising approach for developing superior therapeutic biomaterials. We review gelatin-polysaccharides scaffolds and their applications in cell culture and tissue engineering, providing an outlook for the future of this family of biomaterials as advanced natural therapeutics.
Collapse
Affiliation(s)
- Samson Afewerki
- Biomaterials Innovation Research Center, Division of Biomedical Engineering, Dept. of MedicineBrigham and Women's Hospital, Harvard Medical SchoolCambridgeMA 02142
- Harvard‐MIT Division of Health Sciences and TechnologyMassachusetts Institute of TechnologyCambridgeMA 02139
| | - Amir Sheikhi
- Biomaterials Innovation Research Center, Division of Biomedical Engineering, Dept. of MedicineBrigham and Women's Hospital, Harvard Medical SchoolCambridgeMA 02142
- Harvard‐MIT Division of Health Sciences and TechnologyMassachusetts Institute of TechnologyCambridgeMA 02139
- Center for Minimally Invasive Therapeutics (C‐MIT)University of California‐Los AngelesLos AngelesCA 90095
- California NanoSystems Institute (CNSI)University of California‐Los AngelesLos AngelesCA 90095
- Dept. of BioengineeringUniversity of California‐Los AngelesLos AngelesCA 90095
| | - Soundarapandian Kannan
- Biomaterials Innovation Research Center, Division of Biomedical Engineering, Dept. of MedicineBrigham and Women's Hospital, Harvard Medical SchoolCambridgeMA 02142
- Harvard‐MIT Division of Health Sciences and TechnologyMassachusetts Institute of TechnologyCambridgeMA 02139
- Nanomedicine Division, Dept. of ZoologyPeriyar UniversitySalemTamil NaduIndia
| | - Samad Ahadian
- Center for Minimally Invasive Therapeutics (C‐MIT)University of California‐Los AngelesLos AngelesCA 90095
- California NanoSystems Institute (CNSI)University of California‐Los AngelesLos AngelesCA 90095
- Dept. of BioengineeringUniversity of California‐Los AngelesLos AngelesCA 90095
| | - Ali Khademhosseini
- Biomaterials Innovation Research Center, Division of Biomedical Engineering, Dept. of MedicineBrigham and Women's Hospital, Harvard Medical SchoolCambridgeMA 02142
- Harvard‐MIT Division of Health Sciences and TechnologyMassachusetts Institute of TechnologyCambridgeMA 02139
- Center for Minimally Invasive Therapeutics (C‐MIT)University of California‐Los AngelesLos AngelesCA 90095
- California NanoSystems Institute (CNSI)University of California‐Los AngelesLos AngelesCA 90095
- Dept. of BioengineeringUniversity of California‐Los AngelesLos AngelesCA 90095
- Dept. of Radiological Sciences, David Geffen School of MedicineUniversity of California‐Los AngelesLos AngelesCA 90095
- Dept. of Chemical and Biomolecular EngineeringUniversity of California‐Los AngelesLos AngelesCA 90095
- Dept. of Bioindustrial Technologies, College of Animal Bioscience and TechnologyKonkuk UniversitySeoulRepublic of Korea
| |
Collapse
|
50
|
Tavassoli H, Alhosseini SN, Tay A, Chan PP, Weng Oh SK, Warkiani ME. Large-scale production of stem cells utilizing microcarriers: A biomaterials engineering perspective from academic research to commercialized products. Biomaterials 2018; 181:333-346. [DOI: 10.1016/j.biomaterials.2018.07.016] [Citation(s) in RCA: 63] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2018] [Revised: 07/07/2018] [Accepted: 07/10/2018] [Indexed: 12/22/2022]
|