1
|
Wang H, Dai Y, Wang F. ETV4‑mediated transcriptional activation of SLC12A5 exacerbates ferroptosis resistance and glucose metabolism reprogramming in breast cancer cells. Mol Med Rep 2024; 30:217. [PMID: 39370816 PMCID: PMC11465427 DOI: 10.3892/mmr.2024.13341] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2024] [Accepted: 05/20/2024] [Indexed: 10/08/2024] Open
Abstract
Solute carrier family 12 member 5 (SLC12A5) is an oncogene in numerous types of cancer, however its function in breast cancer (BC) remains elusive. ETS translocation variant 4 (ETV4) promotes BC. Therefore, the present study aimed to elucidate the role of SLC12A5 in ferroptosis and glucose metabolism in BC cells as well as to understand the underlying mechanism. Analysis of data from the UALCAN database demonstrated expression levels of SLC12A5 in BC and its association with prognosis. Reverse transcription‑quantitative PCR and western blotting were conducted to evaluate the expression levels of SLC12A5 and ETV4 in BC cells. The abilities of BC cells to proliferate, migrate and invade were assessed using Cell Counting Kit‑8, colony formation, wound healing and Transwell assays. Thiobarbituric acid reactive substances assay and a C11 BODIPY 581/591 probe were used to evaluate lipid peroxidation. Ferroptosis resistance was evaluated by the measurement of Fe2+ and ferroptosis‑related solute carrier family 7a member 11 (SLC7A11), glutathione peroxidase 4 (GPX4), acyl‑CoA synthetase long‑chain family member 4 (ACSL4) and transferrin receptor 1 (TFR1) protein levels. Glycolysis was assessed via evaluation of extracellular acidification rate, oxygen consumption rate, lactate production and glucose consumption. Finally, luciferase reporter and chromatin immunoprecipitation assay were used to verify the interaction between ETV4 and the SLC12A5 promoter. UALCAN database analysis indicated that SLC12A5 was upregulated in BC tissues and cells and that SLC12A5 elevation indicated a poor prognosis of patients with BC. SLC12A5 knockdown suppressed the BC cell proliferative, migratory and invasive capabilities. Moreover, SLC12A5 knockdown decreased BC cell ferroptosis resistance and glucose metabolism reprogramming. The transcription factor ETV4 was demonstrated to bind to the SLC12A5 promoter and upregulate its transcription. Furthermore, ETV4 overexpression counteracted the suppressive effect of SLC12A5 knockdown on the BC cell proliferative, migratory and invasive abilities, as well as on ferroptosis resistance and glucose metabolism reprogramming. Transcriptional activation of SLC12A5 by ETV4 modulated the migration, invasion, ferroptosis resistance and glucose metabolism reprogramming of BC cells.
Collapse
Affiliation(s)
- Huan Wang
- Department of Pathology, Wenzhou Central Hospital, Wenzhou, Zhejiang 325000, P.R. China
| | - Yanyan Dai
- Department of Pathology, Wenzhou Central Hospital, Wenzhou, Zhejiang 325000, P.R. China
| | - Fengxiang Wang
- Department of Pathology, Wenzhou Central Hospital, Wenzhou, Zhejiang 325000, P.R. China
| |
Collapse
|
2
|
Frame AA, Nist KM, Kim K, Puleo F, Moreira JD, Swaldi H, McKenna J, Wainford RD. Integrated renal and sympathetic mechanisms underlying the development of sex- and age-dependent hypertension and the salt sensitivity of blood pressure. GeroScience 2024; 46:6435-6458. [PMID: 38976131 PMCID: PMC11494650 DOI: 10.1007/s11357-024-01266-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2024] [Accepted: 06/25/2024] [Indexed: 07/09/2024] Open
Abstract
Aging is a non-modifiable understudied risk factor for hypertension. We hypothesized that sympathetically mediated activation of renal sodium reabsorption drives age-dependent hypertension and the salt sensitivity of blood pressure (BP). Using 3-, 8-, and 16-month-old male and female Sprague-Dawley rats as a model of normal aging, we assessed BP, indices of sympathetic tone, and the physiological responses to acute and chronic sodium challenge including sodium chloride cotransporter (NCC) regulation. The effects of renal nerve ablation and NCC antagonism were assessed in hypertensive male rats. We observed sex-dependent impaired renal sodium handling (24 h sodium balance (meq), male 3-month 0.36 ± 0.1 vs. 16-month 0.84 ± 0.2; sodium load excreted during 5% bodyweight isotonic saline volume expansion (%) male 3-month 77 ± 5 vs. 16-month 22 ± 8), hypertension (MAP (mmHg) male 3-month 123 ± 4 vs. 16-month 148 ± 6), and the salt sensitivity of BP in aged male, but not female, rats. Attenuated sympathoinhibitory afferent renal nerve (ARN) responses contributed to increased sympathetic tone and hypertension in male rats. Increased sympathetic tone contributes to renal sodium retention, in part through increased NCC activity via a dysfunctional with-no-lysine kinase-(WNK) STE20/SPS1-related proline/alanine-rich kinase signaling pathway, to drive hypertension and the salt sensitivity of BP in aged male rats. NCC antagonism and renal nerve ablation, which reduced WNK dysfunction and decreased NCC activity, attenuated age-dependent hypertension in male Sprague-Dawley rats. The contribution of an impaired sympathoinhibitory ARN reflex to sex- and age-dependent hypertension in an NCC-dependent manner, via an impaired WNK1/WNK4 dynamic, suggests this pathway as a mechanism-based target for the treatment of age-dependent hypertension.
Collapse
Affiliation(s)
- Alissa A Frame
- Department of Pharmacology & Experimental Therapeutics and the Whitaker Cardiovascular Institute, Boston University Chobanian & Avedisian School of Medicine, Boston, MA, USA
| | - Kayla M Nist
- Department of Anatomy & Neurobiology, Boston University Chobanian & Avedisian School of Medicine, Boston, MA, USA
| | - Kiyoung Kim
- Department of Pharmacology & Experimental Therapeutics and the Whitaker Cardiovascular Institute, Boston University Chobanian & Avedisian School of Medicine, Boston, MA, USA
| | - Franco Puleo
- Department of Pharmacology & Experimental Therapeutics and the Whitaker Cardiovascular Institute, Boston University Chobanian & Avedisian School of Medicine, Boston, MA, USA
| | - Jesse D Moreira
- Department of Health Sciences, Sargent College, Boston University, Boston, MA, USA
| | - Hailey Swaldi
- Division of Cardiology, Emory University School of Medicine, 1750 Haygood Drive, Atlanta, GA, N22030322, USA
| | - James McKenna
- Division of Cardiology, Emory University School of Medicine, 1750 Haygood Drive, Atlanta, GA, N22030322, USA
| | - Richard D Wainford
- Department of Pharmacology & Experimental Therapeutics and the Whitaker Cardiovascular Institute, Boston University Chobanian & Avedisian School of Medicine, Boston, MA, USA.
- Division of Cardiology, Emory University School of Medicine, 1750 Haygood Drive, Atlanta, GA, N22030322, USA.
| |
Collapse
|
3
|
Wang Y, Peng Y, Yang C, Xiong D, Wang Z, Peng H, Wu X, Xiao X, Liu J. Single-cell sequencing analysis of multiple myeloma heterogeneity and identification of new theranostic targets. Cell Death Dis 2024; 15:672. [PMID: 39271659 PMCID: PMC11399131 DOI: 10.1038/s41419-024-07027-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Revised: 08/16/2024] [Accepted: 08/22/2024] [Indexed: 09/15/2024]
Abstract
Multiple myeloma (MM) is a heterogeneous and incurable tumor characterized by the malignant proliferation of plasma cells. It is necessary to clarify the heterogeneity of MM and identify new theranostic targets. We constructed a single-cell transcriptome profile of 48,293 bone marrow cells from MM patients and health donors (HDs) annotated with 7 continuous B lymphocyte lineages. Through CellChat, we discovered that the communication among B lymphocyte lineages between MM and HDs was disrupted, and unique signaling molecules were observed. Through pseudotime analysis, it was found that the differences between MM and HDs were mainly reflected in plasma cells. These differences are primarily related to various biological processes involving mitochondria. Then, we identified the key subpopulation associated with the malignant proliferation of plasma cells. This group of cells exhibited strong proliferation ability, high CNV scores, high expression of frequently mutated genes, and strong glucose metabolic activity. Furthermore, we demonstrated the therapeutic potential of WNK1 as a target. Our study provides new insights into the development of B cells and the heterogeneity of plasma cells in MM and suggests that WNK1 is a potential therapeutic target for MM.
Collapse
Affiliation(s)
- Yanpeng Wang
- Department of Hematology, the Second Xiangya Hospital, School of Life Sciences, Central South University, Changsha, 410011, China
- Hunan Province Key Laboratory of Basic and Applied Hematology, Central South University, Changsha, 410011, China
- Department of Clinical Laboratory, the Affiliated Nanhua Hospital, University of South China, Hengyang, 421001, China
| | - Yuanliang Peng
- Department of Hematology, the Second Xiangya Hospital, School of Life Sciences, Central South University, Changsha, 410011, China
- Hunan Province Key Laboratory of Basic and Applied Hematology, Central South University, Changsha, 410011, China
| | - Chaoying Yang
- Hunan Province Key Laboratory of Basic and Applied Hematology, Central South University, Changsha, 410011, China
| | - Dehui Xiong
- Hunan Province Key Laboratory of Basic and Applied Hematology, Central South University, Changsha, 410011, China
| | - Zeyuan Wang
- Hunan Province Key Laboratory of Basic and Applied Hematology, Central South University, Changsha, 410011, China
| | - Hongling Peng
- Department of Hematology, the Second Xiangya Hospital, School of Life Sciences, Central South University, Changsha, 410011, China.
| | - Xusheng Wu
- Shenzhen Health Development Research and Data Management Center, Shenzhen, 518028, China.
| | - Xiaojuan Xiao
- Hunan Province Key Laboratory of Basic and Applied Hematology, Central South University, Changsha, 410011, China.
| | - Jing Liu
- Department of Hematology, the Second Xiangya Hospital, School of Life Sciences, Central South University, Changsha, 410011, China.
- Hunan Province Key Laboratory of Basic and Applied Hematology, Central South University, Changsha, 410011, China.
| |
Collapse
|
4
|
Kim K, Nist KM, Puleo F, McKenna J, Wainford RD. Sex differences in dietary sodium evoked NCC regulation and blood pressure in male and female Sprague-Dawley, Dahl salt-resistant, and Dahl salt-sensitive rats. Am J Physiol Renal Physiol 2024; 327:F277-F289. [PMID: 38813592 PMCID: PMC11460337 DOI: 10.1152/ajprenal.00150.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Revised: 05/07/2024] [Accepted: 05/15/2024] [Indexed: 05/31/2024] Open
Abstract
Hypertension affects approximately one in two United States adults and sex plays an important role in the pathogenesis of hypertension. The Na+-Cl- cotransporter (NCC), regulated by a kinase network including with-no-lysine kinase (WNK)1 and WNK4, STE20/SPS1-related proline alanine-rich kinase (SPAK), and oxidative stress response 1 (OxSR1), is critical to Na+ reabsorption and blood pressure regulation. Dietary salt differentially modulates NCC in salt-sensitive and salt-resistant rats, in part by modulation of WNK/SPAK/OxSR1 signaling. In this study, we tested the hypothesis that sex-dependent differences in NCC regulation contribute to the development of the salt sensitivity of blood pressure using male and female Sprague-Dawley (SD), Dahl salt-resistant (DSR), and Dahl salt-sensitive (DSS) rats. In normotensive salt-resistant SD and DSR rats, a high-salt diet evoked significant decreases in NCC activity, expression, and phosphorylation. In males, these changes were associated with no change in WNK1 expression, a decrease in WNK4 levels, and suppression of SPAK/OxSR1 expression and phosphorylation. In contrast, in females, there was decreased NCC activity associated with suppression of SPAK/OxSR1 expression and phosphorylation. In hypertensive DSS rats, the ability of females to suppress NCC (in opposition to males) via a SPAK/OxSR1 mechanism likely contributes to their lower magnitude of salt-sensitive hypertension. Collectively, our findings support the existence of sex differences in male versus female rats with NCC regulation during dietary salt intake involving suppression of WNK4 expression in male rats only and the involvement of SPAK/OxSR1 signaling in both males and females.NEW & NOTEWORTHY NCC regulation is sex dependent. In normotensive male and female Sprague-Dawley and Dahl salt-resistant rats, which exhibit dietary Na+-evoked NCC suppression, male rats exhibit decreased WNK4 expression and decreased SPAK and OxSR1 levels, whereas female rats only suppress SPAK and OxSR1. In hypertensive Dahl salt-sensitive rats, the ability of females to suppress NCC (in opposition to males) via a SPAK/OxSR1 mechanism likely contributes to their lower magnitude of salt-sensitive hypertension.
Collapse
Affiliation(s)
- Kiyoung Kim
- Department of Pharmacology and Experimental Therapeutics, Whitaker Cardiovascular Institute, Boston University Chobanian and Avedisian School of Medicine, Boston, Massachusetts, United States
| | - Kayla M Nist
- Department of Anatomy and Neurobiology, Boston University Chobanian and Avedisian School of Medicine, Boston, Massachusetts, United States
| | - Franco Puleo
- Department of Pharmacology and Experimental Therapeutics, Whitaker Cardiovascular Institute, Boston University Chobanian and Avedisian School of Medicine, Boston, Massachusetts, United States
| | - James McKenna
- Division of Cardiology, Department of Medicine, Emory University School of Medicine, Atlanta, Georgia, United States
| | - Richard D Wainford
- Department of Pharmacology and Experimental Therapeutics, Whitaker Cardiovascular Institute, Boston University Chobanian and Avedisian School of Medicine, Boston, Massachusetts, United States
- Division of Cardiology, Department of Medicine, Emory University School of Medicine, Atlanta, Georgia, United States
| |
Collapse
|
5
|
Wang Y, Zhang Y, Yu W, Dong M, Cheng P, Wang Y. Sevoflurane-induced regulation of NKCC1/KCC2 phosphorylation through activation of Spak/OSR1 kinase and cognitive impairment in ischemia-reperfusion injury in rats. Heliyon 2024; 10:e32481. [PMID: 38975218 PMCID: PMC11226796 DOI: 10.1016/j.heliyon.2024.e32481] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Revised: 05/30/2024] [Accepted: 06/04/2024] [Indexed: 07/09/2024] Open
Abstract
The occurrence of excitotoxic damage caused by cerebral ischemia-reperfusion (I/R) injury is closely linked to a decrease in central inhibitory function, in which the concentration of chloride inside the cells ([Cl-]i) plays a crucial role. The outflow and inflow of [Cl-]i are controlled by KCC2 and NKCC1, which are cellular cotransporters for K+/Cl- and Na+/K+/Cl-, respectively. NKCC1/KCC2 is regulated by upstream regulators such as SPAK and OSR1, whose activity is influenced by I/R. Sevoflurane is the most commonly used and controversial general anesthetic. To elucidate the impact of sevoflurane on cerebral ischemia-reperfusion (I/R) injury and its underlying mechanism, we investigated its influence on cognitive function and the mechanism of action utilizing a rat model of I/R. By activating the kinase Spak/OSR1, we discovered that I/R damage enhanced the function of NKCC1 and inhibited the function of KCC2, which triggered an imbalance of [Cl-]i concentration, leading to neurological dysfunction and cognitive dysfunction. At the beginning of reperfusion, administration of 1.3 MAC sevoflurane for 3 h increased activation of Spak/OSR1 kinases on day 7 post-perfusion, resulting in an additional dysregulation of NKCC1 and KCC2 activity, which disappeared on day 14. Administration of Closantel, a Spak/OSR1 kinase inhibitor, to animals treated with sevoflurane reverses the additional stimulation. The research revealed that sevoflurane modified the functioning of NKCC1 and KCC2, resulting in cognitive decline by activating Spak/OSR1 kinase. However, this issue could be resolved by inhibiting Spak/OSR1. The research revealed that sevoflurane transiently alters the function of NKCC1 and KCC2, resulting in exacerbating cognitive decline. However, this can be fixed by suppressing Spak/OSR1.
Collapse
Affiliation(s)
- Yuefeng Wang
- Department of Anesthesiology, Yijishan Hospital, First Affiliated Hospital of Wannan Medical College, Wuhu, 241004, China
| | - Yuanyu Zhang
- Department of Health Manageent Center, Yijishan Hospital, First Affiliated Hospital of Wannan Medical College, Wuhu, 241004, China
| | - Wei Yu
- Department of Anesthesiology, Yijishan Hospital, First Affiliated Hospital of Wannan Medical College, Wuhu, 241004, China
| | - Mengjuan Dong
- Department of Anesthesiology, Yijishan Hospital, First Affiliated Hospital of Wannan Medical College, Wuhu, 241004, China
| | - Pingping Cheng
- Department of Anesthesiology, Yijishan Hospital, First Affiliated Hospital of Wannan Medical College, Wuhu, 241004, China
| | - Ye Wang
- Department of Anesthesiology, Yijishan Hospital, First Affiliated Hospital of Wannan Medical College, Wuhu, 241004, China
| |
Collapse
|
6
|
Zhang H, Wang Z, Qiao X, Peng N, Wu J, Chen Y, Cheng C. Unveiling the therapeutic potential of IHMT-337 in glioma treatment: targeting the EZH2-SLC12A5 axis. Mol Med 2024; 30:91. [PMID: 38886655 PMCID: PMC11184773 DOI: 10.1186/s10020-024-00857-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2024] [Accepted: 06/07/2024] [Indexed: 06/20/2024] Open
Abstract
Glioma is the most common malignant tumor of the central nervous system, with EZH2 playing a crucial regulatory role. This study further explores the abnormal expression of EZH2 and its mechanisms in regulating glioma progression. Additionally, it was found that IHMT-337 can potentially be a therapeutic agent for glioma. The prognosis, expression, and localization of EZH2 were determined using bioinformatics, IHC staining, Western blot (WB) analysis, and immunofluorescence (IF) localization. The effects of EZH2 on cell function were assessed using CCK-8 assays, Transwell assays, and wound healing assays. Public databases and RT-qPCR were utilized to identify downstream targets. The mechanisms regulating these downstream targets were elucidated using MS-PCR and WB analysis. The efficacy of IHMT-337 was demonstrated through IC50 measurements, WB analysis, and RT-qPCR. The effects of IHMT-337 on glioma cells in vitro were evaluated using Transwell assays, EdU incorporation assays, and flow cytometry. The potential of IHMT-337 as a treatment for glioma was assessed using a blood-brain barrier (BBB) model and an orthotopic glioma model. Our research confirms significantly elevated EZH2 expression in gliomas, correlating with patient prognosis. EZH2 facilitates glioma proliferation, migration, and invasion alongside promoting SLC12A5 DNA methylation. By regulating SLC12A5 expression, EZH2 activates the WNK1-OSR1-NKCC1 pathway, enhancing its interaction with ERM to promote glioma migration. IHMT-337 targets EZH2 in vitro to inhibit WNK1 activation, thereby suppressing glioma cell migration. Additionally, it inhibits cell proliferation and arrests the cell cycle. IHMT-337 has the potential to cross the BBB and has successfully inhibited glioma progression in vivo. This study expands our understanding of the EZH2-SLC12A5 axis in gliomas, laying a new foundation for the clinical translation of IHMT-337 and offering new insights for precision glioma therapy.
Collapse
Affiliation(s)
- Hongwei Zhang
- Anhui University of Science and Technology, Huainan, 232001, Anhui, China
- Division of Life Sciences and Medicine, Department of Neurosurgery, Centre for Leading Medicine and Advanced Technologies of IHM, The First Affiliated Hospital of USTC, University of Science and Technology of China, Hefei, 230001, Anhui, China
| | - Zixuan Wang
- Division of Life Sciences and Medicine, Department of Neurosurgery, Centre for Leading Medicine and Advanced Technologies of IHM, The First Affiliated Hospital of USTC, University of Science and Technology of China, Hefei, 230001, Anhui, China
- Dalian Medical University, Dalian, 116044, Liaoning, China
| | - Xiaolong Qiao
- Anhui University of Science and Technology, Huainan, 232001, Anhui, China
- Division of Life Sciences and Medicine, Department of Neurosurgery, Centre for Leading Medicine and Advanced Technologies of IHM, The First Affiliated Hospital of USTC, University of Science and Technology of China, Hefei, 230001, Anhui, China
| | - Nan Peng
- Division of Life Sciences and Medicine, Department of Neurosurgery, Centre for Leading Medicine and Advanced Technologies of IHM, The First Affiliated Hospital of USTC, University of Science and Technology of China, Hefei, 230001, Anhui, China
| | - Jiaxing Wu
- Division of Life Sciences and Medicine, Department of Neurosurgery, Centre for Leading Medicine and Advanced Technologies of IHM, The First Affiliated Hospital of USTC, University of Science and Technology of China, Hefei, 230001, Anhui, China
- Bengbu Medical University, Bengbu, 233000, Anhui, China
| | - Yinan Chen
- Division of Life Sciences and Medicine, Department of Neurosurgery, Centre for Leading Medicine and Advanced Technologies of IHM, The First Affiliated Hospital of USTC, University of Science and Technology of China, Hefei, 230001, Anhui, China
| | - Chuandong Cheng
- Anhui University of Science and Technology, Huainan, 232001, Anhui, China.
- Division of Life Sciences and Medicine, Department of Neurosurgery, Centre for Leading Medicine and Advanced Technologies of IHM, The First Affiliated Hospital of USTC, University of Science and Technology of China, Hefei, 230001, Anhui, China.
| |
Collapse
|
7
|
Ma Y, Chen J, Chen C, Wei B, Liu X. Suppression of HCN channels in the spinal dorsal horn restores KCC2 expression and attenuates diabetic neuropathic pain. Neurosci Lett 2024; 822:137626. [PMID: 38191090 DOI: 10.1016/j.neulet.2024.137626] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Revised: 12/24/2023] [Accepted: 01/03/2024] [Indexed: 01/10/2024]
Abstract
Previous studies have shown that the hyperpolarized cyclic nucleotide gated (HCN) ion channels in the spinal dorsal horn (SDH) might be involved in the development of diabetic neuropathic pain (DNP). Additionally, other studies have shown that the decreased potassium-chloride cotransporter 2 (KCC2) expression in the SDH promotes pain hypersensitivity. Both HCN channels and KCC2 were highly expressed in spinal substantia gelatinosa neurons. However, whether the K+ efflux induced by the activation of HCN channels in DNP modulate KCC2 function and subsequently affect the role of γ-aminobutyric acid (GABA)/GABA-A receptors of neurons in the SDH remains to be clarified. The purpose of this work was to investigate the underlying mechanisms of KCC2 participating in HCN channels to promote DNP. Here, we found that the analgesic role of HCN channels blocker ZD7288 was associated with the up-regulated KCC2 expression and could be prevented by DIOA, a KCC2 blocker. Furthermore, the level of GABA in DNP rats significantly increased, which was decreased by ZD72288. Moreover, DIOA pretreatment could partly block the inhibitory effect of ZD7288 on the cyclic adenosine monophosphate-protein kinase A (cAMP-PKA) signaling activation of DNP rats. Finally, inhibition of cAMP-PKA signaling alleviated allodynia and elevated KCC2 expression in DNP rats. Altogether, this study reveals that the role of cAMP-PKA signaling-regulated HCN channels in DNP associated with decreased KCC2 expression in the spinal cord and altered GABA nature.
Collapse
Affiliation(s)
- Yanqiao Ma
- Department of Physiology, Zunyi Medical University, Zunyi 563000, China
| | - Ji Chen
- School of Pharmacy, Qingdao University, Qingdao 266000, China
| | - Chaodong Chen
- General Surgery, Fenggang County People's Hospital, Zunyi 563000, China
| | - Bangcong Wei
- Department of Pharmacy, Dushan County Mawei Central Hospital, Qiannan Buyi and Miao Autonomous Prefecture, 558000, China
| | - Xiaohong Liu
- Department of Physiology, Zunyi Medical University, Zunyi 563000, China.
| |
Collapse
|
8
|
Liu X, Chen J, Xu X, Liu J, Zhang J, Cheng H, Ahmed Z, Huang B, Lei C. A missense mutation of the WNK1 gene affects cold tolerance in Chinese domestic cattle. Anim Biotechnol 2023; 34:4803-4808. [PMID: 37079337 DOI: 10.1080/10495398.2023.2196316] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/21/2023]
Abstract
Inclement weather conditions, especially cold stress, have threatened the cattle industry. Cattle exposed to cold environments for a longer time suffer developmental delay, immunity decline, and eventually death. WNK1 is a member of With-no-lysine kinases (WNKs), widely expressed in animal organs and tissues. WNK1 and WNK4 are expressed in adipose tissue, and WNK4 promotes adipogenesis. WNK1 does not directly affect adipogenesis but has been shown to promote WNK4 expression in several tissues or organs. One missense mutation NC_037346.1:g.107692244, A > G, rs208265410 in the WNK1 gene was detected from the database of bovine genomic variation (BGVD). Here, we collected 328 individuals of 17 breeds representing four groups of Chinese cattle, northern group cattle, southern group cattle, central group cattle, and special group cattle (Tibetan cattle). We also collected the temperature and humidity data records from their relative locations. The frequencies of the G allele in Chinese breeds increased from northern China to southern China, and the frequencies of the A allele showed an opposite trend. Our results indicate that the WNK1 gene might be a candidate gene marker associated with cold tolerance.
Collapse
Affiliation(s)
- Xin Liu
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling, China
| | - Jialei Chen
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling, China
| | - Xinlong Xu
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling, China
| | - Jianyong Liu
- Yunnan Academy of Grassland and Animal Science, Kunming, China
| | - Jicai Zhang
- Yunnan Academy of Grassland and Animal Science, Kunming, China
| | - Haijian Cheng
- Shandong Key Lab of Animal Disease Control and Breeding, Institute of Animal Science and Veterinary Medicine, Shandong Academy of Agricultural Sciences, Jinan, China
| | - Zulfiqar Ahmed
- Faculty of Veterinary and Animal Sciences, University of Poonch Rawalakot Azad Jammu and Kashmir Pakistan, Rawalakot, Pakistan
| | - Bizhi Huang
- Yunnan Academy of Grassland and Animal Science, Kunming, China
| | - Chuzhao Lei
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling, China
| |
Collapse
|
9
|
Sapio MR, King DM, Staedtler ES, Maric D, Jahanipour J, Kurochkina NA, Manalo AP, Ghetti A, Mannes AJ, Iadarola MJ. Expression pattern analysis and characterization of the hereditary sensory and autonomic neuropathy 2 A (HSAN2A) gene with no lysine kinase (WNK1) in human dorsal root ganglion. Exp Neurol 2023; 370:114552. [PMID: 37793538 DOI: 10.1016/j.expneurol.2023.114552] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2023] [Revised: 08/20/2023] [Accepted: 09/27/2023] [Indexed: 10/06/2023]
Abstract
Inherited painless neuropathies arise due to genetic insults that either block the normal signaling of or destroy the sensory afferent neurons in the dorsal root ganglion (DRG) responsible for transducing noxious stimuli. Complete loss of these neurons leads to profound insensitivity to all sensory modalities including pain. Hereditary sensory and autonomic neuropathy type 2 (HSNAII) is a rare genetic neuropathy characterized by a progressive distal early onset sensory loss. This syndrome is caused by autosomal recessive mutations in the with-no-lysine protein kinase 1 (WNK1) serine-threonine kinase gene. Of interest, disease-associated mutations are found in the large exon, termed "HSN2," which encodes a 498 amino acid domain C-terminal to the kinase domain. These mutations lead to truncation of the HSN2-containing proteins through the addition of an early stop codon (nonsense mutation) leading to loss of the C-terminal domains of this large protein. The present study evaluates the transcripts, gene structure, and protein structure of HSN2-containing WNK1 splice variants in DRG and spinal cord in order to establish the basal expression patterns of WNK1 and HSN2-containing WNK1 splice variants using multiplex fluorescent situ hybridization. We hypothesized that these transcripts would be enriched in pain-sensing DRG neurons, and, potentially, that enrichment in nociceptive neurons was responsible for the painless phenotypes observed. However, our in-depth analyses revealed that the HSN2-WNK1 splice variants were ubiquitously expressed but were not enriched in tachykinin 1-expressing C-fiber neurons, a class of neurons with a highly nociceptive character. We subsequently identified other subpopulations of DRG neurons with higher levels of HSN2-WNK1 expression, including mechanosensory large fibers. These data are inconsistent with the hypothesis that this transcript is enriched in nociceptive fibers, and instead suggest it may be related to general axon maintenance, or that nociceptive fibers are more sensitive to the genetic insult. These findings clarify the molecular and cellular expression pattern of this painless neuropathy gene in human tissue.
Collapse
Affiliation(s)
- Matthew R Sapio
- Department of Perioperative Medicine, Clinical Center, National Institutes of Health, Bethesda, MD 20892, USA
| | - Diana M King
- Department of Perioperative Medicine, Clinical Center, National Institutes of Health, Bethesda, MD 20892, USA
| | - Ellen S Staedtler
- Department of Perioperative Medicine, Clinical Center, National Institutes of Health, Bethesda, MD 20892, USA
| | - Dragan Maric
- National Institute of Neurological Disorders and Stroke, Flow and Imaging Cytometry Core Facility, Bethesda, MD 20892, USA
| | - Jahandar Jahanipour
- National Institute of Neurological Disorders and Stroke, Flow and Imaging Cytometry Core Facility, Bethesda, MD 20892, USA
| | | | - Allison P Manalo
- Department of Perioperative Medicine, Clinical Center, National Institutes of Health, Bethesda, MD 20892, USA
| | | | - Andrew J Mannes
- Department of Perioperative Medicine, Clinical Center, National Institutes of Health, Bethesda, MD 20892, USA
| | - Michael J Iadarola
- Department of Perioperative Medicine, Clinical Center, National Institutes of Health, Bethesda, MD 20892, USA.
| |
Collapse
|
10
|
Fu X, Zhang Y, Zhang R. Regulatory role of PI3K/Akt/WNK1 signal pathway in mouse model of bone cancer pain. Sci Rep 2023; 13:14321. [PMID: 37652923 PMCID: PMC10471765 DOI: 10.1038/s41598-023-40182-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2023] [Accepted: 08/06/2023] [Indexed: 09/02/2023] Open
Abstract
In the advanced stage of cancer, the pain caused by bone metastasis is unbearable, but the mechanism of bone cancer pain (BCP) is very complicated and remains unclear. In this study, we used 4T1 mouse breast cancer cells to establish a bone cancer pain model to study the mechanism of BCP. Then the paw withdrawal mechanical threshold (PWMT) and the hematoxylin-eosin staining were used to reflect the erosion of cancer cells on tibia tissue. We also determined the role of proinflammatory factors (TNF-α, IL-17, etc.) in BCP by the enzyme-linked immunosorbent assay in mouse serum. When GSK690693, a new Akt inhibitor, was given and the absence of intermediate signal dominated by Akt is found, pain may be relieved by blocking the transmission of pain signal and raising the PWMT. In addition, we also found that GSK690693 inhibited the phosphorylation of Akt protein, resulting in a significant decrease in with-nolysinekinases 1 (WNK1) expression in the spinal cord tissue. In the BCP model, we confirmed that GSK690693 has a relieving effect on BCP, which may play an analgesic effect through PI3K-WNK1 signal pathway. At the same time, there is a close relationship between inflammatory factors and PI3K-WNK1 signal pathway. The PI3K/Akt pathway in the dorsal horn of the mouse spinal cord activates the downstream WNK1 protein, which promotes the release of inflammatory cytokines, which leads to the formation of BCP in mice. Inhibition of Akt can reduce the levels of IL-17 and TNF-α, cut off the downstream WNK1 protein signal receiving pathway, increase the PWMT and relieve BCP in mice. To clarify the analgesic target of BCP, to provide reference and theoretical support for the clinical effective treatment of BCP and the development of new high-efficiency analgesics.
Collapse
Affiliation(s)
- Xiao Fu
- Department of Anesthesiology, Taizhou Central Hospital (Taizhou University Hospital), Taizhou, 318000, China
- Inner Mongolia Medical University, Hohhot, 010110, China
| | - Yanhong Zhang
- Department of Anesthesiology, Peking University Cancer Hospital Inner Mongolia Hospital/Cancer Hospital Affiliated to Inner Mongolia Medical University, Hohhot, 010020, China.
| | - Rui Zhang
- Department of Anesthesiology, Peking University Cancer Hospital Inner Mongolia Hospital/Cancer Hospital Affiliated to Inner Mongolia Medical University, Hohhot, 010020, China
| |
Collapse
|
11
|
Wu Y, Wang F. Inhibition of NKCC1 in spinal dorsal horn and dorsal root ganglion results in alleviation of neuropathic pain in rats with spinal cord contusion. Mol Pain 2023; 19:17448069231159855. [PMID: 36760008 PMCID: PMC9950615 DOI: 10.1177/17448069231159855] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/11/2023] Open
Abstract
Previous studies have confirmed the relationship between chloride homeostasis and pain. However, the role of sodium potassium chloride co-transporter isoform 1 (NKCC1) in dorsal horn and dorsal root ganglion neurons (DRGs) in spinal cord injury (SCI)-induced neuropathic pain (NP) remains inconclusive. Therefore, we aimed to explore whether suppression of NKCC1 in the spinal cord and DRGs alleviate the NP of adult rats with thoracic spinal cord contusion. Thirty adult female Sprague-Dawley rats (8 week-old, weighing 250-280 g) were randomly divided into three groups with ten animals in each group (sham, SCI, and bumetanide groups). The paw withdrawal mechanical threshold and paw withdrawal thermal latency were recorded before injury (baseline) and on post-injury days 14, 21, 28, and 35. At the end of experiment, western blotting (WB) analysis, quantitative real-time Polymerase Chain Reaction (PCR) and immunofluorescence were performed to quantify NKCC1 expression. Our results revealed that NKCC1 protein expression in the spinal cord and DRGs was significantly up-regulated in rats with SCI. Intraperitoneal treatment of bumetanide (an NKCC1 inhibitor) reversed the expression of NKCC1 in the dorsal horn and DRGs and ameliorated mechanical ectopic pain and thermal hypersensitivities in the SCI rats. Our study demonstrated the occurrence of NKCC1 overexpression in the spinal cord and DRGs in a rodent model of NP and indicated that changes in the peripheral nervous system also play a major role in promoting pain sensitization after SCI.
Collapse
Affiliation(s)
- Yao Wu
- School of Rehabilitation Medicine, 12517Capital Medical University, Beijing, China.,Department of Spine Surgery, Beijing Bo'ai Hospital, China Rehabilitation Research Center, Beijing, China
| | - Fangyong Wang
- School of Rehabilitation Medicine, 12517Capital Medical University, Beijing, China.,Department of Spine Surgery, Beijing Bo'ai Hospital, China Rehabilitation Research Center, Beijing, China
| |
Collapse
|
12
|
Upregulation of LncRNA71132 in the spinal cord regulates hypersensitivity in a rat model of bone cancer pain. Pain 2023; 164:180-196. [PMID: 35543644 DOI: 10.1097/j.pain.0000000000002678] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2021] [Accepted: 04/13/2022] [Indexed: 01/09/2023]
Abstract
ABSTRACT Bone cancer pain (BCP) is a pervasive clinical symptom which impairs the quality life. Long noncoding RNAs (lncRNAs) are enriched in the central nervous system and play indispensable roles in numerous biological processes, while its regulatory function in nociceptive information processing remains elusive. Here, we reported that functional modulatory role of ENSRNOT00000071132 (lncRNA71132) in the BCP process and sponging with miR-143 and its downstream GPR85-dependent signaling cascade. Spinal lncRNA71132 was remarkably increased in the rat model of bone cancer pain. The knockdown of spinal lncRNA71132 reverted BCP behaviors and spinal c-Fos neuronal sensitization. Overexpression of spinal lncRNA71132 in naive rat generated pain behaviors, which were accompanied by increased spinal c-Fos neuronal sensitization. Furthermore, it was found that lncRNA71132 participates in the modulation of BCP by inversely regulating the processing of miR-143-5p. In addition, an increase in expression of spinal lncRNA71132 resulted in the decrease in expression of miR-143 under the BCP state. Finally, it was found that miR-143-5p regulates pain behaviors by targeting GPR85. Overexpression of miR-143-5p in the spinal cord reverted the nociceptive behaviors triggered by BCP, accompanied by a decrease in expression of spinal GPR85 protein, but no influence on expression of gpr85 mRNA. The findings of this study indicate that lncRNA71132 works as a miRNA sponge in miR-143-5p-mediated posttranscriptional modulation of GPR85 expression in BCP. Therefore, epigenetic interventions against lncRNA71132 may potentially work as novel treatment avenues in treating nociceptive hypersensitivity triggered by bone cancer.
Collapse
|
13
|
Xiu M, Li L, Li Y, Gao Y. An update regarding the role of WNK kinases in cancer. Cell Death Dis 2022; 13:795. [PMID: 36123332 PMCID: PMC9485243 DOI: 10.1038/s41419-022-05249-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2022] [Revised: 09/07/2022] [Accepted: 09/08/2022] [Indexed: 01/23/2023]
Abstract
Mammalian WNK kinases (WNKs) are serine/threonine kinases that contain four members, WNK1-4. They function to maintain ion homeostasis and regulate blood pressure in mammals. Recent studies have revealed that the dysregulation of WNKs contributes to tumor growth, metastasis, and angiogenesis through complex mechanisms, especially through phosphorylating kinase substrates SPS1-related proline/alanine-rich kinase (SPAK) and oxidative stress-responsive kinase 1 (OSR1). Here, we review and discuss the relationships between WNKs and several key factors/biological processes in cancer, including ion channels, cation chloride cotransporters, sodium bicarbonate cotransporters, signaling pathways, angiogenesis, autophagy, and non-coding RNAs. In addition, the potential drugs for targeting WNK-SPAK/OSR1 signaling have also been discussed. This review summarizes and discusses knowledge of the roles of WNKs in cancer, which provides a comprehensive reference for future studies.
Collapse
Affiliation(s)
- Mengxi Xiu
- grid.24516.340000000123704535Department of Oncology, Shanghai East Hospital, Tongji University School of Medicine, 200120 Shanghai, China
| | - Li Li
- grid.24516.340000000123704535Department of Oncology, Shanghai East Hospital, Tongji University School of Medicine, 200120 Shanghai, China
| | - Yandong Li
- grid.24516.340000000123704535Department of Oncology, Shanghai East Hospital, Tongji University School of Medicine, 200120 Shanghai, China
| | - Yong Gao
- grid.24516.340000000123704535Department of Oncology, Shanghai East Hospital, Tongji University School of Medicine, 200120 Shanghai, China
| |
Collapse
|
14
|
Hou CY, Ma CY, Yuh CH. WNK1 kinase signaling in metastasis and angiogenesis. Cell Signal 2022; 96:110371. [DOI: 10.1016/j.cellsig.2022.110371] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2021] [Revised: 05/24/2022] [Accepted: 05/25/2022] [Indexed: 02/06/2023]
|
15
|
Savardi A, Borgogno M, De Vivo M, Cancedda L. Pharmacological tools to target NKCC1 in brain disorders. Trends Pharmacol Sci 2021; 42:1009-1034. [PMID: 34620512 DOI: 10.1016/j.tips.2021.09.005] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2021] [Revised: 08/27/2021] [Accepted: 09/08/2021] [Indexed: 02/06/2023]
Abstract
The chloride importer NKCC1 and the chloride exporter KCC2 are key regulators of neuronal chloride concentration. A defective NKCC1/KCC2 expression ratio is associated with several brain disorders. Preclinical/clinical studies have shown that NKCC1 inhibition by the United States FDA-approved diuretic bumetanide is a potential therapeutic strategy in preclinical/clinical studies of multiple neurological conditions. However, bumetanide has poor brain penetration and causes unwanted diuresis by inhibiting NKCC2 in the kidney. To overcome these issues, a growing number of studies have reported more brain-penetrating and/or selective bumetanide prodrugs, analogs, and new molecular entities. Here, we review the evidence for NKCC1 pharmacological inhibition as an effective strategy to manage neurological disorders. We also discuss the advantages and limitations of bumetanide repurposing and the benefits and risks of new NKCC1 inhibitors as therapeutic agents for brain disorders.
Collapse
Affiliation(s)
- Annalisa Savardi
- Brain Development and Disease Laboratory, Istituto Italiano di Tecnologia, via Morego, 30, 16163 Genoa, Italy; Dulbecco Telethon Institute, 00185 Rome, Italy; Molecular Modeling and Drug Discovery Laboratory, Istituto Italiano di Tecnologia, via Morego, 30, 16163 Genoa, Italy
| | - Marco Borgogno
- Molecular Modeling and Drug Discovery Laboratory, Istituto Italiano di Tecnologia, via Morego, 30, 16163 Genoa, Italy
| | - Marco De Vivo
- Molecular Modeling and Drug Discovery Laboratory, Istituto Italiano di Tecnologia, via Morego, 30, 16163 Genoa, Italy.
| | - Laura Cancedda
- Brain Development and Disease Laboratory, Istituto Italiano di Tecnologia, via Morego, 30, 16163 Genoa, Italy; Dulbecco Telethon Institute, 00185 Rome, Italy.
| |
Collapse
|
16
|
Ho YJ, Chang J, Yeh KT, Gong Z, Lin YM, Lu JW. Prognostic and Clinical Implications of WNK Lysine Deficient Protein Kinase 1 Expression in Patients With Hepatocellular Carcinoma. In Vivo 2021; 34:2631-2640. [PMID: 32871793 DOI: 10.21873/invivo.12081] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2020] [Revised: 06/04/2020] [Accepted: 06/05/2020] [Indexed: 12/24/2022]
Abstract
BACKGROUND/AIM Hepatocellular carcinoma (HCC) is a particularly malignant form of cancer prevalent throughout the world; however, there is a pressing need for HCC biomarkers to facilitate prognosis and risk assessment. PATIENTS AND METHODS This paper reports on the potential prognostic value of WNK lysine deficient protein kinase 1 (WNK1) in cases of HCC. We analyzed the expression of WNK1 at the mRNA level using omics data from the UALCAN database. We then verified our findings through the immunohistochemical (IHC) staining of various human cancer tissue as well as 59 HCC samples paired with corresponding normal tissues. The prognostic value of mRNA or protein expression by WNK1 was evaluated using the Kaplan-Meier method. RESULTS Initial screening results revealed significantly higher WNK1 expression levels in HCC tissue compared to normal tissue. Verification using the paired HCC samples confirmed that the expression of WNK1 was indeed significantly higher in HCC tissue samples than in adjacent normal tissues. High WNK1 expression levels were significantly correlated with clinicopathological variables, including gender and histologic grade. Kaplan-Meier survival analysis revealed that high WNK1 expression levels were associated with poor HCC prognosis. Finally, univariate and multivariate analysis identified WNK1 as a prognostic factor for TNM stage in cases of HCC. CONCLUSION In summary, WNK1 is overexpressed at the mRNA and protein levels, and correlated with poor prognosis. Thus, WNK1 expression could potentially be used as a biomarker in HCC prognosis.
Collapse
Affiliation(s)
- Yi-Jung Ho
- School of Pharmacy, National Defense Medical Center, Taipei, Taiwan, R.O.C.,Graduate Institute of Life Sciences, National Defense Medical Center, Taipei, Taiwan, R.O.C
| | - Jungshan Chang
- Graduate Institute of Medical Sciences, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan, R.O.C
| | - Kun-Tu Yeh
- Department of Surgical Pathology, Changhua Christian Hospital, Changhua, Taiwan, R.O.C.,School of Medicine, Chung Shan Medical University, Taichung, Taiwan, R.O.C
| | - Zhiyuan Gong
- Department of Biological Sciences, National University of Singapore, Singapore, Singapore
| | - Yueh-Min Lin
- Department of Surgical Pathology, Changhua Christian Hospital, Changhua, Taiwan, R.O.C. .,School of Medicine, Chung Shan Medical University, Taichung, Taiwan, R.O.C.,Department of Medical Laboratory Science and Biotechnology, Central Taiwan University of Science and Technology, Taichung, Taiwan, R.O.C
| | - Jeng-Wei Lu
- Department of Biological Sciences, National University of Singapore, Singapore, Singapore
| |
Collapse
|
17
|
Deng SY, Tang XC, Chang YC, Xu ZZ, Chen QY, Cao N, Kong LJY, Wang Y, Ma KT, Li L, Si JQ. Improving NKCC1 Function Increases the Excitability of DRG Neurons Exacerbating Pain Induced After TRPV1 Activation of Primary Sensory Neurons. Front Cell Neurosci 2021; 15:665596. [PMID: 34113239 PMCID: PMC8185156 DOI: 10.3389/fncel.2021.665596] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2021] [Accepted: 04/13/2021] [Indexed: 11/13/2022] Open
Abstract
Background Our aim was to investigate the effects of the protein expression and the function of sodium, potassium, and chloride co-transporter (NKCC1) in the dorsal root ganglion (DRG) after activation of transient receptor potential vanilloid 1 receptor (TRPV1) in capsaicin-induced acute inflammatory pain and the possible mechanism of action. Methods Male Sprague–Dawley rats were randomly divided into control, capsaicin, and inhibitor groups. The expression and distribution of TRPV1 and NKCC1 in rat DRG were observed by immunofluorescence. Thermal radiation and acetone test were used to detect the pain threshold of heat and cold noxious stimulation in each group. The expressions of NKCC1 mRNA, NKCC1 protein, and p-NKCC1 in the DRG were detected by PCR and western blotting (WB). Patch clamp and chloride fluorescent probe were used to observe the changes of GABA activation current and intracellular chloride concentration. After intrathecal injection of protein kinase C (PKC) inhibitor (GF109203X) or MEK/extracellular signal-regulated kinase (ERK) inhibitor (U0126), the behavioral changes and the expression of NKCC1 and p-ERK protein in L4–6 DRG were observed. Result: TRPV1 and NKCC1 were co-expressed in the DRG. Compared with the control group, the immunofluorescence intensity of NKCC1 and p-NKCC1 in the capsaicin group was significantly higher, and the expression of NKCC1 in the nuclear membrane was significantly higher than that in the control group. The expression of NKCC1 mRNA and protein of NKCC1 and p-NKCC1 in the capsaicin group were higher than those in the control group. After capsaicin injection, GF109203X inhibited the protein expression of NKCC1 and p-ERK, while U0126 inhibited the protein expression of NKCC1. In the capsaicin group, paw withdrawal thermal latency (WTL) was decreased, while cold withdrawal latency (CWL) was prolonged. Bumetanide, GF109203X, or U0126 could reverse the effect. GABA activation current significantly increased in the DRG cells of the capsaicin group, which could be reversed by bumetanide. The concentration of chloride in the DRG cells of the capsaicin group increased, but decreased after bumetanide, GF109203X, and U0126 were administered. Conclusion Activation of TRPV1 by exogenous agonists can increase the expression and function of NKCC1 protein in DRG, which is mediated by activation of PKC/p-ERK signaling pathway. These results suggest that DRG NKCC1 may participate in the inflammatory pain induced by TRPV1.
Collapse
Affiliation(s)
- Shi-Yu Deng
- The Key Laboratory of Xinjiang Endemic and Ethnic Diseases, Department of Physiology, Shihezi University Medical College, Shihezi, China.,Department of Anesthesia, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China.,NHC Key Laboratory of Prevention and Treatment of Central Asia High Incidence Diseases, First Affiliated Hospital, School of Medicine, Shihezi University, Shihezi, China
| | - Xue-Chun Tang
- The Key Laboratory of Xinjiang Endemic and Ethnic Diseases, Department of Physiology, Shihezi University Medical College, Shihezi, China.,NHC Key Laboratory of Prevention and Treatment of Central Asia High Incidence Diseases, First Affiliated Hospital, School of Medicine, Shihezi University, Shihezi, China.,Department of Cardiology, First Affiliated Hospital of Shihezi University, Shihezi, China
| | - Yue-Chen Chang
- The Key Laboratory of Xinjiang Endemic and Ethnic Diseases, Department of Physiology, Shihezi University Medical College, Shihezi, China.,NHC Key Laboratory of Prevention and Treatment of Central Asia High Incidence Diseases, First Affiliated Hospital, School of Medicine, Shihezi University, Shihezi, China.,Medical Teaching Experimental Center, Shihezi University Medical College, Shihezi, China
| | - Zhen-Zhen Xu
- The Key Laboratory of Xinjiang Endemic and Ethnic Diseases, Department of Physiology, Shihezi University Medical College, Shihezi, China.,NHC Key Laboratory of Prevention and Treatment of Central Asia High Incidence Diseases, First Affiliated Hospital, School of Medicine, Shihezi University, Shihezi, China.,Department of Anesthesiology, Institute of Anesthesiology and Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Qin-Yi Chen
- The Key Laboratory of Xinjiang Endemic and Ethnic Diseases, Department of Physiology, Shihezi University Medical College, Shihezi, China.,Department of Anesthesiology, Xiangyang Central Hospital, Xiangyang Central Hospital, China
| | - Nan Cao
- The Key Laboratory of Xinjiang Endemic and Ethnic Diseases, Department of Physiology, Shihezi University Medical College, Shihezi, China.,NHC Key Laboratory of Prevention and Treatment of Central Asia High Incidence Diseases, First Affiliated Hospital, School of Medicine, Shihezi University, Shihezi, China
| | - Liang-Jing-Yuan Kong
- The Key Laboratory of Xinjiang Endemic and Ethnic Diseases, Department of Physiology, Shihezi University Medical College, Shihezi, China.,NHC Key Laboratory of Prevention and Treatment of Central Asia High Incidence Diseases, First Affiliated Hospital, School of Medicine, Shihezi University, Shihezi, China
| | - Yang Wang
- The Key Laboratory of Xinjiang Endemic and Ethnic Diseases, Department of Physiology, Shihezi University Medical College, Shihezi, China.,NHC Key Laboratory of Prevention and Treatment of Central Asia High Incidence Diseases, First Affiliated Hospital, School of Medicine, Shihezi University, Shihezi, China
| | - Ke-Tao Ma
- The Key Laboratory of Xinjiang Endemic and Ethnic Diseases, Department of Physiology, Shihezi University Medical College, Shihezi, China.,NHC Key Laboratory of Prevention and Treatment of Central Asia High Incidence Diseases, First Affiliated Hospital, School of Medicine, Shihezi University, Shihezi, China
| | - Li Li
- The Key Laboratory of Xinjiang Endemic and Ethnic Diseases, Department of Physiology, Shihezi University Medical College, Shihezi, China.,NHC Key Laboratory of Prevention and Treatment of Central Asia High Incidence Diseases, First Affiliated Hospital, School of Medicine, Shihezi University, Shihezi, China.,Department of Physiology, Medical College of Jiaxing University, Jiaxing, China
| | - Jun-Qiang Si
- The Key Laboratory of Xinjiang Endemic and Ethnic Diseases, Department of Physiology, Shihezi University Medical College, Shihezi, China.,NHC Key Laboratory of Prevention and Treatment of Central Asia High Incidence Diseases, First Affiliated Hospital, School of Medicine, Shihezi University, Shihezi, China
| |
Collapse
|
18
|
Li YC, Tian YQ, Wu YY, Xu YC, Zhang PA, Sha J, Xu GY. Upregulation of Spinal ASIC1 and NKCC1 Expression Contributes to Chronic Visceral Pain in Rats. Front Mol Neurosci 2021; 13:611179. [PMID: 33584200 PMCID: PMC7874109 DOI: 10.3389/fnmol.2020.611179] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2020] [Accepted: 12/15/2020] [Indexed: 12/12/2022] Open
Abstract
Aims: To determine whether acid-sensing ion channel 1 (ASIC1)–sodium-potassium-chloride cotransporter 1 (NKCC1) signaling pathway participates in chronic visceral pain of adult rats with neonatal maternal deprivation (NMD). Methods: Chronic visceral pain was detected by colorectal distension (CRD). Western blotting and Immunofluorescence were performed to detect the expression and location of ASIC1 and NKCC1. Whole-cell patch-clamp recordings were performed to record spinal synaptic transmission. Results: The excitatory synaptic transmission was enhanced and the inhibitory synaptic transmission was weakened in the spinal dorsal horn of NMD rats. ASIC1 and NKCC1 protein expression in the spinal dorsal horn was significantly up-regulated in NMD rats. Incubation of Amiloride reduced the amplitude of mEPSCs. Incubation of Bumetanide (BMT) increased the amplitude of mIPSCs. Intrathecal injection of ASIC1 or NKCC1 inhibitors reversed the threshold of CRD in NMD rats. Also, Amiloride treatment significantly reversed the expression of NKCC1 in the spinal dorsal horn of NMD rats. Conclusion: Our data suggest that the ASIC1-NKCC1 signaling pathway is involved in chronic visceral pain in NMD rats.
Collapse
Affiliation(s)
- Yong-Chang Li
- Jiangsu Key Laboratory of Neuropsychiatric Diseases and Institute of Neuroscience, Soochow University, Suzhou, China
| | - Yuan-Qing Tian
- Jiangsu Key Laboratory of Neuropsychiatric Diseases and Institute of Neuroscience, Soochow University, Suzhou, China
| | - Yan-Yan Wu
- Jiangsu Key Laboratory of Neuropsychiatric Diseases and Institute of Neuroscience, Soochow University, Suzhou, China
| | - Yu-Cheng Xu
- Jiangsu Key Laboratory of Neuropsychiatric Diseases and Institute of Neuroscience, Soochow University, Suzhou, China
| | - Ping-An Zhang
- Jiangsu Key Laboratory of Neuropsychiatric Diseases and Institute of Neuroscience, Soochow University, Suzhou, China
| | - Jie Sha
- Department of Gastroenterology, Jingjiang People's Hospital, Jingjiang, China
| | - Guang-Yin Xu
- Jiangsu Key Laboratory of Neuropsychiatric Diseases and Institute of Neuroscience, Soochow University, Suzhou, China
| |
Collapse
|
19
|
Li J, Luan F, Song J, Dong J, Shang M. Clinical Efficacy of Controlled-Release Morphine Tablets Combined with Celecoxib in Pain Management and the Effects on WNK1 Expression. Clinics (Sao Paulo) 2021; 76:e1907. [PMID: 33503173 PMCID: PMC7798123 DOI: 10.6061/clinics/2021/e1907] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/27/2020] [Accepted: 09/29/2020] [Indexed: 11/18/2022] Open
Abstract
OBJECTIVES This study was designed to evaluate the clinical efficacy of controlled-release morphine tablets combined with celecoxib in relieving osteocarcinoma-related pain and the effects of the combination on WNK1 expression. METHODS A total of 110 patients with osteocarcinoma-related pain were selected and divided into two groups based on the treatment administered, including the control group (treated with controlled-release morphine tablets alone) and the study group (treated with a combination of controlled-release morphine tablets and celecoxib). We compared the treatment efficacy, pain level (visual analog scale (VAS)), time of onset of breakthrough pain (BTP), dose of morphine, incidence of adverse events, quality of life (QOL) score, and With-no-lysine 1 (WNK1) expression in the peripheral blood (PB) as determined with qRT-PCR before and after treatment, of the two groups. RESULTS The total effective rate of the study group was higher than that of the control group, while the VAS score, time of onset of BTP, dose of morphine, incidence of adverse events, QOL score, and relative WNK1 expression in the PB were lower than those of the control group (p<0.05). CONCLUSION Combination treatment with controlled-release morphine tablets and celecoxib can be extensively used in the clinical setting because it effectively improves the symptoms, QOL score, and adverse effects in patients with osteocarcinoma-related pain.
Collapse
Affiliation(s)
- Jian Li
- Department of Joint Surgery, the Fourth People's Hospital of Jinan, Jinan, China
| | - Fanghai Luan
- Department of Orthopedic Surgery, the Fourth People's Hospital of Jinan, Jinan, China
| | - Jiangfeng Song
- Department of Orthopedic, Ju County People's Hospital, Rizhao, China
| | - Jianhua Dong
- Department of Orthopedic, Ju County People's Hospital, Rizhao, China
| | - Mingfu Shang
- Department of Spinal Cord Repairing, 960 Hospital of the Joint Logistics Support Force of PLA, Jinan, China
- *Corresponding author. E-mail:
| |
Collapse
|
20
|
Cardon T, Ozcan B, Aboulouard S, Kobeissy F, Duhamel M, Rodet F, Fournier I, Salzet M. Epigenetic Studies Revealed a Ghost Proteome in PC1/3 KD Macrophages under Antitumoral Resistance Induced by IL-10. ACS OMEGA 2020; 5:27774-27782. [PMID: 33163760 PMCID: PMC7643081 DOI: 10.1021/acsomega.0c02530] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/29/2020] [Accepted: 09/18/2020] [Indexed: 06/11/2023]
Abstract
Our previous investigation on macrophages has allowed us to show that the inhibition of the enzyme proprotein convertase (PC1/3) controls the activation of macrophages. We demonstrated that PC1/3 knockdown (KD) in macrophages exhibits an increased secretion of proinflammatory and antitumoral factors. In this biological context, we assessed the presence of histone modifications and the presence and contribution of a "ghost proteome" in these macrophages. We identified a set of alternative proteins (AltProts) that have a key role in the regulation of various signaling pathways. In this study, to further investigate the underlying mechanisms involved in the resistance of PC1/3-KD macrophages to anti-inflammatory stimuli, we have conducted a proteomic system biology study to assess the epigenome variation, focusing on histone modifications. Results from our study have indicated the presence of significant variations in histone modifications along with the identification of 28 AltProts, which can be correlated with antitumoral resistance under IL-10 stimulation. These findings highlight a key role of altered epigenome histone modifications in driving resistance and indicate that like the reference proteins, AltProts can have a major impact in the field of epigenetics and regulation of gene expression, as shown in our results.
Collapse
Affiliation(s)
- Tristan Cardon
- Inserm,
CHRU Lille, University Lille, U-1192—Laboratoire Protéomique,
Réponse Inflammatoire et Spectrométrie de Masse-PRISM, Lille 59000, France
| | - Bilgehan Ozcan
- Inserm,
CHRU Lille, University Lille, U-1192—Laboratoire Protéomique,
Réponse Inflammatoire et Spectrométrie de Masse-PRISM, Lille 59000, France
| | - Soulaimane Aboulouard
- Inserm,
CHRU Lille, University Lille, U-1192—Laboratoire Protéomique,
Réponse Inflammatoire et Spectrométrie de Masse-PRISM, Lille 59000, France
| | - Firas Kobeissy
- Department
of Psychiatry, McKnight Brain Institute, University of Florida, Gainesville, Florida 32611, United States
| | - Marie Duhamel
- Inserm,
CHRU Lille, University Lille, U-1192—Laboratoire Protéomique,
Réponse Inflammatoire et Spectrométrie de Masse-PRISM, Lille 59000, France
| | - Franck Rodet
- Inserm,
CHRU Lille, University Lille, U-1192—Laboratoire Protéomique,
Réponse Inflammatoire et Spectrométrie de Masse-PRISM, Lille 59000, France
| | - Isabelle Fournier
- Inserm,
CHRU Lille, University Lille, U-1192—Laboratoire Protéomique,
Réponse Inflammatoire et Spectrométrie de Masse-PRISM, Lille 59000, France
- Institut
Universitaire de France, Paris 75000, France
| | - Michel Salzet
- Inserm,
CHRU Lille, University Lille, U-1192—Laboratoire Protéomique,
Réponse Inflammatoire et Spectrométrie de Masse-PRISM, Lille 59000, France
- Institut
Universitaire de France, Paris 75000, France
| |
Collapse
|
21
|
Yuan C, Luo X, Zhan X, Zeng H, Duan S. EMT related circular RNA expression profiles identify circSCYL2 as a novel molecule in breast tumor metastasis. Int J Mol Med 2020; 45:1697-1710. [PMID: 32236616 PMCID: PMC7169655 DOI: 10.3892/ijmm.2020.4550] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2019] [Accepted: 02/14/2020] [Indexed: 12/11/2022] Open
Abstract
Substantial evidence indicates that circular RNAs (circRNAs) play vital roles in several diseases, especially in cancer development. However, the functions of circRNAs in breast cancer metastasis remain to be investigated. This study aimed to identify the key circRNAs involved in epithelial mesenchymal transition (EMT) of breast cancer and evaluated their molecular function and roles in pathways that may be associated with tumor metastasis. An EMT model was constructed by treating breast cancer cells MCF‑7 and MDA‑MB‑231 with transforming growth factor‑β1. High‑throughput RNA sequencing was used to identify the differentially expressed circRNAs in EMT and blank groups of two cells, and reverse transcription‑quantitative PCR was used to validate the expression of circSCYL2 in human breast cancer tissues and cells. The effects of circSCYL2 on breast cancer cells were explored by transfecting with plasmids and the biological roles were assessed using transwell assays. EMT groups of breast cancer cells exhibited the characteristics of mesenchymal cells. Furthermore, the present study found that 7 circRNAs were significantly upregulated in both the MCF‑7 EMT and MDA‑MB‑231 EMT groups, while 16 circRNAs were significantly downregulated. The current study identified that circSCYL2 was downregulated in breast cancer tissues and cell lines, and that circSCYL2 overexpression inhibited cell migration and invasion. This study provides expression profiles of circRNAs in EMT groups of breast cancer cells. circSCYL2, which is downregulated in breast cancer tissues and cells, may play an important role in breast cancer EMT progression.
Collapse
Affiliation(s)
- Chunlei Yuan
- Department of Breast Surgery, The Second Affiliated Hospital of Nanchang University
| | - Xuliang Luo
- Medical College of Nanchang University, Nanchang, Jiangxi 330000
| | - Xiang Zhan
- Department of General Surgery, The People's Hospital of Le 'An County, Fuzhou, Jiangxi 344000, P.R. China
| | - Huihui Zeng
- Department of General Surgery, The People's Hospital of Le 'An County, Fuzhou, Jiangxi 344000, P.R. China
| | - Sijia Duan
- Department of Breast Surgery, The Second Affiliated Hospital of Nanchang University
| |
Collapse
|