1
|
Grecco CF, Souza ID, Queiroz MEC. Novel materials as capillary coatings for in‐tube solid‐phase microextraction for bioanalysis. J Sep Sci 2021; 44:1662-1693. [DOI: 10.1002/jssc.202001070] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2020] [Revised: 01/11/2021] [Accepted: 01/31/2021] [Indexed: 12/18/2022]
Affiliation(s)
- Caroline Fernandes Grecco
- Faculdade de Filosofia Ciências e Letras de Ribeirão Preto Departamento de Química Universidade de São Paulo São Paulo Brazil
| | - Israel Donizeti Souza
- Faculdade de Filosofia Ciências e Letras de Ribeirão Preto Departamento de Química Universidade de São Paulo São Paulo Brazil
| | - Maria Eugênia Costa Queiroz
- Faculdade de Filosofia Ciências e Letras de Ribeirão Preto Departamento de Química Universidade de São Paulo São Paulo Brazil
| |
Collapse
|
2
|
Andries A, Rozenski J, Vermeersch P, Mekahli D, Van Schepdael A. Recent progress in the LC-MS/MS analysis of oxidative stress biomarkers. Electrophoresis 2020; 42:402-428. [PMID: 33280143 DOI: 10.1002/elps.202000208] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2020] [Revised: 11/17/2020] [Accepted: 11/30/2020] [Indexed: 12/12/2022]
Abstract
The presence of a dynamic and balanced equilibrium between the production of reactive oxygen (ROS) and nitrogen (RNS) species and the in-house antioxidant defense mechanisms is characteristic for a healthy body. During oxidative stress (OS), this balance is switched to increased production of ROS and RNS, exceeding the capacity of physiological antioxidant systems. This can cause damage to biological molecules, leading to loss of function and even cell death. Nowadays, there is increasing scientific and clinical interest in OS and the associated parameters to measure the degree of OS in biofluids. An increasing number of reports using LC-MS/MS methods for the analysis of OS biomarkers can be found. Since bioanalysis is usually complicated by matrix effects, various types of cleanup procedures are used to effectively separate the biomarkers from the matrix. This is an essential part of the analysis to prepare a reproducible and homogenous solution suitable for injection onto the column. The present review gives a summary of the chromatographic methods used for the determination of OS biomarkers in both urine and plasma, serum, and whole blood samples. The first part mainly describes the biological background of the different OS biomarkers, while the second part reports examples of chromatographic methods for the analysis of different metabolites connected with OS in biofluids, covering a period from 2015 till early 2020. The selected examples mainly include LC-MS/MS methods for isoprostanes, oxidized proteins, oxidized lipoproteins, and DNA/RNA biomarkers. The last part explains the clinical relevance of this review.
Collapse
Affiliation(s)
- Asmin Andries
- Department of Pharmaceutical and Pharmacological Sciences, Pharmaceutical Analysis, KU Leuven - University of Leuven, Leuven, Belgium
| | - Jef Rozenski
- KU Leuven - Rega Institute for Medical Research, Medicinal Chemistry, Leuven, Belgium
| | - Pieter Vermeersch
- Clinical Department of Laboratory Medicine, University Hospitals Leuven, Leuven, Belgium.,Center for Metabolic Diseases, University Hospitals Leuven, Leuven, Belgium
| | - Djalila Mekahli
- Department of Development and Regeneration, Laboratory of Pediatrics, PKD group, KU Leuven - University of Leuven, Leuven, Belgium.,Department of Pediatric Nephrology, University Hospitals Leuven, Leuven, Belgium
| | - Ann Van Schepdael
- Department of Pharmaceutical and Pharmacological Sciences, Pharmaceutical Analysis, KU Leuven - University of Leuven, Leuven, Belgium
| |
Collapse
|
3
|
Kataoka H. In-tube solid-phase microextraction: Current trends and future perspectives. J Chromatogr A 2020; 1636:461787. [PMID: 33359971 DOI: 10.1016/j.chroma.2020.461787] [Citation(s) in RCA: 46] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2020] [Revised: 12/02/2020] [Accepted: 12/04/2020] [Indexed: 01/01/2023]
Abstract
In-tube solid-phase microextraction (IT-SPME) was developed about 24 years ago as an effective sample preparation technique using an open tubular capillary column as an extraction device. IT-SPME is useful for micro-concentration, automated sample cleanup, and rapid online analysis, and can be used to determine the analytes in complex matrices simple sample processing methods such as direct sample injection or filtration. IT-SPME is usually performed in combination with high-performance liquid chromatography using an online column switching technology, in which the entire process from sample preparation to separation to data analysis is automated using the autosampler. Furthermore, IT-SPME minimizes the use of harmful organic solvents and is simple and labor-saving, making it a sustainable and environmentally friendly green analytical technique. Various operating systems and new sorbent materials have been developed to improve its extraction efficiency by, for example, enhancing its sorption capacity and selectivity. In addition, IT-SPME methods have been widely applied in environmental analysis, food analysis and bioanalysis. This review describes the present state of IT-SPME technology and summarizes its current trends and future perspectives, including method development and strategies to improve extraction efficiency.
Collapse
Affiliation(s)
- Hiroyuki Kataoka
- School of Pharmacy, Shujitsu University, Nishigawara, Okayama 703-8516, Japan.
| |
Collapse
|
4
|
Compensate for or Minimize Matrix Effects? Strategies for Overcoming Matrix Effects in Liquid Chromatography-Mass Spectrometry Technique: A Tutorial Review. Molecules 2020; 25:molecules25133047. [PMID: 32635301 PMCID: PMC7412464 DOI: 10.3390/molecules25133047] [Citation(s) in RCA: 96] [Impact Index Per Article: 24.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2020] [Revised: 06/30/2020] [Accepted: 07/01/2020] [Indexed: 11/16/2022] Open
Abstract
In recent decades, mass spectrometry techniques, particularly when combined with separation methods such as high-performance liquid chromatography, have become increasingly important in pharmaceutical, bio-analytical, environmental, and food science applications because they afford high selectivity and sensitivity. However, mass spectrometry has limitations due to the matrix effects (ME), which can be particularly marked in complex mixes, when the analyte co-elutes together with other molecules, altering analysis results quantitatively. This may be detrimental during method validation, negatively affecting reproducibility, linearity, selectivity, accuracy, and sensitivity. Starting from literature and own experience, this review intends to provide a simple guideline for selecting the best operative conditions to overcome matrix effects in LC-MS techniques, to obtain the best result in the shortest time. The proposed methodology can be of benefit in different sectors, such as pharmaceutical, bio-analytical, environmental, and food sciences. Depending on the required sensitivity, analysts may minimize or compensate for ME. When sensitivity is crucial, analysis must try to minimize ME by adjusting MS parameters, chromatographic conditions, or optimizing clean-up. On the contrary, to compensate for ME analysts should have recourse to calibration approaches depending on the availability of blank matrix. When blank matrices are available, calibration can occur through isotope labeled internal standards and matrix matched calibration standards; conversely, when blank matrices are not available, calibration can be performed through isotope labeled internal standards, background subtraction, or surrogate matrices. In any case, an adjusting of MS parameters, chromatographic conditions, or a clean-up are necessary.
Collapse
|
5
|
Holder C, Adams A, McGahee E, Xia B, Blount BC, Wang L. High-Throughput and Sensitive Analysis of Free and Total 8-Isoprostane in Urine with Isotope-Dilution Liquid Chromatography-Tandem Mass Spectrometry. ACS OMEGA 2020; 5:10919-10926. [PMID: 32455212 PMCID: PMC7241033 DOI: 10.1021/acsomega.0c00661] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/13/2020] [Accepted: 04/30/2020] [Indexed: 05/08/2023]
Abstract
Oxidative stress (OS) plays a major role in the pathogenesis of various diseases in humans. OS is a result of an imbalance between reactive oxygen species (ROS) and the biologically available antioxidants that prevent or repair damage that ROS inflict on the host cells. ROS are naturally generated during normal mitochondrial respiration and by oxidative burst during the immune response. Many factors may influence OS, including genetics, diet, exercise, and exposure to environmental toxicants (e.g., tobacco smoke). A nonenzymatic peroxidation product of arachidonic acid (AA), 8-iso-PGF2α (8-isoprostane), is a validated biomarker of OS that is present in urine as both glucuronide conjugate and free acid. Previous studies report that the conjugated forms of 8-isoprostane can vary between 30 and 80% of the total 8-isoprostane levels. By hydrolyzing the conjugated forms, it is possible to obtain a total (free + conjugated) measurement of 8-isoprostane in urine samples. Here, we describe a robust, automated, and high-throughput method for measuring total urinary 8-isoprostane using a polymeric weak anion-exchange solid-phase extraction (SPE) and isotope-dilution ultrahigh performance liquid chromatography electrospray ionization-tandem mass spectrometry (UHPLC-MS/MS). This method, using a 96-well plate platform, showed good sensitivity (8.8 pg/mL LOD) and used only 400 μL of the sample volume with a cycle time of 11 min. The inter- and intraday precision, calculated from 20 repeated measurements of two quality control pools, varied from 4 to 10%. Accuracy, calculated from the recovery percentage at three spiking levels, ranged from 92.7 to 106.7%. We modified this method to allow for the exclusive measurement of free 8-isoprostane by removing the hydrolysis step. We measured both free and total 8-isoprostane in urine collected from 30 cigarette smokers (free: 460 ± 78.8 pg/mL; total: 704 ± 108 pg/mL) and 30 nonusers of tobacco products (free: 110 ± 24.2 pg/mL; total: 161 ± 38.7 pg/mL). This method is robust, accurate, and easily adaptable for large population studies.
Collapse
Affiliation(s)
- Cory Holder
- Tobacco and Volatiles
Branch, Division of Laboratory Sciences, National Center for Environmental
Health, Centers for Disease Control and
Prevention, 4770 Buford Hwy, Atlanta, Georgia 30341, United
States
| | - Aaron Adams
- Tobacco and Volatiles
Branch, Division of Laboratory Sciences, National Center for Environmental
Health, Centers for Disease Control and
Prevention, 4770 Buford Hwy, Atlanta, Georgia 30341, United
States
- Oak Ridge Institute for Science and Education, Oak Ridge, Tennessee 37831, United States
| | - Ernest McGahee
- Tobacco and Volatiles
Branch, Division of Laboratory Sciences, National Center for Environmental
Health, Centers for Disease Control and
Prevention, 4770 Buford Hwy, Atlanta, Georgia 30341, United
States
| | - Baoyun Xia
- Tobacco and Volatiles
Branch, Division of Laboratory Sciences, National Center for Environmental
Health, Centers for Disease Control and
Prevention, 4770 Buford Hwy, Atlanta, Georgia 30341, United
States
| | - Benjamin C. Blount
- Tobacco and Volatiles
Branch, Division of Laboratory Sciences, National Center for Environmental
Health, Centers for Disease Control and
Prevention, 4770 Buford Hwy, Atlanta, Georgia 30341, United
States
| | - Lanqing Wang
- Tobacco and Volatiles
Branch, Division of Laboratory Sciences, National Center for Environmental
Health, Centers for Disease Control and
Prevention, 4770 Buford Hwy, Atlanta, Georgia 30341, United
States
| |
Collapse
|
6
|
Manousi N, Tzanavaras PD, Zacharis CK. Bioanalytical HPLC Applications of In-Tube Solid Phase Microextraction: A Two-Decade Overview. Molecules 2020; 25:molecules25092096. [PMID: 32365828 PMCID: PMC7248733 DOI: 10.3390/molecules25092096] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2020] [Revised: 04/28/2020] [Accepted: 04/29/2020] [Indexed: 12/18/2022] Open
Abstract
In-tube solid phase microextraction is a cutting-edge sample treatment technique offering significant advantages in terms of miniaturization, green character, automation, and preconcentration prior to analysis. During the past years, there has been a considerable increase in the reported publications, as well as in the research groups focusing their activities on this technique. In the present review article, HPLC bioanalytical applications of in-tube SPME are discussed, covering a wide time frame of twenty years of research reports. Instrumental aspects towards the coupling of in-tube SPME and HPLC are also discussed, and detailed information on materials/coatings and applications in biological samples are provided.
Collapse
Affiliation(s)
- Natalia Manousi
- Laboratory of Analytical Chemistry, School of Chemistry, Faculty of Sciences, Aristotle University of Thessaloniki, GR-54124 Thessaloniki, Greece; (N.M.); (P.D.T.)
| | - Paraskevas D. Tzanavaras
- Laboratory of Analytical Chemistry, School of Chemistry, Faculty of Sciences, Aristotle University of Thessaloniki, GR-54124 Thessaloniki, Greece; (N.M.); (P.D.T.)
| | - Constantinos K. Zacharis
- Laboratory of Pharmaceutical Analysis, Department of Pharmaceutical Technology, School of Pharmacy, Aristotle University of Thessaloniki, GR-54124 Thessaloniki, Greece
- Correspondence: ; Tel.: +30-231-099-7663
| |
Collapse
|
7
|
Ingle ME, Watkins D, Rosario Z, VélezVega CM, Calafat AM, Ospina M, Ferguson KK, Cordero JF, Alshawabkeh A, Meeker JD. An exploratory analysis of urinary organophosphate ester metabolites and oxidative stress among pregnant women in Puerto Rico. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 703:134798. [PMID: 31726298 PMCID: PMC6954949 DOI: 10.1016/j.scitotenv.2019.134798] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/17/2019] [Revised: 10/01/2019] [Accepted: 10/02/2019] [Indexed: 05/19/2023]
Abstract
BACKGROUND Organophosphate esters (OPEs) are used as flame retardants and plasticizers. Oxidative stress, the imbalance of reactive oxygen species and antioxidants, measured prenatally has been associated with adverse birth outcomes including preeclampsia and preterm birth. We are the first study to investigate the relationship between OPEs and oxidative stress among pregnant women. METHODS Pregnant women 18-40 yrs. were recruited in Northern Puerto Rico (n = 47) between 2011 and 2015. OPE concentrations of: bis(2-chloroethyl) phosphate (BCEtP), bis(1-chloro-2-propyl) phosphate (BCPP), bis(1,3-dichloro-2-propyl) phosphate (BDCPP), dibutyl phosphate (DNBP), and diphenyl phosphate (DPHP) and biomarkers for oxidative stress, 8-hydroxy-2'-deoxyguanosine (8-OHdG) and 8-isoprostane were measured in urine up to three times during pregnancy. Associations between oxidative stress biomarkers and OPEs were assessed using linear mixed models adjusted for specific gravity, age, BMI, and income. RESULTS Metabolites BCEtP, BDCPP, and DPHP were frequently detected (>97%). OPE metabolite concentrations remained stable over time (Intraclass correlation coefficients (ICCs): 0.51-0.60). Metabolites BCEtP, BCPP, and DPHP were associated with an increase in 8-isoprostane and OHdG. An interquartile range (IQR) increase in BDCPP was associated with a 21% increase in 8-isoprostane (p < 0.01), while and IQR increase in DPHP and BCPP was associated with a 12% increase (p = 0.04, p = 0.08, respectively). IQR increases in BDCPP and DPHP were also associated with an 18 and 19% increase in OHdG, respectively (p < 0.01). CONCLUSION OPE metabolites were frequently detected and our results suggest that exposure to OPEs is associated with higher levels of oxidative stress. Further investigation into these relationships and birth outcomes is warranted.
Collapse
Affiliation(s)
- Mary E Ingle
- Department of Environmental Health Sciences, University of Michigan School of Public Health, Ann Arbor, MI, USA
| | - Deborah Watkins
- Department of Environmental Health Sciences, University of Michigan School of Public Health, Ann Arbor, MI, USA
| | - Zaira Rosario
- University of Puerto Rico Graduate School of Public Health, UPR Medical Sciences Campus, PO Box 365067, San Juan, PR 00936-5067, USA
| | - Carmen M VélezVega
- University of Puerto Rico Graduate School of Public Health, UPR Medical Sciences Campus, PO Box 365067, San Juan, PR 00936-5067, USA
| | - Antonia M Calafat
- Centers for Disease Control and Prevention, 4770 Buford Hwy, MS F17, Atlanta, GA 30341, USA
| | - Maria Ospina
- Centers for Disease Control and Prevention, 4770 Buford Hwy, MS F17, Atlanta, GA 30341, USA
| | - Kelly K Ferguson
- Epidemiology Branch, National Institute of Environmental Health Sciences, Research Triangle Park, NC, USA
| | - José F Cordero
- Department of Epidemiology and Biostatistics, University of Georgia, Athens, GA, USA
| | - Akram Alshawabkeh
- College of Engineering, Northeastern University, 110 Forsyth St, Boston, MA 02115, USA
| | - John D Meeker
- Department of Environmental Health Sciences, University of Michigan School of Public Health, Ann Arbor, MI, USA.
| |
Collapse
|
8
|
Asiabi H, Yamini Y, Shamsayei M, Baheri T. Developing a novel packed in-tube solid-phase extraction method for determination ∆ 9-tetrahydrocannabinol in biological samples and cannabis leaves. J Sep Sci 2020; 43:1128-1136. [PMID: 31851409 DOI: 10.1002/jssc.201900965] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2019] [Revised: 12/13/2019] [Accepted: 12/15/2019] [Indexed: 12/21/2022]
Abstract
A novel plate-like nano-sorbent based on copper/cobalt/chromium layered double hydroxide was synthesized by a simple coprecipitation method. The synthesized nanoparticels were introduced into a stainless steel cartridge using a dry packing method. Then, the packed cartridge was introduced as a novel on-line "packed in-tube" configuration and followed by high performance liquid chromatography for the determination of trace amounts of ∆ 9-tetrahydrocannabinol from biological samples and cannabis leaves. The as-prepared sorbent exhibited long lifetime, good chemical stability, and high anion-exchange capacity. Several important factors affecting the extraction efficiency, such as extraction and desorption times, pH of the sample solution and flow rates of the sample and eluent solutions, were investigated and optimized. Under optimized conditions, this method showed good linearity for ∆ 9-tetrahydrocannabinol in the ranges of 0.09-500, 0.3-500, and 0.4-500 µg/L with coefficients of determination of 0.9999, 0.9991, and 0.9994 in water, serum and plasma samples, respectively. The inter- and intra-assay precisions (n = 3) were respectively in the ranges of 1.8-4.6% and 1.9-4.0% at three concentration levels of 10, 50, and 100 µg/L. The limits of detection were also in the range of 0.02-0.1 µg/L.
Collapse
Affiliation(s)
- Hamid Asiabi
- Department of Chemistry, Tarbiat Modares University, Tehran, Iran
| | - Yadollah Yamini
- Department of Chemistry, Tarbiat Modares University, Tehran, Iran
| | - Maryam Shamsayei
- Department of Chemistry, Tarbiat Modares University, Tehran, Iran
| | - Tahmine Baheri
- Department of Chemistry, Tarbiat Modares University, Tehran, Iran
| |
Collapse
|
9
|
Yu Y, Zhu X, Zhu J, Li L, Zhang X, Xiang M, Ma R, Yu L, Yu Z, Wang Z. Rapid and simultaneous analysis of tetrabromobisphenol A and hexabromocyclododecane in water by direct immersion solid phase microextraction: Uniform design to explore factors. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2019; 176:364-369. [PMID: 30959350 DOI: 10.1016/j.ecoenv.2019.03.104] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/04/2018] [Revised: 03/18/2019] [Accepted: 03/25/2019] [Indexed: 06/09/2023]
Abstract
Direct immersion solid phase microextraction (DI-SPME) coupled to liquid chromatography-tandem mass spectrometry (LC-MS/MS) is of significant research interest because of its low solvent consumption, simple design, and efficient, sensitive, fast performance. In this work, a combination of these two methods (DI-SPME-LC-MS) for the determination of tetrabromobisphenol A (TBBPA) and hexabromocyclododecane (HBCD) in water was developed. Important factors, which included temperature, stirring rate, salt concentration, pH value and adsorption time, were evaluated in for the optimization of solid phase microextraction (SPME) method. The method was developed using spiked natural waters in a concentration range of 0.1-10 ng mL-1, and showed notable linearity with regression coefficients ranging between 0.992 and 0.999. The limits of detection varied from 0.01 to 0.04 ng mL-1 (at S/N = 3) and relative standard deviation (RSD < 11%) were obtained showing that the precision of the method was reliable. Recoveries were in relatively high levels for both analytes and ranged from 88% to 108%. Moreover, in comparison with the performance time of traditional sample pretreatment methods such as solid-phase extraction (SPE), accelerated solvent extraction (ASE), and liquid-liquid extraction (LLE), DI-SPME-LC-MS takes only approximately 35 min to perform. The optimized method was successfully applied for monitoring concentrations of TBBPA and HBCD in water.
Collapse
Affiliation(s)
- Yunjiang Yu
- State Environmental Protection Key Laboratory of Environmental Pollution Health Risk Assessment, Center for Environmental Health Research, South China Institute of Environmental Sciences, The Ministry of Ecological and Environment of PR China, Guangzhou, 510535, PR China.
| | - Xiaohui Zhu
- State Environmental Protection Key Laboratory of Environmental Pollution Health Risk Assessment, Center for Environmental Health Research, South China Institute of Environmental Sciences, The Ministry of Ecological and Environment of PR China, Guangzhou, 510535, PR China
| | - Junyan Zhu
- State Environmental Protection Key Laboratory of Environmental Pollution Health Risk Assessment, Center for Environmental Health Research, South China Institute of Environmental Sciences, The Ministry of Ecological and Environment of PR China, Guangzhou, 510535, PR China; Key Laboratory of Subsurface Hydrology and Ecological Effects in Arid Region, Ministry of Education, School of Environmental Science and Engineering, Chang'an University, Xi'an, 710064, PR China
| | - Liangzhong Li
- State Environmental Protection Key Laboratory of Environmental Pollution Health Risk Assessment, Center for Environmental Health Research, South China Institute of Environmental Sciences, The Ministry of Ecological and Environment of PR China, Guangzhou, 510535, PR China; State Environmental Protection Key Laboratory of Environmental Risk Assessment and Control on Chemical Process, School of Resources and Environmental Engineering, East China University of Science and Technology, Shanghai, 200237, PR China.
| | - Xiaohua Zhang
- State Environmental Protection Key Laboratory of Environmental Pollution Health Risk Assessment, Center for Environmental Health Research, South China Institute of Environmental Sciences, The Ministry of Ecological and Environment of PR China, Guangzhou, 510535, PR China
| | - Mingdeng Xiang
- State Environmental Protection Key Laboratory of Environmental Pollution Health Risk Assessment, Center for Environmental Health Research, South China Institute of Environmental Sciences, The Ministry of Ecological and Environment of PR China, Guangzhou, 510535, PR China
| | - Ruixue Ma
- State Environmental Protection Key Laboratory of Environmental Pollution Health Risk Assessment, Center for Environmental Health Research, South China Institute of Environmental Sciences, The Ministry of Ecological and Environment of PR China, Guangzhou, 510535, PR China
| | - Lehuan Yu
- State Environmental Protection Key Laboratory of Environmental Pollution Health Risk Assessment, Center for Environmental Health Research, South China Institute of Environmental Sciences, The Ministry of Ecological and Environment of PR China, Guangzhou, 510535, PR China; Biology and Food Engineering Institute, Guangdong University of Education, Guangzhou, 510303, PR China
| | - Ziling Yu
- State Environmental Protection Key Laboratory of Environmental Pollution Health Risk Assessment, Center for Environmental Health Research, South China Institute of Environmental Sciences, The Ministry of Ecological and Environment of PR China, Guangzhou, 510535, PR China
| | - Zhengdong Wang
- State Environmental Protection Key Laboratory of Environmental Pollution Health Risk Assessment, Center for Environmental Health Research, South China Institute of Environmental Sciences, The Ministry of Ecological and Environment of PR China, Guangzhou, 510535, PR China
| |
Collapse
|
10
|
Huang S, Chen G, Ye N, Kou X, Zhu F, Shen J, Ouyang G. Solid-phase microextraction: An appealing alternative for the determination of endogenous substances - A review. Anal Chim Acta 2019; 1077:67-86. [PMID: 31307724 DOI: 10.1016/j.aca.2019.05.054] [Citation(s) in RCA: 69] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2019] [Revised: 05/22/2019] [Accepted: 05/23/2019] [Indexed: 02/07/2023]
Abstract
The determination of endogenous substances is of great significance for obtaining important biotic information such as biological components, metabolic pathways and disease biomarkers in different living organisms (e.g. plants, insects, animals and humans). However, due to the complex matrix and the trace concentrations of target analytes, the sample preparation procedure is an essential step before the analytes of interest are introduced into a detection instrument. Solid-phase microextraction (SPME), an emerging sample preparation technique that integrates sampling, extraction, concentration, and sample introduction into one step, has gained wide acceptance in various research fields, including in the determination of endogenous compounds. In this review, recent developments and applications of SPME for the determination of endogenous substances over the past five years are summarized. Several aspects, including the design of SPME devices (sampling configuration and coating), applications (in vitro and in vivo sampling), and coupling with emerging instruments (comprehensive two-dimensional gas chromatography (GC × GC), ambient mass spectrometry (AMS) and surface enhanced Raman scattering (SERS)) are involved. Finally, the challenges and opportunities of SPME methods in endogenous substances analysis are also discussed.
Collapse
Affiliation(s)
- Siming Huang
- Department of Radiology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, No. 107 Yanjiang Road West, Guangzhou, 510120, China
| | - Guosheng Chen
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry/KLGHEI of Environment and Energy Chemistry, School of Chemistry, Sun Yat-sen University, Guangzhou, 510275, China
| | - Niru Ye
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry/KLGHEI of Environment and Energy Chemistry, School of Chemistry, Sun Yat-sen University, Guangzhou, 510275, China
| | - Xiaoxue Kou
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry/KLGHEI of Environment and Energy Chemistry, School of Chemistry, Sun Yat-sen University, Guangzhou, 510275, China
| | - Fang Zhu
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry/KLGHEI of Environment and Energy Chemistry, School of Chemistry, Sun Yat-sen University, Guangzhou, 510275, China
| | - Jun Shen
- Department of Radiology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, No. 107 Yanjiang Road West, Guangzhou, 510120, China.
| | - Gangfeng Ouyang
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry/KLGHEI of Environment and Energy Chemistry, School of Chemistry, Sun Yat-sen University, Guangzhou, 510275, China; College of Chemistry & Molecular Engineering, Center of Advanced Analysis and Computational Science, Zhengzhou University, Kexue Avenue 100, Zhengzhou, 450001, PR China.
| |
Collapse
|
11
|
Modern Methods of Sample Preparation for the Analysis of Oxylipins in Biological Samples. Molecules 2019; 24:molecules24081639. [PMID: 31027298 PMCID: PMC6515351 DOI: 10.3390/molecules24081639] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2019] [Revised: 04/12/2019] [Accepted: 04/17/2019] [Indexed: 12/20/2022] Open
Abstract
Oxylipins are potent lipid mediators derived from polyunsaturated fatty acids, which play important roles in various biological processes. Being important regulators and/or markers of a wide range of normal and pathological processes, oxylipins are becoming a popular subject of research; however, the low stability and often very low concentration of oxylipins in samples are a significant challenge for authors and continuous improvement is required in both the extraction and analysis techniques. In recent years, the study of oxylipins has been directly related to the development of new technological platforms based on mass spectrometry (LC–MS/MS and gas chromatography–mass spectrometry (GC–MS)/MS), as well as the improvement in methods for the extraction of oxylipins from biological samples. In this review, we systematize and compare information on sample preparation procedures, including solid-phase extraction, liquid–liquid extraction from different biological tissues.
Collapse
|
12
|
Chen X, Lee J, Wu H, Tsang AW, Furdui CM. Mass Spectrometry in Advancement of Redox Precision Medicine. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2019; 1140:327-358. [PMID: 31347057 PMCID: PMC9236553 DOI: 10.1007/978-3-030-15950-4_19] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Redox (portmanteau of reduction-oxidation) reactions involve the transfer of electrons between chemical species in biological processes fundamental to life. It is of outmost importance that cells maintain a healthy redox state by balancing the action of oxidants and antioxidants; failure to do so leads to a multitude of diseases including cancer, diabetes, fibrosis, autoimmune diseases, and cardiovascular and neurodegenerative diseases. From the perspective of precision medicine, it is therefore beneficial to interrogate the redox phenotype of the individual-similar to the use of genomic sequencing-in order to design tailored strategies for disease prevention and treatment. This chapter provides an overview of redox metabolism and focuses on how mass spectrometry (MS) can be applied to advance our knowledge in redox biology and precision medicine.
Collapse
Affiliation(s)
- Xiaofei Chen
- Department of Internal Medicine, Section on Molecular Medicine, Wake Forest School of Medicine, Winston-Salem, NC, USA
| | - Jingyun Lee
- Department of Internal Medicine, Section on Molecular Medicine, Wake Forest School of Medicine, Winston-Salem, NC, USA
- Wake Forest Baptist Comprehensive Cancer Center, Winston-Salem, NC, USA
| | - Hanzhi Wu
- Department of Internal Medicine, Section on Molecular Medicine, Wake Forest School of Medicine, Winston-Salem, NC, USA
| | - Allen W Tsang
- Department of Internal Medicine, Section on Molecular Medicine, Wake Forest School of Medicine, Winston-Salem, NC, USA
- Wake Forest Baptist Comprehensive Cancer Center, Winston-Salem, NC, USA
- Center for Redox Biology and Medicine, Wake Forest School of Medicine, Winston-Salem, NC, USA
| | - Cristina M Furdui
- Department of Internal Medicine, Section on Molecular Medicine, Wake Forest School of Medicine, Winston-Salem, NC, USA.
- Wake Forest Baptist Comprehensive Cancer Center, Winston-Salem, NC, USA.
- Center for Redox Biology and Medicine, Wake Forest School of Medicine, Winston-Salem, NC, USA.
| |
Collapse
|
13
|
Chamitava L, Garcia-Larsen V, Cazzoletti L, Degan P, Pasini A, Bellisario V, Corsico AG, Nicolis M, Olivieri M, Pirina P, Ferrari M, Stasinopoulos MD, Zanolin ME. Determination of adjusted reference intervals of urinary biomarkers of oxidative stress in healthy adults using GAMLSS models. PLoS One 2018; 13:e0206176. [PMID: 30352092 PMCID: PMC6198964 DOI: 10.1371/journal.pone.0206176] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2018] [Accepted: 10/08/2018] [Indexed: 12/12/2022] Open
Abstract
In this study we aimed at identifying main demographic, laboratory and environmental factors influencing the level of urinary biomarkers (DNA-derived 8-oxodG and lipid membrane-derived 8-isoprostane), and deriving their adjusted 95% reference intervals (RI) in a sample of healthy people from the general population. Data from 281 healthy subjects from the Gene Environment Interactions in Respiratory Diseases survey were used in this study. Generalized additive models for location, scale and shape (GAMLSS) were used to find determinants of the biomarkers among gender, age, season and distance from collection (DFC), and to predict their RI. The RI of the biomarkers stratified by season and adjusted for DFC showed a slight statistically significant decrease in the biomarkers at the increasing DFC in two seasons, except the 8-oxodG during the warm season: median levels at the min and max values of DFC were (ng/mgcreat) 7.0–1.1 in the cold and 3.9–3.9 in the warm seasons for 8-oxodG, 0.7–0.2 in the cold and 1.3–0.6 in the warm seasons for 8-isoprostane. Both the biomarkers should be evaluated in association with the DFC and season in large epidemiological studies. The (semi)parametric GAMLSS method is a useful and flexible technique, which makes it possible to estimate adjusted RI.
Collapse
Affiliation(s)
- Liliya Chamitava
- Unit of Epidemiology and Medical Statistics (SESM), Department of Diagnostics and Public Health, University of Verona, Verona, Italy
| | - Vanessa Garcia-Larsen
- Program in Human Nutrition, Department of International Health, The Johns Hopkins Bloomberg School of Public Health, Baltimore, United States
| | - Lucia Cazzoletti
- Unit of Epidemiology and Medical Statistics (SESM), Department of Diagnostics and Public Health, University of Verona, Verona, Italy
| | - Paolo Degan
- Epidemiology, Prevention and Special Functions, National Institute of Cancer Research AOU S. Martino IST, Genova, Italy
| | - Andrea Pasini
- Department of Internal Medicine, University of Verona, Verona, Italy
| | - Valeria Bellisario
- Department of Public Health and Pediatrics, University of Turin, Torino, Italy
| | - Angelo G. Corsico
- Division of Respiratory Diseases, ERCS, S. Matteo, Hospital University of Pavia, Pavia, Italy
| | - Morena Nicolis
- Unit of Hygiene and Preventive, Environmental and Occupational Medicine, Department of Diagnostics and Public Health, University of Verona, Verona, Italy
| | - Mario Olivieri
- Unit of Occupational Medicine, University of Verona, Verona, Italy
| | - Pietro Pirina
- Institute of Respiratory Diseases, University of Sassari, Piazza Università, Sassari, Italy
| | - Marcello Ferrari
- Department of Medicine, Unit of Respiratory Medicine, University of Verona, Verona, Italy
| | - Mikis D. Stasinopoulos
- Statistics, Operational Research and Mathematics Research Centre, London Metropolitan University, London, United Kingdom
| | - Maria E. Zanolin
- Unit of Epidemiology and Medical Statistics (SESM), Department of Diagnostics and Public Health, University of Verona, Verona, Italy
- * E-mail:
| |
Collapse
|
14
|
PQQ ameliorates D-galactose induced cognitive impairments by reducing glutamate neurotoxicity via the GSK-3β/Akt signaling pathway in mouse. Sci Rep 2018; 8:8894. [PMID: 29891841 PMCID: PMC5995849 DOI: 10.1038/s41598-018-26962-9] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2017] [Accepted: 05/23/2018] [Indexed: 12/26/2022] Open
Abstract
Oxidative stress is known to be associated with various age-related diseases. D-galactose (D-gal) has been considered a senescent model which induces oxidative stress response resulting in memory dysfunction. Pyrroloquinoline quinone (PQQ) is a redox cofactor which is found in various foods. In our previous study, we found that PQQ may be converted into a derivative by binding with amino acid, which is beneficial to several pathological processes. In this study, we found a beneficial glutamate mixture which may diminish neurotoxicity by oxidative stress in D-gal induced mouse. Our results showed that PQQ may influence the generation of proinflammatory mediators, including cytokines and prostaglandins during aging process. D-gal-induced mouse showed increased MDA and ROS levels, and decreased T-AOC activities in the hippocampus, these changes were reversed by PQQ supplementation. Furthermore, PQQ statistically enhanced Superoxide Dismutase SOD2 mRNA expression. PQQ could ameliorate the memory deficits and neurotoxicity induced by D-gal via binding with excess glutamate, which provide a link between glutamate-mediated neurotoxicity, inflammation and oxidative stress. In addition, PQQ reduced the up-regulated expression of p-Akt by D-gal and maintained the activity of GSK-3β, resulting in a down-regulation of p-Tau level in hippocampus. PQQ modulated memory ability partly via Akt/GSK-3β pathway.
Collapse
|
15
|
Saito A, Hamano M, Kataoka H. Simultaneous analysis of multiple urinary biomarkers for the evaluation of oxidative stress by automated online in-tube solid-phase microextraction coupled with negative/positive ion-switching mode liquid chromatography-tandem mass spectrometry. J Sep Sci 2018; 41:2743-2749. [DOI: 10.1002/jssc.201800175] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2018] [Revised: 04/07/2018] [Accepted: 04/10/2018] [Indexed: 11/11/2022]
Affiliation(s)
- Akihiro Saito
- School of Pharmacy; Shujitsu University; Okayama Japan
| | - Mariko Hamano
- School of Pharmacy; Shujitsu University; Okayama Japan
| | | |
Collapse
|
16
|
Hamidi S, Alipour-Ghorbani N, Hamidi A. Solid Phase Microextraction Techniques in Determination of Biomarkers. Crit Rev Anal Chem 2018; 48:239-251. [DOI: 10.1080/10408347.2017.1396885] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Affiliation(s)
- Samin Hamidi
- Food and Drug Safety Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Nastaran Alipour-Ghorbani
- Research Laboratory of Dendrimers and Nanopolymers, Faculty of Chemistry, University of Tabriz, Tabriz, Iran
| | - Aliasghar Hamidi
- Food and Drug Safety Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
- Department of Medicinal Chemistry, Faculty of Pharmacy, Tabriz University of Medical Sciences, Tabriz, Iran
| |
Collapse
|
17
|
Sánchez-Tirado E, González-Cortés A, Yudasaka M, Iijima S, Langa F, Yáñez-Sedeño P, Pingarrón J. Electrochemical immunosensor for the determination of 8-isoprostane aging biomarker using carbon nanohorns-modified disposable electrodes. J Electroanal Chem (Lausanne) 2017. [DOI: 10.1016/j.jelechem.2016.11.003] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
|
18
|
Dastkhoon M, Ghaedi M, Asfaram A, Arabi M, Ostovan A, Goudarzi A. Cu@SnS/SnO 2 nanoparticles as novel sorbent for dispersive micro solid phase extraction of atorvastatin in human plasma and urine samples by high-performance liquid chromatography with UV detection: Application of central composite design (CCD). ULTRASONICS SONOCHEMISTRY 2017; 36:42-49. [PMID: 28069228 DOI: 10.1016/j.ultsonch.2016.10.030] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/01/2016] [Revised: 10/30/2016] [Accepted: 10/31/2016] [Indexed: 06/06/2023]
Abstract
Separation and detection of residual drug in biological fluids has directly related to human health in term of their beneficial or side effects. In biological fluid samples (complex matrix which containing drug at very low level) conduction of preliminary efficient technique as good choice for pre-concentration and clean-up of real sample before their instrumental analysis is highly recommended. In this result technique, based on nano-structure material which poses higher available surface area and larger member of reactive sites led to significant improvement in characteristic performance of analytical method. This paper focused on the synthesis and application of novel nano-sorbent for pre-concentration and extraction of atorvastatin (AT) from different biological fluids. Influence of various variables including sorbent dosage, eluent volume and sonication time on present method response was studied and optimized by central composite design under response surface methodology and accordingly an acceptable calibration curves over wide linear ranges (0.3-2000μgL-1) with high coefficient of determination higher than 0.999 strongly confirm high applicability of present method for quantification of analyte while limit of detection and quantification in plasma sample were 0.0608 and 0.2033μg L-1, respectively.
Collapse
Affiliation(s)
- Mehdi Dastkhoon
- Chemistry Department, Yasouj University, Yasouj 75918-74831, Iran
| | - Mehrorang Ghaedi
- Chemistry Department, Yasouj University, Yasouj 75918-74831, Iran.
| | - Arash Asfaram
- Chemistry Department, Yasouj University, Yasouj 75918-74831, Iran
| | - Maryam Arabi
- Chemistry Department, Yasouj University, Yasouj 75918-74831, Iran
| | - Abbas Ostovan
- Department of Chemistry, Kerman Branch, Islamic Azad University, Kerman, Iran
| | - Alireza Goudarzi
- Department of Polymer Engineering, Golestan University, Gorgan 49188-88369, Iran
| |
Collapse
|
19
|
Column switching UHPLC–MS/MS with restricted access material for the determination of CNS drugs in plasma samples. Bioanalysis 2017; 9:555-568. [DOI: 10.4155/bio-2016-0301] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
Background: Polypharmacy is a common practice in schizophrenia. Consequently, therapeutic drug monitoring is usually adopted to maintain the concentrations of the drugs in the plasma within a targeted therapeutic range, to maximize therapeutic efficiency and to diminish adverse side effects. Methodology: This study reports on a column switching UHPLC–MS/MS method to determine psychotropic drugs in plasma samples simultaneously. Results: The method was linear from 0.025 to 1.25 ng ml-1 with R2 above 0.9950 and the lack of fit test (p > 0.05). The precision values presented coefficients of variation lower than 12%, and the relative standard error of the accuracy were lower than 14%. Conclusion: The column switching UHPLC–MS/MS method developed herein successfully determined drugs in schizophrenic patients’ plasma samples for therapeutic drug monitoring.
Collapse
|
20
|
Jiao J, Wei Y, Chen J, Chen X, Zhang Y. Anti-aging and redox state regulation effects of A-type proanthocyanidins-rich cranberry concentrate and its comparison with grape seed extract in mice. J Funct Foods 2017. [DOI: 10.1016/j.jff.2016.12.039] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
|
21
|
Serra-Mora P, Moliner-Martínez Y, Molins-Legua C, Herráez-Hernández R, Verdú-Andrés J, Campíns-Falcó P. Trends in Online Intube Solid Phase Microextraction. COMPREHENSIVE ANALYTICAL CHEMISTRY 2017. [DOI: 10.1016/bs.coac.2017.01.002] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
22
|
Jurowski K, Kochan K, Walczak J, Barańska M, Piekoszewski W, Buszewski B. Comprehensive review of trends and analytical strategies applied for biological samples preparation and storage in modern medical lipidomics: State of the art. Trends Analyt Chem 2017. [DOI: 10.1016/j.trac.2016.10.014] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
|