1
|
Farias G, Ganley WJ, Price R, Conti DS, Mangal S, Bielski E, Newman B, Shur J. Microstructural Characterization of Dry Powder Inhaler Formulations Using Orthogonal Analytical Techniques. Pharm Res 2024; 41:2015-2029. [PMID: 39375241 PMCID: PMC11530509 DOI: 10.1007/s11095-024-03776-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2024] [Accepted: 09/24/2024] [Indexed: 10/09/2024]
Abstract
PURPOSE For locally-acting dry powder inhalers (DPIs), developing novel analytical tools that are able to evaluate the state of aggregation may provide a better understanding of the impact of material properties and processing parameters on the in vivo performance. This study explored the utility of the Morphologically-Directed Raman Spectroscopy (MDRS) and dissolution as orthogonal techniques to assess microstructural equivalence of the aerosolized dose of DPIs collected with an aerosol collection device. METHODS Commercial DPIs containing different strengths of Fluticasone Propionate (FP) and Salmeterol Xinafoate (SX) as monotherapy and combination products were sourced from different regions. These inhalers were compared with aerodynamic particle size distribution (APSD), dissolution, and MDRS studies. RESULTS APSD testing alone might not be able to explain differences reported elsewhere in in vivo studies of commercial FP/SX drug products with different Advair® strengths and/or batches. Dissolution studies demonstrated different dissolution rates between Seretide™ 100/50 and Advair® 100/50, whereas Flixotide™ 100 and Flovent® 100 had similar dissolution rates between each other. These differences in dissolution profiles were supported by MDRS results: the dissolution rate is increased if the fraction of FP associated with high soluble components is increased. Principle component analysis was used to identify the agglomerate classes that better discriminate different products. CONCLUSIONS MDRS and dissolution studies of the aerosolized dose of DPIs were successfully used as orthogonal techniques. This study highlights the importance of further assessing in vitro tools that are able to provide a bridge between material attributes or process parameters and in vivo performance.
Collapse
Affiliation(s)
- Gonçalo Farias
- Pharmaceutical Surface Science Research Group, Department of Pharmacy & Pharmacology, University of Bath, Bath, UK.
- Nanopharm Ltd, an Aptar Pharma Company, Wales, UK.
| | - William J Ganley
- Pharmaceutical Surface Science Research Group, Department of Pharmacy & Pharmacology, University of Bath, Bath, UK
- Nanopharm Ltd, an Aptar Pharma Company, Wales, UK
| | - Robert Price
- Pharmaceutical Surface Science Research Group, Department of Pharmacy & Pharmacology, University of Bath, Bath, UK
- Nanopharm Ltd, an Aptar Pharma Company, Wales, UK
| | - Denise S Conti
- Office of Research and Standards, Office of Generic Drugs, Center for Drug Evaluation and Research, Food and Drug Administration, Silver Spring, MD, USA
| | - Sharad Mangal
- Office of Research and Standards, Office of Generic Drugs, Center for Drug Evaluation and Research, Food and Drug Administration, Silver Spring, MD, USA
| | - Elizabeth Bielski
- Office of Research and Standards, Office of Generic Drugs, Center for Drug Evaluation and Research, Food and Drug Administration, Silver Spring, MD, USA
| | - Bryan Newman
- Office of Research and Standards, Office of Generic Drugs, Center for Drug Evaluation and Research, Food and Drug Administration, Silver Spring, MD, USA
| | - Jagdeep Shur
- Pharmaceutical Surface Science Research Group, Department of Pharmacy & Pharmacology, University of Bath, Bath, UK
- Nanopharm Ltd, an Aptar Pharma Company, Wales, UK
| |
Collapse
|
2
|
Yu D, Li M, Hoag SW, Nie H. Understanding Excipient-Induced Crystallization of Spray-Dried Amorphous Solid Dispersion. J Pharm Sci 2024:S0022-3549(24)00352-6. [PMID: 39306037 DOI: 10.1016/j.xphs.2024.08.024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2024] [Revised: 08/22/2024] [Accepted: 08/23/2024] [Indexed: 10/08/2024]
Abstract
This study investigates the compatibility of excipients with the model system SDI-X and their role in the induced crystallization of the amorphous compound-X in tablet formulations. We aimed to establish a straightforward and practical screening approach for evaluating excipient-induced crystallization of SDI in tablet matrices. Three methodologies-binary powder mixture, binary compact, and bilayer tablets-were employed to qualitatively and quantitatively evaluate the recrystallization of SDI-X with various excipients under accelerated storage conditions. The results demonstrated that binary compacts, providing direct physical contact between SDI-X and excipients, are superior in reflecting realistic drug-excipient contact within pharmaceutical tablets, enabling a more accurate assessment of excipient-induced crystallization for SDI-X. In contrast, the broadly used conventional binary blends can significantly underestimate this risk due to insufficient proximity. In addition, the bilayer tablets further confirmed that crystallization initiates at the contact surface between SDI-X and the excipients. The study highlighted that not only hygroscopicity but also the type of excipient and its physical contact with SDI-X significantly influence the recrystallization extent and rate of SDI-X. Interestingly, less hygroscopic diluents such as mannitol and lactose induced much higher levels of crystallization of SDIs, contrary to expectations based on moisture content alone. This suggests that the excipient type and contact surface are more critical in inducing recrystallization than just the level of moisture. The findings emphasize the need for careful excipient selection, study design, and sample preparation to enable appropriate assessments of SDI-excipient compatibility.
Collapse
Affiliation(s)
- Dongyue Yu
- Department of Pharmaceutical Sciences, University of Maryland, Baltimore, MD, United States; Center for Materials Science and Engineering, Merck & Co., Inc., 770 Sumneytown Pike, West Point, PA 19486, United States
| | - Meng Li
- Center for Materials Science and Engineering, Merck & Co., Inc., 770 Sumneytown Pike, West Point, PA 19486, United States
| | - Stephen W Hoag
- Department of Pharmaceutical Sciences, University of Maryland, Baltimore, MD, United States
| | - Haichen Nie
- Center for Materials Science and Engineering, Merck & Co., Inc., 770 Sumneytown Pike, West Point, PA 19486, United States.
| |
Collapse
|
3
|
Van Duong T, Diab S, Hodnett NS, Taylor LS. Kinetic Barriers to Disproportionation of Salts of Weakly Basic Drugs. Mol Pharm 2023; 20:3886-3894. [PMID: 37494545 DOI: 10.1021/acs.molpharmaceut.2c01034] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/28/2023]
Abstract
Disproportionation is a major issue in formulations containing salts of weakly basic drugs. Despite considerable interest in risk assessment approaches for disproportionation, the prediction of salt-to-base conversion remains challenging. Recent studies have highlighted several confounding factors other than pHmax that appear to play an important role in salt disproportionation and have suggested that kinetic barriers need to be considered in addition to the thermodynamic driving force when assessing the risk of a salt to undergo conversion to parent free base. Herein, we describe the concurrent application of in situ Raman spectroscopy and pH monitoring to investigate the disproportionation kinetics of three model salts, pioglitazone hydrochloride, sorafenib tosylate, and atazanavir sulfate, in aqueous slurries. We found that even for favorable thermodynamic conditions (i.e., pH ≫ pHmax), disproportionation kinetics of the salts were very different despite each system having a similar pHmax. The importance of free base nucleation kinetics was highlighted by the observation that the disproportionation conversion time in the slurries showed the same trend as the free base nucleation induction time. Pioglitazone hydrochloride, with a free base induction time of <1 min, rapidly converted to the free base in slurry experiments. In contrast, atazanavir sulfate, where the free base induction time was much longer, took several hours to undergo disproportionation in the slurry for pH ≫ pHmax. Additionally, we altered an established thermodynamically based modeling framework to account for kinetic effects (representing the nucleation kinetic barrier) to estimate the solid-state stability of salt formulations. In conclusion, a solution-based thermodynamic model is mechanistically appropriate to predict salt disproportionation in a solid-state formulation, when kinetic barriers are also taken into consideration.
Collapse
Affiliation(s)
- Tu Van Duong
- Department of Industrial and Physical Pharmacy, Purdue University, West Lafayette, Indiana47907, United States
| | - Samir Diab
- GlaxoSmithKline, Park Road, Ware, SG12 0DP, U.K
| | - Neil S Hodnett
- GlaxoSmithKline, Gunnels Wood Road, Stevenage, SG1 2NY, U.K
| | - Lynne S Taylor
- Department of Industrial and Physical Pharmacy, Purdue University, West Lafayette, Indiana47907, United States
| |
Collapse
|
4
|
Liu J, Klinzing GR, Nie H. Effect of Material Properties and Variability of Mannitol on Tablet Formulation Development. Pharm Res 2023; 40:2071-2085. [PMID: 37552385 DOI: 10.1007/s11095-023-03577-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2023] [Accepted: 07/21/2023] [Indexed: 08/09/2023]
Abstract
PURPOSE Using a high level of mannitol as a diluent in oral formulations can potentially result in tablet defects (e.g., chipping, cracking) during compression. This work aims to scrutinize the linkage between the mechanical properties and material attributes of mannitol and also uncover how variations between vendors and lots can lead to significant changes in the compaction performance of tablet formulations containing mannitol. METHODS The mechanical properties (Poisson's ratio, fracture energy) and mechanical performance (ejection force, pressure transmission ratio, residual radial die-wall stress, and tensile strength) of mannitol compacts were assessed on a compaction simulator for four lots of mannitol from two different vendors. The variation of material attributes of each lot, including particle size distribution (PSD), crystal form, primary crystal size and morphology, specific surface area (SSA), powder flow, and moisture absorption were investigated. RESULTS The variability of material attributes in mannitol lots, especially primary crystal size and SSA, can result in significant changes in mechanical properties and mechanical performance such as ejection force and residual radial die-wall stresses, which potentially led to chipping during compression. CONCLUSION The study elucidated the linkage between fundamental material attributes and mechanical properties of mannitol, highlighting their impact on tablet defects and compaction performance in compression. A comprehensive understanding of the variability in mannitol properties between vendors and lots is crucial for successful formulation development, particularly when high percentages of mannitol are included as a brittle excipient.
Collapse
Affiliation(s)
- Jiaying Liu
- Pharmaceutical Sciences, Merck & Co., Inc, 126 E. Lincoln Ave, Rahway, NJ, 07065, USA
| | - Gerard R Klinzing
- Pharmaceutical Sciences, Merck & Co., Inc, 126 E. Lincoln Ave, Rahway, NJ, 07065, USA
| | - Haichen Nie
- Pharmaceutical Sciences, Merck & Co., Inc, 126 E. Lincoln Ave, Rahway, NJ, 07065, USA.
- Center for Materials Science and Engineering, Merck & Co., Inc., 770 Sumneytown Pike, West Point, PA, 19486, USA.
| |
Collapse
|
5
|
Wang S, Xie Y, Su H, Luo Y, Wang M, Li T, Fu Y. Delivery of curcumin in a carboxymethyl cellulose and hydroxypropyl methyl cellulose carrier: Physicochemical properties and biological activity. Int J Biol Macromol 2023; 239:124203. [PMID: 37001776 DOI: 10.1016/j.ijbiomac.2023.124203] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2022] [Revised: 03/17/2023] [Accepted: 03/23/2023] [Indexed: 04/03/2023]
Abstract
Curcumin solid dispersions (Cur SDs) were prepared using hydroxypropyl methyl cellulose (HPMC) and sodium carboxymethyl cellulose (CMC) at different dosages. The results of Fourier transform infrared spectroscopy and Raman spectroscopy showed that the characteristic peak of curcumin shifted, and the addition of CMC enhanced this phenomenon. The addition of CMC reduced the contact angle, increased the surface free energy, and improved the solubility of Cur SDs. These changes were positively correlated with the amount of CMC. The surface morphology of Cur SDs changed from needle-like to sheet-like as observed by scanning electron microscopy. Cur SDs prepared by CMC and HPMC retained good biological activity. HT-29 human colon cancer cell analysis showed that the addition of CMC significantly improved the anti-proliferation effect of Cur SDs, thus enhancing the bioavailability of curcumin. Solid dispersions made with CMC and HPMC will be a promising hydrocolloid carrier to improve oral bioavailability and efficacy of curcumin.
Collapse
Affiliation(s)
- Shumin Wang
- School of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou 310018, China
| | - Yingxuan Xie
- School of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou 310018, China
| | - Huanhuan Su
- School of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou 310018, China
| | - Yanran Luo
- School of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou 310018, China
| | - Mengting Wang
- School of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou 310018, China
| | - Teng Li
- School of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou 310018, China
| | - Yuying Fu
- School of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou 310018, China.
| |
Collapse
|
6
|
Developing In Situ Chemometric Models with Raman Spectroscopy for Monitoring an API Disproportionation with a Complex Polymorphic Landscape. Pharmaceuticals (Basel) 2023. [DOI: 10.3390/ph16020327] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/24/2023] Open
Abstract
An in situ Raman method was developed to characterize the disproportionation of two salts involving a complex polymorphic landscape comprising up to two metastable and one stable freebase forms. Few precedents exist for Raman calibration procedures for solid form quantitation involving more than two polymorphs, while no literature examples were found for cases with multiple metastable forms. Therefore, a new Raman calibration procedure was proposed by directly using disproportionation experiments to generate multiple calibration samples encompassing a range of polymorph ratios through in-line Raman measurements complemented by off-line reference X-ray diffraction measurements. The developed Raman methods were capable of accurately quantitating each solid form in situ when solid concentration variation was incorporated into the calibration dataset. The kinetic understanding of the thermodynamically driven polymorphic conversions gained from this Raman method guided the selection of the salt best suited for the delivery of the active ingredient in the drug product. This work provided a spectroscopic and mathematical approach for simultaneously quantitating multiple polymorphs from a complex mixture of solids with the objective of real-time monitoring.
Collapse
|
7
|
Weldeab AO, McElderry JD, Lin Y. The Effect of In-Situ-Generated Moisture on Disproportionation of Pharmaceutical Salt. Mol Pharm 2023; 20:561-571. [PMID: 36524757 DOI: 10.1021/acs.molpharmaceut.2c00765] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Pharmaceutical salts are ubiquitously present in the market given their benefits in optimizing the critical properties of an active pharmaceutical ingredient (API). Achieving these benefits requires careful selection and understanding of the salt form of choice. Stability is especially critical here, as salts are susceptible to disproportionation. Several studies have shown the impact of moisture on disproportionation, with more focus on external humidity (moisture coming from outside the system). This work, on the other hand, is systematically designed to study the impact of moisture generated in situ (moisture produced within the system). To that end, an in-house developed compound 1 was selected as our salt API, and its disproportionation was studied in blends (binary and prototype) with hydrated model excipient─trisodium phosphate dodecahydrate (TSPD). TSPD possesses 12 water molecules, which could get released when triggered with enough energy (confirmed by thermogravimetric analysis and humidity studies). As a control for this study, similar blends were prepared with anhydrous trisodium phosphate (TSP), which has comparable properties to TSPD but lacks water. Overall, significant disproportionation was observed in TSPD blends exposed to 40 °C or 70 °C in a closed system; while no disproportionation was observed when the system was left open due to the escape of the moisture generated in situ. The API also remained intact for the blends with anhydrous TSP, as expected. Meanwhile, stressing at 40 °C/75%RH condition resulted in significant disproportionation for both TSPD and TSP blends due to the exposure to external humidity. Hydrated excipients are normally used in drug development, and this work stresses the need for probing the impact from within the system when such excipients are utilized with salt API. This will help fully unravel the overall effect of moisture on the drug, which is relevant downstream when selecting processing conditions, packaging, and so forth.
Collapse
Affiliation(s)
- Asmerom O Weldeab
- Small Molecule Drug Product Development, Biogen, 115 Broadway, Cambridge, Massachusetts02142, United States
| | - John-David McElderry
- Analytical Development, Biogen, 115 Broadway, Cambridge, Massachusetts02142, United States
| | - Yiqing Lin
- Small Molecule Drug Product Development, Biogen, 115 Broadway, Cambridge, Massachusetts02142, United States
| |
Collapse
|
8
|
Wong YT, Aspers RLEG, Uusi-Penttilä M, Kentgens APM. Rapid Quantification of Pharmaceuticals via 1H Solid-State NMR Spectroscopy. Anal Chem 2022; 94:16667-16674. [PMID: 36417314 PMCID: PMC9730298 DOI: 10.1021/acs.analchem.2c02905] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2022] [Accepted: 11/11/2022] [Indexed: 11/24/2022]
Abstract
The physicochemical properties of active pharmaceutical ingredients (APIs) can depend on their solid-state forms. Therefore, characterization of API forms is crucial for upholding the performance of pharmaceutical products. Solid-state nuclear magnetic resonance (SSNMR) spectroscopy is a powerful technique for API quantification due to its selectivity. However, quantitative SSNMR experiments can be time consuming, sometimes requiring days to perform. Sensitivity can be considerably improved using 1H SSNMR spectroscopy. Nonetheless, quantification via 1H can be a challenging task due to low spectral resolution. Here, we offer a novel 1H SSNMR method for rapid API quantification, termed CRAMPS-MAR. The technique is based on combined rotation and multiple-pulse spectroscopy (CRAMPS) and mixture analysis using references (MAR). CRAMPS-MAR can provide high 1H spectral resolution with standard equipment, and data analysis can be accomplished with ease, even for structurally complex APIs. Using several API species as model systems, we show that CRAMPS-MAR can provide a lower quantitation limit than standard approaches such as fast MAS with peak integration. Furthermore, CRAMPS-MAR was found to be robust for cases that are inapproachable by conventional ultra-fast (i.e., 100 kHz) MAS methods even when state-of-the-art SSNMR equipment was employed. Our results demonstrate CRAMPS-MAR as an alternative quantification technique that can generate new opportunities for analytical research.
Collapse
Affiliation(s)
- Y. T.
Angel Wong
- Institute
for Molecules and Materials, Radboud University, Heyendaalseweg 135, 6525 AJNijmegen, The Netherlands
| | - Ruud L. E. G. Aspers
- Institute
for Molecules and Materials, Radboud University, Heyendaalseweg 135, 6525 AJNijmegen, The Netherlands
| | | | - Arno P. M. Kentgens
- Institute
for Molecules and Materials, Radboud University, Heyendaalseweg 135, 6525 AJNijmegen, The Netherlands
| |
Collapse
|
9
|
Yu D, Nie H. Evaluation of Alternative Metallic Stearates as Lubricants in Pharmaceutical Tablet Formulation. AAPS PharmSciTech 2022; 23:200. [PMID: 35882653 DOI: 10.1208/s12249-022-02338-1] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2022] [Accepted: 06/19/2022] [Indexed: 11/30/2022] Open
Abstract
Magnesium stearate (MgSt) is perhaps one of the most frequently used lubricants in tablet formulation due to its superior lubrication capacity, yet it could also negatively affect the critical quality attributes of pharmaceutical products. Therefore, we provided a rather comprehensive evaluation of another two FDA-approved metallic stearates, sodium stearate (NaSt) and calcium stearate (CaSt), as alternative tablet lubricants. The primary objective of the present study is to comparatively evaluate the physicochemical properties and lubrication efficiency of the three metallic stearates. In addition, it was also aimed to specify the most influential factor for ranking and differentiating the lubricity of various lubricants using principal component analysis. Unit ejection force could be used herein as a simple and the most powerful parameter to evaluate the lubrication performance instead of the friction coefficient. The results suggested that CaSt, MgSt, and NaSt had similar impacts on the mechanical strength of tablets. However, CaSt exhibited insufficient lubrication effects as the formulations containing CaSt showed low pressure transmission ratios, high unit ejection forces, and high friction coefficients. In contrast, both MgSt and NaSt displayed satisfactory lubrication efficiency without negatively impacting tabletability. Notably, the lubrication performance of the formulation containing 0.5 wt% NaSt was almost identical to that of the formulation with 1 wt% MgSt, indicating that NaSt had a remarkable lubrication capability probably due to its high specific surface area. In summary, the findings of this investigation should provide practical information and feasible methodologies to readily determine the lubricity and to sensibly select alternative lubricants for pharmaceutical tablet formulations.
Collapse
Affiliation(s)
- Dongyue Yu
- Department of Pharmaceutical Sciences, University of Maryland, Baltimore, MD, USA.,Center for Materials Science and Engineering, Merck & Co., Inc., 770 Sumneytown Pike, , West Point, PA, 19486, USA
| | - Haichen Nie
- Center for Materials Science and Engineering, Merck & Co., Inc., 770 Sumneytown Pike, , West Point, PA, 19486, USA. .,Department of Industrial and Physical Pharmacy, Purdue University, 575 Stadium Mall Drive, West Lafayette, IN, 47907, USA.
| |
Collapse
|
10
|
Fauteux-Lefebvre C, Lavoie FB, Hudon S, Gosselin R. Hierarchical Multivariate Curve Resolution Coupled to Raman Imaging for Fast Characterization of Pharmaceutical Tablets. J Pharm Innov 2022. [DOI: 10.1007/s12247-022-09652-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
11
|
Nie H, Klinzing G, Xu W. A Comparative Study of Applying Backscattering and Transmission Raman Spectroscopy to Quantify Solid-State Form Conversion in Pharmaceutical Tablets. Int J Pharm 2022; 617:121608. [PMID: 35202722 DOI: 10.1016/j.ijpharm.2022.121608] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2022] [Revised: 02/05/2022] [Accepted: 02/18/2022] [Indexed: 11/18/2022]
Abstract
Selecting appropriate Raman measurement and data processing method are of importance to enable effective quantification of solid form conversions upon processing or storage. Therefore, a comparative evaluation is presented herein on using backscattering and transmission Raman spectroscopy to quantify salt disproportionation in tablet matrices. The second part focuses on different spectra processing approaches and calibration models for quantifications. Finally, samples under different mechanical stresses were comprehensively analyzed using different Raman measurements. Much as transmission Raman spectrometry may provide accuracy on bulk measurements by having large sampling volume, it has the drawback of signal attenuation and may overlook process-induced phase transitions occurring on local regions of tablet surface. To overcome this limitation, backscattering Raman with deliberate subsampling can be used as an orthogonal method to probe the existence of low-level form conversion distributed over a tablet's surface. In the present case, different levels of the form conversions were found at the edge and the center of tablets due to the uneven shear stress distribution invoked during tablet compression. In such a scenario, it would be beneficial to apply deliberate-focused backscattering and transmission Raman spectrometry together as complementary techniques to capture chemical information both locally and within the bulk of the tablet.
Collapse
Affiliation(s)
- Haichen Nie
- Center for Materials Science and Engineering, Merck & Co., Inc., 770 Sumneytown Pike, West Point, PA 19486, United States.
| | - Gerard Klinzing
- Pharmaceutical Sciences, Merck & Co., Inc., 126 E. Lincoln Ave, Rahway, NJ 07065, USA
| | - Wei Xu
- Pharmaceutical Sciences, Merck & Co., Inc., 126 E. Lincoln Ave, Rahway, NJ 07065, USA
| |
Collapse
|
12
|
Čapková T, Pekárek T, Hanulíková B, Matějka P. Application of reverse engineering in the field of pharmaceutical tablets using Raman mapping and chemometrics. J Pharm Biomed Anal 2021; 209:114496. [PMID: 34902697 DOI: 10.1016/j.jpba.2021.114496] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2021] [Revised: 11/05/2021] [Accepted: 11/24/2021] [Indexed: 10/19/2022]
Abstract
Raman micro-spectroscopy technique offers a combination of relatively high spatial resolution with identification of components or mixtures of components in different sample areas, e.g. on the surface or the cross-section of a sample. This study is focused on the analysis of the tablets from pharmaceutical development with different technological parameters: (1) the manufacturing technology, (2) the particle size of the input API (active pharmaceutical ingredient) and (3) the quantitative composition of the individual excipients. These three mentioned parameters represent the most frequently solved problems in the field of reverse engineering in pharmacy. The investigation aims to distinguish tablets with the above-described technological parameters with limited subjective steps by Raman microscopy. Furthermore, non-subjective methods of Raman data analysis using advanced statistical analysis have been proposed, namely Principal Component Analysis, Soft Independent Modelling of Class Analogy and Linear Discriminant Analysis. The methods successfully distinguished and identified even very small differences in the analysed tablets within our study and provided objective statistic evaluation of Raman maps. The information on component and particle size distribution including their small differences, which is the critical parameter in the development of the original and generic products, was obtained due to combination of these methods. Even though each of these chemometric methods evaluates the data set from a different perspective, their mutual application on the problem of Raman maps evaluation confirmed and specified results on level that would be unattainable with the use of only one them.
Collapse
Affiliation(s)
- Tereza Čapková
- Centre of Polymer Systems, Tomas Bata University in Zlin, tř. Tomáše Bati 5678, 760 01 Zlín, Czech Republic; Zentiva, k.s., Praha, U Kabelovny 130, 102 37 Prague 10, Czech Republic; University of Chemistry and Technology Prague, Technická 5, 166 28 Prague 6, Czech Republic.
| | - Tomáš Pekárek
- Zentiva, k.s., Praha, U Kabelovny 130, 102 37 Prague 10, Czech Republic
| | - Barbora Hanulíková
- Centre of Polymer Systems, Tomas Bata University in Zlin, tř. Tomáše Bati 5678, 760 01 Zlín, Czech Republic
| | - Pavel Matějka
- University of Chemistry and Technology Prague, Technická 5, 166 28 Prague 6, Czech Republic
| |
Collapse
|
13
|
Abouselo A, Rance GA, Tres F, Taylor LS, Kwokal A, Renou L, Scurr DJ, Burley JC, Aylott JW. Effect of Excipients on Salt Disproportionation during Dissolution: A Novel Application of In Situ Raman Imaging. Mol Pharm 2021; 18:3247-3259. [PMID: 34399050 DOI: 10.1021/acs.molpharmaceut.1c00119] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
We have employed a bespoke setup combining confocal Raman microscopy and an ultraviolet-visible (UV-Vis) spectroscopy flow cell to investigate the effect of excipients on the disproportionation kinetics of Pioglitazone HCl (PioHCl) in tablets during dissolution. Three binary formulations of PioHCl, containing citric acid monohydrate (CA), lactose monohydrate (LM), or magnesium stearate (MgSt), respectively, were used as models to study the influence of excipients' physicochemical properties on the rate of salt disproportionation kinetics and dissolution performance in different aqueous pH environments. It was found that formulation excipients can induce or prevent salt disproportionation by modulating the microenvironmental pH regardless of the pH of the dissolution media. Incorporating CA in PioHCl tablets preserves the salt form and enhances the dissolution performance of the salt in the acidic medium (pH = 1.2). In contrast, LM and MgSt had a detrimental effect on in vitro drug performance by inducing salt disproportionation in the tablet during dissolution in the same acidic medium. Dissolution in the neutral medium (pH = 6.8) showed rapid formation of the free base upon contact with the dissolution medium. The Raman maps of the cross-sectioned tablets revealed the formation of a shell consisting of the free base around the edge of the tablet. This shell decreased the rate of penetration of the dissolution medium into the tablet, which had significant implications on the release of the API into the surrounding solution, as shown by the UV-vis absorption spectroscopy drug release data. Our findings highlight the utility of the Raman/UV-vis flow cell analytical platform as an advanced analytical technique to investigate the effect of excipients and dissolution media on salt disproportionation in real time. This methodology will be used to enhance our understanding of salt stability studies that may pave the way for more stable multicomponent formulations.
Collapse
Affiliation(s)
- Amjad Abouselo
- School of Pharmacy, University of Nottingham, Nottingham NG7 2RD, U.K
| | | | - Francesco Tres
- Department of Industrial and Physical Pharmacy, College of Pharmacy, Purdue University, West Lafayette, Indiana 4790, United States
| | - Lynne S Taylor
- Department of Industrial and Physical Pharmacy, College of Pharmacy, Purdue University, West Lafayette, Indiana 4790, United States
| | - Ana Kwokal
- Platform Technology & Science, GlaxoSmithKline Medicines Research Centre, Gunnels Wood Road, Stevenage, Hertfordshire SG1 2NY, U.K
| | - Ludovic Renou
- Platform Technology & Science, GlaxoSmithKline Medicines Research Centre, Gunnels Wood Road, Stevenage, Hertfordshire SG1 2NY, U.K
| | - David J Scurr
- School of Pharmacy, University of Nottingham, Nottingham NG7 2RD, U.K
| | - Jonathan C Burley
- School of Pharmacy, University of Nottingham, Nottingham NG7 2RD, U.K
| | - Jonathan W Aylott
- School of Pharmacy, University of Nottingham, Nottingham NG7 2RD, U.K
| |
Collapse
|
14
|
Li M, Lu X, Xu W, Troup GM, McNevin MJ, Nie H, Su Y. Quantifying Pharmaceutical Formulations from Proton Detected Solid-State NMR under Ultrafast Magic Angle Spinning. J Pharm Sci 2020; 109:3045-3053. [PMID: 32679211 DOI: 10.1016/j.xphs.2020.06.026] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2020] [Revised: 06/26/2020] [Accepted: 06/30/2020] [Indexed: 12/20/2022]
Abstract
Probing form conversions of active pharmaceutical ingredients in solid dosages is critical for understanding the physicochemical stability of drug substances in formulations. The multicomponent and low drug loading nature of drug products often results in challenges to quantify the phase stability, at a low detection limit and with the chemical resolution that differentiate drug molecules and excipients, for routine laboratory techniques. Recent advancement of ultrafast magic angle spinning (UF-MAS) enables proton-detected solid-state nuclear magnetic resonance (ssNMR) techniques to characterize pharmaceutical materials with enhanced resolution and sensitivity. This study demonstrates one of the first documented cases implementing 60 kHz UF-MAS techniques to quantify the minor content of pioglitazone free base (PIO-FB) in a binary system with its hydrochloride salt (PIO-HCl) and a multicomponent formulation with typical excipients. One-dimensional 1H methods can unambiguously differentiate the two forms and exhibit a limit of detection at 1.77% (w/w). Moreover, we extended it to a two-dimensional 1H-1H correlation for minimizing peak overlap and successfully quantifying approximately 2.0% (w/w) PIO-FB in a multicomponent formulation. These results have demonstrated that 1H ssNMR as a novel method to quantify solid dosages at a higher resolution and faster acquisition than conventional 13C techniques.
Collapse
Affiliation(s)
- Mingyue Li
- Pharmaceutical Sciences, Merck & Co., Inc., Kenilworth, NJ 07033, USA
| | - Xingyu Lu
- Pharmaceutical Sciences, Merck & Co., Inc., Kenilworth, NJ 07033, USA
| | - Wei Xu
- Pharmaceutical Sciences, Merck & Co., Inc., Kenilworth, NJ 07033, USA
| | - Gregory M Troup
- Pharmaceutical Sciences, Merck & Co., Inc., Kenilworth, NJ 07033, USA
| | - Michael J McNevin
- Pharmaceutical Sciences, Merck & Co., Inc., Kenilworth, NJ 07033, USA
| | - Haichen Nie
- Pharmaceutical Sciences, Merck & Co., Inc., Kenilworth, NJ 07033, USA.
| | - Yongchao Su
- Pharmaceutical Sciences, Merck & Co., Inc., Kenilworth, NJ 07033, USA; Department of Industrial and Physical Pharmacy, College of Pharmacy, Purdue University, IN 47907, USA; Division of Molecular Pharmaceutics and Drug Delivery, College of Pharmacy, The University of Texas at Austin, Austin, TX 78712, USA.
| |
Collapse
|
15
|
Park H, Nie H, Dhiman A, Tomar V, Zhou QT. Understanding Dynamics of Polymorphic Conversion during the Tableting Process Using In Situ Mechanical Raman Spectroscopy. Mol Pharm 2020; 17:3043-3052. [PMID: 32633984 DOI: 10.1021/acs.molpharmaceut.0c00460] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Affiliation(s)
- Heejun Park
- Department of Industrial and Physical Pharmacy, College of Pharmacy, Purdue University, 575 Stadium Mall Drive, West Lafayette, Indiana 47907, United States
| | - Haichen Nie
- Oral Formulation Sciences, Pharmaceutical Sciences, Merck & Co., Inc., 126 E. Lincoln Avenue, Rahway, New Jersey 07065, United States
| | - Abhijeet Dhiman
- School of Aeronautics and Astronautics, Purdue University, 575 Stadium Mall Drive, West Lafayette, Indiana 47907, United States
| | - Vikas Tomar
- School of Aeronautics and Astronautics, Purdue University, 575 Stadium Mall Drive, West Lafayette, Indiana 47907, United States
| | - Qi Tony Zhou
- Department of Industrial and Physical Pharmacy, College of Pharmacy, Purdue University, 575 Stadium Mall Drive, West Lafayette, Indiana 47907, United States
| |
Collapse
|
16
|
Koranne S, Lalge R, Suryanarayanan R. Modulation of Microenvironmental Acidity: A Strategy to Mitigate Salt Disproportionation in Drug Product Environment. Mol Pharm 2020; 17:1324-1334. [DOI: 10.1021/acs.molpharmaceut.0c00024] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Sampada Koranne
- Merck & Co., Inc. 126 East Lincoln Avenue, Rahway, New Jersey 07065, United States
- Department of Pharmaceutics, College of Pharmacy, University of Minnesota, 9-177 WDH, 308 Harvard Street Southeast, Minneapolis, Minnesota 55455, United States
| | - Rahul Lalge
- Department of Pharmaceutics, College of Pharmacy, University of Minnesota, 9-177 WDH, 308 Harvard Street Southeast, Minneapolis, Minnesota 55455, United States
| | - Raj Suryanarayanan
- Department of Pharmaceutics, College of Pharmacy, University of Minnesota, 9-177 WDH, 308 Harvard Street Southeast, Minneapolis, Minnesota 55455, United States
| |
Collapse
|
17
|
Surface Tracking of Curcumin Amorphous Solid Dispersions Formulated by Binary Polymers. J Pharm Sci 2020; 109:1068-1078. [DOI: 10.1016/j.xphs.2019.10.030] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2019] [Revised: 09/13/2019] [Accepted: 10/15/2019] [Indexed: 11/24/2022]
|
18
|
Zhang S, Chen H, Li R, Yu Z, Lu F. Raman spectroscopy and mapping technique for the identification of expired drugs. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2020; 224:117407. [PMID: 31404760 DOI: 10.1016/j.saa.2019.117407] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/15/2019] [Revised: 06/12/2019] [Accepted: 07/20/2019] [Indexed: 06/10/2023]
Abstract
As expired medical products can be repackaged and sold by unscrupulous counterfeiters, it is essential to find a rapid and convenient method for distinguishing expired and unexpired drugs. Standard detection methods such as high-performance liquid chromatography (HPLC) and thin-layer chromatography are complex, time-consuming, and require organic solvents (that are environmentally unfriendly). Additionally, the Pharmacopoeia publications do not include information about identifying expired drugs. In this study, we proposed a novel method for identifying expired medications based on Raman spectra and verified it using >20 types of expired (Old) and unexpired (New) drugs, each type from the same manufacturer. A portable Raman spectrometer was used to collect Raman spectra of all samples and the similarities between the Old and New drugs (SN-O) were evaluated. Drugs with SN-O values <0.9 were classified directly as expired drugs. For drugs with SN-O values >0.9, the content of active pharmaceutical ingredient (API) might be so low (below or around 10 wt%) that its Raman signal is largely obscured by that of the excipients. In such cases, changes in the API content are undetectable using the portable instrument. Therefore, we adopted Raman mapping technology and established a virtual imaging map to locate areas of high API content. The similarities between the Old or New spectrum and that of the API (SO-A and SN-A, respectively) were calculated after removing the signal from the excipients. Our novel methods provide a precise, rapid, convenient, and environmentally friendly way to identify expired drugs that is more effective than the standard HPLC assay.
Collapse
Affiliation(s)
- Shuoyang Zhang
- Department of Pharmaceutical Analysis, School of Pharmacy, Shenyang, Pharmaceutical University, Shenyang 110016, China
| | - Hui Chen
- Marketing Department, Shanghai Ideaoptics Corp., Ltd., Shanghai 200433, China
| | - Ruiyun Li
- Department of Pharmaceutical Analysis, School of Pharmacy, Shenyang, Pharmaceutical University, Shenyang 110016, China
| | - Zhiguo Yu
- Department of Pharmaceutical Analysis, School of Pharmacy, Shenyang, Pharmaceutical University, Shenyang 110016, China.
| | - Feng Lu
- Department of Pharmaceutical Analysis, School of Pharmacy, Second Military Medical University, Shanghai 200433, China.
| |
Collapse
|
19
|
Univariate and Multivariate Models for Determination of Prasugrel Base in the Formulation of Prasugrel Hydrochloride Using XRPD Method. J Pharm Sci 2019; 108:3575-3581. [DOI: 10.1016/j.xphs.2019.06.024] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2019] [Revised: 05/28/2019] [Accepted: 06/26/2019] [Indexed: 12/28/2022]
|
20
|
New designed special cells for Raman mapping of the disintegration process of pharmaceutical tablets. J Pharm Biomed Anal 2019; 168:113-123. [DOI: 10.1016/j.jpba.2019.02.019] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2018] [Revised: 02/12/2019] [Accepted: 02/13/2019] [Indexed: 01/31/2023]
|
21
|
Figueroa B, Nguyen T, Sotthivirat S, Xu W, Rhodes T, Lamm MS, Smith RL, John CT, Su Y, Fu D. Detecting and Quantifying Microscale Chemical Reactions in Pharmaceutical Tablets by Stimulated Raman Scattering Microscopy. Anal Chem 2019; 91:6894-6901. [PMID: 31009215 DOI: 10.1021/acs.analchem.9b01269] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
It has been estimated that approximately 50% of all marketed drug molecules are manufactured and administered in the form of salts, often with the goal of improving solubility, dissolution rate, and efficacy of the drug. However, salt disproportionation during processing or storage is a common adverse effect in these formulations. Due to the heterogeneous nature of solid drug formulations, it is essential to characterize the drug substances noninvasively at micrometer resolution to understand the molecular mechanism of salt disproportionation. However, there is a lack of such capability with current characterization methods. In this study, we demonstrate that stimulated Raman scattering (SRS) microscopy can be used to provide sensitive and quantitative chemical imaging of the salt disproportionation reaction of pioglitazone hydrochloride (PIO-HCl) at a very low drug loading (1% w/w). Our findings illuminate a water mediated pathway of drug disproportionation and highlight the importance of noninvasive chemical imaging in a mechanistic study of solid-state chemical reactions.
Collapse
Affiliation(s)
- Benjamin Figueroa
- Department of Chemistry , University of Washington , Seattle , Washington 98195 , United States
| | - Tai Nguyen
- Department of Chemistry , University of Washington , Seattle , Washington 98195 , United States
| | - Sutthilug Sotthivirat
- Pharmaceutical Sciences, MRL , Merck & Co, Inc. , Kenilworth , New Jersey 07033 , United States
| | - Wei Xu
- Pharmaceutical Sciences, MRL , Merck & Co, Inc. , Kenilworth , New Jersey 07033 , United States
| | - Timothy Rhodes
- Pharmaceutical Sciences, MRL , Merck & Co, Inc. , Kenilworth , New Jersey 07033 , United States
| | - Matthew S Lamm
- Pharmaceutical Sciences, MRL , Merck & Co, Inc. , Kenilworth , New Jersey 07033 , United States
| | - Ronald L Smith
- Pharmaceutical Sciences, MRL , Merck & Co, Inc. , Kenilworth , New Jersey 07033 , United States
| | - Christopher T John
- Pharmaceutical Sciences, MRL , Merck & Co, Inc. , Kenilworth , New Jersey 07033 , United States
| | - Yongchao Su
- Pharmaceutical Sciences, MRL , Merck & Co, Inc. , Kenilworth , New Jersey 07033 , United States
| | - Dan Fu
- Department of Chemistry , University of Washington , Seattle , Washington 98195 , United States
| |
Collapse
|
22
|
Dharani S, Barakh Ali SF, Afrooz H, Bhattacharya R, Khan MA, Rahman Z. Quality and In-Use Stability Comparison of Brand and Generics of Extended-Release Phenytoin Sodium Capsules. J Pharm Sci 2019; 108:1808-1817. [PMID: 30611751 DOI: 10.1016/j.xphs.2018.12.022] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2018] [Revised: 12/04/2018] [Accepted: 12/11/2018] [Indexed: 11/16/2022]
Abstract
The objective of the present study was to understand quality of brand and generic products of phenytoin sodium by in vitro methods. Three commercial products were selected for the study, 1 brand and 2 generics (product-A, product-B, and product-C). Products were repacked in pharmacy vials and stored for 12 weeks at 30°C/75% RH to simulate in-use conditions. The products were examined visually and microscopically for morphologic changes, spectroscopic and diffractometric methods for chemical changes, and dissolution, assay, and impurities for performance evaluation. Capsules content of the product-A turned yellowish to dark orange color from initial white powder, which indicated a possible chemical interaction between lactose and the drug in addition to disproportionation. This was supported by pH, microscopic, spectroscopic, and X-ray diffraction data. Product-A failed to meet United States Pharmacopoeia dissolution specification of 75% in 120 min after 2-weeks whereas product-B and product-C failed at 6-weeks of in-use stability conditions exposure. Furthermore, product-A also failed to meet United States pharmacopoeia assay and impurities specifications in 12 weeks in-use period. In summary, this study indicated salt disproportionation, chemical interactions, and phase transformations of drug and excipients in the commercial products of phenytoin sodium, which may affect the clinical performance of the product.
Collapse
Affiliation(s)
- Sathish Dharani
- Irma Lerma Rangel College of Pharmacy, Texas A&M Health Science Center, Texas A&M University, College Station, Texas 77843
| | - Sogra F Barakh Ali
- Irma Lerma Rangel College of Pharmacy, Texas A&M Health Science Center, Texas A&M University, College Station, Texas 77843
| | - Hamideh Afrooz
- Irma Lerma Rangel College of Pharmacy, Texas A&M Health Science Center, Texas A&M University, College Station, Texas 77843
| | - Raktima Bhattacharya
- Irma Lerma Rangel College of Pharmacy, Texas A&M Health Science Center, Texas A&M University, College Station, Texas 77843
| | - Mansoor A Khan
- Irma Lerma Rangel College of Pharmacy, Texas A&M Health Science Center, Texas A&M University, College Station, Texas 77843
| | - Ziyaur Rahman
- Irma Lerma Rangel College of Pharmacy, Texas A&M Health Science Center, Texas A&M University, College Station, Texas 77843.
| |
Collapse
|
23
|
Francis AT, Nguyen TT, Lamm MS, Teller R, Forster SP, Xu W, Rhodes T, Smith RL, Kuiper J, Su Y, Fu D. In Situ Stimulated Raman Scattering (SRS) Microscopy Study of the Dissolution of Sustained-Release Implant Formulation. Mol Pharm 2018; 15:5793-5801. [DOI: 10.1021/acs.molpharmaceut.8b00965] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Affiliation(s)
- Andrew T. Francis
- Department of Chemistry, University of Washington, Seattle, Washington 98195, United States
| | - Tai T. Nguyen
- Department of Chemistry, University of Washington, Seattle, Washington 98195, United States
| | - Matthew S. Lamm
- MRL, Merck & Co., Inc., Kenilworth, New Jersey 07033, United States
| | - Ryan Teller
- MRL, Merck & Co., Inc., Kenilworth, New Jersey 07033, United States
| | - Seth P. Forster
- MRL, Merck & Co., Inc., Kenilworth, New Jersey 07033, United States
| | - Wei Xu
- MRL, Merck & Co., Inc., Kenilworth, New Jersey 07033, United States
| | - Timothy Rhodes
- MRL, Merck & Co., Inc., Kenilworth, New Jersey 07033, United States
| | - Ronald L. Smith
- MRL, Merck & Co., Inc., Kenilworth, New Jersey 07033, United States
| | - Jesse Kuiper
- MRL, Merck & Co., Inc., Kenilworth, New Jersey 07033, United States
| | - Yongchao Su
- MRL, Merck & Co., Inc., Kenilworth, New Jersey 07033, United States
| | - Dan Fu
- Department of Chemistry, University of Washington, Seattle, Washington 98195, United States
| |
Collapse
|
24
|
Shetty N, Ahn P, Park H, Bhujbal S, Zemlyanov D, Cavallaro A, Mangal S, Li J, Zhou Q(T. Improved Physical Stability and Aerosolization of Inhalable Amorphous Ciprofloxacin Powder Formulations by Incorporating Synergistic Colistin. Mol Pharm 2018; 15:4004-4020. [PMID: 30028947 PMCID: PMC6205724 DOI: 10.1021/acs.molpharmaceut.8b00445] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
This study aimed to develop dry powder inhaler (DPI) combination formulations of ciprofloxacin and colistin for use in respiratory infections. Effects of colistin on physical stability and aerosolization of spray-dried ciprofloxacin were examined. The combination DPI formulations were produced by co-spray drying colistin and ciprofloxacin in mass ratios of 1:1, 1:3, and 1:9. Colistin and ciprofloxacin were also co-sprayed with l-leucine in the mass ratio of 1:1:1. The physical and aerosolization stability of the selected co-sprayed formulations stored at 20, 55, and 75% relative humidity (RH) were examined. Formulation characterizations were carried out using powder X-ray diffraction (PXRD) for crystallinity, scanning electron microscopy for morphology and particle size distribution, and dynamic vapor sorption for moisture sorption. Particle surface analysis was performed using X-ray photoelectron spectroscopy, energy dispersive X-ray spectrometry, and nano-time-of-flight secondary ion mass spectrometry. Potential intermolecular interactions were studied using Fourier-transform infrared spectroscopy (FTIR). Aerosol performance was evaluated using a multistage liquid impinger with a RS01 monodose inhaler device. PXRD diffractograms showed that the co-spray-dried colistin-ciprofloxacin formulation in the mass ratio (1:1) was amorphous at 55% RH for up to 60 days; whereas the co-spray-dried colistin-ciprofloxacin (1:3) and colistin-ciprofloxacin (1:9) crystallized after storage for 3 days at 55% RH. However, the extent of crystallization for the combination formulations was less as compared to the spray-dried ciprofloxacin alone formulation. Surface morphology of the co-spray-dried formulations at different concentrations did not change even after storage at 55% RH for 60 days, unlike the spray-dried ciprofloxacin alone powder which became rougher after 3 days of storage at 55% RH. Surface analysis data indicated surface enrichment of colistin in the co-spray-dried formulations. Increasing colistin concentration on the composite particles surfaces improved aerosol performance of ciprofloxacin. FTIR data demonstrated intermolecular interactions between colistin and ciprofloxacin, thereby delaying and/or preventing crystallization of ciprofloxacin when co-spray-dried. Co-spray drying ciprofloxacin with colistin in the mass ratio (1:1) completely prevented crystallization of ciprofloxacin at 55% RH for up to 60 days. However, the colistin-ciprofloxacin formulation (1:1) began to fuse when stored at 75% RH due to moisture absorption resulting in a compromised aerosol performance. In contrast, the colistin-ciprofloxacin-leucine (1:1:1) formulation demonstrated no particle fusion, enabling a stable aerosol performance at 75% RH for 7 days. This study demonstrated that incorporation of colistin in the spray-dried formulations can improve physical stability and aerosolization of amorphous ciprofloxacin at 55% RH. At 75% RH, further addition of l-leucine in the formulation prevented particle fusion and deterioration in aerosol performance, attributed to the enrichment of nonhygroscopic l-leucine on the particle surface.
Collapse
Affiliation(s)
- Nivedita Shetty
- Department of Industrial and Physical Pharmacy, College of Pharmacy, Purdue University, 575 Stadium Mall Drive, West Lafayette, IN 47907, USA
| | - Patricia Ahn
- Department of Industrial and Physical Pharmacy, College of Pharmacy, Purdue University, 575 Stadium Mall Drive, West Lafayette, IN 47907, USA
| | - Heejun Park
- Department of Industrial and Physical Pharmacy, College of Pharmacy, Purdue University, 575 Stadium Mall Drive, West Lafayette, IN 47907, USA
| | - Sonal Bhujbal
- Department of Industrial and Physical Pharmacy, College of Pharmacy, Purdue University, 575 Stadium Mall Drive, West Lafayette, IN 47907, USA
| | - Dmitry Zemlyanov
- Birck Nanotechnology Center, Purdue University, 1205 West State Street, West Lafayette, IN 47907, USA
| | - Alex Cavallaro
- Future Industries Institute, University of South Australia, Mawson Lakes, SA 5095, Australia
| | - Sharad Mangal
- Department of Industrial and Physical Pharmacy, College of Pharmacy, Purdue University, 575 Stadium Mall Drive, West Lafayette, IN 47907, USA
| | - Jian Li
- Monash Biomedicine Discovery Institute, Department of Microbiology, Monash University, Clayton, Victoria 3800, Australia
| | - Qi (Tony) Zhou
- Department of Industrial and Physical Pharmacy, College of Pharmacy, Purdue University, 575 Stadium Mall Drive, West Lafayette, IN 47907, USA
| |
Collapse
|
25
|
Hirsh DA, Su Y, Nie H, Xu W, Stueber D, Variankaval N, Schurko RW. Quantifying Disproportionation in Pharmaceutical Formulations with 35Cl Solid-State NMR. Mol Pharm 2018; 15:4038-4048. [DOI: 10.1021/acs.molpharmaceut.8b00470] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Affiliation(s)
- David A. Hirsh
- Department of Chemistry & Biochemistry, University of Windsor, Windsor, ON, N9B 3P4, Canada
| | - Yongchao Su
- Merck Research Laboratories, Merck & Co., Inc., Kenilworth, New Jersey 07033, United States
| | - Haichen Nie
- Merck Research Laboratories, Merck & Co., Inc., Kenilworth, New Jersey 07033, United States
| | - Wei Xu
- Merck Research Laboratories, Merck & Co., Inc., Kenilworth, New Jersey 07033, United States
| | - Dirk Stueber
- Merck Research Laboratories, Merck & Co., Inc., Kenilworth, New Jersey 07033, United States
| | - Narayan Variankaval
- Merck Research Laboratories, Merck & Co., Inc., Kenilworth, New Jersey 07033, United States
| | - Robert W. Schurko
- Department of Chemistry & Biochemistry, University of Windsor, Windsor, ON, N9B 3P4, Canada
| |
Collapse
|
26
|
Nie H, Mo H, Byrn SR. Investigating the Physicochemical Stability of Highly Purified Darunavir Ethanolate Extracted from PREZISTA® Tablets. AAPS PharmSciTech 2018; 19:2407-2417. [PMID: 29869313 DOI: 10.1208/s12249-018-1036-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2018] [Accepted: 04/27/2018] [Indexed: 11/30/2022] Open
Abstract
Understanding physicochemical stability of darunavir ethanolate is expected to be of critical importance for the development and manufacturing of high-quality darunavir-related pharmaceutical products. However, there are no enabling monographs for darunavir to illustrate its solid-state chemistry, impurity profile, and assay methods. In addition, the US Pharmacopeia reference standard of darunavir is still not commercially available. It has been also challenging to find reliable vendors to obtain highly purified darunavir ethanolate crystals to conduct the physicochemical stability testing. In the present research, we developed a straightforward and cost-effective approach to extract and purify darunavir ethanolate from PREZISTA® tablets using reverse-engineering and crystallization. Using these highly purified crystals, we thoroughly evaluated the potential risks of degradation and form conversions of darunavir ethanolate at stressed conditions to define the manufacturing and packaging specifications for darunavir-related products. Amorphization was observed under thermal storage caused by desolvation of darunavir ethanolate. The ethanolate-to-hydrate conversion of darunavir was observed at high relative humidity conditions. Moreover, acid/base-induced degradations of darunavir have been investigated herein to determine the possible drug-excipient compatibility issues in formulations. Furthermore, it is of particular interests to allow the production of high-quality darunavir-ritonavir fixed dose combinations for marketing in Africa. Thus, a validated HPLC method was developed according to ICH guideline to simultaneously quantify assays of darunavir and ritonavir in a single injection. In summary, the findings of this study provide important information for pharmaceutical scientists to design and develop reliable formulations and processings for darunavir-related products with improved stability.
Collapse
|
27
|
Patel MA, Luthra S, Shamblin SL, Arora KK, Krzyzaniak JF, Taylor LS. Effect of excipient properties, water activity, and water content on the disproportionation of a pharmaceutical salt. Int J Pharm 2018; 546:226-234. [DOI: 10.1016/j.ijpharm.2018.05.035] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2018] [Revised: 05/09/2018] [Accepted: 05/13/2018] [Indexed: 11/26/2022]
|
28
|
Koranne S, Sahoo A, Krzyzaniak JF, Luthra S, Arora KK, Suryanarayanan R. Challenges in Transitioning Cocrystals from Bench to Bedside: Dissociation in Prototype Drug Product Environment. Mol Pharm 2018; 15:3297-3307. [DOI: 10.1021/acs.molpharmaceut.8b00340] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Sampada Koranne
- Department of Pharmaceutics, College of Pharmacy, University of Minnesota, Room 9-177 Weaver-Densford
Hall, 308 Harvard Street S.E., Minneapolis, Minnesota 55455, United States
| | - Anasuya Sahoo
- Department of Pharmaceutics, College of Pharmacy, University of Minnesota, Room 9-177 Weaver-Densford
Hall, 308 Harvard Street S.E., Minneapolis, Minnesota 55455, United States
| | - Joseph F. Krzyzaniak
- Groton Laboratories, Pfizer Worldwide Research & Development, Groton, Connecticut 06340, United States
| | - Suman Luthra
- Groton Laboratories, Pfizer Worldwide Research & Development, Groton, Connecticut 06340, United States
| | - Kapildev K. Arora
- Groton Laboratories, Pfizer Worldwide Research & Development, Groton, Connecticut 06340, United States
| | - Raj Suryanarayanan
- Department of Pharmaceutics, College of Pharmacy, University of Minnesota, Room 9-177 Weaver-Densford
Hall, 308 Harvard Street S.E., Minneapolis, Minnesota 55455, United States
| |
Collapse
|
29
|
Ewing AV, Kazarian SG. Recent advances in the applications of vibrational spectroscopic imaging and mapping to pharmaceutical formulations. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2018; 197:10-29. [PMID: 29290567 DOI: 10.1016/j.saa.2017.12.055] [Citation(s) in RCA: 48] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/30/2017] [Revised: 12/13/2017] [Accepted: 12/19/2017] [Indexed: 06/07/2023]
Abstract
Vibrational spectroscopic imaging and mapping approaches have continued in their development and applications for the analysis of pharmaceutical formulations. Obtaining spatially resolved chemical information about the distribution of different components within pharmaceutical formulations is integral for improving the understanding and quality of final drug products. This review aims to summarise some key advances of these technologies over recent years, primarily since 2010. An overview of FTIR, NIR, terahertz spectroscopic imaging and Raman mapping will be presented to give a perspective of the current state-of-the-art of these techniques for studying pharmaceutical samples. This will include their application to reveal spatial information of components that reveals molecular insight of polymorphic or structural changes, behaviour of formulations during dissolution experiments, uniformity of materials and detection of counterfeit products. Furthermore, new advancements will be presented that demonstrate the continuing novel applications of spectroscopic imaging and mapping, namely in FTIR spectroscopy, for studies of microfluidic devices. Whilst much of the recently developed work has been reported by academic groups, examples of the potential impacts of utilising these imaging and mapping technologies to support industrial applications have also been reviewed.
Collapse
Affiliation(s)
- Andrew V Ewing
- Imperial College London, Department of Chemical Engineering, South Kensington Campus, London SW7 2AZ, United Kingdom
| | - Sergei G Kazarian
- Imperial College London, Department of Chemical Engineering, South Kensington Campus, London SW7 2AZ, United Kingdom.
| |
Collapse
|
30
|
Fan N, He Z, Ma P, Wang X, Li C, Sun J, Sun Y, Li J. Impact of HPMC on inhibiting crystallization and improving permeability of curcumin amorphous solid dispersions. Carbohydr Polym 2018; 181:543-550. [DOI: 10.1016/j.carbpol.2017.12.004] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2017] [Revised: 10/22/2017] [Accepted: 12/04/2017] [Indexed: 01/30/2023]
|
31
|
Shetty N, Zeng L, Mangal S, Nie H, Rowles MR, Guo R, Han Y, Park JH, Zhou QT. Effects of Moisture-Induced Crystallization on the Aerosol Performance of Spray Dried Amorphous Ciprofloxacin Powder Formulations. Pharm Res 2018; 35:7. [PMID: 29294198 PMCID: PMC5942560 DOI: 10.1007/s11095-017-2281-5] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2017] [Accepted: 10/13/2017] [Indexed: 01/12/2023]
Abstract
PURPOSE This study aims to investigate the influence of different storage humidity conditions on crystallization and aerosol performance of inhalable spray dried amorphous powder formulations (Ciprofloxacin hydrochloride as the model drug). METHODS The spray dried samples were stored at 20%, 55% and 75% relative humidity (RH). Crystallinity was monitored by Powder X-ray diffraction (PXRD), and particle morphology was measured by scanning electron microscopy (SEM) and atomic force microscopy (AFM). Aerosol performance was evaluated using a multi-stage liquid impinger (MSLI). RESULTS PXRD diffractograms showed the spray dried Ciprofloxacin stored at 20% RH for three weeks were amorphous; whereas those stored at 55% RH and 75% RH started crystallizing after one hour. Fine particle fraction (FPF) of the particles was improved from 28% to 42% after storage at 55% RH for three days. Such improvement was attributed to the crystallization of amorphous powders, which led to increased particle roughness and reduced particulate contact area, as visualized by SEM and quantified by AFM. A linear relationship was observed between degree of crystallinity/crystallite size and FPF (R2 = 0.94 and R2 = 0.96, respectively). However, deterioration in aerosol performance was observed after storage at 75% RH due to formation of inter-particulate liquid/solid bridges, as confirmed by SEM. CONCLUSIONS This study provides a fundamental understanding in moisture-induced physical and aerosol instability of the spray dried powder formulations.
Collapse
Affiliation(s)
- Nivedita Shetty
- Department of Industrial and Physical Pharmacy, College of Pharmacy, Purdue University, 575 Stadium Mall Drive, West Lafayette, Indiana, 47907, USA
| | - Lingfei Zeng
- Department of Industrial and Physical Pharmacy, College of Pharmacy, Purdue University, 575 Stadium Mall Drive, West Lafayette, Indiana, 47907, USA
| | - Sharad Mangal
- Department of Industrial and Physical Pharmacy, College of Pharmacy, Purdue University, 575 Stadium Mall Drive, West Lafayette, Indiana, 47907, USA
| | - Haichen Nie
- Teva Pharmaceuticals, 145 Brandywine Pkwy, West Chester, Pennsylvania, 19380, USA
| | - Matthew R Rowles
- Department of Physics and Astronomy, Curtin University, Bentley, WA, 6102, Australia
| | - Rui Guo
- Department of Industrial and Physical Pharmacy, College of Pharmacy, Purdue University, 575 Stadium Mall Drive, West Lafayette, Indiana, 47907, USA
| | - Youngwoo Han
- Department of Industrial and Physical Pharmacy, College of Pharmacy, Purdue University, 575 Stadium Mall Drive, West Lafayette, Indiana, 47907, USA
| | - Joon Hyeong Park
- Birck Nanotechnology Center, Purdue University, 1205 West State Street, West Lafayette, Indiana, 47907, USA
| | - Qi Tony Zhou
- Department of Industrial and Physical Pharmacy, College of Pharmacy, Purdue University, 575 Stadium Mall Drive, West Lafayette, Indiana, 47907, USA.
| |
Collapse
|
32
|
Calvo NL, Maggio RM, Kaufman TS. Characterization of pharmaceutically relevant materials at the solid state employing chemometrics methods. J Pharm Biomed Anal 2018; 147:538-564. [DOI: 10.1016/j.jpba.2017.06.017] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2017] [Revised: 06/08/2017] [Accepted: 06/12/2017] [Indexed: 11/28/2022]
|
33
|
Patel MA, Luthra S, Shamblin SL, Arora K, Krzyzaniak JF, Taylor LS. Impact of Solid-State Form on the Disproportionation of Miconazole Mesylate. Mol Pharm 2017; 15:40-52. [DOI: 10.1021/acs.molpharmaceut.7b00694] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Mitulkumar A. Patel
- Department
of Industrial and Physical Pharmacy, College of Pharmacy, Purdue University, West Lafayette, Indiana 47907, United States
| | - Suman Luthra
- Pfizer Inc, Worldwide Research and Development, Cambridge 02139, Massachusetts, United States
| | - Sheri L. Shamblin
- Pfizer Inc, Worldwide Research and Development, Groton 06340, Connecticut, United States
| | - Kapildev Arora
- Pfizer Inc, Worldwide Research and Development, Groton 06340, Connecticut, United States
| | - Joseph F. Krzyzaniak
- Pfizer Inc, Worldwide Research and Development, Groton 06340, Connecticut, United States
| | - Lynne S. Taylor
- Department
of Industrial and Physical Pharmacy, College of Pharmacy, Purdue University, West Lafayette, Indiana 47907, United States
| |
Collapse
|
34
|
Pindelska E, Sokal A, Kolodziejski W. Pharmaceutical cocrystals, salts and polymorphs: Advanced characterization techniques. Adv Drug Deliv Rev 2017; 117:111-146. [PMID: 28931472 DOI: 10.1016/j.addr.2017.09.014] [Citation(s) in RCA: 78] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2017] [Revised: 08/21/2017] [Accepted: 09/14/2017] [Indexed: 12/11/2022]
Abstract
The main goal of a novel drug development is to obtain it with optimal physiochemical, pharmaceutical and biological properties. Pharmaceutical companies and scientists modify active pharmaceutical ingredients (APIs), which often are cocrystals, salts or carefully selected polymorphs, to improve the properties of a parent drug. To find the best form of a drug, various advanced characterization methods should be used. In this review, we have described such analytical methods, dedicated to solid drug forms. Thus, diffraction, spectroscopic, thermal and also pharmaceutical characterization methods are discussed. They all are necessary to study a solid API in its intrinsic complexity from bulk down to the molecular level, gain information on its structure, properties, purity and possible transformations, and make the characterization efficient, comprehensive and complete. Furthermore, these methods can be used to monitor and investigate physical processes, involved in the drug development, in situ and in real time. The main aim of this paper is to gather information on the current advancements in the analytical methods and highlight their pharmaceutical relevance.
Collapse
|
35
|
Li J, Wang X, Li C, Fan N, Wang J, He Z, Sun J. Viewing Molecular and Interface Interactions of Curcumin Amorphous Solid Dispersions for Comprehending Dissolution Mechanisms. Mol Pharm 2017; 14:2781-2792. [DOI: 10.1021/acs.molpharmaceut.7b00319] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Jing Li
- Wuya
College of Innovation, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Xin Wang
- Wuya
College of Innovation, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Chang Li
- Wuya
College of Innovation, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Na Fan
- Wuya
College of Innovation, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Jian Wang
- Key
Laboratory of Structure-Based Drug Design and Discovery, Shenyang Pharmaceutical University, Ministry of Education, Wenhua Road, No. 103, Shenyang 110016, China
| | - Zhonggui He
- Wuya
College of Innovation, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Jin Sun
- Wuya
College of Innovation, Shenyang Pharmaceutical University, Shenyang 110016, China
| |
Collapse
|
36
|
Nie H, Byrn SR, Zhou Q(T. Stability of pharmaceutical salts in solid oral dosage forms. Drug Dev Ind Pharm 2017; 43:1215-1228. [PMID: 28276282 DOI: 10.1080/03639045.2017.1304960] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Affiliation(s)
- Haichen Nie
- Formulation Sciences, Teva Pharmaceuticals, West Chester, PA, USA
| | - Stephen R. Byrn
- Department of Industrial and Physical Pharmacy, Purdue University, West Lafayette, IN, USA
| | - Qi (Tony) Zhou
- Department of Industrial and Physical Pharmacy, Purdue University, West Lafayette, IN, USA
| |
Collapse
|
37
|
Koranne S, Govindarajan R, Suryanarayanan R. Investigation of Spatial Heterogeneity of Salt Disproportionation in Tablets by Synchrotron X-ray Diffractometry. Mol Pharm 2017; 14:1133-1144. [DOI: 10.1021/acs.molpharmaceut.6b01052] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Sampada Koranne
- Department
of Pharmaceutics, College of Pharmacy, University of Minnesota, 9-177 WDH, 308 Harvard Street S.E., Minneapolis, Minnesota 55455, United States
| | - Ramprakash Govindarajan
- Department
of Pharmaceutical Sciences and Experimental Therapeutics, College
of Pharmacy, University of Iowa, S215 PHAR, 115 S. Grand Avenue, Iowa City, Iowa 52242-1112, United States
| | - Raj Suryanarayanan
- Department
of Pharmaceutics, College of Pharmacy, University of Minnesota, 9-177 WDH, 308 Harvard Street S.E., Minneapolis, Minnesota 55455, United States
| |
Collapse
|
38
|
Thakral NK, Kelly RC. Salt disproportionation: A material science perspective. Int J Pharm 2017; 520:228-240. [DOI: 10.1016/j.ijpharm.2017.02.001] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2016] [Revised: 01/31/2017] [Accepted: 02/01/2017] [Indexed: 11/25/2022]
|
39
|
Crystalline solid dispersion-a strategy to slowdown salt disproportionation in solid state formulations during storage and wet granulation. Int J Pharm 2017; 517:203-215. [DOI: 10.1016/j.ijpharm.2016.12.014] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2016] [Revised: 12/06/2016] [Accepted: 12/08/2016] [Indexed: 11/27/2022]
|
40
|
Nie H, Xu W, Ren J, Taylor LS, Marsac PJ, John CT, Byrn SR. Impact of Metallic Stearates on Disproportionation of Hydrochloride Salts of Weak Bases in Solid-State Formulations. Mol Pharm 2016; 13:3541-3552. [PMID: 27542728 DOI: 10.1021/acs.molpharmaceut.6b00630] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Excipient-induced salt disproportionation (conversion from salt form to free form) in the solid state during storage or manufacturing is a severe formulation issue that can negatively influence product performance. However, the role of excipient properties on salt disproportionation and mechanisms of proton transfer between salt and excipients are still unclear. Moreover, knowledge about the formation of disproportionation products and the consequent impact of these reactions products on the disproportionation process is still inadequate. In the present study, three commonly used lubricants (sodium stearate, calcium stearate, and magnesium stearate) were mixed with a hydrochloride salt as binary mixtures to examine their different capabilities for inducing salt disproportionation at a stressed storage condition (40 °C/65% RH). The overall objective of this research is to explore factors influencing the kinetics and extent of disproportionation including surface area, alkalinity, hygroscopicity, formation of new species, etc. In addition, we also aim to clarify the reaction mechanism and proton transfer between the model salt and stearates to provide insight into the in situ formed reaction products. We found that the properties of stearates significantly affect the disproportionation process in the initial stage of storage, while properties of the reaction products negatively affect the hygroscopicity of the powder mixture promoting disproportionation during longer-term storage. In addition, lubrication difference among three stearates was evaluated by performing compaction studies. The findings of this study provide an improved understanding of the proton transfer mechanism between the ionized form of an active pharmaceutical ingredient and excipients in solid dosage forms. It also provides pragmatic information for formulation scientists to select appropriate lubricants and other excipients, and to design robust formulations.
Collapse
Affiliation(s)
- Haichen Nie
- Department of Industrial and Physical Pharmacy, Purdue University , 575 Stadium Mall Drive, West Lafayette, Indiana 47907, United States
| | - Wei Xu
- Preformulation Sciences, Merck & Co., Inc. , 770 Sumneytown Pike, West Point, Pennsylvania 19486, United States
| | - Jie Ren
- Oral Formulation Science, Merck & Co., Inc. , 770 Sumneytown Pike, West Point, Pennsylvania 19486, United States
| | - Lynne S Taylor
- Department of Industrial and Physical Pharmacy, Purdue University , 575 Stadium Mall Drive, West Lafayette, Indiana 47907, United States
| | - Patrick J Marsac
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Kentucky , 789 South Limestone Street, Lexington, Kentucky 40536, United States
| | - Christopher T John
- Discovery Pharmaceutical Science, Merck & Co., Inc. , 770 Sumneytown Pike, West Point, Pennsylvania 19486, United States
| | - Stephen R Byrn
- Department of Industrial and Physical Pharmacy, Purdue University , 575 Stadium Mall Drive, West Lafayette, Indiana 47907, United States
| |
Collapse
|