1
|
Norouzi H, Dastan D, Abdullah FO, Al-Qaaneh AM. Recent advances in methods of extraction, pre-concentration, purification, identification, and quantification of kaempferol. J Chromatogr A 2024; 1735:465297. [PMID: 39243588 DOI: 10.1016/j.chroma.2024.465297] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2024] [Revised: 08/21/2024] [Accepted: 08/22/2024] [Indexed: 09/09/2024]
Abstract
As a naturally widely-occurring dietary, cosmetic, and therapeutic flavonoid, kaempferol has gained much consideration for its nutritional and pharmaceutical properties in recent years. Although there have been performed a high number of studies associated with different aspects of kaempferol's analytical investigations, the lack of a comprehensive summary of the various methods and other plant sources that have been reported for this compound is being felt, especially for many biological applications. This study, aimed to provide a detailed compilation consisting of sources (plant species) and analytical information that was precisely related to the natural flavonoid (kaempferol). There is a trend in analytical research that supports the application of modern eco-friendly instruments and methods. In conclusion, ultrasound-assisted extraction (UAE) is the most general advanced method used widely today for the extraction of kaempferol. During recent years, there is an increasing tendency towards the identification of kaempferol by different methods.
Collapse
Affiliation(s)
- Hooman Norouzi
- Department of Botany, University of Innsbruck, Sternwartestraße 15, 6020 Innsbruck, Austria
| | - Dara Dastan
- Department of Pharmacognosy, School of Pharmacy, Medicinal Plants and Natural Products Research Center, Hamadan University of Medical Sciences, Hamadan, Iran.
| | - Fuad O Abdullah
- Department of Chemistry, College of Science, Salahaddin University-Erbil, Erbil, Iraq; Department of Pharmacognosy, Faculty of Pharmacy, Tishk International University, Erbil, Iraq.
| | - Ayman M Al-Qaaneh
- Department of Allied Health Sciences, Al-Balqa Applied University (BAU), Al-Salt 19117 Jordan
| |
Collapse
|
2
|
Maggini V, Bertazza G, Gallo E, Mascherini V, Calvi L, Marra C, Michelucci F, Liberati C, Trassi A, Baraldi R, Firenzuoli F. The Different Phytochemical Profiles of Salvia officinalis Dietary Supplements Labelled for Menopause Symptoms. Molecules 2023; 29:94. [PMID: 38202677 PMCID: PMC10779573 DOI: 10.3390/molecules29010094] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Revised: 12/18/2023] [Accepted: 12/19/2023] [Indexed: 01/12/2024] Open
Abstract
Phytochemical screening of four commercial products containing Salvia officinalis was carried out. Total phenolic content was estimated spectrophotometrically through the use of the Folin-Ciocalteau method, flavonoid content was measured through the use of aluminum chloride and 2,4-dinitrophenylhydrazine colorimetric assays, and isoflavones and α/β-thujones were analyzed through the use of high-performance liquid chromatograph (HPLC) and the gas chromatographic method. The analyses revealed the absence of thujones and isoflavones (i.e., genistin, genistein, and daidzein) in all four different extracts. The content of polyphenolic compounds varied among the samples, with the extract T being richer in both polyphenols and flavonoids than the other products by 1.8-3.2 and 1.4-4.0 times, respectively (p-value < 0.05). These results highlight the importance of quality control in salvia-based products since a thujone-free extract rich in polyphenols and flavonoids could be a good candidate for further preclinical and clinical studies to identify an effective herbal approach suitable for the long-term therapy of menopausal symptoms.
Collapse
Affiliation(s)
- Valentina Maggini
- Research and Innovation Center in Phytotherapy and Integrated Medicine—CERFIT, Referring Center for Phytotherapy of Tuscany Region, Careggi University Hospital, 50134 Florence, Italy; (E.G.); (V.M.)
| | - Gianpaolo Bertazza
- Institute of Bioeconomy, National Research Council (IBE CNR), Via Gobetti 101, 40129 Bologna, Italy; (G.B.); (R.B.)
| | - Eugenia Gallo
- Research and Innovation Center in Phytotherapy and Integrated Medicine—CERFIT, Referring Center for Phytotherapy of Tuscany Region, Careggi University Hospital, 50134 Florence, Italy; (E.G.); (V.M.)
| | - Vittorio Mascherini
- Research and Innovation Center in Phytotherapy and Integrated Medicine—CERFIT, Referring Center for Phytotherapy of Tuscany Region, Careggi University Hospital, 50134 Florence, Italy; (E.G.); (V.M.)
| | - Lorenzo Calvi
- Independent Researcher, Via Fratelli Cervi 14, 27100 Pavia, Italy;
| | - Chiara Marra
- Casa Medica, Via Camozzi 77, 24121 Bergamo, Italy;
| | - Francesca Michelucci
- DAI Anesthesia and Rianimation, University Hospital of Pisa, Via Roma 67, 56126 Pisa, Italy;
| | | | - Anna Trassi
- General Practioner ASL Central Tuscany, Piazza IV Novembre 28, 51035 Pistoia, Italy;
| | - Rita Baraldi
- Institute of Bioeconomy, National Research Council (IBE CNR), Via Gobetti 101, 40129 Bologna, Italy; (G.B.); (R.B.)
| | - Fabio Firenzuoli
- Research and Innovation Center in Phytotherapy and Integrated Medicine—CERFIT, Referring Center for Phytotherapy of Tuscany Region, Careggi University Hospital, 50134 Florence, Italy; (E.G.); (V.M.)
| |
Collapse
|
3
|
Dong Q, Wang H, Wu R, Cao J, Cao F, Su E. A Highly Efficient Liquid-liquid Microextraction Pretreatment Method for Determination of Ginkgolic Acids Based on Hydrophobic Deep Eutectic Solvent. J Mol Liq 2023. [DOI: 10.1016/j.molliq.2023.121425] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/13/2023]
|
4
|
Ichim MC, Scotti F, Booker A. Quality evaluation of commercial herbal products using chemical methods. Crit Rev Food Sci Nutr 2022; 64:4219-4239. [PMID: 36315039 DOI: 10.1080/10408398.2022.2140120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
Herbal products comprise a wide spectrum of locally, nationally or internationally commercialized commodities. As these products have an increasingly important position in healthcare systems worldwide, a detailed product quality assessment is of crucial importance. For the quality evaluation of commercial herbal products, a wide range of methods were used, from simpler, quicker, and cost-effective HPTLC, to hyphenated methods with MS or NMR, where more precise quantification or specific structural information is required. Additionally, most of the methods have been coupled with chemometric tools, such as PCA, or PDA, for the multivariate analysis of the high amount of data generated by chromatograms, electropherograms or spectra. The chemical methods have revealed the widespread presence of low or variable quality herbal products in the marketplace. The majority of analytical investigations present major, qualitative and quantitative, inter-product variations of their chemical composition, ranging from missing ingredients, to strikingly and unnaturally high concentrations of some compounds. Moreover, the inter-batch quality variations were frequently reported, as well as the presence of some undesirable substances. The chemical analysis of herbal products is a vital component to raise the overall awareness of quality in the herbal market and generate a quality driven approach.
Collapse
Affiliation(s)
- Mihael Cristin Ichim
- "Stejarul" Research Centre for Biological Sciences, National Institute of Research and Development for Biological Sciences, Piatra Neamt, Romania
| | - Francesca Scotti
- Pharmacognosy and Phytotherapy Group, Department of Pharmaceutical and Biological Chemistry, UCL School of Pharmacy, London, UK
| | - Anthony Booker
- Research Centre for Optimal Health, School of Life Sciences, College of Liberal Arts and Sciences, University of Westminster, London, UK
| |
Collapse
|
5
|
Liu Z, Li G, Zhang Y, Jin H, Liu Y, Dong J, Li X, Liu Y, Liang X. Blending Technology Based on HPLC Fingerprint and Nonlinear Programming to Control the Quality of Ginkgo Leaves. Molecules 2022; 27:molecules27154733. [PMID: 35897910 PMCID: PMC9332425 DOI: 10.3390/molecules27154733] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2022] [Revised: 07/17/2022] [Accepted: 07/18/2022] [Indexed: 12/04/2022] Open
Abstract
The breadth and depth of traditional Chinese medicine (TCM) applications have been expanding in recent years, yet the problem of quality control has arisen in the application process. It is essential to design an algorithm to provide blending ratios that ensure a high overall product similarity to the target with controlled deviations in individual ingredient content. We developed a new blending algorithm and scheme by comparing different samples of ginkgo leaves. High-consistency samples were used to establish the blending target, and qualified samples were used for blending. Principal component analysis (PCA) was used as the sample screening method. A nonlinear programming algorithm was applied to calculate the blending ratio under different blending constraints. In one set of calculation experiments, the result was blended by the same samples under different conditions. Its relative deviation coefficients (RDCs) were controlled within ±10%. In another set of calculations, the RDCs of more component blending by different samples were controlled within ±20%. Finally, the near-critical calculation ratio was used for the actual experiments. The experimental results met the initial setting requirements. The results show that our algorithm can flexibly control the content of TCMs. The quality control of the production process of TCMs was achieved by improving the content stability of raw materials using blending. The algorithm provides a groundbreaking idea for quality control of TCMs.
Collapse
Affiliation(s)
- Zhe Liu
- Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China; (Z.L.); (G.L.); (Y.Z.); (H.J.); (X.L.)
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Guixin Li
- Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China; (Z.L.); (G.L.); (Y.Z.); (H.J.); (X.L.)
| | - Yu Zhang
- Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China; (Z.L.); (G.L.); (Y.Z.); (H.J.); (X.L.)
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Hongli Jin
- Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China; (Z.L.); (G.L.); (Y.Z.); (H.J.); (X.L.)
- Jiangxi Provincial Key Laboratory for Pharmacodynamic Material Basis of Traditional Chinese Medicine, Ganjiang Chinese Medicine Innovation Center, Nanchang 330100, China
| | - Yucheng Liu
- Heilongjiang ZhenBaoDao Pharmaceutical Co., Ltd., Haerbin 158400, China; (Y.L.); (J.D.)
| | - Jiatao Dong
- Heilongjiang ZhenBaoDao Pharmaceutical Co., Ltd., Haerbin 158400, China; (Y.L.); (J.D.)
| | - Xiaonong Li
- Jiangxi Provincial Key Laboratory for Pharmacodynamic Material Basis of Traditional Chinese Medicine, Ganjiang Chinese Medicine Innovation Center, Nanchang 330100, China
- Correspondence: (X.L.); (Y.L.); Tel.: +86-791-8306-1116 (X.L.); +86-411-8437-9519 (Y.L.)
| | - Yanfang Liu
- Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China; (Z.L.); (G.L.); (Y.Z.); (H.J.); (X.L.)
- Jiangxi Provincial Key Laboratory for Pharmacodynamic Material Basis of Traditional Chinese Medicine, Ganjiang Chinese Medicine Innovation Center, Nanchang 330100, China
- Correspondence: (X.L.); (Y.L.); Tel.: +86-791-8306-1116 (X.L.); +86-411-8437-9519 (Y.L.)
| | - Xinmiao Liang
- Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China; (Z.L.); (G.L.); (Y.Z.); (H.J.); (X.L.)
- Jiangxi Provincial Key Laboratory for Pharmacodynamic Material Basis of Traditional Chinese Medicine, Ganjiang Chinese Medicine Innovation Center, Nanchang 330100, China
| |
Collapse
|
6
|
Effect of Ginkgo Biloba Powder on the Physicochemical Properties and Quality Characteristics of Wheat Dough and Fresh Wet Noodles. Foods 2022; 11:foods11050698. [PMID: 35267331 PMCID: PMC8909626 DOI: 10.3390/foods11050698] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2022] [Revised: 02/10/2022] [Accepted: 02/24/2022] [Indexed: 02/04/2023] Open
Abstract
Effects of ginkgo biloba powder (GBP) on the chemical, physicochemical properties and quality of dough and fresh wet noodles were investigated. Lower contents of gluten and starch, and higher contents of fibre, amylose and flavonoids in GBP than wheat flour, were detected. Water absorption of dough increased and the development time and stability time of dough were decreased with GBP addition. Meanwhile, the pasting properties results showed that the addition of GBP reduced the aging degree of starch and improved the thermal stability of dough. Scanning electron microscopy results showed that addition of GBP smoothed the surface of raw noodles while increasing the hole size of the cooked noodles. With increased GBP addition (0~40%), the chewiness and extensibility of the fresh wet noodles increased significantly (p < 0.05), and the sensory scores changed, ascending from 0~20% substitution, and then descending from 20~40% substitution. The digestibility and estimated glycemic index (eGI) values of the GBP fresh wet noodles decreased significantly (p < 0.05). In general, 20% GBP addition could improve the chewiness, extensibility, taste and nutrition of fresh wet noodles, and decrease the digestibility and eGI values of noodles. Thus, GBP has potential for application in the noodle industry.
Collapse
|
7
|
Adolfo LM, Rao X, Dixon RA. Identification of Pueraria spp. through DNA barcoding and comparative transcriptomics. BMC PLANT BIOLOGY 2022; 22:10. [PMID: 34979934 PMCID: PMC8722073 DOI: 10.1186/s12870-021-03383-x] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/12/2021] [Accepted: 12/05/2021] [Indexed: 06/14/2023]
Abstract
BACKGROUND Kudzu is a term used generically to describe members of the genus Pueraria. Kudzu roots have been used for centuries in traditional Chinese medicine in view of their high levels of beneficial isoflavones including the unique 8-C-glycoside of daidzein, puerarin. In the US, kudzu is seen as a noxious weed causing ecological and economic damage. However, not all kudzu species make puerarin or are equally invasive. Kudzu remains difficult to identify due to its diverse morphology and inconsistent nomenclature. RESULTS We have generated sequences for the internal transcribed spacer 2 (ITS2) and maturase K (matK) regions of Pueraria montana lobata, P. montana montana, and P. phaseoloides, and identified two accessions previously used for differential analysis of puerarin biosynthesis as P. lobata and P. phaseoloides. Additionally, we have generated root transcriptomes for the puerarin-producing P. m. lobata and the non-puerarin producing P. phaseoloides. Within the transcriptomes, microsatellites were identified to aid in species identification as well as population diversity. CONCLUSIONS The barcode sequences generated will aid in fast and efficient identification of the three kudzu species. Additionally, the microsatellites identified from the transcriptomes will aid in genetic analysis. The root transcriptomes also provide a molecular toolkit for comparative gene expression analysis towards elucidation of the biosynthesis of kudzu phytochemicals.
Collapse
Affiliation(s)
- Laci M Adolfo
- BioDiscovery Institute and Department of Biological Sciences, University of North Texas, 1155 Union Circle #305220, Denton, TX, 76203-5017, USA
| | - Xiaolan Rao
- College of Life Sciences, Hubei University, Wuhan, 430068, Hubei Province, China
| | - Richard A Dixon
- BioDiscovery Institute and Department of Biological Sciences, University of North Texas, 1155 Union Circle #305220, Denton, TX, 76203-5017, USA.
| |
Collapse
|
8
|
Bampali E, Germer S, Bauer R, Kulić Ž. HPLC-UV/HRMS methods for the unambiguous detection of adulterations of Ginkgo biloba leaves with Sophora japonica fruits on an extract level. PHARMACEUTICAL BIOLOGY 2021; 59:438-443. [PMID: 33886418 PMCID: PMC8079001 DOI: 10.1080/13880209.2021.1910717] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/07/2020] [Revised: 02/09/2021] [Accepted: 03/25/2021] [Indexed: 06/12/2023]
Abstract
CONTEXT Ginkgo biloba L. (Ginkgoaceae) leaf extract is one of the most frequently sold herbal extracts. There have been reports on poor quality and adulteration of ginkgo leaf extracts or the powdered plant material with extracts or powder of Styphnolobium japonicum (L.) Schott (Fabaceae) (syn. Sophora japonica L.) fruits, which is rich in flavone glycosides. OBJECTIVE The study investigates whether ginkgo leaves genuinely contain genistein and sophoricoside and whether these two substances could be used as markers to detect adulterations with sophora fruits. MATERIALS AND METHODS A total of 33 samples of dried ginkgo leaves were sourced from controlled plantations in China, the USA, and France. After extraction, the samples were analyzed using two high-performance liquid chromatography (HPLC) coupled with UV/HRMS methods for the detection of genistein and sophoricoside, respectively. Chromatograms were compared to standard reference materials. RESULTS In none of the tested ginkgo samples, neither genistein nor sophoricoside could be detected. The applied method was designed to separate genistein from apigenin. The latter is a genuine compound of ginkgo leaves, and its peak may have been previously misidentified as genistein because of the same molecular mass. The method for the detection of sophoricoside allows identification of the adulteration with sophora fruit without prior hydrolysis. By both HPLC methods, it was possible to detect adulterations of ≥2% sophora fruits in the investigated ginkgo extract. CONCLUSION The methods allow unambiguous detection of adulterations of ginkgo leaves with sophora fruits, using genistein and sophoricoside as marker compounds.
Collapse
Affiliation(s)
- Evangelia Bampali
- Institute of Pharmaceutical Sciences, Section of Pharmacognosy, University of Graz, Graz, Austria
- Preclinical Research & Development, Dr. Willmar Schwabe GmbH & Co., Karlsruhe, Germany
| | - Stefan Germer
- Analytical Development, Dr. Willmar Schwabe GmbH & Co., Karlsruhe, Germany
| | - Rudolf Bauer
- Institute of Pharmaceutical Sciences, Section of Pharmacognosy, University of Graz, Graz, Austria
| | - Žarko Kulić
- Preclinical Research & Development, Dr. Willmar Schwabe GmbH & Co., Karlsruhe, Germany
| |
Collapse
|
9
|
Ginkgolic Acid Inhibits Coronavirus Strain 229E Infection of Human Epithelial Lung Cells. Pharmaceuticals (Basel) 2021; 14:ph14100980. [PMID: 34681204 PMCID: PMC8537259 DOI: 10.3390/ph14100980] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2021] [Revised: 09/21/2021] [Accepted: 09/23/2021] [Indexed: 12/16/2022] Open
Abstract
Since December 2019, the COVID-19 pandemic has affected more than 200 million individuals around the globe and caused millions of deaths. Although there are now multiple vaccines for SARS-CoV-2, their efficacy may be limited by current and future viral mutations. Therefore, effective antiviral compounds are an essential component to win the battle against the family of coronaviruses. Ginkgolic Acid (GA) is a pan-antiviral molecule with proven effective in vitro and in vivo activity. We previously demonstrated that GA inhibits Herpes Simplex Virus 1 (HSV-1) by disrupting viral structure, blocking fusion, and inhibiting viral protein synthesis. Additionally, we reported that GA displays broad-spectrum fusion inhibition encompassing all three classes of fusion proteins, including those of HIV, Ebola, influenza A, and Epstein Barr virus. Here, we report that GA exhibited potent antiviral activity against Human Coronavirus strain 229E (HCoV-229E) infection of human epithelial lung cells (MRC-5). GA significantly reduced progeny virus production, expression of viral proteins, and cytopathic effects (CPE). Furthermore, GA significantly inhibited HCoV-229E even when added post-infection. In light of our findings and the similarities of this family of viruses, GA holds promising potential as an effective antiviral treatment for SARS-CoV-2.
Collapse
|
10
|
Belmonte-Sánchez E, Romero-González R, Garrido Frenich A. Applicability of high-resolution NMR in combination with chemometrics for the compositional analysis and quality control of spices and plant-derived condiments. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2021; 101:3541-3550. [PMID: 33368301 DOI: 10.1002/jsfa.11051] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/25/2020] [Revised: 12/17/2020] [Accepted: 12/26/2020] [Indexed: 06/12/2023]
Abstract
Over the last years, the consumption of spices and plant-derived condiments has increased considerably, owing to new culinary trends. Unfortunately, the current marketing channels make them highly vulnerable to adulteration and food fraud. High-resolution nuclear magnetic resonance (NMR) is a powerful tool for the compositional study of spices and plant-derived condiments. It allows the chemical characterization of a wide range of polar and non-polar metabolites, and provides unique structural information not available by other techniques. The chemometric-based analysis of NMR 'fingerprints' has been used to discriminate samples according to species and geographical origin and to detect adulterations, among other applications. The comprehensive identification and quantification of marker compounds can be achieved even in complex mixtures, demonstrating a great potential for high-throughtput quality control applications. © 2020 Society of Chemical Industry.
Collapse
Affiliation(s)
- Eva Belmonte-Sánchez
- Research Group 'Analytical Chemistry of Contaminants', Department of Chemistry and Physics, Research Centre for Mediterranean Intensive Agrosystems and Agri-Food Biotechnology (CIAIMBITAL), University of Almeria, Agrifood Campus of International Excellence, Almeria, Spain
| | - Roberto Romero-González
- Research Group 'Analytical Chemistry of Contaminants', Department of Chemistry and Physics, Research Centre for Mediterranean Intensive Agrosystems and Agri-Food Biotechnology (CIAIMBITAL), University of Almeria, Agrifood Campus of International Excellence, Almeria, Spain
| | - Antonia Garrido Frenich
- Research Group 'Analytical Chemistry of Contaminants', Department of Chemistry and Physics, Research Centre for Mediterranean Intensive Agrosystems and Agri-Food Biotechnology (CIAIMBITAL), University of Almeria, Agrifood Campus of International Excellence, Almeria, Spain
| |
Collapse
|
11
|
Zhang S, Wu L, Wang X, Gong X, Qu H. Development of an HPLC-MS method for the determination of four terpene trilactones in Ginkgo biloba leaf extract via quality by design. Biomed Chromatogr 2021; 35:e5170. [PMID: 33982313 DOI: 10.1002/bmc.5170] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2021] [Revised: 05/04/2021] [Accepted: 05/07/2021] [Indexed: 11/11/2022]
Abstract
Previously reported HPLC-evaporative light scattering detection methods for terpene trilactone determination in Ginkgo biloba leaf extract (EGBL) have complicated sample preparation steps and are time-consuming. Thus, in this work, an HPLC-MS method for the determination of terpene trilactones in EGBL was developed with a novel analytical quality by design approach to provide robust and simple measurements. For this purpose, analytical target profiles and systematic risk analyses were performed to identify potential critical method attributes and critical method parameters. After screening experiments, a Box-Behnken design approach was utilized to investigate the relationships between critical method attributes and critical method parameters. A hypercube design space obtained by a Monte Carlo method was used for choosing the analytical control strategy. Then, verification experiments were performed within the design space, and the models were found to be accurate. After that, the optimized method was verified and successfully used for quality control analysis of EGBL from different manufacturers, and the results were almost the same as those determined by HPLC-evaporative light scattering detection. To our knowledge, this is the first study to establish a robust HPLC-MS method for determination of terpene trilactones in EGBL based on a novel analytical quality by design concept, which can improve the quality control of commercial EGBL.
Collapse
Affiliation(s)
- Sijie Zhang
- Pharmaceutical Informatics Institute, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, China
| | - Linlin Wu
- Pharmaceutical Informatics Institute, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, China
| | - Xiaoping Wang
- Pharmaceutical Informatics Institute, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, China
| | - Xingchu Gong
- Pharmaceutical Informatics Institute, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, China
| | - Haibin Qu
- Pharmaceutical Informatics Institute, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, China
| |
Collapse
|
12
|
Cruz MB, Place BJ, Wood LJ, Urbas A, Wasik A, de Carvalho Rocha WF. A nontargeted approach to determine the authenticity of Ginkgo biloba L. plant materials and dried leaf extracts by liquid chromatography-high-resolution mass spectrometry (LC-HRMS) and chemometrics. Anal Bioanal Chem 2020; 412:6969-6982. [PMID: 32757063 PMCID: PMC7953348 DOI: 10.1007/s00216-020-02830-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2020] [Revised: 07/15/2020] [Accepted: 07/17/2020] [Indexed: 10/23/2022]
Abstract
The lack of stringent regulations regarding raw materials for herbal supplements used for medicinal purposes has been a constant challenge in the industry. Ginkgo biloba L. leaf extracts attract consumers because of the supposed positive effect on mental performance and memory. Supplements are produced using dried leaf materials and standardized leaf extracts such as EGb 761. Adulteration of Ginkgo biloba L. plants and extracts are becoming more and more common practice due to economically driven motivation from increasing demand in the market and the high cost of raw materials and production. Reinforcement in quality control (QC) to avoid adulterations is necessary to ensure the efficacy of the supplements. In this study, liquid chromatography-high-resolution mass spectrometry (LC-HRMS) was used with principal component analysis (PCA) as an unsupervised exploratory method to analyze, identify, and evaluate the adulterated Ginkgo biloba L. plant materials and dried leaf extracts using the PCA scores and loadings obtained and compound identification.
Collapse
Affiliation(s)
- Meryl B Cruz
- Chemical Sciences Division, National Institute of Standards and Technology (NIST), 100 Bureau Drive, Gaithersburg, MD, 20899, USA
- Department of Analytical Chemistry, Faculty of Chemistry, Gdańsk University of Technology, 11/12 Narutowicza Street, 80-233, Gdańsk, Poland
| | - Benjamin J Place
- Chemical Sciences Division, National Institute of Standards and Technology (NIST), 100 Bureau Drive, Gaithersburg, MD, 20899, USA.
| | - Laura J Wood
- Chemical Sciences Division, National Institute of Standards and Technology (NIST), 100 Bureau Drive, Gaithersburg, MD, 20899, USA
| | - Aaron Urbas
- Chemical Sciences Division, National Institute of Standards and Technology (NIST), 100 Bureau Drive, Gaithersburg, MD, 20899, USA
| | - Andrzej Wasik
- Department of Analytical Chemistry, Faculty of Chemistry, Gdańsk University of Technology, 11/12 Narutowicza Street, 80-233, Gdańsk, Poland
| | | |
Collapse
|
13
|
Mixing of menthol-based hydrophobic deep eutectic solvents as a novel method to tune their properties. J Mol Liq 2020. [DOI: 10.1016/j.molliq.2019.112416] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
14
|
Frommenwiler DA, Booker A, Vila R, Heinrich M, Reich E, Cañigueral S. Comprehensive HPTLC fingerprinting as a tool for a simplified analysis of purity of ginkgo products. JOURNAL OF ETHNOPHARMACOLOGY 2019; 243:112084. [PMID: 31306695 DOI: 10.1016/j.jep.2019.112084] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/30/2019] [Revised: 07/01/2019] [Accepted: 07/12/2019] [Indexed: 06/10/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Herbal medicinal products based on ginkgo leaf refined dry extract (GBE) are an European development from the Eastern Asia traditionally used species Ginkgo biloba L. Nowadays, ginkgo products have increased the presence in the market, mainly as dietary supplements. Its adulteration with rutin and quercetin or herbal extracts rich in these compounds is a common practice. Tests featuring assays and detection of adulterants need to be performed on top of other existent methods (e.g. identification test). This may increase the costs of evaluating the quality of ginkgo products. AIM OF THE STUDY To prove that comprehensive HPTLC fingerprinting can provide information beyond identification of ginkgo products, avoiding additional chromatographic tests for detection of adulterations. MATERIALS AND METHODS The information contained in the fingerprint obtained by HPTLC analysis of flavonoids was used for identification and for detection of adulterants, as well as to verify the limits of rutin and quercetin, which are normally determined by HPLC and used for detection of adulterants. For this purpose, peak profiles were generated from HPTLC chromatogram images. USP-HPLC methods were used for quantification of total flavonoids and testing the limits of rutin and quercetin. HPLC data were used to support the validity of the HPTLC method. An additional reversed phase HPTLC method was developed as a possible confirmatory method for the quercetin limit test. RESULTS The proposed HPTLC method uses a particular sequence of detections, resulting in a number of images, which are later interpreted in a certain order. It is able to identify ginkgo products, to detect adulterants (rutin, quercetin, sophora fruit and flower bud, and buckwheat), and, using peak profiles generated from the chromatogram images prior to and after derivatisation, to evaluate the limits of rutin and quercetin. Forty-eight out of fifty-nine ginkgo dietary supplements analysed contained one or more adulterants. Furthermore, results of the HPTLC and HPLC limit tests for rutin and quercetin were in agreement in 98% of the cases. Finally, a decision tree showing the sequence of interpretation of the fingerprints obtained with the different detections after a single HPTLC analysis is included to help the analyst to evaluate whether samples have the correct identity and whether they contain or not adulterants. CONCLUSION A single HPTLC analysis is able to provide information on identity and purity of the products. This simplifies the analytical workflow and reduces the number of analyses prescribed in the USP powdered ginkgo extract monograph.
Collapse
Affiliation(s)
- Débora Arruda Frommenwiler
- Unitat de Farmacologia, Farmacognòsia i Terapèutica, Facultat de Farmàcia i Ciències de l'Alimentació, Universitat de Barcelona, Av. Joan XXIII, 27-31, ES-08028, Barcelona, Spain; CAMAG AG, Sonnenmattstrasse 11, 4132, Muttenz, Switzerland
| | - Anthony Booker
- Pharmacognosy and Phytotherapy, Biodiversity and Medicines Research Cluster, Department of Pharmaceutical and Biological Chemistry, UCL School of Pharmacy. 29-39 Brunswick Square, WC1N 1AX, London, UK; Herbal and East Asian Medicine, Department of Life Sciences, College of Liberal Arts and Sciences, University of Westminster, 115 New Cavendish Street, London, W1W 6UW, UK
| | - Roser Vila
- Unitat de Farmacologia, Farmacognòsia i Terapèutica, Facultat de Farmàcia i Ciències de l'Alimentació, Universitat de Barcelona, Av. Joan XXIII, 27-31, ES-08028, Barcelona, Spain
| | - Michael Heinrich
- Pharmacognosy and Phytotherapy, Biodiversity and Medicines Research Cluster, Department of Pharmaceutical and Biological Chemistry, UCL School of Pharmacy. 29-39 Brunswick Square, WC1N 1AX, London, UK
| | - Eike Reich
- CAMAG AG, Sonnenmattstrasse 11, 4132, Muttenz, Switzerland
| | - Salvador Cañigueral
- Unitat de Farmacologia, Farmacognòsia i Terapèutica, Facultat de Farmàcia i Ciències de l'Alimentació, Universitat de Barcelona, Av. Joan XXIII, 27-31, ES-08028, Barcelona, Spain.
| |
Collapse
|
15
|
A sensitive and selective multiple reaction monitoring mass spectrometry method for simultaneous quantification of flavonol glycoside, terpene lactones, and biflavonoids in Ginkgo biloba leaves. J Pharm Biomed Anal 2019; 170:335-340. [PMID: 30986686 DOI: 10.1016/j.jpba.2019.03.058] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2019] [Revised: 03/11/2019] [Accepted: 03/25/2019] [Indexed: 01/22/2023]
Abstract
In this study, an efficient and sensitive UHPLC-QQQ-MS/MS (MRM) analytical strategy was established firstly for simultaneous determination of 11 components, including 3 original flavonol glycoside, 4 terpene lactones and 4 biflavonoids in Ginkgo biloba leaves. The validated strategy exhibited proper linearity (R2 ≥0.99) in the range of 0.5-125 μg/mL, and intra and inter-day precision were lower than 4.09% and 4.80%, respectively. Limit of detection (LOD) and quantification (LOQ) were calculated, ranging from 0.2-4.6 ng/mL, with repeatability values between 1.98% and 4.48%. The average recoveries were all in the range of 98.45-106.67% with RSD (n = 3) for the related compounds. Subsequently, the proposed method was used for the analysis of Ginkgo biloba leaves during leaf senescence. Results showed the dominant flavonol glycosides were kaempferol-3-O-rutinoside and isorhamnetin-3-O-rutinoside, the level of terpene lactones and biflavonoids reached the highest in the latest harvest samples. Compared with conventional detection method, the present method could directly analyze original flavonol glycoside without acid hydrolysis process and terpene lactones without the ELSD in a high sensitivity. Moreover, the biflavonoids in Ginkgo biloba leaves were also simultaneously quantified. The results demonstrated that the developed method was accurate, sensitive and reliable for simultaneous quantification of multi-components in Ginkgo biloba leaves, and this study should be significant for the comprehensive utilization and development of Ginkgo biloba resources.
Collapse
|
16
|
Belmonte-Sánchez JR, Romero-González R, Arrebola FJ, Vidal JLM, Garrido Frenich A. An Innovative Metabolomic Approach for Golden Rum Classification Combining Ultrahigh-Performance Liquid Chromatography-Orbitrap Mass Spectrometry and Chemometric Strategies. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2019; 67:1302-1311. [PMID: 30618256 DOI: 10.1021/acs.jafc.8b05622] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/28/2023]
Abstract
A comprehensive fingerprinting strategy for golden rum classification considering different categories such as fermentation barrel, raw material, and aging is provided, using a metabolomic fingerprinting approach. A nontarget fingerprinting of 30 different rums using liquid chromatography coupled to high-resolution mass spectrometry (Exactive Orbitrap mass analyzer, LC-HRMS) was applied. Principal component analysis (PCA) was used to assess the overall structure of the data and to identify potential outliers. Different chemometric analyses such as partial least-squares discriminant analysis (PLS-DA) were used. A variable importance in projection (VIP) selection method was applied to identify the most significant markers that allow group separation. Compounds related to aging and fermentation processes such as furfural derivates (e.g., hydroxymethylfurfural) and sugars (e.g., glucose, mannitol) were found as the most discriminant compounds (VIP threshold value >1.5). Suitable separation according to selected categories was achieved, and a classification ability of the models of close to 100% was achieved.
Collapse
Affiliation(s)
- José Raúl Belmonte-Sánchez
- Research Group "Analytical Chemistry of Contaminants", Department of Chemistry and Physics, Research Centre for Agricultural and Food Biotechnology (BITAL) , University of Almería , Agrifood Campus of International Excellence, ceiA3, E-04120 Almería , Spain
| | - Roberto Romero-González
- Research Group "Analytical Chemistry of Contaminants", Department of Chemistry and Physics, Research Centre for Agricultural and Food Biotechnology (BITAL) , University of Almería , Agrifood Campus of International Excellence, ceiA3, E-04120 Almería , Spain
| | - Francisco Javier Arrebola
- Research Group "Analytical Chemistry of Contaminants", Department of Chemistry and Physics, Research Centre for Agricultural and Food Biotechnology (BITAL) , University of Almería , Agrifood Campus of International Excellence, ceiA3, E-04120 Almería , Spain
| | - José Luis Martínez Vidal
- Research Group "Analytical Chemistry of Contaminants", Department of Chemistry and Physics, Research Centre for Agricultural and Food Biotechnology (BITAL) , University of Almería , Agrifood Campus of International Excellence, ceiA3, E-04120 Almería , Spain
| | - Antonia Garrido Frenich
- Research Group "Analytical Chemistry of Contaminants", Department of Chemistry and Physics, Research Centre for Agricultural and Food Biotechnology (BITAL) , University of Almería , Agrifood Campus of International Excellence, ceiA3, E-04120 Almería , Spain
| |
Collapse
|
17
|
Guo JF, Ning ZQ, Wu X, Qiao YJ, Wang X. Discovery of a natural PI3Kδ inhibitor through virtual screening and biological assay study. Biochem Biophys Res Commun 2018; 508:709-714. [PMID: 30528237 DOI: 10.1016/j.bbrc.2018.12.009] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2018] [Accepted: 12/03/2018] [Indexed: 01/15/2023]
Abstract
Phosphoinositide-3-kinase-δ (PI3Kδ) is a key regulator in the process of IgE mediated mast cell degranulation, which directly induces allergic diseases, such as asthma. This study is aimed at discovery of natural PI3Kδ inhibitors from Chinese medicine and evaluating their anti-mast cell degranulation activity. A combined virtual screening based on 3D pharmacophore model and molecular docking was used to screen for bioactive ingredients directly targeting PI3Kδ. Then, an in vitro kinase inhibition assay was conducted to evaluate the PI3Kδ inhibitory activity of the virtual screening hits. Subsequently, a β-hexosaminidase release assay was performed to verify the anti-mast cell degranulation activity of the active compounds. Finally, ginkgoneolic acid was identified as a PI3Kδ inhibitor (IC50 = 2.49 μM) and exhibited anti-mast cell degranulation activity in vitro (IC50 = 2.40 μM). Docking studies showed that Glu826, Val827 and Val828 were key amino acid residues for PI3Kδ inhibitory activity. Ginkgoneolic acid may be a potential lead compound for developing effective and safe PI3Kδ-inhibiting drugs.
Collapse
Affiliation(s)
- Jun-Fang Guo
- School of Traditional Chinese Medicine, Capital Medical University, Fengtai District, Beijing, 100069, PR China
| | - Zhong-Qi Ning
- School of Traditional Chinese Medicine, Capital Medical University, Fengtai District, Beijing, 100069, PR China
| | - Xia Wu
- School of Traditional Chinese Medicine, Capital Medical University, Fengtai District, Beijing, 100069, PR China; Beijing Key Laboratory of Traditional Chinese Medicine Collateral Disease Theory Research, Capital Medical University, Fengtai District, Beijing, 100069, PR China
| | - Yan-Jiang Qiao
- Key Laboratory of TCM-information Engineer of State Administration of TCM, School of Chinese Materia Medica, Beijing University of Chinese Medicine, No.11, North San huan Road, Chaoyang District, Beijing, 100029, PR China.
| | - Xing Wang
- School of Traditional Chinese Medicine, Capital Medical University, Fengtai District, Beijing, 100069, PR China; Beijing Key Laboratory of Traditional Chinese Medicine Collateral Disease Theory Research, Capital Medical University, Fengtai District, Beijing, 100069, PR China.
| |
Collapse
|
18
|
Fibigr J, Šatínský D, Solich P. Current trends in the analysis and quality control of food supplements based on plant extracts. Anal Chim Acta 2018; 1036:1-15. [DOI: 10.1016/j.aca.2018.08.017] [Citation(s) in RCA: 42] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2018] [Revised: 07/31/2018] [Accepted: 08/04/2018] [Indexed: 02/06/2023]
|
19
|
Zhang N, Lan W, Wang Q, Sun X, Xie J. Antibacterial mechanism of Ginkgo biloba leaf extract when applied to Shewanella putrefaciens and Saprophytic staphylococcus. AQUACULTURE AND FISHERIES 2018. [DOI: 10.1016/j.aaf.2018.05.005] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
|
20
|
Liang T, Miyakawa T, Yang J, Ishikawa T, Tanokura M. Quantification of terpene trilactones in Ginkgo biloba with a 1H NMR method. J Nat Med 2018; 72:793-797. [PMID: 29569220 DOI: 10.1007/s11418-018-1203-0] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2017] [Accepted: 03/12/2018] [Indexed: 01/01/2023]
Abstract
Ginkgo biloba L. has been used as a herbal medicine in the traditional treatment of insufficient blood flow, memory deficits, and cerebral insufficiency. The terpene trilactone components, the bioactive agents of Ginkgo biloba L., have also been reported to exhibit useful functionality such as anti-inflammatory and neuroprotective effects. Therefore, in the present research, we attempted to analyze quantitatively the terpene trilactone components in Ginkgo biloba leaf extract, with quantitative 1H NMR (qNMR) and obtained almost identical results to data reported using HPLC. Application of the qNMR method for the analysis of the terpene trilactone contents in commercial Ginkgo extract products, such as soft gel capsules and tablets, produced the same levels noted in package labels. Thus, qNMR is an alternative method for quantification of the terpene trilactone components in commercial Ginkgo extract products.
Collapse
Affiliation(s)
- Tingfu Liang
- Tokiwa Phytochemical Co. Ltd, 158 Kinoko, Sakura, Chiba, 285-0801, Japan
| | - Takuya Miyakawa
- Department of Applied Biological Chemistry, Graduate School of Agricultural and Life Sciences, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo, 113-8657, Japan
| | - Jinwei Yang
- Tokiwa Phytochemical Co. Ltd, 158 Kinoko, Sakura, Chiba, 285-0801, Japan.
| | - Tsutomu Ishikawa
- Tokiwa Phytochemical Co. Ltd, 158 Kinoko, Sakura, Chiba, 285-0801, Japan
| | - Masaru Tanokura
- Department of Applied Biological Chemistry, Graduate School of Agricultural and Life Sciences, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo, 113-8657, Japan
| |
Collapse
|
21
|
Ji S, He DD, Wang TY, Han J, Li Z, Du Y, Zou JH, Guo MZ, Tang DQ. Separation and characterization of chemical constituents in Ginkgo biloba extract by off-line hydrophilic interaction × reversed-phase two-dimensional liquid chromatography coupled with quadrupole-time of flight mass spectrometry. J Pharm Biomed Anal 2017; 146:68-78. [DOI: 10.1016/j.jpba.2017.07.057] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2017] [Revised: 07/29/2017] [Accepted: 07/31/2017] [Indexed: 11/28/2022]
|
22
|
Development of an ultra-fast liquid chromatography–tandem mass spectrometry method for simultaneous determination of seven flavonoids in rat plasma: Application to a comparative pharmacokinetic investigation of Ginkgo biloba extract and single pure ginkgo flavonoids after oral administration. J Chromatogr B Analyt Technol Biomed Life Sci 2017. [DOI: 10.1016/j.jchromb.2017.05.021] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
|
23
|
Booker A, Frommenwiler D, Reich E, Horsfield S, Heinrich M. Adulteration and poor quality of Ginkgo biloba supplements. J Herb Med 2016. [DOI: 10.1016/j.hermed.2016.04.003] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|