1
|
Ma W, Liu T, Ogaji OD, Li J, Du K, Chang Y. Recent advances in Scutellariae radix: A comprehensive review on ethnobotanical uses, processing, phytochemistry, pharmacological effects, quality control and influence factors of biosynthesis. Heliyon 2024; 10:e36146. [PMID: 39262990 PMCID: PMC11388511 DOI: 10.1016/j.heliyon.2024.e36146] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2024] [Revised: 07/22/2024] [Accepted: 08/09/2024] [Indexed: 09/13/2024] Open
Abstract
Background Scutellariae radix (SR) is the dried root of Scutellaria baicalensis Georgi. It has a long history of ethnic medicinal use, traditionally recognized for its efficacy in clearing heat, drying dampness, eliminating fire, removing toxins , stopping bleeding and tranquilizing fetus to prevent miscarriage. Clinically, it is used to treat cold, fever, migraine, hand-foot-and-mouth diseases, liver cancer and inflammatory diseases. Purpose The review aims to provide a comprehensive reference on the ethnobotanical uses, processing, phytochemistry, pharmacological effect, quality control and influence factors of biosynthesis for a deeper understanding of SR. Results and conclusion A total of 210 isolated components have been reported in the literature, including flavonoids and their glycosides, phenylpropanoids, phenylethanoid glycosides, phenolic acids, volatile components, polysaccharides and others. The extract of SR and its main flavonoids such as baicalin, baicalein, wogonin, wogonoside, and scutellarin showed antioxidant, anti-inflammatory, anti-tumor, antiviral, hepatoprotective, and neuroprotective effects. However, further studies are required to elucidate its mechanisms of action and clinical applications. The pharmacodynamic evaluation based on traditional efficacy should be conducted. Although various analytical methods have been established for the quality control of SR, there are gaps in the research regarding efficacy-related quality markers and the development of quality control standards for its processed products. The regulatory mechanisms of flavonoids biosynthesis remain to be explored while the influence of environmental and transcription factors on the biosynthesis have been studied. In conclusion, SR is a promising herbal medicine with significant potential for future development.
Collapse
Affiliation(s)
- Wentao Ma
- State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China
- Tianjin Key Laboratory of Phytochemistry and Pharmaceutical Analysis, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China
| | - Tianyu Liu
- State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China
- Tianjin Key Laboratory of Phytochemistry and Pharmaceutical Analysis, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China
| | - Omachi Daniel Ogaji
- State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China
- Tianjin Key Laboratory of Phytochemistry and Pharmaceutical Analysis, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China
| | - Jin Li
- State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China
| | - Kunze Du
- State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China
- Tianjin Key Laboratory of Phytochemistry and Pharmaceutical Analysis, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China
- Haihe Laboratory of Modern Chinese Medicine, Tianjin, 301617, China
| | - Yanxu Chang
- State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China
- Tianjin Key Laboratory of Phytochemistry and Pharmaceutical Analysis, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China
- Haihe Laboratory of Modern Chinese Medicine, Tianjin, 301617, China
| |
Collapse
|
2
|
Liu M, Zhao X, Wen J, Sun L, Huang R, Zhang H, Liu Y, Ren X. A multidimensional strategy for uncovering comprehensive quality markers of Scutellariae Radix based on UPLC-Q-TOF-MS analysis, artificial neural network, network pharmacology analysis, and molecular simulation. FRONTIERS IN PLANT SCIENCE 2024; 15:1423678. [PMID: 39022612 PMCID: PMC11251886 DOI: 10.3389/fpls.2024.1423678] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/26/2024] [Accepted: 06/14/2024] [Indexed: 07/20/2024]
Abstract
Introduction Scutellariae Radix (SR), derived from the root of Scutellaria baicalensis Georgi, is a traditional Chinese medicine (TCM) for clearing heat and cooling blood. It has been used as a traditional herbal medicine and is popular as a functional food in Asian countries today. Methods In this study, UPLC-Q-TOF-MS was first employed to identify the chemical components in the ethanol extract of SR. Then, the extraction process was optimized using star point design-response surface methodology. Fingerprints of different batches and processed products were established, and chemical markers were screened through a combination of various artificial neural network models. Finally, network pharmacology and molecular simulation techniques were utilized for verification to determine the quality markers. Results A total of 35 chemical components in SR were identified, and the optimal extraction process was determined as follows: ultrasonic extraction with 80% methanol at a ratio of 120:1 for 70 minutes, with a soaking time of 30 minutes. Through discriminant analysis using various artificial neural network models, the samples of SR could be classified into two categories based on their growth years: Kuqin (dried roots of older plants) and Ziqin (roots of younger plants). Moreover, the samples within each category could be further clustered according to their origins. The four different processed products of SR could also be distinguished separately. Finally, through the integration of network pharmacology and molecular simulation techniques, it was determined that baicalin, baicalein, wogonin, norwogonin, norwogonin-8-O-glucuronide, skullcapflavone II, hispidulin, 8, 8"-bibaicalein, and oroxylin A-7-O-beta-D-glucuronide could serve as quality markers for SR. Discussion The primary factors affecting the quality of SR were its growth years. The geographic origin of SR was identified as a secondary factor affecting its quality. Processing also had a significant impact on its quality. The selected quality markers have laid the foundation for the quality control of SR, and this research strategy also provides a research paradigm for improving the quality of TCM.
Collapse
Affiliation(s)
- Meiqi Liu
- School of Chinese Materia Medica, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Xiaoran Zhao
- School of Chinese Materia Medica, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Jinli Wen
- School of Chinese Materia Medica, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Lili Sun
- School of Chinese Materia Medica, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Rui Huang
- School of Chinese Materia Medica, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Huijie Zhang
- Department of Pharmacy, Tianjin Academy of Traditional Chinese Medicine Affiliated Hospital, Tianjin, China
- Chinese Medicine Research Institute, Tianjin Academy of Traditional Chinese Medicine, Tianjin, China
| | - Yi Liu
- School of Chinese Materia Medica, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Xiaoliang Ren
- School of Chinese Materia Medica, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| |
Collapse
|
3
|
Yang B, Zhang Z, Song J, Qi T, Zeng J, Feng L, Jia X. Interpreting the efficacy enhancement mechanism of Chinese medicine processing from a biopharmaceutic perspective. Chin Med 2024; 19:14. [PMID: 38238801 PMCID: PMC10797928 DOI: 10.1186/s13020-024-00887-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Accepted: 01/10/2024] [Indexed: 01/22/2024] Open
Abstract
Chinese medicine processing (CMP) is a unique pharmaceutical technology that distinguishes it from natural medicines. Current research primarily focuses on changes in chemical components to understand the mechanisms behind efficacy enhancement in processing. However, this paper presents a novel perspective on the biopharmaceutics of CMP. It provides a comprehensive overview of the current research, emphasizing two crucial aspects: the role of 'heat' during processing and the utilization of processing adjuvants. The paper highlights the generation of easily absorbed components through the hydrolysis of glycosides by 'heat', as well as the facilitation of dissolution, absorption, and targeted distribution of active components through the utilization of processing adjuvants. From a biopharmaceutic perspective, this paper provides a lucid comprehension of the scientific foundation for augmenting the efficacy of CMP. Moreover, it proposes a three-dimensional research framework encompassing chemical reactions, phase transitions, and biopharmaceutical properties to further investigate the mechanisms involved in enhancing the efficacy of CMP.
Collapse
Affiliation(s)
- Bing Yang
- State Key Laboratory of Natural Medicines, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, 211198, People's Republic of China
| | - Zhubin Zhang
- State Key Laboratory of Natural Medicines, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, 211198, People's Republic of China
| | - Jinjing Song
- State Key Laboratory of Natural Medicines, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, 211198, People's Republic of China
| | - Tianhao Qi
- State Key Laboratory of Natural Medicines, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, 211198, People's Republic of China
| | - Jingqi Zeng
- State Key Laboratory of Natural Medicines, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, 211198, People's Republic of China
| | - Liang Feng
- State Key Laboratory of Natural Medicines, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, 211198, People's Republic of China.
| | - Xiaobin Jia
- State Key Laboratory of Natural Medicines, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, 211198, People's Republic of China.
| |
Collapse
|
4
|
Li S, Sun Y, Gao Y, Yu X, Zhao C, Song X, Han F, Yu J. Spectrum-effect relationship analysis based on HPLC-FT-ICR-MS and multivariate statistical analysis to reveal the pharmacodynamic substances of Ling-Gui-Zhu-Gan decoction on Alzheimer's disease. J Pharm Biomed Anal 2024; 237:115765. [PMID: 37844366 DOI: 10.1016/j.jpba.2023.115765] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2023] [Revised: 09/02/2023] [Accepted: 10/02/2023] [Indexed: 10/18/2023]
Abstract
Alzheimer's disease (AD) threatens elderly human health and still lacks effective treatment. Our previous work showed that LGZGD possessed a neuroprotective effect on the Aβ25-35-induced neurotoxicity in differentiated PC12 cells, indicating that LGZGD may be a potential drug for treatment of AD. However, its pharmacodynamic substances which show anti-inflammatory and anti-oxidant stress activities are still unrevealed. This research aims to reveal the pharmacodynamic substances of LGZGD on Aβ25-35-induced PC12 cell model of AD based on a spectrum-effect relationship study by using HPLC-FT-ICR-MS method and multivariate statistical analysis. Firstly, the chemical composition spectra of different combinations of LGZGD were recorded by HPLC-FT-ICR MS. Subsequently, Aβ25-35-induced PC12 cell model of AD was established and pharmacodynamic experiments were conducted to evaluate their anti-inflammatory and anti-oxidant activities, respectively. Finally, the potential pharmacodynamic substances were screened out through spectrum-effect relationship study accompanied by multivariate statistical analysis including bivariate correlation analysis (BCA), grey relational analysis (GRA), principal component analysis (PCA), partial least squares regression analysis (PLSR). As a result, a total of 96 chemical consistents in different combinations of LGZGD were discovered. Among them, 7 components such as isoglabrolide, licorice saponin E2, licorice saponin N2 and licoisoflavanone were directly linked with the anti-inflammatory effects, and 14 constituents such as tumulosic acid, polyporenic acid C, dehydrotumulosic acid, dehydropachymic acid, and pachymic acid were directly correlated with the anti-oxidative stress activities. In conclusion, we combined the HPLC-FT-ICR-MS spectra with pharmacodynamic indicators to develop the spectrum-effect relationships of LGZGD for the first time, and successfully revealed its potential pharmacodynamic substances in the treatment of AD from the anti-inflammatory and antioxidant pathways in the cell model.
Collapse
Affiliation(s)
- Siyue Li
- School of Pharmacy, Shenyang Pharmaceutical University, No.103 Wenhua Road, Shenhe District, Shenyang 110016, China
| | - Yuanfang Sun
- School of Pharmacy, Shenyang Pharmaceutical University, No.103 Wenhua Road, Shenhe District, Shenyang 110016, China
| | - Yutong Gao
- School of Pharmacy, Shenyang Pharmaceutical University, No.103 Wenhua Road, Shenhe District, Shenyang 110016, China
| | - Xinying Yu
- School of Pharmacy, Shenyang Pharmaceutical University, No.103 Wenhua Road, Shenhe District, Shenyang 110016, China
| | - Chun Zhao
- School of Pharmacy, Shenyang Pharmaceutical University, No.103 Wenhua Road, Shenhe District, Shenyang 110016, China
| | - Xiuping Song
- School of Pharmacy, Shenyang Pharmaceutical University, No.103 Wenhua Road, Shenhe District, Shenyang 110016, China
| | - Fei Han
- School of Pharmacy, Shenyang Pharmaceutical University, No.103 Wenhua Road, Shenhe District, Shenyang 110016, China.
| | - Jia Yu
- School of Pharmacy, Shenyang Pharmaceutical University, No.103 Wenhua Road, Shenhe District, Shenyang 110016, China.
| |
Collapse
|
5
|
Zhang M, Cheng J, Luo J, Li C, Hou T, Zhao Y, Wang Y, Qu H, Kong H. Protective effects of Scutellariae Radix Carbonisata-derived carbon dots on blood-heat and hemorrhage rats. Front Pharmacol 2023; 14:1118550. [PMID: 37637430 PMCID: PMC10450154 DOI: 10.3389/fphar.2023.1118550] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2022] [Accepted: 07/28/2023] [Indexed: 08/29/2023] Open
Abstract
As the charcoal processing product of Scutellariae Radix (SR), SR Carbonisata (SRC) has been clinically used as a cooling blood and hemostatic agent for thousands of years. However, the underlying active ingredients and mechanism of SRC still remained unspecified. In this study, SRC derived carbon dots (SRC-CDs) were extracted and purified from the aqueous solution of SRC, followed by physicochemical property assessment by series of technologies. The cooling blood and hemostatic effects of SRC-CDs were further evaluated via a blood-heat and hemorrhage (BHH) rat model. Results showed that the diameters of obtained fluorescent SRC-CDs ranged from 5.0 nm to 10.0 nm and possessed functional group-rich surfaces. Additionally, the as-prepared SRC-CDs showed remarkable cooling blood and hemostasis effects in BHH model, mainly manifested by significant improvement of elevated rectal temperature, inflammatory cytokines (TNF-α, IL-6, and IL-1β) levels, as well as protein expressions of myD88 and NF-κB p65, abnormal coagulation parameters (elevated APTT and FIB), hemogram parameters (RBC, HGB, and HCT), and histopathological changes in lung and gastric tissues. This study, for the first time, demonstrated that SRC-CDs were the cooling blood and hemostatic active components of SRC, which could inhibit the release of inflammatory cytokines by regulating myD88/NF-κB signaling pathway, and activating the fibrin system and endogenous coagulation pathway. These results not only provide a new perspective for the study of active ingredients of carbonized herbs represented by SRC, but also lay an experimental foundation for the development of next-generation nanomedicines.
Collapse
Affiliation(s)
- Meiling Zhang
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China
- Key Laboratory of Chinese Internal Medicine of the Ministry of Education, Dongzhimen Hospital Affiliated to Beijing University of Chinese Medicine, Beijing, China
| | - Jinjun Cheng
- National Institute of TCM Constitution and Preventive Medicine, Beijing University of Chinese Medicine, Beijing, China
| | - Juan Luo
- Institute of Precision Medicine, Peking University Shenzhen Hospital, Shenzhen, China
| | - Changxiang Li
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China
| | | | - Yan Zhao
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China
| | - Yaoxian Wang
- Key Laboratory of Chinese Internal Medicine of the Ministry of Education, Dongzhimen Hospital Affiliated to Beijing University of Chinese Medicine, Beijing, China
| | - Huihua Qu
- Center of Scientific Experiment, Beijing University of Chinese Medicine, Beijing, China
| | - Hui Kong
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China
| |
Collapse
|
6
|
Zhang J, Wang J, Yang L, Wang Y, Jin W, Li J, Zhang Z. Comprehensive Quality Evaluation of Polygonatum cyrtonema and Its Processed Product: Chemical Fingerprinting, Determination and Bioactivity. Molecules 2023; 28:molecules28114341. [PMID: 37298820 DOI: 10.3390/molecules28114341] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2023] [Revised: 05/22/2023] [Accepted: 05/23/2023] [Indexed: 06/12/2023] Open
Abstract
Processing of Chinese herbal medicines (CHMs) is a traditional pharmaceutical technology in Chinese medicine. Traditionally, proper processing of CHMs is necessary to meet the specific clinical requirements of different syndromes. Processing with black bean juice is considered one of the most important techniques in traditional Chinese pharmaceutical technology. Despite the long-standing practice of processing Polygonatum cyrtonema Hua (PCH), there is little research on the changes in chemical constituents and bioactivity before and after processing. This study investigated the influence of black bean juice processing on the chemical composition and bioactivity of PCH. The results revealed significant changes in both composition and contents during processing. Saccharide and saponin content significantly increased after processing. Moreover, the processed samples exhibited considerably stronger DPPH and ABTS radical scavenging capacity, as well as FRAP-reducing capacity, compared to the raw samples. The IC50 values for DPPH were 1.0 ± 0.12 mg/mL and 0.65 ± 0.10 mg/mL for the raw and processed samples, respectively. For ABTS, the IC50 values were 0.65 ± 0.07 mg/mL and 0.25 ± 0.04 mg/mL, respectively. Additionally, the processed sample demonstrated significantly higher inhibitory activity against α-glucosidase and α-amylase (IC50 = 1.29 ± 0.12 mg/mL and 0.48 ± 0.04 mg/mL) compared to the raw sample (IC50 = 5.58 ± 0.22 mg/mL and 0.80 ± 0.09 mg/mL). These findings underscore the significance of black bean processing in enhancing the properties of PCH and lay the foundation for its further development as a functional food. The study elucidates the role of black bean processing in PCH and offers valuable insights for its application.
Collapse
Affiliation(s)
- Jianguang Zhang
- Tibetan Plateau Ethnic Medicinal Resources Protection and Utilization Key Laboratory of National Ethnic Affairs Commission of the People's Republic of China, Southwest Minzu University, Chengdu 610041, China
- Qin Zhou Provincial Health School, Qinzhou 535009, China
| | - Junjun Wang
- Tibetan Plateau Ethnic Medicinal Resources Protection and Utilization Key Laboratory of National Ethnic Affairs Commission of the People's Republic of China, Southwest Minzu University, Chengdu 610041, China
| | - Li Yang
- Tibetan Plateau Ethnic Medicinal Resources Protection and Utilization Key Laboratory of National Ethnic Affairs Commission of the People's Republic of China, Southwest Minzu University, Chengdu 610041, China
| | - Yue Wang
- Tibetan Plateau Ethnic Medicinal Resources Protection and Utilization Key Laboratory of National Ethnic Affairs Commission of the People's Republic of China, Southwest Minzu University, Chengdu 610041, China
| | - Wenfang Jin
- Tibetan Plateau Ethnic Medicinal Resources Protection and Utilization Key Laboratory of National Ethnic Affairs Commission of the People's Republic of China, Southwest Minzu University, Chengdu 610041, China
| | - Jing Li
- Tibetan Plateau Ethnic Medicinal Resources Protection and Utilization Key Laboratory of National Ethnic Affairs Commission of the People's Republic of China, Southwest Minzu University, Chengdu 610041, China
| | - Zhifeng Zhang
- Tibetan Plateau Ethnic Medicinal Resources Protection and Utilization Key Laboratory of National Ethnic Affairs Commission of the People's Republic of China, Southwest Minzu University, Chengdu 610041, China
| |
Collapse
|
7
|
Zhang H, Wei Z, Tong Y, Song X, Li S, Sun Y, Liu C, Han F, Yu J. Spectrum-effect relationship study to reveal the pharmacodynamic substances in Flos Puerariae-Semen Hoveniae medicine pair for the treatment of alcohol-induced liver damage. JOURNAL OF ETHNOPHARMACOLOGY 2023; 314:116628. [PMID: 37196817 DOI: 10.1016/j.jep.2023.116628] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/07/2023] [Revised: 04/26/2023] [Accepted: 05/08/2023] [Indexed: 05/19/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Alcoholic liver disease (ALD) is the most serious and irreversible liver damage associated with alcohol consumption. Flos Puerariae and Semen Hoveniae are traditional Chinese medicines (TCM) for dispelling the effects of alcohol. Many studies have shown that the combination of two medicinal materials has the enhanced effect of treating ALD. AIM OF THE STUDY The aim of this study is to assess the pharmacological effects of Flos Puerariae-Semen Hoveniae medicine pair, to elucidate its action mechanism in the treatment of alcohol-induced BRL-3A cells, and to reveal the active ingredients in the medicine pair that exerted pharmacological effects by spectrum-effect relationship study. MATERIALS AND METHODS Firstly, MTT assays, ELISA, fluorescence probe analysis, and Western blot were employed to study the underlying mechanisms of the medicine pair in alcohol-induced BRL-3A cells by examining pharmacodynamic indexes and related protein expression. Secondly, HPLC method was established for chemical chromatograms of the medicine pair with different ratios and the sample extracted by different solvents. Then, principal component analysis, pearson bivariate correlation analysis and grey relational analysis were applied for development of the spectrum-effect correlation between pharmacodynamic indexes and HPLC chromatograms. Moreover, prototype components and their metabolites in vivo were identified by the HPLC-MS method. RESULTS Flos Puerariae-Semen Hoveniae medicine pair remarkably increased cell viability, decreased the activity of ALT, AST, TC and TG, reduced the generation of TNF-α, IL-1β, IL-6, MDA and ROS, increased the activity of SOD and GSH-Px, reduced protein expression of CYP2E1, compared with alcohol-induced BRL-3A cells. The medicine pair modulated the PI3K/AKT/mTOR signaling pathways by up-regulating the levels of phospho-PI3K, phospho-AKT and phospho-mTOR. Also, the results of the spectrum-effect relationship study showed that P1 (chlorogenic acid), P3 (daidzin), P4 (6″-O-xylosyl-glycitin), P5 (glycitin), P6 (unknown), P7 (unknown), P9 (unknown), P10 (6″-O-xylosyl-tectoridin), P12 (tectoridin) and P23 (unknown) can be considered as the main components of the medicine pair in the treatment of ALD. Furthermore, 6″-O-xylosyl-tectoridin, tectoridin, daidzin, 6″-O-xylosyl-glycitin and glycitin can be absorbed into the blood and showed clear metabolic and excretion behaviors in rats. CONCLUSION In this study, the hepatoprotective effects and the pharmacology mechanism of Flos Puerariae-Semen Hoveniae medicine pair in alcohol-induced BRL-3A cells were initially investigated and revealed. Through the spectrum-effect relationship study, the potential pharmacodynamic constituents such as daidzin, 6″-O-xylosyl-glycitin, 6″-O-xylosyl-tectoridin, glycitin, and tectoridin exert pharmacological effects on alcohol-induced oxidative stress and inflammation by modulating the PI3K/AKT/mTOR signaling pathways. This study provided experimental basis and data support for revealing the pharmacodynamic substance basis and pharmacology mechanism in the treatment of ALD. Moreover, it provides a robust mean of exploring the primary effective components responsible for the bioactivity of complicated TCM.
Collapse
Affiliation(s)
- Haotian Zhang
- School of Pharmacy, Shenyang Pharmaceutical University, No.103 Wenhua Road, Shenhe District, Shenyang, 110016, China
| | - Ziyun Wei
- School of Pharmacy, Shenyang Pharmaceutical University, No.103 Wenhua Road, Shenhe District, Shenyang, 110016, China
| | - Yichen Tong
- School of Pharmacy, Shenyang Pharmaceutical University, No.103 Wenhua Road, Shenhe District, Shenyang, 110016, China
| | - Xiuping Song
- School of Pharmacy, Shenyang Pharmaceutical University, No.103 Wenhua Road, Shenhe District, Shenyang, 110016, China
| | - Siyue Li
- School of Pharmacy, Shenyang Pharmaceutical University, No.103 Wenhua Road, Shenhe District, Shenyang, 110016, China
| | - Yuanfang Sun
- School of Pharmacy, Shenyang Pharmaceutical University, No.103 Wenhua Road, Shenhe District, Shenyang, 110016, China
| | - Chun Liu
- Hainan Institute for Drug Control, Haikou, 570311, China
| | - Fei Han
- School of Pharmacy, Shenyang Pharmaceutical University, No.103 Wenhua Road, Shenhe District, Shenyang, 110016, China.
| | - Jia Yu
- School of Pharmacy, Shenyang Pharmaceutical University, No.103 Wenhua Road, Shenhe District, Shenyang, 110016, China.
| |
Collapse
|
8
|
Yao G, Wu M, Ge M, Zhang M, Cao X, Zhu Y, Wei S, Chang Y, Ouyang H, He J. A multi-evaluating strategy for raw and processed Veratrum nigrum L.: fingerprinting combined with quantitative analysis based on multivariate chemometric methods. ARAB J CHEM 2023. [DOI: 10.1016/j.arabjc.2023.104639] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
|
9
|
Comparative Investigation of the Differences in Chemical Compounds between Raw and Processed Mume Fructus Using Plant Metabolomics Combined with Chemometrics Methods. Molecules 2022; 27:molecules27196344. [PMID: 36234881 PMCID: PMC9572716 DOI: 10.3390/molecules27196344] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Revised: 09/03/2022] [Accepted: 09/21/2022] [Indexed: 11/24/2022] Open
Abstract
Mume Fructus is a well-known herbal medicine and food with a long history of processing and application. Different processing methods impact the intrinsic quality of Mume Fructus. Thus, it is of great significance to investigate the changes in chemical components during processing (i.e., raw compared to the pulp and charcoal forms). In this study, plant metabolomics methods based on mass spectrometry detection were established to analyze the chemical ingredients of Mume Fructus comprehensively. Chemometric strategies were combined to analyze the profile differences of Mume Fructus after different processing methods. The established strategy identified 98 volatile and 89 non-volatile compounds of Mume Fructus by gas chromatography-mass spectrometry (GC-MS) and ultra-high performance liquid chromatography coupled with quadrupole time of flight mass spectrometry (UHPLC-Q-TOF-MS/MS), respectively. Moreover, the orthogonal partial least squares discriminant analysis (OPLS-DA) indicated that raw Mume Fructus and the Mume Fructus pulp and charcoal were distributed in three regions. Subsequently, 19 volatile and 16 non-volatile components were selected as potential chemical component markers with variable importance in the projection using (VIP) >1 as the criterion, and the accuracy was verified by a Back Propagation Neural Network (BP-NN). To further understand the difference in the content of Mume Fructus before and after processing, 16 non-volatile chemical component markers were quantitatively determined by ultra-high performance liquid chromatography-mass spectrometry (UHPLC-MS/MS). The results revealed that, compared with raw Mume Fructus, the total content of 16 components in the pulp of Mume Fructus increased while it decreased in the charcoal. Therefore, this study used GC-MS, UHPLC-Q-TOF-MS/MS and UHPLC-MS/MS modern technology to analyze the differences in chemical components before and after the processing of Mume Fructus and provided a material basis for further research on the quality evaluation and efficacy of Mume Fructus.
Collapse
|
10
|
Song Y, Yang J, Hu X, Gao H, Wang P, Wang X, Liu Y, Cheng X, Wei F, Ma S. A stepwise strategy integrating metabolomics and pseudotargeted spectrum–effect relationship to elucidate the potential hepatotoxic components in Polygonum multiflorum. Front Pharmacol 2022; 13:935336. [PMID: 36091795 PMCID: PMC9459084 DOI: 10.3389/fphar.2022.935336] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2022] [Accepted: 07/13/2022] [Indexed: 11/13/2022] Open
Abstract
Polygonummultiflorum (PM) Thunb., a typical Chinese herbal medicine with different therapeutic effect in raw and processed forms, has been used worldwide for thousands of years. However, hepatotoxicity caused by PM has raised considerable concern in recent decades. The exploration of toxic components in PM has been a great challenge for a long time. In this study, we developed a stepwise strategy integrating metabolomics and pseudotargeted spectrum–effect relationship to illuminate the potential hepatotoxic components in PM. First, 112 components were tentatively identified using ultraperformance liquid chromatography-quadrupole-time-of-flight-mass spectrometry (UPLC-Q-TOF-MS). Second, based on the theory of toxicity attenuation after processing, we combined the UPLC-Q-TOF-MS method and plant metabolomics to screen out the reduced differential components in PM between raw and processed PM. Third, the proposed pseudotargeted MS of 16 differential components was established and applied to 50 batches of PM for quantitative analysis. Fourth, the hepatocytotoxicity of 50 batches of PM was investigated on two hepatocytes, LO2 and HepG2. Last, three mathematical models, gray relational analysis, orthogonal partial least squares analysis, and back propagation artificial neural network, were established to further identify the key variables affecting hepatotoxicity in PM by combining quantitative spectral information with toxicity to hepatocytes of 50 batches of PM. The results suggested that 16 components may have different degrees of hepatotoxicity, which may lead to hepatotoxicity through synergistic effects. Three components (emodin dianthrones, emodin-8-O-β-D-glucopyranoside, PM 14-17) were screened to have significant hepatotoxicity and could be used as toxicity markers in PM as well as for further studies on the mechanism of toxicity. Above all, the study established an effective strategy to explore the hepatotoxic material basis in PM but also provides reference information for in-depth investigations on the hepatotoxicity of PM.
Collapse
Affiliation(s)
- Yunfei Song
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, China
- Institute for Control of Chinese Traditional Medicine and Ethnic Medicine, National Institutes for Food and Drug Control, Beijing, China
| | - Jianbo Yang
- Institute for Control of Chinese Traditional Medicine and Ethnic Medicine, National Institutes for Food and Drug Control, Beijing, China
| | - Xiaowen Hu
- Institute for Control of Chinese Traditional Medicine and Ethnic Medicine, National Institutes for Food and Drug Control, Beijing, China
| | - Huiyu Gao
- Institute for Control of Chinese Traditional Medicine and Ethnic Medicine, National Institutes for Food and Drug Control, Beijing, China
| | - Pengfei Wang
- Institute for Control of Chinese Traditional Medicine and Ethnic Medicine, National Institutes for Food and Drug Control, Beijing, China
| | - Xueting Wang
- Institute for Control of Chinese Traditional Medicine and Ethnic Medicine, National Institutes for Food and Drug Control, Beijing, China
| | - Yue Liu
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, China
| | - Xianlong Cheng
- Institute for Control of Chinese Traditional Medicine and Ethnic Medicine, National Institutes for Food and Drug Control, Beijing, China
| | - Feng Wei
- Institute for Control of Chinese Traditional Medicine and Ethnic Medicine, National Institutes for Food and Drug Control, Beijing, China
- *Correspondence: Feng Wei, ; Shuangcheng Ma,
| | - Shuangcheng Ma
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, China
- Institute for Control of Chinese Traditional Medicine and Ethnic Medicine, National Institutes for Food and Drug Control, Beijing, China
- *Correspondence: Feng Wei, ; Shuangcheng Ma,
| |
Collapse
|
11
|
Wen SS, Zhou HS, Zhu CS, Li P, Gao W. Direct infusion electrospray ionization-ion mobility-mass spectrometry for rapid metabolite marker discovery of medicinal Phellodendron Bark. J Pharm Biomed Anal 2022; 219:114939. [PMID: 35908412 DOI: 10.1016/j.jpba.2022.114939] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2022] [Revised: 07/02/2022] [Accepted: 07/11/2022] [Indexed: 11/28/2022]
Abstract
Ion-mobility mass spectrometry (IM-MS) currently serves as a powerful tool for the structural identification of numerous biological compounds and small molecules. In this work, rapid metabolomic analysis of closely-related herbal medicines by direct injection ion mobility-quadrupole time-of-flight mass spectrometry (DI-IM-QTOF MS) was established. Phellodendron chinense Bark (PC) and Phellodendron amurense Bark (PA) were studied as a case. Thirty-three batches of PC and twenty-two batches of PA have been directly injected in electrospray ionization-IM-QTOF MS in positive mode. Without chromatographic separation, each run was completed within 3 min. After data alignment and statistical analysis, a total of seven chemical markers were found (p-value < 0.05, VIP > 1.00). Among them, the ion m/z 342.17 and m/z 356.18 present a single peak in the drift spectrum, respectively, but their drift time has a certain deviation compared with the pure substance of known compounds. In addition, the MS/MS spectra also confirmed that the single peak includes two chemical isomers. To investigate the composition ratio of individual isomers, the calibration curves of relative drift time (rDT) based on the standard superposition method were established, which were found to fit the least square regression. The ion [M]+m/z 342.17 was recognized consisting of magnoflorine (MAG) and phellodendrine (PHE), and their composition ratio in PA and PC samples was calculated. The results were compared with those obtained by the HPLC quantitative method, which produced equivalent quantification results. Our DI-IM-QTOF MS methodology provides an additional methodology for the relative quantification of unresolved isomers in drift tube IM-MS and offers DI-IM-QTOF MS based metabolomics.
Collapse
Affiliation(s)
- Shan-Shan Wen
- State Key Laboratory of Natural Medicines, School of Traditional Chinese Pharmacy, China Pharmaceutical University, No. 24 Tongjia Lane, Nanjing 210009, China
| | - Hong-Shan Zhou
- State Key Laboratory of Natural Medicines, School of Traditional Chinese Pharmacy, China Pharmaceutical University, No. 24 Tongjia Lane, Nanjing 210009, China
| | - Chuan-Sheng Zhu
- State Key Laboratory of Natural Medicines, School of Traditional Chinese Pharmacy, China Pharmaceutical University, No. 24 Tongjia Lane, Nanjing 210009, China
| | - Ping Li
- State Key Laboratory of Natural Medicines, School of Traditional Chinese Pharmacy, China Pharmaceutical University, No. 24 Tongjia Lane, Nanjing 210009, China.
| | - Wen Gao
- State Key Laboratory of Natural Medicines, School of Traditional Chinese Pharmacy, China Pharmaceutical University, No. 24 Tongjia Lane, Nanjing 210009, China.
| |
Collapse
|
12
|
Rao SW, Duan YY, Pang HQ, Xu SH, Hu SQ, Cheng KG, Liang D, Shi W. Spectrum-Effect Relationship Analysis of Bioactive Compounds in Zanthoxylum nitidum (Roxb.) DC. by Ultra-High Performance Liquid Chromatography Mass Spectrometry Coupled With Comprehensive Filtering Approaches. Front Pharmacol 2022; 13:794277. [PMID: 35355711 PMCID: PMC8959880 DOI: 10.3389/fphar.2022.794277] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2021] [Accepted: 01/31/2022] [Indexed: 01/13/2023] Open
Abstract
Zanthoxylum nitidum (Roxb.) DC. (ZN), with strong effects of anti-inflammation and antioxidant activities is treated as a core herb in traditional Chinese medicine (TCM) preparation for treating stomachache, toothache, and rheumatoid arthritis. However, the active ingredients of ZN are not fully clarified due to its chemical complexity. In the present study, a double spectrum–effect analysis strategy was developed and applied to explore the bioactive components in herbs, and ZN was used as an example. Here, the chemical components in ZN were rapidly and comprehensively profiled based on the mass defect filtering-based structure classification (MDFSC) and diagnostic fragment-ion-based extension approaches. Furthermore, the fingerprints of 20 batches of ZN samples were analyzed by high-performance liquid chromatography, and the anti-inflammatory and antioxidant activities of the 20 batches of ZN samples were studied. Finally, the partial least squares regression (PLSR), gray relational analysis models, and Spearman’s rank correlation coefficient (SRCC) were applied to discover the bioactive compounds in ZN. As a result, a total of 48 compounds were identified or tentatively characterized in ZN, including 35 alkaloids, seven coumarins, three phenolic acids, two flavonoids, and one lignan. The results achieved by three prediction models indicated that peaks 4, 12, and 17 were the potential anti-inflammatory compounds in ZN, whereas peaks 3, 5, 7, 12, and 13 were involved in the antioxidant activity. Among them, peaks 4, 5, 7, and 12 were identified as nitidine, chelerythrine, hesperidin, and oxynitidine by comparison with the standards and other references. The data in the current study achieved by double spectrum–effect analysis strategy had great importance to improve the quality standardization of ZN, and the method might be an efficiency tool for the discovery of active components in a complex system, such as TCMs.
Collapse
Affiliation(s)
- Si-Wei Rao
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, Collaborative Innovation Center for Guangxi Ethnic Medicine, School of Chemistry and Pharmaceutical Science, Guangxi Normal University, Guilin, China
| | - Yuan-Yuan Duan
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, Collaborative Innovation Center for Guangxi Ethnic Medicine, School of Chemistry and Pharmaceutical Science, Guangxi Normal University, Guilin, China
| | - Han-Qing Pang
- Institute of Translational Medicine, Medical College, Jiangsu Key Laboratory of Integrated Traditional Chinese and Western Medicine for Prevention and Treatment of Senile Diseases, Yangzhou University, Yangzhou, China
| | - Shao-Hua Xu
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, Collaborative Innovation Center for Guangxi Ethnic Medicine, School of Chemistry and Pharmaceutical Science, Guangxi Normal University, Guilin, China
| | - Shou-Qian Hu
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, Collaborative Innovation Center for Guangxi Ethnic Medicine, School of Chemistry and Pharmaceutical Science, Guangxi Normal University, Guilin, China
| | - Ke-Guang Cheng
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, Collaborative Innovation Center for Guangxi Ethnic Medicine, School of Chemistry and Pharmaceutical Science, Guangxi Normal University, Guilin, China
| | - Dong Liang
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, Collaborative Innovation Center for Guangxi Ethnic Medicine, School of Chemistry and Pharmaceutical Science, Guangxi Normal University, Guilin, China
| | - Wei Shi
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, Collaborative Innovation Center for Guangxi Ethnic Medicine, School of Chemistry and Pharmaceutical Science, Guangxi Normal University, Guilin, China
| |
Collapse
|
13
|
Chen H, He Y. Machine Learning Approaches in Traditional Chinese Medicine: A Systematic Review. THE AMERICAN JOURNAL OF CHINESE MEDICINE 2022; 50:91-131. [PMID: 34931589 DOI: 10.1142/s0192415x22500045] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Machine learning (ML), as a branch of artificial intelligence, acquires the potential and meaningful rules from the mass of data via diverse algorithms. Owing to all research of traditional Chinese medicine (TCM) belonging to the digitalization of clinical records or experimental works, a massive and complex amount of data has become an inextricable part of the related studies. It is thus not surprising that ML approaches, as novel and efficient tools to mine the useful knowledge from data, have created inroads in a diversity of scopes of TCM over the past decade of years. However, by browsing lots of literature, we find that not all of the ML approaches perform well in the same field. Upon further consideration, we infer that the specificity may inhere between the ML approaches and their applied fields. This systematic review focuses its attention on the four categories of ML approaches and their eight application scopes in TCM. According to the function, ML approaches are classified into four categories, including classification, regression, clustering, and dimensionality reduction, and into 14 models as follows in more detail: support vector machine, least square-support vector machine, logistic regression, partial least squares regression, k-means clustering, hierarchical cluster analysis, artificial neural network, back propagation neural network, convolutional neural network, decision tree, random forest, principal component analysis, partial least squares-discriminant analysis, and orthogonal partial least squares-discriminant analysis. The eight common applied fields are divided into two parts: one for TCM, such as the diagnosis of diseases, the determination of syndromes, and the analysis of prescription, and the other for the related researches of Chinese herbal medicine, such as the quality control, the identification of geographic origins, the pharmacodynamic material basis, the medicinal properties, and the pharmacokinetics and pharmacodynamics. Additionally, this paper discusses the function and feature difference among ML approaches when they are applied to the corresponding fields via comparing their principles. The specificity of each approach to its applied fields has also been affirmed, whereby laying a foundation for subsequent studies applying ML approaches to TCM.
Collapse
Affiliation(s)
- Haiyang Chen
- School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou 310053, P. R. China
| | - Yu He
- School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou 310053, P. R. China
| |
Collapse
|
14
|
Chang X, Zhang Z, Yan H, Su S, Wei D, Guo S, Shang E, Sun X, Gui S, Duan J. Discovery of Quality Markers of Nucleobases, Nucleosides, Nucleotides and Amino Acids for Chrysanthemi Flos From Different Geographical Origins Using UPLC-MS/MS Combined With Multivariate Statistical Analysis. Front Chem 2021; 9:689254. [PMID: 34422760 PMCID: PMC8375154 DOI: 10.3389/fchem.2021.689254] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Accepted: 07/12/2021] [Indexed: 11/18/2022] Open
Abstract
Nucleobases, nucleosides, nucleotides and amino acids, as crucial nutrient compositions, play essential roles in determining the flavor, function and quality of Chrysanthemi Flos. The quality of Chrysanthemi Flos from different geographical origins is uneven, but there have been no reports about the screening of their quality markers based on nutritional ingredients. Here, we developed a comprehensive strategy integrating ultra performance liquid chromatography coupled with triple-quadrupole linear ion-trap tandem mass spectrometry (UPLC-MS/MS) and multivariate statistical analysis to explore quality markers of Chrysanthemi Flos from different geographical origins and conduct quality evaluation and discrimination of them. Firstly, a fast, sensitive, and reliable UPLC-MS/MS method was established for simultaneous quantification 28 nucleobases, nucleosides, nucleotides and amino acids of Chrysanthemi Flos from nine different regions in China. The results demonstrated that Chrysanthemi Flos from nine different cultivation regions were rich in the above 28 nutritional contents and their contents were obvious different; however, correlation analysis showed that altitude was not the main factor for these differences, which required further investigation. Subsequently, eight crucial quality markers for nine different geographical origins of Chrysanthemi Flos, namely, 2'-deoxyadenosine, guanosine, adenosine 3',5'-cyclic phosphate (cAMP), guanosine 3',5'-cyclic monophosphate (cGMP), arginine, proline, glutamate and tryptophan, were screened for the first time using partial least squares discriminant analysis (PLS-DA) and the plot of variable importance for projection (VIP). Moreover, a hierarchical clustering analysis heat map was employed to intuitively clarify the distribution of eight quality markers in the nine different regions of Chrysanthemi Flos. Finally, based on the contents of selected eight quality markers, support vector machines (SVM) model was established to predict the geographical origins of Chrysanthemi Flos, which yielded excellent prediction performance with an average prediction accuracy of 100%. Taken together, the proposed strategy was suitable to discover the quality markers of Chrysanthemi Flos and could be used to discriminate its geographical origin.
Collapse
Affiliation(s)
- Xiangwei Chang
- College of Pharmacy, Anhui University of Chinese Medicine, Hefei, China
- Institute of Pharmaceutics, Anhui Academy of Chinese Medicine, Hefei, China
| | - Zhenyu Zhang
- Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, Nanjing University of Chinese Medicine, Nanjing, China
| | - Hui Yan
- Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, Nanjing University of Chinese Medicine, Nanjing, China
| | - Shulan Su
- Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, Nanjing University of Chinese Medicine, Nanjing, China
| | - Dandan Wei
- Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, Nanjing University of Chinese Medicine, Nanjing, China
| | - Sheng Guo
- Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, Nanjing University of Chinese Medicine, Nanjing, China
| | - Erxin Shang
- Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, Nanjing University of Chinese Medicine, Nanjing, China
| | - Xiaodong Sun
- Jiangsu Hexiang Juhai Modern Agricultural Industrialization Co., Ltd, Yancheng, China
| | - Shuangying Gui
- College of Pharmacy, Anhui University of Chinese Medicine, Hefei, China
- Institute of Pharmaceutics, Anhui Academy of Chinese Medicine, Hefei, China
| | - Jinao Duan
- Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, Nanjing University of Chinese Medicine, Nanjing, China
| |
Collapse
|
15
|
Zhou J, Liu FJ, Li XX, Li P, Yang H, Liu YC, Chen YH, Wei CD, Li HJ. A strategy for rapid discovery of traceable chemical markers in herbal products using MZmine 2 data processing toolbox: A case of Jing Liqueur. CHINESE HERBAL MEDICINES 2021; 13:430-438. [PMID: 36118935 PMCID: PMC9476759 DOI: 10.1016/j.chmed.2021.05.004] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2020] [Revised: 12/08/2020] [Accepted: 03/22/2021] [Indexed: 11/23/2022] Open
Abstract
Objective The quality evaluation of herbal products remains a big challenge. Traceable markers are the core concept of the authentication of herbal products. However, the discovery of traceable markers is labor-intensive and time-consuming. The aim of this study is to develop a convenient approach to rapidly screen the traceable markers for herbal product authentication. Methods Commercial Jing Liqueur and its 22 species of herbal ingredients were analyzed using HPLC-QTOF-MS and GC–MS to characterize nonvolatile and volatile chemicals. The acquired data were imported into MZmine 2 software for mass detection, chromatogram building, deconvolution and alignment. The aligned data were exported into a csv file and then traceable markers were selected using the built-in filter function in Excel. Finally, the traceable markers were identified by searching against online databases or publications, some of which were confirmed by reference standards. Results A total of 288 chemical features transferred from herbal materials to Jing Liqueur product were rapidly screened out. Among them, 52 markers detected by HPLC-QTOF-MS were annotated, while nine volatile markers detected by GC–MS were annotated. Moreover, 30 of these markers were confirmed by comparing with reference standards. A chemical fingerprint consisting of traceable markers was finally generated to ensure the authentication and quality consistency of Jing Liqueur. Conclusion A strategy for rapid discovery of traceable markers in herbal products using MZmine 2 software was developed.
Collapse
|
16
|
Wang Y, He T, Wang J, Wang L, Ren X, He S, Liu X, Dong Y, Ma J, Song R, Wei J, Yu A, Fan Q, Wang X, She G. High performance liquid chromatography fingerprint and headspace gas chromatography-mass spectrometry combined with chemometrics for the species authentication of Curcumae Rhizoma. J Pharm Biomed Anal 2021; 202:114144. [PMID: 34051481 DOI: 10.1016/j.jpba.2021.114144] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2021] [Revised: 04/05/2021] [Accepted: 05/15/2021] [Indexed: 02/03/2023]
Abstract
Curcumae Rhizoma (Ezhu), a multi-origin Chinese medicine, originates from the dry rhizomes of C. kwangsiensis, C. phaeocaulis and C. wenyujin. The three species have great variation in chemical components and therapeutic effects. To improve safety and effectiveness in clinical use, a strategy integrating chromatographic analysis and chemometrics for the species authentication of Ezhu was proposed. Firstly, systematic analysis of chemical compositions in Ezhu was achieved using high performance liquid chromatography (HPLC) fingerprint and headspace gas chromatography-mass spectrometry (HS-GC-MS). HPLC fingerprints showed that seventeen peaks in common for C. kwangsiensis and eleven peaks in common for C. wenyujin both presented a good similarity (> 0.9, only several samples < 0.8). Eleven common peaks in C. phaeocaulis and the similarity values of most samples were higher than 0.700. Additionally, there were ten common peaks in all Ezhu samples and they had relatively poor similarity with the correlation coefficients ranging from 0.364 to 0.881. For HS-GC-MS, thirty-six volatile components were identified in the three species of Ezhu, mainly monoterpenes and sesquiterpenes. Subsequently, chemometrics including unsupervised principal component analysis (PCA), supervised linear discriminant analysis (LDA), K-nearest neighbors (KNN), back propagation neural network (BP-NN) and orthogonal partial least squares-discrimination analysis (OPLS-DA) was applied to extract useful information from chromatographic profiles. Based on HPLC fingerprint data, PCA could hardly differentiate Ezhu with the three species, and LDA, KNN and BP-NN models provided more than 85 % correct identification. With HS-GC-MS data, PCA could only distinguish C. wenyujin from the other two species, and LDA, KNN, BP-NN and OPLS-DA models achieved excellent classification with 100 % accuracy. Finally, five volatile components (eucalyptol, humulene, β-elemene, (+)-2-bornanone and linalool) with variable importance for the projection (VIP) values higher than 1 in the OPLS-DA model were selected as potential chemical markers for the species authentication of Ezhu. And the constructed OPLS-DA model using these markers obtained 100 % accuracy. Consequently, a rapid, precise and feasible strategy was established for the discrimination and quality control of Ezhu with different species.
Collapse
Affiliation(s)
- Yu Wang
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Fangshan District, Beijing, 102488, China; Beijing Key Laboratory for Quality Evaluation of Chinese Materia Medica, Beijing, 102488, China.
| | - Ting He
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Fangshan District, Beijing, 102488, China; Beijing Key Laboratory for Quality Evaluation of Chinese Materia Medica, Beijing, 102488, China.
| | - Jingjuan Wang
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Fangshan District, Beijing, 102488, China; Beijing Key Laboratory for Quality Evaluation of Chinese Materia Medica, Beijing, 102488, China.
| | - Le Wang
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Fangshan District, Beijing, 102488, China; Beijing Key Laboratory for Quality Evaluation of Chinese Materia Medica, Beijing, 102488, China.
| | - Xueyang Ren
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Fangshan District, Beijing, 102488, China; Beijing Key Laboratory for Quality Evaluation of Chinese Materia Medica, Beijing, 102488, China.
| | - Sihang He
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Fangshan District, Beijing, 102488, China; Beijing Key Laboratory for Quality Evaluation of Chinese Materia Medica, Beijing, 102488, China.
| | - Xiaoyun Liu
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Fangshan District, Beijing, 102488, China; Beijing Key Laboratory for Quality Evaluation of Chinese Materia Medica, Beijing, 102488, China.
| | - Ying Dong
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Fangshan District, Beijing, 102488, China; Beijing Key Laboratory for Quality Evaluation of Chinese Materia Medica, Beijing, 102488, China.
| | - Jiamu Ma
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Fangshan District, Beijing, 102488, China; Beijing Key Laboratory for Quality Evaluation of Chinese Materia Medica, Beijing, 102488, China.
| | - Ruolan Song
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Fangshan District, Beijing, 102488, China; Beijing Key Laboratory for Quality Evaluation of Chinese Materia Medica, Beijing, 102488, China.
| | - Jing Wei
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Fangshan District, Beijing, 102488, China; Beijing Key Laboratory for Quality Evaluation of Chinese Materia Medica, Beijing, 102488, China.
| | - Axiang Yu
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Fangshan District, Beijing, 102488, China; Beijing Key Laboratory for Quality Evaluation of Chinese Materia Medica, Beijing, 102488, China.
| | - Qiqi Fan
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Fangshan District, Beijing, 102488, China; Beijing Key Laboratory for Quality Evaluation of Chinese Materia Medica, Beijing, 102488, China.
| | - Xiuhuan Wang
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Fangshan District, Beijing, 102488, China; Beijing Key Laboratory for Quality Evaluation of Chinese Materia Medica, Beijing, 102488, China.
| | - Gaimei She
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Fangshan District, Beijing, 102488, China; Beijing Key Laboratory for Quality Evaluation of Chinese Materia Medica, Beijing, 102488, China.
| |
Collapse
|
17
|
Ba Y, Xiao R, Chen QJ, Xie LY, Xu RR, Yu P, Chen XQ, Wu X. Comprehensive quality evaluation of Polygoni Orientalis Fructus and its processed product: chemical fingerprinting and simultaneous determination of seven major components coupled with chemometric analyses. PHYTOCHEMICAL ANALYSIS : PCA 2021; 32:141-152. [PMID: 31512326 DOI: 10.1002/pca.2890] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/02/2019] [Revised: 08/11/2019] [Accepted: 08/15/2019] [Indexed: 06/10/2023]
Abstract
INTRODUCTION Polygoni Orientalis Fructus (POF) is a clinically effective Chinese medicine. Raw POF (RPOF) and POF Tostus (POFT) are used separately in clinics. However, incomplete progress has been made on quality control. OBJECTIVE To establish a comprehensive method for quality assessment of RPOF and POFT and to discriminate these two varieties. METHODOLOGY High-performance liquid chromatography combined with the diode array detector (HPLC-DAD) methods were developed for fingerprinting and quantitative analysis of seven major compounds in RPOF and POFT, and the main components were determined by HPLC-DAD coupled with Fourier-transform ion cyclotron resonance-mass spectrometry. Chemometric approaches were performed to discriminate RPOF and POFT and to screen discriminatory components. RESULTS Fingerprints were established and 12 common peaks were identified, cannabisin G and cannabisin E were firstly identified from POF. In quantitative analysis, all analytes showed good regression (R > 0.9996) within test ranges and the recovery of the method was in the range 96.6-104.3%. Fingerprints in conjunction with similarity analysis and hierarchical clustering analysis (HCA) demonstrated the consistent quality of RPOF and showed a clear discrimination between RPOF and POFT. Principal component analysis, partial least-squares discriminant analysis, and heatmap-HCA on quantitative data not only gave a clear differentiation between RPOF and POFT, but they also suggested that quercetin, 3,5,7-trihydroxychromone, and N-trans-feruloyltyramine acted as the main factors responsible for the sample differences. CONCLUSIONS Chromatographic analysis in combination with chemometric analysis provides a simple and reliable method of comparing and evaluating the qualities of RPOF and POFT.
Collapse
Affiliation(s)
- Yinying Ba
- Beijing Key Lab of Traditional Chinese Medicine, Collateral Disease Theory Research, School of Traditional Chinese Medicine, Capital Medical University, Beijing, China
| | - Ran Xiao
- Beijing Key Lab of Traditional Chinese Medicine, Collateral Disease Theory Research, School of Traditional Chinese Medicine, Capital Medical University, Beijing, China
- Department of Traditional Chinese Medicine and Rehabilitatio, Beijing Health Vocational College, Beijing, China
| | - Qi-Jun Chen
- Beijing Key Lab of Traditional Chinese Medicine, Collateral Disease Theory Research, School of Traditional Chinese Medicine, Capital Medical University, Beijing, China
| | - Li-Yuan Xie
- Beijing Key Lab of Traditional Chinese Medicine, Collateral Disease Theory Research, School of Traditional Chinese Medicine, Capital Medical University, Beijing, China
| | - Rong-Rong Xu
- Beijing Key Lab of Traditional Chinese Medicine, Collateral Disease Theory Research, School of Traditional Chinese Medicine, Capital Medical University, Beijing, China
| | - Ping Yu
- Beijing Key Lab of Traditional Chinese Medicine, Collateral Disease Theory Research, School of Traditional Chinese Medicine, Capital Medical University, Beijing, China
| | - Xiao-Qing Chen
- Beijing Key Lab of Traditional Chinese Medicine, Collateral Disease Theory Research, School of Traditional Chinese Medicine, Capital Medical University, Beijing, China
| | - Xia Wu
- Beijing Key Lab of Traditional Chinese Medicine, Collateral Disease Theory Research, School of Traditional Chinese Medicine, Capital Medical University, Beijing, China
| |
Collapse
|
18
|
Wang Q, Yu X, Sun L, Tian R, He H, Wang S, Ma S. Fingerprint analysis of phenolic acid extract of Salvia miltiorrhiza by digital reference standard analyzer with one or two reference standards. Chin Med 2021; 16:8. [PMID: 33430914 PMCID: PMC7798244 DOI: 10.1186/s13020-020-00408-9] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2020] [Revised: 11/14/2020] [Accepted: 11/26/2020] [Indexed: 12/23/2022] Open
Abstract
Background Fingerprint analysis and simultaneous multi-components determination are crucial for the holistic quality control of traditional Chinese medicines (TCMs). Yet, reference standards (RS) are often commercially unavailable and with other shortages, which severely impede the application of these technologies. Methods A digital reference standard (DRS) strategy and the corresponding software called DRS analyzer, which supports chromatographic algorithms, spectrum algorithms, and the combination of these algorithms, was developed. The extensive function also enabled the DRS analyzer to recommend the chromatographic column based on big data. Results Various quality control methods of fingerprints of 11 compounds in polyphenolic acid extract of Salvia miltiorrhiza (S. miltiorrhiza) were developed based on DRS analyzer, involving relative retention time (RRT) method, linear calibration using two reference substances (LCTRS) technique, RRT combined with Photon Diode Array (PDA) method, LCTRS combined with PDA method. Additionally, the column database of samples was established. Finally, our data demonstrated that the DRS analyzer could accurately identify 11 compounds of the samples, using only one or two physical RSs. Conclusions The DRS strategy is an automated, intelligent, objective, accurate, eco-friendly, universal, sharing, and promising method for overall quality control of TCMs that requires the usage of fewer RSs.
Collapse
Affiliation(s)
- Qingjun Wang
- National Institutes for Food and Drug Control, Beijing, China.,Fangshan District Market Supervision and Administration, Beijing, China
| | - Xinlan Yu
- Xinjiang Institute for Drug Control, Urumqi, China
| | - Lei Sun
- National Institutes for Food and Drug Control, Beijing, China. .,Xinjiang Institute for Drug Control, Urumqi, China. .,Xi'an Jiaotong University, School of Medicine, Xi'an, China.
| | - Runtao Tian
- Chemmind Technologies Co., Ltd, Beijing, China
| | - Huaizhen He
- Xi'an Jiaotong University, School of Medicine, Xi'an, China
| | - Sicen Wang
- Xi'an Jiaotong University, School of Medicine, Xi'an, China
| | - Shuangcheng Ma
- National Institutes for Food and Drug Control, Beijing, China.
| |
Collapse
|
19
|
Li RL, Zhang Q, Liu J, He LY, Huang QW, Peng W, Wu CJ. Processing methods and mechanisms for alkaloid-rich Chinese herbal medicines: A review. JOURNAL OF INTEGRATIVE MEDICINE-JIM 2020; 19:89-103. [PMID: 33349610 DOI: 10.1016/j.joim.2020.12.003] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/15/2020] [Accepted: 07/11/2020] [Indexed: 12/17/2022]
Abstract
The processing of Chinese herbal medicine is a form of pharmaceutical technology developed over thousands of years, in order to increase efficiency and decrease toxicity of herbs in traditional Chinese medicine (TCM). Herbal processing is essential for safe and effective application of TCM in clinical practice, as it alters the active chemical components and therefore the functions of herbal medicines. Alkaloid-rich herbal medicines in TCM are commonly processed by cleansing, cutting, processing by dry stir-frying, stir-frying with liquid adjuvants, and processing by water decoction. In addition, commonly used adjuvants for processing alkaloid-rich herbal medicines are river sand, wine, vinegar, brine, honey and herbal juice. For alkaloid-rich herbal medicines, the main chemical reactions that occur during processing include hydrolysis, oxidation, replacement, decomposition and condensation. This paper aimed to summarize the processing methods and mechanisms for alkaloid-rich Chinese herbal medicines, and provide much-needed theoretical support and scientific evidence for understanding those mechanisms and effects. Information on processing methods for alkaloid-rich herbal medicines was collected from classic books of herbal medicine, PhD and MSc dissertations, online scientific databases including PubMed, SciFinder, Scopus, Web of Science, Baidu Scholar and Google Scholar. This paper should help to advance our knowledge of the processing mechanisms and aid in the development of processing methods for alkaloid-rich Chinese herbal medicines.
Collapse
Affiliation(s)
- Ruo-Lan Li
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, Sichuan Province, China
| | - Qing Zhang
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, Sichuan Province, China
| | - Jia Liu
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, Sichuan Province, China
| | - Li-Ying He
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, Sichuan Province, China
| | - Qin-Wan Huang
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, Sichuan Province, China
| | - Wei Peng
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, Sichuan Province, China.
| | - Chun-Jie Wu
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, Sichuan Province, China.
| |
Collapse
|
20
|
Houriet J, Allard PM, Queiroz EF, Marcourt L, Gaudry A, Vallin L, Li S, Lin Y, Wang R, Kuchta K, Wolfender JL. A Mass Spectrometry Based Metabolite Profiling Workflow for Selecting Abundant Specific Markers and Their Structurally Related Multi-Component Signatures in Traditional Chinese Medicine Multi-Herb Formulae. Front Pharmacol 2020; 11:578346. [PMID: 33362543 PMCID: PMC7756971 DOI: 10.3389/fphar.2020.578346] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Accepted: 10/09/2020] [Indexed: 11/13/2022] Open
Abstract
In Traditional Chinese Medicine (TCM), herbal preparations often consist of a mixture of herbs. Their quality control is challenging because every single herb contains hundreds of components (secondary metabolites). A typical 10 herb TCM formula was selected to develop an innovative strategy for its comprehensive chemical characterization and to study the specific contribution of each herb to the formula in an exploratory manner. Metabolite profiling of the TCM formula and the extract of each single herb were acquired with liquid chromatography coupled to high-resolution mass spectrometry for qualitative analyses, and to evaporative light scattering detection (ELSD) for semi-quantitative evaluation. The acquired data were organized as a feature-based molecular network (FBMN) which provided a comprehensive view of all types of secondary metabolites and their occurrence in the formula and all single herbs. These features were annotated by combining MS/MS-based in silico spectral match, manual evaluation of the structural consistency in the FBMN clusters, and taxonomy information. ELSD detection was used as a filter to select the most abundant features. At least one marker per herb was highlighted based on its specificity and abundance. A single large-scale fractionation from the enriched formula enabled the isolation and formal identification of most of them. The obtained markers allowed an improved annotation of associated features by manually propagating this information through the FBMN. These data were incorporated in the high-resolution metabolite profiling of the formula, which highlighted specific series of related components to each individual herb markers. These series of components, named multi-component signatures, may serve to improve the traceability of each herb in the formula. Altogether, the strategy provided highly informative compositional data of the TCM formula and detailed visualizations of the contribution of each herb by FBMN, filtered feature maps, and reconstituted chromatogram traces of all components linked to each specific marker. This comprehensive MS-based analytical workflow allowed a generic and unbiased selection of specific and abundant markers and the identification of multiple related sub-markers. This exploratory approach could serve as a starting point to develop more simple and targeted quality control methods with adapted marker specificity selection criteria to given TCM formula.
Collapse
Affiliation(s)
- Joëlle Houriet
- School of Pharmaceutical Sciences, University of Geneva, Geneva, Switzerland.,Institute of Pharmaceutical Sciences of Western Switzerland, University of Geneva, Geneva, Switzerland
| | - Pierre-Marie Allard
- School of Pharmaceutical Sciences, University of Geneva, Geneva, Switzerland.,Institute of Pharmaceutical Sciences of Western Switzerland, University of Geneva, Geneva, Switzerland
| | - Emerson Ferreira Queiroz
- School of Pharmaceutical Sciences, University of Geneva, Geneva, Switzerland.,Institute of Pharmaceutical Sciences of Western Switzerland, University of Geneva, Geneva, Switzerland
| | - Laurence Marcourt
- School of Pharmaceutical Sciences, University of Geneva, Geneva, Switzerland.,Institute of Pharmaceutical Sciences of Western Switzerland, University of Geneva, Geneva, Switzerland
| | - Arnaud Gaudry
- School of Pharmaceutical Sciences, University of Geneva, Geneva, Switzerland.,Institute of Pharmaceutical Sciences of Western Switzerland, University of Geneva, Geneva, Switzerland
| | - Lennie Vallin
- School of Pharmaceutical Sciences, University of Geneva, Geneva, Switzerland.,Institute of Pharmaceutical Sciences of Western Switzerland, University of Geneva, Geneva, Switzerland
| | | | - Yu Lin
- Kunisawa Clinic, Gotsu-shi, Japan
| | - Ruwei Wang
- Zhejiang Provincial Key Laboratory of Traditional Chinese Medicine Pharmaceutical Technology, Hangzhou, China
| | - Kenny Kuchta
- Forschungsstelle für Fernöstliche Medizin, Department of Vegetation Analysis and Phytodiversity, Albrecht von Haller Institute of Plant Sciences, Georg August University, Göttingen, Germany
| | - Jean-Luc Wolfender
- School of Pharmaceutical Sciences, University of Geneva, Geneva, Switzerland.,Institute of Pharmaceutical Sciences of Western Switzerland, University of Geneva, Geneva, Switzerland
| |
Collapse
|
21
|
Leong F, Hua X, Wang M, Chen T, Song Y, Tu P, Chen XJ. Quality standard of traditional Chinese medicines: comparison between European Pharmacopoeia and Chinese Pharmacopoeia and recent advances. Chin Med 2020; 15:76. [PMID: 32742301 PMCID: PMC7388521 DOI: 10.1186/s13020-020-00357-3] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2020] [Accepted: 07/20/2020] [Indexed: 12/14/2022] Open
Abstract
Traditional Chinese medicine (TCM) are becoming more and more popular all over the world. However, quality issues of TCM may lead to medical incidents in practice and therefore quality control is essential to TCM. In this review, the state of TCM in European Pharmacopoeia are compared with that in Chinese Pharmacopoeia, and herbal drugs that are not considered as TCM and not elaborated by TCM working party at European Directorate for the Quality of Medicines & Health Care (EDQM) but present in both European Pharmacopoeia and Chinese Pharmacopoeias are also discussed. Different aspects in quality control of TCM including origins, identification, tests and assays, as well as sample preparation, marker selection and TCM processing are covered to address the importance of establishing comprehensive quality standard of TCM. Furthermore, advanced analytical techniques for quality control and standard establishment of TCM are also reviewed.
Collapse
Affiliation(s)
- Fong Leong
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Avenida da Universidade, Taipa, Macao People's Republic of China
| | - Xue Hua
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Avenida da Universidade, Taipa, Macao People's Republic of China
| | - Mei Wang
- LU-European Center for Chinese Medicine and Natural Compounds, Institute of Biology, Leiden University, Sylviusweg72, 2333BE Leiden, The Netherlands
| | - Tongkai Chen
- Science and Technology Innovation Center, Guangzhou University of Chinese Medicine, Guangzhou, 510405 China
| | - Yuelin Song
- Modern Research Center for Traditional Chinese Medicine, School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, 100029 China
| | - Pengfei Tu
- Modern Research Center for Traditional Chinese Medicine, School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, 100029 China.,State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing, 100191 China
| | - Xiao-Jia Chen
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Avenida da Universidade, Taipa, Macao People's Republic of China
| |
Collapse
|
22
|
Guo J, Li J, Yang X, Wang H, He J, Liu E, Gao X, Chang YX. A Metabolomics Coupled With Chemometrics Strategy to Filter Combinatorial Discriminatory Quality Markers of Crude and Salt-Fired Eucommiae Cortex. Front Pharmacol 2020; 11:838. [PMID: 32625085 PMCID: PMC7311666 DOI: 10.3389/fphar.2020.00838] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2019] [Accepted: 05/21/2020] [Indexed: 01/04/2023] Open
Abstract
Eucommiae Cortex is commonly used for treating various diseases in a form of the crude and salt-fired products. Generally, it is empirical to distinguish the difference between two types of Eucommiae Cortex. The metabolomics coupled with chemometrics strategy was proposed to filter the combinatorial discriminatory quality markers for precise distinction and further quality control of the crude and salt-fired Eucommiae Cortex. The metabolomics data of multiple batches of Eucommiae Cortex samples was obtained by ultra-high performance liquid chromatography coupled with mass spectrometry (UHPLC-MS). Orthogonal partial least-squares discriminant analysis was utilized to filter candidate markers for characterizing the obvious difference of the crude and salt-fired Eucommiae Cortex. The accuracy of combinatorial markers was validated by random forest and partial least squares regression. Finally, eleven combinatorial discriminatory quality markers from 67 identified compounds were rapidly screened, identified, and determined for distinguishing the difference between crude and salt-fired Eucommiae Cortex. It was demonstrated that UHPLC-MS based metabolomics with chemometrics was a powerful strategy to screen the combinatorial discriminatory quality markers for distinguishing the crude and salt-fired Eucommiae Cortex and to provide the reference for precise quality control of Eucommiae Cortex.
Collapse
Affiliation(s)
- Jiading Guo
- Tianjin State Key Laboratory of Modern Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China.,Tianjin Key Laboratory of Phytochemistry and Pharmaceutical Analysis, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Jin Li
- Tianjin State Key Laboratory of Modern Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Xuejing Yang
- Tianjin State Key Laboratory of Modern Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China.,School of Pharmacy, Harbin University of Commerce, Harbin, China
| | - Hui Wang
- Tianjin State Key Laboratory of Modern Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China.,Tianjin Key Laboratory of Phytochemistry and Pharmaceutical Analysis, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Jun He
- Tianjin State Key Laboratory of Modern Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China.,Tianjin Key Laboratory of Phytochemistry and Pharmaceutical Analysis, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Erwei Liu
- Tianjin State Key Laboratory of Modern Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China.,Tianjin Key Laboratory of Phytochemistry and Pharmaceutical Analysis, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Xiumei Gao
- Tianjin State Key Laboratory of Modern Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China.,Tianjin Key Laboratory of Phytochemistry and Pharmaceutical Analysis, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Yan-Xu Chang
- Tianjin State Key Laboratory of Modern Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China.,Tianjin Key Laboratory of Phytochemistry and Pharmaceutical Analysis, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| |
Collapse
|
23
|
Hu L, Xiong Y, Zou Z, Yang Y, He J, Zhong L, Wang Y, Yang M. Identifying the chemical markers in raw and wine‐processed
Scutellaria baicalensis
by ultra‐performance liquid chromatography/quadrupole time‐of‐flight mass spectrometry coupled with multiple statistical strategies. Biomed Chromatogr 2020; 34:e4849. [DOI: 10.1002/bmc.4849] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2020] [Revised: 04/02/2020] [Accepted: 04/14/2020] [Indexed: 12/11/2022]
Affiliation(s)
- Lianqi Hu
- Jiangxi University of Traditional Chinese Medicine Nanchang China
| | - You Xiong
- Jiangxi University of Traditional Chinese Medicine Nanchang China
| | | | - Yuanzhen Yang
- Jiangxi University of Traditional Chinese Medicine Nanchang China
| | - Junwei He
- Jiangxi University of Traditional Chinese Medicine Nanchang China
| | - Lingyun Zhong
- Jiangxi University of Traditional Chinese Medicine Nanchang China
| | - Yaqi Wang
- Jiangxi University of Traditional Chinese Medicine Nanchang China
| | - Ming Yang
- Jiangxi University of Traditional Chinese Medicine Nanchang China
| |
Collapse
|
24
|
Yao G, Ma W, Huang X, Jia Q, Shen J, Chang Y, Ouyang H, He J. Identification and Quality Evaluation of Raw and Processed Asarum Species Using Microscopy, DNA Barcoding, and Gas Chromatography-Mass Spectrometry. JOURNAL OF ANALYTICAL METHODS IN CHEMISTRY 2020; 2020:2690238. [PMID: 32351753 PMCID: PMC7174948 DOI: 10.1155/2020/2690238] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/05/2020] [Revised: 03/18/2020] [Accepted: 03/24/2020] [Indexed: 06/08/2023]
Abstract
Asarum (Aristolochiaceae) is one of the common herbs used to relieve exterior syndromes. Some volatile components of Asarum which have toxic effect may cause adverse reactions such as headache, general tension, unconsciousness, and respiratory paralysis. Therefore, Asarum is normally processed to reduce such toxicity and adverse effects. The bioactive ingredients contained in different Asarum herbs vary significantly; this variation may be attributed to their differences in species, origins, or processing methods. In this study, 16 batches of Asarum herbs were collected, and their species were identified using DNA barcoding, which is a method for distinguishing plant species, coupled with microscopy. A gas chromatography-mass spectrometry (GC-MS) method for simultaneous determination of 10 compounds was established to evaluate the contents of raw and processed Asarum herbs. Multivariate analysis was then applied to compare different batches of herbs based on the GC-MS data. DNA barcoding identified the herbs as being derived from four sources, and herbs from different origins showed different microscopic features. The results demonstrated that most of the samples were clearly clustered into distinct groups that corresponded to species types. All raw and processed samples were classified by partial least squares discriminant analysis (PLS-DA) based on the 10 analyzed compounds. The findings suggested that safrole and methyleugenol with a variable importance in the project (VIP) > 1 are unique compounds that can be used to differentiate between Asarum species. Safrole, methyleugenol, and 2,6,6-trimethylcyclohepta-2,4-dien-1-one were identified as significant constituents, the presence of which can be used to differentiate between raw and processed Asarum samples. These results indicate that species and processing methods show important effects on the composition of Asarum herbs.
Collapse
Affiliation(s)
- Guangzhe Yao
- First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin 300193, China
- Tianjin State Key Laboratory of Modern Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin.301617, China
| | - Wenjuan Ma
- Tianjin State Key Laboratory of Modern Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin.301617, China
| | - Xuhua Huang
- Tianjin State Key Laboratory of Modern Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin.301617, China
| | - Qi Jia
- Tianjin State Key Laboratory of Modern Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin.301617, China
| | - Jiayuan Shen
- Tianjin State Key Laboratory of Modern Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin.301617, China
| | - Yanxu Chang
- Tianjin State Key Laboratory of Modern Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin.301617, China
| | - Huizi Ouyang
- First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin 300193, China
- Tianjin State Key Laboratory of Modern Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin.301617, China
| | - Jun He
- Tianjin State Key Laboratory of Modern Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin.301617, China
| |
Collapse
|
25
|
Ma W, Yao G, Huang X, Jia Q, Shen J, Chang Y, Ouyang H, He J. Comparison of the active components of
Aster tataricus
from different regions and related processed products by ultra‐high performance liquid chromatography with tandem mass spectrometry. J Sep Sci 2020; 43:865-876. [DOI: 10.1002/jssc.201900814] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2019] [Revised: 11/20/2019] [Accepted: 12/01/2019] [Indexed: 11/09/2022]
Affiliation(s)
- Wenjuan Ma
- Tianjin State Key Laboratory of Modern Chinese MedicineTianjin University of Traditional Chinese Medicine Tianjin P. R. China
| | - Guangzhe Yao
- Tianjin State Key Laboratory of Modern Chinese MedicineTianjin University of Traditional Chinese Medicine Tianjin P. R. China
| | - Xuhua Huang
- Tianjin State Key Laboratory of Modern Chinese MedicineTianjin University of Traditional Chinese Medicine Tianjin P. R. China
| | - Qi Jia
- Tianjin State Key Laboratory of Modern Chinese MedicineTianjin University of Traditional Chinese Medicine Tianjin P. R. China
| | - Jiayuan Shen
- Tianjin State Key Laboratory of Modern Chinese MedicineTianjin University of Traditional Chinese Medicine Tianjin P. R. China
| | - Yanxu Chang
- Tianjin State Key Laboratory of Modern Chinese MedicineTianjin University of Traditional Chinese Medicine Tianjin P. R. China
| | - Huizi Ouyang
- Tianjin State Key Laboratory of Modern Chinese MedicineTianjin University of Traditional Chinese Medicine Tianjin P. R. China
- First Teaching Hospital of Tianjin University of Traditional Chinese Medicine Tianjin P. R. China
| | - Jun He
- Tianjin State Key Laboratory of Modern Chinese MedicineTianjin University of Traditional Chinese Medicine Tianjin P. R. China
| |
Collapse
|
26
|
Mendez KM, Broadhurst DI, Reinke SN. The application of artificial neural networks in metabolomics: a historical perspective. Metabolomics 2019; 15:142. [PMID: 31628551 DOI: 10.1007/s11306-019-1608-0] [Citation(s) in RCA: 46] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/18/2019] [Accepted: 10/11/2019] [Indexed: 02/08/2023]
Abstract
BACKGROUND Metabolomics data, with its complex covariance structure, is typically modelled by projection-based machine learning (ML) methods such as partial least squares (PLS) regression, which project data into a latent structure. Biological data are often non-linear, so it is reasonable to hypothesize that metabolomics data may also have a non-linear latent structure, which in turn would be best modelled using non-linear equations. A non-linear ML method with a similar projection equation structure to PLS is artificial neural networks (ANNs). While ANNs were first applied to metabolic profiling data in the 1990s, the lack of community acceptance combined with limitations in computational capacity and the lack of volume of data for robust non-linear model optimisation inhibited their widespread use. Due to recent advances in computational power, modelling improvements, community acceptance, and the more demanding needs for data science, ANNs have made a recent resurgence in interest across research communities, including a small yet growing usage in metabolomics. As metabolomics experiments become more complex and start to be integrated with other omics data, there is potential for ANNs to become a viable alternative to linear projection methods. AIM OF REVIEW We aim to first describe ANNs and their structural equivalence to linear projection-based methods, including PLS regression. We then review the historical, current, and future uses of ANNs in the field of metabolomics. KEY SCIENTIFIC CONCEPT OF REVIEW Is metabolomics ready for the return of artificial neural networks?
Collapse
Affiliation(s)
- Kevin M Mendez
- Centre for Integrative Metabolomics & Computational Biology, School of Science, Edith Cowan University, Joondalup, 6027, Australia
| | - David I Broadhurst
- Centre for Integrative Metabolomics & Computational Biology, School of Science, Edith Cowan University, Joondalup, 6027, Australia.
| | - Stacey N Reinke
- Centre for Integrative Metabolomics & Computational Biology, School of Science, Edith Cowan University, Joondalup, 6027, Australia.
| |
Collapse
|
27
|
Selection of quality markers of Jasminum amplexicaule based on its anti-diarrheal and anti-inflammatory activities: Effect-target affiliation-traceability-pharmacokinetics strategy. CHINESE HERBAL MEDICINES 2019. [DOI: 10.1016/j.chmed.2019.08.002] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
|
28
|
Wang YL, Cui T, Li YZ, Liao ML, Zhang HB, Hou WB, Zhang TJ, Liu L, Huang H, Liu CX. Prediction of quality markers of traditional Chinese medicines based on network pharmacology. CHINESE HERBAL MEDICINES 2019. [DOI: 10.1016/j.chmed.2019.08.003] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
|
29
|
Wyss KM, Llivina GC, Calderón AI. Biochemometrics and Required Tools in Botanical Natural Products Research: A Review. Comb Chem High Throughput Screen 2019; 22:290-306. [DOI: 10.2174/1386207322666190704094003] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2018] [Revised: 04/12/2019] [Accepted: 05/15/2019] [Indexed: 11/22/2022]
Abstract
This review serves to highlight the role of chemometrics and biochemometrics in recent
literature as well as including a perspective on the current state of the field, as well as the future needs and
possible directions. Specifically examining the analytical methods and statistical tools that are available to
chemists, current applications of QTOF-MS, Orbitrap-MS, LC with PDA/UV detectors, NMR, and IMS
coupled MS are detailed. Of specific interest, these techniques can be applied to botanical dietary
supplement quality, efficacy, and safety. Application in natural products drug discovery, industrial quality
control, experimental design, and more are also discussed.
Collapse
Affiliation(s)
- Kevin M. Wyss
- Department of Drug Discovery and Development, Harrison School of Pharmacy, Auburn University, Auburn, AL 36849, United States
| | - Graham C. Llivina
- Department of Drug Discovery and Development, Harrison School of Pharmacy, Auburn University, Auburn, AL 36849, United States
| | - Angela I. Calderón
- Department of Drug Discovery and Development, Harrison School of Pharmacy, Auburn University, Auburn, AL 36849, United States
| |
Collapse
|
30
|
Wu J, Wang B, Li M, Shi YH, Wang C, Kang YG. Network pharmacology identification of mechanisms of cerebral ischemia injury amelioration by Baicalin and Geniposide. Eur J Pharmacol 2019; 859:172484. [PMID: 31229537 DOI: 10.1016/j.ejphar.2019.172484] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2019] [Revised: 06/17/2019] [Accepted: 06/18/2019] [Indexed: 01/05/2023]
Abstract
Cerebral ischemia is one of the main causes of human neurological dysfunction. Baicalin (BC) and Geniposide (GP) and their combination (BC/GP) have an ameliorative effect on cerebral ischemia. Here, we use network pharmacology to predict the targets of BC, GP and BC/GP, then explored the protective mechanisms of the drugs on cerebral ischemia injury caused by abnormal activation of microglia cells in vitro. The results indicate that 45 targets related to cerebral ischemic injury were predicted by network pharmacology, and 26 cerebral ischemia related pathways were extracted by the KEGG database. In vitro lipopolysaccharide (LPS) stimulated BV-2 cells to establish a model of inflammatory injury induced by microglia. The effects of BC, GP and BC/GP on the expression of TNF-α, IL-1β and IL-10, TGF-β and TNF-α were verified. Network pharmacology predicts the regulation of the 5-LOX/CysLTs inflammatory pathway. Finally, we found that GP and BC/GP exert anti-inflammatory and neuroprotective effects by regulating the polarization state of microglia and down-regulating 5-LOX/CysLTs, and has certain protective effects on nerve damage following cerebral ischemia.
Collapse
Affiliation(s)
- Jie Wu
- Shaanxi University of Chinese Medicine, Xianyang, 712046, China.
| | - Bin Wang
- Shaanxi University of Chinese Medicine, Xianyang, 712046, China.
| | - Min Li
- Shaanxi University of Chinese Medicine, Xianyang, 712046, China
| | - Yong-Heng Shi
- Shaanxi University of Chinese Medicine, Xianyang, 712046, China
| | - Chuan Wang
- Shaanxi University of Chinese Medicine, Xianyang, 712046, China
| | - Ya-Guo Kang
- Shaanxi University of Chinese Medicine, Xianyang, 712046, China
| |
Collapse
|
31
|
Chen Z, Sun D, Bi X, Luo W, Xu A, Chen W, Jiang J, Cai D, Guo H, Cao L. Selection and evaluation of quality markers from Yinlan capsule and its LXRα-mediated therapy for hyperlipidemia. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2019; 59:152896. [PMID: 30978649 DOI: 10.1016/j.phymed.2019.152896] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/10/2018] [Revised: 03/14/2019] [Accepted: 03/16/2019] [Indexed: 06/09/2023]
Abstract
BACKGROUND The selection of active compounds for the quality evaluation of traditional Chinese medicine (TCM), specifically complex formulas, remains a challenge for researchers, as components selected as indexes usually have no clear relation with the therapeutic effects of interest. As a suggested resolution, quality control markers (Q-markers) showed good perspective for discriminating numerous compounds found for specific efficacies. In the presented study, the components of the Yinlan (YL) capsule, a TCM patent formula comprising four ingredients, were evaluated and selected for their lipid regulatory effects using principles for Q-marker selection. PURPOSE The mechanism of TCM therapeutic effects involves several pathways and targets that combine to become an integrated action in the body. Therefore, it is assumed that specific compounds in YL should have good affinity for related targets and obvious effects (both up- and downregulating). Thus, a series of experiments, including cytobiology, animal-based pharmacodynamics, computer-assisted drug design, conventional content determination and pharmacokinetics, would be helpful for the selection and final confirmation of Q-markers. METHODS The capsule was first administered to Wistar mice fed a high-fat diet and tested for their triglycerides (TG) and total cholesterol (TC) values to evaluate the effectiveness of YL. Then, liver tissue was extracted for gene expression. According to the results, the compounds in YL with good affiliation were selected and determined using UHPLC-MS-MS, and those with adequate results in the capsule were chosen as Q-marker candidates. Finally, pharmacokinetics research was performed; the candidates with desirable metabolite and bioavailability parameters were confirmed as Q-markers of YL. RESULTS YL capsule was capable of lowering TG and TC levels. For target selection, the expression of LXR mRNA increased significantly at all three tested dosages. Downstream genes, such as LCAT, CYP7A1, and ABCA1, and intestinal FXR mRNA also showed significant increases in expression. For screening of the Q-marker candidates, 5 compounds were selected according to abovementioned results. The pharmacokinetics research demonstrated that the rats exploited lupeol and ginsenoside Rb3 in a desirable pattern with adequate bioavailability, which confirmed their roles as lipid regulatory Q-markers. CONCLUSION The YL capsule was demonstrated to have obvious lipid regulatory effects, which are mainly exerted by targeting LXR and its related pathway. Lupeol and ginsenoside Rb3 were validated as Q-markers that represent the anti-hyperlipidemia activity of the capsule.
Collapse
Affiliation(s)
- Zhao Chen
- The Fifth College of Clinic Medicine, Guangzhou University of Chinese Medicine, 60 Hengfu Rd., Guangzhou 510095, China; Guangdong Provincial Key Laboratory of Research and Development in Traditional Chinese Medicine, 60 Hengfu Rd., Guangzhou 510095, China
| | - Dongmei Sun
- The Fifth College of Clinic Medicine, Guangzhou University of Chinese Medicine, 60 Hengfu Rd., Guangzhou 510095, China; Guangdong Provincial Key Laboratory of Research and Development in Traditional Chinese Medicine, 60 Hengfu Rd., Guangzhou 510095, China; Guangdong Yifang Pharmaceutical Co. Ltd., 69 Jinfeng Rd., Foshan 528244, China.
| | - Xiaoli Bi
- The Fifth College of Clinic Medicine, Guangzhou University of Chinese Medicine, 60 Hengfu Rd., Guangzhou 510095, China; Guangdong Provincial Key Laboratory of Research and Development in Traditional Chinese Medicine, 60 Hengfu Rd., Guangzhou 510095, China
| | - Wenhui Luo
- The Fifth College of Clinic Medicine, Guangzhou University of Chinese Medicine, 60 Hengfu Rd., Guangzhou 510095, China; Guangdong Provincial Key Laboratory of Research and Development in Traditional Chinese Medicine, 60 Hengfu Rd., Guangzhou 510095, China; Guangdong Yifang Pharmaceutical Co. Ltd., 69 Jinfeng Rd., Foshan 528244, China
| | - Aili Xu
- The Fifth College of Clinic Medicine, Guangzhou University of Chinese Medicine, 60 Hengfu Rd., Guangzhou 510095, China; Guangdong Provincial Key Laboratory of Research and Development in Traditional Chinese Medicine, 60 Hengfu Rd., Guangzhou 510095, China
| | - Weitao Chen
- The Fifth College of Clinic Medicine, Guangzhou University of Chinese Medicine, 60 Hengfu Rd., Guangzhou 510095, China; Guangdong Provincial Key Laboratory of Research and Development in Traditional Chinese Medicine, 60 Hengfu Rd., Guangzhou 510095, China
| | - Jieyi Jiang
- The Fifth College of Clinic Medicine, Guangzhou University of Chinese Medicine, 60 Hengfu Rd., Guangzhou 510095, China; Guangdong Provincial Key Laboratory of Research and Development in Traditional Chinese Medicine, 60 Hengfu Rd., Guangzhou 510095, China
| | - Dake Cai
- The Fifth College of Clinic Medicine, Guangzhou University of Chinese Medicine, 60 Hengfu Rd., Guangzhou 510095, China; Guangdong Provincial Key Laboratory of Research and Development in Traditional Chinese Medicine, 60 Hengfu Rd., Guangzhou 510095, China
| | - Haoliang Guo
- Department of Biochemistry, Case Western Reserve University, Cleveland, OH 44106-2648, United States
| | - Lizhong Cao
- The Fifth College of Clinic Medicine, Guangzhou University of Chinese Medicine, 60 Hengfu Rd., Guangzhou 510095, China; Guangdong Provincial Key Laboratory of Research and Development in Traditional Chinese Medicine, 60 Hengfu Rd., Guangzhou 510095, China
| |
Collapse
|
32
|
Liang D, Yin YH, Miao LY, Zheng X, Gao W, Chen XD, Wei M, Chen SJ, Li S, Xin GZ, Li P, Li HJ. Integrating chemical similarity and bioequivalence: A pilot study on quality consistency evaluation of dispensing granule and traditional decoction of Scutellariae Radix by a totality-of-the-evidence approach. J Pharm Biomed Anal 2019; 169:1-10. [PMID: 30826486 DOI: 10.1016/j.jpba.2019.02.030] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2019] [Revised: 02/09/2019] [Accepted: 02/19/2019] [Indexed: 12/31/2022]
Abstract
There is an increasing focus on the quality consistency evaluation of dispensing granule in traditional Chinese medicines (TCMs). According to the guideline from Chinese Pharmacopoeia Commission, the substantial equivalence of dispensing granule and traditional decoction should be determined, and the chromatographic fingerprint has been recommended as a comprehensive qualitative approach to assess the quality consistency between dispensing granule and traditional decoction. However, a high-degree chemical similarity does not equal a bioequivalence. Attempting to realize the quality evaluation by integrating chemical consistency and bioequivalence, we herein proposed a totality-of-the-evidence approach based on clustering analysis and equivalence evaluation taking the dispensing granule and traditional decoction of Scutellariae Radix (SR) as a typical case. Chemical fingerprints were developed by high performance liquid chromatography coupled with photodiode array detector and quadrupole time-of-flight mass spectrometry (HPLC-PDA/QTOF-MS). Subsequently, a feature selection strategy, integrated linear and nonlinear correlation analysis, was carried out to assess the correlation between chemical profiles and biological activities. Finally, quality consistency between the dispensing granule and the traditional decoction was determined by bioactive marker-guided hierarchical clustering analysis (HCA), k-means clustering method and bioequivalence evaluation. The available evidence suggested that not all the dispensing granule of SR were sufficiently similar to the traditional decoction. This study provides an applicable methodology for quality consistency evaluation of dispensing granule and traditional decoction in TCMs.
Collapse
Affiliation(s)
- Dan Liang
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, No. 24 Tongjia Lane, Nanjing, 210009, China
| | - Ying-Hao Yin
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, No. 24 Tongjia Lane, Nanjing, 210009, China
| | - Lan-Yun Miao
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, No. 24 Tongjia Lane, Nanjing, 210009, China
| | - Xian Zheng
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, No. 24 Tongjia Lane, Nanjing, 210009, China
| | - Wen Gao
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, No. 24 Tongjia Lane, Nanjing, 210009, China
| | - Xiang-Dong Chen
- Guangdong Efong Pharmaceutical Co., Ltd., Foshan, 528244, China
| | - Mei Wei
- Guangdong Efong Pharmaceutical Co., Ltd., Foshan, 528244, China
| | - Sheng-Jun Chen
- Jiangyin Tianjiang Pharmaceutical Co., Ltd., Jiangyin, 214400, China
| | - Song Li
- Jiangyin Tianjiang Pharmaceutical Co., Ltd., Jiangyin, 214400, China
| | - Gui-Zhong Xin
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, No. 24 Tongjia Lane, Nanjing, 210009, China.
| | - Ping Li
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, No. 24 Tongjia Lane, Nanjing, 210009, China
| | - Hui-Jun Li
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, No. 24 Tongjia Lane, Nanjing, 210009, China.
| |
Collapse
|
33
|
Simultaneous Determination of Thirteen Q-Markers in Raw and Processed Tussilago farfara L. by UPLC-QQQ-MS/MS Coupled with Chemometrics. Molecules 2019; 24:molecules24030598. [PMID: 30743985 PMCID: PMC6385167 DOI: 10.3390/molecules24030598] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2019] [Revised: 02/06/2019] [Accepted: 02/07/2019] [Indexed: 12/26/2022] Open
Abstract
The purpose of this study was to establish a rapid, reliable, and sensitive ultra-performance liquid chromatography with triple-quadrupole tandem mass spectrometry coupled with chemometric method to measure and evaluate the differences between thirteen compounds in raw and processed Tussilago farfara L. from different sources. This assay method was validated, and the results indicated that the calibration curves for the thirteen compounds had good linearity (R² > 0.9990). The limits of detection and limits of quantification of the thirteen compounds ranged from 0.0012 to 0.0095 μg/mL and from 0.0038 to 0.0316 μg/mL, respectively. The relative standard deviations (RSD) of the intra- and inter-day precisions and stability ranged from 1.06 to 2.00%, 0.26 to 1.99%, and 0.75 to 1.97%, respectively. The sample recovery rates of the thirteen compounds with different concentrations were 94.47⁻104.06%. The chemometric results, including principal component analysis, hierarchical clustering analysis, three-dimensional analysis, and box plot analysis, indicated that there are significance differences in raw and processed Tussilago farfara L. The results of this study confirm that the proposed method is the first reported method that has been successfully applied for simultaneous determination and discovery of the difference between thirteen compounds of raw and processed Tussilago farfara L. Thus, this method could be a helpful tool for the detection and confirmation of the quality of traditional Chinese medicines and provide a basis for future pharmacological studies.
Collapse
|
34
|
Zhou Z, Li N, Zhang HF, Wang QQ, Yu Q, Wang F, Dai YH, Wang D, Liu DC. Simultaneous quantitative analysis of 11 flavonoid derivatives with a single marker in persimmon leaf extraction and evaluation of their myocardium protection activity. J Nat Med 2019; 73:404-418. [PMID: 30600429 DOI: 10.1007/s11418-018-1274-y] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2018] [Accepted: 12/04/2018] [Indexed: 12/15/2022]
Abstract
An improved, reliable and comprehensive method for assessing the quality of the ethyl acetate extract from persimmon leaves (EAPL) and its commercial preparation, Naoxinqing (Brain and Heart Clear capsules), has been developed and validated. Based on HPLC-DAD-ESI-Q-TOF-MS analysis, myricetin-3-O-β-D-galactoside (1), myricetin-3-O-glucoside (2), quercetin-3-O-β-D-galactoside (3), quercetin-3-O-β-D-glucoside (4), quercetin-3-O-(2″-O-galloyl-β-D-galactoside) (5), quercetin-3-O-(2″-O-galloyl-β-D-glucoside) (6), kaempferol-3-O-β-D-galactoside (7), kaempferol-3-O-β-D-glucoside (8), kaempferol-3-O-(2″-O-galloyl-β-D-galactoside) (9), kaempferol-3-O-(2″-O-galloyl-β-D-glucoside) (10), quercetin (11) and kaempferol (12) were identified from 15 batch samples. A HPLC fingerprint analytical method was established. All compounds, with the exception of compound 2, were simultaneously quantified by the single standard to determine multi-components (SSDMC) method, using kaempferol-3-O-β-D-glucoside as the internal standard. The rate of analysis was found to be faster with the SSDMC method than with current acid hydrolysis method (Pharmacopoeia of the People's Republic of China 2015 edition) and the results were more intuitive and reliable. Three-dimensional principal component analysis revealed that there were similar characteristics in persimmon leaf from same district. Analysis of the myocardial cell protection activity of 11 monomeric compounds showed that compounds 12, 11 and 10 were the main active ingredients that produce pharmacologic functions in EAPL. Among these compounds, the bioactive constituent of myricetin-3-O-β-D-galactoside was determined for the first time in Diospyros khaki. Thus, we have established an effective assessment method that can be applied to the comprehensive quality evaluation of EAPL extract and Naoxinqing capsule.
Collapse
Affiliation(s)
- Zhi Zhou
- Faculty of Traditional Chinese Medicine, Shenyang Pharmaceutical University, Shenyang, 110016, China
| | - Nan Li
- Faculty of Traditional Chinese Medicine, Shenyang Pharmaceutical University, Shenyang, 110016, China
| | - Hai-Feng Zhang
- Faculty of Life Science and Biopharmaceutics, Shenyang Pharmaceutical University, Shenyang, 110016, China
| | - Qing-Qing Wang
- Faculty of Traditional Chinese Medicine, Shenyang Pharmaceutical University, Shenyang, 110016, China
| | - Qing Yu
- Faculty of Traditional Chinese Medicine, Shenyang Pharmaceutical University, Shenyang, 110016, China
| | - Fang Wang
- Faculty of Functional Food and Wine, Shenyang Pharmaceutical University, Shenyang, 110016, China
| | - Ying-Hui Dai
- Faculty of Traditional Chinese Medicine, Shenyang Pharmaceutical University, Shenyang, 110016, China
| | - Dong Wang
- Faculty of Traditional Chinese Medicine, Shenyang Pharmaceutical University, Shenyang, 110016, China
| | - Dong-Chun Liu
- Faculty of Traditional Chinese Medicine, Shenyang Pharmaceutical University, Shenyang, 110016, China.
| |
Collapse
|
35
|
Sun L, You G, Cao X, Wang M, Ren X. Comparative investigation for raw and processed Aconiti Lateralis Radix using chemical UPLC-MS profiling and multivariate classification techniques. J Food Drug Anal 2018; 27:365-372. [PMID: 30648592 PMCID: PMC9298629 DOI: 10.1016/j.jfda.2018.10.006] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2018] [Revised: 10/16/2018] [Accepted: 10/17/2018] [Indexed: 01/06/2023] Open
Abstract
A strategy combining chemical UPLC-MS profiling and multivariate classification techniques has been used for the comparison of raw and processed Aconiti Lateralis Radix. UPLC-MS was used to identify 18 characteristic compounds, which were selected for discrimination of the raw and two processed products (Heishunpian and Baifupian). Chemometric analyses, including the combination of a heat map and hierarchical cluster analysis (HCA) and principal component analysis (PCA), were used to visualize the discrimination of raw and two processed products. HCA and PCA provided a clear discrimination of raw Aconiti Lateralis Radix, Heishunpian and Baifupian. Finally, the counter-propagation artificial neural network (CP-ANN) was applied to confirm the results of HCA, PCA and to explore the effect of 18 compounds on samples differentiation and the rationality of processing. The results showed that this strategy could be successfully used for comparison of raw and two processed products of Aconiti Lateralis Radix, which could be used as a general procedure to compare herbal medicines and related processed products to elaborate the rationality of processing from the perspective of chemical composition.
Collapse
Affiliation(s)
- Lili Sun
- School of Chinese Materia Medica, Tianjin University of Traditional Chinese Medicine, Tianjin, 300193, China
| | - Guangjiao You
- School of Chinese Materia Medica, Tianjin University of Traditional Chinese Medicine, Tianjin, 300193, China
| | - Xuexiao Cao
- School of Chinese Materia Medica, Tianjin University of Traditional Chinese Medicine, Tianjin, 300193, China
| | - Meng Wang
- Tianjin State Key Laboratory of Modern Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, 300193, China.
| | - Xiaoliang Ren
- School of Chinese Materia Medica, Tianjin University of Traditional Chinese Medicine, Tianjin, 300193, China.
| |
Collapse
|
36
|
Ding M, Li Z, Yu XA, Zhang D, Li J, Wang H, He J, Gao XM, Chang YX. A network pharmacology-integrated metabolomics strategy for clarifying the difference between effective compounds of raw and processed Farfarae flos by ultra high-performance liquid chromatography-quadrupole-time of flight mass spectrometry. J Pharm Biomed Anal 2018; 156:349-357. [DOI: 10.1016/j.jpba.2018.05.003] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2018] [Revised: 05/01/2018] [Accepted: 05/02/2018] [Indexed: 10/17/2022]
|
37
|
Ding M, Jiang Y, Yu X, Zhang D, Li J, Wang H, Shen J, Gao XM, Chang YX. Screening of Combinatorial Quality Markers for Natural Products by Metabolomics Coupled With Chemometrics. A Case Study on Pollen Typhae. Front Pharmacol 2018; 9:691. [PMID: 30002628 PMCID: PMC6033115 DOI: 10.3389/fphar.2018.00691] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2018] [Accepted: 06/07/2018] [Indexed: 12/18/2022] Open
Abstract
Natural products, especially for traditional Chinese medicines (TCMs), are of great importance to cure diseases. Yet it was hard to screen the influential quality markers for monitoring the quality. A simple and comprehensive strategy was developed and validated to screen for the combinatorial quality markers for precise quality evaluation and discrimination of natural products. In this study, Pollen Typhae (PT) and it's processed products carbonized PT were selected as the representative case. Firstly, metabolomics data of 49 batches crude PT and carbonized PT was obtained by ultra high-performance liquid chromatography coupled with quadrupole time-of-flight mass spectrometry (UHPLC-Q-TOF/MS). Then, metabolomics approaches were performed to screen for the potential markers that lead to the quality difference. Finally, chemometric methods were used to validate the accuracy of combinatorial quality markers. Thus, 42 compounds were identified from PT, 5 markers (isorhamnetin-3-O-(2G-α-L-rhamnosyl)-rutinoside, isorhamnetin-3-O-neohesperidoside, astragalin, kaempferol and umbelliferone) were successfully screened, identified, quantified and regarded as combinatorial quality markers for precise quality evaluation of crude and carbonized PT. It was demonstrated that the established comprehensively strategy provide an efficient tool for precise quality evaluation of natural products from the whole.
Collapse
Affiliation(s)
- Mingya Ding
- Tianjin State Key Laboratory of Modern Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
- Tianjin Key Laboratory of Phytochemistry and Pharmaceutical Analysis, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Yan Jiang
- Tianjin State Key Laboratory of Modern Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Xiean Yu
- Tianjin State Key Laboratory of Modern Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
- Tianjin Key Laboratory of Phytochemistry and Pharmaceutical Analysis, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Dong Zhang
- Tianjin State Key Laboratory of Modern Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
- Tianjin Key Laboratory of Phytochemistry and Pharmaceutical Analysis, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Jin Li
- Tianjin State Key Laboratory of Modern Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Hui Wang
- Tianjin State Key Laboratory of Modern Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
- Tianjin Key Laboratory of Phytochemistry and Pharmaceutical Analysis, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Jiayuan Shen
- Tianjin State Key Laboratory of Modern Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Xiu-mei Gao
- Tianjin State Key Laboratory of Modern Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
- Tianjin Key Laboratory of Phytochemistry and Pharmaceutical Analysis, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Yan-xu Chang
- Tianjin State Key Laboratory of Modern Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
- Tianjin Key Laboratory of Phytochemistry and Pharmaceutical Analysis, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| |
Collapse
|
38
|
Liao M, Shang H, Li Y, Li T, Wang M, Zheng Y, Hou W, Liu C. An integrated approach to uncover quality marker underlying the effects of Alisma orientale on lipid metabolism, using chemical analysis and network pharmacology. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2018; 45:93-104. [PMID: 29705003 DOI: 10.1016/j.phymed.2018.04.006] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/18/2017] [Revised: 03/02/2018] [Accepted: 04/02/2018] [Indexed: 06/08/2023]
Abstract
BACKGROUND Quality control of traditional Chinese medicines is currently a great concern, due to the correlation between the quality control indicators and clinic effect is often questionable. According to the "multi-components and multi-targets" property of TCMs, a new special quality and bioactivity evaluation system is urgently needed. PURPOSE Present study adopted an integrated approach to provide new insights relating to uncover quality marker underlying the effects of Alisma orientale (AO) on lipid metabolism. METHODS In this paper, guided by the concept of the quality marker (Q-marker), an integrated strategies "effect-compound-target-fingerprint" was established to discovery and screen the potential quality marker of AO based on network pharmacology and chemical analysis. Firstly, a bioactivity evaluation was performed to screen the main active fractions. Then the chemical compositions were rapidly identified by chemical analysis. Next, networks were constructed to illuminate the interactions between these component and their targets for lipid metabolism, and the potential Q-marker of AO was initially screened. Finally, the activity of the Q-markers was validated in vitro. RESULTS 50% ethanol extract fraction was found to have the strongest lipid-lowering activity. Then, the network pharmacology was used to clarify the unique relationship between the Q-markers and their integral pharmacological action. CONCLUSION Combined with the results obtained, five active ingredients in the 50% ethanol extract fraction were given special considerations to be representative Q-markers: Alisol A, Alisol B, Alisol A 23-acetate, Alisol B 23-acetate and Alisol A 24-acetate, respectively. The chromatographic fingerprints based Q-marker was establishment. The integrated Q-marker screen may offer an alternative quality assessment of herbal medicines.
Collapse
Affiliation(s)
- Maoliang Liao
- School of Pharmacy, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang 110016, People's Republic of China; State Key Laboratory of Drug Delivery and Pharmacokinetics, Tianjin Institute of Pharmaceutical Research, Tianjin 300193, People's Republic of China
| | - Haihua Shang
- School of Pharmacy, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang 110016, People's Republic of China
| | - Yazhuo Li
- State Key Laboratory of Drug Delivery and Pharmacokinetics, Tianjin Institute of Pharmaceutical Research, Tianjin 300193, People's Republic of China
| | - Tian Li
- School of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, 312 Anshanxi Road, Nankai District, Tianjin, 300193, People's Republic of China
| | - Miao Wang
- State Key Laboratory of Drug Delivery and Pharmacokinetics, Tianjin Institute of Pharmaceutical Research, Tianjin 300193, People's Republic of China
| | - Yanan Zheng
- State Key Laboratory of Drug Delivery and Pharmacokinetics, Tianjin Institute of Pharmaceutical Research, Tianjin 300193, People's Republic of China
| | - Wenbin Hou
- State Key Laboratory of Drug Delivery and Pharmacokinetics, Tianjin Institute of Pharmaceutical Research, Tianjin 300193, People's Republic of China
| | - Changxiao Liu
- School of Pharmacy, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang 110016, People's Republic of China; State Key Laboratory of Drug Delivery and Pharmacokinetics, Tianjin Institute of Pharmaceutical Research, Tianjin 300193, People's Republic of China.
| |
Collapse
|
39
|
Wang Y, Liu S, Pu Q, Li Y, Wang X, Jiang Y, Yang D, Yang Y, Yang J, Sun C. Rapid identification of Staphylococcus aureus, Vibrio parahaemolyticus and Shigella sonnei in foods by solid phase microextraction coupled with gas chromatography-mass spectrometry. Food Chem 2018; 262:7-13. [PMID: 29751923 DOI: 10.1016/j.foodchem.2018.04.088] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2017] [Revised: 04/15/2018] [Accepted: 04/21/2018] [Indexed: 12/01/2022]
Abstract
A novel approach for rapid identification of three foodborne pathogens including Staphylococcus aureus, Vibrio parahaemolyticus and Shigella sonnei in foods by solid phase microextraction (SPME) coupled with gas chromatography-mass spectrometry (GC-MS) was established. After cultivation 24, 18 and 20 h for Staphylococcus aureus, Vibrio parahaemolyticus and Shigella sonnei, respectively, the microbial volatile organic compounds (MVOCs) were extracted with a SPME device equipped with divinylbenzene/carboxen/polydimethylsiloxane (DVB/CAR/PDMS) coated fibers. The DB-1701P column was applied for separation of MVOCs. A total of 17, 13 and 14 volatile organic compounds were identified as characteristic MVOCs of Staphylococcus aureus, Vibrio parahaemolyticus and Shigella sonnei, respectively. Similarity of the MVOC chromatographic fingerprints for the bacteria were calculated and compared, and the results showed that the established method is stable, reproducible, accurate and has the potential to identify the three bacteria in food samples.
Collapse
Affiliation(s)
- Yu Wang
- West China School of Public Health, Sichuan University, Chengdu 610041, China; Chongqing Center for Disease Control and Prevention, Chongqing 400042, China
| | - Sijing Liu
- West China School of Public Health, Sichuan University, Chengdu 610041, China
| | - Qikang Pu
- West China School of Public Health, Sichuan University, Chengdu 610041, China
| | - Yongxin Li
- West China School of Public Health, Sichuan University, Chengdu 610041, China; Provincial Key Laboratory for Food Safety Monitoring and Risk Assessment of Sichuan, Chengdu 610041, China
| | - Xixi Wang
- Chengdu Center for Disease Control and Prevention, Chengdu 610041, China
| | - Yang Jiang
- Sichuan Center for Disease Control and Prevention, Chengdu 610041, China
| | - Danni Yang
- West China School of Public Health, Sichuan University, Chengdu 610041, China
| | - Yi Yang
- West China School of Public Health, Sichuan University, Chengdu 610041, China
| | - Jinling Yang
- West China School of Public Health, Sichuan University, Chengdu 610041, China
| | - Chengjun Sun
- West China School of Public Health, Sichuan University, Chengdu 610041, China; Provincial Key Laboratory for Food Safety Monitoring and Risk Assessment of Sichuan, Chengdu 610041, China.
| |
Collapse
|
40
|
Liu XG, Cheng CY, Wang JX, Luo H, Tu LF, Lin L, Wu B, Wang HY, Liu K, Li P, Yang H. A metabolic exposure-oriented network regulation strategy for the identification of effective combination in the extract of Ginkgo biloba L. J Pharm Biomed Anal 2018; 149:151-159. [DOI: 10.1016/j.jpba.2017.11.004] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2017] [Revised: 10/29/2017] [Accepted: 11/01/2017] [Indexed: 02/07/2023]
|
41
|
Xie J, Zhang AH, Sun H, Yan GL, Wang XJ. Recent advances and effective strategies in the discovery and applications of natural products. RSC Adv 2018; 8:812-824. [PMID: 35538992 PMCID: PMC9077099 DOI: 10.1039/c7ra09475b] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2017] [Accepted: 12/12/2017] [Indexed: 01/06/2023] Open
Abstract
Natural products are the most representative form of conventional therapy as compared to any other traditional or alternative medicine systems.
Collapse
Affiliation(s)
- Jing Xie
- Sino-America Chinmedomics Technology Collaboration Center
- National TCM Key Laboratory of Serum Pharmacochemistry
- Metabolomics Laboratory
- Department of Pharmaceutical Analysis
- Heilongjiang University of Chinese Medicine
| | - Ai-hua Zhang
- Sino-America Chinmedomics Technology Collaboration Center
- National TCM Key Laboratory of Serum Pharmacochemistry
- Metabolomics Laboratory
- Department of Pharmaceutical Analysis
- Heilongjiang University of Chinese Medicine
| | - Hui Sun
- Sino-America Chinmedomics Technology Collaboration Center
- National TCM Key Laboratory of Serum Pharmacochemistry
- Metabolomics Laboratory
- Department of Pharmaceutical Analysis
- Heilongjiang University of Chinese Medicine
| | - Guang-li Yan
- Sino-America Chinmedomics Technology Collaboration Center
- National TCM Key Laboratory of Serum Pharmacochemistry
- Metabolomics Laboratory
- Department of Pharmaceutical Analysis
- Heilongjiang University of Chinese Medicine
| | - Xi-jun Wang
- Sino-America Chinmedomics Technology Collaboration Center
- National TCM Key Laboratory of Serum Pharmacochemistry
- Metabolomics Laboratory
- Department of Pharmaceutical Analysis
- Heilongjiang University of Chinese Medicine
| |
Collapse
|