1
|
Rajadhyaksha M, Londhe V. Development of LC-MS/MS method for quantification of Lurasidone using volumetric absorptive microsampling (VAMS); a comparative study between dried blood and plasma samples. J Chromatogr B Analyt Technol Biomed Life Sci 2024; 1244:124255. [PMID: 39059319 DOI: 10.1016/j.jchromb.2024.124255] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2024] [Revised: 07/16/2024] [Accepted: 07/20/2024] [Indexed: 07/28/2024]
Abstract
The ecological impact of biological, chemical, and analytical research practices, including toxic reagents and biohazardous waste, has led to the development of alternative sampling and extraction techniques for bioanalysis. Microsampling (sample volume < 50 µL) aligns with the 3Rs principle, allowing multiple sampling points from the same animal at different time points and improving animal welfare. A bioanalytical method was developed to investigate factors related to bioanalytical challenges and the implementation of microsampling techniques. An LC-MS/MS method for Volumetric Absorptive Microsampling (VAMS), 20 µL, was developed for quantifying Lurasidone using a liquid-liquid extraction technique. The method uses a C18, Phenomenex column for chromatographic separation and a mobile phase composition of Methanol, Acetonitrile, and Water with 0.1 % HFBA. The method was validated over a concentration range of 5.0 to 1200.0 ng/mL and achieved acceptable precision and accuracy. The recovery for analyte from VAMS was approximately 40% at four different concentrations and is consistent (%CV < 15), with no significant differences among HCT levels. The matrix factor ranged between 85.00 and 115.00 %, showing no substantial issues with reduced or enhanced signal. The stability data showed no significant degradation of LUR in VAMS samples when stored at room temperature for 15 days. The newly established method for Lurasidone confirmed the use of VAMS sampling method and its analysis on LC-MS/MS. Further, the data obtained from microsampling techniques was compared with conventional (plasma) technique, as proof-of-concept, and it confirms the agreement between the two methods. The study supports the advantages of microsampling in protecting the environment and animals while maintaining scientific judgement.
Collapse
Affiliation(s)
- Madhura Rajadhyaksha
- SPPSPTM, SVKM's Narsee Monjee Institute of Management Studies, V.L. Mehta Road, Vile Parle (W), Mumbai 400056, India; Sitec Labs Ltd. Plot no. Gen-40, TTC, MIDC Behind Millennium Business Park, Near Nelco, Mahape, New Mumbai 400710, India.
| | - Vaishali Londhe
- SPPSPTM, SVKM's Narsee Monjee Institute of Management Studies, V.L. Mehta Road, Vile Parle (W), Mumbai 400056, India
| |
Collapse
|
2
|
Roach J, Mital R, Haffner JJ, Colwell N, Coats R, Palacios HM, Liu Z, Godinho JLP, Ness M, Peramuna T, McCall LI. Microbiome metabolite quantification methods enabling insights into human health and disease. Methods 2024; 222:81-99. [PMID: 38185226 DOI: 10.1016/j.ymeth.2023.12.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Revised: 10/27/2023] [Accepted: 12/13/2023] [Indexed: 01/09/2024] Open
Abstract
Many of the health-associated impacts of the microbiome are mediated by its chemical activity, producing and modifying small molecules (metabolites). Thus, microbiome metabolite quantification has a central role in efforts to elucidate and measure microbiome function. In this review, we cover general considerations when designing experiments to quantify microbiome metabolites, including sample preparation, data acquisition and data processing, since these are critical to downstream data quality. We then discuss data analysis and experimental steps to demonstrate that a given metabolite feature is of microbial origin. We further discuss techniques used to quantify common microbial metabolites, including short-chain fatty acids (SCFA), secondary bile acids (BAs), tryptophan derivatives, N-acyl amides and trimethylamine N-oxide (TMAO). Lastly, we conclude with challenges and future directions for the field.
Collapse
Affiliation(s)
- Jarrod Roach
- Department of Chemistry and Biochemistry, University of Oklahoma
| | - Rohit Mital
- Department of Biology, University of Oklahoma
| | - Jacob J Haffner
- Department of Anthropology, University of Oklahoma; Laboratories of Molecular Anthropology and Microbiome Research, University of Oklahoma
| | - Nathan Colwell
- Department of Chemistry and Biochemistry, University of Oklahoma
| | - Randy Coats
- Department of Chemistry and Biochemistry, University of Oklahoma
| | - Horvey M Palacios
- Department of Anthropology, University of Oklahoma; Laboratories of Molecular Anthropology and Microbiome Research, University of Oklahoma
| | - Zongyuan Liu
- Department of Chemistry and Biochemistry, University of Oklahoma
| | | | - Monica Ness
- Department of Chemistry and Biochemistry, University of Oklahoma
| | - Thilini Peramuna
- Department of Chemistry and Biochemistry, University of Oklahoma
| | - Laura-Isobel McCall
- Department of Chemistry and Biochemistry, University of Oklahoma; Laboratories of Molecular Anthropology and Microbiome Research, University of Oklahoma; Department of Chemistry and Biochemistry, San Diego State University.
| |
Collapse
|
3
|
Millán-Santiago J, Vitagliano R, Mondella F, Mandrioli R, Sardella R, Vovk T, Lucena R, Cárdenas S, Boaron F, Serretti A, Petio C, Protti M, Mercolini L. Volumetric absorptive microsampling for the therapeutic drug monitoring of psychiatric patients treated with cariprazine. J Pharm Biomed Anal 2023; 236:115740. [PMID: 37776628 DOI: 10.1016/j.jpba.2023.115740] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2023] [Revised: 09/18/2023] [Accepted: 09/19/2023] [Indexed: 10/02/2023]
Abstract
Psychiatric disorders are usually treated with antipsychotic agents belonging to different pharmacological and chemical classes, the most recent ones collectively known as "third-generation antipsychotics", such as cariprazine, approved in 2015 for the treatment of patients affected by schizophrenia. For these patients, a frequent therapeutic drug monitoring (TDM) becomes essential to assess compliance and to optimise and personalise their therapy, also due to cariprazine interindividual variability and narrow therapeutic range. In this study, a bioanalytical method featuring miniaturised sampling and pretreatment was developed, based on volumetric absorptive microsampling (VAMS) for TDM of psychiatric patients under cariprazine treatment and compared to a reference method based on fluid plasma analysis. Minimally invasive whole blood VAMS was coupled to an original instrumental method based on ultra-high performance liquid chromatography hyphenated to mass spectrometry (UHPLC-MS). A feasible and streamlined, yet reliable VAMS pretreatment protocol was carefully optimised and the VAMS-UHPLC-MS methodology was validated with satisfactory results in terms of linearity (r2 > 0.9970 in the 1.5-100 ng/mL range), precision (%RSD < 11.7), extraction yield (> 90.0 %) and matrix effect (8.2 ≤ %RE ≤ 10.9). Finally, the microsampling approach coupled to UHPLC-MS was successfully applied to the TDM of psychiatric patients treated with cariprazine and compared with standard fluid plasma analysis, providing reliable quali-quantitative results, and proving to be readily applicable to the clinical practice in TDM programs as a useful alternative to cariprazine plasma analysis. This is the first report of a successful microsampling application, and in particular the first report of VAMS application, for the TDM of cariprazine.
Collapse
Affiliation(s)
- Jaime Millán-Santiago
- Research Group of Pharmaco-Toxicological Analysis (PTA Lab), Department of Pharmacy and Biotechnology (FaBiT), Alma Mater Studiorum - University of Bologna, Via Belmeloro 6, 40126 Bologna, Italy; Affordable and Sustainable Sample Preparation (AS2P) Research Group, Departamento de Química Analítica, Instituto Químico para la Energía y el Medioambiente (IQUEMA), Universidad de Córdoba, Campus de Rabanales, Edificio Marie Curie, E-14071 Córdoba, Spain
| | - Rosalba Vitagliano
- Research Group of Pharmaco-Toxicological Analysis (PTA Lab), Department of Pharmacy and Biotechnology (FaBiT), Alma Mater Studiorum - University of Bologna, Via Belmeloro 6, 40126 Bologna, Italy
| | - Fortunata Mondella
- Research Group of Pharmaco-Toxicological Analysis (PTA Lab), Department of Pharmacy and Biotechnology (FaBiT), Alma Mater Studiorum - University of Bologna, Via Belmeloro 6, 40126 Bologna, Italy
| | - Roberto Mandrioli
- Department for Life Quality Studies, Alma Mater Studiorum - University of Bologna, Corso d'Augusto 237, 47921 Rimini, Italy
| | - Roccaldo Sardella
- Department of Pharmaceutical Sciences, University of Perugia, Via Fabretti 48, 06123 Perugia, Italy
| | - Tomaž Vovk
- Faculty of Pharmacy, University of Ljubljana, Aškerčeva 7, 1000 Ljubljana, Slovenia
| | - Rafael Lucena
- Affordable and Sustainable Sample Preparation (AS2P) Research Group, Departamento de Química Analítica, Instituto Químico para la Energía y el Medioambiente (IQUEMA), Universidad de Córdoba, Campus de Rabanales, Edificio Marie Curie, E-14071 Córdoba, Spain
| | - Soledad Cárdenas
- Affordable and Sustainable Sample Preparation (AS2P) Research Group, Departamento de Química Analítica, Instituto Químico para la Energía y el Medioambiente (IQUEMA), Universidad de Córdoba, Campus de Rabanales, Edificio Marie Curie, E-14071 Córdoba, Spain
| | - Federico Boaron
- Forensic Psychiatry Unit, Department of Mental Health and Substance Abuse, AUSL of Bologna, Via Terracini 31, 40131 Bologna, Italy
| | - Alessandro Serretti
- Department of Biomedical and Neuromotor Sciences, Alma Mater Studiorum - University of Bologna, Viale C. Pepoli 5, 40123 Bologna, Italy
| | - Carmine Petio
- Psychiatric Diagnosis and Treatment Service, AUSL of Bologna, S. Orsola - Malpighi University Hospital, Via Giuseppe Massarenti 9, 40138 Bologna, Italy
| | - Michele Protti
- Research Group of Pharmaco-Toxicological Analysis (PTA Lab), Department of Pharmacy and Biotechnology (FaBiT), Alma Mater Studiorum - University of Bologna, Via Belmeloro 6, 40126 Bologna, Italy.
| | - Laura Mercolini
- Research Group of Pharmaco-Toxicological Analysis (PTA Lab), Department of Pharmacy and Biotechnology (FaBiT), Alma Mater Studiorum - University of Bologna, Via Belmeloro 6, 40126 Bologna, Italy
| |
Collapse
|
4
|
Nugraha RV, Yunivita V, Santoso P, Hasanah AN, Aarnoutse RE, Ruslami R. Analytical and Clinical Validation of Assays for Volumetric Absorptive Microsampling (VAMS) of Drugs in Different Blood Matrices: A Literature Review. Molecules 2023; 28:6046. [PMID: 37630297 PMCID: PMC10459922 DOI: 10.3390/molecules28166046] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2023] [Revised: 08/10/2023] [Accepted: 08/11/2023] [Indexed: 08/27/2023] Open
Abstract
Volumetric absorptive microsampling (VAMS) is the newest and most promising sample-collection technique for quantitatively analyzing drugs, especially for routine therapeutic drug monitoring (TDM) and pharmacokinetic studies. This technique uses an absorbent white tip to absorb a fixed volume of a sample (10-50 µL) within a few seconds (2-4 s), is more flexible, practical, and more straightforward to be applied in the field, and is probably more cost-effective than conventional venous sampling (CVS). After optimization and validation of an analytical method of a drug taken by VAMS, a clinical validation study is needed to show that the results by VAMS can substitute what is gained from CVS and to justify implementation in routine practice. This narrative review aimed to assess and present studies about optimization and analytical validation of assays for drugs taken by VAMS, considering their physicochemical drug properties, extraction conditions, validation results, and studies on clinical validation of VAMS compared to CVS. The review revealed that the bio-analysis of many drugs taken with the VAMS technique was optimized and validated. However, only a few clinical validation studies have been performed so far. All drugs that underwent a clinical validation study demonstrated good agreement between the two techniques (VAMS and CVS), but only by Bland-Altman analysis. Only for tacrolimus and mycophenolic acid were three measurements of agreement evaluated. Therefore, VAMS can be considered an alternative to CVS in routine practice, especially for tacrolimus and mycophenolic acid. Still, more extensive clinical validation studies need to be performed for other drugs.
Collapse
Affiliation(s)
- Rhea Veda Nugraha
- Doctoral Study Program, Faculty of Medicine, Universitas Padjadjaran, Bandung 40161, Indonesia;
| | - Vycke Yunivita
- Division of Pharmacology and Therapy, Department of Biomedical Sciences, Faculty of Medicine, Universitas Padjadjaran, Bandung 40161, Indonesia;
| | - Prayudi Santoso
- Division of Respirology and Critical Care, Department of Internal Medicine, Faculty of Medicine, Universitas Padjadjaran—Hasan Sadikin Hospital, Bandung 40161, Indonesia;
| | - Aliya Nur Hasanah
- Department of Pharmaceutical Analysis and Medicinal Chemistry, Faculty of Pharmacy, Universitas Padjadjaran, Bandung 45363, Indonesia;
| | - Rob E. Aarnoutse
- Department of Pharmacy, Radboud University Medical Center, Research Institute for Medical Innovation, 6255 HB Nijmegen, The Netherlands;
| | - Rovina Ruslami
- Division of Pharmacology and Therapy, Department of Biomedical Sciences, Faculty of Medicine, Universitas Padjadjaran, Bandung 40161, Indonesia;
| |
Collapse
|
5
|
De Rosa F, Giannatiempo B, Charlier B, Coglianese A, Mensitieri F, Gaudino G, Cozzolino A, Filippelli A, Piazza O, Dal Piaz F, Izzo V. Pharmacological Treatments and Therapeutic Drug Monitoring in Patients with Chronic Pain. Pharmaceutics 2023; 15:2088. [PMID: 37631302 PMCID: PMC10457775 DOI: 10.3390/pharmaceutics15082088] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2023] [Revised: 06/29/2023] [Accepted: 07/24/2023] [Indexed: 08/27/2023] Open
Abstract
Pain is an unpleasant sensory and emotional experience that affects every aspect of a patient's life and which may be treated through different pharmacological and non-pharmacological approaches. Analgesics are the drugs most commonly used to treat pain, and in specific situations, the use of opioids may be considered with caution. These drugs, in fact, do not always induce optimal analgesia in patients, and several problems are associated with their use. The purpose of this narrative review is to describe the pharmacological approaches currently used for the management of chronic pain. We review several aspects, from the pain-scale-based methods currently available to assess the type and intensity of pain, to the most frequently administered drugs (non-narcotic analgesics and narcotic analgesics), whose pharmacological characteristics are briefly reported. Overall, we attempt to provide an overview of different pharmacological treatments while also illustrating the relevant guidelines and indications. We then report the strategies that may be used to reduce problems related to opioid use. Specifically, we focus our attention on therapeutic drug monitoring (TDM), a tool that could help clinicians select the most suitable drug and dose to be used for each patient. The actual potential of using TDM to optimize and personalize opioid-based pain treatments is finally discussed based on recent scientific reports.
Collapse
Affiliation(s)
- Federica De Rosa
- Department of Medicine, Surgery and Dentistry, Postgraduate School of Clinical Pharmacology and Toxicology, University of Salerno, 84084 Fisciano, Italy; (F.D.R.); (B.G.); (B.C.); (A.C.); (A.F.)
- University Hospital “San Giovanni di Dio e Ruggi d’Aragona”, 84131 Salerno, Italy; (A.C.); (O.P.)
| | - Bruno Giannatiempo
- Department of Medicine, Surgery and Dentistry, Postgraduate School of Clinical Pharmacology and Toxicology, University of Salerno, 84084 Fisciano, Italy; (F.D.R.); (B.G.); (B.C.); (A.C.); (A.F.)
| | - Bruno Charlier
- Department of Medicine, Surgery and Dentistry, Postgraduate School of Clinical Pharmacology and Toxicology, University of Salerno, 84084 Fisciano, Italy; (F.D.R.); (B.G.); (B.C.); (A.C.); (A.F.)
- University Hospital “San Giovanni di Dio e Ruggi d’Aragona”, 84131 Salerno, Italy; (A.C.); (O.P.)
| | - Albino Coglianese
- University Hospital “San Giovanni di Dio e Ruggi d’Aragona”, 84131 Salerno, Italy; (A.C.); (O.P.)
- Department of Medicine, Surgery and Dentistry, Postgraduate School of Clinical Pathology and Clinical Biochemistry, University of Salerno, 84084 Fisciano, Italy
| | - Francesca Mensitieri
- Department of Medicine, Surgery and Dentistry “Scuola Medica Salernitana”, University of Salerno, 84084 Fisciano, Italy; (F.M.); (G.G.)
| | - Giulia Gaudino
- Department of Medicine, Surgery and Dentistry “Scuola Medica Salernitana”, University of Salerno, 84084 Fisciano, Italy; (F.M.); (G.G.)
| | - Armando Cozzolino
- Department of Medicine, Surgery and Dentistry, Postgraduate School of Clinical Pharmacology and Toxicology, University of Salerno, 84084 Fisciano, Italy; (F.D.R.); (B.G.); (B.C.); (A.C.); (A.F.)
| | - Amelia Filippelli
- Department of Medicine, Surgery and Dentistry, Postgraduate School of Clinical Pharmacology and Toxicology, University of Salerno, 84084 Fisciano, Italy; (F.D.R.); (B.G.); (B.C.); (A.C.); (A.F.)
- University Hospital “San Giovanni di Dio e Ruggi d’Aragona”, 84131 Salerno, Italy; (A.C.); (O.P.)
- Department of Medicine, Surgery and Dentistry “Scuola Medica Salernitana”, University of Salerno, 84084 Fisciano, Italy; (F.M.); (G.G.)
| | - Ornella Piazza
- University Hospital “San Giovanni di Dio e Ruggi d’Aragona”, 84131 Salerno, Italy; (A.C.); (O.P.)
- Department of Medicine, Surgery and Dentistry “Scuola Medica Salernitana”, University of Salerno, 84084 Fisciano, Italy; (F.M.); (G.G.)
| | - Fabrizio Dal Piaz
- University Hospital “San Giovanni di Dio e Ruggi d’Aragona”, 84131 Salerno, Italy; (A.C.); (O.P.)
- Department of Medicine, Surgery and Dentistry “Scuola Medica Salernitana”, University of Salerno, 84084 Fisciano, Italy; (F.M.); (G.G.)
| | - Viviana Izzo
- University Hospital “San Giovanni di Dio e Ruggi d’Aragona”, 84131 Salerno, Italy; (A.C.); (O.P.)
- Department of Medicine, Surgery and Dentistry “Scuola Medica Salernitana”, University of Salerno, 84084 Fisciano, Italy; (F.M.); (G.G.)
| |
Collapse
|
6
|
Palmisani M, Tartara E, Johannessen Landmark C, Crema F, De Giorgis V, Varesio C, Fattore C, Rota P, Russo E, Franco V. Therapeutic Salivary Monitoring of Perampanel in Patients with Epilepsy Using a Volumetric Absorptive Microsampling Technique. Pharmaceutics 2023; 15:2030. [PMID: 37631244 PMCID: PMC10458119 DOI: 10.3390/pharmaceutics15082030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2023] [Revised: 07/21/2023] [Accepted: 07/22/2023] [Indexed: 08/27/2023] Open
Abstract
The objective of this study was to validate a novel assay using the volumetric absorptive microsampling (VAMS) technique combined with liquid chromatography coupled to tandem mass spectrometry (LC-MS/MS) for the determination of the antiseizure medication perampanel in saliva and its clinical applicability in patients with epilepsy. VAMS tips were loaded with 30 μL of saliva and dried for 60 min. Analytes were extracted with methanol. The supernatant was evaporated under a gentle stream of nitrogen and reconstituted with 60 μL of methanol. Separation and quantification were achieved on a monolithic column connected to a mass spectrometer. Calibration curves were linear between 0.5 and 300 ng/mL. Intra- and inter-day accuracy was within 85.6-103.2% and intra-day and inter-day precision did not exceed 12.1%. Perampanel was stable in samples collected by VAMS and stored under different storage conditions. The VAMS-LC-MS/MS method was validated according to internationally accepted criteria and tested in patients with epilepsy who were receiving a combination of perampanel and other antiseizure medications. The method showed adequate bioanalytical performances, holding great potential as an alternative strategy to support domiciliary TDM in patients with epilepsy treated with perampanel according to the simplicity of sample collection.
Collapse
Affiliation(s)
- Michela Palmisani
- Clinical and Experimental Pharmacology Unit, Department of Internal Medicine and Therapeutics, University of Pavia, 27100 Pavia, Italy; (M.P.); (F.C.)
- IRCCS Mondino Foundation, 27100 Pavia, Italy;
| | - Elena Tartara
- Epilepsy Center, ERN Network EpiCare, IRCCS Mondino Foundation, 27100 Pavia, Italy;
| | - Cecilie Johannessen Landmark
- Department of Pharmacy, Faculty of Health Sciences, Oslo Metropolitan University, 0316 Oslo, Norway;
- The National Center for Epilepsy, Sandvika, ERN Network EpiCare, Oslo University Hospital, 0372 Oslo, Norway
- Section for Clinical Pharmacology, Department of Pharmacology, Oslo University Hospital, 0372 Oslo, Norway
| | - Francesca Crema
- Clinical and Experimental Pharmacology Unit, Department of Internal Medicine and Therapeutics, University of Pavia, 27100 Pavia, Italy; (M.P.); (F.C.)
| | - Valentina De Giorgis
- Department of Child Neurology and Psychiatry, ERN Network EpiCare, IRCCS Mondino Foundation, 27100 Pavia, Italy; (V.D.G.); (C.V.)
| | - Costanza Varesio
- Department of Child Neurology and Psychiatry, ERN Network EpiCare, IRCCS Mondino Foundation, 27100 Pavia, Italy; (V.D.G.); (C.V.)
- Department of Brain and Behavioral Sciences, University of Pavia, 27100 Pavia, Italy
| | | | - Paola Rota
- Department of Biomedical, Surgical and Dental Sciences, University of Milan, 20100 Milan, Italy;
- Institute for Molecular and Translational Cardiology (IMTC), San Donato Milanese, 20097 Milan, Italy
| | - Emilio Russo
- Science of Health Department, School of Medicine and Surgery, Magna Graecia University of Catanzaro, 88100 Catanzaro, Italy;
| | - Valentina Franco
- Clinical and Experimental Pharmacology Unit, Department of Internal Medicine and Therapeutics, University of Pavia, 27100 Pavia, Italy; (M.P.); (F.C.)
- IRCCS Mondino Foundation, 27100 Pavia, Italy;
| |
Collapse
|
7
|
Microsampling and enantioselective liquid chromatography coupled to mass spectrometry for chiral bioanalysis of novel psychoactive substances. Talanta 2023; 257:124332. [PMID: 36773512 DOI: 10.1016/j.talanta.2023.124332] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2022] [Revised: 01/25/2023] [Accepted: 02/06/2023] [Indexed: 02/12/2023]
Abstract
In this paper, the development of efficient enantioselective HPLC methods for the analysis of five benzofuran-substituted phenethylamines, two substituted tryptamines, and three substituted cathinones is described. For the first time, reversed-phase (eluents made up with acidic water-methanol solutions) and polar-ionic (eluent made up with an acetonitrile-methanol solution incorporating both an acidic and a basic additive) conditions fully compatible with mass spectrometry (MS) detectors were applied with a chiral stationary phase (CSP) incorporating the (+)-(18-crown-6)-tetracarboxylic acid chiral selector. Enantioresolution was achieved for nine compounds with α and RS factors up to 1.32 and 5.12, respectively. Circular dichroism (CD) detection, CD spectroscopy in stopped-flow mode and quantum mechanical (QM) calculations were successfully employed to investigate the absolute stereochemistry of mephedrone, methylone and butylone and allowed to establish a (R)<(S) enantiomeric elution order for these compounds on the chosen CSP. Whole blood miniaturized samples collected by means of volumetric absorptive microsampling (VAMS) technology and fortified with the target analytes were extracted following an optimized protocol and effectively analysed by means of an ultra-high performance liquid chromatography-MS system. By this way a proof-of-concept procedure was applied, demonstrating the suitability of the method for quali-quantitative enantioselective assessment of the selected psychoactive substances in advanced biological microsamples. VAMS microsamplers including a polypropylene handle topped with a small tip of a polymeric porous material were used and allowed to volumetrically collect small aliquots of whole blood (10 μL) independently from its density. Highly appreciable volumetric accuracy (bias, in the -8.7-8.1% range) and precision (% CV, in the 2.8-5.9% range) turned out.
Collapse
|
8
|
Derobertmasure A, Kably B, Justin J, De Sousa Carvalho C, Billaud EM, Boutouyrie P. Dried Urine Spot Analysis for assessing cardiovascular drugs exposure applicable in spaceflight conditions. J Chromatogr B Analyt Technol Biomed Life Sci 2023; 1219:123539. [PMID: 36867996 DOI: 10.1016/j.jchromb.2022.123539] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2022] [Revised: 10/24/2022] [Accepted: 11/12/2022] [Indexed: 12/13/2022]
Abstract
Cardiovascular pharmacological countermeasures will be required as a preventive measure of cardiovascular deconditioning and early vascular ageing for long term space travelers. Physiological changes during spaceflight could have severe implications on drug pharmacokinetics and pharmacodynamics (PK/PD). However, limitations exist for the implementation of drug studies due to the requirements and constraints of this extreme environment. Therefore, we developed an easy sampling method on dried urine spot (DUS), for the simultaneous quantification of 5 antihypertensive drugs in human urine: irbesartan, valsartan, olmesartan, metoprolol and furosemide analyzed by liquid chromatography-tandem mass spectrometry (LC-MS/MS), considering spaceflight parameters. This assay was validated in terms of linearity, accuracy, and precision with satisfactory results. There were no relevant carry-over, matrix interferences. The targeted drugs were stable in urine collected by DUS until 6 months at +21 °C, +4°C, -20 °C (with or without desiccants) and at 30 °C during 48 h. Irbesartan, valsartan and olmesartan were not stable at 50 °C during 48 h. This method was found to be eligible for space pharmacology studies in terms of practicality, safety, robustness and energy costs. It has been successfully implemented in space tests programs led in 2022.
Collapse
Affiliation(s)
- Audrey Derobertmasure
- Assistance Publique des Hôpitaux de Paris, Hôpital Européen Georges Pompidou, Pharmacology Unit and DMU BIOPHYGEN, Paris, France; INSERM PARCC UMRS970, Paris, France
| | - Benjamin Kably
- Assistance Publique des Hôpitaux de Paris, Hôpital Européen Georges Pompidou, Pharmacology Unit and DMU BIOPHYGEN, Paris, France; INSERM PARCC UMRS970, Paris, France
| | - Junior Justin
- Assistance Publique des Hôpitaux de Paris, Hôpital Européen Georges Pompidou, Pharmacology Unit and DMU BIOPHYGEN, Paris, France
| | - Christelle De Sousa Carvalho
- Assistance Publique des Hôpitaux de Paris, Hôpital Européen Georges Pompidou, Pharmacology Unit and DMU BIOPHYGEN, Paris, France
| | - Eliane M Billaud
- Assistance Publique des Hôpitaux de Paris, Hôpital Européen Georges Pompidou, Pharmacology Unit and DMU BIOPHYGEN, Paris, France; Université de Paris, Paris, France
| | - Pierre Boutouyrie
- Assistance Publique des Hôpitaux de Paris, Hôpital Européen Georges Pompidou, Pharmacology Unit and DMU BIOPHYGEN, Paris, France; INSERM PARCC UMRS970, Paris, France; Assistance Publique des Hôpitaux de Paris, Hôpital Européen Georges Pompidou, Pharmacology Unit and DMU CARTE, Paris, France; Université de Paris, Paris, France.
| |
Collapse
|
9
|
Applications of Volumetric Absorptive Microsampling Technique: A Systematic Critical Review. Ther Drug Monit 2023:00007691-990000000-00101. [PMID: 36917733 DOI: 10.1097/ftd.0000000000001083] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2022] [Accepted: 11/19/2022] [Indexed: 03/16/2023]
Abstract
METHODS A novel microsampling device called Volumetric Absorptive microsampling (VAMS), developed in 2014, appears to have resolved the sample inhomogeneity inherent to dried blood spots, with improved precision in the volume of sample collected for measuring drug concentration. A literature search was conducted to identify several analytical and pharmacokinetic studies that have used VAMS in recent years. RESULTS The key factors for proper experimental design and optimization of the extraction of drugs and metabolites of interest from the device were summarized. This review focuses on VAMS and elaborates on bioanalytical factors, method validation steps, and scope of this technique in clinical practice. CONCLUSIONS The promising microsampling method VAMS is especially suited for conducting pharmacokinetic studies with very small volumes of blood, especially in special patient populations. Clinical validation of every VAMS assay must be conducted prior to the routine practical implementation of this method.
Collapse
|
10
|
Thevis M, Walpurgis K, Thomas A. DropWise: current role and future perspectives of dried blood spots (DBS), blood microsampling, and their analysis in sports drug testing. Crit Rev Clin Lab Sci 2023; 60:41-62. [PMID: 35938300 DOI: 10.1080/10408363.2022.2103085] [Citation(s) in RCA: 13] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
For decades, blood testing has been an integral part of routine doping controls. The breadth of information contained in blood samples has become considerably more accessible for anti-doping purposes over the last 10 years through technological advancements regarding analytical instrumentation as well as enhanced sample collection systems. Particularly, microsampling of whole blood and serum, for instance as dried blood spots (DBS), has opened new avenues in sports drug testing and substantially increased the availability and cost-effectiveness of doping control specimens. Thus, microvolume blood specimens possess the potential to improve monitoring of blood hormone and drug levels, support evaluation of circulating drug concentrations in competition, and enhance the stability of labile markers and target analytes in blood passport analyses as well as peptide hormone and steroid ester detection. Further, the availability of the fraction of lysed erythrocytes for anti-doping purposes warrants additional investigation, considering the sequestering capability of red blood cells (RBCs) for certain substances, as a complementary approach in support of the clean sport.
Collapse
Affiliation(s)
- M Thevis
- Institute of Biochemistry/Center for Preventive Doping Research, German Sport University Cologne, Cologne, Germany.,European Monitoring Center for Emerging Doping Agents (EuMoCEDA), Bonn, Germany
| | - Katja Walpurgis
- Institute of Biochemistry/Center for Preventive Doping Research, German Sport University Cologne, Cologne, Germany
| | - A Thomas
- Institute of Biochemistry/Center for Preventive Doping Research, German Sport University Cologne, Cologne, Germany
| |
Collapse
|
11
|
Mazzarino M, Di Costanzo L, Comunità F, Stacchini C, de la Torre X, Botrè F. UHPLC-HRMS Method for the Simultaneous Screening of 235 Drugs in Capillary Blood for Doping Control Purpose: Comparative Evaluation of Volumetric and Non-volumetric Dried Blood Spotting Devices. ACS OMEGA 2022; 7:31845-31868. [PMID: 36119994 PMCID: PMC9475635 DOI: 10.1021/acsomega.2c01417] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/27/2022] [Accepted: 08/16/2022] [Indexed: 06/15/2023]
Abstract
We present a quick and simple multi-targeted analytical workflow based on ultra-high-performance liquid chromatography coupled to high-resolution mass spectrometry for the screening in dried blood spots and dried plasma spots of a wide variety of drugs with different chemical properties. Seven different microsampling devices were evaluated in view of their application for the detection of the selected target analytes in the framework of doping control analysis. The extraction of the analytes was optimized by assessing the efficacy of protocols based on ultrasonication with aqueous buffers and/or organic solvents of different polarities. Optimal recoveries were obtained by using pure methanol or mixtures of methanol/acetonitrile and methanol/isopropanol, depending on both the device and the target analytes. The method was fully validated according to both ISO17025 and the requirements of the World Anti-Doping Agency: all the analytes were clearly distinguishable from the matrix, with limits of detection in the range of 0.1-3.0 ng mL-1. Stability studies simulating the storage of samples before the analysis and in view of a possible re-analysis showed that most of the analytes were stable for at least 24 h at 50 °C and for at least 3 weeks at 25 and at 4 °C. The real applicability of the method was assessed by analyzing the samples collected after the administration of two model drugs, acetazolamide and deflazacort. The performance of the method was confirmed to be fit for purpose, and data obtained in blood can also be used to complement those available in urine, allowing to refine the knowledge concerning the pharmacokinetic profiles.
Collapse
Affiliation(s)
- Monica Mazzarino
- Laboratorio
Antidoping, Federazione Medico Sportiva
Italiana, Largo Giulio
Onesti, 1, 00197 Rome, Italy
| | - Ludovica Di Costanzo
- Laboratorio
Antidoping, Federazione Medico Sportiva
Italiana, Largo Giulio
Onesti, 1, 00197 Rome, Italy
| | - Fabio Comunità
- Laboratorio
Antidoping, Federazione Medico Sportiva
Italiana, Largo Giulio
Onesti, 1, 00197 Rome, Italy
| | - Carlotta Stacchini
- Laboratorio
Antidoping, Federazione Medico Sportiva
Italiana, Largo Giulio
Onesti, 1, 00197 Rome, Italy
- Dipartimento
Chimica e Tecnologia del Farmaco, “Sapienza”
Università di Roma, Piazzale Aldo Moro 5, 00161 Rome, Italy
| | - Xavier de la Torre
- Laboratorio
Antidoping, Federazione Medico Sportiva
Italiana, Largo Giulio
Onesti, 1, 00197 Rome, Italy
| | - Francesco Botrè
- Laboratorio
Antidoping, Federazione Medico Sportiva
Italiana, Largo Giulio
Onesti, 1, 00197 Rome, Italy
- REDs—Research
and Expertise in Anti-Doping Sciences, ISSUL—Institute of Sport
Sciences, University of Lausanne, Synathlon—Quartier Centre, 1015 Lausanne, Switzerland
| |
Collapse
|
12
|
Protti M, Cirrincione M, Mandrioli R, Rudge J, Regazzoni L, Valsecchi V, Volpi C, Mercolini L. Volumetric Absorptive Microsampling (VAMS) for Targeted LC-MS/MS Determination of Tryptophan-Related Biomarkers. Molecules 2022; 27:5652. [PMID: 36080419 PMCID: PMC9457771 DOI: 10.3390/molecules27175652] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2022] [Revised: 08/27/2022] [Accepted: 08/30/2022] [Indexed: 11/16/2022] Open
Abstract
L-Tryptophan (TRP) metabolites and related biomarkers play crucial roles in physiological functions, and their imbalances are implicated in central nervous system pathologies and neurodegenerative diseases such as amyotrophic lateral sclerosis (ALS), Alzheimer’s disease, Parkinson’s disease, schizophrenia and depression. The measurement of TRP metabolites and related biomarkers possesses great potential to elucidate the disease mechanisms, aid preclinical drug development, highlight potential therapeutic targets and evaluate the outcomes of therapeutic interventions. An effective, straightforward, sensitive and selective liquid chromatography-tandem mass spectrometry (LC-MS/MS) method was developed for the simultaneous determination of 24 TRP-related compounds in miniaturised murine whole blood samples. Sampling and sample pretreatment miniaturisation were achieved thanks to the development of a volumetric dried blood microsampling approach. Volumetric absorptive microsampling (VAMS) allows the accurate sampling of microvolumes of blood with advantages including, but not limited to, minimal sampling invasiveness, logistical improvements, method sustainability in terms of solvents and energy consumption, and improvement of animal studies in the framework of the 3Rs (Replacement, Reduction and Refinement) principles on animal welfare. The VAMS-LC-MS/MS method exhibited good selectivity, and correlation coefficient values for the calibration curves of each analyte were >0.9987. The limits of quantitation ranged from 0.1 to 25 ng/mL. The intra- and inter-day precisions in terms of RSD were <9.6%. All analytes were stable in whole blood VAMS samples stored at room temperature for at least 30 days with analyte losses < 14%. The developed method was successfully applied to the analysis of biological samples from mice, leading to the unambiguous determination of all the considered target analytes. This method can therefore be applied to analyse TRP metabolites and related biomarkers levels to monitor disease states, perform mechanistic studies and investigate the outcomes of therapeutic interventions.
Collapse
Affiliation(s)
- Michele Protti
- Research Group of Pharmaco-Toxicological Analysis (PTA Lab), Department of Pharmacy and Biotechnology (FaBiT), Alma Mater Studiorum–University of Bologna, Via Belmeloro 6, 40126 Bologna, Italy
| | - Marco Cirrincione
- Research Group of Pharmaco-Toxicological Analysis (PTA Lab), Department of Pharmacy and Biotechnology (FaBiT), Alma Mater Studiorum–University of Bologna, Via Belmeloro 6, 40126 Bologna, Italy
| | - Roberto Mandrioli
- Department for Life Quality Studies (QuVi), Rimini Campus, Alma Mater Studiorum–University of Bologna, Corso d’Augusto 237, 47921 Rimini, Italy
| | - James Rudge
- Neoteryx LLC, 421 Amapola Ave, Torrance, CA 90501, USA
| | - Luca Regazzoni
- Department of Pharmaceutical Sciences, University of Milan, Via Mangiagalli 25, 20133 Milan, Italy
| | - Valeria Valsecchi
- Department of Neuroscience and Reproductive and Odontostomatological Sciences, University of Naples Federico II, Via Pansini 5, 80131 Naples, Italy
| | - Claudia Volpi
- Department of Medicine and Surgery, University of Perugia, Piazzale Gambuli 1, 06132 Perugia, Italy
| | - Laura Mercolini
- Research Group of Pharmaco-Toxicological Analysis (PTA Lab), Department of Pharmacy and Biotechnology (FaBiT), Alma Mater Studiorum–University of Bologna, Via Belmeloro 6, 40126 Bologna, Italy
| |
Collapse
|
13
|
Simão AY, Monteiro C, Marques H, Rosado T, Margalho C, Barroso M, Andraus M, Gallardo E. Analysis of opiates in urine using microextraction by packed sorbent and gas Chromatography- Tandem mass spectrometry. J Chromatogr B Analyt Technol Biomed Life Sci 2022; 1207:123361. [PMID: 35849978 DOI: 10.1016/j.jchromb.2022.123361] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2022] [Revised: 06/28/2022] [Accepted: 06/29/2022] [Indexed: 12/24/2022]
Abstract
Opiates recreational consumption has always been a concern in society, public health, and in clinical toxicology analysis. The aim of this study was to develop and fully validate an analytical method, which was simple and rapid for the determination of tramadol, codeine, morphine, 6- acetylcodeine, 6-monoacetylmorphine and fentanyl using gas chromatography coupled to tandem mass spectrometry. The procedure includes the use of microextraction by packed sorbent for sample clean-up. A mixed mode sorbent was used, allowing the minimal use of solvents. The method was validated in urine samples, with the ability to detect and quantify all analytes with satisfactory linearity (in the range of 1 - 1000 ng/mL for all analytes, except for fentanyl (10-1000 ng/mL)). Extraction efficiency varied from 17 to 107%, which did not impair sensitivity, taking into account the low LLOQs obtained (1 ng/ mL for all analytes; and 10 ng/mL for fentanyl). The developed procedure proved to be fast, selective, and accurate for use in routine analysis, with a low volume of sample (250 µL).
Collapse
Affiliation(s)
- Ana Y Simão
- Centro de Investigação em Ciências da Saúde, Universidade da Beira Interior (CICS-UBI) Covilhã, Portugal; Laboratório de Fármaco-Toxicologia, UBIMedical, Universidade da Beira Interior, Covilhã, Portugal
| | - Catarina Monteiro
- Centro de Investigação em Ciências da Saúde, Universidade da Beira Interior (CICS-UBI) Covilhã, Portugal
| | - Hernâni Marques
- Centro de Investigação em Ciências da Saúde, Universidade da Beira Interior (CICS-UBI) Covilhã, Portugal; Laboratório de Fármaco-Toxicologia, UBIMedical, Universidade da Beira Interior, Covilhã, Portugal
| | - Tiago Rosado
- Centro de Investigação em Ciências da Saúde, Universidade da Beira Interior (CICS-UBI) Covilhã, Portugal; Laboratório de Fármaco-Toxicologia, UBIMedical, Universidade da Beira Interior, Covilhã, Portugal; C4 - Centro de Competências em Cloud Computing da Universidade da Beira Interior, Covilhã, Portugal
| | - Cláudia Margalho
- Serviço de Química e Toxicologia Forenses, Instituto Nacional de Medicina Legal e Ciências Forenses - Delegação do Centro, Coimbra, Portugal
| | - Mário Barroso
- Serviço de Química e Toxicologia Forenses, Instituto Nacional de Medicina Legal e Ciências Forenses - Delegação do Sul, Lisboa, Portugal
| | | | - Eugenia Gallardo
- Centro de Investigação em Ciências da Saúde, Universidade da Beira Interior (CICS-UBI) Covilhã, Portugal; Laboratório de Fármaco-Toxicologia, UBIMedical, Universidade da Beira Interior, Covilhã, Portugal.
| |
Collapse
|
14
|
Solheim SA, Thomas A, Ringsted TK, Thevis M, Breenfeldt Andersen A, Holm-Sørensen H, Nordsborg NB, Mørkeberg J. Analysis of dried blood spots is a feasible alternative for detecting ephedrine in doping control. Drug Test Anal 2022; 14:1685-1695. [PMID: 35738840 DOI: 10.1002/dta.3338] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2022] [Revised: 06/13/2022] [Accepted: 06/20/2022] [Indexed: 11/07/2022]
Abstract
Dried blood spot (DBS) testing allows fast, easy, and minimally invasive collection of microvolumes of blood. In an anti-doping context, DBS testing has particular relevance for substances prohibited in-competition only such as ephedrine, which is currently detected by urine analysis, since DBS can add information about the blood drug concentrations during the in-competition period. Several collection methods and devices exist for DBS collection from different anatomical sites. Thus, agreements between concentrations of target analytes in DBS samples from different sampling sites, along with between DBS and those in conventional venous plasma samples, need to be evaluated. Herein, we collected matched upper-arm DBS, fingerprick DBS and venous plasma samples from 8 healthy, male subjects in an 8-hour period following oral administrations of 20 mg ('low dose') and 60 mg ('high dose') of ephedrine. We show that the use of alternative sampling sites and matrices are feasible possibilities for ephedrine analysis in doping control. We observed very good agreement between collection sites and that specificity and sensitivity can be upheld despite use of an alternative collection site. However, potential concentration differences between DBS and venous plasma should be considered, and distinct threshold might be necessary if implementing both blood matrices in ephedrine analysis.
Collapse
Affiliation(s)
| | - Andreas Thomas
- Institute of Biochemistry/Center for Preventive Doping Research, German Sport University Cologne, Cologne, Germany
| | | | - Mario Thevis
- Institute of Biochemistry/Center for Preventive Doping Research, German Sport University Cologne, Cologne, Germany
| | - Andreas Breenfeldt Andersen
- Science and Research, Anti Doping Denmark, Brøndby, Denmark
- Department of Nutrition, Exercise and Sports, University of Copenhagen, Copenhagen, Denmark
| | - Henrik Holm-Sørensen
- Department of Nutrition, Exercise and Sports, University of Copenhagen, Copenhagen, Denmark
| | - Nikolai B Nordsborg
- Department of Nutrition, Exercise and Sports, University of Copenhagen, Copenhagen, Denmark
| | | |
Collapse
|
15
|
Marasca C, Mandrioli R, Sardella R, Vovk T, Armirotti A, Cavalli A, Serretti A, Protti M, Mercolini L. Dried Volumetric Microsampling Approaches for the Therapeutic Drug Monitoring of Psychiatric Patients Undergoing Clozapine Treatment. Front Psychiatry 2022; 13:794609. [PMID: 35722565 PMCID: PMC9198272 DOI: 10.3389/fpsyt.2022.794609] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/13/2021] [Accepted: 04/20/2022] [Indexed: 01/18/2023] Open
Abstract
Clozapine is one of the most widely used second-generation antipsychotic drugs (SGAs) for the treatment of schizophrenia. Despite advantages over first-generation drugs, clozapine still shows significant side effects and interindividual variations in efficacy. In order to ensure frequent therapeutic drug monitoring (TDM) and improve the compliance of psychiatric patients undergoing clozapine treatment, two novel dried microsampling approaches based on whole blood and plasma volumetric absorptive microsampling (b-VAMS and p-VAMS) and microfluidic generated-dried blood spot technology (mfDBS) were developed and coupled to HPLC with electrochemical detection (ED). The proposed miniaturized strategies by means of VAMS and microfluidic channel-based devices provide several advantages in terms of collection, storage, and handling compared to classical blood and plasma processing. Satisfactory validation results were obtained for all microsampling platforms, with mean extraction yields >85.1%, precision as relative standard deviation (RSD) < 5.1%, and stability < 4.5% analyte loss after 30 days for p-VAMS; mean extraction yields > 83.4%, precision RSD < 5.4%, and stability < 4.6% analyte loss after 30 days for b-VAMS, and mean extraction yields > 74.0%, precision RSD < 5.6%, and stability < 4.9% analyte loss after 30 days for mfDBS. The original microsampling methodologies have been successfully applied to the blood and plasma collected from five psychiatric patients for the monitoring of the levels of clozapine and its main metabolites, providing robust and reliable quali-quantitative results. Comparisons between results of the two dried microsampling technologies with those obtained by classic fluid plasma analysis were in good agreement and have demonstrated that the proposed miniaturized approaches could be suitable for TDM purposes.
Collapse
Affiliation(s)
- Camilla Marasca
- Research Group of Pharmaco-Toxicological Analysis (PTA Lab), Department of Pharmacy and Biotechnology (FaBiT), Alma Mater Studiorum – University of Bologna, Bologna, Italy
- Computational and Chemical Biology, Fondazione Istituto Italiano di Tecnologia (IIT), Genoa, Italy
| | - Roberto Mandrioli
- Department for Life Quality Studies (QuVi), Alma Mater Studiorum – University of Bologna, Rimini, Italy
| | - Roccaldo Sardella
- Department of Pharmaceutical Sciences, University of Perugia, Perugia, Italy
| | - Tomaž Vovk
- Faculty of Pharmacy, University of Ljubljana, Ljubljana, Slovenia
| | - Andrea Armirotti
- Analytical Chemistry Lab, Fondazione Istituto Italiano di Tecnologia (IIT), Genoa, Italy
| | - Andrea Cavalli
- Computational and Chemical Biology, Fondazione Istituto Italiano di Tecnologia (IIT), Genoa, Italy
- Department of Pharmacy and Biotechnology (FaBiT), Alma Mater Studiorum – University of Bologna, Bologna, Italy
| | - Alessandro Serretti
- Department of Biomedical and Neuromotor Sciences (DIBINEM), Alma Mater Studiorum – University of Bologna, Bologna, Italy
| | - Michele Protti
- Research Group of Pharmaco-Toxicological Analysis (PTA Lab), Department of Pharmacy and Biotechnology (FaBiT), Alma Mater Studiorum – University of Bologna, Bologna, Italy
| | - Laura Mercolini
- Research Group of Pharmaco-Toxicological Analysis (PTA Lab), Department of Pharmacy and Biotechnology (FaBiT), Alma Mater Studiorum – University of Bologna, Bologna, Italy
| |
Collapse
|
16
|
Pascual-Caro S, Borrull F, Calull M, Aguilar C. Recent chromatographic and electrophoretic based methods for determining drugs of abuse in urine and oral fluid: A review from 2018 to June 2021. Trends Analyt Chem 2022. [DOI: 10.1016/j.trac.2022.116705] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|
17
|
Direct analysis of Volumetric Absorptive Micro Sampling (VAMS) devices by ATR-FT-MIR and chemometric analysis: A new challenge. Microchem J 2021. [DOI: 10.1016/j.microc.2021.106873] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
18
|
Saad K, Salama S, Horvatovich P, Al Maadheed M, Georgakopoulos C. Olympic anti-doping laboratory: the analytical technological road from 2016 Rio De Janeiro to 2021 Tokyo. Bioanalysis 2021; 13:1511-1527. [PMID: 34617444 DOI: 10.4155/bio-2021-0157] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2021] [Accepted: 09/03/2021] [Indexed: 11/17/2022] Open
Abstract
The summer Olympic Games is the major mega sports event since the first modern era Olympiad, held in Athens, Greece in 1896. International Olympic Committee (IOC) has the responsibility of the organization of the summer and winter Games ensuring the broadcast in all corners of earth. The World Anti-Doping Agency (WADA) is the responsible organization of the fight against doping in sports. IOC and WADA support the event's country WADA Accredited Laboratory to incorporate the maximum of the new analytical technologies to become applicable during the event's antidoping testing. The current study reviewed the last 5 years progresses of the antidoping system with emphasis on the laboratory field.
Collapse
Affiliation(s)
- Khadija Saad
- Anti-Doping Lab Qatar (ADLQ), Doha, 27775, Qatar
| | - Sofia Salama
- Anti-Doping Lab Qatar (ADLQ), Doha, 27775, Qatar
| | | | | | | |
Collapse
|
19
|
Tagwerker C, Baig I, Brunson EJ, Dutra-Smith D, Carias MJ, de Zoysa RS, Smith DJ. Multiplex Analysis of 230 Medications and 30 Illicit Compounds in Dried Blood Spots and Urine. J Anal Toxicol 2021; 45:581-592. [PMID: 32886782 DOI: 10.1093/jat/bkaa125] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2020] [Revised: 07/24/2020] [Accepted: 09/01/2020] [Indexed: 11/13/2022] Open
Abstract
Drugs of abuse and medication reconciliation testing can benefit from analysis methods capable of detecting a broader range of drug classes and analytes. Mass spectrometry analysis of a wide variety of commonly prescribed medications and over-the-counter drugs per sample also allows for application of a drug-drug interaction (DDI) algorithm to detect adverse drug reactions. In order to prevent adulteration of commonly collected clinical samples such as urine, dried blood spots (DBS) present a reliable alternative. A novel method is described for qualitative and quantitative multiplex analysis of 230 parent drugs, 30 illicit drugs and 43 confirmatory metabolites by HPLC-MS-MS This method is applicable to DBS specimens collected by volumetric absorptive microsamplers and confirmable in urine specimens. A patient cohort (n = 67) providing simultaneous urine specimens and DBS resulted in 100% positive predictive values of medications or illicits confirmed by detection of a parent drug and/or its metabolite during routine medication adherence analysis. An additional 5,508 DBS specimens screened (n = 5,575) showed 5,428 (97%) with an inconsistent positive compared to the provided medication list (including caffeine, cotinine or ethanol metabolites), 29 (0.5%) with no medication list and no unexpected positive results (consistent negative) and 22 (0.4%) showed all positive results matching the provided medication list (consistent positive). A DDI algorithm applied to all positive results revealed 17% with serious and 56% with moderate DDI warnings. Comprehensive DBS analysis proves a reliable alternative to urine drug testing for extended medication reconciliation, with the added advantage of detecting DDIs.
Collapse
Affiliation(s)
- Christian Tagwerker
- NRCC (CC/CT) - Alcala Testing and Analysis Services, 3703 Camino del Rio South #100-A, San Diego, CA, 92108
| | | | | | | | | | | | - David J Smith
- Laboratory and Medical Director - Alcala Testing and Analysis Services
| |
Collapse
|
20
|
Rajadhyaksha M, Londhe V. Microsampling: A role to play in Covid-19 diagnosis, surveillance, treatment and clinical trials. Drug Test Anal 2021; 13:1238-1248. [PMID: 34089576 DOI: 10.1002/dta.3107] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2021] [Revised: 05/29/2021] [Accepted: 06/01/2021] [Indexed: 12/13/2022]
Abstract
The outbreak of the new coronavirus disease changed the world upside down. Every day, millions of people were subjected to diagnostic testing for Covid-19, all over the world. Molecular tests helped in the diagnosis of current infection by detecting the presence of viral genome whereas serological tests helped in detecting the presence of antibody in blood as well as contributed to vaccine development. This testing helped in understanding the immunogenicity, community prevalence, geographical spread and conditions post-infection. However, with the contagious nature of the virus, biological specimen sampling involved the risk of transmission and spread of infection. Clinic or pathology visit was the most concerning part. Trained personnel and resources was another barrier. In this scenario, microsampling played an important role due to its most important advantage of remote, contactless, small volume and self-sampling. Minimum requirements for sample storage and ease of shipment added value in this situation. The highly sensitive instruments and validated assay formats assured the accuracy of results and stability of samples. Microsampling techniques are contributing effectively to the Covid-19 pandemic by reducing the demand for clinical staff in population-level testing. The validated and established applications supported the use of microsampling in diagnosis, therapeutic drug monitoring, development of treatment or vaccines and clinical trials for Covid-19.
Collapse
Affiliation(s)
- Madhura Rajadhyaksha
- SPPSPTM, SVKM's Narsee Monjee Institute of Management Studies, Mumbai, India.,Sitec Labs. Ltd., Navi Mumbai, India
| | - Vaishali Londhe
- SPPSPTM, SVKM's Narsee Monjee Institute of Management Studies, Mumbai, India
| |
Collapse
|
21
|
Delahaye L, Veenhof H, Koch BCP, Alffenaar JWC, Linden R, Stove C. Alternative Sampling Devices to Collect Dried Blood Microsamples: State-of-the-Art. Ther Drug Monit 2021; 43:310-321. [PMID: 33470777 DOI: 10.1097/ftd.0000000000000864] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2020] [Accepted: 11/20/2020] [Indexed: 12/14/2022]
Abstract
ABSTRACT Dried blood spots (DBS) have been used in newborn screening programs for several years. More recently, there has been growing interest in using DBS as a home sampling tool for the quantitative determination of analytes. However, this presents challenges, mainly because of the well-known hematocrit effect and other DBS-specific parameters, including spotted volume and punch site, which could add to the method uncertainty. Therefore, new microsampling devices that quantitatively collect capillary dried blood are continuously being developed. In this review, we provided an overview of devices that are commercially available or under development that allow the quantitative (volumetric) collection of dried blood (-based) microsamples and are meant to be used for home or remote sampling. Considering the field of therapeutic drug monitoring (TDM), we examined different aspects that are important for a device to be implemented in clinical practice, including ease of patient use, technical performance, and ease of integration in the workflow of a clinical laboratory. Costs related to microsampling devices are briefly discussed, because this additionally plays an important role in the decision-making process. Although the added value of home sampling for TDM and the willingness of patients to perform home sampling have been demonstrated in some studies, real clinical implementation is progressing at a slower pace. More extensive evaluation of these newly developed devices, not only analytically but also clinically, is needed to demonstrate their real-life applicability, which is a prerequisite for their use in the field of TDM.
Collapse
Affiliation(s)
- Lisa Delahaye
- Laboratory of Toxicology, Department of Bioanalysis, Faculty of Pharmaceutical Sciences, Ghent University, Belgium
| | - Herman Veenhof
- University of Groningen, Department of Clinical Pharmacy and Pharmacology, University Medical Center Groningen, Groningen, The Netherlands
| | - Birgit C P Koch
- Department of Hospital Pharmacy, Erasmus MC, University Medical Center, Rotterdam, The Netherlands
| | - Jan-Willem C Alffenaar
- Sydney Pharmacy School, Faculty of Medicine and Health, The University of Sydney, Camperdown, NSW, Australia
- Department of Pharmacy, Westmead Hospital, Westmead, NSW, Australia
- Marie Bashir Institute of Infectious Diseases and Biosecurity, The University of Sydney, Camperdown, NSW, Australia; and
| | - Rafael Linden
- Laboratory of Analytical Toxicology, Institute of Health Sciences, Universidade Feevale, Novo Hamburgo, RS, Brazil
| | - Christophe Stove
- Laboratory of Toxicology, Department of Bioanalysis, Faculty of Pharmaceutical Sciences, Ghent University, Belgium
| |
Collapse
|
22
|
Ansari S, Masoum S. A hybrid imprinted polymer based on magnetic graphene oxide and carbon dots for ultrasonic assisted dispersive solid-phase microextraction of oxycodone. Microchem J 2021. [DOI: 10.1016/j.microc.2021.105988] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
23
|
Abstract
A series of dried blood spot (DBS) detection methods for doping agents have been developed in the last two decades. The DBS technique minimizes invasiveness and reduces storage and shipping costs. Recently, the World Anti-Doping Agency announced the use of DBS for the 2022 Beijing Winter Olympic Games and Paralympic Games owing to the advantages of the DBS application in routine doping control. Therefore the further development of detection methods for doping agents in DBS is important and urgent. This review summarizes five aspects of DBS application in doping analysis: sample collection, storage conditions, pretreatment, instrumentation and validation according to the Prohibited List issued by the World Anti-Doping Agency, and proposes some suggestions for future studies of DBS in doping analysis.
Collapse
|
24
|
Jacobs CM, Wagmann L, Meyer MR. Development, validation, and application of a quantitative volumetric absorptive microsampling-based method in finger prick blood by means of LC-HRMS/MS applicable for adherence monitoring of antipsychotics. Anal Bioanal Chem 2021; 413:1729-1737. [PMID: 33517479 PMCID: PMC7921024 DOI: 10.1007/s00216-020-03143-0] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2020] [Revised: 12/16/2020] [Accepted: 12/22/2020] [Indexed: 12/27/2022]
Abstract
Volumetric absorptive microsampling (VAMS), an emerging microsampling technique, is expected to overcome some disadvantages of dried blood spots such as volume inaccuracy and influence of hematocrit (HT). This study aimed to develop and evaluate a VAMS-based strategy for quantification of 13 frequently prescribed antipsychotics in finger prick blood within the scope of adherence monitoring to complement already-established qualitative urine analysis. The final workflow consisted of VAMS tip hydration and subsequent precipitation. Samples were analyzed by using reversed-phase ultra-high-performance liquid chromatography and Orbitrap mass spectrometry operated in parallel reaction monitoring mode. The analytical procedure was successfully validated based on international recommendations at three different HT values (20%, 40%, 60%) for most of the analytes. Selectivity and within/between-run accuracy and precision were in accordance with the recommendations in most cases. Internal standard-normalized matrix factor met recommended criteria for all analytes at HT 40%. For the HT values of 20% and 60%, only four substances did not meet the criteria. Dilution integrity was given for all substances, except for olanzapine, allowing a quantification over the whole therapeutic range of selected antipsychotics. Long-term stability in VAMS tips was tested and revealed degradation of five antipsychotic drugs after 1 week of storage at 24 °C. A proof of concept of the applicability of the method was obtained by quantification of a selection of the 13 antipsychotic drugs in VAMS tips and matched plasma samples. Results were coherent between matrices. Thus, VAMS was shown to be a promising alternative for adherence monitoring of at least the investigated antipsychotics.
Collapse
Affiliation(s)
- Cathy M Jacobs
- Department of Experimental and Clinical Toxicology, Institute of Experimental and Clinical Pharmacology and Toxicology, Center for Molecular Signaling (PZMS), Saarland University, Homburg, Germany
| | - Lea Wagmann
- Department of Experimental and Clinical Toxicology, Institute of Experimental and Clinical Pharmacology and Toxicology, Center for Molecular Signaling (PZMS), Saarland University, Homburg, Germany
| | - Markus R Meyer
- Department of Experimental and Clinical Toxicology, Institute of Experimental and Clinical Pharmacology and Toxicology, Center for Molecular Signaling (PZMS), Saarland University, Homburg, Germany.
| |
Collapse
|
25
|
Volumetric Absorptive Microsampling of Blood for Untargeted Lipidomics. Molecules 2021; 26:molecules26020262. [PMID: 33430231 PMCID: PMC7825730 DOI: 10.3390/molecules26020262] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2020] [Revised: 12/28/2020] [Accepted: 01/04/2021] [Indexed: 01/20/2023] Open
Abstract
In the present, proof-of-concept paper, we explore the potential of one common solid support for blood microsampling (dried blood spot, DBS) and a device (volumetric absorptive microsampling, VAMS) developed for the untargeted lipidomic profiling of human whole blood, performed by high-resolution LC-MS/MS. Dried blood microsamples obtained by means of DBS and VAMS were extracted with different solvent compositions and compared with fluid blood to evaluate their efficiency in profiling the lipid chemical space in the most broad way. Although more effort is needed to better characterize this approach, our results indicate that VAMS is a viable option for untargeted studies and its use will bring all the corresponding known advantages in the field of lipidomics, such as haematocrit independence.
Collapse
|
26
|
Protti M, Sberna PM, Sardella R, Vovk T, Mercolini L, Mandrioli R. VAMS and StAGE as innovative tools for the enantioselective determination of clenbuterol in urine by LC-MS/MS. J Pharm Biomed Anal 2021; 195:113873. [PMID: 33422835 DOI: 10.1016/j.jpba.2020.113873] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2020] [Revised: 12/23/2020] [Accepted: 12/24/2020] [Indexed: 10/22/2022]
Abstract
Clenbuterol is a chiral, selective β2-adrenergic agonist. It is administered as a racemic mixture for therapeutic purposes (as a bronchodilator or prospective neuroprotective agent), but also for non-therapeutic uses (athletic performance enhancement, cattle growth promotion). Aim of the present study is to develop an original, enantioselective workflow for the analysis of clenbuterol enantiomers in urine microsamples. An innovative miniaturised sampling procedure by volumetric absorptive microsampling (VAMS) and a microsample pretreatment strategy based on stop-and-go extraction (StAGE) tips were developed and coupled to an original, chiral analytical method, exploiting liquid chromatography with triple quadrupole detection (LC-MS/MS). The method was validated, with satisfactory results: good linearity (r2 ≥ 0.9995) and LOQ values (0.3 ng/mL) were found over suitable concentration ranges. Extraction yield (>87 %), precision (RSD < 4.3 %) and matrix effect (85-90 %) were all within acceptable levels of confidence. After validation, the method was applied to the determination of clenbuterol in dried urine sampled by VAMS from patients taking the drug for therapeutic reasons. Analyte content ranged from 0.8 to 2.5 ng/mL per single enantiomer, with substantial retention of the original drug racemic composition. The VAMS-StAGE-LC-MS/MS workflow seems to be suitable for future application to anti-doping testing of clenbuterol in urine.
Collapse
Affiliation(s)
- Michele Protti
- Research group of Pharmaco-Toxicological Analysis (PTA Lab), Department of Pharmacy and Biotechnology (FaBiT), Alma Mater Studiorum - University of Bologna, Via Belmeloro 6, 40126 Bologna, Italy
| | - Paolo M Sberna
- Department of Microelectronics, Delft University of Technology, Feldmannweg 17, 2628 CT Delft, the Netherlands
| | - Roccaldo Sardella
- Department of Pharmaceutical Sciences, University of Perugia, Via Fabretti 48, 06123 Perugia, Italy
| | - Tomaž Vovk
- Faculty of Pharmacy, University of Ljubljana, Aškerčeva 7, 1000 Ljubljana, Slovenia
| | - Laura Mercolini
- Research group of Pharmaco-Toxicological Analysis (PTA Lab), Department of Pharmacy and Biotechnology (FaBiT), Alma Mater Studiorum - University of Bologna, Via Belmeloro 6, 40126 Bologna, Italy.
| | - Roberto Mandrioli
- Department for Life Quality Studies (QuVi), Alma Mater Studiorum - University of Bologna, Corso d'Augusto 237, 47921 Rimini, Italy
| |
Collapse
|
27
|
Zhuang T, Jin J, Ma Y, Ren X, Liang L, Du W, Liu B, Liu X, Zhang G. Structural elucidation and synthesis of a dimeric degradation impurity during long-term stability studies of oxycodone hydrochloride injection. NEW J CHEM 2021. [DOI: 10.1039/d1nj03344a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
An unknown degradation product (impurity-I) observed in oxycodone hydrochloride injection was proposed as an oxycodone aldol dimer using 2D LC-QTOF MS/MS, and impurity-I was synthesized and verified by 1D-NMR and 2D-NMR spectroscopy techniques.
Collapse
Affiliation(s)
- Tao Zhuang
- Systems Biology Theme, Department of Biomedical Engineering, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, China
- Jiangsu Key Laboratory of Marine Biological Resources and Environment, Jiangsu Key Laboratory of Marine Pharmaceutical Compound Screening, School of Pharmacy, Jiangsu Ocean University, Lianyungang 222005, China
| | - Jian Jin
- Jiangsu Key Laboratory of Marine Biological Resources and Environment, Jiangsu Key Laboratory of Marine Pharmaceutical Compound Screening, School of Pharmacy, Jiangsu Ocean University, Lianyungang 222005, China
| | - Yurong Ma
- Jiangsu Key Laboratory of Marine Biological Resources and Environment, Jiangsu Key Laboratory of Marine Pharmaceutical Compound Screening, School of Pharmacy, Jiangsu Ocean University, Lianyungang 222005, China
| | - Xia Ren
- Jiangsu Key Laboratory of Marine Biological Resources and Environment, Jiangsu Key Laboratory of Marine Pharmaceutical Compound Screening, School of Pharmacy, Jiangsu Ocean University, Lianyungang 222005, China
| | - Lingzhi Liang
- Jiangsu Key Laboratory of Marine Biological Resources and Environment, Jiangsu Key Laboratory of Marine Pharmaceutical Compound Screening, School of Pharmacy, Jiangsu Ocean University, Lianyungang 222005, China
| | - Wei Du
- Systems Biology Theme, Department of Biomedical Engineering, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Bifeng Liu
- Systems Biology Theme, Department of Biomedical Engineering, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Xin Liu
- Systems Biology Theme, Department of Biomedical Engineering, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Guisen Zhang
- Systems Biology Theme, Department of Biomedical Engineering, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, China
- Jiangsu Key Laboratory of Marine Biological Resources and Environment, Jiangsu Key Laboratory of Marine Pharmaceutical Compound Screening, School of Pharmacy, Jiangsu Ocean University, Lianyungang 222005, China
| |
Collapse
|
28
|
Harahap Y, Diptasaadya R, Purwanto DJ. Volumetric Absorptive Microsampling as a Sampling Alternative in Clinical Trials and Therapeutic Drug Monitoring During the COVID-19 Pandemic: A Review. DRUG DESIGN DEVELOPMENT AND THERAPY 2020; 14:5757-5771. [PMID: 33414636 PMCID: PMC7783192 DOI: 10.2147/dddt.s278892] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/26/2020] [Accepted: 11/17/2020] [Indexed: 12/12/2022]
Abstract
An infectious disease, COVID-19, caused by a new type of coronavirus, has been discovered recently. This disease can cause respiratory distress, fever, and fatigue. It still has no drug and vaccine for treatment and prevention. Therefore, WHO recommends that people should stay at home to reduce disease transmission. Due to the quarantine, FDA stated that this could hamper drug development clinical trial protocols. Hence, an alternative sampling method that can be applied at home is needed. Currently, volumetric absorptive microsampling (VAMS) has become attention in its use in clinical and bioanalytical fields. This paper discusses the advantages and challenges that might be found in the use of VAMS as an alternative sampling tool in clinical trials and therapeutic drug monitoring (TDM) during the COVID-19 pandemic. VAMS allows easy sampling, can be done at home, storage and delivery at room temperature, and the volume taken is small and minimally invasive. VAMS is also able to absorb a fixed volume that can increase the accuracy and precision of analytical methods, and reduce the hematocrit effects (HCT). The use of VAMS is expected to be implemented immediately in clinical trials and TDM during this pandemic considering the benefits it has.
Collapse
Affiliation(s)
- Yahdiana Harahap
- Faculty of Pharmacy, Universitas Indonesia, Depok, West Java 16424, Indonesia
| | - Rasmina Diptasaadya
- Faculty of Pharmacy, Universitas Indonesia, Depok, West Java 16424, Indonesia
| | - Denni Joko Purwanto
- Functional Medical Staff of Surgical Oncology, Dharmais Cancer Hospital, Jakarta 11420, Indonesia
| |
Collapse
|
29
|
Truver MT, Jakobsson G, Chermà MD, Swortwood MJ, Gréen H, Kronstrand R. The Quantification of Oxycodone and its Phase I and II Metabolites in Urine. J Anal Toxicol 2020; 46:55-63. [PMID: 33270113 PMCID: PMC8841981 DOI: 10.1093/jat/bkaa186] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2020] [Revised: 11/26/2020] [Accepted: 12/02/2020] [Indexed: 12/21/2022] Open
Abstract
The purpose of this research was to develop and validate an analytical method for the detection and quantification of noroxymorphone-3β-D-glucuronide (NOMG), oxymorphone-3β-D-glucuronide (NOMG), noroxymorphone (NOM), oxymorphone (OM), 6α-oxycodol (αOCL), 6β-oxycodol (βOCL), noroxycodone (NOC) and oxycodone (OC) in urine by liquid chromatography tandem mass spectrometry to be used in a human study. The method was validated according to the Academy Standards Board Standard Practices for Method Development in Forensic Toxicology. The method was then applied to a single-dose pilot study of a subject. Urine samples were collected from the subject after ingesting 10-mg OC as an immediate-release tablet. Additionally, urine specimens (n = 15) that had previously been confirmed positive for OC were analyzed using the validated method. The calibration range for NOMG and OMG was 0.05–10 μg/mL; for all other analytes, it was 0.015–10 μg/mL. Validation parameters such as bias, precision, carryover and dilution integrity, all met the validation criteria. After the method was validated, urine samples from the first subject in the controlled dose study were analyzed. It was observed that OC, NOC and OMG contained the highest concentrations and were present in either the 0.5 or 1 h void. NOC and OMG were detected until the 48 h collection, while OC was detectable till the 24 h collection. Time to reach maximum concentration (Tmax) in the urine was achieved within 1.5 h for OC and within 3 h for NOC and OMG. Maximum concentration (Cmax) in the urine for OC, NOC and OMG was 3.15, 2.0 and 1.56 μg/mg, respectively. OC concentrations in authentic urines ranged from 0.015 to 12 μg/mL. Ranges for NOMG and OMG were 0.054–9.7 μg/mL and 0.14–67 μg/mL, respectively. A comprehensive method for the quantification of NOMG, OMG, NOM, OM, αOCL, βOCL, NOC and OC in urine was optimized and met the validation criteria. The concentrations of NOMG and OMG presented in this study provide the details needed in the forensic community to better comprehend OC pharmacokinetics.
Collapse
Affiliation(s)
- Michael T Truver
- Division of Drug Research, Department of Biomedical and Clinical Sciences, Faculty of Medicine, Linköping University, Linköping, Sweden
| | - Gerd Jakobsson
- Department of Forensic Genetics and Forensic Toxicology, National Board of Forensic Medicine, 587 58 Linköping, Sweden.,Division of Drug Research, Department of Biomedical and Clinical Sciences, Faculty of Medicine, Linköping University, Linköping, Sweden
| | - Maria D Chermà
- Department of Forensic Genetics and Forensic Toxicology, National Board of Forensic Medicine, 587 58 Linköping, Sweden
| | - Madeleine J Swortwood
- Department of Forensic Science, College of Criminal Justice, Sam Houston State University, Huntsville, TX, USA
| | - Henrik Gréen
- Department of Forensic Genetics and Forensic Toxicology, National Board of Forensic Medicine, 587 58 Linköping, Sweden.,Division of Drug Research, Department of Biomedical and Clinical Sciences, Faculty of Medicine, Linköping University, Linköping, Sweden
| | - Robert Kronstrand
- Department of Forensic Genetics and Forensic Toxicology, National Board of Forensic Medicine, 587 58 Linköping, Sweden.,Division of Drug Research, Department of Biomedical and Clinical Sciences, Faculty of Medicine, Linköping University, Linköping, Sweden
| |
Collapse
|
30
|
Protti M, Mandrioli R, Mercolini L. Quantitative microsampling for bioanalytical applications related to the SARS-CoV-2 pandemic: Usefulness, benefits and pitfalls. J Pharm Biomed Anal 2020; 191:113597. [PMID: 32927419 PMCID: PMC7456588 DOI: 10.1016/j.jpba.2020.113597] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2020] [Revised: 08/23/2020] [Accepted: 08/25/2020] [Indexed: 12/20/2022]
Abstract
The multiple pathological effects of the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection, and its total novelty, mean that currently a lot of diagnostic and therapeutic tools, established and tentative alike, are needed to treat patients in a timely, effective way. In order to make these tools more reliable, faster and more feasible, biological fluid microsampling techniques could provide many advantages. In this review, the most important microsampling techniques are considered (dried matrix spots, volumetric absorptive microsampling, microfluidics and capillary microsampling, solid phase microextraction) and their respective advantages and disadvantages laid out. Moreover, currently available microsampling applications of interest for SARS-CoV-2 therapy are described, in order to make them as much widely known as possible, hopefully providing useful information to researchers and clinicians alike.
Collapse
Affiliation(s)
- Michele Protti
- Research Group of Pharmaco-Toxicological Analysis (PTA Lab), Department of Pharmacy and Biotechnology (FaBiT), Alma Mater Studiorum - University of Bologna, Via Belmeloro 6, 40126 Bologna, Italy
| | - Roberto Mandrioli
- Department for Life Quality Studies, Alma Mater Studiorum - University of Bologna, Corso d'Augusto 237, 47921 Rimini, Italy
| | - Laura Mercolini
- Research Group of Pharmaco-Toxicological Analysis (PTA Lab), Department of Pharmacy and Biotechnology (FaBiT), Alma Mater Studiorum - University of Bologna, Via Belmeloro 6, 40126 Bologna, Italy.
| |
Collapse
|
31
|
A review of recent advances in microsampling techniques of biological fluids for therapeutic drug monitoring. J Chromatogr A 2020; 1635:461731. [PMID: 33285415 DOI: 10.1016/j.chroma.2020.461731] [Citation(s) in RCA: 40] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2020] [Revised: 11/09/2020] [Accepted: 11/12/2020] [Indexed: 12/12/2022]
Abstract
Conventional sampling of biological fluids often involves a bulk quantity of samples that are tedious to collect, deliver and process. Miniaturized sampling approaches have emerged as promising tools for sample collection due to numerous advantages such as minute sample size, patient friendliness and ease of shipment. This article reviews the applications and advances of microsampling techniques in therapeutic drug monitoring (TDM), covering the period January 2015 - August 2020. As whole blood is the gold standard sampling matrix for TDM, this article comprehensively highlights the most historical microsampling technique, the dried blood spot (DBS), and its development. Advanced developments of DBS, ranging from various automation DBS, paper spray mass spectrometry (PS-MS), 3D dried blood spheroids and volumetric absorptive paper disc (VAPD) and mini-disc (VAPDmini) are discussed. The volumetric absorptive microsampling (VAMS) approach, which overcomes the hematocrit effect associated with the DBS sample, has been employed in recent TDM. The sample collection and sample preparation details in DBS and VAMS are outlined and summarized. This review also delineates the involvement of other biological fluids (plasma, urine, breast milk and saliva) and their miniaturized dried matrix forms in TDM. Specific features and challenges of each microsampling technique are identified and comparison studies are reviewed.
Collapse
|
32
|
Luginbühl M, Gaugler S. Dried blood spots for anti-doping: Why just going volumetric may not be sufficient. Drug Test Anal 2020; 13:69-73. [PMID: 33201591 DOI: 10.1002/dta.2977] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2020] [Revised: 11/12/2020] [Accepted: 11/12/2020] [Indexed: 12/12/2022]
Abstract
The perspective discusses quantitative DBS analysis for anti-doping testing in an athletic population and why only using volumetric sampling for this subgroup might not be enough. It presents examples to highlight where HCT variations occur, followed by a whole blood to plasma ratio and an HCT extraction bias discussion. Finally, options to correct for the HCT bias are presented.
Collapse
|
33
|
Dried Urine Microsampling Coupled to Liquid Chromatography-Tandem Mass Spectrometry (LC-MS/MS) for the Analysis of Unconjugated Anabolic Androgenic Steroids. Molecules 2020; 25:molecules25143210. [PMID: 32674492 PMCID: PMC7397045 DOI: 10.3390/molecules25143210] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2020] [Revised: 07/09/2020] [Accepted: 07/10/2020] [Indexed: 12/16/2022] Open
Abstract
Testing and monitoring anabolic androgenic steroids in biological fluids is a key activity in anti-doping practices. In this study, a novel approach is proposed, based on dried urine microsampling through two different workflows: dried urine spots (DUS) and volumetric absorptive microsampling (VAMS). Both techniques can overcome some common drawbacks of urine sampling, such as analyte instability and storage and transportation problems. Using an original, validated liquid chromatography-tandem mass spectrometry (LC-MS/MS) method, exogenous and endogenous unconjugated steroids were analysed. Despite the limitations of microsampling volume, good sensitivity was obtained (limit of quantitation ≤1.5 ng/mL for all analytes), with satisfactory precision (relative standard deviation <7.6%) and absolute recovery (>70.3%). Both microsampling platforms provide reliable results, in good agreement with those obtained from urine.
Collapse
|
34
|
Solheim SA, Jessen S, Mørkeberg J, Thevis M, Dehnes Y, Eibye K, Hostrup M, Nordsborg NB. Single‐dose administration of clenbuterol is detectable in dried blood spots. Drug Test Anal 2020; 12:1366-1372. [DOI: 10.1002/dta.2872] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2019] [Revised: 04/08/2020] [Accepted: 06/01/2020] [Indexed: 12/14/2022]
Affiliation(s)
- Sara Amalie Solheim
- Department of Nutrition, Exercise and Sports University of Copenhagen Copenhagen Denmark
- Department of Sport Anti Doping Denmark Brøndby Denmark
| | - Søren Jessen
- Department of Nutrition, Exercise and Sports University of Copenhagen Copenhagen Denmark
| | | | - Mario Thevis
- Institute of Biochemistry / Center for Preventive Doping Research German Sport University Cologne Cologne Germany
| | - Yvette Dehnes
- Norwegian Doping Control Laboratory, Department of Pharmacology Oslo University Hospital Oslo Norway
| | - Kasper Eibye
- Department of Nutrition, Exercise and Sports University of Copenhagen Copenhagen Denmark
| | - Morten Hostrup
- Department of Nutrition, Exercise and Sports University of Copenhagen Copenhagen Denmark
| | | |
Collapse
|
35
|
Microsampling and LC–MS/MS for antidoping testing of glucocorticoids in urine. Bioanalysis 2020; 12:769-782. [DOI: 10.4155/bio-2020-0044] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Background. Systemic glucocorticoids are prohibited in-competition by the World Anti-Doping Agency. Here, we describe an original microsampling workflow for the quantitation of three endogenous (cortisol, corticosterone and cortisone) and three exogenous (dexamethasone, methylprednisolone and fludrocortisone) corticosteroids in 30 μl of human urine. Materials & methods. Microsampling was carried out by dried urine spot (DUS) sampling and volumetric absorptive microsampling (VAMS), followed by solvent extraction and LC–MS/MS analysis. Results & conclusion: Good linearity (r2 > 0.9989) was obtained for all analytes; extraction yields (>81%), precision (RSD < 8.6%) and matrix effect (<12%) were satisfactory. Microsample stability at room temperature was good (analyte loss <15% after 3 months). Data obtained from real urine microsample analysis were compared with those of fluid urine, providing very good agreement (r2 > 0.9991).
Collapse
|
36
|
Mynttinen E, Wester N, Lilius T, Kalso E, Mikladal B, Varjos I, Sainio S, Jiang H, Kauppinen EI, Koskinen J, Laurila T. Electrochemical Detection of Oxycodone and Its Main Metabolites with Nafion-Coated Single-Walled Carbon Nanotube Electrodes. Anal Chem 2020; 92:8218-8227. [PMID: 32412733 PMCID: PMC7735650 DOI: 10.1021/acs.analchem.0c00450] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/04/2022]
Abstract
![]()
Oxycodone is a strong opioid
frequently used as an analgesic. Although proven efficacious in the
management of moderate to severe acute pain and cancer pain, use of
oxycodone imposes a risk of adverse effects such as addiction, overdose,
and death. Fast and accurate determination of oxycodone blood concentration
would enable personalized dosing and monitoring of the analgesic as
well as quick diagnostics of possible overdose in emergency care.
However, in addition to the parent drug, several metabolites are always
present in the blood after a dose of oxycodone, and to date, there
is no electrochemical data available on any of these metabolites.
In this paper, a single-walled carbon nanotube (SWCNT) electrode and
a Nafion-coated SWCNT electrode were used, for the first time, to
study the electrochemical behavior of oxycodone and its two main metabolites,
noroxycodone and oxymorphone. Both electrode types could selectively
detect oxycodone in the presence of noroxycodone and oxymorphone.
However, we have previously shown that addition of a Nafion coating
on top of the SWCNT electrode is essential for direct measurements
in complex biological matrices. Thus, the Nafion/SWCNT electrode was
further characterized and used for measuring clinically relevant concentrations
of oxycodone in buffer solution. The limit of detection for oxycodone
with the Nafion/SWCNT sensor was 85 nM, and the linear range was 0.5–10
μM in buffer solution. This study shows that the fabricated
Nafion/SWCNT sensor has potential to be applied in clinical concentration
measurements.
Collapse
Affiliation(s)
- Elsi Mynttinen
- Department of Electrical Engineering and Automation, Aalto University, Tietotie 3, 02150 Espoo, Finland
| | - Niklas Wester
- Department of Chemistry and Materials Science, Aalto University, Kemistintie 1, 02150 Espoo, Finland
| | - Tuomas Lilius
- Department of Pharmacology, University of Helsinki, Haartmaninkatu 8, 00290 Helsinki, Finland.,Department of Clinical Pharmacology, University of Helsinki and Helsinki University Hospital, Tukholmankatu 8C, 00290 Helsinki, Finland
| | - Eija Kalso
- Department of Pharmacology, University of Helsinki, Haartmaninkatu 8, 00290 Helsinki, Finland.,Pain Clinic, Department of Anesthesiology, Intensive Care and Pain Medicine, University of Helsinki and Helsinki University Hospital, Haartmaninkatu 2A, 00290 Helsinki, Finland
| | | | - Ilkka Varjos
- Canatu Oy, Tiilenlyöjänkuja 9, 01720 Vantaa, Finland
| | - Sami Sainio
- Stanford Synchrotron Radiation Lightsource, SLAC National Accelerator Laboratory, Menlo Park, California 94025, United States
| | - Hua Jiang
- Department of Applied Physics, Aalto University, 02150 Espoo, Finland
| | - Esko I Kauppinen
- Department of Applied Physics, Aalto University, 02150 Espoo, Finland
| | - Jari Koskinen
- Department of Chemistry and Materials Science, Aalto University, Kemistintie 1, 02150 Espoo, Finland
| | - Tomi Laurila
- Department of Electrical Engineering and Automation, Aalto University, Tietotie 3, 02150 Espoo, Finland
| |
Collapse
|
37
|
Londhe V, Rajadhyaksha M. Opportunities and obstacles for microsampling techniques in bioanalysis: Special focus on DBS and VAMS. J Pharm Biomed Anal 2020; 182:113102. [DOI: 10.1016/j.jpba.2020.113102] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2019] [Revised: 12/31/2019] [Accepted: 01/07/2020] [Indexed: 12/31/2022]
|
38
|
Volumetric Absorptive Microsampling: A New Sampling Tool for Therapeutic Drug Monitoring of Antiepileptic Drugs. Ther Drug Monit 2020; 41:681-692. [PMID: 31095069 DOI: 10.1097/ftd.0000000000000652] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
BACKGROUND Volumetric absorptive microsampling (VAMS) is a novel sampling technique for the collection of fixed-volume capillary blood. In this study, a new analytical method was developed and used to quantify 14 different antiepileptic drugs (AEDs) and 2 active metabolites in samples collected by VAMS. These data were compared with concentration measurements in plasma. METHODS The authors developed a selective and sensitive liquid chromatography-mass spectrometry (LC-MS/MS) assay to measure the concentrations of several AEDs in whole blood collected by VAMS, which were compared with a commercially available LC-MS/MS kit for AED monitoring in plasma. Drugs and internal standards were extracted from whole blood/plasma samples by a simple protein precipitation. RESULTS An LC-MS/MS method analyzing VAMS samples was successfully developed and validated for the determination of various AED concentrations in whole blood according to EMA guidelines for bioanalytical method validation. Extraction recovery was between 91% and 110%. No matrix effect was found. The method was linear for all drugs with R ≥0.989 in all cases. Intra-assay and inter-assay reproducibility analyses demonstrated accuracy and precision within acceptance criteria. Carry over and interferences were negligible. No volumetric HCT% bias was found at 3 different HCT values (35%-55%) with recovery being consistently above 87%. Samples are very stable at temperatures ranging from -20°C to 37°C and for a 4-month period. Leftover EDTA samples from 133 patients were tested to determine concentration differences between plasma and whole blood sampled by VAMS. The resulting difference varied less than 15% apart from those drugs with a blood/plasma ratio (R) different from 1. CONCLUSIONS The assay allows for highly sensitive and selective quantification of several AEDs in whole blood samples collected by VAMS. The developed method is accurate and precise and free from matrix effects and volumetric HCT% bias.
Collapse
|
39
|
Blood and Plasma Volumetric Absorptive Microsampling (VAMS) Coupled to LC-MS/MS for the Forensic Assessment of Cocaine Consumption. Molecules 2020; 25:molecules25051046. [PMID: 32110941 PMCID: PMC7179185 DOI: 10.3390/molecules25051046] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2019] [Revised: 02/10/2020] [Accepted: 02/24/2020] [Indexed: 02/01/2023] Open
Abstract
Reliable, feasible analytical methods are needed for forensic and anti-doping testing of cocaine and its most important metabolites, benzoylecgonine, ecgonine methyl ester, and cocaethylene (the active metabolite formed in the presence of ethanol). An innovative workflow is presented here, using minute amounts of dried blood or plasma obtained by volumetric absorptive microsampling (VAMS), followed by miniaturized pretreatment by dispersive pipette extraction (DPX) and LC-MS/MS analysis. After sampling 20 µL of blood or plasma with a VAMS device, the sample was dried, extracted, and loaded onto a DPX tip. The DPX pretreatment lasted less than one minute and after elution with methanol the sample was directly injected into the LC-MS/MS system. The chromatographic analysis was carried out on a C8 column, using a mobile phase containing aqueous formic acid and acetonitrile. Good extraction yield (> 85%), precision (relative standard deviation, RSD < 6.0%) and matrix effect (< 12%) values were obtained. Analyte stability was outstanding (recovery > 85% after 2 months at room temperature). The method was successfully applied to real blood and plasma VAMS, with results in very good agreement with those of fluid samples. The method seems suitable for the monitoring of concomitant cocaine and ethanol use by means of plasma or blood VAMS testing.
Collapse
|
40
|
Pilli NR, Narayanasamy S, Xu L, Chockalingam A, Shea KI, Stewart S, Rouse R, Patel V, Matta MK. A high-throughput bioanalytical assay to support pharmacokinetic interaction study of oxycodone and diazepam in Sprague Dawley rats. RSC Adv 2020; 10:886-896. [PMID: 35494453 PMCID: PMC9047970 DOI: 10.1039/c9ra05785d] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2019] [Accepted: 12/23/2019] [Indexed: 11/23/2022] Open
Abstract
Benzodiazepines potentiate respiratory depression when combined with an opioid leading the U.S Food and Drug Administration (FDA) to recommend updating the labels of these products with a boxed warning for respiratory depression with co-use. Potential respiratory depression upon co-administration of opioids with some psychotropic drugs is not well understood. The FDA is currently investigating various psychotropic drug interactions with the commonly used opioid, oxycodone, in a rat model assessing respiratory depression. Pharmacokinetic and/or pharmacodynamic (PK/PD) interaction between oxycodone and diazepam was evaluated in a positive control arm of these experiments. Understanding the systemic exposure of these drugs alone and in combination exposures was used to identify PK/PD interactions. The authors developed a simple, high throughput liquid chromatography-tandem mass spectrometric (LC-MS/MS) assay for the simultaneous determination of oxycodone and diazepam in rat plasma. Sample preparation was performed in 96-well protein precipitation plates using acetonitrile. Processed samples were analyzed using a C18 column with a gradient mobile phase composed of 2 mM aqueous ammonium formate with 0.1% formic acid and acetonitrile. A Thermo TSQ Quantum Ultra AM triple quadrupole mass spectrometer with multiple reaction monitoring (MRM) mode was used to acquire data. The method was validated for selectivity, specificity, linearity, precision and accuracy, dilution integrity and stability. The validated LC-MS/MS assay was utilized for quantifying oxycodone and diazepam in concomitantly treated Sprague Dawley (SD) rats. A high-throughput bioanalytical method for the simulataneous determination of oxycodone and diazepam to support the evaluation of respiratory depression in rats upon co-administration of oxycodone and diazepam.![]()
Collapse
Affiliation(s)
- Nageswara R. Pilli
- Division of Applied Regulatory Science
- Office of Clinical Pharmacology
- Office of Translational Sciences
- Center for Drug Evaluation and Research
- Food and Drug Administration
| | - Suresh Narayanasamy
- Division of Applied Regulatory Science
- Office of Clinical Pharmacology
- Office of Translational Sciences
- Center for Drug Evaluation and Research
- Food and Drug Administration
| | - Lin Xu
- Division of Applied Regulatory Science
- Office of Clinical Pharmacology
- Office of Translational Sciences
- Center for Drug Evaluation and Research
- Food and Drug Administration
| | - Ashok Chockalingam
- Division of Applied Regulatory Science
- Office of Clinical Pharmacology
- Office of Translational Sciences
- Center for Drug Evaluation and Research
- Food and Drug Administration
| | - Katherine I. Shea
- Division of Applied Regulatory Science
- Office of Clinical Pharmacology
- Office of Translational Sciences
- Center for Drug Evaluation and Research
- Food and Drug Administration
| | - Sharron Stewart
- Division of Applied Regulatory Science
- Office of Clinical Pharmacology
- Office of Translational Sciences
- Center for Drug Evaluation and Research
- Food and Drug Administration
| | - Rodney Rouse
- Division of Applied Regulatory Science
- Office of Clinical Pharmacology
- Office of Translational Sciences
- Center for Drug Evaluation and Research
- Food and Drug Administration
| | - Vikram Patel
- Division of Applied Regulatory Science
- Office of Clinical Pharmacology
- Office of Translational Sciences
- Center for Drug Evaluation and Research
- Food and Drug Administration
| | - Murali K. Matta
- Division of Applied Regulatory Science
- Office of Clinical Pharmacology
- Office of Translational Sciences
- Center for Drug Evaluation and Research
- Food and Drug Administration
| |
Collapse
|
41
|
Lampič K, Trontelj J, Prosen H, Drobne D, Šmid A, Vovk T. Determination of 6-thioguanine and 6-methylmercaptopurine in dried blood spots using liquid chromatography-tandem mass spectrometry: Method development, validation and clinical application. Clin Chim Acta 2019; 499:24-33. [DOI: 10.1016/j.cca.2019.08.024] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2019] [Revised: 08/22/2019] [Accepted: 08/22/2019] [Indexed: 02/08/2023]
|
42
|
Narayanasamy S, Pilli NR, Xu L, Chockalingam A, Shea KI, Stewart S, Patel V, Rouse R, Matta MK. An alternating polarity switching assay for quantification of oxycodone and topiramate: An application of LC-MS/MS method in support to PK/PD study in rodents. J Chromatogr B Analyt Technol Biomed Life Sci 2019; 1118-1119:93-100. [DOI: 10.1016/j.jchromb.2019.04.044] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2019] [Revised: 04/12/2019] [Accepted: 04/21/2019] [Indexed: 01/18/2023]
|
43
|
Development of two complementary LC–HRMS methods for analyzing sotatercept in dried blood spots for doping controls. Bioanalysis 2019; 11:923-940. [DOI: 10.4155/bio-2018-0313] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Aim: sotatercept is a therapeutic Fc-fusion protein with erythropoiesis-stimulating activity. Due to a potential abuse of the drug by athletes in professional sports, a sensitive detection method is required. In sports drug testing, alternative matrices such as dried blood spots (DBS) are gaining increasing attention as they can provide several advantages over conventional matrices. Materials & methods: Herein, two complementary LC–high-resolution mass spectrometry (HRMS) detection methods for sotatercept from DBS, an initial testing procedure (ITP) and a confirmation procedure (CP) were developed and validated for the first time. Both methods comprise an ultrasonication-assisted extraction, affinity enrichment, proteolytic digestion and HRMS detection. Results & conclusion: For the multianalyte ITP, artificial samples fortified with sotatercept, luspatercept and bimagrumab, and authentic specimens containing bimagrumab were successfully analyzed as proof-of-concept. The validated detection methods for sotatercept are fit for purpose and the ITP was shown to be suitable for the detection of novel IgG-based pharmaceuticals in doping control DBS samples.
Collapse
|
44
|
Pharmacokinetics of Albendazole, Albendazole Sulfoxide, and Albendazole Sulfone Determined from Plasma, Blood, Dried-Blood Spots, and Mitra Samples of Hookworm-Infected Adolescents. Antimicrob Agents Chemother 2019; 63:AAC.02489-18. [PMID: 30745388 DOI: 10.1128/aac.02489-18] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2018] [Accepted: 02/02/2019] [Indexed: 12/19/2022] Open
Abstract
Albendazole is an effective anthelmintic intensively used for decades. However, profound pharmacokinetic (PK) characterization is missing in children, the population mostly affected by helminth infections. Blood microsampling would facilitate PK studies in pediatric populations but has not been applied to quantify albendazole's disposition. Quantification methods were developed and validated using liquid chromatography-tandem mass spectrometry to analyze albendazole and its metabolites albendazole sulfoxide and albendazole sulfone in wet samples (plasma and blood) and blood microsamples (dried-blood spots [DBS]; Mitra). The use of DBS was limited by a matrix effect and poor recovery, but the extraction efficiency was constant throughout the concentration range. Hookworm-infected adolescents were venous and capillary blood sampled posttreatment with 400 mg albendazole and 25 mg/kg oxantel pamoate. Similar half-life (t 1/2 = ∼1.5 h), time to reach the maximum concentration (t max = ∼2 h), and maximum concentration (C max = 12.5 to 26.5 ng/ml) of albendazole were observed in the four matrices. The metabolites reached C max after ∼4 h with a t 1/2 of ca. 7 to 8 h. A statistically significant difference in albendazole sulfone's t 1/2 as determined by using DBS and wet samples was detected. C max of albendazole sulfoxide (288 to 380 ng/ml) did not differ among the matrices, but higher C max of albendazole sulfone were obtained in the two microsampling devices (22 ng/ml) versus the wet matrices (14 ng/ml). In conclusion, time-concentration profiles and PK results of the four matrices were similar, and the direct comparison of the two microsampling devices indicates that Mitra extraction was more robust during validation and can be recommended for future albendazole PK studies.
Collapse
|
45
|
Avataneo V, D’Avolio A, Cusato J, Cantù M, De Nicolò A. LC-MS application for therapeutic drug monitoring in alternative matrices. J Pharm Biomed Anal 2019; 166:40-51. [DOI: 10.1016/j.jpba.2018.12.040] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2018] [Revised: 12/24/2018] [Accepted: 12/26/2018] [Indexed: 12/14/2022]
|
46
|
|
47
|
Thevis M, Kuuranne T, Geyer H. Annual banned-substance review: Analytical approaches in human sports drug testing. Drug Test Anal 2019; 11:8-26. [DOI: 10.1002/dta.2549] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2018] [Accepted: 11/18/2018] [Indexed: 12/12/2022]
Affiliation(s)
- Mario Thevis
- Center for Preventive Doping Research - Institute of Biochemistry; German Sport University Cologne; Cologne Germany
- European Monitoring Center for Emerging Doping Agents; Cologne Germany
| | - Tiia Kuuranne
- Swiss Laboratory for Doping Analyses; University Center of Legal Medicine, Genève and Lausanne, Centre Hospitalier Universitaire Vaudois and University of Lausanne; Epalinges Switzerland
| | - Hans Geyer
- Center for Preventive Doping Research - Institute of Biochemistry; German Sport University Cologne; Cologne Germany
- European Monitoring Center for Emerging Doping Agents; Cologne Germany
| |
Collapse
|
48
|
Protti M, Mandrioli R, Mercolini L. Tutorial: Volumetric absorptive microsampling (VAMS). Anal Chim Acta 2018; 1046:32-47. [PMID: 30482302 DOI: 10.1016/j.aca.2018.09.004] [Citation(s) in RCA: 102] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2018] [Revised: 08/31/2018] [Accepted: 09/03/2018] [Indexed: 01/21/2023]
Abstract
Volumetric absorptive microsampling (VAMS) is a recent microsampling technique used to obtain dried specimens of blood and other biological matrices for application to a plethora of bioanalytical purposes. As such, it can be likened to dried blood spot (DBS) technique that has been in wide use for the last 40 years. However, VAMS promises to bring some significant advantages over DBS, related to sampling volume accuracy, haematocrit (HCT) dependence, pre-treatment and automation. Although some aspects still need to be investigated in depth, VAMS is increasingly recognised as a viable alternative to DBS and other dried microsampling techniques. In this tutorial, different aspects of VAMS approach are described and discussed, presenting the procedures adopted and the results obtained by those authors who have developed this kind of analytical workflow in the last few years. Hopefully, this will help other scientists to find new solutions to old and recent problems related to microsampling and to produce new, sound and interesting science in this field.
Collapse
Affiliation(s)
- Michele Protti
- Pharmaco-Toxicological Analysis Laboratory (PTA Lab), Department of Pharmacy and Biotechnology (FaBiT), Alma Mater Studiorum - University of Bologna, Bologna, Italy
| | - Roberto Mandrioli
- Department for Life Quality Studies, Alma Mater Studiorum - University of Bologna, Rimini, Italy
| | - Laura Mercolini
- Pharmaco-Toxicological Analysis Laboratory (PTA Lab), Department of Pharmacy and Biotechnology (FaBiT), Alma Mater Studiorum - University of Bologna, Bologna, Italy.
| |
Collapse
|