1
|
Saito P, Pinto IC, Rodrigues CCA, de Matos RLN, Vale DL, Melo CPB, Fattori V, Saraiva-Santos T, Mendes-Pierotti S, Bertozzi MM, Bracarense APFRL, Vignoli JA, Baracat MM, Georgetti SR, Verri WA, Casagrande R. Resolvin D5 Protects Female Hairless Mouse Skin from Pathological Alterations Caused by UVB Irradiation. Antioxidants (Basel) 2024; 13:1008. [PMID: 39199252 PMCID: PMC11351481 DOI: 10.3390/antiox13081008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2024] [Revised: 08/09/2024] [Accepted: 08/16/2024] [Indexed: 09/01/2024] Open
Abstract
Resolvin D5 (RvD5) is a lipid mediator that has been reported to present anti-inflammatory and pro-resolution properties. Evidence also supports its capability to enhance reactive oxygen species (ROS) production during bacterial infections, which would be detrimental in diseases driven by ROS. The biological activity of RvD5 and mechanisms against UVB irradiation skin pathology have not been investigated so far. Female hairless mice were treated intraperitoneally with RvD5 before UVB stimulus. RvD5 reduced skin edema in a dose-dependent manner as well as oxidative stress by increasing antioxidants (endogenous tissue antioxidant scavenging of cationic radical, iron reduction, catalase activity and reduced glutathione levels) and decreasing pro-oxidants (superoxide anion and lipid peroxidation). RvD5 antioxidant activity was accompanied by enhancement of Nrf2, HO-1 and NQO1 mRNA expression. RvD5 reduced the production of IL-1β, TNF-α, TGF-β, and IL-10. RvD5 also reduced the inflammatory cell counts, including mast cells and neutrophils/macrophages. The reduction of oxidative stress and inflammation resulted in diminished matrix metalloproteinase 9 activity, collagen degradation, epidermal thickening and sunburn cell development. Therefore, this study demonstrates, to our knowledge, the first body of evidence that RvD5 can be used to treat UVB skin pathology and unveils, at least in part, its mechanisms of action.
Collapse
Affiliation(s)
- Priscila Saito
- Departamento de Ciências Farmacêuticas, Universidade Estadual de Londrina, Avenida Robert Koch, 60, Hospital Universitário, Londrina 86039-440, Paraná, Brazil; (P.S.); (I.C.P.); (C.C.A.R.); (R.L.N.d.M.); (D.L.V.); (C.P.B.M.); (S.M.-P.); (M.M.B.); (S.R.G.)
| | - Ingrid C. Pinto
- Departamento de Ciências Farmacêuticas, Universidade Estadual de Londrina, Avenida Robert Koch, 60, Hospital Universitário, Londrina 86039-440, Paraná, Brazil; (P.S.); (I.C.P.); (C.C.A.R.); (R.L.N.d.M.); (D.L.V.); (C.P.B.M.); (S.M.-P.); (M.M.B.); (S.R.G.)
| | - Camilla C. A. Rodrigues
- Departamento de Ciências Farmacêuticas, Universidade Estadual de Londrina, Avenida Robert Koch, 60, Hospital Universitário, Londrina 86039-440, Paraná, Brazil; (P.S.); (I.C.P.); (C.C.A.R.); (R.L.N.d.M.); (D.L.V.); (C.P.B.M.); (S.M.-P.); (M.M.B.); (S.R.G.)
| | - Ricardo L. N. de Matos
- Departamento de Ciências Farmacêuticas, Universidade Estadual de Londrina, Avenida Robert Koch, 60, Hospital Universitário, Londrina 86039-440, Paraná, Brazil; (P.S.); (I.C.P.); (C.C.A.R.); (R.L.N.d.M.); (D.L.V.); (C.P.B.M.); (S.M.-P.); (M.M.B.); (S.R.G.)
| | - David L. Vale
- Departamento de Ciências Farmacêuticas, Universidade Estadual de Londrina, Avenida Robert Koch, 60, Hospital Universitário, Londrina 86039-440, Paraná, Brazil; (P.S.); (I.C.P.); (C.C.A.R.); (R.L.N.d.M.); (D.L.V.); (C.P.B.M.); (S.M.-P.); (M.M.B.); (S.R.G.)
| | - Cristina P. B. Melo
- Departamento de Ciências Farmacêuticas, Universidade Estadual de Londrina, Avenida Robert Koch, 60, Hospital Universitário, Londrina 86039-440, Paraná, Brazil; (P.S.); (I.C.P.); (C.C.A.R.); (R.L.N.d.M.); (D.L.V.); (C.P.B.M.); (S.M.-P.); (M.M.B.); (S.R.G.)
| | - Victor Fattori
- Departamento de Imunologia, Parasitologia e Patologia Geral, Centro de Ciências Biológicas, Universidade Estadual de Londrina, Rodovia Celso Garcia Cid, Km 80, PR445, Cx. Postal 10.011, Londrina 86057-970, Paraná, Brazil; (V.F.); (T.S.-S.); (M.M.B.); (W.A.V.)
| | - Telma Saraiva-Santos
- Departamento de Imunologia, Parasitologia e Patologia Geral, Centro de Ciências Biológicas, Universidade Estadual de Londrina, Rodovia Celso Garcia Cid, Km 80, PR445, Cx. Postal 10.011, Londrina 86057-970, Paraná, Brazil; (V.F.); (T.S.-S.); (M.M.B.); (W.A.V.)
| | - Soraia Mendes-Pierotti
- Departamento de Ciências Farmacêuticas, Universidade Estadual de Londrina, Avenida Robert Koch, 60, Hospital Universitário, Londrina 86039-440, Paraná, Brazil; (P.S.); (I.C.P.); (C.C.A.R.); (R.L.N.d.M.); (D.L.V.); (C.P.B.M.); (S.M.-P.); (M.M.B.); (S.R.G.)
| | - Mariana M. Bertozzi
- Departamento de Imunologia, Parasitologia e Patologia Geral, Centro de Ciências Biológicas, Universidade Estadual de Londrina, Rodovia Celso Garcia Cid, Km 80, PR445, Cx. Postal 10.011, Londrina 86057-970, Paraná, Brazil; (V.F.); (T.S.-S.); (M.M.B.); (W.A.V.)
| | - Ana P. F. R. L. Bracarense
- Laboratório de Patologia Animal, Universidade Estadual de Londrina, Campus Universitário, Rodovia Celso Garcia Cid, Km 380, Londrina 86057-970, Paraná, Brazil;
| | - Josiane A. Vignoli
- Departamento de Bioquímica e Biotecnologia, Centro de Ciências Exatas, Universidade Estadual de Londrina, Rodovia Celso Garcia Cid, Km 380, Londrina 86057-970, Paraná, Brazil;
| | - Marcela M. Baracat
- Departamento de Ciências Farmacêuticas, Universidade Estadual de Londrina, Avenida Robert Koch, 60, Hospital Universitário, Londrina 86039-440, Paraná, Brazil; (P.S.); (I.C.P.); (C.C.A.R.); (R.L.N.d.M.); (D.L.V.); (C.P.B.M.); (S.M.-P.); (M.M.B.); (S.R.G.)
| | - Sandra R. Georgetti
- Departamento de Ciências Farmacêuticas, Universidade Estadual de Londrina, Avenida Robert Koch, 60, Hospital Universitário, Londrina 86039-440, Paraná, Brazil; (P.S.); (I.C.P.); (C.C.A.R.); (R.L.N.d.M.); (D.L.V.); (C.P.B.M.); (S.M.-P.); (M.M.B.); (S.R.G.)
| | - Waldiceu A. Verri
- Departamento de Imunologia, Parasitologia e Patologia Geral, Centro de Ciências Biológicas, Universidade Estadual de Londrina, Rodovia Celso Garcia Cid, Km 80, PR445, Cx. Postal 10.011, Londrina 86057-970, Paraná, Brazil; (V.F.); (T.S.-S.); (M.M.B.); (W.A.V.)
| | - Rubia Casagrande
- Departamento de Ciências Farmacêuticas, Universidade Estadual de Londrina, Avenida Robert Koch, 60, Hospital Universitário, Londrina 86039-440, Paraná, Brazil; (P.S.); (I.C.P.); (C.C.A.R.); (R.L.N.d.M.); (D.L.V.); (C.P.B.M.); (S.M.-P.); (M.M.B.); (S.R.G.)
| |
Collapse
|
2
|
Inaba I, Hiramoto K, Yamate Y, Morita A, Tsutsumi T, Yasuda H, Sato EF. Inhibiting Neutrophil Extracellular Traps Protects against Ultraviolet B-Induced Skin Damage: Effects of Hochu-ekki-to and DNase I. Int J Mol Sci 2024; 25:1723. [PMID: 38339001 PMCID: PMC10855064 DOI: 10.3390/ijms25031723] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2023] [Revised: 01/26/2024] [Accepted: 01/29/2024] [Indexed: 02/12/2024] Open
Abstract
UV-B radiation induces sunburn, and neutrophils are pivotal in this inflammation. In this study, we examined the potential involvement of neutrophil extracellular traps (NETs) in ultraviolet B (UVB)-induced skin inflammation, correlating the skin inflammation-mitigating effects of Hochu-ekki-to on UV-B irradiation and NETs. To elucidate NET distribution in the dorsal skin, male ICR mice, exposed to UVB irradiation, were immunohistologically analyzed to detect citrullinated histone H3 (citH3) and peptidylarginine deiminase 4 (PAD4). Reactive oxygen species (ROS) production in the bloodstream was analyzed. To establish the involvement of NET-released DNA in this inflammatory response, mice were UV-B irradiated following the intraperitoneal administration of DNase I. In vitro experiments were performed to scrutinize the impact of Hochu-ekki-to on A23187-induced NETs in neutrophil-like HL-60 cells. UV-B irradiation induced dorsal skin inflammation, coinciding with a significant increase in citH3 and PAD4 expression. Administration of DNase I attenuated UV-B-induced skin inflammation, whereas Hochu-ekki-to administration considerably suppressed the inflammation, correlating with diminished levels of citH3 and PAD4 in the dorsal skin. UV-B irradiation conspicuously augmented ROS and hydrogen peroxide (H2O2) production in the blood. Hochu-ekki-to significantly inhibited ROS and H2O2 generation. In vitro experiments demonstrated that Hochu-ekki-to notably inhibited A23187-induced NETs in differentiated neutrophil-like cells. Hence, NETs have been implicated in UV-B-induced skin inflammation, and their inhibition reduces cutaneous inflammation. Additionally, Hochu-ekki-to mitigated skin inflammation by impeding neutrophil infiltration and NETs in the dorsal skin of mice.
Collapse
Affiliation(s)
- Issei Inaba
- Department of Biochemistry, Faculty of Pharmaceutical Sciences, Suzuka University of Medical Science, 3500-3, Minamitamagaki, Suzuka 513-8670, Japan; (I.I.); (K.H.); (Y.Y.); (A.M.); (T.T.)
| | - Keiichi Hiramoto
- Department of Biochemistry, Faculty of Pharmaceutical Sciences, Suzuka University of Medical Science, 3500-3, Minamitamagaki, Suzuka 513-8670, Japan; (I.I.); (K.H.); (Y.Y.); (A.M.); (T.T.)
| | - Yurika Yamate
- Department of Biochemistry, Faculty of Pharmaceutical Sciences, Suzuka University of Medical Science, 3500-3, Minamitamagaki, Suzuka 513-8670, Japan; (I.I.); (K.H.); (Y.Y.); (A.M.); (T.T.)
| | - Akihiro Morita
- Department of Biochemistry, Faculty of Pharmaceutical Sciences, Suzuka University of Medical Science, 3500-3, Minamitamagaki, Suzuka 513-8670, Japan; (I.I.); (K.H.); (Y.Y.); (A.M.); (T.T.)
| | - Tomonari Tsutsumi
- Department of Biochemistry, Faculty of Pharmaceutical Sciences, Suzuka University of Medical Science, 3500-3, Minamitamagaki, Suzuka 513-8670, Japan; (I.I.); (K.H.); (Y.Y.); (A.M.); (T.T.)
| | - Hiroyuki Yasuda
- Division of Pathological Sciences, Department of Pharmacology and Experimental Therapeutics, Kyoto Pharmaceutical University, Misasagi 5, Yamashina, Kyoto 607-8414, Japan;
| | - Eisuke F. Sato
- Department of Biochemistry, Faculty of Pharmaceutical Sciences, Suzuka University of Medical Science, 3500-3, Minamitamagaki, Suzuka 513-8670, Japan; (I.I.); (K.H.); (Y.Y.); (A.M.); (T.T.)
| |
Collapse
|
3
|
Pihl C, Bendtsen KMS, Jensen HE, Andersen F, Bjerring P, Haedersdal M, Lerche CM. Oral phytochemicals as photoprotectants in UVR exposed hairless mice: A study of hesperidin methyl chalcone, phloroglucinol, and syringic acid. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY. B, BIOLOGY 2023; 246:112760. [PMID: 37535996 DOI: 10.1016/j.jphotobiol.2023.112760] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Accepted: 07/21/2023] [Indexed: 08/05/2023]
Abstract
Ultraviolet radiation is the primary risk factor for keratinocyte carcinoma. Because of increasing incidence rates, new methods of photoprotection must be explored. Oral supplementation with photoprotective compounds presents a promising alternative. Phytochemical compounds like hesperidin methyl chalcone, phloroglucinol, and syringic acid are particularly of interest because of their antioxidant properties. Our primary outcome was to evaluate the effects of oral phytochemicals on photocarcinogenesis with time until tumour onset as the primary endpoint. A total of 125 hairless C3.Cg-Hrhr/TifBom Tac mice were randomised to receive tap water supplemented with either 100 mg/kg hesperidin methyl chalcone, phloroglucinol, or syringic acid, 600 mg/kg nicotinamide as a positive control, or no supplementation. The mice were irradiated with 3.5 standard erythema doses thrice weekly to induce photocarcinogenesis. Supplementation with the phytochemicals phloroglucinol and syringic acid and nicotinamide delayed tumour onset from a median of 140 days to 151 (p = 0.036), 157 days (p = 0.02), and 178 (p = 2.7·10-5), respectively. Phloroglucinol and nicotinamide supplementation reduced tumour number. Nicotinamide increased UV-induced pigmentation and reduced oedema formation, while phloroglucinol supplementation reduced epidermal thickness. These results indicate that oral supplementation with phloroglucinol and syringic acid protects against photocarcinogenesis in hairless mice, but not to the same extent as nicotinamide.
Collapse
Affiliation(s)
- Celina Pihl
- Dept of Dermatology, Copenhagen University Hospital - Bispebjerg and Frederiksberg, Copenhagen, Denmark; Dept of Pharmacy, University of Copenhagen, 2400 Copenhagen, Denmark.
| | - Katja M S Bendtsen
- Dept of Veterinary and Animal Sciences, Copenhagen University, 1870 Frederiksberg, Denmark.
| | - Henrik E Jensen
- Dept of Veterinary and Animal Sciences, Copenhagen University, 1870 Frederiksberg, Denmark.
| | - Flemming Andersen
- Dept of Dermatology, Private Hospital Molholm, 7100 Vejle, Denmark; Dept of Dermatology, Aalborg University Hospital, 9100 Aalborg, Denmark.
| | - Peter Bjerring
- Dept of Dermatology, Aalborg University Hospital, 9100 Aalborg, Denmark.
| | - Merete Haedersdal
- Dept of Dermatology, Copenhagen University Hospital - Bispebjerg and Frederiksberg, Copenhagen, Denmark; Dept of Clinical Medicine, University of Copenhagen, 2400 Copenhagen, Denmark.
| | - Catharina M Lerche
- Dept of Dermatology, Copenhagen University Hospital - Bispebjerg and Frederiksberg, Copenhagen, Denmark; Dept of Pharmacy, University of Copenhagen, 2400 Copenhagen, Denmark.
| |
Collapse
|
4
|
Melo CPB, Saito P, Martinez RM, Staurengo-Ferrari L, Pinto IC, Rodrigues CCA, Badaro-Garcia S, Vignoli JA, Baracat MM, Bussmann AJC, Georgetti SR, Verri WA, Casagrande R. Aspirin-Triggered Resolvin D1 (AT-RvD1) Protects Mouse Skin against UVB-Induced Inflammation and Oxidative Stress. Molecules 2023; 28:molecules28052417. [PMID: 36903662 PMCID: PMC10005614 DOI: 10.3390/molecules28052417] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2022] [Revised: 02/27/2023] [Accepted: 03/01/2023] [Indexed: 03/09/2023] Open
Abstract
Intense exposure to UVB radiation incites excessive production of reactive oxygen species (ROS) and inflammation. The resolution of inflammation is an active process orchestrated by a family of lipid molecules that includes AT-RvD1, a specialized proresolving lipid mediator (SPM). AT-RvD1 is derived from omega-3, which presents anti-inflammatory activity and reduces oxidative stress markers. The present work aims to investigate the protective effect of AT-RvD1 on UVB-induced inflammation and oxidative stress in hairless mice. Animals were first treated with 30, 100, and 300 pg/animal AT-RvD1 (i.v.) and then exposed to UVB (4.14 J/cm2). The results showed that 300 pg/animal of AT-RvD1 could restrict skin edema, neutrophil and mast cell infiltration, COX-2 mRNA expression, cytokine release, and MMP-9 activity and restore skin antioxidant capacity as per FRAP and ABTS assays and control O2•- production, lipoperoxidation, epidermal thickening, and sunburn cells development. AT-RvD1 could reverse the UVB-induced downregulation of Nrf2 and its downstream targets GSH, catalase, and NOQ-1. Our results suggest that by upregulating the Nrf2 pathway, AT-RvD1 promotes the expression of ARE genes, restoring the skin's natural antioxidant defense against UVB exposition to avoid oxidative stress, inflammation, and tissue damage.
Collapse
Affiliation(s)
- Cristina P. B. Melo
- Department of Pharmaceutical Sciences, Centre of Health Science, Londrina State University, Londrina 86038-350, PR, Brazil
| | - Priscila Saito
- Department of Pharmaceutical Sciences, Centre of Health Science, Londrina State University, Londrina 86038-350, PR, Brazil
| | - Renata M. Martinez
- Department of Pharmaceutical Sciences, Centre of Health Science, Londrina State University, Londrina 86038-350, PR, Brazil
| | - Larissa Staurengo-Ferrari
- Department of Pathology, Centre of Biological Sciences, Londrina State University, Rodovia Celso Garcia Cid, Km 380, PR445, Cx. Postal 10.011, Londrina 86057-970, PR, Brazil
- Department of Immunology, Harvard Medical School, Blavatnik Institute, Boston, MA 02115, USA
| | - Ingrid C. Pinto
- Department of Pharmaceutical Sciences, Centre of Health Science, Londrina State University, Londrina 86038-350, PR, Brazil
| | - Camilla C. A. Rodrigues
- Department of Pharmaceutical Sciences, Centre of Health Science, Londrina State University, Londrina 86038-350, PR, Brazil
| | - Stephanie Badaro-Garcia
- Department of Pathology, Centre of Biological Sciences, Londrina State University, Rodovia Celso Garcia Cid, Km 380, PR445, Cx. Postal 10.011, Londrina 86057-970, PR, Brazil
- Department of Medicine, Women’s Guild Lung Institute, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA
| | - Josiane A. Vignoli
- Department of Biochemistry and Biotechnology, Centre of Exact Sciences, Londrina State University, Londrina 86057-970, PR, Brazil
| | - Marcela M. Baracat
- Department of Pharmaceutical Sciences, Centre of Health Science, Londrina State University, Londrina 86038-350, PR, Brazil
| | - Allan J. C. Bussmann
- Department of Pathology, Centre of Biological Sciences, Londrina State University, Rodovia Celso Garcia Cid, Km 380, PR445, Cx. Postal 10.011, Londrina 86057-970, PR, Brazil
| | - Sandra R. Georgetti
- Department of Pharmaceutical Sciences, Centre of Health Science, Londrina State University, Londrina 86038-350, PR, Brazil
| | - Waldiceu A. Verri
- Department of Pathology, Centre of Biological Sciences, Londrina State University, Rodovia Celso Garcia Cid, Km 380, PR445, Cx. Postal 10.011, Londrina 86057-970, PR, Brazil
- Correspondence: (W.A.V.); (R.C.)
| | - Rubia Casagrande
- Department of Pharmaceutical Sciences, Centre of Health Science, Londrina State University, Londrina 86038-350, PR, Brazil
- Correspondence: (W.A.V.); (R.C.)
| |
Collapse
|
5
|
Borghi SM, Casagrande R, Verri WA. Hesperidin Methyl Chalcone: An Emerging Compound for the Treatment of Inflammation and Pain. Curr Med Chem 2023; 30:601-603. [PMID: 35996246 DOI: 10.2174/0929867329666220822113459] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2022] [Revised: 06/06/2022] [Accepted: 06/23/2022] [Indexed: 02/08/2023]
Affiliation(s)
- Sergio Marques Borghi
- Department of Pathology, Londrina State University, Londrina, Brazil.,Center for Research in Health Sciences, University of Northern Paraná, Rua Marselha, 591, Jardim Piza, Brazil
| | - Rubia Casagrande
- Department of Pharmaceutical Sciences, Londrina State University, Londrina, Brazil
| | | |
Collapse
|
6
|
Artero NA, Manchope MF, Carvalho TT, Saraiva-Santos T, Bertozzi MM, Carneiro JA, Franciosi A, Dionisio AM, Zaninelli TH, Fattori V, Ferraz CR, Piva M, Mizokami SS, Camilios-Neto D, Casagrande R, Verri WA. Hesperidin Methyl Chalcone Reduces the Arthritis Caused by TiO 2 in Mice: Targeting Inflammation, Oxidative Stress, Cytokine Production, and Nociceptor Sensory Neuron Activation. Molecules 2023; 28:molecules28020872. [PMID: 36677929 PMCID: PMC9864652 DOI: 10.3390/molecules28020872] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Revised: 12/27/2022] [Accepted: 01/11/2023] [Indexed: 01/18/2023] Open
Abstract
Arthroplasty is an orthopedic surgical procedure that replaces a dysfunctional joint by an orthopedic prosthesis, thereby restoring joint function. Upon the use of the joint prosthesis, a wearing process begins, which releases components such as titanium dioxide (TiO2) that trigger an immune response in the periprosthetic tissue, leading to arthritis, arthroplasty failure, and the need for revision. Flavonoids belong to a class of natural polyphenolic compounds that possess antioxidant and anti-inflammatory activities. Hesperidin methyl chalcone's (HMC) analgesic, anti-inflammatory, and antioxidant effects have been investigated in some models, but its activity against the arthritis caused by prosthesis-wearing molecules, such as TiO2, has not been investigated. Mice were treated with HMC (100 mg/kg, intraperitoneally (i.p.)) 24 h after intra-articular injection of 3 mg/joint of TiO2, which was used to induce chronic arthritis. HMC inhibited mechanical hyperalgesia, thermal hyperalgesia, joint edema, leukocyte recruitment, and oxidative stress in the knee joint (alterations in gp91phox, GSH, superoxide anion, and lipid peroxidation) and in recruited leukocytes (total reactive oxygen species and GSH); reduced patellar proteoglycan degradation; and decreased pro-inflammatory cytokine production. HMC also reduced the activation of nociceptor-sensory TRPV1+ and TRPA1+ neurons. These effects occurred without renal, hepatic, or gastric damage. Thus, HMC reduces arthritis triggered by TiO2, a component released upon wearing of prosthesis.
Collapse
Affiliation(s)
- Nayara A. Artero
- Laboratory of Pain, Inflammation, Neuropathy and Cancer, Department of Pathology, Centre of Biological Sciences, Londrina State University, Londrina 86057-970, PR, Brazil
| | - Marília F. Manchope
- Laboratory of Pain, Inflammation, Neuropathy and Cancer, Department of Pathology, Centre of Biological Sciences, Londrina State University, Londrina 86057-970, PR, Brazil
| | - Thacyana T. Carvalho
- Laboratory of Pain, Inflammation, Neuropathy and Cancer, Department of Pathology, Centre of Biological Sciences, Londrina State University, Londrina 86057-970, PR, Brazil
| | - Telma Saraiva-Santos
- Laboratory of Pain, Inflammation, Neuropathy and Cancer, Department of Pathology, Centre of Biological Sciences, Londrina State University, Londrina 86057-970, PR, Brazil
| | - Mariana M. Bertozzi
- Laboratory of Pain, Inflammation, Neuropathy and Cancer, Department of Pathology, Centre of Biological Sciences, Londrina State University, Londrina 86057-970, PR, Brazil
| | - Jessica A. Carneiro
- Laboratory of Pain, Inflammation, Neuropathy and Cancer, Department of Pathology, Centre of Biological Sciences, Londrina State University, Londrina 86057-970, PR, Brazil
| | - Anelise Franciosi
- Laboratory of Pain, Inflammation, Neuropathy and Cancer, Department of Pathology, Centre of Biological Sciences, Londrina State University, Londrina 86057-970, PR, Brazil
| | - Amanda M. Dionisio
- Laboratory of Pain, Inflammation, Neuropathy and Cancer, Department of Pathology, Centre of Biological Sciences, Londrina State University, Londrina 86057-970, PR, Brazil
| | - Tiago H. Zaninelli
- Laboratory of Pain, Inflammation, Neuropathy and Cancer, Department of Pathology, Centre of Biological Sciences, Londrina State University, Londrina 86057-970, PR, Brazil
| | - Victor Fattori
- Laboratory of Pain, Inflammation, Neuropathy and Cancer, Department of Pathology, Centre of Biological Sciences, Londrina State University, Londrina 86057-970, PR, Brazil
| | - Camila R. Ferraz
- Laboratory of Pain, Inflammation, Neuropathy and Cancer, Department of Pathology, Centre of Biological Sciences, Londrina State University, Londrina 86057-970, PR, Brazil
| | - Maiara Piva
- Laboratory of Pain, Inflammation, Neuropathy and Cancer, Department of Pathology, Centre of Biological Sciences, Londrina State University, Londrina 86057-970, PR, Brazil
| | - Sandra S. Mizokami
- Laboratory of Pain, Inflammation, Neuropathy and Cancer, Department of Pathology, Centre of Biological Sciences, Londrina State University, Londrina 86057-970, PR, Brazil
| | - Doumit Camilios-Neto
- Department of Biochemistry and Biotechnology, Centre of Exact Sciences, Londrina State University, Londrina 86057-970, PR, Brazil
| | - Rubia Casagrande
- Department of Pharmaceutical Sciences, Centre of Health Science, Londrina State University, Londrina 86039-440, PR, Brazil
| | - Waldiceu A. Verri
- Laboratory of Pain, Inflammation, Neuropathy and Cancer, Department of Pathology, Centre of Biological Sciences, Londrina State University, Londrina 86057-970, PR, Brazil
- Correspondence: ; Tel.: +55-43-3371-4979
| |
Collapse
|
7
|
Takayama KS, Monteiro MC, Saito P, Pinto IC, Nakano CT, Martinez RM, Thomaz DV, Verri WA, Baracat MM, Arakawa NS, Russo HM, Zeraik ML, Casagrande R, Couto RODO, Georgetti SR. Rosmarinus officinalis extract-loaded emulgel prevents UVB irradiation damage to the skin. AN ACAD BRAS CIENC 2022; 94:e20201058. [PMID: 36477988 DOI: 10.1590/0001-3765202220201058] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2020] [Accepted: 01/08/2021] [Indexed: 12/07/2022] Open
Abstract
UVB-irradiation increases the risk of various skin disorders, therefore leading to inflammation and oxidative stress. In this sense, antioxidant-rich herbs such as Rosmarinus officinalis may be useful in minimizing the damage promoted by reactive oxygen species. In this work, we report the efficacy of a R. officinalis hydroethanolic extract (ROe)-loaded emulgel in preventing UVB-related skin damage. Total phenols were determined using Folin-Ciocalteu assay, and the main phytocomponents in the extract were identified by UHPLC-HRMS. Moreover, in vitro sun protection factor (SPF) value of ROe was also assessed, and we investigated the in vivo protective effect of an emulgel containing ROe against UVB-induced damage in an animal model. The ROe exhibited commercially viable SPF activity (7.56 ± 0.16) and remarkable polyphenolic content (24.15 ± 0.11 mg (Eq.GA)/g). HPLC-MS and UHPLC-HRMS results showcased that the main compounds in ROe were: rosmarinic acid, carnosic acid and carnosol. The evaluation of the in vitro antioxidant activity demonstrated a dose-dependent effect of ROe against several radicals and the capacity to reduce iron. Therefore, we demonstrated that topical application of the formulation containing ROe inhibited edema formation, myeloperoxidase activity, GSH depletion and maintained ferric reducing (FRAP) and ABTS scavenging abilities of the skin after UVB exposure.
Collapse
Affiliation(s)
- Kátia S Takayama
- Universidade Estadual de Londrina - UEL, Departamento de Ciências Farmacêuticas, Avenida Robert Koch, 60, Hospital Universitário, 86038-350 Londrina, PR, Brazil
| | - Mariana C Monteiro
- Universidade Estadual de Londrina - UEL, Departamento de Ciências Farmacêuticas, Avenida Robert Koch, 60, Hospital Universitário, 86038-350 Londrina, PR, Brazil
| | - Priscila Saito
- Universidade Estadual de Londrina - UEL, Departamento de Ciências Farmacêuticas, Avenida Robert Koch, 60, Hospital Universitário, 86038-350 Londrina, PR, Brazil
| | - Ingrid C Pinto
- Universidade Estadual de Londrina - UEL, Departamento de Ciências Farmacêuticas, Avenida Robert Koch, 60, Hospital Universitário, 86038-350 Londrina, PR, Brazil
| | - Claudia T Nakano
- Universidade Estadual de Londrina - UEL, Departamento de Ciências Farmacêuticas, Avenida Robert Koch, 60, Hospital Universitário, 86038-350 Londrina, PR, Brazil
| | - Renata M Martinez
- Universidade Estadual de Londrina - UEL, Departamento de Ciências Farmacêuticas, Avenida Robert Koch, 60, Hospital Universitário, 86038-350 Londrina, PR, Brazil
| | - Douglas V Thomaz
- Universidade Federal de Goiás, Faculdade de Farmácia, Rua 240, s/n, Setor Leste Universitário, 74605-170 Goiânia, GO, Brazil
| | - Waldiceu A Verri
- Universidade Estadual de Londrina - UEL, Departamento de Patologia, Rodovia Celso Garcia Cid, Km 380, PR 445, Caixa Postal 10011, 86051-980 Londrina, PR, Brazil
| | - Marcela M Baracat
- Universidade Estadual de Londrina - UEL, Departamento de Ciências Farmacêuticas, Avenida Robert Koch, 60, Hospital Universitário, 86038-350 Londrina, PR, Brazil
| | - Nilton S Arakawa
- Universidade Estadual de Londrina - UEL, Departamento de Ciências Farmacêuticas, Avenida Robert Koch, 60, Hospital Universitário, 86038-350 Londrina, PR, Brazil
| | - Helena M Russo
- Universidade Estadual Paulista - UNESP, Instituto de Química, Núcleos de Bioensaios, Biossíntese e Ecofisiologia de Produtos Naturais -NuBBE, Departamento de Química Orgânica, Avenida Prof. Francisco Degni, 55, 14800-060 Araraquara, SP, Brazil
| | - Maria L Zeraik
- Universidade Estadual de Londrina - UEL, Laboratório de Fitoquímica e Biomoléculas - LabFitoBio, Departamento de Química, Rodovia Celso Garcia Cid, Km 380, 86051-990 Londrina, PR, Brazil
| | - Rubia Casagrande
- Universidade Estadual de Londrina - UEL, Departamento de Ciências Farmacêuticas, Avenida Robert Koch, 60, Hospital Universitário, 86038-350 Londrina, PR, Brazil
| | - Renê O DO Couto
- Universidade Federal de São João del-Rei, Laboratório de Desenvolvimento Farmacotécnico - LADEF, Campus Centro-Oeste Dona Lindu, Rua Sebastião Gonçalves Coelho, 35501-296 Divinópolis, MG, Brazil
| | - Sandra R Georgetti
- Universidade Estadual de Londrina - UEL, Departamento de Ciências Farmacêuticas, Avenida Robert Koch, 60, Hospital Universitário, 86038-350 Londrina, PR, Brazil
| |
Collapse
|
8
|
The Flavonoid Hesperidin Methyl Chalcone Targets Cytokines and Oxidative Stress to Reduce Diclofenac-Induced Acute Renal Injury: Contribution of the Nrf2 Redox-Sensitive Pathway. Antioxidants (Basel) 2022; 11:antiox11071261. [PMID: 35883752 PMCID: PMC9312103 DOI: 10.3390/antiox11071261] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2022] [Accepted: 06/24/2022] [Indexed: 11/16/2022] Open
Abstract
Hesperidin is derived from citrus fruits among other plants. Hesperidin was methylated to increase its solubility, generating hesperidin methyl chalcone (HMC), an emerging flavonoid that possess anti-inflammatory and antioxidant properties. The nuclear factor erythroid 2-related factor 2 (Nrf2) is a powerful regulator of cellular resistance to oxidant products. Previous data evidenced HMC can activate Nrf2 signaling, providing antioxidant protection against diverse pathological conditions. However, its effects on kidney damage caused by non-steroidal anti-inflammatory drugs (NSAIDs) have not been evaluated so far. Mice received a nephrotoxic dose of diclofenac (200 mg/kg) orally followed by intra-peritoneal (i.p.) administration of HMC (0.03–3 mg/kg) or vehicle. Plasmatic levels of urea, creatinine, oxidative stress, and cytokines were assessed. Regarding the kidneys, oxidative parameters, cytokine production, kidney swelling, urine NGAL, histopathology, and Nrf2 mRNA expression and downstream targets were evaluated. HMC dose-dependently targeted diclofenac systemic alterations by decreasing urea and creatinine levels, and lipid peroxidation, as well as IL-6, IFN-γ, and IL-33 production, and restored antioxidant properties in plasma samples. In kidney samples, HMC re-established antioxidant defenses, inhibited lipid peroxidation and pro-inflammatory cytokines and upregulated IL-10, reduced kidney swelling, urine NGAL, and histopathological alterations. Additionally, HMC induced mRNA expression of Nrf2 and its downstream effectors HO-1 and Nqo1, as well as reduced the levels of Keap1 protein detected in renal tissue. The present data demonstrate HMC is a potential compound for the treatment of acute renal damage caused by diclofenac, a routinely prescribed non-steroidal anti-inflammatory drug.
Collapse
|
9
|
Maciejewska N, Olszewski M, Jurasz J, Serocki M, Dzierzynska M, Cekala K, Wieczerzak E, Baginski M. Novel chalcone-derived pyrazoles as potential therapeutic agents for the treatment of non-small cell lung cancer. Sci Rep 2022; 12:3703. [PMID: 35260633 PMCID: PMC8904451 DOI: 10.1038/s41598-022-07691-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2021] [Accepted: 02/23/2022] [Indexed: 11/25/2022] Open
Abstract
Lung cancer is considered to account for approximately one-fifth of all malignant tumor-related deaths worldwide and is therefore one of the most lethal malignancies. Pyrazole scaffold possesses a wide range of biological and pharmacological activities, which play important roles in medicinal chemistry. The present study reports the synthesis and in vitro biological characterization of nine pyrazoles derived from chalcones as potential anticancer agents for non-small cell lung cancer A-549, H226, and H460 cell lines. Most of the compounds efficiently inhibited the growth of all the tested cancer cell lines at micromolar concentrations. One of the most active compounds (PCH-1) was further evaluated for its effect on cell cycle distribution, apoptosis, migration, epithelial–mesenchymal transition, and oxidative stress. Furthermore, studies on the mechanism of action revealed that PCH-1 disrupts microtubule assembly, leading to cancer cell death. Molecular modeling studies confirmed the potent interaction of PCH-1 with the vinblastine binding site on tubulin. Overall, this study provides novel opportunities to identify anticancer agents in the pyrazole series.
Collapse
Affiliation(s)
- Natalia Maciejewska
- Faculty of Chemistry, Gdansk University of Technology, Gabriela Narutowicza 11/12, 80-233, Gdańsk, Poland.
| | - Mateusz Olszewski
- Faculty of Chemistry, Gdansk University of Technology, Gabriela Narutowicza 11/12, 80-233, Gdańsk, Poland
| | - Jakub Jurasz
- Faculty of Chemistry, Gdansk University of Technology, Gabriela Narutowicza 11/12, 80-233, Gdańsk, Poland
| | - Marcin Serocki
- Ryvu Therapeutics, Leona Henryka Sternbacha 2, 30-394, Kraków, Poland
| | - Maria Dzierzynska
- Faculty of Chemistry, University of Gdansk, Wita Stwosza 63, 80-308, Gdańsk, Poland
| | - Katarzyna Cekala
- Faculty of Chemistry, University of Gdansk, Wita Stwosza 63, 80-308, Gdańsk, Poland
| | - Ewa Wieczerzak
- Faculty of Chemistry, University of Gdansk, Wita Stwosza 63, 80-308, Gdańsk, Poland
| | - Maciej Baginski
- Faculty of Chemistry, Gdansk University of Technology, Gabriela Narutowicza 11/12, 80-233, Gdańsk, Poland
| |
Collapse
|
10
|
Melo CPB, Saito P, Vale DL, Rodrigues CCA, Pinto IC, Martinez RM, Bezerra JR, Baracat MM, Verri WA, Fonseca-Bazzo YM, Georgetti SR, Casagrande R. Protection against UVB deleterious skin effects in a mouse model: effect of a topical emulsion containing Cordia verbenacea extract. Photochem Photobiol Sci 2021; 20:1033-1051. [PMID: 34297334 DOI: 10.1007/s43630-021-00079-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2021] [Accepted: 07/16/2021] [Indexed: 01/10/2023]
Abstract
Cordia verbenacea DC (Boraginaceae) is a flowering shrub found along the Brazilian Atlantic Forest, Brazilian coast, and low areas of the Amazon. The crude extract of its leaves is widely used in Brazilian folk medicine as an anti-inflammatory, both topically and orally. The aim of this study is to evaluate the activity of C. verbenacea ethanolic leaves extract (CVE) against UVB-triggered cutaneous inflammation and oxidative damage in hairless mice. CVE treatment recovered cutaneous antioxidant capacity demonstrated by scavenging ABTS+ free radical and iron-reducing antioxidant potential evaluated by FRAP. CVE also controlled the following UV-triggered events in the skin: reduced glutathione (GSH) depletion, catalase activity decrease, and superoxide anion (O⋅-) build-up. Furthermore, mice treated with CVE exhibited less inflammation, shown by the reduction in COX-2 expression, TNF-α, IL-1β, IL-6, edema, and neutrophil infiltration. CVE also regulated epidermal thickening and sunburn cells, reduced dermal mast cells, and preserved collagen integrity. The best results were obtained using 5% CVE-added emulsion. The present data demonstrate that topical administration of CVE presents photochemoprotective activity in a mouse model of UVB inflammation and oxidative stress. Because of the intricate network linking inflammation, oxidative stress, and skin cancer, these results also indicate the importance of further studies elucidating a possible role of C. verbenacea in the prevention of UVB-induced skin cancer and evaluating a potential synergy between CVE and sunscreens in topical products against UVB damaging effects to the skin.
Collapse
Affiliation(s)
- Cristina P B Melo
- Pharmaceutical Sciences Department, State University of Londrina-UEL, University Hospital, Avenida Robert Koch, 60, Vila Operária, Londrina, Paraná, CEP 86039-440, Brazil
| | - Priscila Saito
- Pharmaceutical Sciences Department, State University of Londrina-UEL, University Hospital, Avenida Robert Koch, 60, Vila Operária, Londrina, Paraná, CEP 86039-440, Brazil
| | - David L Vale
- Pharmaceutical Sciences Department, State University of Londrina-UEL, University Hospital, Avenida Robert Koch, 60, Vila Operária, Londrina, Paraná, CEP 86039-440, Brazil
| | - Camilla C A Rodrigues
- Pharmaceutical Sciences Department, State University of Londrina-UEL, University Hospital, Avenida Robert Koch, 60, Vila Operária, Londrina, Paraná, CEP 86039-440, Brazil
| | - Ingrid C Pinto
- Pharmaceutical Sciences Department, State University of Londrina-UEL, University Hospital, Avenida Robert Koch, 60, Vila Operária, Londrina, Paraná, CEP 86039-440, Brazil
| | - Renata M Martinez
- Pharmaceutical Sciences Department, State University of Londrina-UEL, University Hospital, Avenida Robert Koch, 60, Vila Operária, Londrina, Paraná, CEP 86039-440, Brazil
| | - Julia R Bezerra
- Pharmaceutical Sciences Department, State University of Londrina-UEL, University Hospital, Avenida Robert Koch, 60, Vila Operária, Londrina, Paraná, CEP 86039-440, Brazil
| | - Marcela M Baracat
- Pharmaceutical Sciences Department, State University of Londrina-UEL, University Hospital, Avenida Robert Koch, 60, Vila Operária, Londrina, Paraná, CEP 86039-440, Brazil
| | - Waldiceu A Verri
- Pathological Sciences Department, State University of Londrina-UEL, Km 380 Celso Garcia Cid Hwy (PR-445), P.O. Box 10.011, Londrina, Paraná, 86057-970, Brazil
| | - Yris Maria Fonseca-Bazzo
- Quality Control Laboratory, School of Health Sciences, University of Brasilia, Campus Darcy Ribeiro, Asa Norte, Brasília, DF, CEP 70910-900, Brazil
| | - Sandra R Georgetti
- Pharmaceutical Sciences Department, State University of Londrina-UEL, University Hospital, Avenida Robert Koch, 60, Vila Operária, Londrina, Paraná, CEP 86039-440, Brazil
| | - Rubia Casagrande
- Pharmaceutical Sciences Department, State University of Londrina-UEL, University Hospital, Avenida Robert Koch, 60, Vila Operária, Londrina, Paraná, CEP 86039-440, Brazil.
| |
Collapse
|
11
|
Vale DL, Martinez RM, Medeiros DC, da Rocha C, Sfeir N, Lopez RFV, Vicentini FTMC, Verri WA, Georgetti SR, Baracat MM, Casagrande R. A topical formulation containing quercetin-loaded microcapsules protects against oxidative and inflammatory skin alterations triggered by UVB irradiation: enhancement of activity by microencapsulation. J Drug Target 2021; 29:983-997. [PMID: 33685319 DOI: 10.1080/1061186x.2021.1898621] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Ultraviolet B (UVB) irradiation causes free radical production, increase inflammation and oxidative stress, thus, supporting the use of antioxidants by topical administration as therapeutic approaches. Quercetin (QC) is a flavonoid with antioxidant activity, however, high liposolubility makes it difficult to remain in the viable skin layer. Thus, this study evaluated whether microencapsulation of QC would enhance its activity in comparison with the same dose of free QC (non-active dose) and unloaded-microcapsules added in formulation for topical administration in a mouse model of UVB irradiation targeting the skin. Topical formulation containing Quercetin-loaded microcapsules (TFcQCMC) presents physico-chemical (colour, consistence, phase separation and pH) and functional antioxidant stability at 4 °C, room temperature and 40 °C for 6 months. TFcQCMC inhibited the UVB-triggered depletion of antioxidants observed by GSH (reduced glutathione), ability to reduce iron, ability to scavenge 2,2'-azinobis radical and catalase activity. TFcQCMC also inhibited markers of oxidation (lipid hydroperoxides and superoxide anion production). Concerning inflammation, TFcQCMC reduced the production of inflammatory cytokines, matrix metalloproteinase-9 activity, skin edoema, collagen fibre damage, myeloperoxidase activity/neutrophil recruitment, mast cell and sunburn cell counts. The pharmacological activity of TFcQCMC was not shared by the same pharmaceutical form containing the same dose of free QC or unloaded control microcapsules.
Collapse
Affiliation(s)
- David L Vale
- Departamento de Ciências Farmacêuticas, Universidade Estadual de Londrina-UEL, Avenida Robert Koch, 60, Hospital Universitário, Londrina, Brazil
| | - Renata M Martinez
- Departamento de Ciências Farmacêuticas, Universidade Estadual de Londrina-UEL, Avenida Robert Koch, 60, Hospital Universitário, Londrina, Brazil
| | - Daniela C Medeiros
- Departamento de Ciências Patológicas, Centro de Ciências Biológicas, Universidade Estadual de Londrina-UEL, Londrina, Brazil
| | - Camila da Rocha
- Departamento de Ciências Farmacêuticas, Universidade Estadual de Londrina-UEL, Avenida Robert Koch, 60, Hospital Universitário, Londrina, Brazil
| | - Natália Sfeir
- Departamento de Ciências Farmacêuticas, Universidade Estadual de Londrina-UEL, Avenida Robert Koch, 60, Hospital Universitário, Londrina, Brazil
| | - Renata F V Lopez
- Departamento de Ciências Farmacêuticas, Faculdade de Ciências Farmacêuticas de Ribeirão Preto-USP, Ribeirão Preto, Brazil
| | - Fabiana T M C Vicentini
- Departamento de Ciências Farmacêuticas, Faculdade de Ciências Farmacêuticas de Ribeirão Preto-USP, Ribeirão Preto, Brazil
| | - Waldiceu A Verri
- Departamento de Ciências Patológicas, Centro de Ciências Biológicas, Universidade Estadual de Londrina-UEL, Londrina, Brazil
| | - Sandra R Georgetti
- Departamento de Ciências Farmacêuticas, Universidade Estadual de Londrina-UEL, Avenida Robert Koch, 60, Hospital Universitário, Londrina, Brazil
| | - Marcela M Baracat
- Departamento de Ciências Farmacêuticas, Universidade Estadual de Londrina-UEL, Avenida Robert Koch, 60, Hospital Universitário, Londrina, Brazil
| | - Rúbia Casagrande
- Departamento de Ciências Farmacêuticas, Universidade Estadual de Londrina-UEL, Avenida Robert Koch, 60, Hospital Universitário, Londrina, Brazil
| |
Collapse
|
12
|
Pudlarz AM, Czechowska E, S Karbownik M, Ranoszek-Soliwoda K, Tomaszewska E, Celichowski G, Grobelny J, Chabielska E, Gromotowicz-Popławska A, Szemraj J. The effect of immobilized antioxidant enzymes on the oxidative stress in UV-irradiated rat skin. Nanomedicine (Lond) 2020; 15:23-39. [PMID: 31868116 DOI: 10.2217/nnm-2019-0166] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
Aim: Superoxide dismutase (SOD) and catalase (CAT) immobilized on gold nanoparticles (AuNP) and silver nanoparticles (AgNP) nanoparticles were used to reduce UV radiation-induced oxidative stress in rat skin. Materials & methods: The antioxidant influence of the enzymes was investigated on level of malondialdehyde, 8-hydroksy-2'deoksyguanozine, myeloperoxidase, total antioxidant capacity, SOD2 and CAT activity and expression, and glutathione and glutathione peroxidase activity. Results: The application of immobilized SOD and CAT on UV-irradiated skin reduced malondialdehyde and 8-hydroksy-2'deoksyguanozine levels also SOD and CAT activity and expression increased. The tested enzymes influence glutathione peroxidase activity and level of total antioxidant capacity and glutathione. Conclusion: Immobilized enzymes increased the antioxidative potential of skin following UV irradiation.
Collapse
Affiliation(s)
| | - Ewa Czechowska
- Department of Materials Technology & Chemistry, Faculty of Chemistry, University of Lodz, st. Pomorska 163, 90-236, Lodz, Poland
| | - Michał S Karbownik
- Department of Pharmacology & Toxicology, Medical University of Lodz, st. Żeligowskiego 7/9, 90-752, Lodz, Poland
| | - Katarzyna Ranoszek-Soliwoda
- Department of Materials Technology & Chemistry, Faculty of Chemistry, University of Lodz, st. Pomorska 163, 90-236, Lodz, Poland
| | - Emilia Tomaszewska
- Department of Materials Technology & Chemistry, Faculty of Chemistry, University of Lodz, st. Pomorska 163, 90-236, Lodz, Poland
| | - Grzegorz Celichowski
- Department of Materials Technology & Chemistry, Faculty of Chemistry, University of Lodz, st. Pomorska 163, 90-236, Lodz, Poland
| | - Jarosław Grobelny
- Department of Materials Technology & Chemistry, Faculty of Chemistry, University of Lodz, st. Pomorska 163, 90-236, Lodz, Poland
| | - Ewa Chabielska
- Department of Biopharmacy, Medical University of Bialystok, st. Mickiewicza 2c, 15-089, Bialystok, Poland
| | - Anna Gromotowicz-Popławska
- Department of Biopharmacy, Medical University of Bialystok, st. Mickiewicza 2c, 15-089, Bialystok, Poland
| | - Janusz Szemraj
- Department of Medical Biochemistry, Medical University of Lodz, 6/8 Mazowiecka Street, 92-215, Lodz, Poland
| |
Collapse
|
13
|
Guazelli CFS, Fattori V, Ferraz CR, Borghi SM, Casagrande R, Baracat MM, Verri WA. Antioxidant and anti-inflammatory effects of hesperidin methyl chalcone in experimental ulcerative colitis. Chem Biol Interact 2020; 333:109315. [PMID: 33171134 DOI: 10.1016/j.cbi.2020.109315] [Citation(s) in RCA: 59] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2020] [Revised: 10/05/2020] [Accepted: 11/04/2020] [Indexed: 12/20/2022]
Abstract
Neutrophil infiltration, pro-inflammatory cytokines, and reactive oxygen species (ROS) production have been implicated in development and progression of ulcerative colitis (UC), an inflammatory bowel disease (IBD) characterized by ulcerating inflammation of the mucosal layer generally restricted to the colon. The side effects, safety and human intolerance are limitations of the currently approved treatments for UC. Hesperidin methyl chalcone (HMC) is a flavonoid used to treat chronic venous disease, which shows anti-inflammatory, analgesic, and antioxidant properties in pre-clinical studies, however, its effects on colitis have never been described. Therefore, we aimed to evaluate the protective effects of HMC in a mouse model of acetic acid-induced colitis. Treatment with HMC significantly reduced neutrophil infiltration, edema, colon shortening, macro and microscopic damages induced by intracolonic administration of acetic acid. The improvement of colitis after HMC treatment is related to the increase in colon antioxidant status, and the inhibition of pro-inflammatory cytokines TNF-α, IL-6, IL-1β, and IL-33 in the colon. We observed, moreover, that HMC inhibited NF-κB activation in the colon, which might explain the reduction of the cytokines we observed. Finally, these results demonstrate a novel applicability of HMC to increase antioxidant response and reduce inflammation during acetic acid-induced colitis suggesting it as a promising therapeutic approach for the treatment of ulcerative colitis.
Collapse
Affiliation(s)
- Carla F S Guazelli
- Laboratório de Dor, Inflamação, Neuropatia e Câncer, Departamento de Ciências Patológicas, Universidade Estadual de Londrina, Londrina, PR, Brazil
| | - Victor Fattori
- Laboratório de Dor, Inflamação, Neuropatia e Câncer, Departamento de Ciências Patológicas, Universidade Estadual de Londrina, Londrina, PR, Brazil
| | - Camila R Ferraz
- Laboratório de Dor, Inflamação, Neuropatia e Câncer, Departamento de Ciências Patológicas, Universidade Estadual de Londrina, Londrina, PR, Brazil; Laboratório de Antioxidantes e Inflamação, Departamento de Ciências Farmacêuticas, Universidade Estadual de Londrina Londrina, Londrina, PR, Brazil
| | - Sergio M Borghi
- Laboratório de Dor, Inflamação, Neuropatia e Câncer, Departamento de Ciências Patológicas, Universidade Estadual de Londrina, Londrina, PR, Brazil; Center for Research in Health Sciences, University of Northern Paraná, Londrina, PR, Brazil
| | - Rubia Casagrande
- Laboratório de Antioxidantes e Inflamação, Departamento de Ciências Farmacêuticas, Universidade Estadual de Londrina Londrina, Londrina, PR, Brazil; Departamento de Ciências Farmacêuticas, Universidade Estadual de Londrina, Londrina, PR, Brazil
| | - Marcela M Baracat
- Departamento de Ciências Farmacêuticas, Universidade Estadual de Londrina, Londrina, PR, Brazil
| | - Waldiceu A Verri
- Laboratório de Dor, Inflamação, Neuropatia e Câncer, Departamento de Ciências Patológicas, Universidade Estadual de Londrina, Londrina, PR, Brazil.
| |
Collapse
|
14
|
Cho EJ, Lee YG, Chang J, Bae HJ. A High-Yield Process for Production of Biosugars and Hesperidin from Mandarin Peel Wastes. Molecules 2020; 25:E4286. [PMID: 32962056 PMCID: PMC7571014 DOI: 10.3390/molecules25184286] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2020] [Revised: 09/16/2020] [Accepted: 09/18/2020] [Indexed: 11/16/2022] Open
Abstract
In this research, novel biorefinery processes for obtaining value-added chemicals such as biosugar and hesperidin from mandarin peel waste (MPW) are described. Herein, three different treatment methods were comparatively evaluated to obtain high yields of biosugar and hesperidin from MPW. Each method was determined by changes in the order of three processing steps, i.e., oil removal, hesperidin extraction, and enzymatic hydrolysis. The order of the three steps was found to have a significant influence on the production yields. Biosugar and hesperidin production yields were highest with method II, where the processing steps were performed in the following order: oil removal, enzymatic hydrolysis, and hesperidin extraction. The maximum yields obtained with method II were 34.46 g of biosugar and 6.48 g of hesperidin per initial 100 g of dry MPW. Therefore, the methods shown herein are useful for the production of hesperidin and biosugar from MPW. Furthermore, the utilization of MPWs as sources of valuable materials may be of considerable economic benefits and has become increasingly attractive.
Collapse
Affiliation(s)
- Eun Jin Cho
- Bio-energy Research Center, Chonnam National University, Gwangju 61186, Korea;
| | - Yoon Gyo Lee
- Department of Bioenergy science and Technology, Chonnam National University, Gwangju 61186, Korea; (Y.G.L.); (J.C.)
| | - Jihye Chang
- Department of Bioenergy science and Technology, Chonnam National University, Gwangju 61186, Korea; (Y.G.L.); (J.C.)
| | - Hyeun-Jong Bae
- Bio-energy Research Center, Chonnam National University, Gwangju 61186, Korea;
- Department of Bioenergy science and Technology, Chonnam National University, Gwangju 61186, Korea; (Y.G.L.); (J.C.)
| |
Collapse
|
15
|
Zhao Y, Jiao Y, Wang L. Hesperidin methyl chalcone alleviates spinal tuberculosis in New Zealand white rabbits by suppressing immune responses. J Spinal Cord Med 2020; 43:532-539. [PMID: 30124375 PMCID: PMC7480517 DOI: 10.1080/10790268.2018.1507805] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/29/2023] Open
Abstract
Objective: Spinal tuberculosis (ST) refers to tuberculosis resulted from infections of Mycobacterium tuberculosis (Mtb) in the spinal cord. Hesperidin methyl chalcone (HMC) is a flavonoid derivative from citrus fruits with anti-inflammatory properties. We aimed to investigate the efficacy of HMC in treating ST in New Zealand white rabbit model. Design and Setting: Rabbits were infected in the sixth lumbar vertebral bodies with or without Mtb strain H37Rv followed by treatments with HMC. Outcome Measures: 10 weeks post treatments, the adjacent vertebral tissues were examined by hematoxylin-eosin staining. The expression levels of transcription factor κB (NF-κB) p65 and monocyte chemoattractant protein-1 (MCP-1/CCL2) in lymphocytes were determined using reverse transcription quantitative real-time PCR (RT-qPCR), Western blot and enzyme-linked immunosorbent assays (ELISA). The serum levels of interleukin (IL)-2, IL-4, IL-10 as well as interferon (IFN)-γ were also assessed using ELISA. Western blot was used to determine the effects of HMC on the phosphorylation of IKKα/β, p65, and IκBα in the signal transduction of NF-κB pathways. Results: HMC significantly attenuated the granulation in adjacent vertebral bone tissues. The expression of p65, IL-4, IL-10, and MCP-1 was reduced. The NF-κB pathway was suppressed, in which the phosphorylation of IκBα, IKKα/β, and p65 was inhibited whereas the relative level of IκBα was increased. Conclusion: HMC could serve as a therapeutic option to effectively inhibit granulomas formation through downregulation of MCP-1, IL-4, IL-10, and NF-κB in the treatment of ST.
Collapse
Affiliation(s)
- Yi Zhao
- Department of Orthopaedics, Dongzhimen Hospital Affiliated to Beijing University of Chinese Medicine, Beijing, People’s Republic of China
| | - Yong Jiao
- Department of Orthopaedics, Dongzhimen Hospital Affiliated to Beijing University of Chinese Medicine, Beijing, People’s Republic of China
| | - Lei Wang
- Department of Anesthesiology, Dongzhimen Hospital Affiliated to Beijing University of Chinese Medicine, Beijing, People’s Republic of China,Correspondence to: Lei Wang, Department of Anesthesiology, Dongzhimen Hospital Affiliated to Beijing University of Chinese Medicine, No. 5 Haiyun Cang, Beijing100700, People’s Republic of China; Tel.: +86-010-84013151, Fax.: +86-010-84013151.
| |
Collapse
|
16
|
The Lipoxin Receptor/FPR2 Agonist BML-111 Protects Mouse Skin Against Ultraviolet B Radiation. Molecules 2020; 25:molecules25122953. [PMID: 32604968 PMCID: PMC7356842 DOI: 10.3390/molecules25122953] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2019] [Revised: 12/30/2019] [Accepted: 01/02/2020] [Indexed: 12/30/2022] Open
Abstract
Excessive exposure to UV, especially UVB, is the most important risk factor for skin cancer and premature skin aging. The identification of the specialized pro-resolving lipid mediators (SPMs) challenged the preexisting paradigm of how inflammation ends. Rather than a passive process, the resolution of inflammation relies on the active production of SPMs, such as Lipoxins (Lx), Maresins, protectins, and Resolvins. LXA4 is an SPM that exerts its action through ALX/FPR2 receptor. Stable ALX/FPR2 agonists are required because SPMs can be quickly metabolized within tissues near the site of formation. BML-111 is a commercially available synthetic ALX/FPR2 receptor agonist with analgesic, antioxidant, and anti-inflammatory properties. Based on that, we aimed to determine the effect of BML-111 in a model of UVB-induced skin inflammation in hairless mice. We demonstrated that BML-111 ameliorates the signs of UVB-induced skin inflammation by reducing neutrophil recruitment and mast cell activation. Reduction of these cells by BML-111 led to lower number of sunburn cells formation, decrease in epidermal thickness, collagen degradation, cytokine production (TNF-α, IL-1β, IL-6, TGF, and IL-10), and oxidative stress (observed by an increase in total antioxidant capacity and Nrf2 signaling pathway), indicating that BML-111 might be a promising drug to treat skin disorders.
Collapse
|
17
|
Ferraz CR, Carvalho TT, Manchope MF, Artero NA, Rasquel-Oliveira FS, Fattori V, Casagrande R, Verri WA. Therapeutic Potential of Flavonoids in Pain and Inflammation: Mechanisms of Action, Pre-Clinical and Clinical Data, and Pharmaceutical Development. Molecules 2020; 25:E762. [PMID: 32050623 PMCID: PMC7037709 DOI: 10.3390/molecules25030762] [Citation(s) in RCA: 127] [Impact Index Per Article: 31.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2019] [Revised: 02/01/2020] [Accepted: 02/07/2020] [Indexed: 12/19/2022] Open
Abstract
Pathological pain can be initiated after inflammation and/or peripheral nerve injury. It is a consequence of the pathological functioning of the nervous system rather than only a symptom. In fact, pain is a significant social, health, and economic burden worldwide. Flavonoids are plant derivative compounds easily found in several fruits and vegetables and consumed in the daily food intake. Flavonoids vary in terms of classes, and while structurally unique, they share a basic structure formed by three rings, known as the flavan nucleus. Structural differences can be found in the pattern of substitution in one of these rings. The hydroxyl group (-OH) position in one of the rings determines the mechanisms of action of the flavonoids and reveals a complex multifunctional activity. Flavonoids have been widely used for their antioxidant, analgesic, and anti-inflammatory effects along with safe preclinical and clinical profiles. In this review, we discuss the preclinical and clinical evidence on the analgesic and anti-inflammatory proprieties of flavonoids. We also focus on how the development of formulations containing flavonoids, along with the understanding of their structure-activity relationship, can be harnessed to identify novel flavonoid-based therapies to treat pathological pain and inflammation.
Collapse
Affiliation(s)
- Camila R. Ferraz
- Departament of Pathology, Center of Biological Sciences, Londrina State University, 86057–970 Londrina, Paraná, Brazil; (C.R.F.); (T.T.C.); (M.F.M.); (N.A.A.); (F.S.R.-O.); (V.F.)
| | - Thacyana T. Carvalho
- Departament of Pathology, Center of Biological Sciences, Londrina State University, 86057–970 Londrina, Paraná, Brazil; (C.R.F.); (T.T.C.); (M.F.M.); (N.A.A.); (F.S.R.-O.); (V.F.)
| | - Marília F. Manchope
- Departament of Pathology, Center of Biological Sciences, Londrina State University, 86057–970 Londrina, Paraná, Brazil; (C.R.F.); (T.T.C.); (M.F.M.); (N.A.A.); (F.S.R.-O.); (V.F.)
| | - Nayara A. Artero
- Departament of Pathology, Center of Biological Sciences, Londrina State University, 86057–970 Londrina, Paraná, Brazil; (C.R.F.); (T.T.C.); (M.F.M.); (N.A.A.); (F.S.R.-O.); (V.F.)
| | - Fernanda S. Rasquel-Oliveira
- Departament of Pathology, Center of Biological Sciences, Londrina State University, 86057–970 Londrina, Paraná, Brazil; (C.R.F.); (T.T.C.); (M.F.M.); (N.A.A.); (F.S.R.-O.); (V.F.)
| | - Victor Fattori
- Departament of Pathology, Center of Biological Sciences, Londrina State University, 86057–970 Londrina, Paraná, Brazil; (C.R.F.); (T.T.C.); (M.F.M.); (N.A.A.); (F.S.R.-O.); (V.F.)
| | - Rubia Casagrande
- Departament of Pharmaceutical Sciences, Center of Health Sciences, Londrina State University, 86057–970 Londrina, Paraná, Brazil
| | - Waldiceu A. Verri
- Departament of Pathology, Center of Biological Sciences, Londrina State University, 86057–970 Londrina, Paraná, Brazil; (C.R.F.); (T.T.C.); (M.F.M.); (N.A.A.); (F.S.R.-O.); (V.F.)
| |
Collapse
|
18
|
Jumina J, Styaningrum RW, Siswanta D, Triono S, Priastomo Y, Harizal H, Sholikhah EN, Zulkarnain AK. Synthesis and Preliminary Evaluation of Several Chalcone Derivatives as Sunscreen Compounds. CHEMISTRY JOURNAL OF MOLDOVA 2019. [DOI: 10.19261/cjm.2019.624] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
|
19
|
Man MQ, Yang B, Elias PM. Benefits of Hesperidin for Cutaneous Functions. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE : ECAM 2019; 2019:2676307. [PMID: 31061668 PMCID: PMC6466919 DOI: 10.1155/2019/2676307] [Citation(s) in RCA: 70] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 01/22/2019] [Accepted: 03/19/2019] [Indexed: 12/13/2022]
Abstract
Hesperidin is a bioflavonoid, with high concentration in citrus fruits. In addition to its well-known benefits for cardiovascular function, type II diabetes, and anti-inflammation, recent studies have demonstrated multiple benefits of hesperidin for cutaneous functions, including wound healing, UV protection, anti-inflammation, antimicrobial, antiskin cancer, and skin lightening. In addition, hesperidin enhances epidermal permeability barrier homeostasis in both normal young and aged skin. The mechanisms by which hesperidin benefits cutaneous functions are attributable to its antioxidant properties, inhibition of MAPK-dependent signaling pathways, and stimulation of epidermal proliferation, differentiation, and lipid production. Because of its low cost, wide availability, and superior safety, hesperidin could prove useful for the management of a variety of cutaneous conditions.
Collapse
Affiliation(s)
- Mao-Qiang Man
- Dermatology Hospital, Southern Medical University, Guangzhou 510091, China
- Department of Dermatology, University of California San Francisco and Veterans Affairs Medical Center, San Francisco, CA 94121, USA
| | - Bin Yang
- Dermatology Hospital, Southern Medical University, Guangzhou 510091, China
| | - Peter M. Elias
- Department of Dermatology, University of California San Francisco and Veterans Affairs Medical Center, San Francisco, CA 94121, USA
| |
Collapse
|
20
|
Treatment with maresin 1, a docosahexaenoic acid-derived pro-resolution lipid, protects skin from inflammation and oxidative stress caused by UVB irradiation. Sci Rep 2019; 9:3062. [PMID: 30816324 PMCID: PMC6395735 DOI: 10.1038/s41598-019-39584-6] [Citation(s) in RCA: 50] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2018] [Accepted: 01/22/2019] [Indexed: 12/19/2022] Open
Abstract
Acute exposure to UVB irradiation causes skin inflammation and oxidative stress, and long-term exposure to UVB irradiation may lead to carcinogenesis. Our organism has endogenous mechanisms to actively limit inflammation. Maresin 1 (MaR1; 7R,14S-dihydroxy-docosa-4Z,8E,10E,12Z,16Z,19Z-hexaenoic acid) is a pro-resolution lipid mediator derived from the docosahexaenoic acid, which presents anti-inflammatory and pro-resolution effects. However, it remains to be determined if treatment with MaR1 can inhibit inflammatory and oxidative alterations in the skin triggered by UVB. The treatment with MaR1 (0.1-10 ng/mice at -10 min relative to the UVB irradiation protocol) reduced UVB-induced skin edema, neutrophil recruitment (MPO; myeloperoxidase activity, and migration of LysM-eGFP+ cells), cytokine production, matrix metalloproteinase-9 activity, keratinocyte apoptosis, epidermal thickening, mast cells counts and degradation of skin collagen in hairless mice. UVB irradiation caused a decrease of GSH (reduced glutathione) levels, activity of the enzyme catalase, ferric reducing ability (FRAP), and ABTS radical scavenging capacity as well as induced lipid hydroperoxide, superoxide anion production, and gp91phox mRNA expression. These parameters that indicate oxidative stress were inhibited by MaR1 treatment. Therefore, these data suggest MaR1 as a promising pharmacological tool in controlling the deleterious effects related to UVB irradiation.
Collapse
|
21
|
Takshak S, Agrawal SB. Defense potential of secondary metabolites in medicinal plants under UV-B stress. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY B-BIOLOGY 2019; 193:51-88. [PMID: 30818154 DOI: 10.1016/j.jphotobiol.2019.02.002] [Citation(s) in RCA: 99] [Impact Index Per Article: 19.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/16/2018] [Revised: 02/09/2019] [Accepted: 02/11/2019] [Indexed: 01/13/2023]
Abstract
Ultraviolet-B (UV-B) radiation has, for many decades now, been widely studied with respect to its consequences on plant and animal health. Though according to NASA, the ozone hole is on its way to recovery, it will still be a considerable time before UV-B levels reach pre-industrial limits. Thus, for the present, excessive UV-B reaching the Earth is a cause for concern, and UV-B related human ailments are on the rise. Plants produce various secondary metabolites as one of the defense strategies under UV-B. They provide photoprotection via their UV-B screening effects and by quenching the reactive oxygen- and nitrogen species produced under UV-B influence. These properties of plant secondary metabolites (PSMs) are being increasingly recognized and made use of in sunscreens and cosmetics, and pharma- and nutraceuticals are gradually becoming a part of the regular diet. Secondary metabolites derived from medicinal plants (alkaloids, terpenoids, and phenolics) are a source of pharmaceuticals, nutraceuticals, as well as more rigorously tested and regulated drugs. These metabolites have been implicated in providing protection not only to plants under the influence of UV-B, but also to animals/animal cell lines, when the innate defenses in the latter are not adequate under UV-B-induced damage. The present review focuses on the defense potential of secondary metabolites derived from medicinal plants in both plants and animals. In plants, the concentrations of the alkaloids, terpenes/terpenoids, and phenolics have been discussed under UV-B irradiation as well as the fate of the genes and enzymes involved in their biosynthetic pathways. Their role in providing protection to animal models subjected to UV-B has been subsequently elucidated. Finally, we discuss the possible futuristic scenarios and implications for plant, animal, and human health pertaining to the defense potential of these secondary metabolites under UV-B radiation-mediated damages.
Collapse
Affiliation(s)
- Swabha Takshak
- Laboratory of Air Pollution and Global Climate Change, Department of Botany, Banaras Hindu University, Varanasi 221 005, India
| | - S B Agrawal
- Laboratory of Air Pollution and Global Climate Change, Department of Botany, Banaras Hindu University, Varanasi 221 005, India.
| |
Collapse
|
22
|
Saito P, Melo CPB, Martinez RM, Fattori V, Cezar TLC, Pinto IC, Bussmann AJC, Vignoli JA, Georgetti SR, Baracat MM, Verri WA, Casagrande R. The Lipid Mediator Resolvin D1 Reduces the Skin Inflammation and Oxidative Stress Induced by UV Irradiation in Hairless Mice. Front Pharmacol 2018; 9:1242. [PMID: 30429790 PMCID: PMC6220064 DOI: 10.3389/fphar.2018.01242] [Citation(s) in RCA: 42] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2018] [Accepted: 10/12/2018] [Indexed: 12/19/2022] Open
Abstract
UV irradiation-induced oxidative stress and inflammation contribute to the development of skin diseases. Therefore, targeting oxidative stress and inflammation might contribute to reduce skin diseases. Resolvin D1 (RvD1) is a bioactive metabolite generated during inflammation to actively orchestrate the resolution of inflammation. However, the therapeutic potential of RvD1 in UVB skin inflammation remains undetermined, which was, therefore, the aim of the present study. The intraperitoneal treatment with RvD1 (3-100 ng/mouse) reduced UVB irradiation-induced skin edema, myeloperoxidase activity, matrix metalloproteinase 9 activity, and reduced glutathione depletion with consistent effects observed with the dose of 30 ng/mouse, which was selected to the following experiments. RvD1 inhibited UVB reduction of catalase activity, and hydroperoxide formation, superoxide anion production, and gp91phox mRNA expression. RvD1 also increased the Nrf2 and its downstream targets NQO1 and HO-1 mRNA expression. Regarding cytokines, RvD1 inhibited UVB-induced production of IL-1β, IL-6, IL-33, TNF-α, TGF-β, and IL-10. These immuno-biochemical alterations by RvD1 treatment had as consequence the reduction of UVB-induced epidermal thickness, sunburn and mast cell counts, and collagen degradation. Therefore, RvD1 inhibited UVB-induced skin oxidative stress and inflammation, rendering this resolving lipid mediator as a promising therapeutic agent.
Collapse
Affiliation(s)
- Priscila Saito
- Laboratory of Oxidative Stress and Inflammation, Department of Pharmaceutical Sciences, Londrina State University, Londrina, Brazil
| | - Cristina P. B. Melo
- Laboratory of Oxidative Stress and Inflammation, Department of Pharmaceutical Sciences, Londrina State University, Londrina, Brazil
| | - Renata M. Martinez
- Laboratory of Oxidative Stress and Inflammation, Department of Pharmaceutical Sciences, Londrina State University, Londrina, Brazil
- Laboratory of Pain, Inflammation, Neuropathy, and Cancer, Department of Pathology, Londrina State University, Londrina, Brazil
| | - Victor Fattori
- Laboratory of Pain, Inflammation, Neuropathy, and Cancer, Department of Pathology, Londrina State University, Londrina, Brazil
| | - Talita L. C. Cezar
- Laboratory of Oxidative Stress and Inflammation, Department of Pharmaceutical Sciences, Londrina State University, Londrina, Brazil
| | - Ingrid C. Pinto
- Laboratory of Oxidative Stress and Inflammation, Department of Pharmaceutical Sciences, Londrina State University, Londrina, Brazil
| | - Allan J. C. Bussmann
- Laboratory of Pain, Inflammation, Neuropathy, and Cancer, Department of Pathology, Londrina State University, Londrina, Brazil
| | - Josiane A. Vignoli
- Department of Biochemistry and Biotechnology, Londrina State University, Londrina, Brazil
| | - Sandra R. Georgetti
- Laboratory of Oxidative Stress and Inflammation, Department of Pharmaceutical Sciences, Londrina State University, Londrina, Brazil
| | - Marcela M. Baracat
- Laboratory of Oxidative Stress and Inflammation, Department of Pharmaceutical Sciences, Londrina State University, Londrina, Brazil
| | - Waldiceu A. Verri
- Laboratory of Pain, Inflammation, Neuropathy, and Cancer, Department of Pathology, Londrina State University, Londrina, Brazil
| | - Rubia Casagrande
- Laboratory of Oxidative Stress and Inflammation, Department of Pharmaceutical Sciences, Londrina State University, Londrina, Brazil
| |
Collapse
|
23
|
Hernandez-Pigeon H, Garidou L, Galliano MF, Delga H, Aries MF, Duplan H, Bessou-Touya S, Castex-Rizzi N. Effects of dextran sulfate, 4-t-butylcyclohexanol, pongamia oil and hesperidin methyl chalcone on inflammatory and vascular responses implicated in rosacea. Clin Cosmet Investig Dermatol 2018; 11:421-429. [PMID: 30233225 PMCID: PMC6135068 DOI: 10.2147/ccid.s168621] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Background Rosacea is a chronic facial skin disorder characterized by inflammation and vascular abnormalities. The pathophysiology of rosacea involves increased activation of the capsaicin receptor, TRPV1, the vascular endothelial growth factor (VEGF) pathway, and cathelicidin LL-37, MMP-9, and KLKs. We evaluated the activity of four compounds (dextran sulfate, 4-t-butylcyclohexanol [BCH; TRP-regulin®], pongamia oil, and hesperidin methyl chalcone [HMC]) on inflammatory and vascular responses implicated in rosacea. Materials and methods The anti-inflammatory activity of dextran sulfate was evaluated on PGE2 production after PMA stimulation of NCTC-2544 keratinocytes, and on normal human epidermal keratinocytes (NHEKs) after proinflammatory stimulation to mimic a rosacea environment. The anti-angiogenic activity of dextran sulfate was measured by analyzing pseudotube formation in co-cultured human microvascular endothelial cells/normal human dermal fibroblasts. HMC modulation of vascular responses and IL-8 cytokine production after SP stimulation was evaluated in human skin explants. We also assessed the effect of BCH on TRPV1 activation, and the effect of combined BCH and pongamia oil on the inflammatory response of NHEKs. Results Dextran sulfate strongly and significantly inhibited PMA-induced PGE2 production, inhibited KLK5 and MMP-9 mRNA expression, and IL-8, IL-1α and VEGF production, and displayed a highly significant inhibitory effect on VEGF-induced pseudotube formation. In SP-stimulated human skin explants, HMC significantly decreased the proportion of dilated vessels, total vessel area, and IL-8 production. BCH significantly and dose-dependently inhibited TRPV1 activation, and BCH and pongamia oil inhibited CXCL1 and CXCL6 mRNA expression and IL-8 production in NHEKs. Combined BCH/pongamia oil inhibited IL-8 production synergistically. Conclusion These in vitro results showed that dextran sulfate, BCH, pongamia oil and HMC, possess complementary soothing and anti-redness properties, supporting their combination in Avène redness-relief cosmetic products for sensitive skin prone to redness, and for topical adjunctive rosacea treatment.
Collapse
Affiliation(s)
| | - Lucile Garidou
- Department of Pharmacology, Pierre FABRE Dermo-Cosmétique R&D Center, Toulouse, France,
| | | | - Hélène Delga
- Department of Pharmacology, Pierre FABRE Dermo-Cosmétique R&D Center, Toulouse, France,
| | - Marie-Françoise Aries
- Department of Pharmacology, Pierre FABRE Dermo-Cosmétique R&D Center, Toulouse, France,
| | - Hélène Duplan
- Department of Pharmacology, Pierre FABRE Dermo-Cosmétique R&D Center, Toulouse, France,
| | - Sandrine Bessou-Touya
- Department of Pharmacology, Pierre FABRE Dermo-Cosmétique R&D Center, Toulouse, France,
| | - Nathalie Castex-Rizzi
- Department of Pharmacology, Pierre FABRE Dermo-Cosmétique R&D Center, Toulouse, France,
| |
Collapse
|
24
|
Wang L, Chen HC, Yang X, Tao JJ, Liang G, Wu JZ, Wu WC, Wang Y, Song ZM, Zhang X. The novel chalcone analog L2H17 protects retinal ganglion cells from oxidative stress-induced apoptosis. Neural Regen Res 2018; 13:1665-1672. [PMID: 30127130 PMCID: PMC6126127 DOI: 10.4103/1673-5374.237140] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/29/2018] [Indexed: 01/28/2023] Open
Abstract
Chalcone is a plant metabolite widely found in fruits, vegetables, spices and tea, and has anti-tumor, anti-inflammation, immunomodulation, antibacterial and anti-oxidation activities, as well as many other pharmacological and biological effects. Our team has shown that its analogs have antioxidant activity, and oxidative stress is a pathological hallmark of retinal ischemia/reperfusion injury that can lead to retinal damage and visual loss. This investigation aims to identify a chalcone that protects retinal ganglion cells in vitro from the effects of oxidative stress and examine its mechanism. Rat retinal ganglion cell-5 cells were pretreated with chalcones and then exposed to tert-butyl hydroperoxide that causes oxidative damage. Controls received dimethyl sulfoxide only or tert-butyl hydroperoxide in dimethyl sulfoxide. Only (E)-3,4-dihydroxy-2'-methylether ketone (L2H17), of the five chalcone analogs, markedly increased the survival rate of oxidatively injured RGC-5 cells. Thus, subsequent experiments only analyzed the results of the L2H17 intervention. Cell viability and apoptosis were measured. Intracellular superoxide dismutase and reactive oxygen species levels were used to assess induced oxidative stress. The mechanism of action by L2H17 was explored by measuring the ER stress/UPR pathway and the expression and localization of Nrf2. All results demonstrated that L2H17 could reduce the apoptosis of oxidatively injured cells, inhibit caspase-3 activity, increase Bcl-2 expression, decrease Bad expression, increase the activity of superoxide dismutase, inhibit the production of reactive oxygen species, increase Nrf2 immunoreactivity, and reduce the activating transcription factor 4, phospho-eukaryotic initiation factor 2 and CHOP expression. L2H17 protects retinal ganglion cells induced by oxidative stress by regulating Nrf2, which indicates that it has the potential to become a drug for retinal ischemia/reperfusion.
Collapse
Affiliation(s)
- Lei Wang
- Chemical Biology Research Center, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang Province, China
- The Eye Hospital of Wenzhou Medical University, Wenzhou, Zhejiang Province, China
| | - Huai-Cheng Chen
- Chemical Biology Research Center, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang Province, China
- The Eye Hospital of Wenzhou Medical University, Wenzhou, Zhejiang Province, China
| | - Xi Yang
- Chemical Biology Research Center, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang Province, China
- The Eye Hospital of Wenzhou Medical University, Wenzhou, Zhejiang Province, China
| | - Jian-Jian Tao
- Chemical Biology Research Center, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang Province, China
- The Eye Hospital of Wenzhou Medical University, Wenzhou, Zhejiang Province, China
| | - Guang Liang
- Chemical Biology Research Center, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang Province, China
| | - Jian-Zhang Wu
- Chemical Biology Research Center, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang Province, China
| | - Wen-Can Wu
- The Eye Hospital of Wenzhou Medical University, Wenzhou, Zhejiang Province, China
| | - Yi Wang
- Chemical Biology Research Center, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang Province, China
| | - Zong-Ming Song
- The Eye Hospital of Wenzhou Medical University, Wenzhou, Zhejiang Province, China
| | - Xin Zhang
- Chemical Biology Research Center, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang Province, China
| |
Collapse
|
25
|
Martinez RM, Ivan ALM, Vale DL, Campanini MZ, Ferreira VS, Steffen VS, Vicentini FTMC, Vilela FMP, Fonseca MJV, Baracat MM, Georgetti SR, Verri WA, Casagrande R. Topical emulsion containing pyrrolidine dithiocarbamate: effectiveness against ultraviolet B irradiation-induced injury of hairless mouse skin. J Pharm Pharmacol 2018; 70:1461-1473. [PMID: 30132896 DOI: 10.1111/jphp.12997] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2018] [Accepted: 07/21/2018] [Indexed: 01/08/2023]
Abstract
OBJECTIVES To evaluate the effects of a topical emulsion containing pyrrolidine dithiocarbamate (PDTC) (EcPDTC) in skin oxidative stress and inflammation triggered by ultraviolet B (UVB) irradiation (dose of 4.14 J/cm2 ). METHODS Hairless mouse received treatment with 0.5 g of EcPDTC or control emulsion (CTRLE) on the dorsal surface skin 12 h, 6 h and 5 min before and 6 h after the irradiation. Oxidative stress was evaluated by ferric reducing antioxidant power (FRAP), 2,2'-azino-bis (3-ethylbenzothiazoline-6-sulfonic acid) radical (ABTS) scavenging capacity, reduced glutathione quantitation, catalase activity, superoxide anion production and lipid peroxidation products. Inflammation parameters were as follows: skin oedema, myeloperoxidase activity (neutrophil marker), matrix metalloproteinase-9 activity, collagen fibre damage, mast cell and sunburn cell counts, and cytokine production. KEY FINDINGS Topical treatment with EcPDTC protected from UVB-induced skin injury by maintaining the antioxidant capacity levels similar to non-irradiated control group. Furthermore, EcPDTC inhibited UVB irradiation-induced superoxide anion production, lipid peroxidation and reduced skin inflammation by inhibiting skin oedema, neutrophil recruitment, metalloproteinase-9 activity, collagen fibre damage, mast cell and sunburn cell counts, and cytokine (TNF-α and IL-1β) production. CONCLUSIONS Topical treatment with EcPDTC improves antioxidant systems and inhibits inflammation, protecting the skin from the damaging effects of UVB irradiation.
Collapse
Affiliation(s)
- Renata M Martinez
- Department of Pharmaceutical Science, Health Science Center, State University of Londrina, Londrina, Brazil
| | - Ana L M Ivan
- Department of Pharmaceutical Science, Health Science Center, State University of Londrina, Londrina, Brazil
| | - David L Vale
- Department of Pharmaceutical Science, Health Science Center, State University of Londrina, Londrina, Brazil
| | - Marcela Z Campanini
- Department of Pharmaceutical Science, Health Science Center, State University of Londrina, Londrina, Brazil
| | - Vitor S Ferreira
- Department of Pharmaceutical Science, Health Science Center, State University of Londrina, Londrina, Brazil
| | - Vinicius S Steffen
- Department of Pharmaceutical Science, Health Science Center, State University of Londrina, Londrina, Brazil
| | - Fabiana T M C Vicentini
- Department of Pharmaceutical Science, Faculty of Pharmaceutical Sciences of Ribeirão Preto, University of Sao Paulo, Ribeirão Preto, Brazil
| | - Fernanda M P Vilela
- Department of Pharmaceutical Science, Faculty of Pharmaceutical Sciences of Ribeirão Preto, University of Sao Paulo, Ribeirão Preto, Brazil
| | - Maria J V Fonseca
- Department of Pharmaceutical Science, Faculty of Pharmaceutical Sciences of Ribeirão Preto, University of Sao Paulo, Ribeirão Preto, Brazil
| | - Marcela M Baracat
- Department of Pharmaceutical Science, Health Science Center, State University of Londrina, Londrina, Brazil
| | - Sandra R Georgetti
- Department of Pharmaceutical Science, Health Science Center, State University of Londrina, Londrina, Brazil
| | - Waldiceu A Verri
- Department of Pathology, Biological Science Center, State University of Londrina, Londrina, Brazil
| | - Rúbia Casagrande
- Department of Pharmaceutical Science, Health Science Center, State University of Londrina, Londrina, Brazil
| |
Collapse
|
26
|
Xiao S, Liu W, Bi J, Liu S, Zhao H, Gong N, Xing D, Gao H, Gong M. Anti-inflammatory effect of hesperidin enhances chondrogenesis of human mesenchymal stem cells for cartilage tissue repair. JOURNAL OF INFLAMMATION-LONDON 2018; 15:14. [PMID: 30038551 PMCID: PMC6053785 DOI: 10.1186/s12950-018-0190-y] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/08/2018] [Accepted: 07/13/2018] [Indexed: 01/01/2023]
Abstract
Background Articular cartilage diseases are considered a major health problem, and tissue engineering using human mesenchymal stem cells (MSCs) have been shown as a promising solution for cartilage tissue repair. Hesperidin is a flavonoid extract from citrus fruits with anti-inflammatory properties. We aimed to investigate the effect of hesperidin on MSCs for cartilage tissue repair. MSCs were treated by hesperidin, and colony formation and proliferation assays were performed to evaluate self-renewal ability of MSCs. Alcian blue staining and Sox9 expression were measured to evaluate chondrogenesis of MSCs. Secretion of pro-inflammatory cytokines IFN-γ, IL-2, IL-4 and IL-10, and expression of nuclear factor kappa B (NF-κB) subunit p65 were also assessed. Results Hesperidin improved self-renewal ability and chondrogenesis of MSCs, inhibited secretion of pro-inflammatory cytokines IFN-γ, IL-2, IL-4 and IL-10, and suppressed the expression of p65. Overexpression of p65 was able to reverse the hesperidin inhibited secretions of pro-inflammatory cytokines, and abolish the enhancing effect of hesperidin on chondrogenesis of MSCs. Conclusion Hesperidin could serve as a therapeutic agent to effectively enhance chondrogenesis of human MSCs by inhibiting inflammation to facilitate cartilage tissue repair.
Collapse
Affiliation(s)
- Shipeng Xiao
- 1Department of Joint Surgery, The Second Hospital of Shandong University, Jinan, 250033 Shandong China
| | - Wenguang Liu
- 1Department of Joint Surgery, The Second Hospital of Shandong University, Jinan, 250033 Shandong China
| | - Jianqiang Bi
- 2Key Laboratory for Liquid-Solid Structural Evolution and Processing of Materials, Ministry of Education, Shandong University, Jinan, 250061 Shandong China
| | - Shenghou Liu
- 1Department of Joint Surgery, The Second Hospital of Shandong University, Jinan, 250033 Shandong China
| | - Heng Zhao
- 1Department of Joint Surgery, The Second Hospital of Shandong University, Jinan, 250033 Shandong China
| | - Ningji Gong
- 3Department of emergency, The Second Hospital of Shandong University, Jinan, 250033 Shandong China
| | - Deguo Xing
- 4Department of Trauma and Orthopedics, The Second Hospital of Shandong University, Jinan, 250033 Shandong China
| | - Hongwei Gao
- 4Department of Trauma and Orthopedics, The Second Hospital of Shandong University, Jinan, 250033 Shandong China
| | - Mingzhi Gong
- 4Department of Trauma and Orthopedics, The Second Hospital of Shandong University, Jinan, 250033 Shandong China
| |
Collapse
|
27
|
Martinez RM, Fattori V, Saito P, Melo CBP, Borghi SM, Pinto IC, Bussmann AJC, Baracat MM, Georgetti SR, Verri WA, Casagrande R. Lipoxin A4 inhibits UV radiation-induced skin inflammation and oxidative stress in mice. J Dermatol Sci 2018; 91:S0923-1811(18)30201-9. [PMID: 29731194 DOI: 10.1016/j.jdermsci.2018.04.014] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2017] [Revised: 04/18/2018] [Accepted: 04/20/2018] [Indexed: 12/22/2022]
Abstract
BACKGROUND Lipoxin A4 (LXA4) is a metabolic product of arachidonic acid. Despite potent anti-inflammatory and pro-resolution activities, it remains to be determined if LXA4 has effect on ultraviolet (UV) radiation-induced skin inflammation. OBJECTIVE To investigate the effects of systemic administration with LXA4 on UV radiation-induced inflammation and oxidative damage in the skin of mice. METHODS Varied parameters of inflammation and oxidative stress in the skin of mice were evaluated after UV radiation (4.14 J/cm2). RESULTS Pretreatment with LXA4 significantly inhibited UV radiation-induced skin edema and myeloperoxidase activity. LXA4 efficacy was enhanced by increasing the time of pre-treatment to up to 72 h. LXA4 reduced UV radiation-induced skin edema, neutrophil recruitment (myeloperoxidase activity and LysM-eGFP+ cells), MMP-9 activity, deposition of collagen fibers, epidermal thickness, sunburn cell counts, and production of pro-inflammatory cytokines (TNF-α, IL-1β, IL-6 and IL-33). Depending on the time point, LXA4 increased the levels of anti-inflammatory cytokines (TGF-β and IL-10). LXA4 significantly attenuated UV radiation-induced oxidative damage returning the oxidative status to baseline levels in parameters such as ferric reducing ability, scavenging of free radicals, GSH levels, catalase activity and superoxide anion production. LXA4 also reduced UV radiation-induced gp91phox [nicotinamide adenine dinucleotide phosphate (NADPH) oxidase 2 (NOX2) subunit] mRNA expression and enhanced nuclear factor erythroid 2-related factor 2 (Nrf2) and its downstream target enzyme nicotinamide adenine dinucleotide (phosphate) quinone oxidoreductase (Nqo1) mRNA expression. CONCLUSION LXA4 inhibited UV radiation-induced skin inflammation by diminishing pro-inflammatory cytokine production and oxidative stress as well as inducing anti-inflammatory cytokines and Nrf2.
Collapse
Affiliation(s)
- R M Martinez
- Departamento de Ciências Farmacêuticas, Universidade Estadual de Londrina-UEL, Hospital Universitário, Avenida Robert Koch, 60, 86038-350 Londrina, Paraná, Brasil
| | - V Fattori
- Departamento de Patologia, Universidade Estadual de Londrina-UEL, Rodovia Celso Garcia Cid, Km 380, PR445, Cx. Postal 10.011, 86057-970 Londrina, Paraná, Brasil
| | - P Saito
- Departamento de Ciências Farmacêuticas, Universidade Estadual de Londrina-UEL, Hospital Universitário, Avenida Robert Koch, 60, 86038-350 Londrina, Paraná, Brasil
| | - C B P Melo
- Departamento de Ciências Farmacêuticas, Universidade Estadual de Londrina-UEL, Hospital Universitário, Avenida Robert Koch, 60, 86038-350 Londrina, Paraná, Brasil
| | - S M Borghi
- Departamento de Patologia, Universidade Estadual de Londrina-UEL, Rodovia Celso Garcia Cid, Km 380, PR445, Cx. Postal 10.011, 86057-970 Londrina, Paraná, Brasil
| | - I C Pinto
- Departamento de Ciências Farmacêuticas, Universidade Estadual de Londrina-UEL, Hospital Universitário, Avenida Robert Koch, 60, 86038-350 Londrina, Paraná, Brasil
| | - A J C Bussmann
- Departamento de Patologia, Universidade Estadual de Londrina-UEL, Rodovia Celso Garcia Cid, Km 380, PR445, Cx. Postal 10.011, 86057-970 Londrina, Paraná, Brasil
| | - M M Baracat
- Departamento de Ciências Farmacêuticas, Universidade Estadual de Londrina-UEL, Hospital Universitário, Avenida Robert Koch, 60, 86038-350 Londrina, Paraná, Brasil
| | - S R Georgetti
- Departamento de Ciências Farmacêuticas, Universidade Estadual de Londrina-UEL, Hospital Universitário, Avenida Robert Koch, 60, 86038-350 Londrina, Paraná, Brasil
| | - W A Verri
- Departamento de Patologia, Universidade Estadual de Londrina-UEL, Rodovia Celso Garcia Cid, Km 380, PR445, Cx. Postal 10.011, 86057-970 Londrina, Paraná, Brasil.
| | - R Casagrande
- Departamento de Ciências Farmacêuticas, Universidade Estadual de Londrina-UEL, Hospital Universitário, Avenida Robert Koch, 60, 86038-350 Londrina, Paraná, Brasil.
| |
Collapse
|
28
|
Photochemoprotective effect of a fraction of a partially purified extract of Byrsonima crassifolia leaves against UVB-induced oxidative stress in fibroblasts and hairless mice. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY B-BIOLOGY 2018; 178:53-60. [DOI: 10.1016/j.jphotobiol.2017.10.033] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/24/2017] [Revised: 10/13/2017] [Accepted: 10/27/2017] [Indexed: 12/13/2022]
|
29
|
Dhar R, Kimseng R, Chokchaisiri R, Hiransai P, Utaipan T, Suksamrarn A, Chunglok W. 2′,4-Dihydroxy-3′,4′,6′-trimethoxychalcone from Chromolaena odorata possesses anti-inflammatory effects via inhibition of NF-κB and p38 MAPK in lipopolysaccharide-activated RAW 264.7 macrophages. Immunopharmacol Immunotoxicol 2017; 40:43-51. [DOI: 10.1080/08923973.2017.1405437] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Affiliation(s)
- Rana Dhar
- School of Allied Health Sciences, Walailak University, Nakhon Si Thammarat, Thailand
| | - Rungruedee Kimseng
- School of Allied Health Sciences, Walailak University, Nakhon Si Thammarat, Thailand
| | | | - Poonsit Hiransai
- School of Allied Health Sciences, Walailak University, Nakhon Si Thammarat, Thailand
| | - Tanyarath Utaipan
- Department of Pre-Clinic, Faculty of Science and Technology, Prince of Songkla University, Pattani Campus, Pattani, Thailand
| | - Apichart Suksamrarn
- Department of Chemistry and Center of Excellence for Innovation in Chemistry, Faculty of Science, Ramkhamhaeng University, Bangkok, Thailand
| | - Warangkana Chunglok
- School of Allied Health Sciences, Walailak University, Nakhon Si Thammarat, Thailand
| |
Collapse
|
30
|
Martinez RM, Pinho-Ribeiro FA, Vale DL, Steffen VS, Vicentini FT, Vignoli JA, Baracat MM, Georgetti SR, Verri WA, Casagrande R. Trans-chalcone added in topical formulation inhibits skin inflammation and oxidative stress in a model of ultraviolet B radiation skin damage in hairless mice. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY B-BIOLOGY 2017; 171:139-146. [DOI: 10.1016/j.jphotobiol.2017.05.002] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/22/2017] [Revised: 04/29/2017] [Accepted: 05/01/2017] [Indexed: 12/12/2022]
|
31
|
Ruiz-Miyazawa KW, Staurengo-Ferrari L, Mizokami SS, Domiciano TP, Vicentini FTMC, Camilios-Neto D, Pavanelli WR, Pinge-Filho P, Amaral FA, Teixeira MM, Casagrande R, Verri WA. Quercetin inhibits gout arthritis in mice: induction of an opioid-dependent regulation of inflammasome. Inflammopharmacology 2017; 25:10.1007/s10787-017-0356-x. [PMID: 28508104 DOI: 10.1007/s10787-017-0356-x] [Citation(s) in RCA: 61] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2016] [Accepted: 04/26/2017] [Indexed: 02/07/2023]
Abstract
We investigated the anti-inflammatory and analgesic effects of quercetin in monosodium urate crystals (MSU)-induced gout arthritis, and the sensitivity of quercetin effects to naloxone, an opioid receptor antagonist. Mice were treated with quercetin, and mechanical hyperalgesia was assessed at 1-24 h after MSU injection. In vivo, leukocyte recruitment, cytokine levels, oxidative stress, NFκB activation, and gp91phox and inflammasome components (NLRP3, ASC, Pro-caspase-1, and Pro-IL-1β) mRNA expression by qPCR were determined in the knee joints at 24 h after MSU injection. Inflammasome activation was determined, in vitro, in lipopolysaccharide-primed macrophages challenged with MSU. Quercetin inhibited MSU-induced mechanical hyperalgesia, leukocyte recruitment, TNFα and IL-1β production, superoxide anion production, inflammasome activation, decrease of antioxidants levels, NFκB activation, and inflammasome components mRNA expression. Naloxone pre-treatment prevented all the inhibitory effects of quercetin over MSU-induced gout arthritis. These results demonstrate that quercetin exerts analgesic and anti-inflammatory effect in the MSU-induced arthritis in a naloxone-sensitive manner.
Collapse
Affiliation(s)
- Kenji W Ruiz-Miyazawa
- Departamento de Ciências Patológicas, Centro de Ciências Biológicas, Universidade Estadual de Londrina, Rod. Celso Garcia Cid KM480 PR445, Cx Postal 10.011, Londrina, Paraná, CEP 86057-970, Brazil
| | - Larissa Staurengo-Ferrari
- Departamento de Ciências Patológicas, Centro de Ciências Biológicas, Universidade Estadual de Londrina, Rod. Celso Garcia Cid KM480 PR445, Cx Postal 10.011, Londrina, Paraná, CEP 86057-970, Brazil
| | - Sandra S Mizokami
- Departamento de Ciências Patológicas, Centro de Ciências Biológicas, Universidade Estadual de Londrina, Rod. Celso Garcia Cid KM480 PR445, Cx Postal 10.011, Londrina, Paraná, CEP 86057-970, Brazil
| | - Talita P Domiciano
- Departamento de Ciências Patológicas, Centro de Ciências Biológicas, Universidade Estadual de Londrina, Rod. Celso Garcia Cid KM480 PR445, Cx Postal 10.011, Londrina, Paraná, CEP 86057-970, Brazil
| | - Fabiana T M C Vicentini
- Farmacore Biotecnologia LTDA, Rua Edson Souto, 728, Lagoinha, 14095-250, Ribeirão Preto, São Paulo, Brazil
| | - Doumit Camilios-Neto
- Departamento de Bioquímica e Biotecnologia, Centro de Ciências Exatas, Universidade Estadual de Londrina, Rodovia Celso Garcia Cid, Km 380, PR445, Cx. Postal 10.011, Londrina, Paraná, 86057-970, Brazil
| | - Wander R Pavanelli
- Departamento de Ciências Patológicas, Centro de Ciências Biológicas, Universidade Estadual de Londrina, Rod. Celso Garcia Cid KM480 PR445, Cx Postal 10.011, Londrina, Paraná, CEP 86057-970, Brazil
| | - Phileno Pinge-Filho
- Departamento de Ciências Patológicas, Centro de Ciências Biológicas, Universidade Estadual de Londrina, Rod. Celso Garcia Cid KM480 PR445, Cx Postal 10.011, Londrina, Paraná, CEP 86057-970, Brazil
| | - Flávio A Amaral
- Departamento de Bioquímica e Imunologia, Instituto de Ciências Biológicas, Laboratório de Imunofarmacologia, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Mauro M Teixeira
- Departamento de Bioquímica e Imunologia, Instituto de Ciências Biológicas, Laboratório de Imunofarmacologia, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Rubia Casagrande
- Department of Pharmaceutical Sciences, Healthy Sciences Center, Londrina State University, Av. Robert Koch, 60, Londrina, Paraná, CEP 86038-350, Brazil
| | - Waldiceu A Verri
- Departamento de Ciências Patológicas, Centro de Ciências Biológicas, Universidade Estadual de Londrina, Rod. Celso Garcia Cid KM480 PR445, Cx Postal 10.011, Londrina, Paraná, CEP 86057-970, Brazil.
- Departamento de Patologia, Universidade Estadual de Londrina, Rod. Celso Garcia Cid KM480 PR445, Cx Postal 10.011, Londrina, Paraná, CEP 86057-970, Brazil.
| |
Collapse
|
32
|
Ansar S, Abudawood M, Hamed SS, Aleem MM. Exposure to Zinc Oxide Nanoparticles Induces Neurotoxicity and Proinflammatory Response: Amelioration by Hesperidin. Biol Trace Elem Res 2017; 175:360-366. [PMID: 27300038 DOI: 10.1007/s12011-016-0770-8] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/09/2016] [Accepted: 05/30/2016] [Indexed: 01/22/2023]
Abstract
Zinc oxide nanoparticles (ZnONPs) are widely used in food packaging and may enter the body directly if exposed. Hereby, in this study, the oral administration was selected as the route of exposure for rats to nanoparticles and the effect of hesperidin (HSP, 100 mg/kg bwt) was evaluated on ZnONP (600 mg/kg bwt)-induced neurotoxicity in rats. ZnONPs were characterized using transmission electron microscopy. Neurotoxicity was observed as seen by elevation in serum inflammatory markers including tumor necrosis factor alpha (TNF-α), interleukin 1 (IL-1β), interleukin-6 (IL-6), C-reactive protein (CRP), and activities of catalase (CAT), glutathione peroxidase (GPx), glutathione reductase (GR), and glutathione (GSH) content in rat brains. Pretreatment of rats with HSP in ZnONP-treated group elevated activities of antioxidant enzymes. HSP also caused decrease in TNF-α, IL-1β, IL-6, and CRP levels which was higher in the ZnONP-treated group. The results suggest that HSP augments antioxidant defense with anti-inflammatory response against ZnONP-induced neurotoxicity. The increased antioxidant enzymes enhance the antioxidant potential to reduce oxidative stress.
Collapse
Affiliation(s)
- Sabah Ansar
- Clinical Laboratory Sciences, Applied Medical Science, King Saud University, Riyadh, Saudi Arabia.
| | - Manal Abudawood
- Clinical Laboratory Sciences, Applied Medical Science, King Saud University, Riyadh, Saudi Arabia
| | - Sherifa Shaker Hamed
- Zoology Department, College of Science, King Saud University, Riyadh, Saudi Arabia
- Zoology Department, Faculty of Science, University of Alexandria, Moharram Bey, Alexandria, 21511, Egypt
| | - Mukhtar M Aleem
- Chemistry and Biochemistry Department, University of California, Santa Cruz, CA, USA
| |
Collapse
|
33
|
Martinez RM, Pinho-Ribeiro FA, Steffen VS, Caviglione CV, Fattori V, Bussmann AJC, Bottura C, Fonseca MJV, Vignoli JA, Baracat MM, Georgetti SR, Verri WA, Casagrande R. trans-Chalcone, a flavonoid precursor, inhibits UV-induced skin inflammation and oxidative stress in mice by targeting NADPH oxidase and cytokine production. Photochem Photobiol Sci 2017; 16:1162-1173. [DOI: 10.1039/c6pp00442c] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
trans-Chalcone inhibits UV-induced skin inflammation and also indirectly reduces oxidative stress.
Collapse
|
34
|
Hesperidin ameliorates UV radiation-induced skin damage by abrogation of oxidative stress and inflammatory in HaCaT cells. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY B-BIOLOGY 2016; 165:240-245. [DOI: 10.1016/j.jphotobiol.2016.10.037] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/29/2016] [Revised: 10/26/2016] [Accepted: 10/27/2016] [Indexed: 12/30/2022]
|
35
|
Commercial sunscreen formulations: UVB irradiation stability and effect on UVB irradiation-induced skin oxidative stress and inflammation. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY B-BIOLOGY 2016; 163:413-20. [DOI: 10.1016/j.jphotobiol.2016.09.007] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/26/2016] [Revised: 09/01/2016] [Accepted: 09/03/2016] [Indexed: 12/20/2022]
|
36
|
Fujimura AT, Martinez RM, Pinho-Ribeiro FA, Lopes Dias da Silva AM, Baracat MM, Georgetti SR, Verri WA, Chorilli M, Casagrande R. Resveratrol-Loaded Liquid-Crystalline System Inhibits UVB-Induced Skin Inflammation and Oxidative Stress in Mice. JOURNAL OF NATURAL PRODUCTS 2016; 79:1329-1338. [PMID: 27191910 DOI: 10.1021/acs.jnatprod.5b01132] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
Evidence shows beneficial effects of resveratrol (RES) on human health. However, its poor aqueous solubility limits therapeutic effectiveness. Thus, the use of nanostructured delivery systems for RES, such as a liquid-crystalline system (LCS), could be viable. The purpose of this study was to develop, characterize, and determine the in vivo effectiveness of a RES-loaded LCS. We studied an LCS containing silicon glycol copolymer, polyether functional siloxane, and the polymeric dispersion carbomer homopolymer type B (C974) in the ratio 20:55:25 with and without RES. Results obtained using polarized light microscopy, small-angle X-ray scattering, and rheology analysis showed that the RES-loaded LCS system presents a lamellar structure and behaves as a non-Newtonian fluid presenting pseudoplastic (the apparent viscosity decreases as the stress increases) and thixotropic (the apparent viscosity decreases with the duration of stress) behaviors. Cytotoxicity studies showed that the formulation components are noncytotoxic. Topical application of a RES-loaded LCS protected hairless mice from UVB-irradiation-induced skin damage by inhibiting edema, neutrophil recruitment, lipid hydroperoxide and superoxide anion production, gp91phox mRNA expression, and oxidative stress. The RES-loaded LCS maintained 2,2'-azinobis(3-ethylbenzothiazoline-6-sulfonic acid) (ABTS) and ferric reducing abilities, catalase activity, reduced glutathione levels, and mRNA expression of glutathione peroxidase 1 and glutathione reductase. The RES-loaded LCS also up-regulated matrix metalloproteinase-9 activity, IL-10 production, and mRNA expression of transcription factor Nrf2 and heme oxygenase-1. Therefore, a RES-loaded LCS is a promising new therapeutic approach to mitigate skin photodamage.
Collapse
Affiliation(s)
- Andressa T Fujimura
- Departamento de Ciências Farmacêuticas, Universidade Estadual Paulista-UNESP , Rodovia Araraquara-Jaú, Km 01, 14.801-902 Araraquara, São Paulo, Brazil
| | - Renata M Martinez
- Departamento de Ciências Farmacêuticas, Universidade Estadual de Londrina-UEL , Avenida Robert Koch, 60, Hospital Universitário, 86039-440 Londrina, Paraná, Brazil
| | - Felipe A Pinho-Ribeiro
- Departamento de Ciências Patológicas, Universidade Estadual de Londrina-UEL , Rodovia Celso Garcia Cid, Km 380, PR445, Cx. Postal 10.011, 86057-970 Londrina, Paraná, Brazil
| | - Amélia M Lopes Dias da Silva
- Centro de Investigação e Tecnologia de Ciências Agro-ambientais e Biológicas (CITAB), Universidade de Trás-os-Montes e Alto Douro (UTAD) , Quinta de Prados 1013, P-5001-801 Vila Real, Portugal
| | - Marcela M Baracat
- Departamento de Ciências Farmacêuticas, Universidade Estadual de Londrina-UEL , Avenida Robert Koch, 60, Hospital Universitário, 86039-440 Londrina, Paraná, Brazil
| | - Sandra R Georgetti
- Departamento de Ciências Farmacêuticas, Universidade Estadual de Londrina-UEL , Avenida Robert Koch, 60, Hospital Universitário, 86039-440 Londrina, Paraná, Brazil
| | - Waldiceu A Verri
- Departamento de Ciências Patológicas, Universidade Estadual de Londrina-UEL , Rodovia Celso Garcia Cid, Km 380, PR445, Cx. Postal 10.011, 86057-970 Londrina, Paraná, Brazil
| | - Marlus Chorilli
- Departamento de Ciências Farmacêuticas, Universidade Estadual Paulista-UNESP , Rodovia Araraquara-Jaú, Km 01, 14.801-902 Araraquara, São Paulo, Brazil
| | - Rubia Casagrande
- Departamento de Ciências Farmacêuticas, Universidade Estadual de Londrina-UEL , Avenida Robert Koch, 60, Hospital Universitário, 86039-440 Londrina, Paraná, Brazil
| |
Collapse
|
37
|
Fernando PMDJ, Piao MJ, Hewage SRKM, Kang HK, Yoo ES, Koh YS, Ko MH, Ko CS, Byeon SH, Mun SR, Lee NH, Hyun JW. Photo-protective effect of sargachromenol against UVB radiation-induced damage through modulating cellular antioxidant systems and apoptosis in human keratinocytes. ENVIRONMENTAL TOXICOLOGY AND PHARMACOLOGY 2016; 43:112-119. [PMID: 26991844 DOI: 10.1016/j.etap.2016.02.012] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/09/2016] [Revised: 02/16/2016] [Accepted: 02/20/2016] [Indexed: 06/05/2023]
Abstract
The aim of this study was to evaluate the photo-preventive effects of sargachromenol (SC) against ultraviolet B (UVB)-induced oxidative stress in human keratinocytes via assessing the antioxidant properties and underlying molecular mechanisms. SC exhibited a significant scavenging effect on UVB-induced intracellular reactive oxygen species (ROS). SC attenuated UVB-induced oxidative macromolecular damage, including the protein carbonyl content, DNA strand break, and 8-isoprostane level. Furthermore, SC decreased UVB-induced Bax, cleaved caspase-9, and cleaved caspase-3 protein levels, but increased that of Bcl-2, which are well-known key mediators of apoptosis. Moreover, SC increased superoxide dismutase, catalase, and heme oxygenase-1 protein expression. Pre-treatment with SC upregulated the main transcription factor of antioxidant enzymes, erythroid 2-related factor 2 level, which was reduced by UVB irradiation. Extracellular signal-regulated kinase (ERK) and Jun N-terminal kinases (JNK) are involved in the regulation of many cellular events, including apoptosis. SC treatment reversed ERK and JNK activation induced by UVB. Collectively, these data indicate that SC can provide remarkable cytoprotection against the adverse effects of UVB radiation by modulating cellular antioxidant systems, and suggest the potential of developing a medical agent for ROS-induced skin diseases.
Collapse
Affiliation(s)
| | - Mei Jing Piao
- Department of Biochemistry, School of Medicine, Jeju National University, Jeju 63243, Republic of Korea
| | | | - Hee Kyoung Kang
- Department of Biochemistry, School of Medicine, Jeju National University, Jeju 63243, Republic of Korea
| | - Eun Sook Yoo
- Department of Biochemistry, School of Medicine, Jeju National University, Jeju 63243, Republic of Korea
| | - Young Sang Koh
- Department of Biochemistry, School of Medicine, Jeju National University, Jeju 63243, Republic of Korea
| | - Mi Hee Ko
- Jeju Biodiversity Research Institute, Jeju Technopark, Jeju 63243, Republic of Korea
| | - Chang Sik Ko
- Jeju Biodiversity Research Institute, Jeju Technopark, Jeju 63243, Republic of Korea
| | - Sang Hee Byeon
- Department of Chemistry and Cosmetics, College of Natural Sciences, Jeju National University, Jeju 63243, Republic of Korea
| | - Seung Ri Mun
- Department of Chemistry and Cosmetics, College of Natural Sciences, Jeju National University, Jeju 63243, Republic of Korea
| | - Nam Ho Lee
- Department of Chemistry and Cosmetics, College of Natural Sciences, Jeju National University, Jeju 63243, Republic of Korea
| | - Jin Won Hyun
- Department of Biochemistry, School of Medicine, Jeju National University, Jeju 63243, Republic of Korea.
| |
Collapse
|
38
|
Martinez RM, Pinho-Ribeiro FA, Steffen VS, Caviglione CV, Pala D, Baracat MM, Georgetti SR, Verri WA, Casagrande R. Topical formulation containing hesperidin methyl chalcone inhibits skin oxidative stress and inflammation induced by ultraviolet B irradiation. Photochem Photobiol Sci 2016; 15:554-63. [DOI: 10.1039/c5pp00467e] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Skin exposure to UVB irradiation has increased significantly in recent years due to ozone depletion, and it represents the main cause of many skin diseases.
Collapse
Affiliation(s)
- Renata M. Martinez
- Departamento de Ciências Farmacêuticas
- Universidade Estadual de Londrina
- Avenida Robert Koch
- 60
- Hospital Universitário
| | - Felipe A. Pinho-Ribeiro
- Departamento de Ciências Patológicas
- Universidade Estadual de Londrina
- 86057-970 Londrina
- Brazil
| | - Vinicius S. Steffen
- Departamento de Ciências Farmacêuticas
- Universidade Estadual de Londrina
- Avenida Robert Koch
- 60
- Hospital Universitário
| | - Carla V. Caviglione
- Departamento de Ciências Farmacêuticas
- Universidade Estadual de Londrina
- Avenida Robert Koch
- 60
- Hospital Universitário
| | - Danilo Pala
- Departamento de Ciências Farmacêuticas
- Universidade Estadual de Londrina
- Avenida Robert Koch
- 60
- Hospital Universitário
| | - Marcela M. Baracat
- Departamento de Ciências Farmacêuticas
- Universidade Estadual de Londrina
- Avenida Robert Koch
- 60
- Hospital Universitário
| | - Sandra R. Georgetti
- Departamento de Ciências Farmacêuticas
- Universidade Estadual de Londrina
- Avenida Robert Koch
- 60
- Hospital Universitário
| | - Waldiceu A. Verri
- Departamento de Ciências Patológicas
- Universidade Estadual de Londrina
- 86057-970 Londrina
- Brazil
| | - Rubia Casagrande
- Departamento de Ciências Farmacêuticas
- Universidade Estadual de Londrina
- Avenida Robert Koch
- 60
- Hospital Universitário
| |
Collapse
|