1
|
Adel Hamza M, Abd El-Rahman SA, Ramadan SK, Ezz-Elregal EEM, Rizk SA, Abou-Gamra ZM. The enhanced visible-light-driven photocatalytic performance of nanocrystalline TiO2 decorated by quinazolinone-photosensitizer toward photocatalytic treatment of simulated wastewater. J Photochem Photobiol A Chem 2024; 452:115599. [DOI: 10.1016/j.jphotochem.2024.115599] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/30/2024]
|
2
|
Ferdous Anik MJ, Mim SR, Swapno SS, Munira S, Roy O, Billah MM. Vacancy induced enhanced photocatalytic activity of nitrogen doped CuO NPs synthesized by Co-precipitation method. Heliyon 2024; 10:e27613. [PMID: 38533010 PMCID: PMC10963243 DOI: 10.1016/j.heliyon.2024.e27613] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2023] [Revised: 02/27/2024] [Accepted: 03/04/2024] [Indexed: 03/28/2024] Open
Abstract
The chemical co-precipitation method, an effective approach in the synthesis of nanomaterials, was used to synthesize CuO nanoparticles (NPs). Structural and morphological modification of undoped and nitrogen (N) doped CuO nanoparticles were studied thoroughly using X-ray diffraction (XRD), FT-IR and field emission scanning electron microscope (FE SEM). Doping effect on defects was investigated using X-ray photoelectron spectroscopy (XPS), Raman spectroscopy and photoluminescence (PL) spectroscopy. Thus, the effect of doping on crystallinity, crystallite size, strain induced in lattice, defects and electron-hole recombination rate were investigated. Optical band gap was calculated using Kubelka-Munk function from the diffuse reflectance spectra (DRS) obtained using ultraviolet visible (UV-Vis) spectroscopy. Finally, photocatalytic performance was studied from rhodamine B (Rh B) degradation and reaction kinetics were analyzed. Maximum degradation efficiency was obtained for 1.0 mol% N doped CuO NPs which also exhibited minimum band gap and lowest electron-hole recombination rate. For the optimum doping concentration, nitrogen was found to create oxygen vacancies while substituting oxygen in the lattice, and thus reduce electron-hole recombination rate and increase photocatalytic degradation rate effectively.
Collapse
Affiliation(s)
| | | | - Syed Sammo Swapno
- Department of Materials and Metallurgical Engineering, Bangladesh University of Engineering and Technology, Dhaka-1000, Bangladesh
| | - Sirajum Munira
- Department of Materials and Metallurgical Engineering, Bangladesh University of Engineering and Technology, Dhaka-1000, Bangladesh
| | - Oishy Roy
- Department of Materials and Metallurgical Engineering, Bangladesh University of Engineering and Technology, Dhaka-1000, Bangladesh
| | - Md Muktadir Billah
- Department of Materials and Metallurgical Engineering, Bangladesh University of Engineering and Technology, Dhaka-1000, Bangladesh
| |
Collapse
|
3
|
Hassan AF, El-Naggar GA, Braish AG, Abd El-Latif MM, Shaltout WA, Elsayed MS. Fabrication of titania/calcium alginate nanocomposite matrix for efficient adsorption and photocatalytic degradation of malachite green. Int J Biol Macromol 2023; 249:126075. [PMID: 37536406 DOI: 10.1016/j.ijbiomac.2023.126075] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Revised: 07/13/2023] [Accepted: 07/28/2023] [Indexed: 08/05/2023]
Abstract
This work aims to examine the two techniques' efficiency for the elimination of malachite green (MG) by photocatalytic degradation and adsorption onto synthesized solid nanomaterials. Three solid samples were prepared as calcium alginate (AG), nanotitania (NT), and nanotitania/calcium alginate composite (TG). The morphological and physicochemical characteristics of the solid nanomaterials were investigated by XRD, TGA, DRS, FTIR, pHPZC, nitrogen adsorption/desorption isotherm, SEM, and TEM. The main experimental conditions were determined for sample dose, shaking time, pH, initial malachite green concentration, temperature, ionic strength, and UV lamp power. The resulting data proved that TG attained the higher adsorption capacity (252.52 mg/g) at 40 °C. The adsorption of MG was well fitted by Langmuir, Temkin, Dubinin-Radushkevich, pseudo-second order, intra-particle diffusion, and Elovich models onto all the prepared samples, confirming the endothermic, spontaneous, and favorable adsorption process. The maximum degradation percent (99.6 %) of MG was achieved by using 1.0 g/L as a catalyst dose, 10 mg/L of initial MG concentration, and 33 W for TG. The photodegradation of MG was well fitted by Eyring-Polanyi and Arrhenius models onto the surface of catalyst. The TG reusability resulted in a decrease in the degradation efficiency by 9.8 %, indicating its great capacity as the first nanotitania/calcium alginate nanocomposite used in removing MG from wastewater by two technologies in the same article.
Collapse
Affiliation(s)
- Asaad F Hassan
- Chemistry Department, Faculty of Science, Damanhour University, Damanhour 22511, Egypt
| | - Gehan A El-Naggar
- Chemistry Department, Faculty of Science, Damanhour University, Damanhour 22511, Egypt
| | - Amany G Braish
- Chemistry Department, Faculty of Science, Damanhour University, Damanhour 22511, Egypt
| | - Mona M Abd El-Latif
- Advanced Technology and New Materials Research Institute, City of Scientific Research and Technological Applications, Alexandria 21934, Egypt
| | - Walaa A Shaltout
- Survey of Natural Resources Department, Environmental Studies and Research Institute, University of Sadat City, Egypt.
| | - Maha S Elsayed
- Central Laboratory of Date Palm Research and Development, Agricultural Research Center, Giza 12619, Egypt
| |
Collapse
|
4
|
Gündel SDS, Favarin FR, Machado ÉF, Druzian DM, Dos Santos C, Brum LFW, da Silva AS, da Silva WL, Ourique AF. Photocatalytic degradation of Rhodamine B dye by nanostructured powder systems containing nanoencapsulated curcumin or ascorbic acid and ascorbyl palmitate liposomal. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023:10.1007/s11356-023-27555-4. [PMID: 37178297 DOI: 10.1007/s11356-023-27555-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Accepted: 05/07/2023] [Indexed: 05/15/2023]
Abstract
Due to inadequate treatment and incorrect management, wastewater with dyes has a great toxic potential as an environmental liability, representing a major concern. In this context, this work aims to investigate the potential application of nanostructured powdery systems (nanocapsules and liposomes) in the photodegradation of Rhodamine B (RhB) dye, under UV and visible irradiation. Curcumin nanocapsules and liposomes containing ascorbic acid and ascorbyl palmitate were prepared, characterized, and dried using the spray drying technique. The drying processes of the nanocapsule and the liposome showed yields of 88% and 62%, respectively, and, after aqueous resuspension of the dry powders, it was possible to recover the nanocapsule size (140 nm) and liposome size (160 nm). The dry powders were characterized by Fourier transform infrared spectroscopy (FTIR), N2 physisorption at 77 K, X-ray diffraction (XRD), and diffuse reflectance spectroscopy (DRS-UV). Under UV irradiation, 64.8% and 58.48% of RhB were removed with nanocapsules and liposomes, respectively. While under visible radiation, nanocapsules and liposomes were able to degrade 59.54% and 48.79% of RhB, respectively. Under the same conditions, commercial TiO2 showed degradation of 50.02% (UV) and 42.14% (visible). After 5 cycles of reuse, there was a decrease of about 5% for dry powders under UV irradiation and 7.5% under visible irradiation. Therefore, the nanostructured systems developed have potential application in heterogeneous photocatalysis for the degradation of organic pollutants, such as RhB, as they demonstrated superior photocatalytic performance to commercial catalysts (nanoencapsulated curcumin > ascorbic acid and ascorbyl palmitate liposomal > TiO2).
Collapse
Affiliation(s)
- Samanta da Silva Gündel
- Laboratory of Nanotechnology, Universidade Franciscana (UFN), Santa Maria, RS, 97010-032, Brazil
| | - Fernanda Reis Favarin
- Laboratory of Nanotechnology, Universidade Franciscana (UFN), Santa Maria, RS, 97010-032, Brazil
| | - Éricles Forrati Machado
- Laboratory of Nanotechnology, Universidade Franciscana (UFN), Santa Maria, RS, 97010-032, Brazil
- Nanoscience Graduate Program, Universidade Franciscana (UFN), Santa Maria, RS, 97010-491, Brazil
| | - Daniel Moro Druzian
- Nanoscience Graduate Program, Universidade Franciscana (UFN), Santa Maria, RS, 97010-491, Brazil
| | - Cristiane Dos Santos
- Chemistry Institute, Universidade Federal Do Rio Grande Do Sul (UFRGS), Porto Alegre, RS, 91501-970, Brazil
| | - Luis Fernando Wentz Brum
- Chemistry Institute, Universidade Federal Do Rio Grande Do Sul (UFRGS), Porto Alegre, RS, 91501-970, Brazil
| | - Aleksandro Schafer da Silva
- Department of Animal Science, Universidade Do Estado de Santa Catarina (UDESC), Chapecó, SC, 89815-630, Brazil
| | | | - Aline Ferreira Ourique
- Laboratory of Nanotechnology, Universidade Franciscana (UFN), Santa Maria, RS, 97010-032, Brazil.
- Nanoscience Graduate Program, Universidade Franciscana (UFN), Santa Maria, RS, 97010-491, Brazil.
| |
Collapse
|
5
|
New approaches for enhancing the photosensitivity, antibacterial activity, and controlled release behavior of non-porous silica-titania nanoplatforms. BIOMATERIALS ADVANCES 2023; 148:213365. [PMID: 36921460 DOI: 10.1016/j.bioadv.2023.213365] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/04/2023] [Revised: 02/13/2023] [Accepted: 02/26/2023] [Indexed: 03/05/2023]
Abstract
This research presents a new approach for the synthesis of inorganic nano-platforms containing >2 layers. Nano-platforms were characterized using scanning electron microscopy, X-ray diffraction, fluorescence and Fourier transform infrared spectroscopy, fluorescence microscopy, dynamic light scattering, thermogravimetric analysis, Brunauer-Emmett-Teller, etc. Since it has been reported that the maximum tolerable dose of non-porous silica nanoparticles (NPs) in in-vivo studies is higher than that of mesoporous silica, the non-porous silica was prepared. Curcumin (CUR) was trapped between the surfaces of the spherical non-porous silica and titania NPs (<100 nm) as both fluorescent and therapeutic agents, thus resulting in increased loading capacity of the non-porous silica NPs, as well as providing significant photosensitivity, antibacterial activity, and controlled release. In addition, the surface of NPs was enriched with Methyl violet-10B (MV-10B), and Rhodamine B (RhB). Silica@CUR@titania exhibited approximately 9-fold higher fluorescence intensity than silica@CUR NPs. This finding enabled us to design nano-platforms with minimum toxic effect due to low contents of RhB for bioimaging applications. The antimicrobial efficiency of nano-platforms was evaluated against P. aeruginosa, E. coli, S. typhimurium, K. pneumonia, S. epidermidis, S. aureus, B. subtilis, B. cereus, and E. faecalis. It was concluded that titania markedly lowered the minimum inhibitory concentration values (MICs) of CUR against all bacteria except B. subtilis and P. aeruginosa. Theoretical simulation was also performed to clarify the accumulation of functionalized NPs in tumor tissue.
Collapse
|
6
|
Qian R, Xu Z, Hu X, Liu S, Mai Y, Tan X, Su X, Jiang M, Tang W, Tian W, Xie L. Ag/Ag 2O with NIR-Triggered Antibacterial Activities: Photocatalytic Sterilization Enhanced by Low-Temperature Photothermal Effect. Int J Nanomedicine 2023; 18:1507-1520. [PMID: 36998603 PMCID: PMC10046159 DOI: 10.2147/ijn.s400511] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2022] [Accepted: 03/14/2023] [Indexed: 04/01/2023] Open
Abstract
Purpose A synergistic antibacterial system employing photocatalytic performance and low-temperature photothermal effect (LT-PTT) with the potential for infectious skin wound healing promotion was developed. Methods Ag/Ag2O was synthesized with a two-step method, and its physicochemical properties were characterized. After its photocatalytic performance and photothermal effect were evaluated under 0.5 W/cm2 808 nm NIR laser irradiation, its antibacterial activities in both planktonic and biofilm forms were then studied in vitro targeting Staphylococcus Aureus (S. aureus), and the biocompatibility was tested with L-929 cell lines afterward. Finally, the animal model of dorsal skin wound infection was established on Sprague-Dawley rats and was used to assess infectious wound healing promotion of Ag/Ag2O in vivo. Results Ag/Ag2O showed boosted photocatalytic performance and local temperature accumulation compared with Ag2O when exposed to 0.5 W/cm2 808 nm NIR irradiation, which therefore endowed Ag/Ag2O with the ability to kill pathogens rapidly and cleavage bacterial biofilm in vitro. Furthermore, after treatment with Ag/Ag2O and 0.5 W/cm2 808 nm NIR irradiation, infectious wounds of rats realized skin tissue regeneration from a histochemical level. Conclusion By exhibiting excellent NIR-triggered photocatalytic sterilization ability enhanced by low-temperature photothermal effect, Ag/Ag2O was promising to be a novel, photo-responsive antibacterial agent.
Collapse
Affiliation(s)
- Ruojing Qian
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases & National Engineering Laboratory for Oral Regenerative Medicine, West China Hospital of Stomatology, Sichuan University, Chengdu, People’s Republic of China
- Engineering Research Center of Oral Translational Medicine, Ministry of Education, West China Hospital of Stomatology, Sichuan University, Chengdu, People’s Republic of China
- Department of Oral and Maxillofacial Surgery, West China Hospital of Stomatology, Sichuan University, Chengdu, People’s Republic of China
| | - Zhaoyu Xu
- Department of Oral Implantology, West China Hospital of Stomatology, Sichuan University, Chengdu, People’s Republic of China
| | - Xingyu Hu
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases & National Engineering Laboratory for Oral Regenerative Medicine, West China Hospital of Stomatology, Sichuan University, Chengdu, People’s Republic of China
- Engineering Research Center of Oral Translational Medicine, Ministry of Education, West China Hospital of Stomatology, Sichuan University, Chengdu, People’s Republic of China
- Department of Oral and Maxillofacial Surgery, West China Hospital of Stomatology, Sichuan University, Chengdu, People’s Republic of China
| | - Suru Liu
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases & National Engineering Laboratory for Oral Regenerative Medicine, West China Hospital of Stomatology, Sichuan University, Chengdu, People’s Republic of China
- Engineering Research Center of Oral Translational Medicine, Ministry of Education, West China Hospital of Stomatology, Sichuan University, Chengdu, People’s Republic of China
- Department of Oral and Maxillofacial Surgery, West China Hospital of Stomatology, Sichuan University, Chengdu, People’s Republic of China
| | - Yao Mai
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases & National Engineering Laboratory for Oral Regenerative Medicine, West China Hospital of Stomatology, Sichuan University, Chengdu, People’s Republic of China
- Engineering Research Center of Oral Translational Medicine, Ministry of Education, West China Hospital of Stomatology, Sichuan University, Chengdu, People’s Republic of China
- Department of Oral and Maxillofacial Surgery, West China Hospital of Stomatology, Sichuan University, Chengdu, People’s Republic of China
| | - Xinzhi Tan
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases & National Engineering Laboratory for Oral Regenerative Medicine, West China Hospital of Stomatology, Sichuan University, Chengdu, People’s Republic of China
- Engineering Research Center of Oral Translational Medicine, Ministry of Education, West China Hospital of Stomatology, Sichuan University, Chengdu, People’s Republic of China
- Department of Oral and Maxillofacial Surgery, West China Hospital of Stomatology, Sichuan University, Chengdu, People’s Republic of China
| | - Xiaofan Su
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases & National Engineering Laboratory for Oral Regenerative Medicine, West China Hospital of Stomatology, Sichuan University, Chengdu, People’s Republic of China
- Engineering Research Center of Oral Translational Medicine, Ministry of Education, West China Hospital of Stomatology, Sichuan University, Chengdu, People’s Republic of China
- Department of Oral and Maxillofacial Surgery, West China Hospital of Stomatology, Sichuan University, Chengdu, People’s Republic of China
| | - Mingyan Jiang
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases & National Engineering Laboratory for Oral Regenerative Medicine, West China Hospital of Stomatology, Sichuan University, Chengdu, People’s Republic of China
- Engineering Research Center of Oral Translational Medicine, Ministry of Education, West China Hospital of Stomatology, Sichuan University, Chengdu, People’s Republic of China
- Department of Oral and Maxillofacial Surgery, West China Hospital of Stomatology, Sichuan University, Chengdu, People’s Republic of China
| | - Wei Tang
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases & National Engineering Laboratory for Oral Regenerative Medicine, West China Hospital of Stomatology, Sichuan University, Chengdu, People’s Republic of China
- Engineering Research Center of Oral Translational Medicine, Ministry of Education, West China Hospital of Stomatology, Sichuan University, Chengdu, People’s Republic of China
- Department of Oral and Maxillofacial Surgery, West China Hospital of Stomatology, Sichuan University, Chengdu, People’s Republic of China
| | - Weidong Tian
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases & National Engineering Laboratory for Oral Regenerative Medicine, West China Hospital of Stomatology, Sichuan University, Chengdu, People’s Republic of China
- Engineering Research Center of Oral Translational Medicine, Ministry of Education, West China Hospital of Stomatology, Sichuan University, Chengdu, People’s Republic of China
- Department of Oral and Maxillofacial Surgery, West China Hospital of Stomatology, Sichuan University, Chengdu, People’s Republic of China
- Correspondence: Weidong Tian; Li Xie, State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases & Engineering Research Center of Oral Translational Medicine, Ministry of Education & National Engineering Laboratory for Oral Regenerative Medicine, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, 610041, People’s Republic of China, Tel +86-28-85502156; +86-28-85503499, Email ;
| | - Li Xie
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases & National Engineering Laboratory for Oral Regenerative Medicine, West China Hospital of Stomatology, Sichuan University, Chengdu, People’s Republic of China
- Engineering Research Center of Oral Translational Medicine, Ministry of Education, West China Hospital of Stomatology, Sichuan University, Chengdu, People’s Republic of China
- Department of Oral and Maxillofacial Surgery, West China Hospital of Stomatology, Sichuan University, Chengdu, People’s Republic of China
| |
Collapse
|
7
|
Guastaferro M, Baldino L, Vaiano V, Cardea S, Reverchon E. Supercritical Phase Inversion to Produce Photocatalytic Active PVDF-coHFP_TiO 2 Composites for the Degradation of Sudan Blue II Dye. MATERIALS (BASEL, SWITZERLAND) 2022; 15:8894. [PMID: 36556698 PMCID: PMC9782530 DOI: 10.3390/ma15248894] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/04/2022] [Revised: 12/08/2022] [Accepted: 12/09/2022] [Indexed: 06/17/2023]
Abstract
TiO2-loaded poly(vinylidene fluoride-co-hexafluoropropylene) (PVDF-coHFP) membranes were produced by supercritical CO2-assisted phase inversion. Three different TiO2 loadings were tested: 10, 20, and 30 wt% with respect to the polymer. Increasing the TiO2 amount from 10 wt% to 20 wt% in the starting solution, the transition from leafy-like to leafy-cellular morphology was observed in the section of the membrane. When 30 wt% TiO2 was used, the entire membrane section showed agglomerates of TiO2 nanoparticles. These polymeric membranes were tested to remove Sudan Blue II (SB) dye from aqueous solutions. The adsorption/photocatalytic processes revealed that membrane morphology and TiO2 cluster size were the parameters that mainly affected the dye removal efficiency. Moreover, after five cycles of exposure of these membranes to UV light, SB removal was higher than 85%.
Collapse
Affiliation(s)
- Mariangela Guastaferro
- Department of Industrial Engineering, University of Salerno, Via Giovanni Paolo II, 132, Fisciano, 84084 Salerno, Italy
| | - Lucia Baldino
- Department of Industrial Engineering, University of Salerno, Via Giovanni Paolo II, 132, Fisciano, 84084 Salerno, Italy
- C.U.G.RI., InterUniversity Research Center for the Prediction and Prevention of Major Hazards, University of Salerno, Via Giovanni Paolo II, 132, Fisciano, 84084 Salerno, Italy
| | - Vincenzo Vaiano
- Department of Industrial Engineering, University of Salerno, Via Giovanni Paolo II, 132, Fisciano, 84084 Salerno, Italy
| | - Stefano Cardea
- Department of Industrial Engineering, University of Salerno, Via Giovanni Paolo II, 132, Fisciano, 84084 Salerno, Italy
| | - Ernesto Reverchon
- Department of Industrial Engineering, University of Salerno, Via Giovanni Paolo II, 132, Fisciano, 84084 Salerno, Italy
- C.U.G.RI., InterUniversity Research Center for the Prediction and Prevention of Major Hazards, University of Salerno, Via Giovanni Paolo II, 132, Fisciano, 84084 Salerno, Italy
| |
Collapse
|
8
|
Ecofriendly and low-cost bio adsorbent for efficient removal of methylene blue from aqueous solution. Sci Rep 2022; 12:20580. [PMID: 36446817 PMCID: PMC9707192 DOI: 10.1038/s41598-022-22936-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2022] [Accepted: 10/20/2022] [Indexed: 12/03/2022] Open
Abstract
A novel bio adsorbent was fabricated from turmeric, polyvinyl alcohol and carboxymethyl cellulose for MB dye removal. The physicochemical, antibacterial and biodegradable nature of the film was evaluated using scanning electron microscopy, optical microscopy, universal testing machine, water contact angle, thermogravimetric analysis, Fourier transform infrared spectroscopy, X-ray diffraction, agar disc diffusion method and soil degradability. The inclusion of turmeric into PVA/CMC film improves the biodegradability, antibacterial activity and thermomechanical property of the films. PVA/CMC/TUR film displayed good MB adsorption capacity (qe: 6.27 mg/g) and maximum dye adsorption (R%; 83%) and was achieved at initial dye concentration of 10 mg/L with contact time 170 min at room temperature. The adsorption data of MB on PVA/CMC/TUR film was evaluated using four models Langmuir, Freundlich, Temkin and D-R isotherms. The different kinetic of adsorption (pseudo-first order, pseudo-second order and intraparticle diffusion model) was also applied for adsorption of MB on the films. The experimental result suggests that PVA/CMC/TUR films are an alternate cheap adsorbent for water treatment.
Collapse
|
9
|
Biobased Kapok Fiber Nano-Structure for Energy and Environment Application: A Critical Review. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27228107. [PMID: 36432208 PMCID: PMC9699385 DOI: 10.3390/molecules27228107] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/01/2022] [Revised: 11/08/2022] [Accepted: 11/12/2022] [Indexed: 11/23/2022]
Abstract
The increasing degradation of fossil fuels has motivated the globe to turn to green energy solutions such as biofuel in order to minimize the entire reliance on fossil fuels. Green renewable resources have grown in popularity in recent years as a result of the advancement of environmental technology solutions. Kapok fiber is a sort of cellulosic fiber derived from kapok tree seeds (Ceiba pentandra). Kapok Fiber, as a bio-template, offers the best alternatives to provide clean and renewable energy sources. The unique structure, good conductivity, and excellent physical properties exhibited by kapok fiber nominate it as a highly favored cocatalyst for deriving solar energy processes. This review will explore the role and recent developments of KF in energy production, including hydrogen and CO2 reduction. Moreover, this work summarized the potential of kapok fiber in environmental applications, including adsorption and degradation. The future contribution and concerns are highlighted in order to provide perspective on the future advancement of kapok fiber.
Collapse
|
10
|
Ikram M, Jamal F, Haider A, Dilpazir S, Shujah T, Naz M, Imran M, Ul-Hamid A, Shahzadi I, Ullah H, Nabgan W, Ali S. Efficient Photocatalytic Dye Degradation and Bacterial Inactivation by Graphitic Carbon Nitride and Starch-Doped Magnesium Hydroxide Nanostructures. ACS OMEGA 2022; 7:39998-40008. [PMID: 36385836 PMCID: PMC9648148 DOI: 10.1021/acsomega.2c04650] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/22/2022] [Accepted: 10/13/2022] [Indexed: 06/16/2023]
Abstract
The removal of hazardous pollutants from water is becoming an increasingly interesting topic of research considering their impact on the environment and the ecosystem. This work was carried out to synthesize graphitic carbon nitride (g-C3N4) and starch-doped magnesium hydroxide (g-C3N4/St-Mg(OH)2) nanostructures via a facile co-precipitation process. The focus of this study is to treat polluted water and bactericidal behavior with a ternary system (doping-dependent Mg(OH)2). Different concentrations (2 and 4 wt %) of g-C3N4 were doped in a fixed amount of starch and Mg(OH)2 to degrade methylene blue dye from an aqueous solution with bactericidal potential against Escherichia coli (E. coli) and Staphylococcus aureus (S. aureus) pathogens. The textural structures, morphological evolutions, and optical characteristics of the as-prepared samples were analyzed using advanced characterization techniques. X-ray diffraction confirmed the hexagonal phase of Mg(OH)2 with improved crystallinity upon doping. Fourier transform infrared spectroscopy revealed Mg(OH)2 stretching vibrations and other functional groups. UV-visible spectroscopy exhibited a red shift (bathochromic effect) in absorption spectra representing the decrease in energy band gap (E g). Photoluminescence patterns were recorded to study recombination of charge carriers (e- and h+). A significant enhancement in photodegradation efficiency (97.62%) and efficient bactericidal actions against E. coli (14.10 mm inhibition zone) and S. aureus (7.45 mm inhibition zone) were observed for higher doped specimen 4% g-C3N4/St-Mg(OH)2.
Collapse
Affiliation(s)
- Muhammad Ikram
- Solar
Cell Applications Research Lab, Department of Physics, Government College University Lahore, Lahore54000, Pakistan
| | - Farzana Jamal
- Solar
Cell Applications Research Lab, Department of Physics, Government College University Lahore, Lahore54000, Pakistan
| | - Ali Haider
- Department
of Clinical Sciences, Faculty of Veterinary and Animal Sciences, Muhammad Nawaz Shareef University of Agriculture, Multan66000, Pakistan
| | - Sobia Dilpazir
- Department
of Chemistry, Comsats University, Islamabad45550, Pakistan
| | - Tahira Shujah
- Department
of Physics, University of Central Punjab, Lahore54000, Pakistan
| | - Misbah Naz
- Department
of Chemistry, Division of Science & Technology, University of Education, Lahore54000, Pakistan
| | - Muhammad Imran
- Department
of Chemistry, Government College University
Faisalabad, Pakpattan
Road, Sahiwal, Punjab57000, Pakistan
| | - Anwar Ul-Hamid
- Core
Research Facilities, King Fahd University
of Petroleum & Minerals, Dhahran31261, Saudi Arabia
| | - Iram Shahzadi
- Punjab
University College of Pharmacy, University
of the Punjab, Allama Iqbal Campus, Lahore54000, Pakistan
| | - Hassam Ullah
- Department
of Physics, Riphah Institute of Computing and Applied Sciences (RICAS), Riphah International University, 14 Ali Road, Lahore54000, Pakistan
| | - Walid Nabgan
- Departament
d’Enginyeria Química, Universitat
Rovira i Virgili, Av
Països Catalans 26, Tarragona43007, Spain
| | - Salamat Ali
- Department
of Physics, Riphah Institute of Computing and Applied Sciences (RICAS), Riphah International University, 14 Ali Road, Lahore54000, Pakistan
| |
Collapse
|
11
|
Kim YE, Byun MY, Lee KY, Lee MS. Hydrothermal synthesis of mesoporous TiO2 using β-diketonate stabilizing agents for photocatalytic degradation of methyl violet 2B under visible light. Catal Today 2022. [DOI: 10.1016/j.cattod.2022.11.015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
12
|
Venkatesan S, Suresh S, Ramu P, Arumugam J, Thambidurai S, Pugazhenthiran N. Methylene Blue Dye Degradation Potential of Zinc Oxide Nanoparticles Bioreduced using Solanum trilobatum Leaf Extract. RESULTS IN CHEMISTRY 2022. [DOI: 10.1016/j.rechem.2022.100637] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
|
13
|
Zolfaghari H, Yousefi F, Ghaedi M, Mosleh S. Performance evaluation of Zr(CUR)/NiCo 2S 4/CuCo 2S 4 and Zr(CUR)/CuCo 2S 4/Ag 2S composites for photocatalytic degradation of the methyl parathion pesticide using a spiral-shaped photocatalytic reactor. RSC Adv 2022; 12:29503-29515. [PMID: 36320776 PMCID: PMC9562372 DOI: 10.1039/d2ra06277a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2022] [Accepted: 10/07/2022] [Indexed: 11/25/2022] Open
Abstract
Zr(CUR)/NiCo2S4/CuCo2S4 and Zr(CUR)/CuCo2S4/Ag2S ternary composites were synthesized as efficient photocatalysts, and well characterized through XRD, FTIR, DRS, FE-SEM, EDS, and EDS mapping techniques. The potential of a spiral-shaped photocatalytic reactor was evaluated for degradation of the methyl parathion (MP) pesticide using synthesized photocatalysts under visible light irradiation. Computational fluid dynamics (CFD) was applied for analysis of the hydrodynamics behaviour and mass transport occurring inside the reactor. The experiments were performed based on a developed CCD-RSM model, while the desirability function (DF) was used for optimization of the process. Findings showed that the highest MP degradation percentage was 98.70% at optimal operating values including 20 mg L-1, 0.60 g L-1, 8 and 40 min for MP concentration, catalyst dosage, pH, and reaction time, respectively. This study clearly demonstrated that high degradation efficiency can be achieved using a spiral-shaped photocatalytic reactor rather than a traditional annular reactor at same conditions. The increase in reaction rate is related to the higher average turbulence kinetic energy in the spiral-shaped reactor over the traditional reactor, which results in the increased diffusivity and improves the mass and momentum transfer.
Collapse
Affiliation(s)
| | - Fakhri Yousefi
- Chemistry Department, Yasouj UniversityYasouj 75918-74831Iran
| | | | - Soleiman Mosleh
- Polymer Engineering Department, Faculty of Gas and Petroleum, Yasouj UniversityGachsaran 75813-56001Iran
| |
Collapse
|
14
|
Kotkar SN, Prasad S, Gadekar GP, Rewatkar SB. Auto combustion synthesis of ZnO for degradation of organic dye under natural solar light with bactericidal activity. INORG CHEM COMMUN 2022. [DOI: 10.1016/j.inoche.2022.109830] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
15
|
Ren F, He R, Ren J, Tao F, Yang H, Lv H, Ju X. A Friendly UV-Responsive Fluorine-Free Superhydrophobic Coating for Oil-Water Separation and Dye Degradation. BULLETIN OF THE CHEMICAL SOCIETY OF JAPAN 2022. [DOI: 10.1246/bcsj.20220042] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
- Fangyuan Ren
- School of Chemistry and Chemical Engineering, State Key Laboratory of Biobased Material and Green Papermaking, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, P. R. China
| | - Rui He
- School of Chemistry and Chemical Engineering, State Key Laboratory of Biobased Material and Green Papermaking, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, P. R. China
| | - Jinping Ren
- School of Chemistry and Chemical Engineering, State Key Laboratory of Biobased Material and Green Papermaking, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, P. R. China
| | - Furong Tao
- School of Chemistry and Chemical Engineering, State Key Laboratory of Biobased Material and Green Papermaking, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, P. R. China
| | - Huanhuan Yang
- School of Chemistry and Chemical Engineering, State Key Laboratory of Biobased Material and Green Papermaking, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, P. R. China
| | - Hongshui Lv
- School of Chemistry and Chemical Engineering, State Key Laboratory of Biobased Material and Green Papermaking, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, P. R. China
| | - Xiuqin Ju
- School of Chemistry and Chemical Engineering, State Key Laboratory of Biobased Material and Green Papermaking, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, P. R. China
| |
Collapse
|
16
|
Antibacterial Activity and Photocatalytic Oxidative Performance of Zinc Oxide Nanorods Biosynthesized using Aerva lanata Leaf Extract. INORG CHEM COMMUN 2022. [DOI: 10.1016/j.inoche.2022.109398] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|
17
|
Bandgap Energy of TiO2/M-Curcumin Material (M = Na+, Mg2+, Cu2+). JURNAL KIMIA SAINS DAN APLIKASI 2022. [DOI: 10.14710/jksa.25.1.1-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Bandgap energy (Egap) of TiO2/curcumin as well as TiO2/M-curcumin (M = Na+, Mg2+, Cu2+) was determined. The material was prepared on transparent conductive oxide as TiO2 film. Then, the curcumin and curcumin derivatives were adsorbed on TiO2 surface by immersing the film in solution of the compounds. The diffuse reflectance UV-Vis spectra of the materials were recorded and utilized to calculate the Egap using the Tauc plot method. The calculation gave the Egap of TiO2 of 3.27 eV that lowers after being deposited with curcumin and metal-curcumin compounds. The Egap of TiO2/curcumin was 2.82 eV, while TiO2/Na+-curcumin, TiO2/Mg2+-curcumin, and TiO2/Cu2+-curcumin were 2.36, 3.11, and 2.15 eV, respectively. Curcumin metal complexes, i.e., TiO2/Cu2+-curcumin, showed high molar absorptivity and effectively deposited on the TiO2 lowers the bandgap energy of TiO2 compared to free-curcumin on TiO2.
Collapse
|
18
|
Exploration of photocatalytic performance of TiO2, 5% Ni/TiO2, and 5% Fe/TiO2 for degradation of eosine blue dye: Comparative study. RESULTS IN CHEMISTRY 2022. [DOI: 10.1016/j.rechem.2022.100488] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
|
19
|
Kumar AP, Ahmed F, Kumar S, Anuradha G, Harish K, Kumar BP, Lee YI. Synthesis of Magnetically Recoverable Ru/Fe3O4 Nanocomposite for Efficient Photocatalytic Degradation of Methylene Blue. J CLUST SCI 2021. [DOI: 10.1007/s10876-021-02149-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
20
|
Hashem EM, Hamza MA, El-Shazly AN, Abd El-Rahman SA, El-Tanany EM, Mohamed RT, Allam NK. Novel Z-Scheme/Type-II CdS@ZnO/g-C 3N 4 ternary nanocomposites for the durable photodegradation of organics: Kinetic and mechanistic insights. CHEMOSPHERE 2021; 277:128730. [PMID: 33189399 DOI: 10.1016/j.chemosphere.2020.128730] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/05/2020] [Revised: 10/18/2020] [Accepted: 10/20/2020] [Indexed: 06/11/2023]
Abstract
Visible-light-driven photocatalysis is a green and efficient strategy for wastewater treatment, where graphitic carbon nitride-based semiconductors showed excellent performance in this regard. Consequently, we report on the development of a green and facile one-pot room-temperature ultrasonic route for the preparation of novel ternary nanocomposite of cadmium sulfide quantum dots (CdS QDs), zinc oxide nanoparticles (ZnO NPs), and graphitic carbon nitride nanosheets (g-C3N4 NSs). The proposed materials had been characterized by several physicochemical techniques such as PXRD, XPS, FE-SEM, HR-TEM, PL, and DRS. The photocatalytic efficiency of the proposed photocatalysts was assessed towards the photodegradation of Rhodamine B dye as a water pollutant model using spectrophotometric measurements. The as-synthesized novel ternary nanocomposite (CdS@ZnO/g-C3N4) exhibited perfect photocatalytic activity, where almost complete degradation was achieved in only 2 h under UV-irradiation or 3 h under visible-irradiation. Various methods were used to elucidate the kinetics of the photocatalytic process. Moreover, CdS@ZnO/g-C3N4 exhibited a unique synergetic performance when compared to the corresponding binary composites or the individual components. This synergetic performance could be ascribed to the perfect electronic band configuration of the three components, leading to the establishment of several combined synergetic Z-Scheme/Type-II photocatalytic heterojunctions, which is the proposed mechanism for the observed synergetic photocatalytic reactivity of the as-synthesized CdS@ZnO/g-C3N4 nanocomposite when compared to the single and binary nanocomposite counterparts. Furthermore, the effects of both the type and concentration of various scavengers on the photocatalytic activity were assessed to investigate the most reactive species, where the reductive degradation pathway was found to be the predominant route. Finally, the photocatalytic efficiency of the as-synthesized CdS@ZnO/g-C3N4 composite showed promising and competing results when compared to other photocatalysts reported in the literature.
Collapse
Affiliation(s)
- Elhussein M Hashem
- Chemistry Department, Faculty of Science, Ain-Shams University, Abbassia, Cairo, Egypt
| | - Mahmoud A Hamza
- Chemistry Department, Faculty of Science, Ain-Shams University, Abbassia, Cairo, Egypt; Energy Materials Laboratory (EML), School of Sciences and Engineering, The American University in Cairo, New Cairo, 11835, Egypt
| | - Ayat N El-Shazly
- Energy Materials Laboratory (EML), School of Sciences and Engineering, The American University in Cairo, New Cairo, 11835, Egypt; Central Metallurgical Research and Development Institute, P.O. Box 87, Helwan, Cairo, Egypt
| | | | - Esraa M El-Tanany
- Chemistry Department, Faculty of Science, Ain-Shams University, Abbassia, Cairo, Egypt
| | - Rahma T Mohamed
- Chemistry Department, Faculty of Science, Ain-Shams University, Abbassia, Cairo, Egypt
| | - Nageh K Allam
- Energy Materials Laboratory (EML), School of Sciences and Engineering, The American University in Cairo, New Cairo, 11835, Egypt.
| |
Collapse
|
21
|
Arab C, El Kurdi R, Patra D. Efficient removal of Congo red using curcumin conjugated zinc oxide nanoparticles as new adsorbent complex. CHEMOSPHERE 2021; 276:130158. [PMID: 33714152 DOI: 10.1016/j.chemosphere.2021.130158] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/21/2020] [Revised: 02/25/2021] [Accepted: 02/27/2021] [Indexed: 06/12/2023]
Abstract
Congo red is one of the common organic dyes that is found in water as waste of the industrial work. The use of congo red has long been of great concern, primarily because of its carcinogenic properties. Congo red can be isolated and removed from water by adsorption using nanoparticles. The use of zinc curcumin oxide, also known as curcumin conjugated zinc oxide, nanoparticles was elaborated for the first time in this work for this purpose. The optimization of the synthesis reaction of zinc curcumin oxide nanoparticles was established by modifying the flow rate of KOH, pH of the medium, different temperature, and in the presence or absence of chitosan polymer. These nanoparticles were characterized through SEM, UV-Visible absorption Spectroscopy, fluorescence spectroscopy, TGA, and XRD. It is found that during synthesis, addition of KOH dropwise in alkaline media improved the stability of the formed nanoparticles. Similarly, addition of chitosan has further increased their stability with only 10% mass loss. The importance of the formed nanoparticles was investigated by analyzing their efficiency in the adsorption of congo red where Zn(Cur)O had an adsorption capacity equal to 89.85 mg/g, which is one of the highest reported in literature, following the pseudo second order model. Nevertheless, negative surface charge of congo red and positive surface charge of Zn(Cur)O may also get supported by π-π interaction between curcumin and congo red that encourages adsorption in zinc curcumin oxide which is obstructed in the presence of chitosan.
Collapse
Affiliation(s)
- Celine Arab
- Department of Chemistry, American University of Beirut, Beirut, Lebanon
| | - Riham El Kurdi
- Department of Chemistry, American University of Beirut, Beirut, Lebanon
| | - Digambara Patra
- Department of Chemistry, American University of Beirut, Beirut, Lebanon.
| |
Collapse
|
22
|
Kamble RJ, Gaikwad PV, Garadkar KM, Sabale SR, Puri VR, Mahajan SS. Photocatalytic degradation of malachite green using hydrothermally synthesized cobalt-doped TiO2 nanoparticles. JOURNAL OF THE IRANIAN CHEMICAL SOCIETY 2021. [DOI: 10.1007/s13738-021-02303-y] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
23
|
Zhong Y, Wang T, Lao Z, Lu M, Liang S, Cui X, Li QL, Zhao S. Au-Au/IrO 2@Cu(PABA) Reactor with Tandem Enzyme-Mimicking Catalytic Activity for Organic Dye Degradation and Antibacterial Application. ACS APPLIED MATERIALS & INTERFACES 2021; 13:21680-21692. [PMID: 33934598 DOI: 10.1021/acsami.1c00126] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Herein, a Au-Au/IrO2 nanocomposite with tandem enzyme-mimicking activity was innovatively synthesized, which can show outstanding glucose oxidase (GOx)-like activity and peroxidase-like activity simultaneously under neutral conditions. Moreover, a Au-Au/IrO2@Cu(PABA) reactor was prepared via encapsulation of the Au-Au/IrO2 nanocomposite in a Cu(PABA) metal organic framework. The reactor not only exhibits excellent organic solvent stability, acid resistance, and reusability but also displays better cascade reaction catalytic efficiency (kcat/Km = 148.86 min-1 mM-1) than the natural free enzyme system (GOx/HRP) (kcat/Km = 98.20 min-1 mM-1) and Au-Au/IrO2 nanocomposite (kcat/Km = 135.24 min-1 mM-1). In addition, it is found that the reactor can catalyze glucose or dissolved oxygen to produce active oxygen species (ROS) including HO, 1O2, and O2-· through its enzyme-mimicking activity. Finally, the novel reactor was successfully used in organic dye degradation and antibacterial application. The results show that it can effectively degrade methyl orange, methylene blue, and rhodamine B, which all can reach a degradation rate of nearly 100% after interacting with Au-Au/IrO2@Cu (PABA) for 3.5 h. Furthermore, the reactor also exhibits excellent antibacterial activity, so as to achieve a complete bactericidal effect to Staphylococcus aureus and Escherichia coli at a concentration of 12.5 μg mL-1.
Collapse
Affiliation(s)
- Yingying Zhong
- Department of Pharmaceutical Engineering, School of Biomedical and Pharmaceutical Sciences, Guangdong University of Technology, Guangzhou 510006, People's Republic of China
| | - Tiantian Wang
- Department of Pharmaceutical Engineering, School of Biomedical and Pharmaceutical Sciences, Guangdong University of Technology, Guangzhou 510006, People's Republic of China
| | - Zhiting Lao
- Department of Pharmaceutical Engineering, School of Biomedical and Pharmaceutical Sciences, Guangdong University of Technology, Guangzhou 510006, People's Republic of China
| | - Minglei Lu
- Department of Pharmaceutical Engineering, School of Biomedical and Pharmaceutical Sciences, Guangdong University of Technology, Guangzhou 510006, People's Republic of China
| | - Shan Liang
- Department of Pharmaceutical Engineering, School of Biomedical and Pharmaceutical Sciences, Guangdong University of Technology, Guangzhou 510006, People's Republic of China
| | - Xiping Cui
- Department of Pharmaceutical Engineering, School of Biomedical and Pharmaceutical Sciences, Guangdong University of Technology, Guangzhou 510006, People's Republic of China
| | - Qing-Lan Li
- Department of Pharmaceutical Engineering, School of Biomedical and Pharmaceutical Sciences, Guangdong University of Technology, Guangzhou 510006, People's Republic of China
| | - Suqing Zhao
- Department of Pharmaceutical Engineering, School of Biomedical and Pharmaceutical Sciences, Guangdong University of Technology, Guangzhou 510006, People's Republic of China
| |
Collapse
|
24
|
Sethiya A, Agarwal DK, Agarwal S. Current Trends in Drug Delivery System of Curcumin and its Therapeutic Applications. Mini Rev Med Chem 2021; 20:1190-1232. [PMID: 32348221 DOI: 10.2174/1389557520666200429103647] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2020] [Revised: 03/30/2020] [Accepted: 04/09/2020] [Indexed: 02/07/2023]
Abstract
Curcumin is a poly phenolic compound extracted from turmeric. Over the past years, it has acquired significant interest among researchers due to its numerous pharmacological activities like anti- cancer, anti-alzheimer, anti-diabetic, anti-bacterial, anti-inflammatory and so on. However, the clinical use of curcumin is still obstructed due to tremendously poor bioavailability, rapid metabolism, lower gastrointestinal absorption, and low permeability through cell that makes its pharmacology thrilling. These issues have led to enormous surge of investigation to develop curcumin nano formulations which can overcome these restrictive causes. The scientists all across the universe are working on designing several drug delivery systems viz. liposomes, micelles, magnetic nano carriers, etc. for curcumin and its composites which not only improve its physiochemical properties but also enhanced its therapeutic applications. The review aims to systematically examine the treasure of information about the medicinal use of curcumin. This article delivers a general idea of the current study piloted to overwhelm the complications with the bioavailability of curcumin which have exhibited an enhanced biological activity than curcumin. This article explains the latest and detailed study of curcumin and its conjugates, its phytochemistry and biological perspectives and also proved curcumin as an efficient drug candidate for the treatment of numerous diseases. Recent advancements and futuristic viewpoints are also deliberated, which shall help researchers and foster commercial translations of improved nanosized curcumin combination for the treatment of various diseases.
Collapse
Affiliation(s)
- Ayushi Sethiya
- Department of Chemistry, Synthetic Organic Chemistry Laboratory, MLS University, Udaipur, 313001, India
| | | | - Shikha Agarwal
- Department of Chemistry, Synthetic Organic Chemistry Laboratory, MLS University, Udaipur, 313001, India
| |
Collapse
|
25
|
Ahmed MA, Mahran BM, Abbas AM, Tarek MA, Saed AM. Construction of direct Z-scheme AgIO4/TiO2 heterojunctions for exceptional photodegradation of rhodamine B dye. J DISPER SCI TECHNOL 2020. [DOI: 10.1080/01932691.2020.1841652] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Affiliation(s)
- Mohamed A. Ahmed
- Chemistry Department, Faculty of Science, Ain Shams University, Cairo, Egypt
| | - Blal Mohamed Mahran
- Chemistry Department, Faculty of Science, Ain Shams University, Cairo, Egypt
| | - Ahmed Mohamed Abbas
- Chemistry Department, Faculty of Science, Ain Shams University, Cairo, Egypt
| | - Mohamed Ahmed Tarek
- Chemistry Department, Faculty of Science, Ain Shams University, Cairo, Egypt
| | - Ahmed Mohamed Saed
- Chemistry Department, Faculty of Science, Ain Shams University, Cairo, Egypt
| |
Collapse
|
26
|
Sharma M, Sondhi H, Krishna R, Srivastava SK, Rajput P, Nigam S, Joshi M. Assessment of GO/ZnO nanocomposite for solar-assisted photocatalytic degradation of industrial dye and textile effluent. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2020; 27:32076-32087. [PMID: 32506402 DOI: 10.1007/s11356-020-08849-3] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/10/2020] [Accepted: 04/13/2020] [Indexed: 06/11/2023]
Abstract
An ecofriendly and solar light-responsive graphene oxide wrapped zinc oxide nanohybrid has been synthesized hydrothermally using lemon and honey respectively as chelating and complexing agents. By tuning the reaction conditions, a heterostructure between GO and ZnO has been formed during synthesis. The photocatalytic activity of the synthesized nanohybrid was investigated by degradation of hazardous organic textile dye (methylene blue) as well as wastewater under natural solar light. The nanohybrid exhibited excellent photocatalytic activity towards degradation (~ 89%) of methylene blue (MeB). Furthermore, along with decolorization, 71% of mineralization was also achieved. Interestingly, the nanohybrid has been found to be reusable up to 4 cycles without significant loss of photocatalytic activity. Along with this, the physicochemical parameters of the wastewater generated from textile industry have been also monitored before and after exposure to nanohybrid. The results revealed significant reduction in chemical oxygen demand (COD) (96.33%), biochemical oxygen demand (BOD) (96.23%), and total dissolved solids (TDS) (20.85%), suggesting its potential applicability in textile wastewater treatment.
Collapse
Affiliation(s)
- Mahima Sharma
- Amity Institute of Nanotechnology, Amity University, Sector 125, Noida, 201313, India
| | - Harpreet Sondhi
- Amity Institute of Nanotechnology, Amity University, Sector 125, Noida, 201313, India
| | - Richa Krishna
- Amity Institute of Nanotechnology, Amity University, Sector 125, Noida, 201313, India
| | | | - Parasmani Rajput
- Atomic & Molecular Physics Division, Bhabha Atomic Research Centre, Trombay, Mumbai, 400085, India
| | - Subhasha Nigam
- Amity Institute of Biotechnology, Amity University, Sector 125, Noida, 201313, India.
| | - Monika Joshi
- Amity Institute of Nanotechnology, Amity University, Sector 125, Noida, 201313, India.
| |
Collapse
|
27
|
Hydroxypropyl methylcellulose-TiO2 and gelatin-TiO2 nanocomposite films: Physicochemical and structural properties. Int J Biol Macromol 2020; 151:944-956. [DOI: 10.1016/j.ijbiomac.2019.11.082] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2019] [Revised: 10/28/2019] [Accepted: 11/08/2019] [Indexed: 01/02/2023]
|
28
|
Hematite/Graphitic Carbon Nitride Nanofilm for Fenton and Photocatalytic Oxidation of Methylene Blue. SUSTAINABILITY 2020. [DOI: 10.3390/su12072866] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Hematite (α-Fe2O3)/graphitic carbon nitride (g-C3N4) nanofilm catalysts were synthesized on fluorine-doped tin oxide glass by hydrothermal and chemical vapor deposition. Scanning electron microscopy, energy-dispersive spectroscopy, X-ray diffraction, and X-ray photoelectron spectroscopy analyses of the synthesized catalyst showed that the nanoparticles of g-C3N4 were successfully deposited on α-Fe2O3 nanofilm. The methylene blue degradation efficiency of the α-Fe2O3/g-C3N4 composite catalyst was 2.6 times greater than that of the α-Fe2O3 single catalyst under ultraviolet (UV) irradiation. The methylene blue degradation rate by the α-Fe2O3/g-C3N4 catalyst increased by 6.5 times after 1 mM of hydrogen peroxide (H2O2) was added. The photo-Fenton reaction of the catalyst, UV, and H2O2 greatly increased the methylene blue degradation. The results from the scavenger experiment indicated that the main reactants in the methylene blue decomposition reaction are superoxide radicals photocatalytically generated by g-C3N4 and hydroxyl radicals generated by the photo-Fenton reaction. The α-Fe2O3/g-C3N4 nanofilm showed excellent reaction rate constants at pH 3 (Ka = 6.13 × 10−2 min−1), and still better efficiency at pH 7 (Ka = 3.67 × 10−2 min−1), compared to other methylene blue degradation catalysts. As an immobilized photo-Fenton catalyst without iron sludge formation, nanostructured α-Fe2O3/g-C3N4 are advantageous for process design compared to particle-type catalysts.
Collapse
|
29
|
Nawaz A. Composite of natural bamboo (Dendrocalamus strictus) and TiO2: Its photocatalytic potential in the degradation of methylene blue under the direct irradiation of solar light. RESEARCH ON CHEMICAL INTERMEDIATES 2020. [DOI: 10.1007/s11164-020-04116-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
30
|
Suba V, Saravanabhavan M, Krishna LS, Kaleemulla S, Ranjith Kumar E, Rathika G. Evaluation of curcumin assistance in the antimicrobial and photocatalytic activity of a carbon based TiO2nanocomposite. NEW J CHEM 2020. [DOI: 10.1039/d0nj02346a] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The present study focuses on the synthesis of visible light active curcumin supported TiO2/AC (curcumin–TiO2/AC) through sol–gel and wet impregnation methods for the decolourization of Reactive Blue 160.
Collapse
Affiliation(s)
- V. Suba
- Department of Chemistry
- P. S. G. College of Arts and Science
- Coimbatore-641014
- India
| | - M. Saravanabhavan
- Department of Chemistry
- Sri Ramakrishna Mission Vidhyalaya College of Arts and Science
- Coimbatore-641020
- India
| | | | - Shaik Kaleemulla
- Department of Physics
- Vellore Institute of Technology
- Vellore-63201
- India
| | - E. Ranjith Kumar
- Department of Physics
- KPR Institute of Engineering and Technology
- Coimbatore-641407
- India
| | - G. Rathika
- Department of Chemistry
- P. S. G. College of Arts and Science
- Coimbatore-641014
- India
| |
Collapse
|
31
|
Green synthesis of nickel oxide nanoparticles and studies of their photocatalytic activity in degradation of polyethylene films. ADV POWDER TECHNOL 2020. [DOI: 10.1016/j.apt.2019.10.012] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
|
32
|
Nguyen CH, Juang RS. Efficient removal of methylene blue dye by a hybrid adsorption–photocatalysis process using reduced graphene oxide/titanate nanotube composites for water reuse. J IND ENG CHEM 2019. [DOI: 10.1016/j.jiec.2019.03.054] [Citation(s) in RCA: 66] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
33
|
Sirajudheen P, Meenakshi S. Facile synthesis of chitosan-La3+-graphite composite and its influence in photocatalytic degradation of methylene blue. Int J Biol Macromol 2019; 133:253-261. [DOI: 10.1016/j.ijbiomac.2019.04.073] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2018] [Revised: 03/28/2019] [Accepted: 04/11/2019] [Indexed: 10/27/2022]
|
34
|
The progresses in curcuminoids-based metal complexes: especially in cancer therapy. Future Med Chem 2019; 11:1035-1056. [PMID: 31140861 DOI: 10.4155/fmc-2018-0190] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Curcuminoids (CURs), a series of derivatives in turmeric (Curcuma longa), are commonly discovered to control the deterioration of cancers. However, the physiochemical properties and the original side effects of many CURs complexes put barriers in their medical applications. To address them, the investigation of metal-based complexes with CURs is in progress. The complexes were summarized according to articles in recent years. The results showed that the complexes improved the physicochemical properties or therapeutic performances compared with pure CURs. Further, it is possible for the novel complexes to be applied in chemical detecting, paramagnetic-luminescent and bio-imaging fields. Therefore, the formation of the metal-based CURs complexes (MBCCs) is beneficial for the development of CURs especially in medical fields.
Collapse
|
35
|
Decomposition of the Methylene Blue Dye Using Layered Manganese Oxide Materials Synthesized by Solid State Reactions. INTERNATIONAL JOURNAL OF CHEMICAL ENGINEERING 2018. [DOI: 10.1155/2018/4902376] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
The modulation in the synthesis parameters of layered manganese oxides allowed us to produce materials with different AC conductivities. These conductivities were correlated with the catalytic performance of the materials in the decomposition of methylene blue, as a model of electron transfer reactions. The manganese oxides were prepared by thermal reduction of KMnO4 at 400°C and 800°C where one sample was heated at 1°C/min and the other was heated at 10°C/min. The materials were characterized by atomic absorption, average oxidation states of manganese, X-ray diffraction, thermogravimetric analysis, and scanning electron microscopy. The results indicate that, by increasing the synthesis temperature, both the lamellar arrangement and the crystal size increased, while the Mn4+ amount in the material decreased. Furthermore, it was observed that as the conductivity increases for the materials, the catalytic performance also increases. Therefore, a direct correlation between the conductivity and catalytic performance can be established. For example, the layered manganese oxides material synthesized at 400°C, using a heating rate of 10°C/min, showed the highest AC conductivity and had the best performance in the degradation of methylene blue. Finally, we propose a general mechanism for understanding how manganese oxides behave as catalysts that produce oxidizing species from H2O2 which degrades methylene blue. Our proposed mechanism takes into consideration the state of aggregation of the catalyst, the availability of Mn4+, and the electrical conductivity.
Collapse
|
36
|
Natarajan S, Bajaj HC, Tayade RJ. Recent advances based on the synergetic effect of adsorption for removal of dyes from waste water using photocatalytic process. J Environ Sci (China) 2018; 65:201-222. [PMID: 29548392 DOI: 10.1016/j.jes.2017.03.011] [Citation(s) in RCA: 252] [Impact Index Per Article: 42.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2016] [Accepted: 03/08/2017] [Indexed: 05/21/2023]
Abstract
The problem of textile dye pollution has been addressed by various methods, mainly physical, chemical, biological, and acoustical. These methods mainly separate and/or remove the dye present in water. Recently, advanced oxidation processes (AOP) have been focused for removal of dye from waste water due to their advantages such as ecofriendly, economic and capable to degrade many dyes or organic pollutant present in water. Photocatalysis is one of the advance oxidation processes, mainly carried out under irradiation of light and suitable photocatalytic materials. The photocatalytic activity of the photocatalytic materials mainly depends on the band gap, surface area, and generation of electron-hole pair for degradation dyes present in water. It has been observed that the surface area plays a major role in photocatalytic degradation of dyes, by providing higher surface area, which leads to the higher adsorption of dye molecule on the surface of photocatalyst and enhances the photocatalytic activity. This present review discusses the synergic effect of adsorption of dyes on the photocatalytic efficiency of various nanostructured high surface area photocatalysts. In addition, it also provides the properties of the water polluting dyes, their mechanism and various photocatalytic materials; and their morphology used for the dye degradation under irradiation of light along with the future prospects of highly adsorptive photocatalytic material and their application in photocatalytic removal of dye from waste water.
Collapse
Affiliation(s)
- Subramanian Natarajan
- Inorganic Materials and Catalysis Division (IMCD), CSIR-Central Salt and Marine Chemicals Research Institute (CSIR-CSMCRI), Council of Scientific and Industrial Research (CSIR), G.B. Marg, Bhavnagar 364 002, Gujarat, India.
| | - Hari C Bajaj
- Inorganic Materials and Catalysis Division (IMCD), CSIR-Central Salt and Marine Chemicals Research Institute (CSIR-CSMCRI), Council of Scientific and Industrial Research (CSIR), G.B. Marg, Bhavnagar 364 002, Gujarat, India
| | - Rajesh J Tayade
- Inorganic Materials and Catalysis Division (IMCD), CSIR-Central Salt and Marine Chemicals Research Institute (CSIR-CSMCRI), Council of Scientific and Industrial Research (CSIR), G.B. Marg, Bhavnagar 364 002, Gujarat, India.
| |
Collapse
|
37
|
Magnetic and photocatalytic studies on Zn1−xMgxFe2O4 nanocolloids synthesized by solvothermal reflux method. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY B-BIOLOGY 2017; 177:95-104. [DOI: 10.1016/j.jphotobiol.2017.10.009] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/28/2017] [Revised: 09/29/2017] [Accepted: 10/06/2017] [Indexed: 01/20/2023]
|
38
|
Effect of porphyrin on photocatalytic activity of TiO 2 nanoparticles toward Rhodamine B photodegradation. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY B-BIOLOGY 2017; 176:25-35. [DOI: 10.1016/j.jphotobiol.2017.09.016] [Citation(s) in RCA: 65] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/04/2017] [Revised: 08/29/2017] [Accepted: 09/15/2017] [Indexed: 11/20/2022]
|
39
|
Investigation of commercial PbCrO4/TiO2 for photodegradation of rhodamine B in aqueous solution by visible light. ACTA ACUST UNITED AC 2017. [DOI: 10.1007/s41204-017-0024-9] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
40
|
Stolar M, Heyne B, Baumgartner T. Water-Soluble Phosphaviologens for Effective Photoinduced Charge Separation. Organometallics 2017. [DOI: 10.1021/acs.organomet.7b00313] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Monika Stolar
- Department of Chemistry & Centre for Advanced Solar Materials, University of Calgary, 2500 University Drive, NW, Calgary, Alberta T2N 1N4, Canada
| | - Belinda Heyne
- Department of Chemistry & Centre for Advanced Solar Materials, University of Calgary, 2500 University Drive, NW, Calgary, Alberta T2N 1N4, Canada
| | - Thomas Baumgartner
- Department of Chemistry & Centre for Advanced Solar Materials, University of Calgary, 2500 University Drive, NW, Calgary, Alberta T2N 1N4, Canada
| |
Collapse
|
41
|
Palmitic acid and hexadecylamine molecules assdsorbed on titania surface in hybrid composites. Effect of surfactants using density functional theory. COMPUT THEOR CHEM 2017. [DOI: 10.1016/j.comptc.2017.04.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
42
|
Abdel Messih M, Ahmed M, Soltan A, Anis SS. Facile approach for homogeneous dispersion of metallic silver nanoparticles on the surface of mesoporous titania for photocatalytic degradation of methylene blue and indigo carmine dyes. J Photochem Photobiol A Chem 2017. [DOI: 10.1016/j.jphotochem.2016.11.001] [Citation(s) in RCA: 56] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|