1
|
Wang Y, Li X, Chen H, Yang X, Guo L, Ju R, Dai T, Li G. Antimicrobial blue light inactivation of Pseudomonas aeruginosa: Unraveling the multifaceted impact of wavelength, growth stage, and medium composition. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY. B, BIOLOGY 2024; 259:113023. [PMID: 39241393 PMCID: PMC11390306 DOI: 10.1016/j.jphotobiol.2024.113023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/07/2024] [Revised: 08/20/2024] [Accepted: 08/29/2024] [Indexed: 09/09/2024]
Abstract
Pseudomonas aeruginosa, a notable pathogen frequently associated with hospital-acquired infections, displays diverse intrinsic and acquired antibiotic resistance mechanisms, posing a significant challenge in infection management. Antimicrobial blue light (aBL) has been demonstrated as a potential alternative for treating P. aeruginosa infections. In this study, we investigated the impact of blue light wavelength, bacterial growth stage, and growth medium composition on the efficacy of aBL. First, we compared the efficacy of light wavelengths 405 nm, 415 nm, and 470 nm in killing three multidrug resistant clinical strains of P. aeruginosa. The findings indicated considerably higher antibacterial efficacy for 405 nm and 415 nm wavelength compared to 470 nm. We then evaluated the impact of the bacterial growth stage on the efficacy of 405 nm light in killing P. aeruginosa using a reference strain PAO1 in exponential, transitional, or stationary phase. We found that bacteria in the exponential phase were the most susceptible to aBL, followed by the transitional phase, while those in the stationary phase exhibited the highest tolerance. Additionally, we quantified the production of reactive oxygen species (ROS) in bacteria using the 2',7'-dichlorofluorescein diacetate (DCFH-DA) probe and flow cytometry, and observed a positive correlation between aBL efficacy and ROS production. Finally, we determined the influence of growth medium on aBL efficacy. PAO1 was cultivated in brain heart infusion (BHI), Luria-Bertani (LB) broth or Casamino acids (CAA) medium, before being irradiated with aBL at 405 nm. The CAA-grown bacteria exhibited the highest sensitivity to aBL, followed by those grown in LB broth, and the BHI-grown bacteria demonstrated the lowest sensitivity. By incorporating FeCl3, MnCl2, ZnCl2, or the iron chelator 2,2'-bipyridine (BIP) into specific media, we discovered that aBL efficacy was affected by the iron levels in culture media.
Collapse
Affiliation(s)
- Yucheng Wang
- Department of Pharmacology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences & School of Basic Medicine, Peking Union Medical College, Beijing 100005, China
| | - Xue Li
- Beijing Key Laboratory of Antimicrobial Agents/Laboratory of Pharmacology, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, China; Division for Medicinal Microorganism-Related Strains, CAMS Collection Center of Pathogenic Microorganisms, Beijing 100050, China
| | - Hongtong Chen
- Beijing Key Laboratory of Antimicrobial Agents/Laboratory of Pharmacology, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, China; Division for Medicinal Microorganism-Related Strains, CAMS Collection Center of Pathogenic Microorganisms, Beijing 100050, China
| | - Xinyi Yang
- Beijing Key Laboratory of Antimicrobial Agents/Laboratory of Pharmacology, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, China; Division for Medicinal Microorganism-Related Strains, CAMS Collection Center of Pathogenic Microorganisms, Beijing 100050, China
| | - Lei Guo
- Department of Pharmacology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences & School of Basic Medicine, Peking Union Medical College, Beijing 100005, China
| | - Rui Ju
- Department of Pharmacology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences & School of Basic Medicine, Peking Union Medical College, Beijing 100005, China
| | - Tianhong Dai
- Wellman Center for Photomedicine, MA General Hospital, Harvard Medical School, United States.
| | - Guoqing Li
- Beijing Key Laboratory of Antimicrobial Agents/Laboratory of Pharmacology, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, China; Division for Medicinal Microorganism-Related Strains, CAMS Collection Center of Pathogenic Microorganisms, Beijing 100050, China.
| |
Collapse
|
2
|
Plavskii VY, Sobchuk AN, Mikulich AV, Dudinova ON, Plavskaya LG, Tretyakova AI, Nahorny RK, Ananich TS, Svechko AD, Yakimchuk SV, Leusenka IA. Identification by methods of steady-state and kinetic spectrofluorimetry of endogenous porphyrins and flavins sensitizing the formation of reactive oxygen species in cancer cells. Photochem Photobiol 2024; 100:1310-1327. [PMID: 38258972 DOI: 10.1111/php.13911] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Revised: 12/20/2023] [Accepted: 01/09/2024] [Indexed: 01/24/2024]
Abstract
The question about acceptor molecules of optical radiation that determine the effects of photobiomodulation in relation to various types of cells still remains the focus of attention of researchers. This issue is most relevant for cancer cells, since, depending on the parameters of optical radiation, light can either stimulate their growth or inhibit them and lead to death. This study shows that endogenous porphyrins, which have sensitizing properties, may play an important role in the implementation of the effects of photobiomodulation, along with flavins. For the first time, using steady-state and kinetic spectrofluorimetry, free-base porphyrins and their zinc complexes were discovered and identified in living human cervical epithelial carcinoma (HeLa) cells, as well as in their extracts. It has been shown that reliable detection of porphyrin fluorescence in cells is hampered by the intense fluorescence of flavins due to their high concentration (micromolar range) and higher (compared to tetrapyrroles) fluorescence quantum yield. Optimization of the spectral range of excitation and the use of extractants that provide multiple quenching of the flavin component while increasing the emission efficiency of tetrapyrroles makes it possible to weaken the contribution of the flavin component to the recorded fluorescence spectra.
Collapse
Affiliation(s)
- Vitaly Yu Plavskii
- State Scientific Institution "B.I. Stepanov Institute of Physics of the National Academy of Sciences of Belarus", Minsk, Belarus
| | - Andrei N Sobchuk
- State Scientific Institution "B.I. Stepanov Institute of Physics of the National Academy of Sciences of Belarus", Minsk, Belarus
| | - Aliaksandr V Mikulich
- State Scientific Institution "B.I. Stepanov Institute of Physics of the National Academy of Sciences of Belarus", Minsk, Belarus
| | - Olga N Dudinova
- State Scientific Institution "B.I. Stepanov Institute of Physics of the National Academy of Sciences of Belarus", Minsk, Belarus
| | - Ludmila G Plavskaya
- State Scientific Institution "B.I. Stepanov Institute of Physics of the National Academy of Sciences of Belarus", Minsk, Belarus
| | - Antonina I Tretyakova
- State Scientific Institution "B.I. Stepanov Institute of Physics of the National Academy of Sciences of Belarus", Minsk, Belarus
| | - Raman K Nahorny
- State Scientific Institution "B.I. Stepanov Institute of Physics of the National Academy of Sciences of Belarus", Minsk, Belarus
| | - Tatsiana S Ananich
- State Scientific Institution "B.I. Stepanov Institute of Physics of the National Academy of Sciences of Belarus", Minsk, Belarus
| | - Alexei D Svechko
- State Scientific Institution "B.I. Stepanov Institute of Physics of the National Academy of Sciences of Belarus", Minsk, Belarus
| | - Sergey V Yakimchuk
- State Scientific Institution "B.I. Stepanov Institute of Physics of the National Academy of Sciences of Belarus", Minsk, Belarus
| | - Ihar A Leusenka
- State Scientific Institution "B.I. Stepanov Institute of Physics of the National Academy of Sciences of Belarus", Minsk, Belarus
| |
Collapse
|
3
|
El-Gendy AO, Ezzat S, Samad FA, Dabbous OA, Dahm J, Hamblin MR, Mohamed T. Studying the viability and growth kinetics of vancomycin-resistant Enterococcus faecalis V583 following femtosecond laser irradiation (420-465 nm). Lasers Med Sci 2024; 39:144. [PMID: 38809462 PMCID: PMC11136855 DOI: 10.1007/s10103-024-04080-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2024] [Accepted: 05/12/2024] [Indexed: 05/30/2024]
Abstract
Enterococcus faecalis is among the most resistant bacteria found in infected root canals. The demand for cutting-edge disinfection methods has rekindled research on photoinactivation with visible light. This study investigated the bactericidal activity of femtosecond laser irradiation against vancomycin-resistant Enterococcus faecalis V583 (VRE). The effect of parameters such as wavelength and energy density on the viability and growth kinetics of VRE was studied to design an optimized laser-based antimicrobial photoinactivation approach without any prior addition of exogenous photosensitizers. The most effective wavelengths were 430 nm and 435 nm at a fluence of 1000 J/cm2, causing a nearly 2-log reduction (98.6% and 98.3% inhibition, respectively) in viable bacterial counts. The colony-forming units and growth rate of the laser-treated cultures were progressively decreased as energy density or light dose increased at 445 nm but reached a limit at 1250 J/cm2. At a higher fluence of 2000 J/cm2, the efficacy was reduced due to a photobleaching phenomenon. Our results highlight the importance of optimizing laser exposure parameters, such as wavelength and fluence, in bacterial photoinactivation experiments. To our knowledge, this is the first study to report an optimized wavelength for the inactivation of VRE using visible femtosecond laser light.
Collapse
Affiliation(s)
- Ahmed O El-Gendy
- Laser Institute for Research and Applications LIRA, Beni-Suef University, Beni-Suef, 62511, Egypt
- Department of Microbiology and Immunology, Faculty of Pharmacy, Beni-Suef University, Beni-Suef, 62514, Egypt
| | - Sarah Ezzat
- Department of Microbiology and Immunology, Faculty of Pharmacy, Beni-Suef University, Beni-Suef, 62514, Egypt
| | - Fatma Abdel Samad
- Department of Microbiology and Immunology, Faculty of Pharmacy, Beni-Suef University, Beni-Suef, 62514, Egypt
| | - Ola Ali Dabbous
- Department of Medical Applications of Lasers, National Institute of Laser Enhanced Science (NILES), Cairo University, Giza, 12611, Egypt
| | | | - Michael R Hamblin
- Laser Research Centre, Faculty of Health Science, University of Johannesburg, Doornfontein, 2028, South Africa
| | - Tarek Mohamed
- Laser Institute for Research and Applications LIRA, Beni-Suef University, Beni-Suef, 62511, Egypt.
| |
Collapse
|
4
|
Gierke AM, Hessling M. Photoinactivation by UVA radiation and visible light of Candida auris compared to other fungi. Photochem Photobiol Sci 2024; 23:681-692. [PMID: 38446403 DOI: 10.1007/s43630-024-00543-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2023] [Accepted: 01/22/2024] [Indexed: 03/07/2024]
Abstract
In addition to the rising number of patients affected by viruses and bacteria, the number of fungal infections has also been rising over the years. Due to the increase in resistance to various antimycotics, investigations into further disinfection options are important. In this study, two yeasts (Candida auris and Saccharomyces cerevisiae) and a mold (Cladosporium cladosporioides) were irradiated at 365, 400, and 450 nm individually. The resulting log 1 reduction doses were determined and compared with other studies. Furthermore, fluorescence measurements of C. auris were performed to detect possible involved photosensitizers. A roughly exponential photoinactivation was observed for all three fungi and all irradiation wavelengths with higher D90 doses for longer wavelengths. The determined log 1 reduction doses of C. auris and S. cerevisiae converged with increasing wavelength. However, S. cerevisiae was more photosensitive than C. auris for all irradiation wavelengths and is therefore not a suitable C. auris surrogate for photoinactivation experiments. For the mold C. cladosporioides, much higher D90 doses were determined than for both yeasts. Concerning potential photosensitizers, flavins and various porphyrins were detected by fluorescence measurements. By excitation at 365 nm, another, so far unreported fluorophore and potential photosensitizer was also observed. Based on its fluorescence spectrum, we assume it to be thiamine.Graphic abstract.
Collapse
Affiliation(s)
- Anna-Maria Gierke
- Institute of Medical Engineering and Mechatronics, Ulm University of Applied Sciences, Albert-Einstein-Allee 55, 89081, Ulm, Germany.
| | - Martin Hessling
- Institute of Medical Engineering and Mechatronics, Ulm University of Applied Sciences, Albert-Einstein-Allee 55, 89081, Ulm, Germany
| |
Collapse
|
5
|
Mikulich AV, Plavskii VY, Tretyakova AI, Nahorny RK, Sobchuk AN, Dudchik NV, Emeliyanova OA, Zhabrouskaya AI, Plavskaya LG, Ananich TS, Dudinova ON, Leusenka IA, Yakimchuk SV, Svechko AD, Tien TQ, Tong QC, Nguyen TP. Potential of using medicinal plant extracts as photosensitizers for antimicrobial photodynamic therapy. Photochem Photobiol 2024. [PMID: 38456366 DOI: 10.1111/php.13935] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2023] [Revised: 02/26/2024] [Accepted: 02/27/2024] [Indexed: 03/09/2024]
Abstract
Antimicrobial photodynamic therapy (APDT) is a promising approach to overcome antimicrobial resistance. However, for widespread implementation of this approach, approved photosensitizers are needed. In this study, we used commercially available preparations (Calendulae officinalis floridis extract, Chamomillae recutitae floridis extract, Achillea millefolii herbae extract; Hypericum perforatum extract; Eucalyptus viminalis folia extract) as photosensitizers for inactivation of gram-negative (Pseudomonas aeruginosa) and gram-positive (Staphylococcus aureus) bacteria. Spectral-luminescent analysis has shown that the major chromophores are of chlorophyll (mainly chlorophyll a and b) and hypericin nature. The extracts are efficient generators of singlet oxygen with quantum yield (γΔ ) from 0.40 to 0.64 (reference compound, methylene blue with γΔ = 0.52). In APDT assays, bacteria before irradiation were incubated with extracts for 30 min. After irradiation and 24 h of incubation, colony-forming units (CFU) were counted. Upon exposure of P. aeruginosa to radiation of 405 nm, 590 nm, and 660 nm at equal energy dose of 30 J/cm2 (irradiance - 100 mW/cm2 , exposure time - 5 min), the most pronounced effect is observed with blue light (>3 log10 reduction); in case of S. aureus, the effect is approximately equivalent for light of indicated wavelengths and dose (>4 log10 reduction).
Collapse
Affiliation(s)
- Aliaksandr V Mikulich
- State Scientific Institution "B.I. Stepanov Institute of Physics of the National Academy of Sciences of Belarus", Minsk, Republic of Belarus
| | - Vitaly Yu Plavskii
- State Scientific Institution "B.I. Stepanov Institute of Physics of the National Academy of Sciences of Belarus", Minsk, Republic of Belarus
| | - Antonina I Tretyakova
- State Scientific Institution "B.I. Stepanov Institute of Physics of the National Academy of Sciences of Belarus", Minsk, Republic of Belarus
| | - Raman K Nahorny
- State Scientific Institution "B.I. Stepanov Institute of Physics of the National Academy of Sciences of Belarus", Minsk, Republic of Belarus
| | - Andrey N Sobchuk
- State Scientific Institution "B.I. Stepanov Institute of Physics of the National Academy of Sciences of Belarus", Minsk, Republic of Belarus
| | - Natalia V Dudchik
- Republican Unitary Enterprise «Scientific Practical Centre of Hygiene», Minsk, Republic of Belarus
| | - Olga A Emeliyanova
- Republican Unitary Enterprise «Scientific Practical Centre of Hygiene», Minsk, Republic of Belarus
| | - Anastasia I Zhabrouskaya
- Republican Unitary Enterprise «Scientific Practical Centre of Hygiene», Minsk, Republic of Belarus
| | - Ludmila G Plavskaya
- State Scientific Institution "B.I. Stepanov Institute of Physics of the National Academy of Sciences of Belarus", Minsk, Republic of Belarus
| | - Tatsiana S Ananich
- State Scientific Institution "B.I. Stepanov Institute of Physics of the National Academy of Sciences of Belarus", Minsk, Republic of Belarus
| | - Olga N Dudinova
- State Scientific Institution "B.I. Stepanov Institute of Physics of the National Academy of Sciences of Belarus", Minsk, Republic of Belarus
| | - Ihar A Leusenka
- State Scientific Institution "B.I. Stepanov Institute of Physics of the National Academy of Sciences of Belarus", Minsk, Republic of Belarus
| | - Sergey V Yakimchuk
- State Scientific Institution "B.I. Stepanov Institute of Physics of the National Academy of Sciences of Belarus", Minsk, Republic of Belarus
| | - Alexei D Svechko
- State Scientific Institution "B.I. Stepanov Institute of Physics of the National Academy of Sciences of Belarus", Minsk, Republic of Belarus
| | - Tran Quoc Tien
- Institute of Materials Science, Vietnam Academy of Science and Technology, Hanoi, Vietnam
| | - Quang Cong Tong
- Institute of Materials Science, Vietnam Academy of Science and Technology, Hanoi, Vietnam
| | - Thanh Phuong Nguyen
- School of Engineering Physics, Hanoi University of Science and Technology, Hanoi, Vietnam
| |
Collapse
|
6
|
Wiench R, Paliga D, Mertas A, Bobela E, Kuśka-Kiełbratowska A, Bordin-Aykroyd S, Kawczyk-Krupka A, Grzech-Leśniak K, Lukomska-Szymanska M, Lynch E, Skaba D. Red/Orange Autofluorescence in Selected Candida Strains Exposed to 405 nm Laser Light. Dent J (Basel) 2024; 12:48. [PMID: 38534272 DOI: 10.3390/dj12030048] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2023] [Revised: 02/02/2024] [Accepted: 02/20/2024] [Indexed: 03/28/2024] Open
Abstract
BACKGROUND Candida albicans and similar species are significant pathogens in immunocompromised and hospitalized individuals, known for mucosal colonization and bloodstream/organ invasion. Many pathogenic fungi, including these species, exhibit autofluorescence (R/OF) under specific light conditions, a feature crucial for their detection. AIM We investigated the use of a 405 nm diode laser for the direct observation of red/orange autofluorescence of Candida spp., common in the oral cavity, exploring its potential in health screenings. METHODS This study utilized cultures of Candida spp. on Sabouraud dextrose agar with Qdot 655 and 685 for fluorescence benchmarking, illuminated using a 405 nm diode laser (continuous wave, power 250 mW, 0.0425 J/cm² fluence, 0.0014 W/cm² power density). Images were captured using a yellow-filter camera at set intervals (48 to 144 h). Visual and computational analyses evaluated the R/OF in terms of presence, intensity, coloration, and intra-colony variation. RESULTS Most Candida strains displayed red/orange autofluorescence at all observation times, characterized by varied coloration and intra-colony distribution. Initially, there was an increase in R/OF intensity, which then stabilized in the later stages of observation. CONCLUSIONS The majority of the Candida strains tested are capable of emitting R/OF under 405 nm laser light. This finding opens up new possibilities for integrating R/OF detection into routine dental screenings for Candida spp.
Collapse
Affiliation(s)
- Rafał Wiench
- Department of Periodontal Diseases and Oral Mucosa Diseases, Faculty of Medical Sciences in Zabrze, Medical University of Silesia, 40-055 Katowice, Poland
| | - Dariusz Paliga
- Dental Office Reanata and Dariusz Paliga, Aleja Niepodległości 3/lok 2, 35-303 Rzeszów, Poland
| | - Anna Mertas
- Department of Microbiology and Immunology, Faculty of Medical Sciences in Zabrze, Medical University of Silesia, 40-055 Katowice, Poland
| | - Elżbieta Bobela
- Department of Microbiology and Immunology, Faculty of Medical Sciences in Zabrze, Medical University of Silesia, 40-055 Katowice, Poland
| | - Anna Kuśka-Kiełbratowska
- Department of Periodontal Diseases and Oral Mucosa Diseases, Faculty of Medical Sciences in Zabrze, Medical University of Silesia, 40-055 Katowice, Poland
| | - Sonia Bordin-Aykroyd
- Photomedicine, Leicester School of Pharmacy, De Montfort University, The Gateway, Leicester LE1 9BH, UK
| | - Aleksandra Kawczyk-Krupka
- Department of Internal Diseases, Angiology and Physical Medicine, Center for Laser Diagnostics and Therapy, Medical University of Silesia in Katowice, 41-902 Bytom, Poland
| | - Kinga Grzech-Leśniak
- Laser Laboratory, Dental Surgery Department, Wroclaw Medical University, 50-425 Wroclaw, Poland
- Department of Periodontics, School of Dentistry, Virginia Commonwealth University, Richmond, VA 23284, USA
| | | | - Edward Lynch
- Photomedicine, Leicester School of Pharmacy, De Montfort University, The Gateway, Leicester LE1 9BH, UK
| | - Dariusz Skaba
- Department of Periodontal Diseases and Oral Mucosa Diseases, Faculty of Medical Sciences in Zabrze, Medical University of Silesia, 40-055 Katowice, Poland
| |
Collapse
|
7
|
Walke A, Krone C, Stummer W, König S, Suero Molina E. Protoporphyrin IX in serum of high-grade glioma patients: A novel target for disease monitoring via liquid biopsy. Sci Rep 2024; 14:4297. [PMID: 38383693 PMCID: PMC10881484 DOI: 10.1038/s41598-024-54478-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Accepted: 02/12/2024] [Indexed: 02/23/2024] Open
Abstract
High-grade gliomas (HGG) carry a dismal prognosis. Diagnosis comprises MRI followed by histopathological evaluation of tissue; no blood biomarker is available. Patients are subjected to serial MRIs and, if unclear, surgery for monitoring of tumor recurrence, which is laborious. MRI provides only limited diagnostic information regarding the differentiation of true tumor progression from therapy-associated side effects. 5-aminolevulinic acid (5-ALA) is routinely used for induction of protoporphyrin IX (PpIX) accumulation in malignant glioma tissue, enabling improved tumor visualization during fluorescence-guided resection (FGR). We investigated whether PpIX can also serve as a serum HGG marker to monitor relapse. Patients (HGG: n = 23 primary, pHGG; n = 5 recurrent, rHGG) undergoing FGR received 5-ALA following standard clinical procedure. The control group of eight healthy volunteers (HCTR) also received 5-ALA. Serum was collected before and repeatedly up to 72 h after drug administration. Significant PpIX accumulation in HGG was observed after 5-ALA administration (ANOVA: p = 0.005, post-hoc: HCTR vs. pHGG p = 0.029, HCTR vs. rHGG p = 0.006). Separation of HCTR from pHGG was possible when maximum serum PpIX levels were reached (CI95% of tMax). ROC analysis of serum PpIX within CI95% of tMax showed successful classification of HCTR and pHGG (AUCROC 0.943, CI95% 0.884-1.000, p < 0.001); the optimal cut-off for diagnosis was 1275 pmol PpIX/ml serum, reaching 87.0% accuracy, 90.5% positive predictive and 84.0% negative predictive value. Baseline PpIX level was similar in patient and control groups. Thus, 5-ALA is required for PpIX induction, which is safe at the standard clinical dosage. PpIX is a new target for liquid biopsy in glioma. More extensive clinical studies are required to characterize its full potential.
Collapse
Affiliation(s)
- Anna Walke
- Department of Neurosurgery, University Hospital of Münster, Albert-Schweitzer-Campus 1, A1, 48149, Münster, Germany.
- Core Unit Proteomics, Interdisciplinary Centre for Clinical Research, University of Münster, Münster, Germany.
| | - Christopher Krone
- Department of Neurosurgery, University Hospital of Münster, Albert-Schweitzer-Campus 1, A1, 48149, Münster, Germany
| | - Walter Stummer
- Department of Neurosurgery, University Hospital of Münster, Albert-Schweitzer-Campus 1, A1, 48149, Münster, Germany
| | - Simone König
- Core Unit Proteomics, Interdisciplinary Centre for Clinical Research, University of Münster, Münster, Germany
| | - Eric Suero Molina
- Department of Neurosurgery, University Hospital of Münster, Albert-Schweitzer-Campus 1, A1, 48149, Münster, Germany.
| |
Collapse
|
8
|
Sommerfeld F, Weyersberg L, Vatter P, Hessling M. Photoinactivation of the bacteriophage PhiX174 by UVA radiation and visible light in SM buffer and DMEM-F12. BMC Res Notes 2024; 17:3. [PMID: 38167092 PMCID: PMC10759336 DOI: 10.1186/s13104-023-06658-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2023] [Accepted: 12/07/2023] [Indexed: 01/05/2024] Open
Abstract
OBJECTIVE It has been observed that viruses can be inactivated by UVA radiation and visible light. The aim of this study is to investigate whether a medium that contains a photosensitizer might have an influence on viral reduction under irradiation by UVA, violet or blue light. Test virus is the bacteriophage PhiX174 in the photosensitizer-free SM buffer and DMEM-F12, which contains the known photosensitizer riboflavin. RESULTS The determined PhiX174 D90 doses in SM buffer and DMEM were 36.8 J/cm² and 13.6 J/cm² at 366 nm, 153.6 J/cm² and 129.1 J/cm² at 408 nm and 4988 J/cm² and 2477.1 J/cm² at 455 nm, respectively. It can be concluded that the medium has a large influence on the results. This might be caused by the photosensitizer riboflavin in DMEM-F12. As riboflavin is a key component in many cell culture media, irradiation experiments with viruses in cell culture media should be avoided if the investigation of intrinsical photoinactivation properties of viruses is aimed for.
Collapse
Affiliation(s)
- Florian Sommerfeld
- Department of Medical Engineering and Mechatronics, Ulm University of Applied Sciences, Albert-Einstein-Allee 55, D-89081, Ulm, Germany
| | - Laura Weyersberg
- Department of Medical Engineering and Mechatronics, Ulm University of Applied Sciences, Albert-Einstein-Allee 55, D-89081, Ulm, Germany
| | - Petra Vatter
- Department of Medical Engineering and Mechatronics, Ulm University of Applied Sciences, Albert-Einstein-Allee 55, D-89081, Ulm, Germany
| | - Martin Hessling
- Department of Medical Engineering and Mechatronics, Ulm University of Applied Sciences, Albert-Einstein-Allee 55, D-89081, Ulm, Germany.
| |
Collapse
|
9
|
Ribeiro RS, Mencalha AL, de Souza da Fonseca A. Could violet-blue lights increase the bacteria resistance against ultraviolet radiation mediated by photolyases? Lasers Med Sci 2023; 38:253. [PMID: 37930459 DOI: 10.1007/s10103-023-03924-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2023] [Accepted: 10/26/2023] [Indexed: 11/07/2023]
Abstract
Studies have demonstrated bacterial inactivation by radiations at wavelengths between 400 and 500 nm emitted by low-power light sources. The phototoxic activity of these radiations could occur by oxidative damage in DNA and membrane proteins/lipids. However, some cellular mechanisms can reverse these damages in DNA, allowing the maintenance of genetic stability. Photoreactivation is among such mechanisms able to repair DNA damages induced by ultraviolet radiation, ranging from ultraviolet A to blue radiations. In this review, studies on the effects of violet and blue lights emitted by low-power LEDs on bacteria were accessed by PubMed, and discussed the repair of ultraviolet-induced DNA damage by photoreactivation mechanisms. Data from such studies suggested bacterial inactivation after exposure to violet (405 nm) and blue (425-460 nm) radiations emitted from LEDs. However, other studies showed bacterial photoreactivation induced by radiations at 348-440 nm. This process occurs by photolyase enzymes, which absorb photons at wavelengths and repair DNA damage. Although authors have reported bacterial inactivation after exposure to violet and blue radiations emitted from LEDs, pre-exposure to such radiations at low fluences could activate the photolyases, increasing resistance to DNA damage induced by ultraviolet radiation.
Collapse
Affiliation(s)
- Rickson Souza Ribeiro
- Departamento de Biofísica e Biometria, Instituto de Biologia Roberto Alcantara Gomes, Universidade do Estado do Rio de Janeiro, Boulevard Vinte e Oito de Setembro, 87, Fundos, Vila Isabel, Rio de Janeiro, 20551030, Brazil
| | - Andre Luiz Mencalha
- Departamento de Biofísica e Biometria, Instituto de Biologia Roberto Alcantara Gomes, Universidade do Estado do Rio de Janeiro, Boulevard Vinte e Oito de Setembro, 87, Fundos, Vila Isabel, Rio de Janeiro, 20551030, Brazil
| | - Adenilson de Souza da Fonseca
- Departamento de Biofísica e Biometria, Instituto de Biologia Roberto Alcantara Gomes, Universidade do Estado do Rio de Janeiro, Boulevard Vinte e Oito de Setembro, 87, Fundos, Vila Isabel, Rio de Janeiro, 20551030, Brazil.
- Departamento de Ciências Fisiológicas, Instituto Biomédico, Universidade Federal do Estado do Rio de Janeiro, Rua Frei Caneca, 94, Rio de Janeiro, 20211040, Brazil.
- Centro de Ciências da Saúde, Centro Universitário Serra dos Órgãos, Avenida Alberto Torres, Teresópolis, Rio de Janeiro, 11125964004, Brazil.
| |
Collapse
|
10
|
Huang S, Qin H, Liu M. Photoinactivation of Escherichia coli by 405 nm and 450 nm light-emitting diodes: Comparison of continuous wave and pulsed light. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY. B, BIOLOGY 2023; 248:112799. [PMID: 37832394 DOI: 10.1016/j.jphotobiol.2023.112799] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Revised: 07/12/2023] [Accepted: 10/05/2023] [Indexed: 10/15/2023]
Abstract
BACKGROUND Antimicrobial blue light (ABL) therapy is one of the novel non-antibiotic approaches and recent studies showed the potential of pulsed ABL. PURPOSE Comparing photoinactivation effect of continuous wave (CW) and pulsed blue light and investigating the impact of varying light parameters. METHODS E. coli cells in planktonic were treated with CW and pulsed light (405 nm and 450 nm) at 60 mW/cm2, and the samples were taken to assess survival, reactive oxygen species (ROS) level, damage of cell membrane and metabolic activity. Further, a ROS scavenger was used to find the role of ROS played in ABL therapy. RESULTS E. coli was more sensitive to 405 nm light and the photoinactivation was dose-dependent. Pulsed 405 nm light showed the better antimicrobial effect on E. coli and caused increasing damage of cell membrane. It might be attributed to the ROS production in bacteria. CONCLUSION Pulsed light has a potential of improving the efficacy of ABL therapy and is worth to be explored deeply further.
Collapse
Affiliation(s)
- Shijie Huang
- School of Information Science and Technology, Fudan University, 2005th Songhu Road, Shanghai 200438, China
| | - Haokuan Qin
- Academy for Engineering and Technology, Fudan University, 220th Handan Road, Shanghai 200433, China
| | - Muqing Liu
- School of Information Science and Technology, Fudan University, 2005th Songhu Road, Shanghai 200438, China; Zhongshan Fudan Joint Innovation Center, 6th Xiangxing Rd, Zhongshan City 528403, China.
| |
Collapse
|
11
|
Cong X, Krolla P, Khan UZ, Savin M, Schwartz T. Antibiotic resistances from slaughterhouse effluents and enhanced antimicrobial blue light technology for wastewater decontamionation. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:109315-109330. [PMID: 37924165 PMCID: PMC10622382 DOI: 10.1007/s11356-023-29972-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/19/2023] [Accepted: 09/15/2023] [Indexed: 11/06/2023]
Abstract
The frequencies of 6 different facultative pathogenic bacteria of the ESKAPE group (priority list WHO) and a total of 14 antibiotic resistance genes (ARGs) with different priorities for human medicine were quantified in wastewaters of poultry and pig slaughterhouses using molecular biological approaches. Raw sewage from poultry and pig slaughterhouses was found to be contaminated not only with facultative pathogenic bacteria but also with various categories of clinically relevant ARGs, including ARGs against the reserve antibiotics group. The concentration of the different gene targets decreased after on-site conventional biological or advanced oxidative wastewater treatments, but was not eliminated. Hence, the antimicrobial BlueLight (aBL) in combination with a porphyrin photo-sensitizer was studied with ESKAPE bacteria and real slaughterhouse wastewaters. The applied broad LED-based blue light (420-480 nm) resulted in groups of sensitive, intermediate, and non-sensitive ESKAPE bacteria. The killing effect of aBL was increased in the non-sensitive bacteria Klebsiella pneumoniae and Enterococcus faecium due to the addition of porphyrins in concentrations of 10-6 M. Diluted slaughterhouse raw wastewater was treated with broad spectrum aBL and in combination with porphyrin. Here, the presence of the photo-sensitizer enhanced the aBL biocidal impact.
Collapse
Affiliation(s)
- Xiaoyu Cong
- Microbiology/Molecular Biology Department, Institute of Functional Interfaces (IFG), Karlsruhe Institute of Technology (KIT), Hermann von Helmholtz Platz 1, 76344, Eggenstein-Leopoldshafen, Germany
| | - Peter Krolla
- Microbiology/Molecular Biology Department, Institute of Functional Interfaces (IFG), Karlsruhe Institute of Technology (KIT), Hermann von Helmholtz Platz 1, 76344, Eggenstein-Leopoldshafen, Germany
| | - Umer Zeb Khan
- Bioengineering Department, Faculty Life Sciences, Rhein-Waal University of Applied Sciences, Marie Curie Straße 1, 47533, Kleve, Germany
| | - Mykhailo Savin
- Institute for Hygiene and Public Health (IHPH), Medical Faculty, University of Bonn, Venusberg-Campus 1, 53127, Bonn, Germany
| | - Thomas Schwartz
- Microbiology/Molecular Biology Department, Institute of Functional Interfaces (IFG), Karlsruhe Institute of Technology (KIT), Hermann von Helmholtz Platz 1, 76344, Eggenstein-Leopoldshafen, Germany.
| |
Collapse
|
12
|
Hao S, Qi Y, Zhang Z. Influence of Light Conditions on the Antibacterial Performance and Mechanism of Waterborne Fluorescent Coatings Based on Waterproof Long Afterglow Phosphors/PDMS Composites. Polymers (Basel) 2023; 15:3873. [PMID: 37835922 PMCID: PMC10574996 DOI: 10.3390/polym15193873] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2023] [Revised: 09/18/2023] [Accepted: 09/22/2023] [Indexed: 10/15/2023] Open
Abstract
Marine microbial adhesion is the fundamental cause of large-scale biological fouling. Low surface energy coatings can prevent marine installations from biofouling; nevertheless, their static antifouling abilities are limited in the absence of shear forces produced by seawater. Novel waterborne antifouling coatings inspired by fluorescent coral were reported in this paper. Waterproof long afterglow phosphors (WLAP) were introduced into waterborne silicone elastomers by the physical blending method. The composite coatings store energy during the day, and the various colors of light emitted at night affect the regular physiological activities of marine bacteria. Due to the synergistic effect of fouling-release and fluorescence antifouling, the WLAP/polydimethylsiloxane (PDMS) composite coating showed excellent antifouling abilities. The antibacterial performance of coatings was tested under simulated day-night alternation, continuous light, and constant dark conditions, respectively. The results illustrated that the antibacterial performance of composite coatings under simulated day-night alternation conditions was significantly better than that under continuous light or darkness. The weak lights emitted by the coating can effectively inhibit the adhesion of bacteria. C-SB/PDMS showed the best antibacterial effect, with a bacterial adhesion rate (BAR) of only 3.7%. Constant strong light also affects the normal physiological behavior of bacteria, and the weak light of coatings was covered. The antibacterial ability of coatings primarily relied on their surface properties under continuous dark conditions. The fluorescent effect played a vital role in the synergetic antifouling mechanism. This study enhanced the static antifouling abilities of coatings and provided a new direction for environmentally friendly and long-acting marine antifouling coatings.
Collapse
Affiliation(s)
- Sinan Hao
- Key Laboratory of Ship-Machinery Maintenance & Manufacture, Dalian Maritime University, Dalian 116026, China; (S.H.); (Z.Z.)
- Department of Materials Science and Engineering, Dalian Maritime University, Dalian 116026, China
| | - Yuhong Qi
- Key Laboratory of Ship-Machinery Maintenance & Manufacture, Dalian Maritime University, Dalian 116026, China; (S.H.); (Z.Z.)
- Department of Materials Science and Engineering, Dalian Maritime University, Dalian 116026, China
| | - Zhanping Zhang
- Key Laboratory of Ship-Machinery Maintenance & Manufacture, Dalian Maritime University, Dalian 116026, China; (S.H.); (Z.Z.)
- Department of Materials Science and Engineering, Dalian Maritime University, Dalian 116026, China
| |
Collapse
|
13
|
Zhang W, Su P, Ma J, Tan Y, Gong M, Ma L. An Approach to Improve Energy Efficiency during Antimicrobial Blue Light Inactivation: Application of Pulse-Width Modulation Dimming to Balance Irradiance and Irradiation Time. Antibiotics (Basel) 2023; 12:1431. [PMID: 37760727 PMCID: PMC10525104 DOI: 10.3390/antibiotics12091431] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Revised: 09/03/2023] [Accepted: 09/07/2023] [Indexed: 09/29/2023] Open
Abstract
Antimicrobial blue light (aBL) is an effective non-destructive inactivation technique and has received increasing attention. Despite its significance, the existing research has not thoroughly delved into the impacts of irradiance and irradiation time on enhancing energy efficiency during aBL inactivation and the explanation of the enhancement effect of pulse exposure. In this paper, a series of Escherichia coli inactivation experiments with different duty cycles, pulse frequencies, and irradiation times were conducted, and the relative concentrations of reactive oxygen species (ROS) were measured under corresponding conditions. A two-dimensional (2-D) Hom model was proposed to evaluate the effect of irradiance and irradiation time. The results show that, compared to continuous exposure, pulsed aBL (duty cycle = 25%) can save ~37% of the energy to achieve the same inactivation effect and generate a 1.95 times higher ROS concentration. The 2-D Hom model obtains the optimal combination of average irradiance and time according to the desired reduction and shows that the irradiation time has a higher weight than the irradiance (1.677 and 1.083, respectively). Therefore, using pulse exposure with a lower average irradiance for a longer period of time can achieve a better inactivation effect when consuming equivalent energy. The proposed pulse-width modulation dimming approach helps promote the application of the aBL technique.
Collapse
Affiliation(s)
- Wanqing Zhang
- Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, China; (W.Z.); (P.S.); (M.G.)
| | - Ping Su
- Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, China; (W.Z.); (P.S.); (M.G.)
| | - Jianshe Ma
- Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, China; (W.Z.); (P.S.); (M.G.)
| | - Ying Tan
- Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, China; (W.Z.); (P.S.); (M.G.)
| | - Mali Gong
- Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, China; (W.Z.); (P.S.); (M.G.)
- Department of Precision Instrument, Tsinghua University, Beijing 100084, China
| | - Liya Ma
- Shenzhen Baoan Women and Children’s Hospital, Jinan University, Shenzhen 518100, China;
| |
Collapse
|
14
|
Thery T, Beney L, Grangeteau C, Dupont S. Sporicidal efficiency of an ultra-high irradiance (UHI) near UV/visible light treatment: An example of application to infected mandarins. Food Control 2023. [DOI: 10.1016/j.foodcont.2022.109568] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
15
|
Huang S, Lin S, Qin H, Jiang H, Liu M. The Parameters Affecting Antimicrobial Efficiency of Antimicrobial Blue Light Therapy: A Review and Prospect. Biomedicines 2023; 11:biomedicines11041197. [PMID: 37189815 DOI: 10.3390/biomedicines11041197] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2023] [Revised: 04/06/2023] [Accepted: 04/12/2023] [Indexed: 05/17/2023] Open
Abstract
Antimicrobial blue light (aBL) therapy is a novel non-antibiotic antimicrobial approach which works by generating reactive oxygen species. It has shown excellent antimicrobial ability to various microbial pathogens in many studies. However, due to the variability of aBL parameters (e.g., wavelength, dose), there are differences in the antimicrobial effect across different studies, which makes it difficult to form treatment plans for clinical and industrial application. In this review, we summarize research on aBL from the last six years to provide suggestions for clinical and industrial settings. Furthermore, we discuss the damage mechanism and protection mechanism of aBL therapy, and provide a prospect about valuable research fields related to aBL therapy.
Collapse
Affiliation(s)
- Shijie Huang
- School of Information Science and Technology, Fudan University, 2005th Songhu Road, Shanghai 200438, China
| | - Shangfei Lin
- Academy for Engineering and Technology, Fudan University, 220th Handan Road, Shanghai 200433, China
- Zhongshan Fudan Joint Innovation Center, 6th Xiangxing Road, Zhongshan 528403, China
| | - Haokuan Qin
- Academy for Engineering and Technology, Fudan University, 220th Handan Road, Shanghai 200433, China
| | - Hui Jiang
- Academy for Engineering and Technology, Fudan University, 220th Handan Road, Shanghai 200433, China
| | - Muqing Liu
- School of Information Science and Technology, Fudan University, 2005th Songhu Road, Shanghai 200438, China
- Zhongshan Fudan Joint Innovation Center, 6th Xiangxing Road, Zhongshan 528403, China
| |
Collapse
|
16
|
Prasad A, Roopesh MS. Bacterial biofilm reduction by 275 and 455 nm light pulses emitted from light emitting diodes. J Food Saf 2023. [DOI: 10.1111/jfs.13049] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/06/2023]
Affiliation(s)
- Amritha Prasad
- Department of Agricultural Food and Nutritional Science, University of Alberta Edmonton Alberta Canada
| | - M. S. Roopesh
- Department of Agricultural Food and Nutritional Science, University of Alberta Edmonton Alberta Canada
| |
Collapse
|
17
|
dos Anjos C, Leanse LG, Ribeiro MS, Sellera FP, Dropa M, Arana-Chavez VE, Lincopan N, Baptista MS, Pogliani FC, Dai T, Sabino CP. New Insights into the Bacterial Targets of Antimicrobial Blue Light. Microbiol Spectr 2023; 11:e0283322. [PMID: 36809152 PMCID: PMC10101057 DOI: 10.1128/spectrum.02833-22] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2022] [Accepted: 01/19/2023] [Indexed: 02/23/2023] Open
Abstract
Antimicrobial blue light (aBL) offers efficacy and safety in treating infections. However, the bacterial targets for aBL are still poorly understood and may be dependent on bacterial species. Here, we investigated the biological targets of bacterial killing by aBL (λ = 410 nm) on three pathogens: Staphylococcus aureus, Escherichia coli, and Pseudomonas aeruginosa. Initially, we evaluated the killing kinetics of bacteria exposed to aBL and used this information to calculate the lethal doses (LD) responsible for killing 90 and 99.9% of bacteria. We also quantified endogenous porphyrins and assessed their spatial distribution. We then quantified and suppressed reactive oxygen species (ROS) production in bacteria to investigate their role in bacterial killing by aBL. We also assessed aBL-induced DNA damage, protein carbonylation, lipid peroxidation, and membrane permeability in bacteria. Our data showed that P. aeruginosa was more susceptible to aBL (LD99.9 = 54.7 J/cm2) relative to S. aureus (LD99.9 = 158.9 J/cm2) and E. coli (LD99.9 = 195 J/cm2). P. aeruginosa exhibited the highest concentration of endogenous porphyrins and level of ROS production relative to the other species. However, unlike other species, DNA degradation was not observed in P. aeruginosa. Sublethal doses of blue light (LD99.9). We conclude that the primary targets of aBL depend on the species, which are probably driven by variable antioxidant and DNA-repair mechanisms. IMPORTANCE Antimicrobial-drug development is facing increased scrutiny following the worldwide antibiotic crisis. Scientists across the world have recognized the urgent need for new antimicrobial therapies. In this sense, antimicrobial blue light (aBL) is a promising option due to its antimicrobial properties. Although aBL can damage different cell structures, the targets responsible for bacterial inactivation have still not been completely established and require further exploration. In our study, we conducted a thorough investigation to identify the possible aBL targets and gain insights into the bactericidal effects of aBL on three relevant pathogens: Staphylococcus aureus, Escherichia coli, and Pseudomonas aeruginosa. This research not only adds new content to blue light studies but opens new perspectives to antimicrobial applications.
Collapse
Affiliation(s)
- Carolina dos Anjos
- Wellman Center for Photomedicine, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, USA
- Department of Internal Medicine, School of Veterinary Medicine and Animal Science, University of São Paulo, São Paulo, Brazil
| | - Leon G. Leanse
- Wellman Center for Photomedicine, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, USA
- University of Gibraltar, Europa Point Campus, Gibraltar
| | - Martha S. Ribeiro
- Center for Lasers and Applications, Nuclear and Energy Research Institute (IPEN-CNEN), São Paulo, Brazil
| | - Fábio P. Sellera
- Department of Internal Medicine, School of Veterinary Medicine and Animal Science, University of São Paulo, São Paulo, Brazil
- School of Veterinary Medicine, Metropolitan University of Santos, Santos, Brazil
| | - Milena Dropa
- MicroRes Laboratory, School of Public Health, University of São Paulo, São Paulo, Brazil
| | | | - Nilton Lincopan
- Department of Clinical and Toxicological Analysis, School of Pharmaceutical Sciences, University of São Paulo, São Paulo, Brazil
- Department of Microbiology, Institute for Biomedical Sciences, University of São Paulo, São Paulo, Brazil
| | - Maurício S. Baptista
- Department of Biochemistry, Institute of Chemistry, University of São Paulo, São Paulo, Brazil
| | - Fabio C. Pogliani
- Department of Internal Medicine, School of Veterinary Medicine and Animal Science, University of São Paulo, São Paulo, Brazil
| | - Tianhong Dai
- Wellman Center for Photomedicine, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Caetano P. Sabino
- Department of Clinical and Toxicological Analysis, School of Pharmaceutical Sciences, University of São Paulo, São Paulo, Brazil
- Biolambda, Scientific and Commercial Ltd., São Paulo, Brazil
| |
Collapse
|
18
|
Zhang W, Su P, Ma J, Gong M, Ma L, Wang J. A singlet state oxygen generation model based on the Monte Carlo method of visible antibacterial blue light inactivation. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY. B, BIOLOGY 2023; 239:112628. [PMID: 36610348 DOI: 10.1016/j.jphotobiol.2022.112628] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/06/2022] [Revised: 11/22/2022] [Accepted: 12/13/2022] [Indexed: 12/23/2022]
Abstract
Visible antibacterial blue light (VABL) has received much attention recently as a nondestructive inactivation approach. However, due to the sparse distribution of bacteria, the light energy evaluation method used in existing studies is inaccurate. Thus, the sensitivity of microorganisms to VABL in different experiments cannot be compared. In this paper, a Monte Carlo-based photon transport model with the optimized scattering phase function was constructed. The model calculated the spatial light energy distribution and the temporal distribution of cumulative singlet state oxygen (CSO) under various cell and medium parameters. The simulation results show that when the cells are sparsely distributed, <30% of light energy from the light source is absorbed by microbes and participates in photochemical reactions. The CSO produced increases with cell density and cell size. Little light energy is available, and thus, the concentration of CSO produced is insufficient to inactivate microbes at deeper depths. As the light intensity and inactivation time increased, the production of singlet state oxygen tended to level off. The model proposed here can quantify the generation of singlet state oxygen and provide a more accurate light energy guide for the VABL inactivation process.
Collapse
Affiliation(s)
- Wanqing Zhang
- Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, China
| | - Ping Su
- Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, China
| | - Jianshe Ma
- Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, China.
| | - Mali Gong
- Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, China; Department of Precision Instrument, Tsinghua University, Beijing 100084, China
| | - Liya Ma
- Shenzhen Baoan Women and Children's Hospital, Jinan University, Shenzhen 518100, China
| | - Jing Wang
- College of Water Conservancy, Yunnan Agricultural University, Kunming 650000, China
| |
Collapse
|
19
|
Abstract
Sunlight drives phototrophic metabolism, which affects redox conditions and produces substrates for nonphototrophs. These environmental parameters fluctuate daily due to Earth’s rotation, and nonphototrophic organisms can therefore benefit from the ability to respond to, or even anticipate, such changes. Circadian rhythms, such as daily changes in body temperature, in host organisms can also affect local conditions for colonizing bacteria. Here, we investigated the effects of light/dark and temperature cycling on biofilms of the opportunistic pathogen Pseudomonas aeruginosa PA14. We grew biofilms in the presence of a respiratory indicator dye and found that enhanced dye reduction occurred in biofilm zones that formed during dark intervals and at lower temperatures. This pattern formation occurred with cycling of blue, red, or far-red light, and a screen of mutants representing potential sensory proteins identified two with defects in pattern formation, specifically under red light cycling. We also found that the physiological states of biofilm subzones formed under specific light and temperature conditions were retained during subsequent condition cycling. Light/dark and temperature cycling affected expression of genes involved in primary metabolic pathways and redox homeostasis, including those encoding electron transport chain components. Consistent with this, we found that cbb3-type oxidases contribute to dye reduction under light/dark cycling conditions. Together, our results indicate that cyclic changes in light exposure and temperature have lasting effects on redox metabolism in biofilms formed by a nonphototrophic, pathogenic bacterium.
Collapse
|
20
|
dos Anjos C, Leanse LG, Liu X, Miranda HV, Anderson RR, Dai T. Antimicrobial Blue Light for Prevention and Treatment of Highly Invasive Vibrio vulnificus Burn Infection in Mice. Front Microbiol 2022; 13:932466. [PMID: 35903474 PMCID: PMC9315199 DOI: 10.3389/fmicb.2022.932466] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Accepted: 06/09/2022] [Indexed: 11/28/2022] Open
Abstract
Vibrio vulnificus is an invasive marine bacterium that causes a variety of serious infectious diseases. With the increasing multidrug-resistant variants, treatment of V. vulnificus infections is becoming more difficult. In this study, we explored antimicrobial blue light (aBL; 405 nm wavelength) for the treatment of V. vulnificus infections. We first assessed the efficacy of aBL against five strains of V. vulnificus in vitro. Next, we identified and quantified intracellular porphyrins in V. vulnificus to provide mechanistic insights. Additionally, we measured intracellular reactive oxygen species (ROS) production and bacterial membrane permeabilization following aBL exposures. Lastly, we conducted a preclinical study to investigate the efficacy and safety of aBL for the prevention and treatment of burn infections caused by V. vulnificus in mice. We found that aBL effectively killed V. vulnificus in vitro in both planktonic and biofilm states, with up to a 5.17- and 4.57-log10 CFU reduction being achieved, respectively, following an aBL exposure of 216 J/cm2. Protoporphyrin IX and coproporphyrins were predominant in all the strains. Additionally, intracellular ROS was significantly increased following aBL exposures (P < 0.01), and there was evidence of aBL-induced permeabilization of the bacterial membrane (P < 0.0001). In the preclinical studies, we found that female mice treated with aBL 30 min after bacterial inoculation showed a survival rate of 81% following 7 days of observation, while only 28% survival was observed in untreated female mice (P < 0.001). At 6 h post-inoculation, an 86% survival was achieved in aBL-treated female mice (P = 0.0002). For male mice, 86 and 63% survival rates were achieved when aBL treatment was given 30 min and 6 h after bacterial inoculation, respectively, compared to 32% survival in the untreated mice (P = 0.0004 and P = 0.04). aBL did not reduce cellular proliferation or induce apoptosis. We found five cytokines were significantly upregulated in the males after aBL treatment, including MCSF (P < 0.001), MCP-5 (P < 0.01), TNF RII (P < 0.01), CXCL1 (P < 0.01), and TIMP-1 (P < 0.05), and one in the females (TIMP-1; P < 0.05), suggesting that aBL may induce certain inflammatory processes. In conclusion, aBL may potentially be applied to prevent and treat V. vulnificus infections.
Collapse
Affiliation(s)
- Carolina dos Anjos
- Wellman Center for Photomedicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA, United States
- Vaccine and Immunotherapy Center, Massachusetts General Hospital, Harvard Medical School, Boston, MA, United States
| | - Leon G. Leanse
- Wellman Center for Photomedicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA, United States
- Vaccine and Immunotherapy Center, Massachusetts General Hospital, Harvard Medical School, Boston, MA, United States
| | - Xiaojing Liu
- Wellman Center for Photomedicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA, United States
- Vaccine and Immunotherapy Center, Massachusetts General Hospital, Harvard Medical School, Boston, MA, United States
- Institute of Photomedicine, Shanghai Skin Disease Hospital, Tongji University School of Medicine, Shanghai, China
| | - Hugo V. Miranda
- Naval Medical Research Center, Silver Spring, MD, United States
| | - R. Rox Anderson
- Wellman Center for Photomedicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA, United States
| | - Tianhong Dai
- Wellman Center for Photomedicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA, United States
- Vaccine and Immunotherapy Center, Massachusetts General Hospital, Harvard Medical School, Boston, MA, United States
- *Correspondence: Tianhong Dai
| |
Collapse
|
21
|
Lam MI, Vojnits K, Zhao M, MacNaughton P, Pakpour S. The effect of indoor daylight spectrum and intensity on viability of indoor pathogens on different surface materials. INDOOR AIR 2022; 32:e13076. [PMID: 35904390 DOI: 10.1111/ina.13076] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/27/2022] [Revised: 06/28/2022] [Accepted: 06/30/2022] [Indexed: 06/15/2023]
Abstract
Built environments play a key role in the transmission of infectious diseases. Ventilation rates, air temperature, and humidity affect airborne transmission while cleaning protocols, material properties and light exposure can influence viability of pathogens on surfaces. We investigated how indoor daylight intensity and spectrum through electrochromic (EC) windows can impact the growth rate and viability of indoor pathogens on different surface materials (polyvinyl chloride [PVC] fabric, polystyrene, and glass) compared to traditional blinds. Results showed that tinted EC windows let in higher energy, shorter wavelength daylight than those with clear window and blind. The growth rates of pathogenic bacteria and fungi were significantly lower in spaces with EC windows compared to blinds: nearly 100% growth rate reduction was observed when EC windows were in their clear state followed by 41%-100% reduction in bacterial growth rate and 26%-42% reduction in fungal growth rate when EC windows were in their darkest tint. Moreover, bacterial viabilities were significantly lower on PVC fabric when they were exposed to indoor light at EC-tinted window. These findings are deemed fundamental to the design of healthy modern buildings, especially those that encompass sick and vulnerable individuals.
Collapse
Affiliation(s)
- Man In Lam
- Faculty of Applied Science, School of Engineering, University of British Columbia, Kelowna, British Columbia, Canada
| | - Kinga Vojnits
- Faculty of Applied Science, School of Engineering, University of British Columbia, Kelowna, British Columbia, Canada
| | - Michael Zhao
- Faculty of Applied Science, School of Engineering, University of British Columbia, Kelowna, British Columbia, Canada
| | - Piers MacNaughton
- Department of Environmental Health, Harvard T.H. Chan School of Public Health, Boston, Massachusetts, USA
| | - Sepideh Pakpour
- Faculty of Applied Science, School of Engineering, University of British Columbia, Kelowna, British Columbia, Canada
| |
Collapse
|
22
|
Lawrence C, Waechter S, Alsanius BW. Blue Light Inhibits E. coli, but Decisive Parameters Remain Hidden in the Dark: Systematic Review and Meta-Analysis. Front Microbiol 2022; 13:867865. [PMID: 35464944 PMCID: PMC9023763 DOI: 10.3389/fmicb.2022.867865] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2022] [Accepted: 03/15/2022] [Indexed: 12/02/2022] Open
Abstract
Blue light (400-500 nm) alleviates overexposure risks associated to UV light and has therefore gained increased interest in multiple applications. This meta-analysis deals with decontamination of E. coli through the use of blue light based from nine recent publications identified via a systematic literature search. In these studies, various pathogenic and non-pathogenic E. coli strains grown in nutritional broths were exposed to wavelengths ranging from 395 to 460 nm. Five meta-analyses were performed using Cochrane's software for meta-analyses (Review Manager): one including all studies to estimate the effect of E. coli reduction and four subgroup-analyses considering reported intensities, wavelengths, exposure dose as well as serovars/pathovars. Random effects models were used. All included studies used colony-forming units to estimate the impact of E. coli reduction. None of the included studies involved an organic matrix (e.g., skin, food related surface). Exposure to blue light had a significant and large reducing effect on viable counts of E. coli. However, substantial heterogeneity across studies was observed. Among subgroups, reported intensity and wavelength showed the clearest impact on E. coli reduction. With respect to the reported exposure dose, the picture across the spectrum was scattered, but effect sizes tend to increase with increasing exposure dose. Substantial heterogeneity was also present with respect to all serovar/pathovar subgroups among the included studies. The present body of reports does not display a strong basis for recommendation of relevant intensities, wavelengths and exposure doses for superficial blue light decontamination in medical or food safety contexts. A serious shortcoming in most studies is the absence of a clear documentation of inoculum preparation and of study parameters. We suggest improvement for study protocols for future investigations.
Collapse
Affiliation(s)
- Connor Lawrence
- Microbial Horticulture Unit, Department of Biosystems and Technology, Swedish University of Agricultural Sciences, Alnarp, Sweden
| | | | - Beatrix W. Alsanius
- Microbial Horticulture Unit, Department of Biosystems and Technology, Swedish University of Agricultural Sciences, Alnarp, Sweden
| |
Collapse
|
23
|
Abstract
The COVID-19 pandemic is driving the search for new antiviral techniques. Bacteria and fungi are known to be inactivated not only by ultraviolet radiation but also by visible light. Several studies have recently appeared on this subject, in which viruses were mainly irradiated in media. However, it is an open question to what extent the applied media, and especially their riboflavin concentration, can influence the results. A literature search identified appropriate virus photoinactivation publications and, where possible, viral light susceptibility was quantitatively determined in terms of average log-reduction doses. Sensitivities of enveloped viruses were plotted against assumed riboflavin concentrations. Viruses appear to be sensitive to visible (violet/blue) light. The median log-reduction doses of all virus experiments performed in liquids is 58 J/cm2. For the non-enveloped, enveloped and coronaviruses only, they were 222, 29 and 19 J/cm2, respectively. Data are scarce, but it appears that (among other things) the riboflavin concentration in the medium has an influence on the log-reduction doses. Experiments with DMEM, with its 0.4 mg/L riboflavin, have so far produced results with the greatest viral susceptibilities. It should be critically evaluated whether the currently published virus sensitivities are really only intrinsic properties of the virus, or whether the medium played a significant role. In future experiments, irradiation should be carried out in solutions with the lowest possible riboflavin concentration.
Collapse
|
24
|
Matafonova G, Batoev V. Dual-wavelength light radiation for synergistic water disinfection. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 806:151233. [PMID: 34715208 DOI: 10.1016/j.scitotenv.2021.151233] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/14/2021] [Revised: 10/18/2021] [Accepted: 10/22/2021] [Indexed: 06/13/2023]
Abstract
Development of the narrow-band mercury-free light sources, such as light emitting diodes (LEDs) and excilamps, has stimulated research on inactivation of pathogenic microorganisms by dual-wavelength light radiation. To date, dual-wavelength light radiation has emerged as an advanced tool for enhancing microbial inactivation in water in view of potential synergistic effect. This is the first review that aims at elucidating its mechanisms under dual-wavelength light exposure and surveying a body of related literature in terms of yes-or-no synergy. We have proposed three key inactivation mechanisms, which function in the estimated spectrum ranges I (190-254 nm), II (250-320 nm) and III (300-405 nm) and provide a synergistic effect when combined. These mechanisms involve proteins damage and DNA repair suppression (I), direct and indirect DNA damage (II) and generation of reactive oxygen species (ROS) by endogenous photosensitizers (III), such as porphyrins and flavins. A synergy under dual-wavelength light irradiation simultaneously or sequentially occurs if coupling two wavelengths of different ranges (I + II, I + III, II + III) in order to trigger different inactivation mechanisms. Recent advances of dual-wavelength light strategy in photodynamic therapy could be applied for water disinfection. They bring opportunities for applying the sources of near-UV and visible radiation and making the disinfection processes more energy- and cost-effective. From this standpoint, the synergistically efficient dual-wavelength combinations II + III and the combinations within the extended to 700 nm range III (near-UV + VIS) appear to be promising for developing novel advanced oxidation processes for disinfection of real turbid waters.
Collapse
Affiliation(s)
- Galina Matafonova
- Laboratory of Engineering Ecology, Baikal Institute of Nature Management, Siberian Branch of Russian Academy of Sciences, Ulan-Ude, Russia.
| | - Valeriy Batoev
- Laboratory of Engineering Ecology, Baikal Institute of Nature Management, Siberian Branch of Russian Academy of Sciences, Ulan-Ude, Russia
| |
Collapse
|
25
|
Wang T, Dong J, Zhang G. Analyzing efficacy and safety of anti-fungal blue light therapy via kernel-based modeling the reactive oxygen species induced by light. IEEE Trans Biomed Eng 2022; 69:2433-2442. [PMID: 35085070 DOI: 10.1109/tbme.2022.3146567] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
OBJECTIVE The goal of this study is to investigate the efficacy, safety, and mechanism of ABL for inactivating Candida albicans (C. albicans), and to determine the best wavelength for treating candida infected disease, by experimental measurements and dynamic modeling. METHODS The changes in reactive oxygen species (ROS) in C. albicans and human host cells under the irradiation of 385, 405, and 415nm wavelengths light with irradiance of 50mW/cm2 were measured. Moreover, a kernel-based nonlinear dynamic model, i.e., nonlinear autoregressive with exogenous inputs (NARX), was developed and applied to predict the concentration of light-induced ROS, whose kernels were selected by a newly developed algorithm based on particle swarm optimization (PSO). RESULTS The ROS concentration was increased respectively about 10-12 times in C. albicans and about 3-6 times in human epithelial cells by the ABL treatment with the same fluence of 90J/cm2. The NARX models were respectively fitted to the data from the experiments on both types of cells. Besides, four different kernel functions, including Gaussian, Laplace, linear and polynomial kernels, were compared in their fitting accuracies. The errors with the Laplace kernel turned out to be only 0.2704 and 0.0593, as respectively fitted to the experimental data of the C. albicans and human host cells. CONCLUSION The results demonstrated the effectiveness of the NARX modeling approach, and revealed that the 415nm light was more effective as an anti-fungal treatment with less damage to the host cells than the 405 or 385nm light. SIGNIFICANCE The kernel-based NARX model identification algorithm offers opportunities for determining the effective and safe light dosages in treating various fungal infection diseases.
Collapse
|
26
|
A Narrative Review on Oral and Periodontal Bacteria Microbiota Photobiomodulation, through Visible and Near-Infrared Light: From the Origins to Modern Therapies. Int J Mol Sci 2022; 23:ijms23031372. [PMID: 35163296 PMCID: PMC8836253 DOI: 10.3390/ijms23031372] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2021] [Revised: 01/21/2022] [Accepted: 01/24/2022] [Indexed: 12/13/2022] Open
Abstract
Photobiomodulation (PBM) consists of a photon energy transfer to the cell, employing non-ionizing light sources belonging to the visible and infrared spectrum. PBM acts on some intrinsic properties of molecules, energizing them through specific light wavelengths. During the evolution of life, semiconducting minerals were energized by sun radiation. The molecules that followed became photoacceptors and were expressed into the first proto-cells and prokaryote membranes. Afterward, the components of the mitochondria electron transport chain influenced the eukaryotic cell physiology. Therefore, although many organisms have not utilized light as an energy source, many of the molecules involved in their physiology have retained their primordial photoacceptive properties. Thus, in this review, we discuss how PBM can affect the oral microbiota through photo-energization and the non-thermal effect of light on photoacceptors (i.e., cytochromes, flavins, and iron-proteins). Sometimes, the interaction of photons with pigments of an endogenous nature is followed by thermal or photodynamic-like effects. However, the preliminary data do not allow determining reliable therapies but stress the need for further knowledge on light-bacteria interactions and microbiota management in the health and illness of patients through PBM.
Collapse
|
27
|
Leanse LG, Dos Anjos C, Mushtaq S, Dai T. Antimicrobial blue light: A 'Magic Bullet' for the 21st century and beyond? Adv Drug Deliv Rev 2022; 180:114057. [PMID: 34800566 PMCID: PMC8728809 DOI: 10.1016/j.addr.2021.114057] [Citation(s) in RCA: 27] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2021] [Revised: 11/02/2021] [Accepted: 11/15/2021] [Indexed: 01/03/2023]
Abstract
Over the past decade, antimicrobial blue light (aBL) at 400 - 470 nm wavelength has demonstrated immense promise as an alternative approach for the treatment of multidrug-resistant infections. Since our last review was published in 2017, there have been numerous studies that have investigated aBL in terms of its, efficacy, safety, mechanism, and propensity for resistance development. In addition, researchers have looked at combinatorial approaches that exploit aBL and other traditional and non-traditional therapeutics. To that end, this review aims to update the findings from numerous studies that capitalize on the antimicrobial effects of aBL, with a focus on: efficacy of aBL against different microbes, identifying endogenous chromophores and targets of aBL, Resistance development to aBL, Safety of aBL against host cells, and Synergism of aBL with other agents. We will also discuss our perspective on the future of aBL.
Collapse
Affiliation(s)
- Leon G Leanse
- Wellman Center for Photomedicine, Massachusetts General Hospital, Harvard Medical School, Boston, USA
| | - Carolina Dos Anjos
- Wellman Center for Photomedicine, Massachusetts General Hospital, Harvard Medical School, Boston, USA; Department of Internal Medicine, Faculty of Veterinary Medicine and Animal Science, University of São Paulo, São Paulo, SP, Brazil
| | - Sana Mushtaq
- Wellman Center for Photomedicine, Massachusetts General Hospital, Harvard Medical School, Boston, USA; Department of Pharmacy, COMSATS University Islamabad, Abbottabad campus, Pakistan
| | - Tianhong Dai
- Wellman Center for Photomedicine, Massachusetts General Hospital, Harvard Medical School, Boston, USA.
| |
Collapse
|
28
|
Bauer R, Hoenes K, Meurle T, Hessling M, Spellerberg B. The effects of violet and blue light irradiation on ESKAPE pathogens and human cells in presence of cell culture media. Sci Rep 2021; 11:24473. [PMID: 34963696 PMCID: PMC8714816 DOI: 10.1038/s41598-021-04202-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2021] [Accepted: 12/16/2021] [Indexed: 12/18/2022] Open
Abstract
Bacteria belonging to the group of ESKAPE pathogens are responsible for the majority of nosocomial infections. Due to the increase of antibiotic resistance, alternative treatment strategies are of high clinical relevance. In this context visible light as disinfection technique represents an interesting option as microbial pathogens can be inactivated without adjuvants. However cytotoxic effects of visible light on host cells have also been reported. We compared the cytotoxicity of violet and blue light irradiation on monocytic THP-1 and alveolar epithelium A549 cells with the inactivation effect on ESKAPE pathogens. THP-1 cells displayed a higher susceptibility to irradiation than A549 cells with first cytotoxic effects occurring at 300 J cm−2 (405 nm) and 400 J cm−2 (450 nm) in comparison to 300 J cm−2 and 1000 J cm−2, respectively. We could define conditions in which a significant reduction of colony forming units for all ESKAPE pathogens, except Enterococcus faecium, was achieved at 405 nm while avoiding cytotoxicity. Irradiation at 450 nm demonstrated a more variable effect which was species and medium dependent. In summary a significant reduction of viable bacteria could be achieved at subtoxic irradiation doses, supporting a potential use of visible light as an antimicrobial agent in clinical settings.
Collapse
Affiliation(s)
- Richard Bauer
- Institute of Medical Microbiology and Hygiene, University Hospital Ulm, 89081, Ulm, Germany
| | - Katharina Hoenes
- Institute of Medical Engineering and Mechatronics, Ulm University of Applied Sciences, 89081, Ulm, Germany
| | - Tobias Meurle
- Institute of Medical Engineering and Mechatronics, Ulm University of Applied Sciences, 89081, Ulm, Germany
| | - Martin Hessling
- Institute of Medical Engineering and Mechatronics, Ulm University of Applied Sciences, 89081, Ulm, Germany
| | - Barbara Spellerberg
- Institute of Medical Microbiology and Hygiene, University Hospital Ulm, 89081, Ulm, Germany.
| |
Collapse
|
29
|
High Intensity Violet Light (405 nm) Inactivates Coronaviruses in Phosphate Buffered Saline (PBS) and on Surfaces. PHOTONICS 2021. [DOI: 10.3390/photonics8100414] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
It has been proven that visible light with a wavelength of about 405 nm exhibits an antimicrobial effect on bacteria and fungi if the irradiation doses are high enough. Hence, the question arises as to whether this violet light would also be suitable to inactivate SARS-CoV-2 coronaviruses. Therefore, a high-intensity light source was developed and applied to irradiate bovine coronaviruses (BCoV), which are employed as SARS-CoV-2 surrogates for safety reasons. Irradiation is performed in virus solutions diluted with phosphate buffered saline and on steel surfaces. Significant virus reduction by several log levels was observed both in the liquid and on the surface within half an hour with average log reduction doses of 57.5 and 96 J/cm2, respectively. Therefore, it can be concluded that 405 nm irradiation has an antiviral effect on coronaviruses, but special attention should be paid to the presence of photosensitizers in the virus environment in future experiments. Technically, visible violet radiation is therefore suitable for coronavirus reduction, but the required radiation doses are difficult to achieve rapidly.
Collapse
|
30
|
Genetic Factors Affect the Survival and Behaviors of Selected Bacteria during Antimicrobial Blue Light Treatment. Int J Mol Sci 2021; 22:ijms221910452. [PMID: 34638788 PMCID: PMC8508746 DOI: 10.3390/ijms221910452] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2021] [Revised: 09/22/2021] [Accepted: 09/24/2021] [Indexed: 12/26/2022] Open
Abstract
Antimicrobial resistance is a global, mounting and dynamic issue that poses an immediate threat to human, animal, and environmental health. Among the alternative antimicrobial treatments proposed to reduce the external use of antibiotics is electromagnetic radiation, such as blue light. The prevailing mechanistic model is that blue light can be absorbed by endogenous porphyrins within the bacterial cell, inducing the production of reactive oxygen species, which subsequently inflict oxidative damages upon different cellular components. Nevertheless, it is unclear whether other mechanisms are involved, particularly those that can affect the efficacy of antimicrobial blue light treatments. In this review, we summarize evidence of inherent factors that may confer protection to a selected group of bacteria against blue light-induced oxidative damages or modulate the physiological characteristics of the treated bacteria, such as virulence and motility. These include descriptions of three major photoreceptors in bacteria, chemoreceptors, SOS-dependent DNA repair and non-SOS protective mechanisms. Future directions are also provided to assist with research efforts to increase the efficacy of antimicrobial blue light and to minimize the development of blue light-tolerant phenotypes.
Collapse
|
31
|
Prasad A, Gänzle M, Roopesh MS. Antimicrobial activity and drying potential of high intensity blue light pulses (455 nm) emitted from LEDs. Food Res Int 2021; 148:110601. [PMID: 34507746 DOI: 10.1016/j.foodres.2021.110601] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2021] [Revised: 07/06/2021] [Accepted: 07/08/2021] [Indexed: 01/30/2023]
Abstract
Decontamination of low water activity (aw) foods, like pet foods is a challenging task. Treatment using light emitting diode (LED) is an emerging decontamination method, that can induce photodynamic inactivation in bacteria. The objective of this study was to understand the effect of selected product and process parameters on the antibacterial efficacy of treatment using light pulses of 455 nm wavelength on dry powdered Salmonella and pet foods equilibrated to 0.75 aw. The surface temperature increase, weight loss, and aw decrease in the samples were determined after LED treatments with different doses. S. Typhimurium on pet foods showed better sensitivity to 455 nm LED treatment than the powdered S. Typhimurium. For instance, 455 nm LED treatment with 785.7 J/cm2 dose produced a log reduction of 1.44 log (CFU/g) in powdered S. Typhimurium population compared to 3.22 log (CFU/g) on pet food. The LED treatment was less effective against 5-strain cocktail of Salmonella in low aw pet foods. The treated samples showed significant reduction in weight and aw showing the heating and drying potential of 455 nm LED treatment. Significant lipid oxidation was observed in the treated pet foods. Overall, the dose, treatment time, and sample type influenced the Salmonella inactivation efficacy of 455 nm LED treatment in low aw conditions.
Collapse
Affiliation(s)
- Amritha Prasad
- Department of Agricultural, Food and Nutritional Science, University of Alberta, Edmonton, AB T6G 2R3, Canada
| | - Michael Gänzle
- Department of Agricultural, Food and Nutritional Science, University of Alberta, Edmonton, AB T6G 2R3, Canada; College of Bioengineering and Food Science, Hubei University of Technology, Wuhan 430086, China
| | - M S Roopesh
- Department of Agricultural, Food and Nutritional Science, University of Alberta, Edmonton, AB T6G 2R3, Canada.
| |
Collapse
|
32
|
Hasanin MS, Abdelraof M, Fikry M, Shaker YM, Sweed AMK, Senge MO. Development of Antimicrobial Laser-Induced Photodynamic Therapy Based on Ethylcellulose/Chitosan Nanocomposite with 5,10,15,20-Tetrakis( m-Hydroxyphenyl)porphyrin. Molecules 2021; 26:molecules26123551. [PMID: 34200763 PMCID: PMC8230394 DOI: 10.3390/molecules26123551] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2021] [Revised: 06/04/2021] [Accepted: 06/07/2021] [Indexed: 11/16/2022] Open
Abstract
The development of new antimicrobial strategies that act more efficiently than traditional antibiotics is becoming a necessity to combat multidrug-resistant pathogens. Here we report the efficacy of laser-light-irradiated 5,10,15,20-tetrakis(m-hydroxyphenyl)porphyrin (mTHPP) loaded onto an ethylcellulose (EC)/chitosan (Chs) nanocomposite in eradicating multi-drug resistant Pseudomonas aeruginosa, Staphylococcus aureus, and Candida albicans. Surface loading of the ethylcelllose/chitosan composite with mTHPP was carried out and the resulting nanocomposite was fully characterized. The results indicate that the prepared nanocomposite incorporates mTHPP inside, and that the composite acquired an overall positive charge. The incorporation of mTHPP into the nanocomposite enhanced the photo- and thermal stability. Different laser wavelengths (458; 476; 488; 515; 635 nm), powers (5-70 mW), and exposure times (15-45 min) were investigated in the antimicrobial photodynamic therapy (aPDT) experiments, with the best inhibition observed using 635 nm with the mTHPP EC/Chs nanocomposite for C. albicans (59 ± 0.21%), P. aeruginosa (71.7 ± 1.72%), and S. aureus (74.2 ± 1.26%) with illumination of only 15 min. Utilization of higher doses (70 mW) for longer periods achieved more eradication of microbial growth.
Collapse
Affiliation(s)
- Mohamed S. Hasanin
- Cellulose & Paper Department, National Research Centre, 33 El Bohouth St. (Former El Tahrir St.), Giza P.O. 12622, Egypt;
| | - Mohamed Abdelraof
- Microbial Chemistry Department, Genetic Engineering and Biotechnology Research Division, National Research Centre, 33 El Bohouth St. (Former El Tahrir St.), Giza P.O. 12622, Egypt
- Correspondence: (M.A.); (M.O.S.); Tel.: +353-1-896-8537 (M.O.S.)
| | - Mohamed Fikry
- Physics Department, Faculty of Science, Cairo University, Giza P.O. 12613, Egypt;
| | - Yasser M. Shaker
- Chemistry of Natural and Microbial Products Department, Pharmaceutical and Drug Industries Division, National Research Centre, 33 El Bohouth St. (Former El Tahrir St.), Giza P.O. 12622, Egypt; (Y.M.S.); (A.M.K.S.)
| | - Ayman M. K. Sweed
- Chemistry of Natural and Microbial Products Department, Pharmaceutical and Drug Industries Division, National Research Centre, 33 El Bohouth St. (Former El Tahrir St.), Giza P.O. 12622, Egypt; (Y.M.S.); (A.M.K.S.)
| | - Mathias O. Senge
- Medicinal Chemistry, Trinity Translational Medicine Institute, Trinity Centre for Health Sciences, Trinity College Dublin, The University of Dublin, St. James’s Hospital, Dublin 8, Ireland
- Correspondence: (M.A.); (M.O.S.); Tel.: +353-1-896-8537 (M.O.S.)
| |
Collapse
|
33
|
Vatter P, Hoenes K, Hessling M. Blue light inactivation of the enveloped RNA virus Phi6. BMC Res Notes 2021; 14:187. [PMID: 34001258 PMCID: PMC8128082 DOI: 10.1186/s13104-021-05602-y] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2021] [Accepted: 05/06/2021] [Indexed: 11/10/2022] Open
Abstract
OBJECTIVE Ultraviolet radiation is known for its antimicrobial properties but unfortunately, it could also harm humans. Currently, disinfection techniques against SARS-CoV-2 are being sought that can be applied on air and surfaces and which do not pose a relevant thread to humans. In this study, the bacteriophage phi6, which like SARS-CoV-2 is an enveloped RNA virus, is irradiated with visible blue light at a wavelength of 455 nm. RESULTS For the first time worldwide, the antiviral properties of blue light around 455 nm can be demonstrated. With a dose of 7200 J/cm2, the concentration of this enveloped RNA virus can be successfully reduced by more than three orders of magnitude. The inactivation mechanism is still unknown, but the sensitivity ratio of phi6 towards blue and violet light hints towards an involvement of photosensitizers of the host cells. Own studies on coronaviruses cannot be executed, but the results support speculations about blue-susceptibility of coronaviruses, which might allow to employ blue light for infection prevention or even therapeutic applications.
Collapse
Affiliation(s)
- Petra Vatter
- Institute of Medical Engineering and Mechatronics, Ulm University of Applied Sciences, Ulm, Germany
| | - Katharina Hoenes
- Institute of Medical Engineering and Mechatronics, Ulm University of Applied Sciences, Ulm, Germany
| | - Martin Hessling
- Institute of Medical Engineering and Mechatronics, Ulm University of Applied Sciences, Ulm, Germany
| |
Collapse
|
34
|
Tsutsumi-Arai C, Arai Y, Terada-Ito C, Imamura T, Tatehara S, Ide S, Wakabayashi N, Satomura K. Microbicidal effect of 405-nm blue LED light on Candida albicans and Streptococcus mutans dual-species biofilms on denture base resin. Lasers Med Sci 2021; 37:857-866. [PMID: 33931832 DOI: 10.1007/s10103-021-03323-z] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2020] [Accepted: 04/20/2021] [Indexed: 12/01/2022]
Abstract
This study investigated: (1) the microbicidal effect of 405-nm blue LED light irradiation on biofilm formed by Candida albicans hyphae and Streptococcus mutans under dual-species condition on denture base resin, (2) the generation of intracellular reactive oxygen species (ROS) induced by irradiation, and (3) the existence of intracellular porphyrins, which act as a photosensitizer. Denture base resin specimens were prepared and C. albicans and S. mutans dual-species biofilms were allowed to form on the specimens. The biofilms were irradiated with 405-nm blue LED light and analyzed using the colony-forming unit assay, fluorescence microscopy, and scanning electron microscopy (SEM). Single-species biofilms of C. albicans and S. mutans formed on the specimens were irradiated with 405-nm blue LED light. After the irradiation, the intracellular ROS levels in C. albicans and S. mutans cells were measured. In addition, the level of intracellular porphyrins in C. albicans and S. mutans were measured. Irradiation for more than 30 min significantly inhibited the colony formation ability of C. albicans and S. mutans. Fluorescence microscopy revealed that almost all C. albicans and S. mutans cells were killed by irradiation. SEM images showed various cell damage patterns. Irradiation led to the generation of intracellular ROS and porphyrins were present in both C. albicans and S. mutans cells. In conclusion, irradiation with 405-nm blue light-emitting diode light for 40 min effectively disinfect C. albicans hyphae and S. mutans dual-species biofilms and possibly react with intracellular porphyrins resulting in generation of ROS in each microorganism.
Collapse
Affiliation(s)
- Chiaki Tsutsumi-Arai
- Department of Oral Medicine and Stomatology, Tsurumi University School of Dental Medicine, 2-1-3, Tsurumi, Tsurumi-ku, Yokohama, Kanagawa, 230-8501, Japan.
| | - Yuki Arai
- Department of Removable Partial Prosthodontics, Graduate School, Tokyo Medical and Dental University (TMDU), 1-5-45, Yushima, Bunkyo-ku, Tokyo, 113-8549, Japan
| | - Chika Terada-Ito
- Department of Oral Medicine and Stomatology, Tsurumi University School of Dental Medicine, 2-1-3, Tsurumi, Tsurumi-ku, Yokohama, Kanagawa, 230-8501, Japan
| | - Takahiro Imamura
- Department of Oral Medicine and Stomatology, Tsurumi University School of Dental Medicine, 2-1-3, Tsurumi, Tsurumi-ku, Yokohama, Kanagawa, 230-8501, Japan
| | - Seiko Tatehara
- Department of Oral Medicine and Stomatology, Tsurumi University School of Dental Medicine, 2-1-3, Tsurumi, Tsurumi-ku, Yokohama, Kanagawa, 230-8501, Japan
| | - Shinji Ide
- Department of Oral Medicine and Stomatology, Tsurumi University School of Dental Medicine, 2-1-3, Tsurumi, Tsurumi-ku, Yokohama, Kanagawa, 230-8501, Japan
| | - Noriyuki Wakabayashi
- Department of Removable Partial Prosthodontics, Graduate School, Tokyo Medical and Dental University (TMDU), 1-5-45, Yushima, Bunkyo-ku, Tokyo, 113-8549, Japan
| | - Kazuhito Satomura
- Department of Oral Medicine and Stomatology, Tsurumi University School of Dental Medicine, 2-1-3, Tsurumi, Tsurumi-ku, Yokohama, Kanagawa, 230-8501, Japan
| |
Collapse
|
35
|
Hoenes K, Bauer R, Spellerberg B, Hessling M. Microbial Photoinactivation by Visible Light Results in Limited Loss of Membrane Integrity. Antibiotics (Basel) 2021; 10:341. [PMID: 33807025 PMCID: PMC8005082 DOI: 10.3390/antibiotics10030341] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2021] [Revised: 03/15/2021] [Accepted: 03/17/2021] [Indexed: 01/07/2023] Open
Abstract
Interest in visible light irradiation as a microbial inactivation method has widely increased due to multiple possible applications. Resistance development is considered unlikely, because of the multi-target mechanism, based on the induction of reactive oxygen species by wavelength specific photosensitizers. However, the affected targets are still not completely identified. We investigated membrane integrity with the fluorescence staining kit LIVE/DEAD® BacLight™ on a Gram positive and a Gram negative bacterial species, irradiating Staphylococcus carnosus and Pseudomonas fluorescens with 405 nm and 450 nm. To exclude the generation of viable but nonculturable (VBNC) bacterial cells, we applied an ATP test, measuring the loss of vitality. Pronounced uptake of propidium iodide was only observed in Pseudomonas fluorescens at 405 nm. Transmission electron micrographs revealed no obvious differences between irradiated samples and controls, especially no indication of an increased bacterial cell lysis could be observed. Based on our results and previous literature, we suggest that visible light photoinactivation does not lead to rapid bacterial cell lysis or disruption. However, functional loss of membrane integrity due to depolarization or inactivation of membrane proteins may occur. Decomposition of the bacterial envelope following cell death might be responsible for observations of intracellular component leakage.
Collapse
Affiliation(s)
- Katharina Hoenes
- Institute of Medical Engineering and Mechatronics, Ulm University of Applied Sciences, 89081 Ulm, Germany;
| | - Richard Bauer
- Institute of Medical Microbiology and Hygiene, University Hospital Ulm, 89081 Ulm, Germany; (R.B.); (B.S.)
| | - Barbara Spellerberg
- Institute of Medical Microbiology and Hygiene, University Hospital Ulm, 89081 Ulm, Germany; (R.B.); (B.S.)
| | - Martin Hessling
- Institute of Medical Engineering and Mechatronics, Ulm University of Applied Sciences, 89081 Ulm, Germany;
| |
Collapse
|
36
|
Photoinactivation of Staphylococci with 405 nm Light in a Trachea Model with Saliva Substitute at 37 °C. Healthcare (Basel) 2021; 9:healthcare9030310. [PMID: 33799642 PMCID: PMC7998829 DOI: 10.3390/healthcare9030310] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2021] [Revised: 02/28/2021] [Accepted: 03/04/2021] [Indexed: 02/03/2023] Open
Abstract
The globally observed rise in bacterial resistance against antibiotics has increased the need for alternatives to antibiotic treatments. The most prominent and important pathogen bacteria are the ESKAPE pathogens, which include among others Staphylococcus aureus, Klebsiella pneumoniae and Acinetobacter baumannii. These species cause ventilator-associated pneumonia (VAP), which accounts for 24% of all nosocomial infections. In this study we tested the efficacy of photoinactivation with 405 nm violet light under conditions comparable to an intubated patient with artificial saliva for bacterial suspension at 37 °C. A technical trachea model was developed to investigate the visible light photoinactivation of Staphylococcus carnosus as a non-pathogen surrogate of the ESKAPE pathogen S. aureus (MRSA). The violet light was coupled into the tube with a fiber optic setup. The performed tests proved, that photoinactivation at 37 °C is more effective with a reduction of almost 3 log levels (99.8%) compared to 25 °C with a reduction of 1.2 log levels. The substitution of phosphate buffered saline (PBS) by artificial saliva solution slightly increased the efficiency during the experimental course. The increased efficiency might be caused by a less favorable environment for bacteria due to for example the ionic composition.
Collapse
|
37
|
Chen Z, Qin H, Lin S, Lu Z, Fan X, Liu X, Liu M. Comparative transcriptome analysis of gene expression patterns on B16F10 melanoma cells under Photobiomodulation of different light modes. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY. B, BIOLOGY 2021; 216:112127. [PMID: 33517070 DOI: 10.1016/j.jphotobiol.2021.112127] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/15/2020] [Revised: 01/05/2021] [Accepted: 01/14/2021] [Indexed: 11/28/2022]
Abstract
Cutaneous melanoma is one of the aggressive cancers. Recent studies have shown that Photobiomodulation (PBM) can inhibit the proliferation of melanoma cells. However, it is not clear that the effect of PBM light mode on the inhibition of melanoma cells. Herein, we investigated the difference of influence between continuous wave (CW) and Pulse PBM on B16F10 melanoma cells. Our results suggested that Pulse mode had a more significant inhibition on the viability of B16F10 melanoma cells than CW mode under the PBM light parameter of wavelength, dose, and average irradiance at 457 nm, 1.14 J/cm2, and 0.19 mW/cm2. Besides, we revealed the differentially expressed genes of B16F10 melanoma cells under the various treatments of PBM light mode (not PBM treatment, CW mode, and Pulse mode) by RNA sequencing. Together, our data suggested that Pulse-PBM can improve the effect of PBM on cells significantly and there may be different molecular mechanisms between Pulse and CW mode including anti-proliferative and cell necrosis. The study shed new light on investigating the molecular mechanisms of various PBM light modes on B16F10 melanoma cells.
Collapse
Affiliation(s)
- Zeqing Chen
- Institute of Future Lighting, Academy for Engineering and Technology, Fudan University, 220th Handan Road, Shanghai 200433, China
| | - Haokuan Qin
- Institute of Future Lighting, Academy for Engineering and Technology, Fudan University, 220th Handan Road, Shanghai 200433, China; Zhongshan Fudan Joint Innovation Center, 6th Xiangxing Road, Zhongshan City 528403, China
| | - Shangfei Lin
- Institute of Future Lighting, Academy for Engineering and Technology, Fudan University, 220th Handan Road, Shanghai 200433, China; Zhongshan Fudan Joint Innovation Center, 6th Xiangxing Road, Zhongshan City 528403, China
| | - Zhicheng Lu
- Institute of Future Lighting, Academy for Engineering and Technology, Fudan University, 220th Handan Road, Shanghai 200433, China; Zhongshan Fudan Joint Innovation Center, 6th Xiangxing Road, Zhongshan City 528403, China
| | - Xuewei Fan
- Institute of Future Lighting, Academy for Engineering and Technology, Fudan University, 220th Handan Road, Shanghai 200433, China; Zhongshan Fudan Joint Innovation Center, 6th Xiangxing Road, Zhongshan City 528403, China
| | - Xuwen Liu
- Zhongshan Fudan Joint Innovation Center, 6th Xiangxing Road, Zhongshan City 528403, China; Institute for Electric Light Sources, Fudan University, 220th Handan Road, Shanghai 200433, China
| | - Muqing Liu
- Institute of Future Lighting, Academy for Engineering and Technology, Fudan University, 220th Handan Road, Shanghai 200433, China; Zhongshan Fudan Joint Innovation Center, 6th Xiangxing Road, Zhongshan City 528403, China; Institute for Electric Light Sources, Fudan University, 220th Handan Road, Shanghai 200433, China.
| |
Collapse
|
38
|
Bumah VV, Cortez PM, Morrow BN, Rojas P, Bowman CR, Masson-Meyers DS, Enwemeka CS. Blue light absorbing pigment in Streptococcus agalactiae does not potentiate the antimicrobial effect of pulsed 450 nm light. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY B-BIOLOGY 2021; 216:112149. [PMID: 33578336 DOI: 10.1016/j.jphotobiol.2021.112149] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 12/10/2020] [Revised: 12/22/2020] [Accepted: 01/29/2021] [Indexed: 12/28/2022]
Abstract
INTRODUCTION Recently, it was shown that Group B Streptococcus (GBS) COH1 strain, which has granadaene-an endogenous chromophore known to absorb blue light-is not susceptible to 450 nm pulsed blue light (PBL) inactivation unless the bacterium is co-cultured with exogenous porphyrin. PURPOSE To confirm or refute the finding, we studied the effect of blue light on NCTC, another strain of GBS with more granadaene than COH1, to determine if the abundance of granadaene-and by implication more absorption of blue light-fosters GBS susceptibility to PBL. METHODS We irradiated cultures of the bacterium with or without protoporphyrin, coproporphyrin, flavin mononucleotide (FMN), flavin adenine dinucleotide (FAD), nicotinamide adenine dinucleotide (NAD) or NADH. After 24-h incubation, bacterial colonies were enumerated, log10 CFU/mL computed, and descriptive and inferential data analyzed and compared. RESULTS (1) The rich amount of granadaene in NCTC did not enhance its susceptibility to antimicrobial pulsed blue light (PBL). (2) Adding exogenous porphyrin fostered NCTC susceptibility to irradiation, resulting in 100% bacterial suppression. (3) Exogenous FMN or FAD, which strongly absorb 450 nm light, did not promote the antimicrobial effect of PBL, neither did exogenous NAD or NADH, two weak blue light-absorbing photosensitizers. CONCLUSION These results strengthen our previous assertion that an endogenous chromophore with the capacity to absorb and transform light energy into a biochemical process that engenders bacterial cell death, is essential for 450 nm PBL to suppress GBS.
Collapse
Affiliation(s)
- Violet Vakunseh Bumah
- Department of Chemistry and Biochemistry, College of Sciences, San Diego State University, San Diego, CA, USA; College of Health and Human Services, San Diego State University, San Diego, CA, USA.
| | | | | | - Paulina Rojas
- Department of Biology, San Diego State University, CA 92182, USA
| | | | | | | |
Collapse
|
39
|
Plavskii VY, Barulin NV, Mikulich AV, Tretyakova AI, Ananich TS, Plavskaya LG, Leusenka IA, Sobchuk AN, Sysov VA, Dudinova ON, Vodchits AI, Khodasevich IA, Orlovich VA. Effect of continuous wave, quasi-continuous wave and pulsed laser radiation on functional characteristics of fish spermatozoa. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY B-BIOLOGY 2021; 216:112112. [PMID: 33524930 DOI: 10.1016/j.jphotobiol.2020.112112] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/21/2020] [Revised: 11/11/2020] [Accepted: 12/19/2020] [Indexed: 11/17/2022]
Abstract
For the first time, using sturgeon sperm as a model system, sensitive to optical radiation, the comparative studies of biological effect of continuous wave, quasi-continuous wave, nano- and picosecond laser radiation under conditions with equal average irradiance (3 mW/cm2) and wavelength (532 nm) have been carried out. Analyzing the parameters of spermatozoa motion it has been shown that, depending on the energy dose and mode of laser operation, the radiation may have both stimulatory and inhibitory effect on the velocity of motion and spermatozoa motility duration as well as on sustaining of functional characteristics of cold-stored sperm. The possibility of increasing the fertilization rate due to use of the sperm preliminary treated with laser radiation is demonstrated. For the first time, the possibility of enhancement of biological effect going from continuous wave to quasi-continuous wave laser radiation at equal irradiance and wavelength has experimentally been proven. It is shown that the difference in biological effect of continuous wave, quasi-continuous wave, nano- and picosecond laser radiation is due to amplitude (peak) values of intensity. Using fluorescence analysis and luminol-dependent chemiluminescence assay, evidence for the participation of endogenous flavins and metal-free porphyrins in sensitized ROS formation (singlet oxygen, hydrogen peroxide, and hydroxyl radicals) in sturgeon sperm was obtained. Mechanisms of photochemical and photothermal reactions explaining the difference in efficacy of action of laser radiation in above modes are discussed.
Collapse
Affiliation(s)
- V Yu Plavskii
- The State Scientific Institution "В.I. Stepanov Institute of Physics of the National Academy of Sciences of Belarus", 220072 Minsk, 68-2 Nezavisimosti ave., Belarus.
| | - N V Barulin
- Belarusian State Agricultural Academy, 213407, Mogilev region, Gorki, Michurin st. 5, Belarus
| | - A V Mikulich
- The State Scientific Institution "В.I. Stepanov Institute of Physics of the National Academy of Sciences of Belarus", 220072 Minsk, 68-2 Nezavisimosti ave., Belarus
| | - A I Tretyakova
- The State Scientific Institution "В.I. Stepanov Institute of Physics of the National Academy of Sciences of Belarus", 220072 Minsk, 68-2 Nezavisimosti ave., Belarus
| | - T S Ananich
- The State Scientific Institution "В.I. Stepanov Institute of Physics of the National Academy of Sciences of Belarus", 220072 Minsk, 68-2 Nezavisimosti ave., Belarus
| | - L G Plavskaya
- The State Scientific Institution "В.I. Stepanov Institute of Physics of the National Academy of Sciences of Belarus", 220072 Minsk, 68-2 Nezavisimosti ave., Belarus
| | - I A Leusenka
- The State Scientific Institution "В.I. Stepanov Institute of Physics of the National Academy of Sciences of Belarus", 220072 Minsk, 68-2 Nezavisimosti ave., Belarus
| | - A N Sobchuk
- The State Scientific Institution "В.I. Stepanov Institute of Physics of the National Academy of Sciences of Belarus", 220072 Minsk, 68-2 Nezavisimosti ave., Belarus
| | - V A Sysov
- The State Scientific Institution "В.I. Stepanov Institute of Physics of the National Academy of Sciences of Belarus", 220072 Minsk, 68-2 Nezavisimosti ave., Belarus
| | - O N Dudinova
- The State Scientific Institution "В.I. Stepanov Institute of Physics of the National Academy of Sciences of Belarus", 220072 Minsk, 68-2 Nezavisimosti ave., Belarus
| | - A I Vodchits
- The State Scientific Institution "В.I. Stepanov Institute of Physics of the National Academy of Sciences of Belarus", 220072 Minsk, 68-2 Nezavisimosti ave., Belarus
| | - I A Khodasevich
- The State Scientific Institution "В.I. Stepanov Institute of Physics of the National Academy of Sciences of Belarus", 220072 Minsk, 68-2 Nezavisimosti ave., Belarus
| | - V A Orlovich
- The State Scientific Institution "В.I. Stepanov Institute of Physics of the National Academy of Sciences of Belarus", 220072 Minsk, 68-2 Nezavisimosti ave., Belarus
| |
Collapse
|
40
|
Hoenes K, Bauer R, Meurle T, Spellerberg B, Hessling M. Inactivation Effect of Violet and Blue Light on ESKAPE Pathogens and Closely Related Non-pathogenic Bacterial Species - A Promising Tool Against Antibiotic-Sensitive and Antibiotic-Resistant Microorganisms. Front Microbiol 2021; 11:612367. [PMID: 33519770 PMCID: PMC7838345 DOI: 10.3389/fmicb.2020.612367] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2020] [Accepted: 12/11/2020] [Indexed: 01/20/2023] Open
Abstract
Due to the globally observed increase in antibiotic resistance of bacterial pathogens and the simultaneous decline in new antibiotic developments, the need for alternative inactivation approaches is growing. This is especially true for the treatment of infections with the problematic ESKAPE pathogens, which include Enterococcus faecium, Staphylococcus aureus, Klebsiella pneumoniae, Acinetobacter baumannii, Pseudomonas aeruginosa, and Enterobacter species, and often exhibit multiple antibiotic resistances. Irradiation with visible light from the violet and blue spectral range is an inactivation approach that does not require any additional supplements. Multiple bacterial and fungal species were demonstrated to be sensitive to this disinfection technique. In the present study, pathogenic ESKAPE organisms and non-pathogenic relatives are irradiated with visible blue and violet light with wavelengths of 450 and 405 nm, respectively. The irradiation experiments are performed at 37°C to test a potential application for medical treatment. For all investigated microorganisms and both wavelengths, a decrease in colony forming units is observed with increasing irradiation dose, although there are differences between the examined bacterial species. A pronounced difference can be observed between Acinetobacter, which prove to be particularly light sensitive, and enterococci, which need higher irradiation doses for inactivation. Differences between pathogenic and non-pathogenic bacteria of one genus are comparatively small, with the tendency of non-pathogenic representatives being less susceptible. Visible light irradiation is therefore a promising approach to inactivate ESKAPE pathogens with future fields of application in prevention and therapy.
Collapse
Affiliation(s)
- Katharina Hoenes
- Institute of Medical Engineering and Mechatronics, Ulm University of Applied Sciences, Ulm, Germany
| | - Richard Bauer
- Institute of Medical Microbiology and Hygiene, University Hospital Ulm, Ulm, Germany
| | - Tobias Meurle
- Institute of Medical Engineering and Mechatronics, Ulm University of Applied Sciences, Ulm, Germany
| | - Barbara Spellerberg
- Institute of Medical Microbiology and Hygiene, University Hospital Ulm, Ulm, Germany
| | - Martin Hessling
- Institute of Medical Engineering and Mechatronics, Ulm University of Applied Sciences, Ulm, Germany
| |
Collapse
|
41
|
Shleeva M, Savitsky A, Kaprelyants A. Corynebacterium jeikeium Dormant Cell Formation and Photodynamic Inactivation. Front Microbiol 2020; 11:605899. [PMID: 33391228 PMCID: PMC7775403 DOI: 10.3389/fmicb.2020.605899] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2020] [Accepted: 11/30/2020] [Indexed: 11/18/2022] Open
Abstract
Pathogenic non-spore forming bacteria enter a dormant state under stressful conditions, which likely allows them to acquire resistance to various antibiotics. This work revealed the efficient formation of dormant "non-culturable" (NC) Corynebacterium jeikeium cells in stationary phase upon gradual acidification of the growth medium. Such cells were unable to form colonies and existed in a prolonged stationary phase. At an early stage of dormancy (approximately 14 days post-inoculation), dormant cells are able for resuscitation in liquid medium. However, those stored for long time in dormant state needed addition of supernatant taking from active C. jeikeium cultures for successful resuscitation. NC cells possessed low RNA synthesis and significant tolerance to antibiotics (rifampicin and vancomycin). They also accumulated free porphyrins, and 5-aminolevulinic acid addition enhanced free porphyrin accumulation which makes them potentially sensitive to photodynamic inactivation (PDI). PDI of dormant bacteria was accomplished by exposing cells to a 565 nm wavelength of light using a SOLIS-4C light-emitting diode for 60 min. This revealed that increased porphyrin concentrations were correlated with elevated PDI sensitivity. Results shown here demonstrate the potential utility of employing PDI to minimize levels of dormant, persistent corynebacteria and the C. jeikeium dormancy model developed here may be useful for finding new drugs and techniques for combatting persistent corynebacteria.
Collapse
Affiliation(s)
- Margarita Shleeva
- Federal Research Centre “Fundamentals of Biotechnology” of the Russian Academy of Sciences, A.N. Bach Institute of Biochemistry, Moscow, Russia
| | | | | |
Collapse
|
42
|
Vatter P, Hoenes K, Hessling M. Photoinactivation of the Coronavirus Surrogate phi6 by Visible Light. Photochem Photobiol 2020; 97:122-125. [PMID: 33128245 DOI: 10.1111/php.13352] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2020] [Revised: 10/07/2020] [Accepted: 10/26/2020] [Indexed: 12/15/2022]
Abstract
To stop the coronavirus spread, new inactivation approaches are being sought that can also be applied in the presence of humans or even on humans. Here, we investigate the effect of visible violet light with a wavelength of 405 nm on the coronavirus surrogate phi6 in two aqueous solutions that are free of photosensitizers. A dose of 1300 J cm-2 of 405 nm irradiation reduces the phi6 plaque-forming unit concentration by three log-levels. The next step should be similar visible light photoinactivation investigations on coronaviruses, which cannot be performed in our lab.
Collapse
Affiliation(s)
- Petra Vatter
- Ulm University of Applied Sciences, Ulm, Germany
| | | | | |
Collapse
|
43
|
Hessling M, Wenzel U, Meurle T, Spellerberg B, Hönes K. Photoinactivation results of Enterococcus moraviensis with blue and violet light suggest the involvement of an unconsidered photosensitizer. Biochem Biophys Res Commun 2020; 533:813-817. [PMID: 32993958 DOI: 10.1016/j.bbrc.2020.09.091] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2020] [Accepted: 09/21/2020] [Indexed: 12/23/2022]
Abstract
Microorganisms can be photoinactivated with 405 and 450 nm irradiation, due to endogenous photosensitizers, which absorb light of these wavelengths and generate reactive oxygen species that destroy the cells from within. The photosensitizers assumed to be responsible are porphyrins in the spectral region around 405 nm and flavins at about 450 nm. The aim of this study was to investigate this hypothesis on enterococci, considering that they do not contain porphyrins. In photoinactivation experiments with Enterococcus moraviensis, 405 nm and 450 nm irradiation both led to a reduction of the bacterial concentration by several orders of magnitude with 405 nm irradiation being much more efficient. The measurement and analysis of the fluorescence spectra revealed no signs of porphyrins whereas flavins seemed to be rapidly converted to lumichrome by 405 nm radiation. Therefore, probably none of the usual suspects, porphyrins and flavins, was responsible for the photoinactivation of Enterococcus moraviensis during 405 nm irradiation. Fluorescence experiments revealed the spectra of lumichrome and NADH, which are both known photosensitizers. Presumably, one of them or both were actually involved here. As NADH and flavins (and therefore their photodegradation product lumichrome) are abundant in all microorganisms, they are probably also involved in 405 nm photoinactivation processes of other species.
Collapse
Affiliation(s)
- Martin Hessling
- Institute of Medical Engineering and Mechatronics, Ulm University of Applied Sciences, Ulm, 89081, Germany.
| | - Ulla Wenzel
- Institute of Medical Engineering and Mechatronics, Ulm University of Applied Sciences, Ulm, 89081, Germany
| | - Tobias Meurle
- Institute of Medical Engineering and Mechatronics, Ulm University of Applied Sciences, Ulm, 89081, Germany
| | - Barbara Spellerberg
- Institute of Medical Microbiology and Hygiene, University Hospital Ulm, Ulm, 89081, Germany
| | - Katharina Hönes
- Institute of Medical Engineering and Mechatronics, Ulm University of Applied Sciences, Ulm, 89081, Germany
| |
Collapse
|
44
|
Enhancement of Contact Lens Disinfection by Combining Disinfectant with Visible Light Irradiation. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2020; 17:ijerph17176422. [PMID: 32899295 PMCID: PMC7504152 DOI: 10.3390/ijerph17176422] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/21/2020] [Revised: 08/28/2020] [Accepted: 08/29/2020] [Indexed: 01/05/2023]
Abstract
Multiple use contact lenses have to be disinfected overnight to reduce the risk of infections. However, several studies demonstrated that not only microorganisms are affected by the disinfectants, but also ocular epithelial cells, which come into contact via residuals at reinsertion of the lens. Visible light has been demonstrated to achieve an inactivation effect on several bacterial and fungal species. Combinations with other disinfection methods often showed better results compared to separately applied methods. We therefore investigated contact lens disinfection solutions combined with 405 nm irradiation, with the intention to reduce the disinfectant concentration of ReNu Multiplus, OptiFree Express or AOSept while maintaining adequate disinfection results due to combination benefits. Pseudomonads, staphylococci and E. coli were studied with disk diffusion assay, colony forming unit (cfu) determination and growth delay. A log reduction of 4.49 was achieved for P. fluorescens in 2 h for 40% ReNu Multiplus combined with an irradiation intensity of 20 mW/cm2 at 405 nm. For AOSept the combination effect was so strong that 5% of AOSept in combination with light exhibited the same result as 100% AOSept alone. Combination of disinfectants with visible violet light is therefore considered a promising approach, as a reduction of potentially toxic ingredients can be achieved.
Collapse
|
45
|
Sicks B, Hönes K, Spellerberg B, Hessling M. Blue LEDs in Endotracheal Tubes May Prevent Ventilator-Associated Pneumonia. PHOTOBIOMODULATION PHOTOMEDICINE AND LASER SURGERY 2020. [DOI: 10.1089/photob.2020.4842] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Affiliation(s)
- Ben Sicks
- Institute of Medical Engineering and Mechatronics, Ulm University of Applied Sciences, Ulm, Germany
| | - Katharina Hönes
- Institute of Medical Engineering and Mechatronics, Ulm University of Applied Sciences, Ulm, Germany
| | - Barbara Spellerberg
- Institute of Medical Microbiology and Hygiene, University Hospital Ulm, Ulm, Germany
| | - Martin Hessling
- Institute of Medical Engineering and Mechatronics, Ulm University of Applied Sciences, Ulm, Germany
| |
Collapse
|
46
|
|
47
|
Plavskii V, Mikulich A, Barulin N, Ananich T, Plavskaya L, Tretyakova A, Leusenka I. Comparative Effect of Low‐intensity Laser Radiation in Green and Red Spectral Regions on Functional Characteristics of Sturgeon Sperm. Photochem Photobiol 2020; 96:1294-1313. [DOI: 10.1111/php.13315] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2020] [Accepted: 07/16/2020] [Indexed: 02/06/2023]
Affiliation(s)
- Vitaly Plavskii
- The State Scientific Institution «B.I.Stepanov Institute of Physics of the National Academy of Sciences of Belarus» Minsk Belarus
| | - Aliaksandr Mikulich
- The State Scientific Institution «B.I.Stepanov Institute of Physics of the National Academy of Sciences of Belarus» Minsk Belarus
| | | | - Tatsiana Ananich
- The State Scientific Institution «B.I.Stepanov Institute of Physics of the National Academy of Sciences of Belarus» Minsk Belarus
| | - Ludmila Plavskaya
- The State Scientific Institution «B.I.Stepanov Institute of Physics of the National Academy of Sciences of Belarus» Minsk Belarus
| | - Antonina Tretyakova
- The State Scientific Institution «B.I.Stepanov Institute of Physics of the National Academy of Sciences of Belarus» Minsk Belarus
| | - Ihar Leusenka
- The State Scientific Institution «B.I.Stepanov Institute of Physics of the National Academy of Sciences of Belarus» Minsk Belarus
| |
Collapse
|
48
|
Bumah VV, Morrow BN, Cortez PM, Bowman CR, Rojas P, Masson-Meyers DS, Suprapto J, Tong WG, Enwemeka CS. The importance of porphyrins in blue light suppression of Streptococcus agalactiae. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY B-BIOLOGY 2020; 212:111996. [PMID: 32863128 DOI: 10.1016/j.jphotobiol.2020.111996] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 05/07/2020] [Revised: 07/06/2020] [Accepted: 08/12/2020] [Indexed: 02/08/2023]
Abstract
It is well documented that blue light absorption by bacterial chromophores triggers downstream production of reactive oxygen species (ROS), which in turn results in bacterial cell death. To elucidate the importance of chromophores in the bactericidal effect of blue light, and to determine whether blue light absorption per se or the presence of porphyrins known to engender ROS is crucial in blue light treatment, we studied the effect of 450 nm pulsed light on Streptococcus agalactiae, also known as Group B Streptococcus (GBS) strain COH1. GBS does not synthesize porphyrins but has a blue light-absorbing chromophore, granadaene. We irradiated planktonic cultures of GBS with or without exogenous chromophore supplementation using either protoporphyrin IX (PPIX), coproporphyrin III (CPIII), Nicotinamide adenine dinucleotide (NAD), reduced nicotinamide adenine dinucleotide (NADH), Flavin adenine dinucleotide (FAD), or Flavin mononucleotide (FMN). Quantification of surviving bacterial colonies, presented as percent survival and CFU/mL (log10), showed that (1) 450 nm blue light does not suppress the growth of GBS, even though its endogenous chromophore, granadaene, absorbs light in the 450 nm spectrum. (2) The addition of either of the two exogenous porphyrins, PPIX or CPIII, significantly suppressed GBS, indicating the importance of porphyrins in the antimicrobial action of blue light. (3) Adding exogenous FMN or FAD, two known absorbers of 450 nm light, minimally potentiated the bactericidal effect of blue light, again confirming that mere absorption of blue light by chromophores does not necessarily result in bacterial suppression. (4) Irradiation of GBS with or without NAD+ or NADH supplementation-two weak absorbers of 450 nm light-minimally suppressed GBS, indicating that a blue light-absorbing chromophore is essential for the bactericidal action of blue light. (5) Collectively, these findings show that in addition to the presence of a blue light-absorbing chromophore in bacteria, a chromophore with the right metabolic machinery and biochemical structure, capable of producing ROS, is necessary for 450 nm blue light to suppress GBS.
Collapse
Affiliation(s)
- Violet Vakunseh Bumah
- Department of Chemistry and Biochemistry, College of Sciences, 5500 Campanile Dr, San Diego, CA 92182, USA; College of Health and Human Services, San Diego State University, 5500 Campanile Dr, San Diego, CA 92182, USA.
| | | | | | | | - Paulina Rojas
- Department of Biology, 5500 Campanile Dr, San Diego, CA 92182. USA
| | - Daniela Santos Masson-Meyers
- College of Health and Human Services, San Diego State University, 5500 Campanile Dr, San Diego, CA 92182, USA; Marquette University School of Dentistry, 1801 W Wisconsin Ave, Milwaukee, WI 53233, USA
| | - James Suprapto
- Department of Chemistry and Biochemistry, College of Sciences, 5500 Campanile Dr, San Diego, CA 92182, USA.
| | - William G Tong
- Department of Chemistry and Biochemistry, College of Sciences, 5500 Campanile Dr, San Diego, CA 92182, USA.
| | - Chukuka Samuel Enwemeka
- College of Health and Human Services, San Diego State University, 5500 Campanile Dr, San Diego, CA 92182, USA.
| |
Collapse
|
49
|
Caires CSA, Farias LAS, Gomes LE, Pinto BP, Gonçalves DA, Zagonel LF, Nascimento VA, Alves DCB, Colbeck I, Whitby C, Caires ARL, Wender H. Effective killing of bacteria under blue-light irradiation promoted by green synthesized silver nanoparticles loaded on reduced graphene oxide sheets. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2020; 113:110984. [PMID: 32487400 DOI: 10.1016/j.msec.2020.110984] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/03/2019] [Revised: 04/03/2020] [Accepted: 04/17/2020] [Indexed: 12/15/2022]
Abstract
Graphene oxide (GO) materials loaded with silver nanoparticles (AgNPs) have drawn considerable attention due to their capacity to efficiently inactivate bacteria though a multifaceted mechanism of action, as well as for presenting a synergetic effect against bacteria when compared to the activity of AgNPs and GO alone. In this investigation, we present an inexpensive and environmentally-friendly method for synthesizing reduced GO sheets coated with silver nanoparticles (AgNPs/r-GO) using a coffee extract solution as a green reducing agent. The physical and chemical properties of the produced materials were extensively characterized by scanning electron microscopy (SEM), field-emission gun transmission electron microscopy (FEG-TEM), ultraviolet and visible absorption (UV-Vis), Raman spectroscopy, X-ray photoelectron spectroscopy (XPS), inductively coupled plasma-optical emission spectroscopy (ICP-OES) and ion release determination. The results demonstrated that AgNPs/r-GO composites were successfully produced, revealing the formation of micrometer-sized r-GO sheets decorated by AgNPs of approximately 70 nm diameter. Finally, bactericidal and photobactericidal effects of the AgNPs/r-GO composites were tested against Staphylococcus aureus, in which the results showed that the composites presented antimicrobial and photoantimicrobial activities. Moreover, our results demonstrated for the first time, to our knowledge, that an efficient process of bacterial inactivation can be achieved by using AgNPs/r-GO composites under blue light irradiation as a result of three different bacterial killing processes: (i) chemical effect promoted by Ag+ ion release from AgNPs; (ii) photocatalytic activity induced by AgNPs/r-GO composites, enhancing the bacterial photoinactivation due to the excited-Plasmons of the AgNPs when anchored on r-GO; and (iii) photodynamic effect produced by bacterial endogenous photosensitizers under blue-light irradiation. In summary, the present findings demonstrated that AgNPs/r-GO can be obtained by a non-toxic procedure with great potential for biomedical-related applications.
Collapse
Affiliation(s)
- Cynthia S A Caires
- Laboratory of Spectroscopy and Bioinformatics Applied to Biodiversity and Health, Faculty of Medicine, Federal University of Mato Grosso do Sul, Campo Grande, Mato Grosso do Sul 79070-900, Brazil; School of Life Sciences, University of Essex, Colchester CO4 3SQ, UK
| | - Luiz A S Farias
- Laboratory of Nanomaterials and Applied Nanotechnology (LNNA), Institute of Physics, Federal University of Mato Grosso do Sul, Campo Grande, Mato Grosso do Sul 79070-900, Brazil
| | - Luiz E Gomes
- Laboratory of Nanomaterials and Applied Nanotechnology (LNNA), Institute of Physics, Federal University of Mato Grosso do Sul, Campo Grande, Mato Grosso do Sul 79070-900, Brazil
| | - Bruno P Pinto
- Laboratory of Nanomaterials and Applied Nanotechnology (LNNA), Institute of Physics, Federal University of Mato Grosso do Sul, Campo Grande, Mato Grosso do Sul 79070-900, Brazil
| | - Daniel A Gonçalves
- Laboratory of Spectroscopy and Bioinformatics Applied to Biodiversity and Health, Faculty of Medicine, Federal University of Mato Grosso do Sul, Campo Grande, Mato Grosso do Sul 79070-900, Brazil; Department of Chemistry, Minas Gerais State University - UEMG, Ituiutaba, MG 38302-192, Brazil
| | - Luiz F Zagonel
- "Gleb Wataghin" Institute of Physics, University of Campinas - UNICAMP, 13083-859 Campinas, São Paulo, Brazil
| | - Valter A Nascimento
- Laboratory of Spectroscopy and Bioinformatics Applied to Biodiversity and Health, Faculty of Medicine, Federal University of Mato Grosso do Sul, Campo Grande, Mato Grosso do Sul 79070-900, Brazil
| | - Diego C B Alves
- Laboratory of Nanomaterials and Applied Nanotechnology (LNNA), Institute of Physics, Federal University of Mato Grosso do Sul, Campo Grande, Mato Grosso do Sul 79070-900, Brazil
| | - Ian Colbeck
- School of Life Sciences, University of Essex, Colchester CO4 3SQ, UK
| | - Corinne Whitby
- School of Life Sciences, University of Essex, Colchester CO4 3SQ, UK
| | - Anderson R L Caires
- School of Life Sciences, University of Essex, Colchester CO4 3SQ, UK; Laboratory of Optics and Photonics, Institute of Physics, Federal University of Mato Grosso do Sul, Campo Grande, Mato Grosso do Sul 79070-900, Brazil.
| | - Heberton Wender
- Laboratory of Nanomaterials and Applied Nanotechnology (LNNA), Institute of Physics, Federal University of Mato Grosso do Sul, Campo Grande, Mato Grosso do Sul 79070-900, Brazil.
| |
Collapse
|
50
|
Angarano V, Smet C, Akkermans S, Watt C, Chieffi A, Van Impe JF. Visible Light as an Antimicrobial Strategy for Inactivation of Pseudomonas fluorescens and Staphylococcus epidermidis Biofilms. Antibiotics (Basel) 2020; 9:E171. [PMID: 32290162 PMCID: PMC7235755 DOI: 10.3390/antibiotics9040171] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2020] [Revised: 04/06/2020] [Accepted: 04/07/2020] [Indexed: 12/13/2022] Open
Abstract
The increase of antimicrobial resistance is challenging the scientific community to find solutions to eradicate bacteria, specifically biofilms. Light-Emitting Diodes (LED) represent an alternative way to tackle this problem in the presence of endogenous or exogenous photosensitizers. This work adds to a growing body of research on photodynamic inactivation using visible light against biofilms. Violet (400 nm), blue (420 nm), green (570 nm), yellow (584 nm) and red (698 nm) LEDs were used against Pseudomonas fluorescens and Staphylococcus epidermidis. Biofilms, grown on a polystyrene surface, were irradiated for 4 h. Different irradiance levels were investigated (2.5%, 25%, 50% and 100% of the maximum irradiance). Surviving cells were quantified and the inactivation kinetic parameters were estimated. Violet light could successfully inactivate P. fluorescens and S. epidermidis (up to 6.80 and 3.69 log10 reduction, respectively), while blue light was effective only against P. fluorescens (100% of maximum irradiance). Green, yellow and red irradiation neither increased nor reduced the biofilm cell density. This is the first research to test five different wavelengths (each with three intensities) in the visible spectrum against Gram-positive and Gram-negative biofilms. It provides a detailed study of the potential of visible light against biofilms of a different Gram-nature.
Collapse
Affiliation(s)
- Valeria Angarano
- BioTeC+, Chemical and Biochemical Process Technology and Control, Department of Chemical Engineering, KU Leuven, 9000 Gent, Belgium; (V.A.); (C.S.); (S.A.); (C.W.)
| | - Cindy Smet
- BioTeC+, Chemical and Biochemical Process Technology and Control, Department of Chemical Engineering, KU Leuven, 9000 Gent, Belgium; (V.A.); (C.S.); (S.A.); (C.W.)
| | - Simen Akkermans
- BioTeC+, Chemical and Biochemical Process Technology and Control, Department of Chemical Engineering, KU Leuven, 9000 Gent, Belgium; (V.A.); (C.S.); (S.A.); (C.W.)
| | - Charlotte Watt
- BioTeC+, Chemical and Biochemical Process Technology and Control, Department of Chemical Engineering, KU Leuven, 9000 Gent, Belgium; (V.A.); (C.S.); (S.A.); (C.W.)
| | - Andre Chieffi
- Procter & Gamble, Newcastle Innovation Center, Newcastle NE12 9TS, UK;
| | - Jan F.M. Van Impe
- BioTeC+, Chemical and Biochemical Process Technology and Control, Department of Chemical Engineering, KU Leuven, 9000 Gent, Belgium; (V.A.); (C.S.); (S.A.); (C.W.)
| |
Collapse
|