1
|
Bian Y, Song Z, Liu C, Song Z, Dong J, Xu D. The BBX7/8-CCA1/LHY transcription factor cascade promotes shade avoidance by activating PIF4. THE NEW PHYTOLOGIST 2025; 245:637-652. [PMID: 39517111 DOI: 10.1111/nph.20256] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/21/2024] [Accepted: 10/16/2024] [Indexed: 11/16/2024]
Abstract
Sun-loving plants undergo shade avoidance syndrome (SAS) to compete with their neighbors for sunlight in shade conditions. Phytochrome B (phyB) plays a dominant role in sensing the shading signals (low red to far-red ratios) and triggering SAS. Shade drives phyB conversion to inactive form, consequently leading to the accumulation of PHYTOCHROMEINTERACTING FACTOR 4 (PIF4) that promotes plant growth. Here, we show B-box PROTEIN 7 (BBX7)/BBX8 and CIRCADIAN CLOCK ASSOCIATED 1 (CCA1)/LATE ELONGATED HYPOCOTYL (LHY) positively regulate the low R : FR-induced PIF4 expression and promote the low R : FR-triggered hypocotyl growth in Arabidopsis. Shade interferes the interactions of phyB with BBX7 or BBX8 and triggers the accumulation of BBX7 and BBX8 independent of phyB. BBX7 and BBX8 associate with CCA1 and LHY to activate their transcription, the gene produces of which subsequently upregulate the expression of PIF4 in shade. Genetically, BBX7 and BBX8 act upstream of CCA1, LHY, and PIF4 with respect to hypocotyl growth in shade conditions. Our study reveals the BBX7/8-CCA1/LHY transcription factor cascade upregulates PIF4 expression and increases its abundance to promote plant growth and development in response to shade.
Collapse
Affiliation(s)
- Yeting Bian
- State Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, National Center for Soybean Improvement, College of Agriculture, Nanjing Agricultural University, Nanjing, 210095, China
| | - Zhuolong Song
- State Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, National Center for Soybean Improvement, College of Agriculture, Nanjing Agricultural University, Nanjing, 210095, China
| | - Changseng Liu
- State Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, National Center for Soybean Improvement, College of Agriculture, Nanjing Agricultural University, Nanjing, 210095, China
| | - Zhaoqing Song
- State Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, National Center for Soybean Improvement, College of Agriculture, Nanjing Agricultural University, Nanjing, 210095, China
| | - Jie Dong
- Institute of Crop Science, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, 310058, China
| | - Dongqing Xu
- State Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, National Center for Soybean Improvement, College of Agriculture, Nanjing Agricultural University, Nanjing, 210095, China
| |
Collapse
|
2
|
Rahul PV, Yadukrishnan P, Sasidharan A, Datta S. The B-box protein BBX13/COL15 suppresses photoperiodic flowering by attenuating the action of CONSTANS in Arabidopsis. PLANT, CELL & ENVIRONMENT 2024; 47:5358-5371. [PMID: 39189944 DOI: 10.1111/pce.15120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/18/2024] [Revised: 07/09/2024] [Accepted: 08/13/2024] [Indexed: 08/28/2024]
Abstract
The optimal timing of transition from vegetative to floral reproductive phase is critical for plant productivity and agricultural yields. Light plays a decisive role in regulating this transition. The B-box (BBX) family of transcription factors regulates several light-mediated developmental processes in plants, including flowering. Here, we identify a previously uncharacterized group II BBX family member, BBX13/COL15, as a negative regulator of flowering under long-day conditions. BBX13 is primarily expressed in the leaf vasculature, buds, and flowers, showing a similar spatial expression pattern to the major flowering time regulators CO and FT. bbx13 mutants flower early, while BBX13-overexpressors exhibit delayed flowering under long days. Genetic analyses showed that BBX13 acts upstream to CO and FT and negatively regulates their expression. BBX13 physically interacts with CO and inhibits the CO-mediated transcriptional activation of FT. In addition, BBX13 directly binds to the CORE2 motif on the FT promoter, where CO also binds. Chromatin immunoprecipitation data indicates that BBX13 reduces the in vivo binding of CO on the FT promoter. Through luciferase assay, we found that BBX13 inhibits the CO-mediated transcriptional activation of FT. Together, these findings suggest that BBX13/COL15 represses flowering in Arabidopsis by attenuating the binding of CO on the FT promoter.
Collapse
Affiliation(s)
- Puthan Valappil Rahul
- Plant Cell and Developmental Biology Lab, Department of Biological Sciences, Indian Institute of Science Education and Research (IISER) Bhopal, Bhauri, Madhya Pradesh, India
| | - Premachandran Yadukrishnan
- Plant Cell and Developmental Biology Lab, Department of Biological Sciences, Indian Institute of Science Education and Research (IISER) Bhopal, Bhauri, Madhya Pradesh, India
| | - Anagha Sasidharan
- Plant Cell and Developmental Biology Lab, Department of Biological Sciences, Indian Institute of Science Education and Research (IISER) Bhopal, Bhauri, Madhya Pradesh, India
| | - Sourav Datta
- Plant Cell and Developmental Biology Lab, Department of Biological Sciences, Indian Institute of Science Education and Research (IISER) Bhopal, Bhauri, Madhya Pradesh, India
| |
Collapse
|
3
|
Song Z, Bian Y, Xiao Y, Xu D. B-BOX proteins:Multi-layered roles of molecular cogs in light-mediated growth and development in plants. JOURNAL OF PLANT PHYSIOLOGY 2024; 299:154265. [PMID: 38754343 DOI: 10.1016/j.jplph.2024.154265] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/17/2024] [Revised: 05/05/2024] [Accepted: 05/05/2024] [Indexed: 05/18/2024]
Abstract
B-box containing proteins (BBXs) are a class of zinc-ligating transcription factors or regulators that play essential roles in various physiological and developmental processes in plants. They not only directly associate with target genes to regulate their transcription, but also interact with other transcription factors to mediate target genes' expression, thus forming a complex transcriptional network ensuring plants' adaptation to dynamically changing light environments. This review summarizes and highlights the molecular and biochemical properties of BBXs, as well as recent advances with a focus on their critical regulatory functions in photomorphogenesis (de-etiolation), shade avoidance, photoperiodic-mediated flowering, and secondary metabolite biosynthesis and accumulation in plants.
Collapse
Affiliation(s)
- Zhaoqing Song
- Key Laboratory of Biology and Genetics Improvement of Soybean, Ministry of Agriculture, Zhongshan Biological Breeding Laboratory (ZSBBL), National Innovation Platform for Soybean Breeding and Industry-Education Integration, State Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, College of Agriculture, Nanjing Agricultural University, Nanjing, 210095, China
| | - Yeting Bian
- Key Laboratory of Biology and Genetics Improvement of Soybean, Ministry of Agriculture, Zhongshan Biological Breeding Laboratory (ZSBBL), National Innovation Platform for Soybean Breeding and Industry-Education Integration, State Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, College of Agriculture, Nanjing Agricultural University, Nanjing, 210095, China
| | - Yuntao Xiao
- Key Laboratory of Biology and Genetics Improvement of Soybean, Ministry of Agriculture, Zhongshan Biological Breeding Laboratory (ZSBBL), National Innovation Platform for Soybean Breeding and Industry-Education Integration, State Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, College of Agriculture, Nanjing Agricultural University, Nanjing, 210095, China
| | - Dongqing Xu
- Key Laboratory of Biology and Genetics Improvement of Soybean, Ministry of Agriculture, Zhongshan Biological Breeding Laboratory (ZSBBL), National Innovation Platform for Soybean Breeding and Industry-Education Integration, State Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, College of Agriculture, Nanjing Agricultural University, Nanjing, 210095, China.
| |
Collapse
|
4
|
Gao L, Xu S, Zhang J, Kang J, Zhong S, Shi H. Promotion of seedling germination in Arabidopsis by B-box zinc-finger protein BBX32. Curr Biol 2024; 34:3152-3164.e6. [PMID: 38971148 DOI: 10.1016/j.cub.2024.06.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2024] [Revised: 05/02/2024] [Accepted: 06/06/2024] [Indexed: 07/08/2024]
Abstract
Seed germination represents a determinant for plants to enter ecosystems and is thus regarded as a key ecological and agronomic trait. It is tightly regulated by a variety of environmental cues to ensure that seeds germinate under favorable conditions. Here, we characterize BBX32, a B-box zinc-finger protein, as an imbibition-stimulated positive regulator of seed germination. Belonging to subgroup V of the BBX family, BBX32 exhibits distinct characteristics compared with its close counterparts within the same subgroup. BBX32 is transiently induced at both the transcriptional and post-transcriptional levels in the embryo upon water absorption. Genetic evidence indicates that BBX32 acts upstream of the master transcription factor PHYTOCHROME-INTERACTING FACTOR 1 (PIF1) to facilitate light-induced seed germination. BBX32 directly interacts with PIF1, suppressing its protein-interacting and DNA-binding capabilities, thereby relieving PIF1's repression on seed germination. Furthermore, the imbibition-stimulated BBX32 functions in parallel with the light-induced transcription regulator HFR1 to collectively attenuate the transcriptional activities of PIF1. The BBX32-PIF1 de-repression module serves as a molecular connection that enables plants to integrate signals of water availability and light exposure, effectively coordinating the initiation of seed germination.
Collapse
Affiliation(s)
- Lulu Gao
- College of Life Sciences, Capital Normal University, and Beijing Key Laboratory of Plant Gene Resources and Biotechnology for Carbon Reduction and Environmental Improvement, Beijing 100048, China
| | - Sheng Xu
- State Key Laboratory of Protein and Plant Gene Research, Peking-Tsinghua Center for Life Sciences, and School of Life Sciences, Peking University, Beijing 100871, China
| | - Jinming Zhang
- College of Life Sciences, Capital Normal University, and Beijing Key Laboratory of Plant Gene Resources and Biotechnology for Carbon Reduction and Environmental Improvement, Beijing 100048, China
| | - Jing Kang
- College of Life Sciences, Capital Normal University, and Beijing Key Laboratory of Plant Gene Resources and Biotechnology for Carbon Reduction and Environmental Improvement, Beijing 100048, China
| | - Shangwei Zhong
- State Key Laboratory of Protein and Plant Gene Research, Peking-Tsinghua Center for Life Sciences, and School of Life Sciences, Peking University, Beijing 100871, China; Peking University Institute of Advanced Agricultural Sciences, Shandong Laboratory of Advanced Agriculture Sciences in Weifang, Weifang 261325, China
| | - Hui Shi
- College of Life Sciences, Capital Normal University, and Beijing Key Laboratory of Plant Gene Resources and Biotechnology for Carbon Reduction and Environmental Improvement, Beijing 100048, China.
| |
Collapse
|
5
|
Abedini M, Iranbakhsh A, Saadatmand S, Ebadi M, Oraghi Ardebili Z. Low UV radiation influenced DNA methylation, gene regulation, cell proliferation, viability, and biochemical differentiation in the cell suspension cultures of Cannabis indica. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY. B, BIOLOGY 2024; 254:112902. [PMID: 38569457 DOI: 10.1016/j.jphotobiol.2024.112902] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Revised: 03/16/2024] [Accepted: 03/27/2024] [Indexed: 04/05/2024]
Abstract
The effect of low artificial Ultraviolet (UV) on the DNA methylation remains controversial. This study addresses how differential photoperiods of UV radiation affect the biochemical and molecular behaviors of Cannabis indica cell suspension cultures. The cell suspensions were illuminated with the compact fluorescent lamps (CFL), emitting a combination of 10% UVB, 30% UVA, and the rest visible wavelengths for 0, 4, 8, and 16 h. The applied photoperiods influenced cell morphological characteristics. The 4 h photoperiod was the most effective treatment for improving biomass, growth index and cell viability percentage while these indices remained non-significant in the 16 h treatment. The methylation-sensitive amplified polymorphism (MASP) assay revealed that the UV radiation was epigenetically accompanied by DNA hypermethylation. The light-treated cells significantly displayed higher relative expression of the cannabidiolic acid synthase (CBDAS) and delta9-tetrahydrocannabinolic acid synthase (THCAS) genes about 4-fold. The expression of the olivetolic acid cyclase (OAC) and olivetol synthase (OLS) genes exhibited an upward trend in response to the UV radiation. The light treatments also enhanced the proline content and protein concentration. The 4 h illumination was significantly capable of improving the cannabidiol (CBD) and delta-9-tetrahydrocannabinol (THC) concentrations, in contrast with 16 h. By increasing the illumination exposure time, the activity of the phenylalanine ammonia-lyase (PAL) enzyme linearly upregulated. The highest amounts of the phenylpropanoid derivatives were observed in the cells cultured under the radiation for 4 h. Taken collective, artificial UV radiation can induce DNA methylation modifications and impact biochemical and molecular differentiation in the cell suspensions in a photoperiod-dependent manner.
Collapse
Affiliation(s)
- Maryam Abedini
- Department of Biology, Science and Research Branch, Islamic Azad University, Tehran, Iran
| | - Alireza Iranbakhsh
- Department of Biology, Science and Research Branch, Islamic Azad University, Tehran, Iran.
| | - Sara Saadatmand
- Department of Biology, Science and Research Branch, Islamic Azad University, Tehran, Iran
| | - Mostafa Ebadi
- Department of Biology, Damghan Branch, Islamic Azad University, Damghan, Iran
| | | |
Collapse
|
6
|
Atanasov V, Schumacher J, Muiño JM, Larasati C, Wang L, Kaufmann K, Leister D, Kleine T. Arabidopsis BBX14 is involved in high light acclimation and seedling development. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2024; 118:141-158. [PMID: 38128030 DOI: 10.1111/tpj.16597] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/15/2023] [Revised: 11/22/2023] [Accepted: 12/01/2023] [Indexed: 12/23/2023]
Abstract
The development of photosynthetically competent seedlings requires both light and retrograde biogenic signaling pathways. The transcription factor GLK1 functions at the interface between these pathways and receives input from the biogenic signal integrator GUN1. BBX14 was previously identified, together with GLK1, in a core module that mediates the response to high light (HL) levels and biogenic signals, which was studied by using inhibitors of chloroplast development. Our chromatin immunoprecipitation-Seq experiments revealed that BBX14 is a direct target of GLK1, and RNA-Seq analysis suggests that BBX14 may function as a regulator of the circadian clock. In addition, BBX14 plays a role in chlorophyll biosynthesis during early onset of light. Knockout of BBX14 results in a long hypocotyl phenotype dependent on a retrograde signal. Furthermore, the expression of BBX14 and BBX15 during biogenic signaling requires GUN1. Investigation of the role of BBX14 and BBX15 in GUN-type biogenic (gun) signaling showed that the overexpression of BBX14 or BBX15 caused de-repression of CA1 mRNA levels, when seedlings were grown on norflurazon. Notably, transcripts of the LHCB1.2 marker are not de-repressed. Furthermore, BBX14 is required to acclimate plants to HL stress. We propose that BBX14 is an integrator of biogenic signals and that BBX14 is a nuclear target of retrograde signals downstream of the GUN1/GLK1 module. However, we do not classify BBX14 or BBX15 overexpressors as gun mutants based on a critical evaluation of our results and those reported in the literature. Finally, we discuss a classification system necessary for the declaration of new gun mutants.
Collapse
Affiliation(s)
- Vasil Atanasov
- Plant Molecular Biology (Botany), Department Biology I, Ludwig-Maximilians-University München, 82152, Martinsried, Germany
| | - Julia Schumacher
- Chair for Plant Cell and Molecular Biology, Institute of Biology, Humboldt-Universität zu Berlin, Berlin, Germany
| | - Jose M Muiño
- Chair for Plant Cell and Molecular Biology, Institute of Biology, Humboldt-Universität zu Berlin, Berlin, Germany
| | - Catharina Larasati
- Plant Molecular Biology (Botany), Department Biology I, Ludwig-Maximilians-University München, 82152, Martinsried, Germany
| | - Liangsheng Wang
- Plant Molecular Biology (Botany), Department Biology I, Ludwig-Maximilians-University München, 82152, Martinsried, Germany
| | - Kerstin Kaufmann
- Chair for Plant Cell and Molecular Biology, Institute of Biology, Humboldt-Universität zu Berlin, Berlin, Germany
| | - Dario Leister
- Plant Molecular Biology (Botany), Department Biology I, Ludwig-Maximilians-University München, 82152, Martinsried, Germany
| | - Tatjana Kleine
- Plant Molecular Biology (Botany), Department Biology I, Ludwig-Maximilians-University München, 82152, Martinsried, Germany
| |
Collapse
|
7
|
Chen S, Fan X, Song M, Yao S, Liu T, Ding W, Liu L, Zhang M, Zhan W, Yan L, Sun G, Li H, Wang L, Zhang K, Jia X, Yang Q, Yang J. Cryptochrome 1b represses gibberellin signaling to enhance lodging resistance in maize. PLANT PHYSIOLOGY 2024; 194:902-917. [PMID: 37934825 DOI: 10.1093/plphys/kiad546] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/12/2022] [Accepted: 09/16/2023] [Indexed: 11/09/2023]
Abstract
Maize (Zea mays L.) is one of the most important crops worldwide. Photoperiod, light quality, and light intensity in the environment can affect the growth, development, yield, and quality of maize. In Arabidopsis (Arabidopsis thaliana), cryptochromes are blue-light receptors that mediate the photocontrol of stem elongation, leaf expansion, shade tolerance, and photoperiodic flowering. However, the function of maize cryptochrome ZmCRY in maize architecture and photomorphogenic development remains largely elusive. The ZmCRY1b transgene product can activate the light signaling pathway in Arabidopsis and complement the etiolation phenotype of the cry1-304 mutant. Our findings show that the loss-of-function mutant of ZmCRY1b in maize exhibits more etiolation phenotypes under low blue light and appears slender in the field compared with wild-type plants. Under blue and white light, overexpression of ZmCRY1b in maize substantially inhibits seedling etiolation and shade response by enhancing protein accumulation of the bZIP transcription factors ELONGATED HYPOCOTYL 5 (ZmHY5) and ELONGATED HYPOCOTYL 5-LIKE (ZmHY5L), which directly upregulate the expression of genes encoding gibberellin (GA) 2-oxidase to deactivate GA and repress plant height. More interestingly, ZmCRY1b enhances lodging resistance by reducing plant and ear heights and promoting root growth in both inbred lines and hybrids. In conclusion, ZmCRY1b contributes blue-light signaling upon seedling de-etiolation and integrates light signals with the GA metabolic pathway in maize, resulting in lodging resistance and providing information for improving maize varieties.
Collapse
Affiliation(s)
- Shizhan Chen
- College of Agronomy, State Key Laboratory of Wheat and Maize Crop Science, and Center for Crop Genome Engineering, Longzi Lake Campus, Henan Agricultural University, Zhengzhou 450046, China
| | - Xiaocong Fan
- College of Agronomy, State Key Laboratory of Wheat and Maize Crop Science, and Center for Crop Genome Engineering, Longzi Lake Campus, Henan Agricultural University, Zhengzhou 450046, China
| | - Meifang Song
- Institute of Radiation Technology, Beijing Academy of Science and Technology, Beijing 100875, China
- Institute of Crop Science, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Shuaitao Yao
- College of Agronomy, State Key Laboratory of Wheat and Maize Crop Science, and Center for Crop Genome Engineering, Longzi Lake Campus, Henan Agricultural University, Zhengzhou 450046, China
| | - Tong Liu
- College of Agronomy, State Key Laboratory of Wheat and Maize Crop Science, and Center for Crop Genome Engineering, Longzi Lake Campus, Henan Agricultural University, Zhengzhou 450046, China
| | - Wusi Ding
- College of Agronomy, State Key Laboratory of Wheat and Maize Crop Science, and Center for Crop Genome Engineering, Longzi Lake Campus, Henan Agricultural University, Zhengzhou 450046, China
| | - Lei Liu
- College of Agronomy, State Key Laboratory of Wheat and Maize Crop Science, and Center for Crop Genome Engineering, Longzi Lake Campus, Henan Agricultural University, Zhengzhou 450046, China
| | - Menglan Zhang
- College of Agronomy, State Key Laboratory of Wheat and Maize Crop Science, and Center for Crop Genome Engineering, Longzi Lake Campus, Henan Agricultural University, Zhengzhou 450046, China
| | - Weimin Zhan
- College of Agronomy, State Key Laboratory of Wheat and Maize Crop Science, and Center for Crop Genome Engineering, Longzi Lake Campus, Henan Agricultural University, Zhengzhou 450046, China
| | - Lei Yan
- Institute of Crop Science, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Guanghua Sun
- College of Agronomy, State Key Laboratory of Wheat and Maize Crop Science, and Center for Crop Genome Engineering, Longzi Lake Campus, Henan Agricultural University, Zhengzhou 450046, China
| | - Hongdan Li
- Institute of Crop Science, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Lijian Wang
- College of Agronomy, State Key Laboratory of Wheat and Maize Crop Science, and Center for Crop Genome Engineering, Longzi Lake Campus, Henan Agricultural University, Zhengzhou 450046, China
| | - Kang Zhang
- Department of Precision Plant Gene Delivery, Genovo Biotechnology Co. Ltd, Tianjin 301700, China
| | - Xiaolin Jia
- College of Agronomy, State Key Laboratory of Wheat and Maize Crop Science, and Center for Crop Genome Engineering, Longzi Lake Campus, Henan Agricultural University, Zhengzhou 450046, China
| | - Qinghua Yang
- College of Agronomy, State Key Laboratory of Wheat and Maize Crop Science, and Center for Crop Genome Engineering, Longzi Lake Campus, Henan Agricultural University, Zhengzhou 450046, China
| | - Jianping Yang
- College of Agronomy, State Key Laboratory of Wheat and Maize Crop Science, and Center for Crop Genome Engineering, Longzi Lake Campus, Henan Agricultural University, Zhengzhou 450046, China
- Institute of Crop Science, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| |
Collapse
|
8
|
Costa PS, Ferraz RLS, Dantas-Neto J, Martins VD, Viégas PRA, Meira KS, Ndhlala AR, Azevedo CAV, Melo AS. Seed priming with light quality and Cyperus rotundus L. extract modulate the germination and initial growth of Moringa oleifera Lam. seedlings. BRAZ J BIOL 2024; 84:e255836. [DOI: 10.1590/1519-6984.255836] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2021] [Accepted: 03/16/2022] [Indexed: 11/21/2022] Open
Abstract
Abstract Improving plant germination is essential to guarantee better quality seedlings. Thus, this research aimed to evaluate whether the seed priming with light quality (LIQ) and the aqueous extract of Cyperus rotundus (AEC) tuber could modulate the germination and initial growth of Moringa oleifera L. seedlings. The experimental design was a completely randomized in the 4x4 factorial scheme, composed of four LIQ conditions (white, blue, red, and distant red light) and four AEC concentrations (0, 25, 50 and 100%). Seed priming with red light reduced the average emergence time, while blue, red, and extreme red lights associated with 50% of aqueous extract of C. rotundus increased shoot initial length and photosynthetic pigment accumulation. Seed priming with blue light resulted in seedlings with a shorter final shoot length. However, application of 100% of aqueous extract of C. rotundus reversed this. The white light in combination with concentrations of 50 and 100% of AEC promoted a higher relative shoot growth rate of seedlings. The research revealed that seed priming with light quality and aqueous extracts of C. rotundus tubers modulates the germination and initial growth of M. oleifera seedlings. More work needs to be done to determine the responsible compounds in AEC that is responsible for priming growth as phytohormones.
Collapse
Affiliation(s)
- P. S. Costa
- Universidade Federal de Campina Grande, Brasil
| | | | | | | | | | | | | | | | - A. S. Melo
- Universidade Estadual da Paraíba, Brasil
| |
Collapse
|
9
|
Liu X, Sun W, Ma B, Song Y, Guo Q, Zhou L, Wu K, Zhang X, Zhang C. Genome-wide analysis of blueberry B-box family genes and identification of members activated by abiotic stress. BMC Genomics 2023; 24:584. [PMID: 37789264 PMCID: PMC10546702 DOI: 10.1186/s12864-023-09704-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2023] [Accepted: 09/27/2023] [Indexed: 10/05/2023] Open
Abstract
BACKGROUND B-box (BBX) proteins play important roles in regulating plant growth, development, and abiotic stress responses. BBX family genes have been identified and functionally characterized in many plant species, but little is known about the BBX family in blueberry (Vaccinium corymbosum). RESULT In this study, we identified 23 VcBBX genes from the Genome Database for Vaccinium (GDV). These VcBBXs can be divided into five clades based on gene structures and conserved domains in their encoded proteins. The prediction of cis-acting elements in the upstream sequences of VcBBX genes and protein-protein interactions indicated that VcBBX proteins are likely involved in phytohormone signaling pathways and abiotic stress responses. Analysis of transcriptome deep sequencing (RNA-seq) data showed that VcBBX genes exhibited organ-specific expression pattern and 11 VcBBX genes respond to ultraviolet B (UV-B) radiation. The co-expression analysis revealed that the encoded 11 VcBBX proteins act as bridges integrating UV-B and phytohormone signaling pathways in blueberry under UV-B radiation. Reverse-transcription quantitative PCR (RT-qPCR) analysis showed that most VcBBX genes respond to drought, salt, and cold stress. Among VcBBX proteins, VcBBX24 is highly expressed in all the organs, not only responds to abiotic stress, but it also interacts with proteins in UV-B and phytohormone signaling pathways, as revealed by computational analysis and co-expression analysis, and might be an important regulator integrating abiotic stress and phytohormone signaling networks. CONCLUSIONS Twenty-three VcBBX genes were identified in blueberry, in which, 11 VcBBX genes respond to UV-B radiation, and act as bridges integrating UV-B and phytohormone signaling pathways according to RNA-seq data. The expression patterns under abiotic stress suggested that the functional roles of most VcBBX genes respose to drought, salt, and cold stress. Our study provides a useful reference for functional analysis of VcBBX genes and for improving abiotic stress tolerance in blueberry.
Collapse
Affiliation(s)
- Xiaoming Liu
- College of Plant Science, Jilin University, Changchun, 130062, China
| | - Wenying Sun
- College of Plant Science, Jilin University, Changchun, 130062, China
| | - Bin Ma
- College of Plant Science, Jilin University, Changchun, 130062, China
| | - Yan Song
- College of Plant Science, Jilin University, Changchun, 130062, China
| | - Qingxun Guo
- College of Plant Science, Jilin University, Changchun, 130062, China
| | - Lianxia Zhou
- College of Plant Science, Jilin University, Changchun, 130062, China
| | - Kuishen Wu
- College of Animal Science, Jilin University, Changchun, 130062, China
| | - Xinsheng Zhang
- College of Plant Science, Jilin University, Changchun, 130062, China
| | - Chunyu Zhang
- College of Plant Science, Jilin University, Changchun, 130062, China.
| |
Collapse
|
10
|
Liu W, Mu H, Yuan L, Li Y, Li Y, Li S, Ren C, Duan W, Fan P, Dai Z, Zhou Y, Liang Z, Li S, Wang L. VvBBX44 and VvMYBA1 form a regulatory feedback loop to balance anthocyanin biosynthesis in grape. HORTICULTURE RESEARCH 2023; 10:uhad176. [PMID: 37868620 PMCID: PMC10585713 DOI: 10.1093/hr/uhad176] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Accepted: 08/25/2023] [Indexed: 10/24/2023]
Abstract
Anthocyanins are essential for the quality of perennial horticultural crops, such as grapes. In grapes, ELONGATED HYPOCOTYL 5 (HY5) and MYBA1 are two critical transcription factors that regulate anthocyanin biosynthesis. Our previous work has shown that Vitis vinifera B-box protein 44 (VvBBX44) inhibits anthocyanin synthesis and represses VvHY5 expression in grape calli. However, the regulatory mechanism underlying this regulation was unclear. In this study, we found that loss of VvBBX44 function resulted in increased anthocyanin accumulation in grapevine callus. VvBBX44 directly represses VvMYBA1, which activates VvBBX44. VvMYBA1, but not VvBBX44, directly modulates the expression of grape UDP flavonoid 3-O-glucosyltransferase (VvUFGT). We demonstrated that VvBBX44 represses the transcriptional activation of VvUFGT and VvBBX44 induced by VvMYBA1. However, VvBBX44 and VvMYBA1 did not physically interact in yeast. The application of exogenous anthocyanin stimulated VvBBX44 expression in grapevine suspension cells and tobacco leaves. These findings suggest that VvBBX44 and VvMYBA1 form a transcriptional feedback loop to prevent overaccumulation of anthocyanin and reduce metabolic costs. Our work sheds light on the complex regulatory network that controls anthocyanin biosynthesis in grapevine.
Collapse
Affiliation(s)
- Wenwen Liu
- Beijing Key Laboratory of Grape Science and Enology and State Key Laboratory of Plant Diversity and Specialty Crops, Institute of Botany, Chinese Academy of Science, Beijing 100093, China
- China National Botanical Garden, Beijing 100093, China
- University of Chinese Academy of Sciences, Beijing 10049, China
- National Key Laboratory of Tropical Crop Breeding, Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Key Laboratory of Synthetic Biology, Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen 518000, China
| | - Huayuan Mu
- Beijing Key Laboratory of Grape Science and Enology and State Key Laboratory of Plant Diversity and Specialty Crops, Institute of Botany, Chinese Academy of Science, Beijing 100093, China
- China National Botanical Garden, Beijing 100093, China
- University of Chinese Academy of Sciences, Beijing 10049, China
| | - Ling Yuan
- Department of Plant and Soil Sciences, Kentucky Tobacco Research and Development Center, University of Kentucky, Lexington, Kentucky 40546, USA
| | - Yang Li
- Beijing Key Laboratory of Grape Science and Enology and State Key Laboratory of Plant Diversity and Specialty Crops, Institute of Botany, Chinese Academy of Science, Beijing 100093, China
- China National Botanical Garden, Beijing 100093, China
| | - Yuting Li
- Beijing Key Laboratory of Grape Science and Enology and State Key Laboratory of Plant Diversity and Specialty Crops, Institute of Botany, Chinese Academy of Science, Beijing 100093, China
- China National Botanical Garden, Beijing 100093, China
- University of Chinese Academy of Sciences, Beijing 10049, China
| | - Shenchang Li
- Beijing Key Laboratory of Grape Science and Enology and State Key Laboratory of Plant Diversity and Specialty Crops, Institute of Botany, Chinese Academy of Science, Beijing 100093, China
- China National Botanical Garden, Beijing 100093, China
- University of Chinese Academy of Sciences, Beijing 10049, China
| | - Chong Ren
- Beijing Key Laboratory of Grape Science and Enology and State Key Laboratory of Plant Diversity and Specialty Crops, Institute of Botany, Chinese Academy of Science, Beijing 100093, China
- China National Botanical Garden, Beijing 100093, China
| | - Wei Duan
- Beijing Key Laboratory of Grape Science and Enology and State Key Laboratory of Plant Diversity and Specialty Crops, Institute of Botany, Chinese Academy of Science, Beijing 100093, China
- China National Botanical Garden, Beijing 100093, China
| | - Peige Fan
- Beijing Key Laboratory of Grape Science and Enology and State Key Laboratory of Plant Diversity and Specialty Crops, Institute of Botany, Chinese Academy of Science, Beijing 100093, China
- China National Botanical Garden, Beijing 100093, China
| | - Zhanwu Dai
- Beijing Key Laboratory of Grape Science and Enology and State Key Laboratory of Plant Diversity and Specialty Crops, Institute of Botany, Chinese Academy of Science, Beijing 100093, China
- China National Botanical Garden, Beijing 100093, China
| | - Yongfeng Zhou
- National Key Laboratory of Tropical Crop Breeding, Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Key Laboratory of Synthetic Biology, Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen 518000, China
| | - Zhenchang Liang
- Beijing Key Laboratory of Grape Science and Enology and State Key Laboratory of Plant Diversity and Specialty Crops, Institute of Botany, Chinese Academy of Science, Beijing 100093, China
- China National Botanical Garden, Beijing 100093, China
| | - Shaohua Li
- Beijing Key Laboratory of Grape Science and Enology and State Key Laboratory of Plant Diversity and Specialty Crops, Institute of Botany, Chinese Academy of Science, Beijing 100093, China
- China National Botanical Garden, Beijing 100093, China
| | - Lijun Wang
- Beijing Key Laboratory of Grape Science and Enology and State Key Laboratory of Plant Diversity and Specialty Crops, Institute of Botany, Chinese Academy of Science, Beijing 100093, China
- China National Botanical Garden, Beijing 100093, China
| |
Collapse
|
11
|
Liu Y, Wang Y, Liao J, Chen Q, Jin W, Li S, Zhu T, Li S. Identification and Characterization of the BBX Gene Family in Bambusa pervariabilis × Dendrocalamopsis grandis and Their Potential Role under Adverse Environmental Stresses. Int J Mol Sci 2023; 24:13465. [PMID: 37686287 PMCID: PMC10488121 DOI: 10.3390/ijms241713465] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2023] [Revised: 08/25/2023] [Accepted: 08/28/2023] [Indexed: 09/10/2023] Open
Abstract
Zinc finger protein (ZFP) transcription factors play a pivotal role in regulating plant growth, development, and response to biotic and abiotic stresses. Although extensively characterized in model organisms, these genes have yet to be reported in bamboo plants, and their expression information is lacking. Therefore, we identified 21 B-box (BBX) genes from a transcriptome analysis of Bambusa pervariabilis × Dendrocalamopsis grandis. Consequently, multiple sequence alignments and an analysis of conserved motifs showed that they all had highly similar structures. The BBX genes were divided into four subgroups according to their phylogenetic relationships and conserved domains. A GO analysis predicted multiple functions of the BBX genes in photomorphogenesis, metabolic processes, and biological regulation. We assessed the expression profiles of 21 BBX genes via qRT-PCR under different adversity conditions. Among them, eight genes were significantly up-regulated under water deficit stress (BBX4, BBX10, BBX11, BBX14, BBX15, BBX16, BBX17, and BBX21), nine under salt stress (BBX2, BBX3, BBX7, BBX9, BBX10, BBX12, BBX15, BBX16, and BBX21), twelve under cold stress (BBX1, BBX2, BBX4, BBX7, BBX10, BBX12, BBX14, BBX15, BBX17, BBX18, BBX19, and BBX21), and twelve under pathogen infestation stress (BBX1, BBX2, BBX4, BBX7, BBX10, BBX12, BBX14, BBX15, BBX17, BBX18, BBX19, and BBX21). Three genes (BBX10, BBX15, and BBX21) were significantly up-regulated under both biotic and abiotic stresses. These results suggest that the BBX gene family is integral to plant growth, development, and response to multivariate stresses. In conclusion, we have comprehensively analyzed the BDBBX genes under various adversity stress conditions, thus providing valuable information for further functional studies of this gene family.
Collapse
Affiliation(s)
- Yi Liu
- College of Forestry, Sichuan Agricultural University, Chengdu 611130, China; (Y.L.); (Y.W.); (J.L.); (Q.C.); (W.J.); (S.L.); (T.Z.)
| | - Yaxuan Wang
- College of Forestry, Sichuan Agricultural University, Chengdu 611130, China; (Y.L.); (Y.W.); (J.L.); (Q.C.); (W.J.); (S.L.); (T.Z.)
| | - Jiao Liao
- College of Forestry, Sichuan Agricultural University, Chengdu 611130, China; (Y.L.); (Y.W.); (J.L.); (Q.C.); (W.J.); (S.L.); (T.Z.)
| | - Qian Chen
- College of Forestry, Sichuan Agricultural University, Chengdu 611130, China; (Y.L.); (Y.W.); (J.L.); (Q.C.); (W.J.); (S.L.); (T.Z.)
| | - Wentao Jin
- College of Forestry, Sichuan Agricultural University, Chengdu 611130, China; (Y.L.); (Y.W.); (J.L.); (Q.C.); (W.J.); (S.L.); (T.Z.)
| | - Shuying Li
- College of Forestry, Sichuan Agricultural University, Chengdu 611130, China; (Y.L.); (Y.W.); (J.L.); (Q.C.); (W.J.); (S.L.); (T.Z.)
| | - Tianhui Zhu
- College of Forestry, Sichuan Agricultural University, Chengdu 611130, China; (Y.L.); (Y.W.); (J.L.); (Q.C.); (W.J.); (S.L.); (T.Z.)
| | - Shujiang Li
- College of Forestry, Sichuan Agricultural University, Chengdu 611130, China; (Y.L.); (Y.W.); (J.L.); (Q.C.); (W.J.); (S.L.); (T.Z.)
- National Forestry and Grassland Administration Key Laboratory of Forest Resources Conservation and Ecological Safety on the Upper Reaches of the Yangtze River, Chengdu 611130, China
| |
Collapse
|
12
|
Wang X, Guo H, Jin Z, Ding Y, Guo M. Comprehensive Characterization of B-Box Zinc Finger Genes in Citrullus lanatus and Their Response to Hormone and Abiotic Stresses. PLANTS (BASEL, SWITZERLAND) 2023; 12:2634. [PMID: 37514248 PMCID: PMC10386417 DOI: 10.3390/plants12142634] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/13/2023] [Revised: 07/07/2023] [Accepted: 07/11/2023] [Indexed: 07/30/2023]
Abstract
Plant B-BOX (BBX) zinc finger transcription factors play crucial roles in growth and development and the stress response. Although the BBX family has been characterized in various plants, systematic analysis in watermelon is still lacking. In this study, 25 watermelon ClBBX genes were identified. ClBBXs were grouped into five clades (Clade I, II, III, IV, and V) based on their conserved domains and phylogenetic relationships. Most of the ClBBXs (84%) might be localized in the nuclei or cytoplasm. The classification of ClBBXs was consistent with their gene structures. They were unevenly distributed in nine chromosomes except for Chr4 and Chr10, with the largest number of six members in Chr2. Segmental duplications were the major factor in ClBBX family expansion. Some BBXs of watermelon and Arabidopsis evolved from a common ancestor. In total, 254 hormonal and stress-responsive cis elements were discovered in ClBBX promoters. ClBBXs were differentially expressed in tissues, and the expression levels of ClBBX15 and 16 were higher in aboveground tissues than in roots, while the patterns of ClBBX21a, 21b, 21c, 28 and 30b were the opposite. With salicylic acid, methyl jasmonate and salt stress conditions, 17, 18 and 18 ClBBXs exhibited significant expression changes, respectively. In addition, many ClBBXs, including ClBBX29b, 30a and 30b, were also responsive to cold and osmotic stress. In summary, the simultaneous response of multiple ClBBXs to hormonal or abiotic stress suggests that they may have functional interactions in the stress hormone network. Clarifying the roles of key ClBBXs in transcriptional regulation and mediating protein interactions will be an important task. Our comprehensive characterization of the watermelon ClBBX family provides vital clues for the in-depth analysis of their biological functions in stress and hormone signaling pathways.
Collapse
Affiliation(s)
- Xinsheng Wang
- School of Enology and Horticulture, Ningxia University, Yinchuan 750021, China
| | - Huidan Guo
- College of Horticulture and Landscape, Henan Institute of Science and Technology, Xinxiang 453003, China
| | - Zhi Jin
- School of Enology and Horticulture, Ningxia University, Yinchuan 750021, China
| | - Yina Ding
- School of Enology and Horticulture, Ningxia University, Yinchuan 750021, China
| | - Meng Guo
- School of Enology and Horticulture, Ningxia University, Yinchuan 750021, China
- Key Laboratory of Modern Molecular Breeding for Dominant and Special Crops in Ningxia, Yinchuan 750021, China
- Ningxia Modern Facility Horticulture Engineering Technology Research Center, Yinchuan 750021, China
- Ningxia Facility Horticulture Technology Innovation Center, Ningxia University, Yinchuan 750021, China
| |
Collapse
|
13
|
Chiriotto TS, Saura-Sánchez M, Barraza C, Botto JF. BBX24 Increases Saline and Osmotic Tolerance through ABA Signaling in Arabidopsis Seeds. PLANTS (BASEL, SWITZERLAND) 2023; 12:2392. [PMID: 37446954 DOI: 10.3390/plants12132392] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/22/2023] [Revised: 06/12/2023] [Accepted: 06/14/2023] [Indexed: 07/15/2023]
Abstract
Seed germination is a critical stage for survival during the life cycle of an individual plant. Genetic and environmental cues are integrated by individual seeds to determine germination, mainly achieved through regulation of the metabolism and signaling of gibberellins (GA) and abscisic acid (ABA), two phytohormones with antagonistic roles. Saline and drought conditions can arrest the germination of seeds and limit the seedling emergence and homogeneity of crops. This work aimed to study the function of BBX24, a B-Box transcription factor, in the control of germination of Arabidopsis thaliana seeds imbibed in saline and osmotic conditions. Seeds of mutant and reporter GUS lines of BBX24 were incubated at different doses of NaCl and polyethylene-glycol (PEG) solutions and with ABA, GA and their inhibitors to evaluate the rate of germination. We found that BBX24 promotes seed germination under moderated stresses. The expression of BBX24 is inhibited by NaCl and PEG. In addition, ABA suppresses BBX24-induced seed germination. Additional experiments suggest that BBX24 reduces ABA sensitivity, improving NaCl tolerance, and increases GA sensitivity in seeds imbibed in ABA. In addition, BBX24 inhibits the expression of ABI3 and ABI5 and genetically interacts upstream of HY5 and ABI5. This study demonstrates the relevance of BBX24 to induce drought and salinity tolerance in seed germination to ensure seedling emergence in sub-optimal environments.
Collapse
Affiliation(s)
- Tai S Chiriotto
- Instituto de Investigaciones Fisiológicas y Ecológicas Vinculadas a la Agricultura (IFEVA), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Facultad de Agronomía, Universidad de Buenos Aires (UBA), Ciudad Autónoma de Buenos Aires C1417DSE, Argentina
| | - Maite Saura-Sánchez
- Instituto de Investigaciones Fisiológicas y Ecológicas Vinculadas a la Agricultura (IFEVA), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Facultad de Agronomía, Universidad de Buenos Aires (UBA), Ciudad Autónoma de Buenos Aires C1417DSE, Argentina
| | - Carla Barraza
- Instituto de Investigaciones Fisiológicas y Ecológicas Vinculadas a la Agricultura (IFEVA), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Facultad de Agronomía, Universidad de Buenos Aires (UBA), Ciudad Autónoma de Buenos Aires C1417DSE, Argentina
| | - Javier F Botto
- Instituto de Investigaciones Fisiológicas y Ecológicas Vinculadas a la Agricultura (IFEVA), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Facultad de Agronomía, Universidad de Buenos Aires (UBA), Ciudad Autónoma de Buenos Aires C1417DSE, Argentina
| |
Collapse
|
14
|
Singh D, Datta S. BBX30/miP1b and BBX31/miP1a form a positive feedback loop with ABI5 to regulate ABA-mediated postgermination seedling growth arrest. THE NEW PHYTOLOGIST 2023; 238:1908-1923. [PMID: 36882897 DOI: 10.1111/nph.18866] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/10/2023] [Accepted: 03/02/2023] [Indexed: 05/04/2023]
Abstract
In plants, the switch to autotrophic growth involves germination followed by postgermination seedling establishment. When environmental conditions are not favorable, the stress hormone abscisic acid (ABA) signals plants to postpone seedling establishment by inducing the expression of the transcription factor ABI5. The levels of ABI5 determine the efficiency of the ABA-mediated postgermination developmental growth arrest. The molecular mechanisms regulating the stability and activity of ABI5 during the transition to light are less known. Using genetic, molecular, and biochemical approach, we found that two B-box domain containing proteins BBX31 and BBX30 alongwith ABI5 inhibit postgermination seedling establishment in a partially interdependent manner. BBX31 and BBX30 are also characterized as microProteins miP1a and miP1b, respectively, based on their small size, single domain, and ability to interact with multidomain proteins. miP1a/BBX31 and miP1b/BBX30 physically interact with ABI5 to stabilize it and promote its binding to promoters of downstream genes. ABI5 reciprocally induces the expression of BBX30 and BBX31 by directly binding to their promoter. ABI5 and the two microProteins thereby form a positive feedback loop to promote ABA-mediated developmental arrest of seedlings.
Collapse
Affiliation(s)
- Deeksha Singh
- Department of Biological Sciences, Indian Institute of Science Education and Research Bhopal, Bhopal, 462066, Madhya Pradesh, India
| | - Sourav Datta
- Department of Biological Sciences, Indian Institute of Science Education and Research Bhopal, Bhopal, 462066, Madhya Pradesh, India
| |
Collapse
|
15
|
Shi G, Ai K, Yan X, Zhou Z, Cai F, Bao M, Zhang J. Genome-Wide Analysis of the BBX Genes in Platanus × acerifolia and Their Relationship with Flowering and/or Dormancy. Int J Mol Sci 2023; 24:ijms24108576. [PMID: 37239923 DOI: 10.3390/ijms24108576] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2023] [Revised: 04/27/2023] [Accepted: 05/03/2023] [Indexed: 05/28/2023] Open
Abstract
The B-BOX (BBX) gene family is widely distributed in animals and plants and is involved in the regulation of their growth and development. In plants, BBX genes play important roles in hormone signaling, biotic and abiotic stress, light-regulated photomorphogenesis, flowering, shade response, and pigment accumulation. However, there has been no systematic analysis of the BBX family in Platanus × acerifolia. In this study, we identified 39 BBX genes from the P. × acerifolia genome, and used TBtools, MEGA, MEME, NCBI CCD, PLANTCARE and other tools for gene collinearity analysis, phylogenetic analysis, gene structure, conserved domain analysis, and promoter cis-element analysis, and used the qRT-PCR and transcriptome data for analyzing expression pattern of the PaBBX genes. Collinearity analysis indicated segmental duplication was the main driver of the BBX family in P. × acerifolia, and phylogenetic analysis showed that the PaBBX family was divided into five subfamilies: I, II, III, IV and V. Gene structure analysis showed that some PaBBX genes contained super-long introns that may regulate their own expression. Moreover, the promoter of PaBBX genes contained a significant number of cis-acting elements that are associated with plant growth and development, as well as hormone and stress responses. The qRT-PCR results and transcriptome data indicated that certain PaBBX genes exhibited tissue-specific and stage-specific expression patterns, suggesting that these genes may have distinct regulatory roles in P. × acerifolia growth and development. In addition, some PaBBX genes were regularly expressed during the annual growth of P. × acerifolia, corresponding to different stages of flower transition, dormancy, and bud break, indicating that these genes may be involved in the regulation of flowering and/or dormancy of P. × acerifolia. This article provided new ideas for the study of dormancy regulation and annual growth patterns in perennial deciduous plants.
Collapse
Affiliation(s)
- Gehui Shi
- National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crops, College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan 430070, China
- Key Laboratory of Urban Agriculture in Central China, Ministry of Agriculture and Rural Afairs, Wuhan 430070, China
| | - Kangyu Ai
- National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crops, College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan 430070, China
- Key Laboratory of Urban Agriculture in Central China, Ministry of Agriculture and Rural Afairs, Wuhan 430070, China
| | - Xu Yan
- National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crops, College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan 430070, China
- Key Laboratory of Urban Agriculture in Central China, Ministry of Agriculture and Rural Afairs, Wuhan 430070, China
| | - Zheng Zhou
- National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crops, College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan 430070, China
- Key Laboratory of Urban Agriculture in Central China, Ministry of Agriculture and Rural Afairs, Wuhan 430070, China
| | - Fangfang Cai
- Plant Genomics & Molecular Improvement of Colored Fiber Laboratory, College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou 310018, China
| | - Manzhu Bao
- National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crops, College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan 430070, China
- Key Laboratory of Urban Agriculture in Central China, Ministry of Agriculture and Rural Afairs, Wuhan 430070, China
| | - Jiaqi Zhang
- National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crops, College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan 430070, China
- Key Laboratory of Urban Agriculture in Central China, Ministry of Agriculture and Rural Afairs, Wuhan 430070, China
| |
Collapse
|
16
|
Luo D, Sun W, Cai J, Hu G, Zhang D, Zhang X, Larkin RM, Zhang J, Yang C, Ye Z, Wang T. SlBBX20 attenuates JA signalling and regulates resistance to Botrytis cinerea by inhibiting SlMED25 in tomato. PLANT BIOTECHNOLOGY JOURNAL 2023; 21:792-805. [PMID: 36582069 PMCID: PMC10037119 DOI: 10.1111/pbi.13997] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/06/2021] [Revised: 12/13/2022] [Accepted: 12/22/2022] [Indexed: 06/17/2023]
Abstract
Jasmonic acid (JA) plays an important role in regulating plant growth and defence responses. Here, we show that a transcription factor that belongs to the B-box (BBX) family named SlBBX20 regulates resistance to Botrytis cinerea in tomato by modulating JA signalling. The response to JA was significantly suppressed when SlBBX20 was overexpressed in tomato. By contrast, the JA response was enhanced in SlBBX20 knockout lines. RNA sequencing analysis provided more evidence that SlBBX20 modulates the expression of genes that are involved in JA signalling. We found that SlBBX20 interacts with SlMED25, a subunit of the Mediator transcriptional co-activator complex, and prevents the accumulation of the SlMED25 protein and transcription of JA-responsive genes. JA contributes to the defence response against necrotrophic pathogens. Knocking out SlBBX20 or overexpressing SlMED25 enhanced tomato resistance to B. cinerea. The resistance was impaired when SlBBX20 was overexpressed in plants that also overexpressed SlMED25. These data show that SlBBX20 attenuates JA signalling by regulating SlMED25. Interestingly, in addition to developing enhanced resistance to B. cinerea, SlBBX20-KO plants also produced higher fruit yields. SlBBX20 is a potential target gene for efforts that aim to develop elite crop varieties using gene editing technologies.
Collapse
Affiliation(s)
- Dan Luo
- Key Laboratory of Horticulture Plant Biology, Ministry of EducationHuazhong Agriculture UniversityWuhanChina
| | - Wenhui Sun
- Key Laboratory of Horticulture Plant Biology, Ministry of EducationHuazhong Agriculture UniversityWuhanChina
| | - Jun Cai
- Key Laboratory of Horticulture Plant Biology, Ministry of EducationHuazhong Agriculture UniversityWuhanChina
| | - Guoyu Hu
- Key Laboratory of Horticulture Plant Biology, Ministry of EducationHuazhong Agriculture UniversityWuhanChina
| | - Danqiu Zhang
- Key Laboratory of Horticulture Plant Biology, Ministry of EducationHuazhong Agriculture UniversityWuhanChina
| | - Xiaoyan Zhang
- Key Laboratory of Horticulture Plant Biology, Ministry of EducationHuazhong Agriculture UniversityWuhanChina
| | - Robert M. Larkin
- Key Laboratory of Horticulture Plant Biology, Ministry of EducationHuazhong Agriculture UniversityWuhanChina
| | - Junhong Zhang
- Key Laboratory of Horticulture Plant Biology, Ministry of EducationHuazhong Agriculture UniversityWuhanChina
| | - Changxian Yang
- Key Laboratory of Horticulture Plant Biology, Ministry of EducationHuazhong Agriculture UniversityWuhanChina
| | - Zhibiao Ye
- Key Laboratory of Horticulture Plant Biology, Ministry of EducationHuazhong Agriculture UniversityWuhanChina
| | - Taotao Wang
- Key Laboratory of Horticulture Plant Biology, Ministry of EducationHuazhong Agriculture UniversityWuhanChina
| |
Collapse
|
17
|
Wang Y, Xiao Y, Sun Y, Zhang X, Du B, Turupu M, Yao Q, Gai S, Tong S, Huang J, Li T. Two B-box proteins, PavBBX6/9, positively regulate light-induced anthocyanin accumulation in sweet cherry. PLANT PHYSIOLOGY 2023:kiad137. [PMID: 36930566 DOI: 10.1093/plphys/kiad137] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/17/2023] [Accepted: 02/03/2023] [Indexed: 06/18/2023]
Abstract
Anthocyanin production in bicolored sweet cherry (Prunus avium cv. Rainier) fruit is induced by light exposure, leading to red coloration. The phytohormone abscisic acid (ABA) is essential for this process, but the regulatory relationships that link light and ABA with anthocyanin-associated coloration are currently unclear. In this study, we determined that light treatment of bicolored sweet cherry fruit increased anthocyanin accumulation and induced ABA production and that ABA participates in light-modulated anthocyanin accumulation in bicolored sweet cherry. Two B-box (BBX) genes, PavBBX6/9, were highly induced by light and ABA treatments, as was anthocyanin accumulation. The ectopic expression of PavBBX6 or PavBBX9 in Arabidopsis (Arabidopsis thaliana) increased anthocyanin biosynthesis and ABA accumulation. Overexpressing PavBBX6 or PavBBX9 in sweet cherry calli also enhanced light-induced anthocyanin biosynthesis and ABA accumulation. Additionally, transient overexpression of PavBBX6 or PavBBX9 in sweet cherry peel increased anthocyanin and ABA contents, whereas silencing either gene had the opposite effects. PavBBX6 and PavBBX9 directly bound to the G-box elements in the promoter of UDP glucose-flavonoid-3-O-glycosyltransferase (PavUFGT), a key gene for anthocyanin biosynthesis, and 9-cis-epoxycarotenoid dioxygenase 1 (PavNCED1), a key gene for ABA biosynthesis, and enhanced their activities. These results suggest that PavBBX6 and PavBBX9 positively regulate light-induced anthocyanin and ABA biosynthesis by promoting PavUFGT and PavNCED1 expression, respectively. Our study provides insights into the relationship between the light-induced ABA biosynthetic pathway and anthocyanin accumulation in bicolored sweet cherry fruit.
Collapse
Affiliation(s)
- Yanyan Wang
- Department of Pomology, College of Horticulture, China Agricultural University, Beijing, 100193, China
| | - Yuqin Xiao
- Department of Pomology, College of Horticulture, China Agricultural University, Beijing, 100193, China
| | - Yueting Sun
- Department of Pomology, College of Horticulture, China Agricultural University, Beijing, 100193, China
| | - Xiang Zhang
- Department of Pomology, College of Horticulture, China Agricultural University, Beijing, 100193, China
| | - Bingyang Du
- Department of Pomology, College of Horticulture, China Agricultural University, Beijing, 100193, China
| | - Maihemuti Turupu
- Department of Pomology, College of Horticulture, China Agricultural University, Beijing, 100193, China
| | - Qisheng Yao
- Department of Pomology, College of Horticulture, China Agricultural University, Beijing, 100193, China
| | - Shilin Gai
- Department of Pomology, College of Horticulture, China Agricultural University, Beijing, 100193, China
| | - Shi Tong
- Department of Pomology, College of Horticulture, China Agricultural University, Beijing, 100193, China
| | - Jing Huang
- Department of Pomology, College of Horticulture, China Agricultural University, Beijing, 100193, China
| | - Tianhong Li
- Department of Pomology, College of Horticulture, China Agricultural University, Beijing, 100193, China
| |
Collapse
|
18
|
Medina-Fraga AL, Chinen LA, Demkura PV, Lichy MZ, Gershenzon J, Ballaré CL, Crocco CD. AtBBX29 integrates photomorphogenesis and defense responses in Arabidopsis. Photochem Photobiol Sci 2023:10.1007/s43630-023-00391-8. [PMID: 36807054 DOI: 10.1007/s43630-023-00391-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2022] [Accepted: 02/03/2023] [Indexed: 02/21/2023]
Abstract
Light is an environmental signal that modulates plant defenses against attackers. Recent research has focused on the effects of light on defense hormone signaling; however, the connections between light signaling pathways and the biosynthesis of specialized metabolites involved in plant defense have been relatively unexplored. Here, we show that Arabidopsis BBX29, a protein that belongs to the B-Box transcription factor (TF) family, integrates photomorphogenic signaling with defense responses by promoting flavonoid, sinapate and glucosinolate accumulation in Arabidopsis leaves. AtBBX29 transcript levels were up regulated by light, through photoreceptor signaling pathways. Genetic evidence indicated that AtBBX29 up-regulates MYB12 gene expression, a TF known to induce genes related to flavonoid biosynthesis in a light-dependent manner, and MYB34 and MYB51, which encode TFs involved in the regulation of glucosinolate biosynthesis. Thus, bbx29 knockout mutants displayed low expression levels of key genes of the flavonoid biosynthetic pathway, and the opposite was true in BBX29 overexpression lines. In agreement with the transcriptomic data, bbx29 mutant plants accumulated lower levels of kaempferol glucosides, sinapoyl malate, indol-3-ylmethyl glucosinolate (I3M), 4-methylsulfinylbutyl glucosinolate (4MSOB) and 3-methylthiopropyl glucosinolate (3MSP) in rosette leaves compared to the wild-type, and showed increased susceptibility to the necrotrophic fungus Botrytis cinerea and to the herbivore Spodoptera frugiperda. In contrast, BBX29 overexpressing plants displayed increased resistance to both attackers. In addition, we found that AtBBX29 plays an important role in mediating the effects of ultraviolet-B (UV-B) radiation on plant defense against B. cinerea. Taken together, these results suggest that AtBBX29 orchestrates the accumulation of specific light-induced metabolites and regulates Arabidopsis resistance against pathogens and herbivores.
Collapse
Affiliation(s)
- Ana L Medina-Fraga
- Facultad de Agronomía, IFEVA, Consejo Nacional de Investigaciones Científicas y Técnicas-Universidad de Buenos Aires, Av. San Martín 4453, C1417DSE, Ciudad Autónoma de Buenos Aires, Argentina
| | - Lucas A Chinen
- Facultad de Agronomía, IFEVA, Consejo Nacional de Investigaciones Científicas y Técnicas-Universidad de Buenos Aires, Av. San Martín 4453, C1417DSE, Ciudad Autónoma de Buenos Aires, Argentina
| | - Patricia V Demkura
- Facultad de Agronomía, IFEVA, Consejo Nacional de Investigaciones Científicas y Técnicas-Universidad de Buenos Aires, Av. San Martín 4453, C1417DSE, Ciudad Autónoma de Buenos Aires, Argentina
| | - Micaela Z Lichy
- Facultad de Agronomía, IFEVA, Consejo Nacional de Investigaciones Científicas y Técnicas-Universidad de Buenos Aires, Av. San Martín 4453, C1417DSE, Ciudad Autónoma de Buenos Aires, Argentina
| | - Jonathan Gershenzon
- Department of Biochemistry, Max Planck Institute for Chemical Ecology, Jena, Germany
| | - Carlos L Ballaré
- Facultad de Agronomía, IFEVA, Consejo Nacional de Investigaciones Científicas y Técnicas-Universidad de Buenos Aires, Av. San Martín 4453, C1417DSE, Ciudad Autónoma de Buenos Aires, Argentina
- IIBIO, Consejo Nacional de Investigaciones Científicas y Técnicas-Universidad Nacional de San Martín, B1650HMP, Buenos Aires, Argentina
| | - Carlos D Crocco
- Facultad de Agronomía, IFEVA, Consejo Nacional de Investigaciones Científicas y Técnicas-Universidad de Buenos Aires, Av. San Martín 4453, C1417DSE, Ciudad Autónoma de Buenos Aires, Argentina.
- Department of Plant Sciences, Section of Biology, Faculty of Sciences, University of Geneva, 1211, Geneva 4, Switzerland.
| |
Collapse
|
19
|
Cao J, Yuan J, Zhang Y, Chen C, Zhang B, Shi X, Niu R, Lin F. Multi-layered roles of BBX proteins in plant growth and development. STRESS BIOLOGY 2023; 3:1. [PMID: 37676379 PMCID: PMC10442040 DOI: 10.1007/s44154-022-00080-z] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/02/2022] [Accepted: 12/18/2022] [Indexed: 09/08/2023]
Abstract
Light and phytohormone are external and internal cues that regulate plant growth and development throughout their life cycle. BBXs (B-box domain proteins) are a group of zinc finger proteins that not only directly govern the transcription of target genes but also associate with other factors to create a meticulous regulatory network to precisely regulate numerous aspects of growth and developmental processes in plants. Recent studies demonstrate that BBXs play pivotal roles in light-controlled plant growth and development. Besides, BBXs have been documented to regulate phytohormone-mediated physiological procedures. In this review, we summarize and highlight the multi-faced role of BBXs, with a focus in photomorphogenesis, photoperiodic flowering, shade avoidance, abiotic stress, and phytohormone-mediated growth and development in plant.
Collapse
Affiliation(s)
- Jing Cao
- Ministry of Education Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Lanzhou, 730000, China
| | - Jiale Yuan
- Ministry of Education Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Lanzhou, 730000, China
| | - Yingli Zhang
- Ministry of Education Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Lanzhou, 730000, China
| | - Chen Chen
- Ministry of Education Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Lanzhou, 730000, China
| | - Beihong Zhang
- Ministry of Education Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Lanzhou, 730000, China
| | - Xianming Shi
- Ministry of Education Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Lanzhou, 730000, China
| | - Rui Niu
- Ministry of Education Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Lanzhou, 730000, China
| | - Fang Lin
- Ministry of Education Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Lanzhou, 730000, China.
| |
Collapse
|
20
|
Gao XR, Zhang H, Li X, Bai YW, Peng K, Wang Z, Dai ZR, Bian XF, Zhang Q, Jia LC, Li Y, Liu QC, Zhai H, Gao SP, Zhao N, He SZ. The B-box transcription factor IbBBX29 regulates leaf development and flavonoid biosynthesis in sweet potato. PLANT PHYSIOLOGY 2023; 191:496-514. [PMID: 36377782 PMCID: PMC9806656 DOI: 10.1093/plphys/kiac516] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/24/2022] [Accepted: 09/23/2022] [Indexed: 06/01/2023]
Abstract
Plant flavonoids are valuable natural antioxidants. Sweet potato (Ipomoea batatas) leaves are rich in flavonoids, regenerate rapidly, and can adapt to harsh environments, making them an ideal material for flavonoid biofortification. Here, we demonstrate that the B-box (BBX) family transcription factor IbBBX29 regulates the flavonoid contents and development of sweet potato leaves. IbBBX29 was highly expressed in sweet potato leaves and significantly induced by auxin (IAA). Overexpression of IbBBX29 contributed to a 21.37%-70.94% increase in leaf biomass, a 12.08%-21.85% increase in IAA levels, and a 31.33%-63.03% increase in flavonoid accumulation in sweet potato, whereas silencing this gene produced opposite effects. Heterologous expression of IbBBX29 in Arabidopsis (Arabidopsis thaliana) led to a dwarfed phenotype, along with enhanced IAA and flavonoid accumulation. RNA-seq analysis revealed that IbBBX29 modulates the expression of genes involved in the IAA signaling and flavonoid biosynthesis pathways. Chromatin immunoprecipitation-quantitative polymerase chain reaction and electrophoretic mobility shift assay indicated that IbBBX29 targets key genes of IAA signaling and flavonoid biosynthesis to activate their expression by binding to specific T/G-boxes in their promoters, especially those adjacent to the transcription start site. Moreover, IbBBX29 physically interacted with developmental and phenylpropanoid biosynthesis-related proteins, such as AGAMOUS-LIKE 21 protein IbAGL21 and MYB308-like protein IbMYB308L. Finally, overexpressing IbBBX29 also increased flavonoid contents in sweet potato storage roots. These findings indicate that IbBBX29 plays a pivotal role in regulating IAA-mediated leaf development and flavonoid biosynthesis in sweet potato and Arabidopsis, providing a candidate gene for flavonoid biofortification in plants.
Collapse
Affiliation(s)
- Xiao-ru Gao
- Key Laboratory of Sweet Potato Biology and Biotechnology, Ministry of Agriculture and Rural Affairs/Beijing Key Laboratory of Crop Genetic Improvement/Laboratory of Crop Heterosis and Utilization and Joint Laboratory for International Cooperation in Crop Molecular Breeding, Ministry of Education, College of Agronomy and Biotechnology, China Agricultural University, Beijing 100193, China
| | - Huan Zhang
- Key Laboratory of Sweet Potato Biology and Biotechnology, Ministry of Agriculture and Rural Affairs/Beijing Key Laboratory of Crop Genetic Improvement/Laboratory of Crop Heterosis and Utilization and Joint Laboratory for International Cooperation in Crop Molecular Breeding, Ministry of Education, College of Agronomy and Biotechnology, China Agricultural University, Beijing 100193, China
- Sanya Institute of China Agricultural University, Hainan 572025, China
| | - Xu Li
- Key Laboratory of Sweet Potato Biology and Biotechnology, Ministry of Agriculture and Rural Affairs/Beijing Key Laboratory of Crop Genetic Improvement/Laboratory of Crop Heterosis and Utilization and Joint Laboratory for International Cooperation in Crop Molecular Breeding, Ministry of Education, College of Agronomy and Biotechnology, China Agricultural University, Beijing 100193, China
- Sanya Institute of China Agricultural University, Hainan 572025, China
| | - Yi-wei Bai
- Key Laboratory of Sweet Potato Biology and Biotechnology, Ministry of Agriculture and Rural Affairs/Beijing Key Laboratory of Crop Genetic Improvement/Laboratory of Crop Heterosis and Utilization and Joint Laboratory for International Cooperation in Crop Molecular Breeding, Ministry of Education, College of Agronomy and Biotechnology, China Agricultural University, Beijing 100193, China
| | - Kui Peng
- Key Laboratory of Sweet Potato Biology and Biotechnology, Ministry of Agriculture and Rural Affairs/Beijing Key Laboratory of Crop Genetic Improvement/Laboratory of Crop Heterosis and Utilization and Joint Laboratory for International Cooperation in Crop Molecular Breeding, Ministry of Education, College of Agronomy and Biotechnology, China Agricultural University, Beijing 100193, China
| | - Zhen Wang
- Key Laboratory of Sweet Potato Biology and Biotechnology, Ministry of Agriculture and Rural Affairs/Beijing Key Laboratory of Crop Genetic Improvement/Laboratory of Crop Heterosis and Utilization and Joint Laboratory for International Cooperation in Crop Molecular Breeding, Ministry of Education, College of Agronomy and Biotechnology, China Agricultural University, Beijing 100193, China
| | - Zhuo-ru Dai
- Key Laboratory of Sweet Potato Biology and Biotechnology, Ministry of Agriculture and Rural Affairs/Beijing Key Laboratory of Crop Genetic Improvement/Laboratory of Crop Heterosis and Utilization and Joint Laboratory for International Cooperation in Crop Molecular Breeding, Ministry of Education, College of Agronomy and Biotechnology, China Agricultural University, Beijing 100193, China
| | - Xiao-feng Bian
- Provincial Key Laboratory of Agrobiology, Institute of Food Crops, Jiangsu Academy of Agricultural Sciences, Nanjing 210000, China
| | - Qian Zhang
- Key Laboratory of Sweet Potato Biology and Biotechnology, Ministry of Agriculture and Rural Affairs/Beijing Key Laboratory of Crop Genetic Improvement/Laboratory of Crop Heterosis and Utilization and Joint Laboratory for International Cooperation in Crop Molecular Breeding, Ministry of Education, College of Agronomy and Biotechnology, China Agricultural University, Beijing 100193, China
- Provincial Key Laboratory of Agrobiology, Institute of Food Crops, Jiangsu Academy of Agricultural Sciences, Nanjing 210000, China
| | - Li-cong Jia
- Key Laboratory of Sweet Potato Biology and Biotechnology, Ministry of Agriculture and Rural Affairs/Beijing Key Laboratory of Crop Genetic Improvement/Laboratory of Crop Heterosis and Utilization and Joint Laboratory for International Cooperation in Crop Molecular Breeding, Ministry of Education, College of Agronomy and Biotechnology, China Agricultural University, Beijing 100193, China
- Institute of Grain and Oil Crops, Yantai Academy of Agricultural Sciences, Yantai 265500, China
| | - Yan Li
- Key Laboratory of Sweet Potato Biology and Biotechnology, Ministry of Agriculture and Rural Affairs/Beijing Key Laboratory of Crop Genetic Improvement/Laboratory of Crop Heterosis and Utilization and Joint Laboratory for International Cooperation in Crop Molecular Breeding, Ministry of Education, College of Agronomy and Biotechnology, China Agricultural University, Beijing 100193, China
- College of Agronomy and Biotechnology, Southwest University, Chongqing 400715, China
| | - Qing-chang Liu
- Key Laboratory of Sweet Potato Biology and Biotechnology, Ministry of Agriculture and Rural Affairs/Beijing Key Laboratory of Crop Genetic Improvement/Laboratory of Crop Heterosis and Utilization and Joint Laboratory for International Cooperation in Crop Molecular Breeding, Ministry of Education, College of Agronomy and Biotechnology, China Agricultural University, Beijing 100193, China
| | - Hong Zhai
- Key Laboratory of Sweet Potato Biology and Biotechnology, Ministry of Agriculture and Rural Affairs/Beijing Key Laboratory of Crop Genetic Improvement/Laboratory of Crop Heterosis and Utilization and Joint Laboratory for International Cooperation in Crop Molecular Breeding, Ministry of Education, College of Agronomy and Biotechnology, China Agricultural University, Beijing 100193, China
| | - Shao-pei Gao
- Key Laboratory of Sweet Potato Biology and Biotechnology, Ministry of Agriculture and Rural Affairs/Beijing Key Laboratory of Crop Genetic Improvement/Laboratory of Crop Heterosis and Utilization and Joint Laboratory for International Cooperation in Crop Molecular Breeding, Ministry of Education, College of Agronomy and Biotechnology, China Agricultural University, Beijing 100193, China
| | - Ning Zhao
- Key Laboratory of Sweet Potato Biology and Biotechnology, Ministry of Agriculture and Rural Affairs/Beijing Key Laboratory of Crop Genetic Improvement/Laboratory of Crop Heterosis and Utilization and Joint Laboratory for International Cooperation in Crop Molecular Breeding, Ministry of Education, College of Agronomy and Biotechnology, China Agricultural University, Beijing 100193, China
| | - Shao-zhen He
- Key Laboratory of Sweet Potato Biology and Biotechnology, Ministry of Agriculture and Rural Affairs/Beijing Key Laboratory of Crop Genetic Improvement/Laboratory of Crop Heterosis and Utilization and Joint Laboratory for International Cooperation in Crop Molecular Breeding, Ministry of Education, College of Agronomy and Biotechnology, China Agricultural University, Beijing 100193, China
- Sanya Institute of China Agricultural University, Hainan 572025, China
| |
Collapse
|
21
|
Dong J, Zhao C, Zhang J, Ren Y, He L, Tang R, Wang W, Jia X. The sweet potato B-box transcription factor gene IbBBX28 negatively regulates drought tolerance in transgenic Arabidopsis. Front Genet 2022; 13:1077958. [PMID: 36523761 PMCID: PMC9744756 DOI: 10.3389/fgene.2022.1077958] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2022] [Accepted: 11/14/2022] [Indexed: 07/30/2023] Open
Abstract
B-box (BBX) which are a class of zinc finger transcription factors, play an important role in regulating of photoperiod, photomorphogenesis, and biotic and abiotic stresses in plants. However, there are few studies on the involvement of BBX transcription factors in response to abiotic stresses in sweet potato. In this paper, we cloned the DNA and promoter sequences of IbBBX28. There was one B-box conserved domain in IbBBX28, and the expression of IbBBX28 was induced under drought stress. Under drought stress, compared to wild type Arabidopsis, the protective enzyme activities (SOD, POD, and CAT) were all decreased in IbBBX28-overexpression Arabidopsis but increased in the mutant line bbx28, while the MDA content was increased in the IbBBX28-overexpression Arabidopsis and decreased in the bbx28. Moreover, the expression levels of the resistance-related genes showed the same trend as the protective enzyme activities. These results showed that IbBBX28 negatively regulates drought tolerance in transgenic Arabidopsis. Additionally, the yeast two-hybrid and BiFC assays verified that IbBBX28 interacted with IbHOX11 and IbZMAT2. The above results provide important clues for further studies on the role of IbBBX28 in regulating the stress response in sweet potato.
Collapse
Affiliation(s)
- Jingjing Dong
- College of Agriculture, Shanxi Agricultural University, Taigu, Shanxi, China
| | - Cailiang Zhao
- College of Agriculture, Shanxi Agricultural University, Taigu, Shanxi, China
| | - Jie Zhang
- College of Agriculture, Shanxi Agricultural University, Taigu, Shanxi, China
| | - Yuchao Ren
- College of Agriculture, Shanxi Agricultural University, Taigu, Shanxi, China
| | - Liheng He
- College of Agriculture, Shanxi Agricultural University, Taigu, Shanxi, China
| | - Ruimin Tang
- College of Life Sciences, Shanxi Agricultural University, Taigu, Shanxi, China
| | - Wenbin Wang
- College of Life Sciences, Shanxi Agricultural University, Taigu, Shanxi, China
| | - Xiaoyun Jia
- College of Life Sciences, Shanxi Agricultural University, Taigu, Shanxi, China
| |
Collapse
|
22
|
Curci PL, Zhang J, Mähler N, Seyfferth C, Mannapperuma C, Diels T, Van Hautegem T, Jonsen D, Street N, Hvidsten TR, Hertzberg M, Nilsson O, Inzé D, Nelissen H, Vandepoele K. Identification of growth regulators using cross-species network analysis in plants. PLANT PHYSIOLOGY 2022; 190:2350-2365. [PMID: 35984294 PMCID: PMC9706488 DOI: 10.1093/plphys/kiac374] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/24/2022] [Accepted: 07/05/2022] [Indexed: 05/11/2023]
Abstract
With the need to increase plant productivity, one of the challenges plant scientists are facing is to identify genes that play a role in beneficial plant traits. Moreover, even when such genes are found, it is generally not trivial to transfer this knowledge about gene function across species to identify functional orthologs. Here, we focused on the leaf to study plant growth. First, we built leaf growth transcriptional networks in Arabidopsis (Arabidopsis thaliana), maize (Zea mays), and aspen (Populus tremula). Next, known growth regulators, here defined as genes that when mutated or ectopically expressed alter plant growth, together with cross-species conserved networks, were used as guides to predict novel Arabidopsis growth regulators. Using an in-depth literature screening, 34 out of 100 top predicted growth regulators were confirmed to affect leaf phenotype when mutated or overexpressed and thus represent novel potential growth regulators. Globally, these growth regulators were involved in cell cycle, plant defense responses, gibberellin, auxin, and brassinosteroid signaling. Phenotypic characterization of loss-of-function lines confirmed two predicted growth regulators to be involved in leaf growth (NPF6.4 and LATE MERISTEM IDENTITY2). In conclusion, the presented network approach offers an integrative cross-species strategy to identify genes involved in plant growth and development.
Collapse
Affiliation(s)
- Pasquale Luca Curci
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Technologiepark 71, 9052 Ghent, Belgium
- VIB Center for Plant Systems Biology, Technologiepark 71, 9052 Ghent, Belgium
- Institute of Biosciences and Bioresources, National Research Council (CNR), Via Amendola 165/A, 70126 Bari, Italy
| | - Jie Zhang
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Technologiepark 71, 9052 Ghent, Belgium
- VIB Center for Plant Systems Biology, Technologiepark 71, 9052 Ghent, Belgium
| | - Niklas Mähler
- Department of Plant Physiology, Umea Plant Science Centre (UPSC), Umeå University, 90187 Umeå, Sweden
| | - Carolin Seyfferth
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Technologiepark 71, 9052 Ghent, Belgium
- VIB Center for Plant Systems Biology, Technologiepark 71, 9052 Ghent, Belgium
- Department of Plant Physiology, Umea Plant Science Centre (UPSC), Umeå University, 90187 Umeå, Sweden
| | - Chanaka Mannapperuma
- Department of Plant Physiology, Umea Plant Science Centre (UPSC), Umeå University, 90187 Umeå, Sweden
| | - Tim Diels
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Technologiepark 71, 9052 Ghent, Belgium
- VIB Center for Plant Systems Biology, Technologiepark 71, 9052 Ghent, Belgium
| | - Tom Van Hautegem
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Technologiepark 71, 9052 Ghent, Belgium
- VIB Center for Plant Systems Biology, Technologiepark 71, 9052 Ghent, Belgium
| | - David Jonsen
- SweTree Technologies AB, Skogsmarksgränd 7, SE-907 36 Umeå, Sweden
| | - Nathaniel Street
- Department of Plant Physiology, Umea Plant Science Centre (UPSC), Umeå University, 90187 Umeå, Sweden
| | - Torgeir R Hvidsten
- Department of Plant Physiology, Umea Plant Science Centre (UPSC), Umeå University, 90187 Umeå, Sweden
- Faculty of Chemistry, Biotechnology and Food Science, Norwegian University of Life Sciences, 1432 Ås, Norway
| | - Magnus Hertzberg
- SweTree Technologies AB, Skogsmarksgränd 7, SE-907 36 Umeå, Sweden
| | - Ove Nilsson
- Department of Forest Genetics and Plant Physiology, Umea Plant Science Centre (UPSC), Swedish University of Agricultural Sciences, 90183 Umeå, Sweden
| | - Dirk Inzé
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Technologiepark 71, 9052 Ghent, Belgium
- VIB Center for Plant Systems Biology, Technologiepark 71, 9052 Ghent, Belgium
| | - Hilde Nelissen
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Technologiepark 71, 9052 Ghent, Belgium
- VIB Center for Plant Systems Biology, Technologiepark 71, 9052 Ghent, Belgium
| | - Klaas Vandepoele
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Technologiepark 71, 9052 Ghent, Belgium
- VIB Center for Plant Systems Biology, Technologiepark 71, 9052 Ghent, Belgium
- Bioinformatics Institute Ghent, Ghent University, Technologiepark 71, 9052 Ghent, Belgium
| |
Collapse
|
23
|
Tan B, Li Y, Deng D, Pan H, Zeng Y, Tan X, Zhuang W, Li Z. Rhizosphere inoculation of Nicotiana benthamiana with Trichoderma harzianum TRA1-16 in controlled environment agriculture: Effects of varying light intensities on the mutualism-parasitism interaction. FRONTIERS IN PLANT SCIENCE 2022; 13:989155. [PMID: 36340354 PMCID: PMC9630631 DOI: 10.3389/fpls.2022.989155] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/08/2022] [Accepted: 10/05/2022] [Indexed: 06/16/2023]
Abstract
Trichoderma spp., a genus of fast-growing and highly adaptable fungi that form symbiotic relationships with plant roots, rendering them ideal for practical use in controlled environment agriculture. Herein, this paper aims to understand how the Nicotiana benthamiana with inoculation of Trichoderma harzianum strain TRA1-16 responds to light intensity variation. Pot experiments were conducted under low and high light intensities (50 and 150 μmol·m-2·s-1, respectively) and microbial treatments. Plant growth, physio-biochemical attributes, activities of antioxidant enzymes, and phytohormones regulation were investigated. The results showed that for non-inoculated plants, the reduction in light intensity inhibited plant growth, nitrogen (N) and phosphorus (P) uptake, chlorophyll a/b, and carotenoid content. Trichoderma inoculation resulted in 1.17 to 1.51 times higher concentrations of available N and P in the soil than the non-inoculated group, with higher concentrations at high light intensity. Plant height, dry weight, nutrient uptake, and antioxidant activity were significantly increased after inoculation (p<0.05). However, the growth-promoting effect was less effective under low light conditions, with lower plant height and P content in plants. We suggested that when the light was attenuated, the mutualism of the Trichoderma turned into parasitism, slowing the growth of the host plant. The application of fungal inoculation techniques for plant growth promotion required coordination with appropriate light complementation. The mechanisms of coordination and interaction were proposed to be incorporated into the biological market theory.
Collapse
Affiliation(s)
- Bo Tan
- State Key Laboratory of Hydraulics and Mountain River Engineering, College of Water Resource & Hydropower, Sichuan University, Chengdu, China
| | - Yihan Li
- State Key Laboratory of Hydraulics and Mountain River Engineering, College of Water Resource & Hydropower, Sichuan University, Chengdu, China
- Sichuan Development Guorun Water Investment Co. Ltd., Chengdu, China
| | | | - Hongli Pan
- Sichuan Academy of Forestry, Chengdu, China
| | - Yue Zeng
- State Key Laboratory of Hydraulics and Mountain River Engineering, College of Water Resource & Hydropower, Sichuan University, Chengdu, China
| | - Xiao Tan
- State Key Laboratory of Hydraulics and Mountain River Engineering, College of Water Resource & Hydropower, Sichuan University, Chengdu, China
| | - Wenhua Zhuang
- State Key Laboratory of Hydraulics and Mountain River Engineering, College of Water Resource & Hydropower, Sichuan University, Chengdu, China
| | - Zhuo Li
- Key Laboratory of Water Saving Agriculture in Hill Areas in Southern China of Sichuan Province, Crop Research Institute, Sichuan Academy of Agricultural Sciences, Chengdu, China
| |
Collapse
|
24
|
The Function of BBX Gene Family under Multiple Stresses in Nicotiana tabacum. Genes (Basel) 2022; 13:genes13101841. [PMID: 36292726 PMCID: PMC9602306 DOI: 10.3390/genes13101841] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Revised: 10/06/2022] [Accepted: 10/08/2022] [Indexed: 11/16/2022] Open
Abstract
B-box (BBX) is a zinc finger transcription factor, which is involved in regulating the growth and development of plants and resisting various stresses. In this study, 43 NtBBX genes were identified and divided into five subgroups in tobacco. The members in each subgroup had similar characteristics. The promoter region of NtBBX genes had cis-acting elements related to light response, hormone regulation and stress response. Transcriptome analysis showed that NtBBX30 was significantly up-regulated, and NtBBX12, NtBBX13, NtBBX16 and NtBBX17 were significantly down-regulated under abiotic stresses. The NtBBX genes also responded to the infection of Ralstonia solanacearum. NtBBX9, NtBBX1, NtBBX15 and NtBBX17 showed the greatest response under stresses. The NtBBX genes are expressed in various degrees under different tissues. This research will provide a solid foundation for further study of the biological function of NtBBX genes in tobacco.
Collapse
|
25
|
Lira BS, Oliveira MJ, Shiose L, Vicente MH, Souza GPC, Floh EIS, Purgatto E, Nogueira FTS, Freschi L, Rossi M. SlBBX28 positively regulates plant growth and flower number in an auxin-mediated manner in tomato. PLANT MOLECULAR BIOLOGY 2022; 110:253-268. [PMID: 35798935 DOI: 10.1007/s11103-022-01298-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/06/2022] [Accepted: 06/26/2022] [Indexed: 06/15/2023]
Abstract
SlBBX28 is a positive regulator of auxin metabolism and signaling, affecting plant growth and flower number in tomato B-box domain-containing proteins (BBXs) comprise a family of transcription factors that regulate several processes, such as photomorphogenesis, flowering, and stress responses. For this reason, attention is being directed toward the functional characterization of these proteins, although knowledge in species other than Arabidopsis thaliana remains scarce. Particularly in the tomato, Solanum lycopersicum, only three out of 31 SlBBX proteins have been functionally characterized to date. To deepen the understanding of the role of these proteins in tomato plant development and yield, SlBBX28, a light-responsive gene, was constitutively silenced, resulting in plants with smaller leaves and fewer flowers per inflorescence. Moreover, SlBBX28 knockdown reduced hypocotyl elongation in darkness-grown tomato. Analyses of auxin content and responsiveness revealed that SlBBX28 promotes auxin-mediated responses. Altogether, the data revealed that SlBBX28 promotes auxin production and signaling, ultimately leading to proper hypocotyl elongation, leaf expansion, and inflorescence development, which are crucial traits determining tomato yield.
Collapse
Affiliation(s)
- Bruno Silvestre Lira
- Departamento de Botânica, Instituto de Biociências, Universidade de São Paulo, São Paulo, SP, Brazil
| | - Maria José Oliveira
- Departamento de Botânica, Instituto de Biociências, Universidade de São Paulo, São Paulo, SP, Brazil
| | - Lumi Shiose
- Departamento de Botânica, Instituto de Biociências, Universidade de São Paulo, São Paulo, SP, Brazil
| | - Mateus Henrique Vicente
- Escola Superior de Agricultura 'Luiz de Queiroz', Universidade de São Paulo, São Paulo, SP, Brazil
| | | | - Eny Iochevet Segal Floh
- Departamento de Botânica, Instituto de Biociências, Universidade de São Paulo, São Paulo, SP, Brazil
| | - Eduardo Purgatto
- Faculdade de Ciências Farmacêuticas, Universidade de São Paulo, São Paulo, SP, Brazil
| | | | - Luciano Freschi
- Departamento de Botânica, Instituto de Biociências, Universidade de São Paulo, São Paulo, SP, Brazil
| | - Magdalena Rossi
- Departamento de Botânica, Instituto de Biociências, Universidade de São Paulo, São Paulo, SP, Brazil.
| |
Collapse
|
26
|
Nian L, Zhang X, Liu X, Li X, Liu X, Yang Y, Haider FU, Zhu X, Ma B, Mao Z, Xue Z. Characterization of B-box family genes and their expression profiles under abiotic stresses in the Melilotus albus. FRONTIERS IN PLANT SCIENCE 2022; 13:990929. [PMID: 36247587 PMCID: PMC9559383 DOI: 10.3389/fpls.2022.990929] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/11/2022] [Accepted: 08/25/2022] [Indexed: 06/16/2023]
Abstract
B-box (BBX) proteins are one of the zinc-finger transcription factor that plays a critical role in plant development, growth, and multiple stress responses. Although BBX genes have been reported in many model organisms, no comprehensive study has yet been conducted on the BBX genes in Melilotus albus, and the biological functions of this family remain unknown. In this study, a total of 20 BBX (MaBBX) genes were identified in M. albus and were phylogenetically divided into five clades. BBX members within the same clade showed similar conserved domain, suggesting similarity of potential biological function. Analysis of MaBBX conserved motifs showed that every subfamily contained two common motifs. Distribution mapping shows that BBX proteins are nonrandomly localized in eight chromosomes. The synteny showed that most homologous gene pairs of the MaBBX gene family were amplified by segmental replication, which meant segmental replication was the main way for the MaBBX gene family to evolve. Additionally, the cis-element analysis predicted light-responsive, various hormone and stress-related elements in the promoter regions of MaBBXs. Furthermore, the expression levels of all 20 MaBBX genes were detected by qRT-PCR under salt, cold, and dark stresses in M. albus. Moreover, it was observed that 16 genes had higher expression levels after 3 h of salt treatment, 10 genes were significantly upregulated after 3 h of cold treatment, and all genes were up regulated after 3 h of dark treatment, and then appeared to decline. In addition, it was also noticed that MaBBX13 may be an important candidate for improving tolerance to abiotic stress. The prediction of protein tertiary structure showed that the tertiary structures of members of the same subfamily of MaBBX proteins were highly similar. The hypothesis exhibited that most of the MaBBX proteins were predicted to be localized to the nucleus and cytoplasm and was validated by transient expression assays of MaBBX15 in tobacco leaf epidermal cells. This study provides useful information for further investigating and researching the regulatory mechanisms of BBX family genes in response to abiotic stresses in M. albus.
Collapse
Affiliation(s)
- Lili Nian
- College of Forestry, Gansu Agricultural University, Lanzhou, China
| | - Xiaoning Zhang
- College of Forestry, Gansu Agricultural University, Lanzhou, China
| | - Xingyu Liu
- College of Forestry, Gansu Agricultural University, Lanzhou, China
| | - Xiaodan Li
- College of Management, Gansu Agricultural University, Lanzhou, China
| | - Xuelu Liu
- College of Resources and Environmental Sciences, Gansu Agricultural University, Lanzhou, China
| | - Yingbo Yang
- College of Resources and Environmental Sciences, Gansu Agricultural University, Lanzhou, China
| | - Fasih Ullah Haider
- College of Resources and Environmental Sciences, Gansu Agricultural University, Lanzhou, China
| | - Xiaolin Zhu
- College of Agronomy, Gansu Agricultural University, Lanzhou, China
| | - Biao Ma
- College of Resources and Environmental Sciences, Gansu Agricultural University, Lanzhou, China
| | - Zixuan Mao
- College of Resources and Environmental Sciences, Gansu Agricultural University, Lanzhou, China
| | - Zongyang Xue
- College of Resources and Environmental Sciences, Gansu Agricultural University, Lanzhou, China
| |
Collapse
|
27
|
Job N, Lingwan M, Masakapalli SK, Datta S. Transcription factors BBX11 and HY5 interdependently regulate the molecular and metabolic responses to UV-B. PLANT PHYSIOLOGY 2022; 189:2467-2480. [PMID: 35511140 PMCID: PMC9342961 DOI: 10.1093/plphys/kiac195] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/24/2022] [Accepted: 03/25/2022] [Indexed: 05/04/2023]
Abstract
UV-B radiation acts as a developmental cue and a stress factor for plants, depending on dose. Activation of the transcription factor ELONGATED HYPOCOTYL 5 (HY5) in a UV RESISTANCE LOCUS 8 (UVR8)-dependent manner leads to the induction of a broad set of genes under UV-B. However, the underlying molecular mechanisms regulating this process are less understood. Here, we use molecular, biochemical, genetic, and metabolomic tools to identify the B-BOX transcription factor B-BOX PROTEIN 11 (BBX11) as a component of the molecular response to UV-B in Arabidopsis (Arabidopsis thaliana). BBX11 expression is induced by UV-B in a dose-dependent manner. Under low UV-B, BBX11 regulates hypocotyl growth suppression, whereas it protects plants exposed to high UV-B radiation by promoting the accumulation of photo-protective phenolics and antioxidants, and inducing DNA repair genes. Our genetic studies indicate that BBX11 regulates hypocotyl elongation under UV-B partially dependent on HY5. Overexpression of BBX11 can partially rescue the high UV-B sensitivity of hy5, suggesting that HY5-mediated UV-B stress tolerance is partially dependent on BBX11. HY5 regulates the UV-B-mediated induction of BBX11 by directly binding to its promoter. BBX11 reciprocally regulates the mRNA and protein levels of HY5. We report here the role of a BBX11-HY5 feedback loop in regulating photomorphogenesis and stress tolerance under UV-B.
Collapse
Affiliation(s)
- Nikhil Job
- Department of Biological Sciences, Indian Institute of Science Education and Research-Bhopal, Bhopal 462066, Madhya Pradesh, India
| | - Maneesh Lingwan
- BioX School of Basic Sciences, Indian Institute of Technology-Mandi, Mandi 175005, Himachal Pradesh, India
| | - Shyam Kumar Masakapalli
- BioX School of Basic Sciences, Indian Institute of Technology-Mandi, Mandi 175005, Himachal Pradesh, India
| | - Sourav Datta
- Department of Biological Sciences, Indian Institute of Science Education and Research-Bhopal, Bhopal 462066, Madhya Pradesh, India
| |
Collapse
|
28
|
Bandara WW, Wijesundera WSS, Hettiarachchi C. Rice and Arabidopsis BBX proteins: toward genetic engineering of abiotic stress resistant crops. 3 Biotech 2022; 12:164. [PMID: 36092969 PMCID: PMC9452616 DOI: 10.1007/s13205-022-03228-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2021] [Accepted: 06/17/2022] [Indexed: 11/01/2022] Open
Abstract
Productivity of crop plants are enormously affected by biotic and abiotic stresses. The co-occurrence of several abiotic stresses may lead to death of crop plants. Hence, it is the responsibility of plant scientists to develop crop plants equipped with multistress tolerance pathways. A subgroup of zinc finger transcription factor family, known as B-box (BBX) proteins, play a key role in light and hormonal regulation pathways. In addition, BBX proteins act as key regulatory proteins in many abiotic stress regulatory pathways, including Ultraviolet-B (UV-B), salinity, drought, heat and cold, and heavy metal stresses. Most of the BBX proteins identified in Arabidopsis and rice respond to more than one abiotic stress. Considering the requirement of improving rice for multistress tolerance, this review discusses functionally characterized Arabidopsis and rice BBX proteins in the development of abiotic stress responses. Furthermore, it highlights the participation of BBX proteins in multistress regulation and crop improvement through genetic engineering.
Collapse
|
29
|
de Almeida Garcia Rodrigues G, da Silva D, Ribeiro MI, Loaiza-Loaiza OA, Alcantara S, Komatsu RA, Barbedo CJ, Steiner N. What affects the desiccation tolerance threshold of Brazilian Eugenia (Myrtaceae) seeds? JOURNAL OF PLANT RESEARCH 2022; 135:579-591. [PMID: 35670888 DOI: 10.1007/s10265-022-01396-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/10/2021] [Accepted: 04/20/2022] [Indexed: 06/15/2023]
Abstract
Desiccation sensitive (DS) seeds are shed at high water contents (WC) and metabolically active, but WC thresholds vary broadly among species even in the same genus. Eugenia is an important ecological genus that has high occurrence in several Brazilian morphoclimatic domains. In this study, we assessed seed desiccation tolerance of five Eugenia species collected in specific meteorological conditions. We reported the species geographical ranges and verified the rainfall and temperature of species sites in the year prior to seed collection. We also assessed initial WC, seed germination and vigor and seedling growth upon desiccation. Eugenia uniflora was the widest spread among the five species, while E. astringens was the most restricted. In this specific study, widespread species showed a higher WC threshold than restricted species. In the same way, the WC of fresh seeds was not correlated to the desiccation tolerance threshold. Seed desiccation tolerance was species dependent and correlated with the environmental status of seed collection sites. Wetter and warmer conditions were correlated to the E. uniflora higher DS threshold. Low rainfall and temperature corresponded to a lower desiccation sensitivity of E. astringens seeds. Seeds of the five species lost half viability between 0.44 and 0.25 g H2O g DW- 1 and after 65-270 h of desiccation. Our results indicate that abiotic factors impact plant populations during the seed production season and can drive seed desiccation tolerance threshold and physiological behavior. These results should be taken into account in ex-situ plant conservation programs and tropical species management.
Collapse
Affiliation(s)
| | - Danielle da Silva
- Plant Physiology Lab, Federal University of Santa Catarina (UFSC), Av. César Seara, s/n, Florianópolis, Brazil
| | - Maiara Iadwizak Ribeiro
- Instituto de Pesquisas Ambientais, Nucleo de Conservação da Biodiversidade, Av. Miguel Stefano 3687, São Paulo, Brazil
| | - Oscar Alfonso Loaiza-Loaiza
- Plant Physiology Lab, Federal University of Santa Catarina (UFSC), Av. César Seara, s/n, Florianópolis, Brazil
| | - Suzana Alcantara
- Plant Systematics Lab, Federal University of Santa Catarina (UFSC), Av. César Seara, s/n, Florianópolis, Brazil
| | | | - Claudio Jose Barbedo
- Instituto de Pesquisas Ambientais, Nucleo de Conservação da Biodiversidade, Av. Miguel Stefano 3687, São Paulo, Brazil
| | - Neusa Steiner
- Plant Physiology Lab, Federal University of Santa Catarina (UFSC), Av. César Seara, s/n, Florianópolis, Brazil.
| |
Collapse
|
30
|
Genome-Wide Identification of the B-Box Gene Family and Expression Analysis Suggests Their Potential Role in Photoperiod-Mediated β-Carotene Accumulation in the Endocarp of Cucumber (Cucumis sativus L.) Fruit. Genes (Basel) 2022; 13:genes13040658. [PMID: 35456464 PMCID: PMC9031713 DOI: 10.3390/genes13040658] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2022] [Revised: 04/03/2022] [Accepted: 04/05/2022] [Indexed: 12/27/2022] Open
Abstract
Carotenoids are indispensable to plants and essential for human nutrition and health. Carotenoid contents are strongly influenced by light through light-responsive genes such as B-Box (BBX) genes. BBX proteins, a class of zinc-finger transcription factors, mediate many light-signaling pathways, leading to the biosynthesis of important metabolites in plants. However, the identification of the BBX gene family and expression analysis in response to photoperiod-mediated carotenoid accumulation in cucumber remains unexplored. We performed a genome-wide study and determined the expression of cucumber BBX genes (hereafter referred to as CsaBBXs genes) in the endocarp of Xishuangbanna cucumber fruit (a special type of cucumber accumulating a high level of β-carotene in the endocarp) using an RNA-seq analysis of plants previously subjected to two photoperiodic conditions. Here, 26 BBX family genes were identified in the cucumber genome and named serially CsaBBX1 through CsaBBX26. We characterized CsaBBX genes in terms of their phylogenetic relationships, exon-intron structures, cis-acting elements, and syntenic relationships with Arabidopsis thaliana (L.) Heynh. RNA-seq analysis revealed a varied expression of CsaBBX genes under photoperiod treatment. The analysis of CsaBBXs genes revealed a strong positive correlation between CsaBBX17 and carotenoid biosynthetic pathway genes (phytoene synthase, ζ-carotene desaturase, lycopene ε-cyclase, β-carotene hydroxylase-1), thus suggesting its involvement in β-carotene biosynthesis. Additionally, nine CsaBBX genes (CsaBBX 4, 5, 7, 9, 11, 13, 15, 17 and 22) showed a significant positive correlation with β-carotene content. The selected CsaBBX genes were verified by qRT-PCR and confirmed the validity of RNA-seq data. The results of this study established the genome-wide analysis of the cucumber BBX family and provide a framework for understanding their biological role in carotenoid accumulation and photoperiodic responses. Further investigations of CsaBBX genes are vital since they are promising candidate genes for the functional analysis of carotenoid biosynthesis and can provide genetic tools for the molecular breeding of carotenoids in plants.
Collapse
|
31
|
Crystal structure of a tandem B-box domain from Arabidopsis CONSTANS. Biochem Biophys Res Commun 2022; 599:38-42. [DOI: 10.1016/j.bbrc.2022.02.025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2022] [Accepted: 02/08/2022] [Indexed: 11/18/2022]
|
32
|
Liu Y, Zhang XW, Liu X, Zheng PF, Su L, Wang GL, Wang XF, Li YY, You CX, An JP. Phytochrome interacting factor MdPIF7 modulates anthocyanin biosynthesis and hypocotyl growth in apple. PLANT PHYSIOLOGY 2022; 188:2342-2363. [PMID: 34983053 PMCID: PMC8968312 DOI: 10.1093/plphys/kiab605] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/04/2021] [Accepted: 11/26/2021] [Indexed: 06/10/2023]
Abstract
Light affects many physiological and developmental processes of plants by regulating the expression and activity of light-responsive proteins. Among them, phytochrome interacting factors (PIFs) play pivotal roles in the regulation of anthocyanin accumulation and hypocotyl growth. However, the molecular mechanism is not well understood, especially in woody plants, such as apple (Malus × domestica). In this study, we identified a light-responsive PIF protein, MdPIF7, in apple and investigated the molecular mechanism of its regulation of anthocyanin biosynthesis and hypocotyl growth. We found that overexpression of MdPIF7 decreased anthocyanin accumulation in transgenic apple materials and promoted hypocotyl elongation in ectopically expressed Arabidopsis (Arabidopsis thaliana). Further investigation showed that MdPIF7 functioned by interacting with B-box 23 (MdBBX23), a positive regulator of anthocyanin biosynthesis in apple and hypocotyl growth inhibition in ectopically expressed Arabidopsis, and attenuating the transcriptional activation of MdBBX23 on LONG HYPOCOTYL 5 (MdHY5). In addition, MdPIF7 interacted with basic region leucine zipper 44 (MdbZIP44) and ethylene response factor 38 (MdERF38), two positive regulators of anthocyanin biosynthesis, and it negatively regulated MdbZIP44- and MdERF38-promoted anthocyanin accumulation by interfering with the interaction between MdbZIP44/MdERF38 and MdMYB1. Taken together, our results reveal that MdPIF7 regulates anthocyanin biosynthesis in apple and hypocotyl growth in ectopically expressed Arabidopsis through MdPIF7-MdBBX23-MdHY5 and MdPIF7-MdbZIP44/MdERF38-MdMYB1 modules. Our findings enrich the functional studies of PIF proteins and provide insights into the molecular mechanism of PIF-mediated anthocyanin biosynthesis and hypocotyl growth.
Collapse
Affiliation(s)
- Yankai Liu
- State Key Laboratory of Crop Biology, College of Horticulture Science and Engineering, Shandong Agricultural University, Tai’an 271018, Shandong, China
| | - Xiao-Wei Zhang
- State Key Laboratory of Crop Biology, College of Horticulture Science and Engineering, Shandong Agricultural University, Tai’an 271018, Shandong, China
| | - Xin Liu
- Beijing Academy of Forestry and Pomology Sciences, Beijing Academy of Agriculture and Forestry Sciences, Beijing, 100093, China
| | - Peng-Fei Zheng
- State Key Laboratory of Crop Biology, College of Horticulture Science and Engineering, Shandong Agricultural University, Tai’an 271018, Shandong, China
| | - Ling Su
- Shandong Academy of Grape, Shandong Academy of Agricultural Sciences, Jinan 250100, Shandong, China
| | - Gui-Luan Wang
- State Key Laboratory of Crop Biology, College of Horticulture Science and Engineering, Shandong Agricultural University, Tai’an 271018, Shandong, China
| | - Xiao-Fei Wang
- State Key Laboratory of Crop Biology, College of Horticulture Science and Engineering, Shandong Agricultural University, Tai’an 271018, Shandong, China
| | - Yuan-Yuan Li
- State Key Laboratory of Crop Biology, College of Horticulture Science and Engineering, Shandong Agricultural University, Tai’an 271018, Shandong, China
| | - Chun-Xiang You
- State Key Laboratory of Crop Biology, College of Horticulture Science and Engineering, Shandong Agricultural University, Tai’an 271018, Shandong, China
| | - Jian-Ping An
- State Key Laboratory of Crop Biology, College of Horticulture Science and Engineering, Shandong Agricultural University, Tai’an 271018, Shandong, China
| |
Collapse
|
33
|
The Genetic and Hormonal Inducers of Continuous Flowering in Orchids: An Emerging View. Cells 2022; 11:cells11040657. [PMID: 35203310 PMCID: PMC8870070 DOI: 10.3390/cells11040657] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2022] [Revised: 02/09/2022] [Accepted: 02/11/2022] [Indexed: 02/07/2023] Open
Abstract
Orchids are the flowers of magnetic beauty. Vivid and attractive flowers with magnificent shapes make them the king of the floriculture industry. However, the long-awaited flowering is a drawback to their market success, and therefore, flowering time regulation is the key to studies about orchid flower development. Although there are some rare orchids with a continuous flowering pattern, the molecular regulatory mechanisms are yet to be elucidated to find applicable solutions to other orchid species. Multiple regulatory pathways, such as photoperiod, vernalization, circadian clock, temperature and hormonal pathways are thought to signalize flower timing using a group of floral integrators. This mini review, thus, organizes the current knowledge of floral time regulators to suggest future perspectives on the continuous flowering mechanism that may help to plan functional studies to induce flowering revolution in precious orchid species.
Collapse
|
34
|
Kreiner JM, Tranel PJ, Weigel D, Stinchcombe JR, Wright SI. The genetic architecture and population genomic signatures of glyphosate resistance in Amaranthus tuberculatus. Mol Ecol 2021; 30:5373-5389. [PMID: 33853196 DOI: 10.1111/mec.15920] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Revised: 03/15/2021] [Accepted: 04/06/2021] [Indexed: 01/04/2023]
Abstract
Much of what we know about the genetic basis of herbicide resistance has come from detailed investigations of monogenic adaptation at known target-sites, despite the increasingly recognized importance of polygenic resistance. Little work has been done to characterize the broader genomic basis of herbicide resistance, including the number and distribution of genes involved, their effect sizes, allele frequencies and signatures of selection. In this work, we implemented genome-wide association (GWA) and population genomic approaches to examine the genetic architecture of glyphosate (Round-up) resistance in the problematic agricultural weed Amaranthus tuberculatus. A GWA was able to correctly identify the known target-gene but statistically controlling for two causal target-site mechanisms revealed an additional 250 genes across all 16 chromosomes associated with non-target-site resistance (NTSR). The encoded proteins had functions that have been linked to NTSR, the most significant of which is response to chemicals, but also showed pleiotropic roles in reproduction and growth. Compared to an empirical null that accounts for complex population structure, the architecture of NTSR was enriched for large effect sizes and low allele frequencies, suggesting the role of pleiotropic constraints on its evolution. The enrichment of rare alleles also suggested that the genetic architecture of NTSR may be population-specific and heterogeneous across the range. Despite their rarity, we found signals of recent positive selection on NTSR-alleles by both window- and haplotype-based statistics, and an enrichment of amino acid changing variants. In our samples, genome-wide single nucleotide polymorphisms explain a comparable amount of the total variation in glyphosate resistance to monogenic mechanisms, even in a collection of individuals where 80% of resistant individuals have large-effect TSR mutations, indicating an underappreciated polygenic contribution to the evolution of herbicide resistance in weed populations.
Collapse
Affiliation(s)
- Julia M Kreiner
- Department of Ecology and Evolutionary Biology, University of Toronto, Toronto, ON, Canada
| | - Patrick J Tranel
- Department of Crop Sciences, University of Illinois at Urbana-Champaign, Urbana, IL, USA
| | - Detlef Weigel
- Department of Molecular Biology, Max Planck Institute for Developmental Biology, Tübingen, Germany
| | - John R Stinchcombe
- Department of Ecology and Evolutionary Biology, University of Toronto, Toronto, ON, Canada
- Koffler Scientific Reserve, University of Toronto, King City, ON, Canada
| | - Stephen I Wright
- Department of Ecology and Evolutionary Biology, University of Toronto, Toronto, ON, Canada
- Centre for the Analysis of Genome Evolution and Function, University of Toronto, Toronto, ON, Canada
| |
Collapse
|
35
|
Dong MY, Lei L, Fan XW, Li YZ. Analyses of open-access multi-omics data sets reveal genetic and expression characteristics of maize ZmCCT family genes. AOB PLANTS 2021; 13:plab048. [PMID: 34567492 PMCID: PMC8459886 DOI: 10.1093/aobpla/plab048] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/03/2021] [Accepted: 07/27/2021] [Indexed: 06/13/2023]
Abstract
Flowering in maize (Zea mays) is influenced by photoperiod. The CO, CO-like/COL and TOC1 (CCT) domain protein-encoding genes in maize, ZmCCTs, are particularly important for photoperiod sensitivity. However, little is known about CCT protein-encoding gene number across plant species or among maize inbred lines. Therefore, we analysed CCT protein-encoding gene number across plant species, and characterized ZmCCTs in different inbred lines, including structural variations (SVs), copy number variations (CNVs), expression under stresses, dark-dark (DD) and dark-light (DL) cycles, interaction network and associations with maize quantitative trait loci (QTLs) by referring to the latest v4 genome data of B73. Gene number varied greatly across plant species, more in polyploids than in diploids. The numbers of ZmCCTs identified were 58 in B73, 59 in W22, 48 in Mo17, and 57 in Huangzao4 for temperate maize inbred lines, and 68 in tropical maize inbred line SK. Some ZmCCTs underwent duplications and presented chromosome collinearity. Structural variations and CNVs were found but they had no germplasm specificity. Forty-two ZmCCTs responded to stresses. Expression of 37 ZmCCTs in embryonic leaves during seed germination of maize under DD and DL cycles was roughly divided into five patterns of uphill pattern, downhill-pattern, zigzag-pattern, └-pattern and ⅃-pattern, indicating some of them have a potential to perceive dark and/or dark-light transition. Thirty-three ZmCCTs were co-expressed with 218 other maize genes; and 24 ZmCCTs were associated with known QTLs. The data presented in this study will help inform further functions of ZmCCTs.
Collapse
Affiliation(s)
- Ming-You Dong
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources/College of Life Science and Technology, Guangxi University, 100 Daxue Road, Nanning, Guangxi 530004, P. R. China
| | - Ling Lei
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources/College of Life Science and Technology, Guangxi University, 100 Daxue Road, Nanning, Guangxi 530004, P. R. China
| | - Xian-Wei Fan
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources/College of Life Science and Technology, Guangxi University, 100 Daxue Road, Nanning, Guangxi 530004, P. R. China
| | - You-Zhi Li
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources/College of Life Science and Technology, Guangxi University, 100 Daxue Road, Nanning, Guangxi 530004, P. R. China
| |
Collapse
|
36
|
Singh S, Chhapekar SS, Ma Y, Rameneni JJ, Oh SH, Kim J, Lim YP, Choi SR. Genome-Wide Identification, Evolution, and Comparative Analysis of B-Box Genes in Brassica rapa, B. oleracea, and B. napus and Their Expression Profiling in B. rapa in Response to Multiple Hormones and Abiotic Stresses. Int J Mol Sci 2021; 22:ijms221910367. [PMID: 34638707 PMCID: PMC8509055 DOI: 10.3390/ijms221910367] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2021] [Revised: 09/19/2021] [Accepted: 09/22/2021] [Indexed: 11/23/2022] Open
Abstract
The B-box zinc-finger transcription factors are important for plant growth, development, and various physiological processes such as photomorphogenesis, light signaling, and flowering, as well as for several biotic and abiotic stress responses. However, there is relatively little information available regarding Brassica B-box genes and their expression. In this study, we identified 51, 52, and 101 non-redundant genes encoding B-box proteins in Brassica rapa (BrBBX genes), B. oleracea (BoBBX genes), and B. napus (BnBBX genes), respectively. A whole-genome identification, characterization, and evolutionary analysis (synteny and orthology) of the B-box gene families in the diploid species B. rapa (A genome) and B. oleracea (C genome) and in the allotetraploid species B. napus (AC genome) revealed segmental duplications were the major contributors to the expansion of the BrassicaBBX gene families. The BrassicaBBX genes were classified into five subgroups according to phylogenetic relationships, gene structures, and conserved domains. Light-responsive cis-regulatory elements were detected in many of the BBX gene promoters. Additionally, BrBBX expression profiles in different tissues and in response to various abiotic stresses (heat, cold, salt, and drought) or hormones (abscisic acid, methyl jasmonate, and gibberellic acid) were analyzed by qRT-PCR. The data indicated that many B-box genes (e.g., BrBBX13, BrBBX15, and BrBBX17) may contribute to plant development and growth as well as abiotic stress tolerance. Overall, the identified BBX genes may be useful as functional genetic markers for multiple stress responses and plant developmental processes.
Collapse
Affiliation(s)
- Sonam Singh
- Department of Horticulture, College of Agriculture and Life Science, Chungnam National University, Daejeon 34134, Korea; (S.S.); (S.S.C.); (Y.M.); (J.J.R.); (S.H.O.)
| | - Sushil Satish Chhapekar
- Department of Horticulture, College of Agriculture and Life Science, Chungnam National University, Daejeon 34134, Korea; (S.S.); (S.S.C.); (Y.M.); (J.J.R.); (S.H.O.)
| | - Yinbo Ma
- Department of Horticulture, College of Agriculture and Life Science, Chungnam National University, Daejeon 34134, Korea; (S.S.); (S.S.C.); (Y.M.); (J.J.R.); (S.H.O.)
| | - Jana Jeevan Rameneni
- Department of Horticulture, College of Agriculture and Life Science, Chungnam National University, Daejeon 34134, Korea; (S.S.); (S.S.C.); (Y.M.); (J.J.R.); (S.H.O.)
| | - Sang Heon Oh
- Department of Horticulture, College of Agriculture and Life Science, Chungnam National University, Daejeon 34134, Korea; (S.S.); (S.S.C.); (Y.M.); (J.J.R.); (S.H.O.)
| | - Jusang Kim
- Breeding Research Institute, Dayi International Seed Co., Ltd., 16-35 Ssiat-gil, Baeksan-myeon, Gimje 54324, Jeollabuk-do, Korea;
| | - Yong Pyo Lim
- Department of Horticulture, College of Agriculture and Life Science, Chungnam National University, Daejeon 34134, Korea; (S.S.); (S.S.C.); (Y.M.); (J.J.R.); (S.H.O.)
- Correspondence: (Y.P.L.); (S.R.C.); Tel.: +82-42-821-8846 (Y.P.L. & S.R.C.); Fax: +82-42-821-8847 (Y.P.L. & S.R.C.)
| | - Su Ryun Choi
- Department of Horticulture, College of Agriculture and Life Science, Chungnam National University, Daejeon 34134, Korea; (S.S.); (S.S.C.); (Y.M.); (J.J.R.); (S.H.O.)
- Correspondence: (Y.P.L.); (S.R.C.); Tel.: +82-42-821-8846 (Y.P.L. & S.R.C.); Fax: +82-42-821-8847 (Y.P.L. & S.R.C.)
| |
Collapse
|
37
|
Xu Y, Zhu Z. PIF4 and PIF4-Interacting Proteins: At the Nexus of Plant Light, Temperature and Hormone Signal Integrations. Int J Mol Sci 2021; 22:10304. [PMID: 34638641 PMCID: PMC8509071 DOI: 10.3390/ijms221910304] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Revised: 09/19/2021] [Accepted: 09/21/2021] [Indexed: 11/16/2022] Open
Abstract
Basic helix-loop-helix (bHLH) family transcription factor PHYTOCHROME INTERACTING FACTOR 4 (PIF4) is necessary for plant adaption to light or high ambient temperature. PIF4 directly associates with plenty of its target genes and modulates the global transcriptome to induce or reduce gene expression levels. However, PIF4 activity is tightly controlled by its interacting proteins. Until now, twenty-five individual proteins have been reported to physically interact with PIF4. These PIF4-interacting proteins act together with PIF4 and form a unique nexus for plant adaption to light or temperature change. In this review, we will discuss the different categories of PIF4-interacting proteins, including photoreceptors, circadian clock regulators, hormone signaling components, and transcription factors. These distinct PIF4-interacting proteins either integrate light and/or temperature cues with endogenous hormone signaling, or control PIF4 abundances and transcriptional activities. Taken together, PIF4 and PIF4-interacting proteins play major roles for exogenous and endogenous signal integrations, and therefore establish a robust network for plants to cope with their surrounding environmental alterations.
Collapse
Affiliation(s)
- Yang Xu
- Jiangsu Key Laboratory for Biodiversity and Biotechnology, College of Life Sciences, Nanjing Normal University, Nanjing 210023, China;
| | - Ziqiang Zhu
- Jiangsu Key Laboratory for Biodiversity and Biotechnology, College of Life Sciences, Nanjing Normal University, Nanjing 210023, China;
- Key Laboratory of Molecular Design for Plant Cell Factory of Guangdong Higher Education Institutes, Department of Biology, Institute of Plant and Food Science, Southern University of Science and Technology, Shenzhen 518055, China
| |
Collapse
|
38
|
Ravindran N, Ramachandran H, Job N, Yadav A, Vaishak K, Datta S. B-box protein BBX32 integrates light and brassinosteroid signals to inhibit cotyledon opening. PLANT PHYSIOLOGY 2021; 187:446-461. [PMID: 34618149 PMCID: PMC8418414 DOI: 10.1093/plphys/kiab304] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/10/2021] [Accepted: 05/31/2021] [Indexed: 05/20/2023]
Abstract
Cotyledon opening is a key morphological change that occurs in seedlings during de-etiolation. Brassinosteroids (BRs) inhibit the opening of cotyledons in darkness while light promotes cotyledon opening. The molecular regulation of the interplay between light and BR to regulate cotyledon opening is not well understood. Here, we show the B-box protein BBX32 negatively regulates light signaling and promotes BR signaling to inhibit cotyledon opening in Arabidopsis (Arabidopsis thaliana). BBX32 is highly expressed in the cotyledons of seedlings during de-etiolation. bbx32 and 35S:BBX32 seedlings exhibit enhanced and reduced cotyledon opening, respectively, in response to both light and brassinazole treatment in dark, suggesting that BBX32 mediates cotyledon opening through both light and BR signaling pathways. BBX32 expression is induced by exogenous BR and is upregulated in bzr1-1D (BRASSINAZOLE RESISTANT1-1D). Our in vitro and in vivo interaction studies suggest that BBX32 physically interacts with BZR1. Further, we found that PHYTOCHROME-INTERACTING FACTOR 3 (PIF3) interacts with BBX32 and promotes BR-mediated cotyledon closure. BBX32, BZR1, and PIF3 regulate the expression of common target genes that modulate the opening and closing of cotyledons. Our work suggests BBX32 integrates light and BR signals to regulate cotyledon opening during de-etiolation.
Collapse
Affiliation(s)
- Nevedha Ravindran
- Department of Biological Sciences, Indian Institute of Science Education and Research (IISER) Bhopal, Bhopal Bypass Road, Bhauri, Bhopal 462066, Madhya Pradesh, India
| | - Harshil Ramachandran
- Department of Biological Sciences, Indian Institute of Science Education and Research (IISER) Bhopal, Bhopal Bypass Road, Bhauri, Bhopal 462066, Madhya Pradesh, India
| | - Nikhil Job
- Department of Biological Sciences, Indian Institute of Science Education and Research (IISER) Bhopal, Bhopal Bypass Road, Bhauri, Bhopal 462066, Madhya Pradesh, India
| | - Arpita Yadav
- Department of Biological Sciences, Indian Institute of Science Education and Research (IISER) Bhopal, Bhopal Bypass Road, Bhauri, Bhopal 462066, Madhya Pradesh, India
| | - K.P. Vaishak
- Department of Biological Sciences, Indian Institute of Science Education and Research (IISER) Bhopal, Bhopal Bypass Road, Bhauri, Bhopal 462066, Madhya Pradesh, India
| | - Sourav Datta
- Department of Biological Sciences, Indian Institute of Science Education and Research (IISER) Bhopal, Bhopal Bypass Road, Bhauri, Bhopal 462066, Madhya Pradesh, India
- Author for communication:
| |
Collapse
|
39
|
Zhao J, Li H, Huang J, Shi T, Meng Z, Chen Q, Deng J. Genome-wide analysis of BBX gene family in Tartary buckwheat ( Fagopyrum tataricum). PeerJ 2021; 9:e11939. [PMID: 34447629 PMCID: PMC8364324 DOI: 10.7717/peerj.11939] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2021] [Accepted: 07/19/2021] [Indexed: 11/20/2022] Open
Abstract
BBX (B-box), a zinc finger transcription factor with one or two B-box domains, plays an important role in plant photomorphogenesis, growth, and development as well as response to environmental changes. In this study, 28 Tartary buckwheat BBX (FtBBX) genes were identified and screened using a comparison program. Their physicochemical properties, gene structures, conserved motifs, distribution in chromosomal, and phylogeny of the coding proteins, as well as their expression patterns, were analyzed. In addition, multiple collinearity analysis in three monocots and three dicot species illustrated that the BBX proteins identified from monocots clustered separately from those of dicots. Moreover, the expression of 11 candidate BBX genes with probable involvement in the regulation of anthocyanin biosynthesis was analyzed in the sprouts of Tartary buckwheat during light treatment. The results of gene structure analysis showed that all the 28 BBX genes contained B-box domain, three genes lacked introns, and these genes were unevenly distributed on the other seven chromosomes except for chromosome 6. The 28 proteins contained 10 conserved motifs and could be divided into five subfamilies. BBX genes of Tartary buckwheat showed varying expression under different conditions demonstrating that FtBBXs might play important roles in Tartary buckwheat growth and development. This study lays a foundation for further understanding of Tartary buckwheat BBX genes and their functions in growth and development as well as regulation of pigmentation in Tartary buckwheat.
Collapse
Affiliation(s)
- Jiali Zhao
- School of Life Sciences, Research Center of Buckwheat Industry Technology, Guizhou Normal University, Guiyang, China
| | - Hongyou Li
- School of Life Sciences, Research Center of Buckwheat Industry Technology, Guizhou Normal University, Guiyang, China
| | - Juan Huang
- School of Life Sciences, Research Center of Buckwheat Industry Technology, Guizhou Normal University, Guiyang, China
| | - Taoxiong Shi
- School of Life Sciences, Research Center of Buckwheat Industry Technology, Guizhou Normal University, Guiyang, China
| | - Ziye Meng
- School of Life Sciences, Research Center of Buckwheat Industry Technology, Guizhou Normal University, Guiyang, China
| | - Qingfu Chen
- School of Life Sciences, Research Center of Buckwheat Industry Technology, Guizhou Normal University, Guiyang, China
| | - Jiao Deng
- School of Life Sciences, Research Center of Buckwheat Industry Technology, Guizhou Normal University, Guiyang, China
| |
Collapse
|
40
|
Ma R, Chen J, Huang B, Huang Z, Zhang Z. The BBX gene family in Moso bamboo (Phyllostachys edulis): identification, characterization and expression profiles. BMC Genomics 2021; 22:533. [PMID: 34256690 PMCID: PMC8276415 DOI: 10.1186/s12864-021-07821-w] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2021] [Accepted: 06/17/2021] [Indexed: 11/22/2022] Open
Abstract
BACKGROUND The BBX (B-box) family are zinc finger protein (ZFP) transcription factors that play an essential role in plant growth, development and response to abiotic stresses. Although BBX genes have been characterized in many model organisms, genome-wide identification of the BBX family genes have not yet been reported in Moso bamboo (Phyllostachys edulis), and the biological functions of this family remain unknown. RESULT In the present study, we identified 27 BBX genes in the genome of Moso bamboo, and analysis of their conserved motifs and multiple sequence alignments revealed that they all shared highly similar structures. Additionally, phylogenetic and homology analyses indicated that PeBBX genes were divided into three clusters, with whole-genome duplication (WGD) events having facilitated the expansion of this gene family. Light-responsive and stress-related cis-elements were identified by analyzing cis-elements in the promoters of all PeBBX genes. Short time-series expression miner (STEM) analysis revealed that the PeBBX genes had spatiotemporal-specific expression patterns and were likely involved in the growth and development of bamboo shoots. We further explored the downstream target genes of PeBBXs, and GO/KEGG enrichment analysis predicted multiple functions of BBX target genes, including those encoding enzymes involved in plant photosynthesis, pyruvate metabolism and glycolysis/gluconeogenesis. CONCLUSIONS In conclusion, we analyzed the PeBBX genes at multiple different levels, which will contribute to further studies of the BBX family and provide valuable information for the functional validation of this family.
Collapse
Affiliation(s)
- Ruifang Ma
- State Key Laboratory of Subtropical Forest Cultivation, Zhejiang A&F University, Lin'an, Zhejiang, 311300, Hangzhou, China
- School of Forestry and Biotechnology, Zhejiang A&F University, Lin'an, Zhejiang, 311300, Hangzhou, China
| | - Jialu Chen
- State Key Laboratory of Subtropical Forest Cultivation, Zhejiang A&F University, Lin'an, Zhejiang, 311300, Hangzhou, China
- School of Forestry and Biotechnology, Zhejiang A&F University, Lin'an, Zhejiang, 311300, Hangzhou, China
| | - Bin Huang
- State Key Laboratory of Subtropical Forest Cultivation, Zhejiang A&F University, Lin'an, Zhejiang, 311300, Hangzhou, China
- School of Forestry and Biotechnology, Zhejiang A&F University, Lin'an, Zhejiang, 311300, Hangzhou, China
| | - Zhinuo Huang
- State Key Laboratory of Subtropical Forest Cultivation, Zhejiang A&F University, Lin'an, Zhejiang, 311300, Hangzhou, China
- School of Forestry and Biotechnology, Zhejiang A&F University, Lin'an, Zhejiang, 311300, Hangzhou, China
| | - Zhijun Zhang
- State Key Laboratory of Subtropical Forest Cultivation, Zhejiang A&F University, Lin'an, Zhejiang, 311300, Hangzhou, China.
- School of Forestry and Biotechnology, Zhejiang A&F University, Lin'an, Zhejiang, 311300, Hangzhou, China.
| |
Collapse
|
41
|
Zheng LW, Ma SJ, Zhou T, Yue CP, Hua YP, Huang JY. Genome-wide identification of Brassicaceae B-BOX genes and molecular characterization of their transcriptional responses to various nutrient stresses in allotetraploid rapeseed. BMC PLANT BIOLOGY 2021; 21:288. [PMID: 34167468 PMCID: PMC8223294 DOI: 10.1186/s12870-021-03043-0] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/11/2021] [Accepted: 05/13/2021] [Indexed: 05/02/2023]
Abstract
BACKGROUND B-box (BBX) genes play important roles in plant growth regulation and responses to abiotic stresses. The plant growth and yield production of allotetraploid rapeseed is usually hindered by diverse nutrient stresses. However, no systematic analysis of Brassicaceae BBXs and the roles of BBXs in the regulation of nutrient stress responses have not been identified and characterized previously. RESULTS In this study, a total of 536 BBXs were identified from nine brassicaceae species, including 32 AtBBXs, 66 BnaBBXs, 41 BoBBXs, 43 BrBBXs, 26 CrBBXs, 81 CsBBXs, 52 BnBBXs, 93 BjBBXs, and 102 BcBBXs. Syntenic analysis showed that great differences in the gene number of Brassicaceae BBXs might be caused by genome duplication. The BBXs were respectively divided into five subclasses according to their phylogenetic relationships and conserved domains, indicating their diversified functions. Promoter cis-element analysis showed that BBXs probably participated in diverse stress responses. Protein-protein interactions between BnaBBXs indicated their functions in flower induction. The expression profiles of BnaBBXs were investigated in rapeseed plants under boron deficiency, boron toxicity, nitrate limitation, phosphate shortage, potassium starvation, ammonium excess, cadmium toxicity, and salt stress conditions using RNA-seq data. The results showed that different BnaBBXs showed differential transcriptional responses to nutrient stresses, and some of them were simultaneously responsive to diverse nutrient stresses. CONCLUSIONS Taken together, the findings investigated in this study provided rich resources for studying Brassicaceae BBX gene family and enriched potential clues in the genetic improvement of crop stress resistance.
Collapse
Affiliation(s)
- Li-wei Zheng
- School of Agricultural Sciences, Zhengzhou University, Zhengzhou, 450001 China
| | - Sheng-jie Ma
- School of Agricultural Sciences, Zhengzhou University, Zhengzhou, 450001 China
| | - Ting Zhou
- School of Agricultural Sciences, Zhengzhou University, Zhengzhou, 450001 China
| | - Cai-peng Yue
- School of Agricultural Sciences, Zhengzhou University, Zhengzhou, 450001 China
| | - Ying-peng Hua
- School of Agricultural Sciences, Zhengzhou University, Zhengzhou, 450001 China
| | - Jin-yong Huang
- School of Agricultural Sciences, Zhengzhou University, Zhengzhou, 450001 China
| |
Collapse
|
42
|
Podolec R, Demarsy E, Ulm R. Perception and Signaling of Ultraviolet-B Radiation in Plants. ANNUAL REVIEW OF PLANT BIOLOGY 2021; 72:793-822. [PMID: 33636992 DOI: 10.1146/annurev-arplant-050718-095946] [Citation(s) in RCA: 61] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
Ultraviolet-B (UV-B) radiation is an intrinsic fraction of sunlight that plants perceive through the UVR8 photoreceptor. UVR8 is a homodimer in its ground state that monomerizes upon UV-B photon absorption via distinct tryptophan residues. Monomeric UVR8 competitively binds to the substrate binding site of COP1, thus inhibiting its E3 ubiquitin ligase activity against target proteins, which include transcriptional regulators such as HY5. The UVR8-COP1 interaction also leads to the destabilization of PIF bHLH factor family members. Additionally, UVR8 directly interacts with and inhibits the DNA binding of a different set of transcription factors. Each of these UVR8 signaling mechanisms initiates nuclear gene expression changes leading to UV-B-induced photomorphogenesis and acclimation. The two WD40-repeat proteins RUP1 and RUP2 provide negative feedback regulation and inactivate UVR8 by facilitating redimerization. Here, we review the molecular mechanisms of the UVR8 pathway from UV-B perception and signal transduction to gene expression changes and physiological UV-B responses.
Collapse
Affiliation(s)
- Roman Podolec
- Department of Botany and Plant Biology, Section of Biology, Faculty of Sciences, University of Geneva, 1211 Geneva, Switzerland; , ,
- Institute of Genetics and Genomics of Geneva (iGE3), University of Geneva, 1211 Geneva, Switzerland
| | - Emilie Demarsy
- Department of Botany and Plant Biology, Section of Biology, Faculty of Sciences, University of Geneva, 1211 Geneva, Switzerland; , ,
| | - Roman Ulm
- Department of Botany and Plant Biology, Section of Biology, Faculty of Sciences, University of Geneva, 1211 Geneva, Switzerland; , ,
- Institute of Genetics and Genomics of Geneva (iGE3), University of Geneva, 1211 Geneva, Switzerland
| |
Collapse
|
43
|
BBX11 promotes red light-mediated photomorphogenic development by modulating phyB-PIF4 signaling. ABIOTECH 2021; 2:117-130. [PMID: 36304757 PMCID: PMC9590482 DOI: 10.1007/s42994-021-00037-2] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Accepted: 02/24/2021] [Indexed: 12/03/2022]
Abstract
phytochrome B (phyB) acts as the red light photoreceptor and negatively regulates the growth-promoting factor PHYTOCHROME INTERACTING 4 (PIF4) through a direct physical interaction, which in turn changes the expression of a large number of genes. phyB-PIF4 module regulates a variety of biological and developmental processes in plants. In this study, we demonstrate that B-BOX PROTEIN 11 (BBX11) physically interacts with both phyB and PIF4. BBX11 negatively regulates PIF4 accumulation as well as its biochemical activity, consequently leading to the repression of PIF4-controlled genes' expression and promotion of photomorphogenesis in the prolonged red light. This study reveals a regulatory mechanism that mediates red light signal transduction and sheds a light on phyB-PIF4 module in promoting red light-dependent photomorphognenesis. Supplementary Information The online version contains supplementary material available at 10.1007/s42994-021-00037-2.
Collapse
|
44
|
Wang MJ, Ding L, Liu XH, Liu JX. Two B-box domain proteins, BBX28 and BBX29, regulate flowering time at low ambient temperature in Arabidopsis. PLANT MOLECULAR BIOLOGY 2021; 106:21-32. [PMID: 33554307 DOI: 10.1007/s11103-021-01123-1] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/17/2020] [Accepted: 01/17/2021] [Indexed: 06/12/2023]
Abstract
This paper demonstrates that BBX28 and BBX29 proteins in Arabidopsis promote flowering in association with the CO-FT regulatory module at low ambient temperature under LD conditions. Flowering plants integrate internal developmental signals with external environmental stimuli for precise flowering time control. The expression of BBX29 is up-regulated by low temperature treatment, but the biological function of BBX29 in low temperature response is unknown. In the current study, we examined the biological role of BBX29 and its close-related protein BBX28 in flowering time control under long-day conditions. Although neither BBX28 single mutant nor BBX29 single mutant has a flowering-associated phenotype, the bbx28 bbx29 double mutant plants have an obvious delayed flowering phenotype grown at low ambient temperature (16°C) compared to the wild-type (WT) plants. The expression of FT and TSF was lower in bbx28 bbx29 double mutant plants than in wild-type plants at 16°C. Both BBX28 and BBX29 interact with CONSTANS (CO), an important flowering integrator that directly binds to the FLOWERING LOCUS T (FT) promoter. In the effector-reporter assays, transcriptional activation activity of CO on the FT promoter was reduced in bbx28 bbx29 double mutant plants compared to that in WT plants. Taken together, our results reveal that BBX28 and BBX29 are promoters of flowering in Arabidopsis, especially at low ambient temperature.
Collapse
Affiliation(s)
- Mei-Jing Wang
- State Key Laboratory of Plant Physiology and Biochemistry, College of Life Sciences, Zhejiang University, 310027, Hangzhou, China
- State Key Laboratory of Genetic Engineering, School of Life Sciences, Fudan University, 200433, Shanghai, China
| | - Lan Ding
- State Key Laboratory of Genetic Engineering, School of Life Sciences, Fudan University, 200433, Shanghai, China
| | - Xue-Huan Liu
- State Key Laboratory of Genetic Engineering, School of Life Sciences, Fudan University, 200433, Shanghai, China
| | - Jian-Xiang Liu
- State Key Laboratory of Plant Physiology and Biochemistry, College of Life Sciences, Zhejiang University, 310027, Hangzhou, China.
- State Key Laboratory of Genetic Engineering, School of Life Sciences, Fudan University, 200433, Shanghai, China.
| |
Collapse
|
45
|
Job N, Datta S. PIF3/HY5 module regulates BBX11 to suppress protochlorophyllide levels in dark and promote photomorphogenesis in light. THE NEW PHYTOLOGIST 2021; 230:190-204. [PMID: 33330975 DOI: 10.1111/nph.17149] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/30/2020] [Accepted: 12/09/2020] [Indexed: 05/04/2023]
Abstract
Greening of cotyledons during de-etiolation is critical for harvesting light energy and sustaining plant growth. PIF3 and HY5 antagonistically regulate protochlorophyllide synthesis in the dark. However, the mechanism by which the PIF3/HY5 module regulates genes involved in protochlorophyllide synthesis is not clear. Using genetic, molecular and biochemical techniques we identified that the B-BOX protein BBX11 acts directly downstream of PIF3 and HY5 to transcriptionally modulate genes involved in protochlorophyllide synthesis. Dark-grown bbx11 and 35S:BBX11 seedlings exhibit an enhanced and reduced ability to green, respectively, when exposed to light. Transcript levels of HEMA1 and CHLH are upregulated in 35S:BBX11 seedlings that accumulate high levels of protochlorophyllide in the dark and undergo photobleaching upon illumination. PIF3 inhibits BBX11 in the dark by directly binding to its promoter. bbx11 suppresses the cotyledon greening defect of pif3 after prolonged dark, indicating that the PIF3-mediated regulation of greening is dependent on BBX11. The enhanced greening of hy5 is also suppressed in hy5 lines overexpressing BBX11. In light, HY5 directly binds to the promoter of BBX11 and activates its expression to regulate BBX11-mediated hypocotyl inhibition. We show that a PIF3/HY5 module regulates BBX11 expression in opposite ways to optimise protochlorophyllide accumulation in the dark and promote photomorphogenesis in light.
Collapse
Affiliation(s)
- Nikhil Job
- Department of Biological Sciences, Indian Institute of Science Education and Research (IISER) Bhopal, Bhopal Bypass Road, Bhauri, Bhopal, Madhya Pradesh, 462066, India
| | - Sourav Datta
- Department of Biological Sciences, Indian Institute of Science Education and Research (IISER) Bhopal, Bhopal Bypass Road, Bhauri, Bhopal, Madhya Pradesh, 462066, India
| |
Collapse
|
46
|
Genome-wide identification and expression analysis of the B-box transcription factor gene family in grapevine (Vitis vinifera L.). BMC Genomics 2021; 22:221. [PMID: 33781207 PMCID: PMC8008696 DOI: 10.1186/s12864-021-07479-4] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2019] [Accepted: 02/25/2021] [Indexed: 11/29/2022] Open
Abstract
Background B-box (BBX) zinc-finger transcription factors play important roles in plant growth, development, and stress response. Although these proteins have been studied in model plants such as Arabidopsis thaliana or Oryza sativa, little is known about the evolutionary history or expression patterns of BBX proteins in grapevine (Vitis vinifera L.). Results We identified a total of 25 VviBBX genes in the grapevine genome and named them according to the homology with Arabidopsis. These proteins were classified into five groups on the basis of their phylogenetic relationships, number of B-box domains, and presence or absence of a CCT domain or VP motif. BBX proteins within the same group showed similar exon-intron structures and were unevenly distributed in grapevine chromosomes. Synteny analyses suggested that only segmental duplication events contributed to the expansion of the VviBBX gene family in grapevine. The observed syntenic relationships between some BBX genes from grapevine and Arabidopsis suggest that they evolved from a common ancestor. Transcriptional analyses showed that the grapevine BBX genes were regulated distinctly in response to powdery mildew infection and various phytohormones. Moreover, the expression levels of a subset of BBX genes in ovules were much higher in seedless grapevine cultivars compared with seeded cultivars during ovule development, implying a potential role in seed abortion. Additionally, VviBBX8, VquBBX15a and VquBBX29b were all located in the nucleus and had transcriptional activity except for VquBBX29b. Conclusions The results of this study establish the genome-wide analysis of the grapevine BBX family and provide a framework for understanding the biological roles of BBX genes in grapevine. Supplementary Information The online version contains supplementary material available at 10.1186/s12864-021-07479-4.
Collapse
|
47
|
Talar U, Kiełbowicz-Matuk A. Beyond Arabidopsis: BBX Regulators in Crop Plants. Int J Mol Sci 2021; 22:ijms22062906. [PMID: 33809370 PMCID: PMC7999331 DOI: 10.3390/ijms22062906] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2021] [Revised: 03/08/2021] [Accepted: 03/09/2021] [Indexed: 01/16/2023] Open
Abstract
B-box proteins represent diverse zinc finger transcription factors and regulators forming large families in various plants. A unique domain structure defines them—besides the highly conserved B-box domains, some B-box (BBX) proteins also possess CCT domain and VP motif. Based on the presence of these specific domains, they are mostly classified into five structural groups. The particular members widely differ in structure and fulfill distinct functions in regulating plant growth and development, including seedling photomorphogenesis, the anthocyanins biosynthesis, photoperiodic regulation of flowering, and hormonal pathways. Several BBX proteins are additionally involved in biotic and abiotic stress response. Overexpression of some BBX genes stimulates various stress-related genes and enhanced tolerance to different stresses. Moreover, there is evidence of interplay between B-box and the circadian clock mechanism. This review highlights the role of BBX proteins as a part of a broad regulatory network in crop plants, considering their participation in development, physiology, defense, and environmental constraints. A description is also provided of how various BBX regulators involved in stress tolerance were applied in genetic engineering to obtain stress tolerance in transgenic crops.
Collapse
|
48
|
Wang Y, Zhai Z, Sun Y, Feng C, Peng X, Zhang X, Xiao Y, Zhou X, Wang W, Jiao J, Li T. Genome-Wide Identification of the B- BOX Genes that Respond to Multiple Ripening Related Signals in Sweet Cherry Fruit. Int J Mol Sci 2021; 22:ijms22041622. [PMID: 33562756 PMCID: PMC7914455 DOI: 10.3390/ijms22041622] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2021] [Revised: 01/24/2021] [Accepted: 02/03/2021] [Indexed: 11/16/2022] Open
Abstract
B-BOX proteins are zinc finger transcription factors that play important roles in plant growth, development, and abiotic stress responses. In this study, we identified 15 PavBBX genes in the genome database of sweet cherry. We systematically analyzed the gene structures, clustering characteristics, and expression patterns of these genes during fruit development and in response to light and various hormones. The PavBBX genes were divided into five subgroups. The promoter regions of the PavBBX genes contain cis-acting elements related to plant development, hormones, and stress. qRT-PCR revealed five upregulated and eight downregulated PavBBX genes during fruit development. In addition, PavBBX6, PavBBX9, and PavBBX11 were upregulated in response to light induction. We also found that ABA, BR, and GA3 contents significantly increased in response to light induction. Furthermore, the expression of several PavBBX genes was highly correlated with the expression of anthocyanin biosynthesis genes, light-responsive genes, and genes that function in multiple hormone signaling pathways. Some PavBBX genes were strongly induced by ABA, GA, and BR treatment. Notably, PavBBX6 and PavBBX9 responded to all three hormones. Taken together, BBX proteins likely play major roles in regulating anthocyanin biosynthesis in sweet cherry fruit by integrating light, ABA, GA, and BR signaling pathways.
Collapse
|
49
|
Yadukrishnan P, Datta S. Light and abscisic acid interplay in early seedling development. THE NEW PHYTOLOGIST 2021; 229:763-769. [PMID: 32984965 DOI: 10.1111/nph.16963] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/22/2020] [Accepted: 09/05/2020] [Indexed: 05/18/2023]
Abstract
Abscisic acid (ABA) plays a crucial role in plant development, regulating germination, seedling development and stomatal movements, especially under adverse conditions. Light interacts with the ABA signalling pathway to fine tune these processes. Here, we provide an overview of the recent investigations on ABA-light interplay during early plant development after germination. We discuss the multilayered and reciprocal interactions between ABA signalling components and several light signalling modulators, including photoreceptors, transcription factors and posttranslational modifiers. ABSCISIC ACID INSENSITIVE5 acts as a central convergence point for these interactions during postgermination seedling development. ABA also regulates the adaptation of seedlings to challenging light environments. Furthermore, we enlist the role of ABA-light cross-talk in regulating seedling establishment in crops and highlight open questions for future investigations.
Collapse
Affiliation(s)
- Premachandran Yadukrishnan
- Department of Biological Sciences, Indian Institute of Science Education and Research (IISER), Bhopal, Madhya Pradesh, India
| | - Sourav Datta
- Department of Biological Sciences, Indian Institute of Science Education and Research (IISER), Bhopal, Madhya Pradesh, India
| |
Collapse
|
50
|
Ponnu J, Hoecker U. Illuminating the COP1/SPA Ubiquitin Ligase: Fresh Insights Into Its Structure and Functions During Plant Photomorphogenesis. FRONTIERS IN PLANT SCIENCE 2021; 12:662793. [PMID: 33841486 PMCID: PMC8024647 DOI: 10.3389/fpls.2021.662793] [Citation(s) in RCA: 53] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/01/2021] [Accepted: 03/04/2021] [Indexed: 05/07/2023]
Abstract
CONSTITUTIVE PHOTOMORPHOGENIC 1 functions as an E3 ubiquitin ligase in plants and animals. Discovered originally in Arabidopsis thaliana, COP1 acts in a complex with SPA proteins as a central repressor of light-mediated responses in plants. By ubiquitinating and promoting the degradation of several substrates, COP1/SPA regulates many aspects of plant growth, development and metabolism. In contrast to plants, human COP1 acts as a crucial regulator of tumorigenesis. In this review, we discuss the recent important findings in COP1/SPA research including a brief comparison between COP1 activity in plants and humans.
Collapse
|