1
|
Khaled RM, Hegazy YS, Arafa MM, Sadek MS, Radacki K, A E Mostafa G, Ali EA, Shehab OR, Mansour AM. Insights into the photoactivatable CO releasing properties of dicarbonyl Ru(II) complex with 8-amino quinoline ligand: Experimental and theoretical studies. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2024; 320:124644. [PMID: 38901235 DOI: 10.1016/j.saa.2024.124644] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Revised: 05/19/2024] [Accepted: 06/10/2024] [Indexed: 06/22/2024]
Abstract
Reaction between the polymeric [RuCl2(CO)2]n and the N,N-bidentate ligand, 8-amino-quinoline (Quin), in methanol, afforded the photoactivated CO releasing molecule with the formula of trans-(Cl,Cl)-[RuCl2(CO)2Quin]. In the presence of biomolecules or in solvents with varying polarity and coordinating abilities, the solvatochromic characteristics and dark stability were investigated. A new board band emerged in the visible spectrum during the illumination, and its position varies according to the type of solvent used, indicating the role of the solvent in controlling the nature of the CO-depleted species. Spectral methods were used in combination with density functional theory simulations to get insight into the local minimum structure and the electronic properties of the Ru(II) complex. The results of the myoglobin assay showed that within the first two hours of illumination, one of the two CO molecules was released. The cytotoxic properties of the Ru(II)-based complex were investigated against normal mice bone marrow stromal cells and malignant human acute monocytic leukaemia cells.
Collapse
Affiliation(s)
- Rabaa M Khaled
- Department of Chemistry, Faculty of Science, Cairo University, Gamma Street, Giza, Cairo 12613, Egypt
| | - Yara S Hegazy
- Department of Chemistry, Faculty of Science, Cairo University, Gamma Street, Giza, Cairo 12613, Egypt
| | - Mohamed M Arafa
- Department of Chemistry, Faculty of Science, Cairo University, Gamma Street, Giza, Cairo 12613, Egypt
| | - Muhammed S Sadek
- Department of Chemistry, Faculty of Science, Cairo University, Gamma Street, Giza, Cairo 12613, Egypt
| | - Krzysztof Radacki
- institut für Anorganische Chemie, Julius-Maximilians-Universität Würzburg, Am Hubland, D-97074 Würzburg, Germany
| | - Gamal A E Mostafa
- Department of Pharmaceutical Chemistry, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia
| | - Essam A Ali
- Department of Pharmaceutical Chemistry, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia
| | - Ola R Shehab
- Department of Chemistry, Faculty of Science, Cairo University, Gamma Street, Giza, Cairo 12613, Egypt
| | - Ahmed M Mansour
- Department of Chemistry, United Arab Emirates University, Al-Ain, United Arab Emirates.
| |
Collapse
|
2
|
Mansour AM, Radacki K, Mostafa GAE, Ali EA, Shehab OR. Antimicrobial properties of triazolato terpyridine Pd(II) and Pt(II) complexes formed by [3+2] cycloaddition coupling reaction. Bioorg Chem 2024; 146:107262. [PMID: 38467092 DOI: 10.1016/j.bioorg.2024.107262] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Revised: 02/18/2024] [Accepted: 03/05/2024] [Indexed: 03/13/2024]
Abstract
Modern classes of antimicrobials are crucial because most drugs in development today are basically antibiotic derivatives. Even though a large number of metal-based compounds have been studied as antimicrobial agents, relatively few studies have examined the antimicrobial properties of Pd(II) and Pt(II) compounds. The [3+2] cycloaddition reactions of [M(N3)L]PF6 (M = Pd(II) and Pt(II); L = 4'-(2-pyridyl)-2,2':6',2″-terpyridine) with 4,4,4-trifluoro-2-butynoic acid ethyl ester gave the corresponding triazolate complexes. The reaction products were fully characterized with a variety of analytical and spectroscopic tools including X-ray crystallographic analysis. The crystal structure of [Pd(triazolatoCF3,COOCH2CH3)L]PF6 provided cut-off evidence that the kinetically formed N1-triazolato isomer favoured the isomerization to the thermodynamically stable N2-analogue. The experimental work was complemented with computational work to get an insight into the nature of the predominant triazolate isomer. The lysozyme binding affinity of the triazolate complexes was examined by mass spectrometry. An analysis of the lysozyme Pd(II) adducts suggests a coordinative covalent mode of binding via the loss of the triazolato ligand. The free ligand and its triazolate complexes displayed selective toxicity against Candida albicans and Cryptococcus neoformans, while no cytotoxicity was observed against the normal human embryonic kidney cell line.
Collapse
Affiliation(s)
- Ahmed M Mansour
- Department of Chemistry, United Arab Emirates University, Al-Ain, United Arab Emirates; Department of Chemistry, Cairo University, Faculty of Science, Gamma Street, Giza, Cairo 12613, Egypt.
| | - Krzysztof Radacki
- Institut für Anorganische Chemie, Julius-Maximilians-Universität Würzburg, Am Hubland, D-97074 Würzburg, Germany
| | - Gamal A E Mostafa
- Department of Pharmaceutical Chemistry, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia
| | - Essam A Ali
- Department of Pharmaceutical Chemistry, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia
| | - Ola R Shehab
- Department of Chemistry, Cairo University, Faculty of Science, Gamma Street, Giza, Cairo 12613, Egypt
| |
Collapse
|
3
|
Mansour AM, Khaled RM, Radacki K, Younes Z, Gamal M, Guirguis B, Mostafa GAE, Ali EA, Shehab OR. In vitro cytotoxicity of Mn(I) and Ru(II) carbonyls with a diphenyl pyridyl phosphine coligand towards leukaemia. Dalton Trans 2023. [PMID: 37466155 DOI: 10.1039/d3dt01798b] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/20/2023]
Abstract
Human acute monocytic leukaemia cells were tested under both dark and light conditions for their susceptibility to Mn(I) and Ru(II) carbonyl complexes with a diphenyl pyridyl phosphine coligand. The Ru(II) complex (IC50 = 7.13 ± 0.8 μM) displayed higher outstanding potency against leukaemia than the Mn(I) analogue (54.58 ± 4.1 μM) in the dark and both complexes were completely harmless to healthy mouse bone marrow cells.
Collapse
Affiliation(s)
- Ahmed M Mansour
- Department of Chemistry, Faculty of Science, Cairo University, Gamma Street, Giza, Cairo 12613, Egypt.
| | - Rabaa M Khaled
- Department of Chemistry, Faculty of Science, Cairo University, Gamma Street, Giza, Cairo 12613, Egypt.
| | - Krzysztof Radacki
- Institut für Anorganische Chemie, Julius-Maximilians-Universität Würzburg, Am Hubland, D-97074 Würzburg, Germany
| | - Zeina Younes
- Department of Biotechnology, Faculty of Science, Cairo University, Gamma Street, Giza, Cairo 12613, Egypt
| | - Mariam Gamal
- Department of Biotechnology, Faculty of Science, Cairo University, Gamma Street, Giza, Cairo 12613, Egypt
| | - Beatrice Guirguis
- Department of Biotechnology, Faculty of Science, Cairo University, Gamma Street, Giza, Cairo 12613, Egypt
| | - Gamal A E Mostafa
- Department of Pharmaceutical Chemistry, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia
| | - Essam A Ali
- Department of Pharmaceutical Chemistry, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia
| | - Ola R Shehab
- Department of Chemistry, Faculty of Science, Cairo University, Gamma Street, Giza, Cairo 12613, Egypt.
| |
Collapse
|
4
|
Mansour AM, Radacki K, Shehab OR. Role of the ancillary ligand in determining the antimicrobial activity of Pd(II) complexes with N^N^N-tridentate Coligand. Polyhedron 2022. [DOI: 10.1016/j.poly.2022.115857] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
5
|
Mansour AM, Khaled RM, Khaled E, Ahmed SK, Ismael OS, Zeinhom A, Magdy H, Ibrahim SS, Abdelfatah M. Ruthenium(II) carbon monoxide releasing molecules: Structural perspective, antimicrobial and anti-inflammatory properties. Biochem Pharmacol 2022; 199:114991. [DOI: 10.1016/j.bcp.2022.114991] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Revised: 03/05/2022] [Accepted: 03/07/2022] [Indexed: 01/12/2023]
|
6
|
Mansour AM. Pd(ii) and Pt(ii) complexes of tridentate ligands with selective toxicity against Cryptococcus neoformans and Candida albicans. RSC Adv 2021; 11:39748-39757. [PMID: 35494132 PMCID: PMC9044551 DOI: 10.1039/d1ra06559a] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Accepted: 11/22/2021] [Indexed: 12/21/2022] Open
Abstract
Novel Pd(ii) and Pt(ii) complexes of the tridentate 2,6-bis(1-ethyl-benzimidazol-2'-yl)pyridine (LBZ), and 4'-(2-pyridyl)-2,2':6',2''-terpyridine (LPY) ligands were synthesized, characterized using a variety of analytical and spectroscopic tools, and screened for their potential antimicrobial properties against some bacterial and fungal strains as well as cytotoxicity against healthy human embryonic kidney (HEK293) cells. The electronic structures of the complexes were investigated by time-dependent density functional theory calculations. The free ligand LPY and benzimidazole complexes exhibited selective toxicity against Cryptococcus neoformans and Candida albicans, while displaying no cytotoxicity against HEK293. In the case of Cryptococcus neoformans, the antifungal activities of the benzimidazole-based complexes (MIC = 1.58-2.62 μM) are higher than those of the reference drug fluconazole (26.1 μM).
Collapse
Affiliation(s)
- Ahmed M Mansour
- Department of Chemistry, Faculty of Science, Cairo University Gamma Street Giza Cairo 12613 Egypt
| |
Collapse
|
7
|
Ibrahim NM, Khaled RM, Ragheb MA, Radacki K, Farag AM, Mansour AM. Light-activated cytotoxicity of dicarbonyl Ru(II) complexes with a benzimidazole coligand towards breast cancer. Dalton Trans 2021; 50:15389-15399. [PMID: 34647551 DOI: 10.1039/d1dt02296b] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Reaction between [RuCl2(CO)2]n and 1H-benzimidazol-2-ylmethyl-(N-phenyl)amine ligands (LR) functionalized with various electron-donating and electron-withdrawing substituents on the phenyl ring (R = H, 4-CH3, 4-Cl, 4-COOCH3, and 3-COOCH3) afforded the dark-stable photoactivatable carbon monoxide prodrugs of the general formula [RuCl2(CO)2LR]. Release of the CO molecules from the Ru(II) compounds was examined by monitoring the electronic and IR spectra upon illumination at 365 nm. A noticeable decrease in the intensities of the two characteristic ν(CO) modes for Ru(CO)II2 species, and the growth of two new bands for the mono-carbonyl species and free CO, were the main features of the photolysis profiles. The cytotoxicity of the complexes towards breast cancer (MCF-7) cells was assessed with and without illumination at 365 nm. All the complexes except that with a 4-COOCH3 group (IC50 = 45.08 ± 3.5 μM) are nontoxic under dark conditions. Upon illumination, all the compounds acquired cytotoxicity in the following order: H > 4-COOCH3 > 4-CH3 > 4-Cl > 3-COOCH3. Investigation of the cytotoxicity of the CO-depleted fragments showed that the light-induced cytotoxicity can be attributed to the liberated CO and CO-depleted metal fragments, including the liberated benzimidazole ligands.
Collapse
Affiliation(s)
- Nourhan M Ibrahim
- Department of Chemistry, Faculty of Science, Cairo University, Gamma Street, Giza, Cairo 12613, Egypt.
| | - Rabaa M Khaled
- Department of Chemistry, Faculty of Science, Cairo University, Gamma Street, Giza, Cairo 12613, Egypt.
| | - Mohamed A Ragheb
- Department of Chemistry, Faculty of Science, Cairo University, Gamma Street, Giza, Cairo 12613, Egypt.
| | - Krzysztof Radacki
- Institut für Anorganische Chemie, Julius-Maximilians-Universität Würzburg, Am Hubland, D-97074 Würzburg, Germany
| | - Ahmad M Farag
- Department of Chemistry, Faculty of Science, Cairo University, Gamma Street, Giza, Cairo 12613, Egypt.
| | - Ahmed M Mansour
- Department of Chemistry, Faculty of Science, Cairo University, Gamma Street, Giza, Cairo 12613, Egypt.
| |
Collapse
|
8
|
|
9
|
|
10
|
Mansour AM, Radacki K, Shehab OR. Role of the ancillary ligand in controlling the lysozyme affinity and electronic properties of terpyridine fac-Re(CO) 3 complexes. Dalton Trans 2021; 50:1197-1201. [PMID: 33475110 DOI: 10.1039/d0dt04140h] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The lysozyme binding affinity and the electronic properties of [ReX(CO)3(terpy-κ2N1,N2)] (X = Br- and triazolateCOOCH2CH3,CF3) were reported. The triazolate complex was prepared in a [3 + 2] cycloaddition click reaction. The bromo compound reacted with lysozyme affording adducts with Re(CO)3+ fragments, while the triazolate compound persisted. A red shift of the MLCT band of the triazolate compound in progressively less polar solvents may be due to the negative solvatochromism.
Collapse
Affiliation(s)
- Ahmed M Mansour
- Department of Chemistry, Faculty of Science, Cairo University, Gamma Street, Giza, Cairo 12613, Egypt.
| | - Krzysztof Radacki
- Institut für Anorganische Chemie, Julius-Maximilians-Universität Würzburg, Am Hubland, D-97074 Würzburg, Germany
| | - Ola R Shehab
- Department of Chemistry, Faculty of Science, Cairo University, Gamma Street, Giza, Cairo 12613, Egypt.
| |
Collapse
|
11
|
Mansour AM, Radacki K. Terpyridine based ReX(CO)3 compounds (X = Br–, N3– and triazolate): Spectroscopic and DFT studies. Polyhedron 2021. [DOI: 10.1016/j.poly.2020.114954] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
12
|
Spectroscopic and antimicrobial activity of photoactivatable tricarbonyl Mn(I) terpyridine compounds. Inorganica Chim Acta 2020. [DOI: 10.1016/j.ica.2020.119806] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
|
13
|
Geri S, Krunclova T, Janouskova O, Panek J, Hruby M, Hernández‐Valdés D, Probst B, Alberto RA, Mamat C, Kubeil M, Stephan H. Light-Activated Carbon Monoxide Prodrugs Based on Bipyridyl Dicarbonyl Ruthenium(II) Complexes. Chemistry 2020; 26:10992-11006. [PMID: 32700815 PMCID: PMC7496190 DOI: 10.1002/chem.202002139] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2020] [Indexed: 12/13/2022]
Abstract
Two photoactivatable dicarbonyl ruthenium(II) complexes based on an amide-functionalised bipyridine scaffold (4-position) equipped with an alkyne functionality or a green-fluorescent BODIPY (boron-dipyrromethene) dye have been prepared and used to investigate their light-induced decarbonylation. UV/Vis, FTIR and 13 C NMR spectroscopies as well as gas chromatography and multivariate curve resolution alternating least-squares analysis (MCR-ALS) were used to elucidate the mechanism of the decarbonylation process. Release of the first CO molecule occurs very quickly, while release of the second CO molecule proceeds more slowly. In vitro studies using two cell lines A431 (human squamous carcinoma) and HEK293 (human embryonic kidney cells) have been carried out in order to characterise the anti-proliferative and anti-apoptotic activities. The BODIPY-labelled compound allows for monitoring the cellular uptake, showing fast internalisation kinetics and accumulation at the endoplasmic reticulum and mitochondria.
Collapse
Affiliation(s)
- Stepan Geri
- Institute of Radiopharmaceutical Cancer ResearchHelmholtz-Zentrum Dresden-RossendorfBautzner Landstrasse 40001328DresdenGermany
| | - Tereza Krunclova
- Department of Biological ModelsInstitute of Macromolecular ChemistryHeyrovsky Square 216206PragueCzech Republic
| | - Olga Janouskova
- Department of Biological ModelsInstitute of Macromolecular ChemistryHeyrovsky Square 216206PragueCzech Republic
| | - Jiri Panek
- Supramolecular Polymer SystemsInstitute of Macromolecular ChemistryHeyrovsky Square 216206PragueCzech Republic
| | - Martin Hruby
- Supramolecular Polymer SystemsInstitute of Macromolecular ChemistryHeyrovsky Square 216206PragueCzech Republic
| | | | - Benjamin Probst
- Department of ChemistryUniversity of ZurichWinterthurerstr. 1908057ZurichSwitzerland
| | - Roger A. Alberto
- Department of ChemistryUniversity of ZurichWinterthurerstr. 1908057ZurichSwitzerland
| | - Constantin Mamat
- Institute of Radiopharmaceutical Cancer ResearchHelmholtz-Zentrum Dresden-RossendorfBautzner Landstrasse 40001328DresdenGermany
| | - Manja Kubeil
- Institute of Radiopharmaceutical Cancer ResearchHelmholtz-Zentrum Dresden-RossendorfBautzner Landstrasse 40001328DresdenGermany
| | - Holger Stephan
- Institute of Radiopharmaceutical Cancer ResearchHelmholtz-Zentrum Dresden-RossendorfBautzner Landstrasse 40001328DresdenGermany
| |
Collapse
|
14
|
Modulation of Amyloidogenic Peptide Aggregation by Photoactivatable CO-Releasing Ruthenium(II) Complexes. Pharmaceuticals (Basel) 2020; 13:ph13080171. [PMID: 32751396 PMCID: PMC7464691 DOI: 10.3390/ph13080171] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2020] [Revised: 07/23/2020] [Accepted: 07/28/2020] [Indexed: 01/19/2023] Open
Abstract
Three Ru(II)-based CO-releasing molecules featuring bidentate benzimidazole and terpyridine derivatives as ligands were investigated for their ability to modulate the aggregation process of the second helix of the C-terminal domain of nucleophosmin 1, namely nucleophosmin 1 (NPM1)264-277, a model amyloidogenic system, before and after irradiation at 365 nm. Thioflavin T (ThT) binding assays and UV/Vis absorption spectra indicate that binding of the compounds to the peptide inhibits its aggregation and that the inhibitory effect increases upon irradiation (half maximal effective concentration (EC50) values in the high micromolar range). Electrospray ionization mass spectrometry data of the peptide in the presence of one of these compounds confirm that the modulation of amyloid aggregation relies on the formation of adducts obtained when the Ru compounds react with the peptide upon releasing of labile ligands, like chloride and carbon monoxide. This mechanism of action explains the subtle different behavior of the three compounds observed in ThT experiments. Overall, data support the hypothesis that metal-based CO releasing molecules can be used to develop metal-based drugs with potential application as anti-amyloidogenic agents.
Collapse
|
15
|
Mansour AM, Radacki K. Structural Studies, Antimicrobial Activity and Protein Interaction of Photostable Terpyridine Silver(I) Complexes. Eur J Inorg Chem 2019. [DOI: 10.1002/ejic.201900701] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Ahmed M. Mansour
- Chemistry Department; Faculty of Science; Cairo University; Gamma Street, Giza 12613 Cairo Egypt
| | - Krzysztof Radacki
- Institut für Anorganische Chemie; Julius-Maximilians-Universität Würzburg; Am Hubland 97074 Würzburg Germany
| |
Collapse
|
16
|
Mansour AM, Ragab MS. DNA/lysozyme binding propensity and nuclease properties of benzimidazole/2,2'-bipyridine based binuclear ternary transition metal complexes. RSC Adv 2019; 9:30879-30887. [PMID: 35529371 PMCID: PMC9072361 DOI: 10.1039/c9ra07188a] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2019] [Accepted: 09/25/2019] [Indexed: 12/21/2022] Open
Abstract
In the present contribution, new binuclear ternary complexes; [M2(bpy)4L](ClO4)4 (M = Co(ii) (1) and Ni(ii) (2); bpy = 2,2'-bipyridine; L = 1,1'-(hexane-1,6-diyl)bis[2-(pyridin-2-yl)1H-benzimidazole] and [Cu2(bpy)2(OH2)2L](BF4)4 (3) were synthesized, characterized and screened for their antimicrobial activity and cytotoxicity against human liver carcinoma cells (HepG-2) as well as non-malignant human embryonic kidney cells (HEK-293). The structural studies were complemented by density functional theory (DFT) calculations. DNA binding of 1-3 was spectrophotometrically studied. The DNA cleavage ability of 1-3 towards the supercoiled plasmid DNA (pBR322 DNA) was examined through gel electrophoresis. Compound 3 has the highest cytotoxic activity (IC50 = 3.5 μg mL-1) against HepG-2 among the investigated complexes and is non cytotoxic to noncancerous HEK-293. Complexes (1 and 2) exhibited toxicity to HEK-293 with IC50 values of 30.3 and 23.5 μg mL-1 in that order. While compound 1 showed antifungal activity against Cryptococcus neoformans, complex 2 exhibited its toxicity against Candida albicans.
Collapse
Affiliation(s)
- Ahmed M Mansour
- Department of Chemistry, Faculty of Science, Cairo University Gamma Street, Giza Cairo 12613 Egypt
| | - Mona S Ragab
- Department of Chemistry, Faculty of Science, Cairo University Gamma Street, Giza Cairo 12613 Egypt
| |
Collapse
|
17
|
Kubeil M, Joshi T, Wood BR, Stephan H. Synthesis, Structural Characterization and Photodecarbonylation Study of a Dicarbonyl Ruthenium(II)-Bisquinoline Complex. ChemistryOpen 2019; 8:637-642. [PMID: 31139553 PMCID: PMC6530819 DOI: 10.1002/open.201900111] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2019] [Revised: 05/03/2019] [Indexed: 02/01/2023] Open
Abstract
A photoactivatable ruthenium(II) carbonyl complex mer,cis-[Ru(II)Cl(BisQ)(CO)2]PF6 2 was prepared using a tridentate bisquinoline ligand (BisQ=(2,6-diquinolin-2-yl)pyridin). Compound 2 was thoroughly characterized by standard analytical methods and single crystal X-ray diffraction. The crystal structure of the complex cation reveals a distorted octahedral geometry. The decarbonylation upon exposure to 350 and 420 nm light was monitored by UV/VIS absorbance and Fourier transform infrared spectroscopies in acetonitrile and 1 % (v/v) DMSO in water, respectively. The kinetic of the photodecarbonylation has been elucidated by multivariate curve resolution alternating least-squares analysis. The stepwise decarbonylation follows a serial mechanism. The first decarbonylation occurs very quickly whereas the second decarbonylation step proceeds more slowly. Moreover, the second rate constant is lower in 1 % (v/v) DMSO in water than in acetonitrile. In comparison to 350 nm irradiation, exposure to 420 nm light in acetonitrile results in a lower second rate constant.
Collapse
Affiliation(s)
- Manja Kubeil
- Institute of Radiopharmaceutical Cancer Research Helmholtz – Zentrum Dresden – RossendorfBautzner Landstrasse 40001328DresdenGermany
| | - Tanmaya Joshi
- Institute of Radiopharmaceutical Cancer Research Helmholtz – Zentrum Dresden – RossendorfBautzner Landstrasse 40001328DresdenGermany
| | - Bayden R. Wood
- School of Chemistry and Centre for BiospectroscopyMonash UniversityClayton, Victoria3800Australia
| | - Holger Stephan
- Institute of Radiopharmaceutical Cancer Research Helmholtz – Zentrum Dresden – RossendorfBautzner Landstrasse 40001328DresdenGermany
| |
Collapse
|
18
|
Mansour AM. Green-Light-Induced PhotoCORM: Lysozyme Binding Affinity towards MnI
and ReI
Carbonyl Complexes and Biological Activity Evaluation. Eur J Inorg Chem 2018. [DOI: 10.1002/ejic.201801055] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Affiliation(s)
- Ahmed M. Mansour
- Chemistry Department; Faculty of Science; Cairo University; Gamma Street 12613 Giza, Cairo Egypt
| |
Collapse
|