1
|
Ogura S, Negoro H, Machfuudzoh I, Thollar Z, Hinamoto T, García de Abajo FJ, Sugimoto H, Fujii M, Sannomiya T. Dielectric Sphere Oligomers as Optical Nanoantenna for Circularly Polarized Light. ACS PHOTONICS 2024; 11:3323-3330. [PMID: 39184185 PMCID: PMC11342412 DOI: 10.1021/acsphotonics.4c00761] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Revised: 07/09/2024] [Accepted: 07/09/2024] [Indexed: 08/27/2024]
Abstract
Control of circularly polarized light (CPL) is important for next-generation optical communications as well as for investigating the optical properties of materials. In this study, we explore dielectric-sphere oligomers for chiral nanoantenna applications, leveraging the cathodoluminescence (CL) technique, which employs accelerated free electrons for excitation and allows mapping the optical response on the nanoscale. For a certain particle-dimers configuration, one of the spheres becomes responsible for the left-handed circular polarization of the emitted light, while right-handed circular polarization is selectively yielded when the other sphere is excited by the electron beam. Similar patterns are also observed in trimers. These phenomena are understood in terms of optical coupling between the electric and magnetic modes hosted by the dielectric spheres. Our research not only expands the understanding of CPL generation mechanisms in dielectric-sphere oligomer antennas but also underscores the potential of such structures in optical applications. We further highlight the utility of CL as a powerful analytical tool for investigating the optical properties of nanoscale structures as well as the potential of electron beams for light generation with switchable CPL parities.
Collapse
Affiliation(s)
- Shintaro Ogura
- Department
of Materials Science and Engineering, School of Materials and Chemical
Technology, Tokyo Institute of Technology, 4259 Nagatsuta, Midori-ku, Yokohama 226-8503, Japan
| | - Hidemasa Negoro
- Department
of Electrical and Electronic Engineering, Graduate School of Engineering, Kobe University, Kobe 657-8501, Japan
| | - Izzah Machfuudzoh
- Department
of Materials Science and Engineering, School of Materials and Chemical
Technology, Tokyo Institute of Technology, 4259 Nagatsuta, Midori-ku, Yokohama 226-8503, Japan
| | - Zac Thollar
- Department
of Materials Science and Engineering, School of Materials and Chemical
Technology, Tokyo Institute of Technology, 4259 Nagatsuta, Midori-ku, Yokohama 226-8503, Japan
| | - Tatsuki Hinamoto
- Department
of Electrical and Electronic Engineering, Graduate School of Engineering, Kobe University, Kobe 657-8501, Japan
| | - F. Javier García de Abajo
- ICFO-Institut
de Ciencies Fotoniques, The Barcelona Institute of Science and Technology, Castelldefels, Barcelona 08860, Spain
- ICREA-Institució
Catalana de Recerca i Estudis Avançats, Passeig Lluís Companys 23, Barcelona 08010, Spain
| | - Hiroshi Sugimoto
- Department
of Electrical and Electronic Engineering, Graduate School of Engineering, Kobe University, Kobe 657-8501, Japan
| | - Minoru Fujii
- Department
of Electrical and Electronic Engineering, Graduate School of Engineering, Kobe University, Kobe 657-8501, Japan
| | - Takumi Sannomiya
- Department
of Materials Science and Engineering, School of Materials and Chemical
Technology, Tokyo Institute of Technology, 4259 Nagatsuta, Midori-ku, Yokohama 226-8503, Japan
| |
Collapse
|
2
|
Cheng AC, Pin C, Sunaba Y, Sugiyama T, Sasaki K. Nanoscale Helical Optical Force for Determining Crystal Chirality. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2312174. [PMID: 38586919 DOI: 10.1002/smll.202312174] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/27/2023] [Revised: 03/14/2024] [Indexed: 04/09/2024]
Abstract
The deterministic control of material chirality has been a sought-after goal. As light possesses intrinsic chirality, light-matter interactions offer promising avenues for achieving non-contact, enantioselective optical induction, assembly, or sorting of chiral entities. However, experimental validations are confined to the microscale due to the limited strength of asymmetrical interactions within sub-diffraction limit ranges. In this study, a novel approach is presented to facilitate chirality modulation through chiral crystallization using a helical optical force field originating from localized nanogap surface plasmon resonance. The force field emerges near a gold trimer nanogap and is propelled by linear and angular momentum transfer from the incident light to the resonant nanogap plasmon. By employing Gaussian and Laguerre-Gaussian incident laser beams, notable enantioselectivity is achieved through low-power plasmon-induced chiral crystallization of an organic compound-ethylenediamine sulfate. The findings provide new insights into chirality transmission orchestrated by the exchange of linear and angular momentum between light and nanomaterials.
Collapse
Affiliation(s)
- An-Chieh Cheng
- Research Institute for Electronic Science, Hokkaido University, Sapporo, 060-0812, Japan
| | - Christophe Pin
- Research Institute for Electronic Science, Hokkaido University, Sapporo, 060-0812, Japan
| | - Yuji Sunaba
- Research Institute for Electronic Science, Hokkaido University, Sapporo, 060-0812, Japan
| | - Teruki Sugiyama
- Department of Applied Chemistry and Center for Emergent Functional Matter Science, National Yang Ming Chiao Tung University, 1001 University Rd., Hsinchu, 300093, Taiwan
- Division of Materials Science, Nara Institute of Science and Technology, 8916-5 Takayama-cho, Ikoma, Nara, 630-0192, Japan
| | - Keiji Sasaki
- Research Institute for Electronic Science, Hokkaido University, Sapporo, 060-0812, Japan
| |
Collapse
|
3
|
Zhong J, Li JY, Liu J, Xiang Y, Feng H, Liu R, Li W, Wang XH. Room-Temperature Strong Coupling of Few-Exciton in a Monolayer WS 2 with Plasmon and Dispersion Deviation. NANO LETTERS 2024; 24:1579-1586. [PMID: 38284987 DOI: 10.1021/acs.nanolett.3c04158] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/30/2024]
Abstract
Engineering room-temperature strong coupling of few-exciton in transition-metal dichalcogenides (TMDCs) with plasmons promises to construct compact and high-performance quantum optical devices. But it remains unimplemented due to their in-plane excitons. Here, we demonstrate the strong coupling of few-exciton within 10 in monolayer WS2 with the plasmonic mode with a large tangential component of the electric field tightly trapped around the sharp corners of an Au@Ag nanocuboid, the fewest number of excitons observed in the TMDC family so far. Furthermore, we for the first time report a significant deviation with a relative difference of up to 100.6% between the spectrum and eigenlevel splitting dispersions, which increases with decreasing coupling strength. It is also shown that the coupling strength obtained by the conventional concept of both being equal to the measured spectrum splitting is markedly overestimated. Our work enriches the understanding of strong light-matter interactions at room temperature.
Collapse
Affiliation(s)
- Jie Zhong
- State Key Laboratory of Optoelectronic Materials and Technologies, School of Physics, Sun Yat-sen University, Guangzhou 510275, People's Republic of China
| | - Jun-Yu Li
- State Key Laboratory of Optoelectronic Materials and Technologies, School of Physics, Sun Yat-sen University, Guangzhou 510275, People's Republic of China
| | - Jin Liu
- State Key Laboratory of Optoelectronic Materials and Technologies, School of Physics, Sun Yat-sen University, Guangzhou 510275, People's Republic of China
| | - Yifan Xiang
- State Key Laboratory of Optoelectronic Materials and Technologies, School of Physics, Sun Yat-sen University, Guangzhou 510275, People's Republic of China
| | - He Feng
- State Key Laboratory of Optoelectronic Materials and Technologies, School of Physics, Sun Yat-sen University, Guangzhou 510275, People's Republic of China
| | - Renming Liu
- School of Physics and Electronics, Henan University, Kaifeng 475004, People's Republic of China
| | - Wei Li
- State Key Laboratory of Optoelectronic Materials and Technologies, School of Physics, Sun Yat-sen University, Guangzhou 510275, People's Republic of China
- School of Electronics and Information Technology, Sun Yat-sen University, Guangzhou 510006, People's Republic of China
| | - Xue-Hua Wang
- State Key Laboratory of Optoelectronic Materials and Technologies, School of Physics, Sun Yat-sen University, Guangzhou 510275, People's Republic of China
| |
Collapse
|
4
|
Jin H, Herran M, Cortés E, Lischner J. Theory of Hot-Carrier Generation in Bimetallic Plasmonic Catalysts. ACS PHOTONICS 2023; 10:3629-3636. [PMID: 37869558 PMCID: PMC10588455 DOI: 10.1021/acsphotonics.3c00715] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/27/2023] [Indexed: 10/24/2023]
Abstract
Bimetallic nanoreactors in which a plasmonic metal is used to funnel solar energy toward a catalytic metal have recently been studied experimentally, but a detailed theoretical understanding of these systems is lacking. Here, we present theoretical results of hot-carrier generation rates of different Au-Pd nanoarchitectures. In particular, we study spherical core-shell nanoparticles with a Au core and a Pd shell as well as antenna-reactor systems consisting of a large Au nanoparticle that acts as an antenna and a smaller Pd satellite nanoparticle separated by a gap. In addition, we investigate an antenna-reactor system in which the satellite is a core-shell nanoparticle. Hot-carrier generation rates are obtained from an atomistic quantum-mechanical modeling technique which combines a solution of Maxwell's equation with a tight-binding description of the nanoparticle electronic structure. We find that antenna-reactor systems exhibit significantly higher hot-carrier generation rates in the catalytic material than the core-shell system as a result of strong electric field enhancements associated with the gap between the antenna and the satellite. For these systems, we also study the dependence of the hot-carrier generation rate on the size of the gap, the radius of the antenna nanoparticle, and the direction of light polarization. Overall, we find a strong correlation between the calculated hot-carrier generation rates and the experimentally measured chemical activity for the different Au-Pd photocatalysts. Our insights pave the way toward a microscopic understanding of hot-carrier generation in heterogeneous nanostructures for photocatalysis and other energy-conversion applications.
Collapse
Affiliation(s)
- Hanwen Jin
- Department
of Materials, Imperial College London, South Kensington Campus, London SW7 2AZ, United Kingdom
| | - Matias Herran
- Nanoinstitute
Munich Faculty of Physics, Ludwigs-Maximilians-Universität
München, 80539 Munich, Germany
| | - Emiliano Cortés
- Nanoinstitute
Munich Faculty of Physics, Ludwigs-Maximilians-Universität
München, 80539 Munich, Germany
| | - Johannes Lischner
- Department
of Materials and the Thomas Young Centre for Theory and Simulation
of Materials, Imperial College London, South Kensington Campus, London SW7 2AZ, United Kingdom
| |
Collapse
|
5
|
Cai YY, Choi YC, Kagan CR. Chemical and Physical Properties of Photonic Noble-Metal Nanomaterials. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2023; 35:e2108104. [PMID: 34897837 DOI: 10.1002/adma.202108104] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/09/2021] [Revised: 11/15/2021] [Indexed: 06/14/2023]
Abstract
Colloidal noble metal nanoparticles (NPs) are composed of metal cores and organic or inorganic ligand shells. These NPs support size- and shape-dependent plasmonic resonances. They can be assembled from dispersions into artificial metamolecules which have collective plasmonic resonances originating from coupled bright and dark optical electric and magnetic modes that form depending on the size and shape of the constituent NPs and their number, arrangement, and interparticle distance. NPs can also be assembled into extended 2D and 3D metamaterials that are glassy thin films or ordered thin films or crystals, also known as superlattices and supercrystals. The metamaterials have tunable optical properties that depend on the size, shape, and composition of the NPs, and on the number of NP layers and their interparticle distance. Interestingly, strong light-matter interactions in superlattices form plasmon polaritons. Tunable interparticle distances allow designer materials with dielectric functions tailorable from that characteristic of an insulator to that of a metal, and serve as strong optical absorbers or scatterers, respectively. In combination with lithography techniques, these extended assemblies can be patterned to create subwavelength NP superstructures and form large-area 2D and 3D metamaterials that manipulate the amplitude, phase, and polarization of transmitted or reflected light.
Collapse
Affiliation(s)
- Yi-Yu Cai
- Department of Electrical and Systems Engineering, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Yun Chang Choi
- Department of Chemistry, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Cherie R Kagan
- Department of Electrical and Systems Engineering, University of Pennsylvania, Philadelphia, PA, 19104, USA
- Department of Chemistry, University of Pennsylvania, Philadelphia, PA, 19104, USA
- Department of Materials Science and Engineering, University of Pennsylvania, Philadelphia, PA, 19104, USA
| |
Collapse
|
6
|
Hull OA, Aikens CM. Theoretical Investigations on the Plasmon-Mediated Dissociation of Small Molecules in the Presence of Silver Atomic Wires. J Phys Chem A 2023; 127:2228-2241. [PMID: 36862925 DOI: 10.1021/acs.jpca.2c07531] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/04/2023]
Abstract
Plasmonic nanoparticles can promote bond activation in adsorbed molecules under relatively benign conditions via excitation of the nanoparticle's plasmon resonance. As the plasmon resonance often falls within the visible light region, plasmonic nanomaterials are a promising class of catalysts. However, the exact mechanisms through which plasmonic nanoparticles activate the bonds of nearby molecules are still unclear. Herein, we evaluate Ag8-X2 (X = N, H) model systems via real-time time-dependent density functional theory (RT-TDDFT), linear response time-dependent density functional theory (LR-TDDFT), and Ehrenfest dynamics in order to better understand the bond activation processes of N2 and H2 facilitated by the presence of the atomic silver wire under excitation at the plasmon resonance energies. We find that dissociation is possible for both small molecules at high electric field strength. Activation of each adsorbate is symmetry- and electric field-dependent, and H2 activates at lower electric field strengths than N2. This work serves as a step toward understanding the complex time-dependent electron and electron-nuclear dynamics between plasmonic nanowires and adsorbed small molecules.
Collapse
Affiliation(s)
- Olivia A Hull
- Department of Chemistry, Kansas State University, Manhattan, Kansas 66506, United States
| | - Christine M Aikens
- Department of Chemistry, Kansas State University, Manhattan, Kansas 66506, United States
| |
Collapse
|
7
|
In situ enzymatic generation of Au/Pt nanoparticles as an analytical photometric system: proof of concept determination of tyramine. Mikrochim Acta 2023; 190:114. [PMID: 36877272 PMCID: PMC9988730 DOI: 10.1007/s00604-023-05698-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Accepted: 02/23/2023] [Indexed: 03/07/2023]
Abstract
In situ enzymatic generation of bimetallic nanoparticles, mainly Au/Pt, overcomes the drawbacks (continuous absorbance drift, modest LOQ, and long-time reaction) observed when AuNP alone are produced. In this study, Au/Pt nanoparticles have been characterized by EDS, XPS, and HRTEM images using the enzymatic determination of tyramine with tyramine oxidase (TAO) as a model. Under experimental conditions, the Au/Pt NPs show an absorption maximum at 580 nm which can be related to the concentration of tyramine in the range 1.0 × 10-6M to 2.5 × 10-4M with a RSD of 3.4% (n = 5, using 5 × 10-6M tyramine). The Au/Pt system enables low LOQ (1.0 × 10-6 M), high reduction of the absorbance drift, and a significant shortening of the reaction time (i.e., from 30 to 2 min for a [tyramine] = 1 × 10-4M); additionally, a better selectivity is also obtained. The method has been applied to tyramine determination in cured cheese and no significant differences were obtained compared to a reference method (HRP:TMB). The effect of Pt(II) seems to involve the previous reduction of Au(III) to Au(I) and NP generation from this oxidation state. Finally, a three-step (nucleation-growth-aggregation) kinetic model for the generation of NPs is proposed; this has enabled us to obtain a mathematical equation which explains the experimentally observed variation of the absorbance with time.
Collapse
|
8
|
Dong W, Zhang Y, Yi C, Chang JJ, Ye S, Nie Z. Halogen Bonding-Driven Reversible Self-Assembly of Plasmonic Colloidal Molecules. ACS NANO 2023; 17:3047-3054. [PMID: 36603151 DOI: 10.1021/acsnano.2c11833] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
Colloidal molecules (CMs) assembled from plasmonic nanoparticles are an emerging class of building blocks for creating plasmonic materials and devices, but precise yet reversible assembly of plasmonic CMs remains a challenge. This communication describes the reversible self-assembly of binary plasmonic nanoparticles capped with complementary copolymer ligands into different CMs via halogen bonding interactions at high yield. The coordination number of the CMs is governed by the number ratio of complementary halogen donor and acceptor groups on the interacting nanoparticles. The reversibility of the halogen bonds allows for controlling the repeated formation and disassociation of the plasmonic CMs and hence their optical properties. Furthermore, the CMs can be designed to further self-assemble into complex structures in selective solvents. The precisely engineered reversible nanostructures may find applications in sensing, catalysis, and smart optoelectronic devices.
Collapse
Affiliation(s)
- Wenhao Dong
- State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science, Fudan University, Shanghai, 200438, China
| | - Yan Zhang
- State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science, Fudan University, Shanghai, 200438, China
| | - Chenglin Yi
- State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science, Fudan University, Shanghai, 200438, China
| | - Julia J Chang
- State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science, Fudan University, Shanghai, 200438, China
| | - Shunsheng Ye
- State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science, Fudan University, Shanghai, 200438, China
| | - Zhihong Nie
- State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science, Fudan University, Shanghai, 200438, China
| |
Collapse
|
9
|
Plasmonic phenomena in molecular junctions: principles and applications. Nat Rev Chem 2022; 6:681-704. [PMID: 37117494 DOI: 10.1038/s41570-022-00423-4] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/15/2022] [Indexed: 11/08/2022]
Abstract
Molecular junctions are building blocks for constructing future nanoelectronic devices that enable the investigation of a broad range of electronic transport properties within nanoscale regions. Crossing both the nanoscopic and mesoscopic length scales, plasmonics lies at the intersection of the macroscopic photonics and nanoelectronics, owing to their capability of confining light to dimensions far below the diffraction limit. Research activities on plasmonic phenomena in molecular electronics started around 2010, and feedback between plasmons and molecular junctions has increased over the past years. These efforts can provide new insights into the near-field interaction and the corresponding tunability in properties, as well as resultant plasmon-based molecular devices. This Review presents the latest advancements of plasmonic resonances in molecular junctions and details the progress in plasmon excitation and plasmon coupling. We also highlight emerging experimental approaches to unravel the mechanisms behind the various types of light-matter interactions at molecular length scales, where quantum effects come into play. Finally, we discuss the potential of these plasmonic-electronic hybrid systems across various future applications, including sensing, photocatalysis, molecular trapping and active control of molecular switches.
Collapse
|
10
|
A review of spectroscopic probes constructed from aptamer-binding gold/silver nanoparticles or their dimers in environmental pollutants' detection. ANAL SCI 2022; 38:1247-1259. [PMID: 35930232 DOI: 10.1007/s44211-022-00168-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2022] [Accepted: 07/19/2022] [Indexed: 11/01/2022]
Abstract
The issue of environmental pollutant residues has gained wide public attention all along. Therefore, it is necessary to develop simple, rapid, economical, portable, and sensitive detection techniques, which have become the focus of research in the pollutants detection field. Spectroscopy is one of the most convenient, simple, rapid, and intuitive analytical tools that can provide accurate information, such as ultraviolet spectroscopy, fluorescence spectroscopy, Raman spectroscopy, plasmon resonance spectroscopy, etc. Gold nanoparticles, silver nanoparticles, and their dimers with unique optical properties are commonly used in the construction of spectroscopic probes. As a class of oligonucleotides that can recognize specific target molecules, aptamers also have a strong ability to recognize small-molecule pollutants. The application of aptamer-binding metal nanoparticles in biosensing detection presents significant advantages for instance high sensitivity, good selectivity, and rapid analysis. And many spectroscopic probes constructed by aptamer-binding gold nanoparticles, silver nanoparticles, or their dimers have been successfully demonstrated for detecting pollutants. This review summarizes the progress, advantages, and disadvantages of aptamer sensing techniques constructed by visual colorimetric, fluorescence, Raman, and plasmon resonance spectroscopic probes combining gold/silver nanoparticles or their dimers in the field of pollutants detection, and discusses the prospects and challenges for their future.
Collapse
|
11
|
Nahi O, Broad A, Kulak AN, Freeman HM, Zhang S, Turner TD, Roach L, Darkins R, Ford IJ, Meldrum FC. Positively Charged Additives Facilitate Incorporation in Inorganic Single Crystals. CHEMISTRY OF MATERIALS : A PUBLICATION OF THE AMERICAN CHEMICAL SOCIETY 2022; 34:4910-4923. [PMID: 35722202 PMCID: PMC9202304 DOI: 10.1021/acs.chemmater.2c00097] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/11/2022] [Revised: 04/18/2022] [Indexed: 06/15/2023]
Abstract
Incorporation of guest additives within inorganic single crystals offers a unique strategy for creating nanocomposites with tailored properties. While anionic additives have been widely used to control the properties of crystals, their effective incorporation remains a key challenge. Here, we show that cationic additives are an excellent alternative for the synthesis of nanocomposites, where they are shown to deliver exceptional levels of incorporation of up to 70 wt % of positively charged amino acids, polymer particles, gold nanoparticles, and silver nanoclusters within inorganic single crystals. This high additive loading endows the nanocomposites with new functional properties, including plasmon coupling, bright fluorescence, and surface-enhanced Raman scattering (SERS). Cationic additives are also shown to outperform their acidic counterparts, where they are highly active in a wider range of crystal systems, owing to their outstanding colloidal stability in the crystallization media and strong affinity for the crystal surfaces. This work demonstrates that although often overlooked, cationic additives can make valuable crystallization additives to create composite materials with tailored composition-structure-property relationships. This versatile and straightforward approach advances the field of single-crystal composites and provides exciting prospects for the design and fabrication of new hybrid materials with tunable functional properties.
Collapse
Affiliation(s)
- Ouassef Nahi
- School
of Chemistry, University of Leeds, Woodhouse Lane, Leeds LS2 9JT, U.K.
| | - Alexander Broad
- Department
of Physics and Astronomy, University College
London, Gower Street, London WC1E
6BT, U.K.
| | - Alexander N. Kulak
- School
of Chemistry, University of Leeds, Woodhouse Lane, Leeds LS2 9JT, U.K.
| | - Helen M. Freeman
- School
of Civil Engineering, University of Leeds, Woodhouse Lane, Leeds LS2 9JT, U.K.
| | - Shuheng Zhang
- School
of Chemistry, University of Leeds, Woodhouse Lane, Leeds LS2 9JT, U.K.
| | - Thomas D. Turner
- School
of Chemistry, University of Leeds, Woodhouse Lane, Leeds LS2 9JT, U.K.
| | - Lucien Roach
- Université
de Bordeaux, CNRS, Bordeaux INP, ICMCB,
UMR 5026, 33600 Pessac, France
| | - Robert Darkins
- Department
of Physics and Astronomy, University College
London, Gower Street, London WC1E
6BT, U.K.
| | - Ian J. Ford
- Department
of Physics and Astronomy, University College
London, Gower Street, London WC1E
6BT, U.K.
| | - Fiona C. Meldrum
- School
of Chemistry, University of Leeds, Woodhouse Lane, Leeds LS2 9JT, U.K.
| |
Collapse
|
12
|
Ye S, Zha H, Xia Y, Dong W, Yang F, Yi C, Tao J, Shen X, Yang D, Nie Z. Centimeter-Scale Superlattices of Three-Dimensionally Orientated Plasmonic Dimers with Highly Tunable Collective Properties. ACS NANO 2022; 16:4609-4618. [PMID: 35166534 DOI: 10.1021/acsnano.1c11219] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
The precise organization and orientation of plasmonic molecules on substrates is crucial to their application in functional devices but still remains a grand challenge. This article describes a bottom-up strategy to efficiently fabricate centimeter-scale superlattices of three-dimensionally oriented plasmonic dimers with highly tunable collective optical properties on substrates. The in-plane (i.e., X-Y plane) and out-of-plane (i.e., along Z-axis) orientation of the constituent plasmonic dimers can be precisely controlled by a combination of directional capillary force and supporting polymer film. Our experimental measurements and numerical simulations show that the macroscopic dimer superlattices exhibit polarization-dependent plasmon Fano resonances in air and multimodal surface lattice resonances with high quality factors in a homogeneous medium, owing to the high positional and orientational ordering of the subunits. Our strategy enables the fabrication of complex plasmonic nanostructures with precise configurations for advanced plasmonic devices such as plasmon nanolasing and metamaterials.
Collapse
Affiliation(s)
- Shunsheng Ye
- State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science, Fudan University, Shanghai 200438, P. R. China
| | - Huaining Zha
- State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science, Fudan University, Shanghai 200438, P. R. China
| | - Yifan Xia
- State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science, Fudan University, Shanghai 200438, P. R. China
| | - Wenhao Dong
- State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science, Fudan University, Shanghai 200438, P. R. China
| | - Fan Yang
- State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science, Fudan University, Shanghai 200438, P. R. China
| | - Chenglin Yi
- Key Laboratory of Green Chemistry & Technology of Ministry of Education, College of Chemistry, Sichuan University, Chengdu 610064, P. R. China
| | - Jing Tao
- State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science, Fudan University, Shanghai 200438, P. R. China
| | - Xiaoxue Shen
- State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science, Fudan University, Shanghai 200438, P. R. China
| | - Dong Yang
- State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science, Fudan University, Shanghai 200438, P. R. China
| | - Zhihong Nie
- State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science, Fudan University, Shanghai 200438, P. R. China
| |
Collapse
|
13
|
Jung C, Kim G, Jeong M, Jang J, Dong Z, Badloe T, Yang JKW, Rho J. Metasurface-Driven Optically Variable Devices. Chem Rev 2021; 121:13013-13050. [PMID: 34491723 DOI: 10.1021/acs.chemrev.1c00294] [Citation(s) in RCA: 59] [Impact Index Per Article: 19.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Optically variable devices (OVDs) are in tremendous demand as optical indicators against the increasing threat of counterfeiting. Conventional OVDs are exposed to the danger of fraudulent replication with advances in printing technology and widespread copying methods of security features. Metasurfaces, two-dimensional arrays of subwavelength structures known as meta-atoms, have been nominated as a candidate for a new generation of OVDs as they exhibit exceptional behaviors that can provide a more robust solution for optical anti-counterfeiting. Unlike conventional OVDs, metasurface-driven OVDs (mOVDs) can contain multiple optical responses in a single device, making them difficult to reverse engineered. Well-known examples of mOVDs include ultrahigh-resolution structural color printing, various types of holography, and polarization encoding. In this review, we discuss the new generation of mOVDs. The fundamentals of plasmonic and dielectric metasurfaces are presented to explain how the optical responses of metasurfaces can be manipulated. Then, examples of monofunctional, tunable, and multifunctional mOVDs are discussed. We follow up with a discussion of the fabrication methods needed to realize these mOVDs, classified into prototyping and manufacturing techniques. Finally, we provide an outlook and classification of mOVDs with respect to their capacity and security level. We believe this newly proposed concept of OVDs may bring about a new era of optical anticounterfeit technology leveraging the novel concepts of nano-optics and nanotechnology.
Collapse
Affiliation(s)
- Chunghwan Jung
- Department of Chemical Engineering, Pohang University of Science and Technology (POSTECH), Pohang 37673, Republic of Korea
| | - Gyeongtae Kim
- Department of Mechanical Engineering, Pohang University of Science and Technology (POSTECH), Pohang 37673, Republic of Korea
| | - Minsu Jeong
- Department of Mechanical Engineering, Pohang University of Science and Technology (POSTECH), Pohang 37673, Republic of Korea
| | - Jaehyuck Jang
- Department of Chemical Engineering, Pohang University of Science and Technology (POSTECH), Pohang 37673, Republic of Korea
| | - Zhaogang Dong
- Institute of Materials Research and Engineering, A*STAR (Agency for Science, Technology and Research), 138634, Singapore
| | - Trevon Badloe
- Department of Mechanical Engineering, Pohang University of Science and Technology (POSTECH), Pohang 37673, Republic of Korea
| | - Joel K W Yang
- Institute of Materials Research and Engineering, A*STAR (Agency for Science, Technology and Research), 138634, Singapore.,Engineering Product Development, Singapore University of Technology and Design, 487372, Singapore
| | - Junsuk Rho
- Department of Chemical Engineering, Pohang University of Science and Technology (POSTECH), Pohang 37673, Republic of Korea.,Department of Mechanical Engineering, Pohang University of Science and Technology (POSTECH), Pohang 37673, Republic of Korea.,POSCO-POSTECH-RIST Convergence Research Center for Flat Optics and Metaphotonics, Pohang 37673, Republic of Korea
| |
Collapse
|
14
|
Downing CA, Zueco D. Non-reciprocal population dynamics in a quantum trimer. Proc Math Phys Eng Sci 2021; 477:20210507. [PMID: 35153597 PMCID: PMC8595999 DOI: 10.1098/rspa.2021.0507] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2021] [Accepted: 10/20/2021] [Indexed: 11/22/2022] Open
Abstract
We study a quantum trimer of coupled two-level systems beyond the single-excitation sector, where the coherent coupling constants are ornamented by a complex phase. Accounting for losses and gain in an open quantum systems approach, we show how the mean populations of the states in the system crucially depend on the accumulated phase in the trimer. Namely, for non-trivial accumulated phases, the population dynamics and the steady states display remarkable non-reciprocal behaviour in both the singly and doubly excited manifolds. Furthermore, while the directionality of the resultant chiral current is primarily determined by the accumulated phase in the loop, the sign of the flow may also change depending on the coupling strength and the amount of gain in the system. This directionality paves the way for experimental studies of chiral currents at the nanoscale, where the phases of the complex hopping parameters are modulated by magnetic or synthetic magnetic fields.
Collapse
Affiliation(s)
- C. A. Downing
- Department of Physics and Astronomy, University of Exeter, Exeter EX4 4QL, UK
| | - D. Zueco
- Instituto de Nanociencia y Materiales de Aragón (INMA), CSIC-Universidad de Zaragoza, Zaragoza 50009, Spain
| |
Collapse
|
15
|
Aarthi A, Bindhu MR, Umadevi M, Parimaladevi R, Sathe GV, Al-Mohaimeed AM, Elshikh MS, Balasubramanian B. Evaluating the detection efficacy of advanced bimetallic plasmonic nanoparticles for heavy metals, hazardous materials and pesticides of leachate in contaminated groundwater. ENVIRONMENTAL RESEARCH 2021; 201:111590. [PMID: 34181923 DOI: 10.1016/j.envres.2021.111590] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/17/2021] [Revised: 06/20/2021] [Accepted: 06/21/2021] [Indexed: 05/20/2023]
Abstract
During the decomposition of trashes, leachate is created and leaching is gradually pollutes the surface and groundwater. Thus, the most severe ecological impact is the risk of ground water pollution because of collection of leachate from unlined insecure landfills. Due to the low biodegradable organic strength, irregular productivity and composition, the environmentally neglected landfill leachate treatment is challenging. This work was conducted on a synthetically effective bimetallic surface enhanced Raman spectroscopic (SERS) nanosensor by gold/silver-bimetallic nanoparticles (Au/Ag-NPs), and used for the specific detection of municipal solid waste (MSW) landfill leachate in groundwater. The optical study of Au/Ag-NPs led to reflections from Ag cores and small Au shells. The structural studies represent the FCC structure of Au/Ag-NPs. The core-shell nanocrevice NPs with particle size of 23 nm played an important role with plasmonic behaviour enhances the electromagnetic excitation to achieve SERS detection and plasmonic photocatalysis. Thus, obtained results clearly show that Au was successfully added to Ag-NPs, and its existence can also be confirmed by energy dispersive spectroscopy (EDAX). The prepared SERS based sensors have the potential to detect aromatic hydrocarbon, pesticides and heavy metals from environmentally ignored MSW landfill leachate. In general, the application of this new synergetic strategy of the photocatalytic degradation of leachate was irradiated by visible wavelength with the rate constant of 0.0036/min, 0.0047/min and 0.005/min by Ag-NPs, Au-NPs and Au/Ag-NPs respectively. Overall, this is the only study achieved efficiently with photocatalytic degradation and SERS detection of environmentally ignored real sample (leachate) to make pollutant free homeland aquifers.
Collapse
Affiliation(s)
- A Aarthi
- Department of Physics, Mother Teresa Women's University, Kodaikanal, 624102, India
| | - M R Bindhu
- Department of Physics, Sree Devi Kumari Women's College, Kuzhithurai, 629163, India
| | - M Umadevi
- Department of Physics, Mother Teresa Women's University, Kodaikanal, 624102, India.
| | - R Parimaladevi
- Department of Physics, Mother Teresa Women's University, Kodaikanal, 624102, India
| | - G V Sathe
- UGC - DAE Consortium for Scientific Research, Indore, India
| | - Amal M Al-Mohaimeed
- Department of Chemistry, College of Science, King Saud University, P.O. Box 22452, Riyadh, 11495, Saudi Arabia
| | - Mohamed Soliman Elshikh
- Department of Botany and Microbiology, College of Science, King Saud University, P.O. Box 22452, Riyadh, 11495, Saudi Arabia
| | | |
Collapse
|
16
|
Gellini C, Feis A. Optothermal properties of plasmonic inorganic nanoparticles for photoacoustic applications. PHOTOACOUSTICS 2021; 23:100281. [PMID: 34194975 PMCID: PMC8233228 DOI: 10.1016/j.pacs.2021.100281] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/21/2020] [Revised: 05/05/2021] [Accepted: 06/10/2021] [Indexed: 05/08/2023]
Abstract
Plasmonic systems are becoming a favourable alternative to dye molecules in the generation of photoacoustic signals for spectroscopy and imaging. In particular, inorganic nanoparticles are appealing because of their versatility. In fact, as the shape, size and chemical composition of nanoparticles are directly correlated with their plasmonic properties, the excitation wavelength can be tuned to their plasmon resonance by adjusting such traits. This feature enables an extensive spectral range to be covered. In addition, surface chemical modifications can be performed to provide the nanoparticles with designed functionalities, e.g., selective affinity for specific macromolecules. The efficiency of the conversion of absorbed photon energy into heat, which is the physical basis of the photoacoustic signal, can be accurately determined by photoacoustic methods. This review contrasts studies that evaluate photoconversion in various kinds of nanomaterials by different methods, with the objective of facilitating the researchers' choice of suitable plasmonic nanoparticles for photoacoustic applications.
Collapse
Affiliation(s)
- Cristina Gellini
- Dipartimento di Chimica “Ugo Schiff”, Università di Firenze, Via della Lastruccia 3, I-50019 Sesto Fiorentino (FI), Italy
| | - Alessandro Feis
- Dipartimento di Chimica “Ugo Schiff”, Università di Firenze, Via della Lastruccia 3, I-50019 Sesto Fiorentino (FI), Italy
| |
Collapse
|
17
|
Probst J, Howes P, Arosio P, Stavrakis S, deMello A. Broad-Band Spectrum, High-Sensitivity Absorbance Spectroscopy in Picoliter Volumes. Anal Chem 2021; 93:7673-7681. [PMID: 34009952 DOI: 10.1021/acs.analchem.1c00587] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Picoliter-volume droplets within segmented flows can be probed in a rapid and efficient manner using optical detection methods. To date, however, most detection schemes for droplet content analysis have relied on the use of time-integrated fluorescence measurements. Despite its undoubted utility, the implementation of absorbance-based detectors is particularly challenging due to the reduced optical path lengths that are characteristic of microfluidic systems and deleterious scattering at droplet-oil interfaces. Unsurprisingly, efforts to develop sensitive absorbance-based detection schemes for the interrogation of rapidly moving droplets have primarily focused on ensuring adequate analytical sensitivity and, to date, have been exclusively limited to single-wavelength measurements. To address this limitation, and expand the information content associated with absorbance measurements on-chip, we herein describe a detection scheme for the extraction of broad-band absorbance spectra from pL-volume droplets with high sensitivity. The combination of a confocal optical system (that confines incident light to a reduced detection volume) and a postprocessing algorithm (that effectively removes the contribution of the carrier oil from the extracted spectra) engenders significant improvements in signal-to-noise ratios. Our system is initially calibrated by acquiring absorbance spectra from aqueous solutions of fluorescein isothiocyanate. These measurements confirm both excellent linearity over the studied range (from 0 to 100 μM) and a concentration limit of detection of 800 nM. The methodology is then used to monitor the salt-induced aggregation of gold nanoparticles with millisecond time resolution. This approach for small-volume absorbance spectroscopy allows for both high-throughput and high-information content measurements in subnanoliter volumes and will be highly desirable in a wide variety of bioanalytical applications where sensitivity and throughput are priorities.
Collapse
Affiliation(s)
- Julie Probst
- Institute for Chemical and Bioengineering, Department of Chemistry and Applied Biosciences, ETH Zürich, Vladimir Prelog Weg 1, 8093 Zürich, Switzerland
| | - Philip Howes
- Institute for Chemical and Bioengineering, Department of Chemistry and Applied Biosciences, ETH Zürich, Vladimir Prelog Weg 1, 8093 Zürich, Switzerland
| | - Paolo Arosio
- Institute for Chemical and Bioengineering, Department of Chemistry and Applied Biosciences, ETH Zürich, Vladimir Prelog Weg 1, 8093 Zürich, Switzerland
| | - Stavros Stavrakis
- Institute for Chemical and Bioengineering, Department of Chemistry and Applied Biosciences, ETH Zürich, Vladimir Prelog Weg 1, 8093 Zürich, Switzerland
| | - Andrew deMello
- Institute for Chemical and Bioengineering, Department of Chemistry and Applied Biosciences, ETH Zürich, Vladimir Prelog Weg 1, 8093 Zürich, Switzerland
| |
Collapse
|
18
|
Kogikoski S, Tapio K, von Zander RE, Saalfrank P, Bald I. Raman Enhancement of Nanoparticle Dimers Self-Assembled Using DNA Origami Nanotriangles. Molecules 2021; 26:1684. [PMID: 33802892 PMCID: PMC8002687 DOI: 10.3390/molecules26061684] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2021] [Revised: 03/12/2021] [Accepted: 03/15/2021] [Indexed: 11/16/2022] Open
Abstract
Surface-enhanced Raman scattering is a powerful approach to detect molecules at very low concentrations, even up to the single-molecule level. One important aspect of the materials used in such a technique is how much the signal is intensified, quantified by the enhancement factor (EF). Herein we obtained the EFs for gold nanoparticle dimers of 60 and 80 nm diameter, respectively, self-assembled using DNA origami nanotriangles. Cy5 and TAMRA were used as surface-enhanced Raman scattering (SERS) probes, which enable the observation of individual nanoparticles and dimers. EF distributions are determined at four distinct wavelengths based on the measurements of around 1000 individual dimer structures. The obtained results show that the EFs for the dimeric assemblies follow a log-normal distribution and are in the range of 106 at 633 nm and that the contribution of the molecular resonance effect to the EF is around 2, also showing that the plasmonic resonance is the main source of the observed signal. To support our studies, FDTD simulations of the nanoparticle's electromagnetic field enhancement has been carried out, as well as calculations of the resonance Raman spectra of the dyes using DFT. We observe a very close agreement between the experimental EF distribution and the simulated values.
Collapse
Affiliation(s)
- Sergio Kogikoski
- Institute of Chemistry, University of Potsdam, 14476 Potsdam, Germany; (S.K.); (K.T.); (R.E.v.Z.); (P.S.)
- Department of Analytical Chemistry, Institute of Chemistry, State University of Campinas—UNICAMP, P.O. Box 6154, Campinas 13084-974, SP, Brazil
| | - Kosti Tapio
- Institute of Chemistry, University of Potsdam, 14476 Potsdam, Germany; (S.K.); (K.T.); (R.E.v.Z.); (P.S.)
| | - Robert Edler von Zander
- Institute of Chemistry, University of Potsdam, 14476 Potsdam, Germany; (S.K.); (K.T.); (R.E.v.Z.); (P.S.)
| | - Peter Saalfrank
- Institute of Chemistry, University of Potsdam, 14476 Potsdam, Germany; (S.K.); (K.T.); (R.E.v.Z.); (P.S.)
| | - Ilko Bald
- Institute of Chemistry, University of Potsdam, 14476 Potsdam, Germany; (S.K.); (K.T.); (R.E.v.Z.); (P.S.)
| |
Collapse
|
19
|
Pakeltis G, Rotunno E, Khorassani S, Garfinkel DA, Collette R, West CA, Retterer ST, Idrobo JC, Masiello DJ, Rack PD. High spatial and energy resolution electron energy loss spectroscopy of the magnetic and electric excitations in plasmonic nanorod oligomers. OPTICS EXPRESS 2021; 29:4661-4671. [PMID: 33771037 DOI: 10.1364/oe.416046] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/02/2020] [Accepted: 01/11/2021] [Indexed: 06/12/2023]
Abstract
We leverage the high spatial and energy resolution of monochromated aberration-corrected scanning transmission electron microscopy to study the hybridization of cyclic assemblies of plasmonic gold nanorods. Detailed experiments and simulations elucidate the hybridization of the coupled long-axis dipole modes into collective magnetic and electric dipole plasmon resonances. We resolve the magnetic dipole mode in these closed loop oligomers with electron energy loss spectroscopy and confirm the mode assignment with its characteristic spectrum image. The energy splitting of the magnetic mode and antibonding modes increases with the number of polygon edges (n). For the n=3-6 oligomers studied, optical simulations using normal incidence and s-polarized oblique incidence show the respective electric and magnetic modes' extinction efficiencies are maximized in the n=4 arrangement.
Collapse
|
20
|
Litvin IA, Mueller NS, Reich S. Selective excitation of localized surface plasmons by structured light. OPTICS EXPRESS 2020; 28:24262-24274. [PMID: 32752408 DOI: 10.1364/oe.399225] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/03/2020] [Accepted: 07/14/2020] [Indexed: 06/11/2023]
Abstract
We investigated the selective excitation of localized surface plasmons by structured light. We derive selection rules using group theory and propose a fitting integral to quantify the contribution of the eigenmodes to the absorption spectra. Based on the result we investigate three nano oligomers of different symmetry (trimer, quadrumer, and hexamer) in detail using finite-difference time-domain simulations. We show that by controlling the incident light polarization and phase pattern we are able to control the absorption and scattering spectra. Additionally, we demonstrate that the fitting between the incident light and the oligomer modes may favor a number of modes to oscillate. Dark modes produce strong changes in the absorption spectrum and bright modes in the scattering spectrum. The experimental precision (axial shift error) may be on the same order as the oligomer diameter making the orbital angular momentum selection rules robust enough for experimental observation.
Collapse
|
21
|
Sharifi M, Hosseinali SH, Hossein Alizadeh R, Hasan A, Attar F, Salihi A, Shekha MS, Amen KM, Aziz FM, Saboury AA, Akhtari K, Taghizadeh A, Hooshmand N, El-Sayed MA, Falahati M. Plasmonic and chiroplasmonic nanobiosensors based on gold nanoparticles. Talanta 2020; 212:120782. [DOI: 10.1016/j.talanta.2020.120782] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2019] [Revised: 01/23/2020] [Accepted: 01/24/2020] [Indexed: 12/20/2022]
|
22
|
Langer J, Jimenez de Aberasturi D, Aizpurua J, Alvarez-Puebla RA, Auguié B, Baumberg JJ, Bazan GC, Bell SEJ, Boisen A, Brolo AG, Choo J, Cialla-May D, Deckert V, Fabris L, Faulds K, García de Abajo FJ, Goodacre R, Graham D, Haes AJ, Haynes CL, Huck C, Itoh T, Käll M, Kneipp J, Kotov NA, Kuang H, Le Ru EC, Lee HK, Li JF, Ling XY, Maier SA, Mayerhöfer T, Moskovits M, Murakoshi K, Nam JM, Nie S, Ozaki Y, Pastoriza-Santos I, Perez-Juste J, Popp J, Pucci A, Reich S, Ren B, Schatz GC, Shegai T, Schlücker S, Tay LL, Thomas KG, Tian ZQ, Van Duyne RP, Vo-Dinh T, Wang Y, Willets KA, Xu C, Xu H, Xu Y, Yamamoto YS, Zhao B, Liz-Marzán LM. Present and Future of Surface-Enhanced Raman Scattering. ACS NANO 2020; 14:28-117. [PMID: 31478375 PMCID: PMC6990571 DOI: 10.1021/acsnano.9b04224] [Citation(s) in RCA: 1441] [Impact Index Per Article: 360.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/08/2019] [Accepted: 09/03/2019] [Indexed: 04/14/2023]
Abstract
The discovery of the enhancement of Raman scattering by molecules adsorbed on nanostructured metal surfaces is a landmark in the history of spectroscopic and analytical techniques. Significant experimental and theoretical effort has been directed toward understanding the surface-enhanced Raman scattering (SERS) effect and demonstrating its potential in various types of ultrasensitive sensing applications in a wide variety of fields. In the 45 years since its discovery, SERS has blossomed into a rich area of research and technology, but additional efforts are still needed before it can be routinely used analytically and in commercial products. In this Review, prominent authors from around the world joined together to summarize the state of the art in understanding and using SERS and to predict what can be expected in the near future in terms of research, applications, and technological development. This Review is dedicated to SERS pioneer and our coauthor, the late Prof. Richard Van Duyne, whom we lost during the preparation of this article.
Collapse
Affiliation(s)
- Judith Langer
- CIC
biomaGUNE and CIBER-BBN, Paseo de Miramón 182, Donostia-San Sebastián 20014, Spain
| | | | - Javier Aizpurua
- Materials
Physics Center (CSIC-UPV/EHU), and Donostia
International Physics Center, Paseo Manuel de Lardizabal 5, Donostia-San
Sebastián 20018, Spain
| | - Ramon A. Alvarez-Puebla
- Departamento
de Química Física e Inorgánica and EMaS, Universitat Rovira i Virgili, Tarragona 43007, Spain
- ICREA-Institució
Catalana de Recerca i Estudis Avançats, Passeig Lluís Companys 23, Barcelona 08010, Spain
| | - Baptiste Auguié
- School
of Chemical and Physical Sciences, Victoria
University of Wellington, PO Box 600, Wellington 6140, New Zealand
- The
MacDiarmid
Institute for Advanced Materials and Nanotechnology, PO Box 600, Wellington 6140, New Zealand
- The Dodd-Walls
Centre for Quantum and Photonic Technologies, PO Box 56, Dunedin 9054, New Zealand
| | - Jeremy J. Baumberg
- NanoPhotonics
Centre, Cavendish Laboratory, University
of Cambridge, Cambridge CB3 0HE, United Kingdom
| | - Guillermo C. Bazan
- Department
of Materials and Chemistry and Biochemistry, University of California, Santa
Barbara, California 93106-9510, United States
| | - Steven E. J. Bell
- School
of Chemistry and Chemical Engineering, Queen’s
University of Belfast, Belfast BT9 5AG, United Kingdom
| | - Anja Boisen
- Department
of Micro- and Nanotechnology, The Danish National Research Foundation
and Villum Foundation’s Center for Intelligent Drug Delivery
and Sensing Using Microcontainers and Nanomechanics, Technical University of Denmark, Kongens Lyngby 2800, Denmark
| | - Alexandre G. Brolo
- Department
of Chemistry, University of Victoria, P.O. Box 3065, Victoria, BC V8W 3 V6, Canada
- Center
for Advanced Materials and Related Technologies, University of Victoria, Victoria, BC V8W 2Y2, Canada
| | - Jaebum Choo
- Department
of Chemistry, Chung-Ang University, Seoul 06974, South Korea
| | - Dana Cialla-May
- Leibniz
Institute of Photonic Technology Jena - Member of the research alliance “Leibniz Health Technologies”, Albert-Einstein-Str. 9, Jena 07745, Germany
- Institute
of Physical Chemistry and Abbe Center of Photonics, Friedrich-Schiller University Jena, Helmholtzweg 4, Jena 07745, Germany
| | - Volker Deckert
- Leibniz
Institute of Photonic Technology Jena - Member of the research alliance “Leibniz Health Technologies”, Albert-Einstein-Str. 9, Jena 07745, Germany
- Institute
of Physical Chemistry and Abbe Center of Photonics, Friedrich-Schiller University Jena, Helmholtzweg 4, Jena 07745, Germany
| | - Laura Fabris
- Department
of Materials Science and Engineering, Rutgers
University, 607 Taylor Road, Piscataway New Jersey 08854, United States
| | - Karen Faulds
- Department
of Pure and Applied Chemistry, University
of Strathclyde, Technology and Innovation Centre, 99 George Street, Glasgow G1 1RD, United Kingdom
| | - F. Javier García de Abajo
- ICREA-Institució
Catalana de Recerca i Estudis Avançats, Passeig Lluís Companys 23, Barcelona 08010, Spain
- The Barcelona
Institute of Science and Technology, Institut
de Ciencies Fotoniques, Castelldefels (Barcelona) 08860, Spain
| | - Royston Goodacre
- Department
of Biochemistry, Institute of Integrative Biology, University of Liverpool, Biosciences Building, Crown Street, Liverpool L69 7ZB, United Kingdom
| | - Duncan Graham
- Department
of Pure and Applied Chemistry, University
of Strathclyde, Technology and Innovation Centre, 99 George Street, Glasgow G1 1RD, United Kingdom
| | - Amanda J. Haes
- Department
of Chemistry, University of Iowa, Iowa City, Iowa 52242, United States
| | - Christy L. Haynes
- Department
of Chemistry, University of Minnesota, 207 Pleasant Street SE, Minneapolis, Minnesota 55455, United States
| | - Christian Huck
- Kirchhoff
Institute for Physics, University of Heidelberg, Im Neuenheimer Feld 227, Heidelberg 69120, Germany
| | - Tamitake Itoh
- Nano-Bioanalysis
Research Group, Health Research Institute, National Institute of Advanced Industrial Science and Technology, Takamatsu, Kagawa 761-0395, Japan
| | - Mikael Käll
- Department
of Physics, Chalmers University of Technology, Goteborg S412 96, Sweden
| | - Janina Kneipp
- Department
of Chemistry, Humboldt-Universität
zu Berlin, Brook-Taylor-Str. 2, Berlin-Adlershof 12489, Germany
| | - Nicholas A. Kotov
- Department
of Chemical Engineering, University of Michigan, Ann Arbor, Michigan 48109, United States
| | - Hua Kuang
- Key Lab
of Synthetic and Biological Colloids, Ministry of Education, International
Joint Research Laboratory for Biointerface and Biodetection, Jiangnan University, Wuxi, Jiangsu 214122, China
- State Key
Laboratory of Food Science and Technology, Jiangnan University, JiangSu 214122, China
| | - Eric C. Le Ru
- School
of Chemical and Physical Sciences, Victoria
University of Wellington, PO Box 600, Wellington 6140, New Zealand
- The
MacDiarmid
Institute for Advanced Materials and Nanotechnology, PO Box 600, Wellington 6140, New Zealand
- The Dodd-Walls
Centre for Quantum and Photonic Technologies, PO Box 56, Dunedin 9054, New Zealand
| | - Hiang Kwee Lee
- Division
of Chemistry and Biological Chemistry, School of Physical and Mathematical
Sciences, Nanyang Technological University, 21 Nanyang Link, Singapore 637371, Singapore
- Department
of Materials Science and Engineering, Stanford
University, Stanford, California 94305, United States
| | - Jian-Feng Li
- State Key
Laboratory of Physical Chemistry of Solid Surfaces, Collaborative
Innovation Center of Chemistry for Energy Materials, MOE Key Laboratory
of Spectrochemical Analysis & Instrumentation, Department of Chemistry,
College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
| | - Xing Yi Ling
- Division
of Chemistry and Biological Chemistry, School of Physical and Mathematical
Sciences, Nanyang Technological University, 21 Nanyang Link, Singapore 637371, Singapore
| | - Stefan A. Maier
- Chair in
Hybrid Nanosystems, Nanoinstitute Munich, Faculty of Physics, Ludwig-Maximilians-Universität München, Munich 80539, Germany
| | - Thomas Mayerhöfer
- Leibniz
Institute of Photonic Technology Jena - Member of the research alliance “Leibniz Health Technologies”, Albert-Einstein-Str. 9, Jena 07745, Germany
- Institute
of Physical Chemistry and Abbe Center of Photonics, Friedrich-Schiller University Jena, Helmholtzweg 4, Jena 07745, Germany
| | - Martin Moskovits
- Department
of Chemistry & Biochemistry, University
of California Santa Barbara, Santa Barbara, California 93106-9510, United States
| | - Kei Murakoshi
- Department
of Chemistry, Faculty of Science, Hokkaido
University, North 10 West 8, Kita-ku, Sapporo,
Hokkaido 060-0810, Japan
| | - Jwa-Min Nam
- Department
of Chemistry, Seoul National University, Seoul 08826, South Korea
| | - Shuming Nie
- Department of Bioengineering, University of Illinois at Urbana-Champaign, 1406 W. Green Street, Urbana, Illinois 61801, United States
| | - Yukihiro Ozaki
- Department
of Chemistry, School of Science and Technology, Kwansei Gakuin University, Sanda, Hyogo 669-1337, Japan
| | | | - Jorge Perez-Juste
- Departamento
de Química Física and CINBIO, University of Vigo, Vigo 36310, Spain
| | - Juergen Popp
- Leibniz
Institute of Photonic Technology Jena - Member of the research alliance “Leibniz Health Technologies”, Albert-Einstein-Str. 9, Jena 07745, Germany
- Institute
of Physical Chemistry and Abbe Center of Photonics, Friedrich-Schiller University Jena, Helmholtzweg 4, Jena 07745, Germany
| | - Annemarie Pucci
- Kirchhoff
Institute for Physics, University of Heidelberg, Im Neuenheimer Feld 227, Heidelberg 69120, Germany
| | - Stephanie Reich
- Department
of Physics, Freie Universität Berlin, Berlin 14195, Germany
| | - Bin Ren
- State Key
Laboratory of Physical Chemistry of Solid Surfaces, Collaborative
Innovation Center of Chemistry for Energy Materials, MOE Key Laboratory
of Spectrochemical Analysis & Instrumentation, Department of Chemistry,
College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
| | - George C. Schatz
- Department
of Chemistry, Northwestern University, Evanston, Illinois 60208-3113, United States
| | - Timur Shegai
- Department
of Physics, Chalmers University of Technology, Goteborg S412 96, Sweden
| | - Sebastian Schlücker
- Physical
Chemistry I, Department of Chemistry and Center for Nanointegration
Duisburg-Essen, University of Duisburg-Essen, Essen 45141, Germany
| | - Li-Lin Tay
- National
Research Council Canada, Metrology Research
Centre, Ottawa K1A0R6, Canada
| | - K. George Thomas
- School
of Chemistry, Indian Institute of Science
Education and Research Thiruvananthapuram, Vithura Thiruvananthapuram 695551, India
| | - Zhong-Qun Tian
- State Key
Laboratory of Physical Chemistry of Solid Surfaces, Collaborative
Innovation Center of Chemistry for Energy Materials, MOE Key Laboratory
of Spectrochemical Analysis & Instrumentation, Department of Chemistry,
College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
| | - Richard P. Van Duyne
- Department
of Chemistry, Northwestern University, Evanston, Illinois 60208-3113, United States
| | - Tuan Vo-Dinh
- Fitzpatrick
Institute for Photonics, Department of Biomedical Engineering, and
Department of Chemistry, Duke University, 101 Science Drive, Box 90281, Durham, North Carolina 27708, United States
| | - Yue Wang
- Department
of Chemistry, College of Sciences, Northeastern
University, Shenyang 110819, China
| | - Katherine A. Willets
- Department
of Chemistry, Temple University, Philadelphia, Pennsylvania 19122, United States
| | - Chuanlai Xu
- Key Lab
of Synthetic and Biological Colloids, Ministry of Education, International
Joint Research Laboratory for Biointerface and Biodetection, Jiangnan University, Wuxi, Jiangsu 214122, China
- State Key
Laboratory of Food Science and Technology, Jiangnan University, JiangSu 214122, China
| | - Hongxing Xu
- School
of Physics and Technology and Institute for Advanced Studies, Wuhan University, Wuhan 430072, China
| | - Yikai Xu
- School
of Chemistry and Chemical Engineering, Queen’s
University of Belfast, Belfast BT9 5AG, United Kingdom
| | - Yuko S. Yamamoto
- School
of Materials Science, Japan Advanced Institute
of Science and Technology, Nomi, Ishikawa 923-1292, Japan
| | - Bing Zhao
- State Key
Laboratory of Supramolecular Structure and Materials, Jilin University, Changchun 130012, China
| | - Luis M. Liz-Marzán
- CIC
biomaGUNE and CIBER-BBN, Paseo de Miramón 182, Donostia-San Sebastián 20014, Spain
- Ikerbasque,
Basque Foundation for Science, Bilbao 48013, Spain
| |
Collapse
|
23
|
Theranostic nanocomplex of gold-decorated upconversion nanoparticles for optical imaging and temperature-controlled photothermal therapy. J Photochem Photobiol A Chem 2019. [DOI: 10.1016/j.jphotochem.2019.112053] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
24
|
Sethi A, Rafiee M, Chandra S, Ahmed H, McCormack S. Unified Methodology for Fabrication and Quantification of Gold Nanorods, Gold Core Silver Shell Nanocuboids, and Their Polymer Nanocomposites. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2019; 35:13011-13019. [PMID: 31525940 DOI: 10.1021/acs.langmuir.9b01481] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
A multitude of applications is related to the unique properties of absorption, scattering, and plasmon-enhanced phenomena of metal nanoparticles (MNPs). The aqueous colloidal-based synthesis of MNPs is used more widely as it allows precise shape and size control. However, for various applications, it is required to have the MNPs in an organic solvent or polymer that is compatible with the MNPs. This work establishes a protocol from the synthesis to the phase transfer process of gold nanorods and gold core silver shell nanocuboids (Au@Ag NCs) in dichloromethane. Subsequent dispersion in a polymer (silicone encapsulant polymer) is achieved while retaining the MNPs' plasmonic properties. Au@Ag NCs have not been transferred to an organic solvent to date due to their unique shape and instability in the organic phase. The established protocol is reproducible, and MNPs were found to be stable for up to a year in the polymer. Qualitative and quantitative validation of the experimental results is achieved on MNP concentration by a model based on the finite difference time domain method. Using the model, the concentration of MNPs in nanocomposite can be determined.
Collapse
Affiliation(s)
- Arunima Sethi
- School of Engineering , Trinity College Dublin , Dublin D02 PN40 , Ireland
| | - Mehran Rafiee
- School of Engineering , Trinity College Dublin , Dublin D02 PN40 , Ireland
| | - Subhash Chandra
- School of Engineering , Trinity College Dublin , Dublin D02 PN40 , Ireland
| | - Hind Ahmed
- School of Engineering , Trinity College Dublin , Dublin D02 PN40 , Ireland
| | - Sarah McCormack
- School of Engineering , Trinity College Dublin , Dublin D02 PN40 , Ireland
| |
Collapse
|
25
|
Liu Y, Zhao Y, Zhang L, Yan Y, Jiang Y. Controllable plasmon-induced catalytic reaction by surface-enhanced and tip-enhanced Raman spectroscopy. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2019; 219:539-546. [PMID: 31078821 DOI: 10.1016/j.saa.2019.04.086] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/16/2019] [Revised: 04/17/2019] [Accepted: 04/30/2019] [Indexed: 06/09/2023]
Abstract
The controllable catalytic reaction plays a pivotal role in heterogeneous catalysis. Surface-enhanced Raman scattering (SERS) and tip enhanced Raman spectroscopy (TERS) are considered promising techniques for the study of catalytic reactions due to the highly localized sensitivity of SERS and the nanoscale spatial resolution of TERS. Herein, Ag/Au composite films were employed as catalyst for in situ monitoring of the catalytic reaction of 4‑nitrobenzenethiol (4NBT) to p, p'‑dimercaptoazobenzene (DMAB). The catalytic reaction of 4NBT adsorbed on Au film can be manipulated at the nanoscale using TERS by controlling the height between the tip-apex and the sample surface in Ag tip-Au substrate geometry. According to finite difference time domain (FDTD) simulations, the 'hot electron' induced by the localized surface plasmon is sufficient for promoting the catalytic reaction. These findings provide a novel way for controllable graph drawing of molecules at the nanoscale level.
Collapse
Affiliation(s)
- Yanqi Liu
- Beijing Engineering Research Center of Laser Technology, Institute of Laser Engineering, Beijing University of Technology, Beijing 100124, China; Key Laboratory of Trans-scale Laser Manufacturing Technology, Ministry of Education, Institute of Laser Engineering, Beijing University of Technology, Beijing 100124, China
| | - Yan Zhao
- Beijing Engineering Research Center of Laser Technology, Institute of Laser Engineering, Beijing University of Technology, Beijing 100124, China; Key Laboratory of Trans-scale Laser Manufacturing Technology, Ministry of Education, Institute of Laser Engineering, Beijing University of Technology, Beijing 100124, China.
| | - Lisheng Zhang
- The Beijing Key Laboratory for Nano-photonics and Nano-structure, Department of Physics, Capital Normal University, Beijing 100048, China
| | - Yinzhou Yan
- Beijing Engineering Research Center of Laser Technology, Institute of Laser Engineering, Beijing University of Technology, Beijing 100124, China; Key Laboratory of Trans-scale Laser Manufacturing Technology, Ministry of Education, Institute of Laser Engineering, Beijing University of Technology, Beijing 100124, China
| | - Yijian Jiang
- Beijing Engineering Research Center of Laser Technology, Institute of Laser Engineering, Beijing University of Technology, Beijing 100124, China; Key Laboratory of Trans-scale Laser Manufacturing Technology, Ministry of Education, Institute of Laser Engineering, Beijing University of Technology, Beijing 100124, China
| |
Collapse
|
26
|
A Quantum Chemistry Approach Based on the Analogy with π-System in Polymers for a Rapid Estimation of the Resonance Wavelength of Nanoparticle Systems. NANOMATERIALS 2019; 9:nano9070929. [PMID: 31261631 PMCID: PMC6669735 DOI: 10.3390/nano9070929] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/05/2019] [Revised: 06/26/2019] [Accepted: 06/26/2019] [Indexed: 11/16/2022]
Abstract
In this paper, the Variational Method based on the Hückel Theory is applied to NPs chain and aggregate systems in order to estimate the energy of the plasmon and, in turn, the resonance wavelength shift, which is caused by the interaction of adjacent NPs. This method is based on the analogies of NPs dipole interactions and the π-system in molecules. Differently from the Hartree-Fock method that is a self-consistent model, in this approach, the input data that this method requires is the dimer energy shift with respect to single NPs. This enables us to acquire a simultaneous estimation of the wavefunctions of the NPs system as well as the expectation energy value of every kind of NPs system. The main advantage of this approach is the rapid response and ease of application to every kind of geometries and spacing from the linear chain to clusters, without the necessity of a time-consuming calculation. The results obtained with this model are closely aligned to related literature and open the way to further development of this methodology for investigating other properties of NPs systems.
Collapse
|
27
|
Luo X, Tsai D, Gu M, Hong M. Extraordinary optical fields in nanostructures: from sub-diffraction-limited optics to sensing and energy conversion. Chem Soc Rev 2019; 48:2458-2494. [PMID: 30839959 DOI: 10.1039/c8cs00864g] [Citation(s) in RCA: 73] [Impact Index Per Article: 14.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Along with the rapid development of micro/nanofabrication technology, the past few decades have seen the flourishing emergence of subwavelength-structured materials and interfaces for optical field engineering at the nanoscale. Three remarkable properties associated with these subwavelength-structured materials are the squeezed optical fields beyond the diffraction limit, gradient optical fields in the subwavelength scale, and enhanced optical fields that are orders of magnitude greater than the incident field. These engineered optical fields have inspired fundamental and practical advances in both engineering optics and modern chemistry. The first property is the basis of sub-diffraction-limited imaging, lithography, and dense data storage. The second property has led to the emergence of a couple of thin and planar functional optical devices with a reduced footprint. The third one causes enhanced radiation (e.g., fluorescence), scattering (e.g., Raman scattering), and absorption (e.g., infrared absorption and circular dichroism), offering a unique platform for single-molecule-level biochemical sensing, and high-efficiency chemical reaction and energy conversion. In this review, we summarize recent advances in subwavelength-structured materials that bear extraordinary squeezed, gradient, and enhanced optical fields, with a particular emphasis on their optical and chemical applications. Finally, challenges and outlooks in this promising field are discussed.
Collapse
Affiliation(s)
- Xiangang Luo
- State Key Laboratory of Optical Technologies on Nano-Fabrication and Micro-Engineering, Institute of Optics and Electronics, Chinese Academy of Sciences, Chengdu, 610209, China.
| | | | | | | |
Collapse
|
28
|
Fathi ZR, Menguc MP, Erturk H. Plasmon coupling between complex gold nanostructures and a dielectric substrate. APPLIED OPTICS 2018; 57:8954-8963. [PMID: 30461882 DOI: 10.1364/ao.57.008954] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/03/2018] [Accepted: 09/24/2018] [Indexed: 06/09/2023]
Abstract
Intercoupling of an incident electric field in metal nanoparticles causes asymmetric distribution of surface charges, which eventuates in shifting of the surface plasmon resonance frequency. This feature can be used in tuning the surface plasmon resonance and controlling the light absorption in a desired wavelength. This work provides a theoretical study of the plasmonic properties of complex gold nanostructures on a dielectric substrate where the nanoparticles have different morphologies. For analysis, we have developed a discrete dipole approximation with surface interactions-z, which is the third version of the MATLAB-based DDA-SI toolbox. In this version, lower-upper decomposition of the interaction matrix is used as a preconditioning of the LSQR iterative solver. This method accelerates the DDA-SI calculations by decreasing the total number of iteration steps and decreases the relative residual to achieve more accurate results. In the analysis, nanostructures are assumed to be gold dimers, trimers, and quadrumers with different sizes and elongations of cubical or spherical geometries on a BK7 substrate. The results show that absorption spectra exhibit both red- and blueshifted plasmon resonances in array, depending on the particle shape and elongation. The cubic structure of gold array provides the highest absorption efficiency, while the spherical structures give wider bandwidth; the combination of these structures could be used to design a system with intended features. We demonstrate that the geometrical symmetry plays an important role in the plasmon resonance of gold arrays, and it is shifted when the symmetry of the array is broken.
Collapse
|
29
|
Wei W, Chen N, Nong J, Lan G, Wang W, Yi J, Tang L. Graphene-assisted multilayer structure employing hybrid surface plasmon and magnetic plasmon for surface-enhanced vibrational spectroscopy. OPTICS EXPRESS 2018; 26:16903-16916. [PMID: 30119509 DOI: 10.1364/oe.26.016903] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/27/2018] [Accepted: 05/28/2018] [Indexed: 06/08/2023]
Abstract
A graphene-assisted vertical multilayer structure is proposed for high performance surface-enhanced Raman scattering (SERS) and surface-enhanced infrared absorption (SEIRA) spectroscopies on a single substrate, employing simultaneous localized surface plasmon in the visible region and magnetic plasmon resonance in the mid-infrared region. Such multilayer structure consists of a monolayer graphene sandwiched between Ag nanoparticles (NPs) and a metal-insulator-metal (MIM) microstructure, which can be easily fabricated by a standard surface micromachining process. Benefiting from the large near field enhancement by the hybrid plasmons in both visible and mid-infrared regions, a high enhancement factor of up to 107 for SERS and 105 for SEIRA can be achieved. Additionally, the strong magnetic resonance of the MIM microstructure can be tuned in broadband to selectively enhance the desired vibration modes of molecules. The strong SERS and SEIRA enhancement together with easy fabrication provides new opportunities for developing integrated plasmonic devices for multispectral detection of molecules on the same substrate.
Collapse
|
30
|
Haran G, Chuntonov L. Artificial Plasmonic Molecules and Their Interaction with Real Molecules. Chem Rev 2018; 118:5539-5580. [DOI: 10.1021/acs.chemrev.7b00647] [Citation(s) in RCA: 65] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Affiliation(s)
- Gilad Haran
- Chemical and Biological Physics Department, Weizmann Institute of Science, Rehovot 760001, Israel
| | - Lev Chuntonov
- Schulich Faculty of Chemistry, Technion—Israel Institute of Technology, Haifa 3200008, Israel
| |
Collapse
|
31
|
Lerch S, Reinhard BM. Effect of interstitial palladium on plasmon-driven charge transfer in nanoparticle dimers. Nat Commun 2018; 9:1608. [PMID: 29686266 PMCID: PMC5913128 DOI: 10.1038/s41467-018-04066-2] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2017] [Accepted: 03/30/2018] [Indexed: 12/22/2022] Open
Abstract
Capacitive plasmon coupling between noble metal nanoparticles (NPs) is characterized by an increasing red-shift of the bonding dipolar plasmon mode (BDP) in the classical electromagnetic coupling regime. This model breaks down at short separations where plasmon-driven charge transfer induces a gap current between the NPs with a magnitude and separation dependence that can be modulated if molecules are present in the gap. Here, we use gap contained DNA as a scaffold for the growth of palladium (Pd) NPs in the gap between two gold NPs and investigate the effect of increasing Pd NP concentration on the BDP mode. Consistent with enhanced plasmon-driven charge transfer, the integration of discrete Pd NPs depolarizes the capacitive BDP mode over longer interparticle separations than is possible in only DNA-linked Au NPs. High Pd NP densities in the gap increases the gap conductance and induces the transition from capacitive to conductive coupling. Plasmon coupling between nanoparticles may depend not only on interparticle gap distance, but also on gap conductance. Here, the authors modify the gap conductance—and thus the plasmon response—between gold nanoparticle dimers by growing varying amounts of palladium nanoparticles in the gap.
Collapse
Affiliation(s)
- Sarah Lerch
- Department of Chemistry and The Photonics Center, Boston University, 8 Saint Mary's Street, Boston, MA, 02215, USA
| | - Björn M Reinhard
- Department of Chemistry and The Photonics Center, Boston University, 8 Saint Mary's Street, Boston, MA, 02215, USA.
| |
Collapse
|
32
|
Zhao Y, Sun M, Ma W, Kuang H, Xu C. Biological Molecules-Governed Plasmonic Nanoparticle Dimers with Tailored Optical Behaviors. J Phys Chem Lett 2017; 8:5633-5642. [PMID: 29094951 DOI: 10.1021/acs.jpclett.7b01781] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Self-assembly opens new avenues to direct the organization of nanoparticles (NPs) into discrete structures with predefined configuration and association numbers. Plasmonic NP dimers provide a well-defined system for investigating the plasmonic coupling and electromagnetic (EM) interaction in arrays of NPs. The programmability and structural plasticity of biomolecules offers a convenient platform for constructing of NP dimers in a controllable way. Plasmonic coupling of NPs enables dimers to exhibit tunable optical properties, such as surface-enhanced Raman scattering (SERS), chirality, photoluminescence, and electrochemiluminescence (ECL) properties, which can be tailored by altering the biomolecules, the building blocks with distinct compositions, sizes and morphology, the interparticle distances, as well as the geometric configuration of the constituent NPs. An overview of recent developments in biological molecules-governed NP dimers, the tailored optical behaviors, and challenges in enhancing optical signals and proposing plasmonic biosensors are discussed in this Perspective.
Collapse
Affiliation(s)
- Yuan Zhao
- Key Lab of Synthetic and Biological Colloids, Ministry of Education, School of Chemical and Material Engineering, and ‡International Joint Research Laboratory for Biointerface and Biodetection, State Key Lab of Food Science and Technology , Wuxi, Jiangsu 214122, People's Republic of China
| | - Maozhong Sun
- Key Lab of Synthetic and Biological Colloids, Ministry of Education, School of Chemical and Material Engineering, and ‡International Joint Research Laboratory for Biointerface and Biodetection, State Key Lab of Food Science and Technology , Wuxi, Jiangsu 214122, People's Republic of China
| | - Wei Ma
- Key Lab of Synthetic and Biological Colloids, Ministry of Education, School of Chemical and Material Engineering, and ‡International Joint Research Laboratory for Biointerface and Biodetection, State Key Lab of Food Science and Technology , Wuxi, Jiangsu 214122, People's Republic of China
| | - Hua Kuang
- Key Lab of Synthetic and Biological Colloids, Ministry of Education, School of Chemical and Material Engineering, and ‡International Joint Research Laboratory for Biointerface and Biodetection, State Key Lab of Food Science and Technology , Wuxi, Jiangsu 214122, People's Republic of China
| | - Chuanlai Xu
- Key Lab of Synthetic and Biological Colloids, Ministry of Education, School of Chemical and Material Engineering, and ‡International Joint Research Laboratory for Biointerface and Biodetection, State Key Lab of Food Science and Technology , Wuxi, Jiangsu 214122, People's Republic of China
| |
Collapse
|
33
|
Zhang S, Geryak R, Geldmeier J, Kim S, Tsukruk VV. Synthesis, Assembly, and Applications of Hybrid Nanostructures for Biosensing. Chem Rev 2017; 117:12942-13038. [DOI: 10.1021/acs.chemrev.7b00088] [Citation(s) in RCA: 206] [Impact Index Per Article: 29.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Affiliation(s)
- Shuaidi Zhang
- School of Materials Science
and Engineering, Georgia Institute of Technology, Atlanta, Georgia 30332-0245, United States
| | - Ren Geryak
- School of Materials Science
and Engineering, Georgia Institute of Technology, Atlanta, Georgia 30332-0245, United States
| | - Jeffrey Geldmeier
- School of Materials Science
and Engineering, Georgia Institute of Technology, Atlanta, Georgia 30332-0245, United States
| | - Sunghan Kim
- School of Materials Science
and Engineering, Georgia Institute of Technology, Atlanta, Georgia 30332-0245, United States
| | - Vladimir V. Tsukruk
- School of Materials Science
and Engineering, Georgia Institute of Technology, Atlanta, Georgia 30332-0245, United States
| |
Collapse
|
34
|
Ren J, Wang G, Qiu W, Lin Z, Chen H, Qiu P, Wang JX, Kan Q, Pan JQ. Optimization of the Fano Resonance Lineshape Based on Graphene Plasmonic Hexamer in Mid-Infrared Frequencies. NANOMATERIALS 2017; 7:nano7090238. [PMID: 28846593 PMCID: PMC5618349 DOI: 10.3390/nano7090238] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/25/2017] [Revised: 08/18/2017] [Accepted: 08/22/2017] [Indexed: 12/20/2022]
Abstract
In this article, the lineshape of Fano-like resonance of graphene plasmonic oligomers is investigated as a function of the parameters of the nanostructures, such as disk size, chemical potential and electron momentum relaxation time in mid-infrared frequencies. Also, the mechanism of the optimization is discussed. Furthermore, the environmental index sensing effect of the proposed structure is revealed, and a figure of merit of 25.58 is achieved with the optimized graphene oligomer. The proposed nanostructure could find applications in the fields of chemical or biochemical sensing.
Collapse
Affiliation(s)
- Junbo Ren
- Fujian Key Laboratory of Light Propagation and Transformation, College of Information Science and Engineering, Huaqiao University, Xiamen 361021, China.
| | - Guangqing Wang
- Fujian Key Laboratory of Light Propagation and Transformation, College of Information Science and Engineering, Huaqiao University, Xiamen 361021, China.
| | - Weibin Qiu
- Fujian Key Laboratory of Light Propagation and Transformation, College of Information Science and Engineering, Huaqiao University, Xiamen 361021, China.
| | - Zhili Lin
- Fujian Key Laboratory of Light Propagation and Transformation, College of Information Science and Engineering, Huaqiao University, Xiamen 361021, China.
| | - Houbo Chen
- Fujian Key Laboratory of Light Propagation and Transformation, College of Information Science and Engineering, Huaqiao University, Xiamen 361021, China.
| | - Pingping Qiu
- Fujian Key Laboratory of Light Propagation and Transformation, College of Information Science and Engineering, Huaqiao University, Xiamen 361021, China.
| | - Jia-Xian Wang
- Fujian Key Laboratory of Light Propagation and Transformation, College of Information Science and Engineering, Huaqiao University, Xiamen 361021, China.
| | - Qiang Kan
- College of Materials Science and Opto-Electronic Technology, University of Chinese Academy of Sciences, Beijing 100086, China.
- Institute of Semiconductors, Chinese Academy of Sciences, Beijing 100086, China.
| | - Jiao-Qing Pan
- College of Materials Science and Opto-Electronic Technology, University of Chinese Academy of Sciences, Beijing 100086, China.
- Institute of Semiconductors, Chinese Academy of Sciences, Beijing 100086, China.
| |
Collapse
|
35
|
Amendola V, Pilot R, Frasconi M, Maragò OM, Iatì MA. Surface plasmon resonance in gold nanoparticles: a review. JOURNAL OF PHYSICS. CONDENSED MATTER : AN INSTITUTE OF PHYSICS JOURNAL 2017; 29:203002. [PMID: 28426435 DOI: 10.1088/1361-648x/aa60f3] [Citation(s) in RCA: 585] [Impact Index Per Article: 83.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
In the last two decades, plasmon resonance in gold nanoparticles (Au NPs) has been the subject of intense research efforts. Plasmon physics is intriguing and its precise modelling proved to be challenging. In fact, plasmons are highly responsive to a multitude of factors, either intrinsic to the Au NPs or from the environment, and recently the need emerged for the correction of standard electromagnetic approaches with quantum effects. Applications related to plasmon absorption and scattering in Au NPs are impressively numerous, ranging from sensing to photothermal effects to cell imaging. Also, plasmon-enhanced phenomena are highly interesting for multiple purposes, including, for instance, Raman spectroscopy of nearby analytes, catalysis, or sunlight energy conversion. In addition, plasmon excitation is involved in a series of advanced physical processes such as non-linear optics, optical trapping, magneto-plasmonics, and optical activity. Here, we provide the general overview of the field and the background for appropriate modelling of the physical phenomena. Then, we report on the current state of the art and most recent applications of plasmon resonance in Au NPs.
Collapse
Affiliation(s)
- Vincenzo Amendola
- Department of Chemical Sciences, University of Padova, via Marzolo 1, I-35131 Padova, Italy. Consorzio INSTM, UdR Padova, Italy
| | | | | | | | | |
Collapse
|
36
|
Ren X, Cao E, Lin W, Song Y, Liang W, Wang J. Recent advances in surface plasmon-driven catalytic reactions. RSC Adv 2017. [DOI: 10.1039/c7ra05346k] [Citation(s) in RCA: 46] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Surface plasmons, the free electrons' collective oscillations, have been used in the signal detection and analysis of target molecules, where the local surface plasmon resonance (LSPR) can produce a huge EM field, thus enhancing the SERS signal.
Collapse
Affiliation(s)
- Xin Ren
- School of Physics and Electronics
- Shandong Normal University
- Jinan
- China
- Beijing Key Laboratory for Magneto-Photoelectrical Composite and Interface Science
| | - En Cao
- School of Physics and Electronics
- Shandong Normal University
- Jinan
- China
- Beijing Key Laboratory for Magneto-Photoelectrical Composite and Interface Science
| | - Weihua Lin
- Beijing Key Laboratory for Magneto-Photoelectrical Composite and Interface Science
- School of Mathematics and Physics
- University of Science and Technology Beijing
- Beijing
- P. R. China
| | - Yuzhi Song
- School of Physics and Electronics
- Shandong Normal University
- Jinan
- China
| | - Wejie Liang
- Beijing National Laboratory for Condensed Matter Physics
- Institute of Physics
- Chinese Academy of Sciences
- Beijing
- P. R. China
| | - Jingang Wang
- Department of Physics
- Liaoning University
- Shenyang 110036
- P. R. China
| |
Collapse
|
37
|
Jin Q, Zhang C, Zhang J, Yuan Y, Xu M, Yao J. In situ construction of polymer-encapsulated Au nanoparticle dimers based on a C–C coupling reaction. RSC Adv 2017. [DOI: 10.1039/c7ra03942e] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
A polymer-encapsulated Au nanoparticle dimer was fabricated via C–C coupling reaction. The strong effect of LSPR, SERS and SPR catalysis were observed in the gap. It is expected to provide rich information for understanding SERS mechanism.
Collapse
Affiliation(s)
- Qi Jin
- College of Chemistry
- Chemical Engineering and Materials Science
- Soochow University
- Suzhou
- China
| | - Chenjie Zhang
- College of Chemistry
- Chemical Engineering and Materials Science
- Soochow University
- Suzhou
- China
| | - Jing Zhang
- College of Chemistry
- Chemical Engineering and Materials Science
- Soochow University
- Suzhou
- China
| | - Yaxian Yuan
- College of Chemistry
- Chemical Engineering and Materials Science
- Soochow University
- Suzhou
- China
| | - Minmin Xu
- College of Chemistry
- Chemical Engineering and Materials Science
- Soochow University
- Suzhou
- China
| | - Jianlin Yao
- College of Chemistry
- Chemical Engineering and Materials Science
- Soochow University
- Suzhou
- China
| |
Collapse
|
38
|
Griffin S, Montoni NP, Li G, Straney PJ, Millstone JE, Masiello DJ, Camden JP. Imaging Energy Transfer in Pt-Decorated Au Nanoprisms via Electron Energy-Loss Spectroscopy. J Phys Chem Lett 2016; 7:3825-3832. [PMID: 27617864 DOI: 10.1021/acs.jpclett.6b01878] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
Driven by the desire to understand energy transfer between plasmonic and catalytic metals for applications such as plasmon-mediated catalysis, we examine the spatially resolved electron energy-loss spectra (EELS) of both pure Au nanoprisms and Pt-decorated Au nanoprisms. The EEL spectra and the resulting surface-plasmon mode maps reveal detailed near-field information on the coupling and energy transfer in these systems, thereby elucidating the underlying mechanism of plasmon-driven chemical catalysis in mixed-metal nanostructures. Through a combination of experiment and theory we demonstrate that although the location of the Pt decoration greatly influences the plasmons of the nanoprism, simple spatial proximity is not enough to induce significant energy transfer from the Au to the Pt. What matters more is the spectral overlap between the intrinsic plasmon resonances of the Au nanoprism and Pt decoration, which can be tuned by changing the composition or morphology of either component.
Collapse
Affiliation(s)
- Sarah Griffin
- Department of Chemistry and Biochemistry, University of Notre Dame , Notre Dame, Indiana 46556, United States
| | - Nicholas P Montoni
- Department of Chemistry, University of Washington , Seattle, Washington 98915, United States
| | - Guoliang Li
- Department of Chemistry and Biochemistry, University of Notre Dame , Notre Dame, Indiana 46556, United States
| | - Patrick J Straney
- Department of Chemistry, University of Pittsburgh , Pittsburgh, Pennsylvania 15260, United States
| | - Jill E Millstone
- Department of Chemistry, University of Pittsburgh , Pittsburgh, Pennsylvania 15260, United States
| | - David J Masiello
- Department of Chemistry, University of Washington , Seattle, Washington 98915, United States
| | - Jon P Camden
- Department of Chemistry and Biochemistry, University of Notre Dame , Notre Dame, Indiana 46556, United States
| |
Collapse
|
39
|
Choueiri RM, Galati E, Thérien-Aubin H, Klinkova A, Larin EM, Querejeta-Fernández A, Han L, Xin HL, Gang O, Zhulina EB, Rubinstein M, Kumacheva E. Surface patterning of nanoparticles with polymer patches. Nature 2016; 538:79-83. [PMID: 27556943 PMCID: PMC5161688 DOI: 10.1038/nature19089] [Citation(s) in RCA: 195] [Impact Index Per Article: 24.4] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2016] [Accepted: 06/28/2016] [Indexed: 12/24/2022]
Abstract
Patterning of colloidal particles with chemically or topographically distinct surface domains (patches) has attracted intense research interest. Surface-patterned particles act as colloidal analogues of atoms and molecules, serve as model systems in studies of phase transitions in liquid systems, behave as 'colloidal surfactants' and function as templates for the synthesis of hybrid particles. The generation of micrometre- and submicrometre-sized patchy colloids is now efficient, but surface patterning of inorganic colloidal nanoparticles with dimensions of the order of tens of nanometres is uncommon. Such nanoparticles exhibit size- and shape-dependent optical, electronic and magnetic properties, and their assemblies show new collective properties. At present, nanoparticle patterning is limited to the generation of two-patch nanoparticles, and nanoparticles with surface ripples or a 'raspberry' surface morphology. Here we demonstrate nanoparticle surface patterning, which utilizes thermodynamically driven segregation of polymer ligands from a uniform polymer brush into surface-pinned micelles following a change in solvent quality. Patch formation is reversible but can be permanently preserved using a photocrosslinking step. The methodology offers the ability to control the dimensions of patches, their spatial distribution and the number of patches per nanoparticle, in agreement with a theoretical model. The versatility of the strategy is demonstrated by patterning nanoparticles with different dimensions, shapes and compositions, tethered with various types of polymers and subjected to different external stimuli. These patchy nanocolloids have potential applications in fundamental research, the self-assembly of nanomaterials, diagnostics, sensing and colloidal stabilization.
Collapse
Affiliation(s)
- Rachelle M Choueiri
- Department of Chemistry, University of Toronto, 80 Saint George Street, Toronto, Ontario M5S 3H6, Canada
| | - Elizabeth Galati
- Department of Chemistry, University of Toronto, 80 Saint George Street, Toronto, Ontario M5S 3H6, Canada
| | - Héloïse Thérien-Aubin
- Department of Chemistry, University of Toronto, 80 Saint George Street, Toronto, Ontario M5S 3H6, Canada
| | - Anna Klinkova
- Department of Chemistry, University of Toronto, 80 Saint George Street, Toronto, Ontario M5S 3H6, Canada
| | - Egor M Larin
- Department of Chemistry, University of Toronto, 80 Saint George Street, Toronto, Ontario M5S 3H6, Canada
| | - Ana Querejeta-Fernández
- Department of Chemistry, University of Toronto, 80 Saint George Street, Toronto, Ontario M5S 3H6, Canada
| | - Lili Han
- Center for Functional Nanomaterials, Brookhaven National Laboratory, Upton, New York 11973, USA
- Institute of New Energy Materials, School of Materials Science and Engineering, Tianjin University, Tianjin 300072, China
| | - Huolin L Xin
- Center for Functional Nanomaterials, Brookhaven National Laboratory, Upton, New York 11973, USA
| | - Oleg Gang
- Center for Functional Nanomaterials, Brookhaven National Laboratory, Upton, New York 11973, USA
| | - Ekaterina B Zhulina
- Institute of Macromolecular Compounds of the Russian Academy of Sciences, Saint Petersburg, 199004, Russia
- Saint Petersburg National University of Informational Technologies, Mechanics and Optics, Saint Petersburg, 197101, Russia
| | - Michael Rubinstein
- Department of Chemistry, University of North Carolina, Chapel Hill, North Carolina 27599-3290, USA
| | - Eugenia Kumacheva
- Department of Chemistry, University of Toronto, 80 Saint George Street, Toronto, Ontario M5S 3H6, Canada
- Institute of Biomaterials and Biomedical Engineering, University of Toronto, 4 Taddle Creek Road, Toronto, Ontario M5S 3G9, Canada
- Department of Chemical Engineering and Applied Chemistry, University of Toronto, 200 College Street, Toronto, Ontario M5S 3E5, Canada
| |
Collapse
|
40
|
Self-Assembly of Gold Nanocrystals into Discrete Coupled Plasmonic Structures. CRYSTALS 2016. [DOI: 10.3390/cryst6090117] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
41
|
Single molecule fluorescence spectroscopy for quantitative biological applications. QUANTITATIVE BIOLOGY 2016. [DOI: 10.1007/s40484-016-0083-0] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
42
|
Zhang Z, Xu P, Yang X, Liang W, Sun M. Surface plasmon-driven photocatalysis in ambient, aqueous and high-vacuum monitored by SERS and TERS. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY C-PHOTOCHEMISTRY REVIEWS 2016. [DOI: 10.1016/j.jphotochemrev.2016.04.001] [Citation(s) in RCA: 66] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
|
43
|
Li X, Hu Y, An Q, Luan X, Zhang Q, Zhang Y. Fuzzy, copper-based multi-functional composite particles serving simultaneous catalytic and signal-enhancing roles. NANOSCALE 2016; 8:9376-9381. [PMID: 27091497 DOI: 10.1039/c6nr02022d] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
Multifunctional plasmonic particles serving simultaneously as catalysts and label-free reporting agents are highly pursued due to their great potential in enhancing reaction operational efficiencies. Copper is an abundant and economic resource, and it possesses practical applicability in industries, but no dual-functional copper-based catalytic and self-reporting particles have been reported so far. This study proposes a facile strategy to prepare high-performance dual-functional copper-based composite particles that catalyze reactions and simultaneously serve as a SERS (surface enhanced Raman spectra) active, label-free reporting agent. Polyelectrolyte-modified reduced graphene oxide particles are used as the reactive precursors in the fabrication method. Upon adding Cu(NO3)2 solutions into the precursor dispersions, composite particles comprised by copper/copper oxide core and polyelectrolyte-graphene shell were facilely obtained under sonication. The as-prepared composite particles efficiently catalyzed the conversion of 4-nitrophenol to 4-aminophenol and simultaneously acted as the SERS-active substrate to give enhanced Raman spectra of the produced 4-aminophenol. Taking advantage of the assembling capabilities of polyelectrolyte shells, the composite particles could be further assembled onto a planar substrate to catalyze organic reactions, facilitating their application in various conditions. We expect this report to promote the fabrication and application of copper-based multifunctional particles.
Collapse
Affiliation(s)
- Xiangming Li
- Beijing Key Laboratory of Materials Utilization of Nonmetallic Minerals and Solid Wastes, National Laboratory of Mineral Materials, School of Materials Science and Technology, China University of Geosciences, Beijing, 100083, China.
| | - Yingmo Hu
- Beijing Key Laboratory of Materials Utilization of Nonmetallic Minerals and Solid Wastes, National Laboratory of Mineral Materials, School of Materials Science and Technology, China University of Geosciences, Beijing, 100083, China.
| | - Qi An
- Beijing Key Laboratory of Materials Utilization of Nonmetallic Minerals and Solid Wastes, National Laboratory of Mineral Materials, School of Materials Science and Technology, China University of Geosciences, Beijing, 100083, China.
| | - Xinglong Luan
- Beijing Key Laboratory of Materials Utilization of Nonmetallic Minerals and Solid Wastes, National Laboratory of Mineral Materials, School of Materials Science and Technology, China University of Geosciences, Beijing, 100083, China.
| | - Qian Zhang
- Beijing Key Laboratory of Materials Utilization of Nonmetallic Minerals and Solid Wastes, National Laboratory of Mineral Materials, School of Materials Science and Technology, China University of Geosciences, Beijing, 100083, China.
| | - Yihe Zhang
- Beijing Key Laboratory of Materials Utilization of Nonmetallic Minerals and Solid Wastes, National Laboratory of Mineral Materials, School of Materials Science and Technology, China University of Geosciences, Beijing, 100083, China.
| |
Collapse
|
44
|
Gruenke NL, Cardinal MF, McAnally MO, Frontiera RR, Schatz GC, Van Duyne RP. Ultrafast and nonlinear surface-enhanced Raman spectroscopy. Chem Soc Rev 2016; 45:2263-90. [PMID: 26848784 DOI: 10.1039/c5cs00763a] [Citation(s) in RCA: 120] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Ultrafast surface-enhanced Raman spectroscopy (SERS) has the potential to study molecular dynamics near plasmonic surfaces to better understand plasmon-mediated chemical reactions such as plasmonically-enhanced photocatalytic or photovoltaic processes. This review discusses the combination of ultrafast Raman spectroscopic techniques with plasmonic substrates for high temporal resolution, high sensitivity, and high spatial resolution vibrational spectroscopy. First, we introduce background information relevant to ultrafast SERS: the mechanisms of surface enhancement in Raman scattering, the characterization of plasmonic materials with ultrafast techniques, and early complementary techniques to study molecule-plasmon interactions. We then discuss recent advances in surface-enhanced Raman spectroscopies with ultrafast pulses with a focus on the study of molecule-plasmon coupling and molecular dynamics with high sensitivity. We also highlight the challenges faced by this field by the potential damage caused by concentrated, highly energetic pulsed fields in plasmonic hotspots, and finally the potential for future ultrafast SERS studies.
Collapse
Affiliation(s)
- Natalie L Gruenke
- Department of Chemistry, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208, USA.
| | | | | | | | | | | |
Collapse
|
45
|
Scholl JA, Garcia-Etxarri A, Aguirregabiria G, Esteban R, Narayan TC, Koh AL, Aizpurua J, Dionne JA. Evolution of Plasmonic Metamolecule Modes in the Quantum Tunneling Regime. ACS NANO 2016; 10:1346-1354. [PMID: 26639023 DOI: 10.1021/acsnano.5b06738] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
Plasmonic multinanoparticle systems exhibit collective electric and magnetic resonances that are fundamental for the development of state-of-the-art optical nanoantennas, metamaterials, and surface-enhanced spectroscopy substrates. While electric dipolar modes have been investigated in both the classical and quantum realm, little attention has been given to magnetic and other "dark" modes at the smallest dimensions. Here, we study the collective electric, magnetic, and dark modes of colloidally synthesized silver nanosphere trimers with varying interparticle separation using scanning transmission electron microscopy (STEM) and electron energy-loss spectroscopy (EELS). This technique enables direct visualization and spatially selective excitation of individual trimers, as well as manipulation of the interparticle distance into the subnanometer regime with the electron beam. Our experiments reveal that bonding electric and magnetic modes are significantly impacted by quantum effects, exhibiting a relative blueshift and reduced EELS amplitude compared to classical predictions. In contrast, the trimer's electric dark mode is not affected by quantum tunneling for even Ångström-scale interparticle separations. We employ a quantum-corrected model to simulate the effect of electron tunneling in the trimer which shows excellent agreement with experimental results. This understanding of classical and quantum-influenced hybridized modes may impact the development of future quantum plasmonic materials and devices, including Fano-like molecular sensors and quantum metamaterials.
Collapse
Affiliation(s)
- Jonathan A Scholl
- Department of Materials Science and Engineering, Stanford University , Stanford, California 94305, United States
| | - Aitzol Garcia-Etxarri
- Department of Materials Science and Engineering, Stanford University , Stanford, California 94305, United States
- Center for Material Physics, CSIC - UPV/EHU and DIPC , Donostia, San Sebastian 20018, Spain
| | | | - Ruben Esteban
- Center for Material Physics, CSIC - UPV/EHU and DIPC , Donostia, San Sebastian 20018, Spain
| | - Tarun C Narayan
- Department of Materials Science and Engineering, Stanford University , Stanford, California 94305, United States
| | - Ai Leen Koh
- Stanford Nanocharacterization Laboratory, Stanford University , Stanford, California 94305, United States
| | - Javier Aizpurua
- Center for Material Physics, CSIC - UPV/EHU and DIPC , Donostia, San Sebastian 20018, Spain
| | - Jennifer A Dionne
- Department of Materials Science and Engineering, Stanford University , Stanford, California 94305, United States
- Stanford Institute for Materials and Energy Sciences, SLAC National Accelerator Laboratory , 2575 Sand Hill Road, Menlo Park, California 94025, United States
| |
Collapse
|
46
|
Chervinskii S, Reduto I, Kamenskii A, Mukhin IS, Lipovskii AA. 2D-patterning of self-assembled silver nanoisland films. Faraday Discuss 2016; 186:107-21. [PMID: 26765367 DOI: 10.1039/c5fd00129c] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The paper is dedicated to the recently developed by the authors technique of silver nanoisland growth, allowing self-arrangement of 2D-patterns of nanoislands. The technique employs silver out-diffusion from ion-exchanged glass in the course of annealing in hydrogen. To modify the silver ion distribution in the exchanged soda-lime glass we included the thermal poling of the ion-exchanged glass with a profiled electrode as an intermediate stage of the process. The resulting consequence consists of three steps: (i) during the ion exchange of the glass in the AgxNa1-xNO3 (x = 0.01-0.15) melt we enrich the subsurface layer of the glass with silver ions; (ii) under the thermal poling, the electric field displaces these ions deeper into the glass under the 2D profiled anodic electrode, the displacement is smaller under the hollows in the electrode where the intensity of the field is minimal; (iii) annealing in a reducing atmosphere of hydrogen results in silver out-diffusion only in the regions corresponding to the electrode hollows, as a result silver forms nanoislands following the shape of the electrode. Varying the electrode and mode of processing allows governing the nanoisland size distribution and self-arrangement of the isolated single nanoislands, pairs, triples or groups of several nanoislands-so-called plasmonic molecules.
Collapse
Affiliation(s)
- Semen Chervinskii
- University of Eastern Finland, P. O. Box 111, Joensuu, 80101 Finland. and Peter the Great St. Petersburg Polytechnic University, 29 Polytechnicheskaya, St. Petersburg, 195251 Russia
| | - Igor Reduto
- University of Eastern Finland, P. O. Box 111, Joensuu, 80101 Finland. and Peter the Great St. Petersburg Polytechnic University, 29 Polytechnicheskaya, St. Petersburg, 195251 Russia and St. Petersburg Academic University, 8/3 Khlopina, St. Petersburg, 194021 Russia
| | - Alexander Kamenskii
- Peter the Great St. Petersburg Polytechnic University, 29 Polytechnicheskaya, St. Petersburg, 195251 Russia and St. Petersburg Academic University, 8/3 Khlopina, St. Petersburg, 194021 Russia
| | - Ivan S Mukhin
- St. Petersburg Academic University, 8/3 Khlopina, St. Petersburg, 194021 Russia and ITMO University, 49 Kronverksky, St. Petersburg, 197101 Russia
| | - Andrey A Lipovskii
- Peter the Great St. Petersburg Polytechnic University, 29 Polytechnicheskaya, St. Petersburg, 195251 Russia and St. Petersburg Academic University, 8/3 Khlopina, St. Petersburg, 194021 Russia
| |
Collapse
|
47
|
Li S, Zhou Q, Chu W, Zhao W, Zheng J. Effect of adsorbed molecules on surface-enhanced Raman scattering of metal/molecule/metal junctions. RSC Adv 2015. [DOI: 10.1039/c5ra03987h] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Effect of microenvironments on molecular junctions can be elucidated by variation in surface-enhanced Raman scattering of 4-aminothiophenol interconnected in silver/4-aminothiophenol/silver junctions modified with different molecules.
Collapse
Affiliation(s)
- Shuangshuang Li
- College of Chemistry, Chemical Engineering and Materials Science
- Key Lab of Health Chemistry and Molecular Diagnosis of Suzhou
- Soochow University
- Suzhou 215123
- P. R. China
| | - Qun Zhou
- College of Chemistry, Chemical Engineering and Materials Science
- Key Lab of Health Chemistry and Molecular Diagnosis of Suzhou
- Soochow University
- Suzhou 215123
- P. R. China
| | - Wenya Chu
- College of Chemistry, Chemical Engineering and Materials Science
- Key Lab of Health Chemistry and Molecular Diagnosis of Suzhou
- Soochow University
- Suzhou 215123
- P. R. China
| | - Wei Zhao
- College of Chemistry, Chemical Engineering and Materials Science
- Key Lab of Health Chemistry and Molecular Diagnosis of Suzhou
- Soochow University
- Suzhou 215123
- P. R. China
| | - Junwei Zheng
- College of Chemistry, Chemical Engineering and Materials Science
- Key Lab of Health Chemistry and Molecular Diagnosis of Suzhou
- Soochow University
- Suzhou 215123
- P. R. China
| |
Collapse
|