1
|
Wu J, Lang T, Zhang C, Yang F, Yang F, Qu H, Pu Z, Feng J. Chromosomal Localization and Diversity Analysis of 5S and 18S Ribosomal DNA in 13 Species from the Genus Ipomoea. Genes (Basel) 2024; 15:1340. [PMID: 39457464 PMCID: PMC11508114 DOI: 10.3390/genes15101340] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2024] [Revised: 10/12/2024] [Accepted: 10/18/2024] [Indexed: 10/28/2024] Open
Abstract
Background: Sweet potato (Ipomoea batatas (L.) Lam.), a key global root crop, faces challenges due to its narrow genetic background. This issue can be addressed by utilizing the diverse genetic resources of sweet potato's wild relatives, which are invaluable for its genetic improvement. Methods: The morphological differences in leaves, stems, and roots among 13 Ipomoea species were observed and compared. Chromosome numbers were determined by examining metaphase cells from root tips. Fluorescence in situ hybridization (FISH) was used to identify the number of 5S and 18S rDNA sites in these species. PCR amplification was performed for both 5S and 18S rDNA, and phylogenetic relationships among the species were analyzed based on the sequences of 18S rDNA. Results: Three species were found to have enlarged roots among the 13 Ipomoea species. Chromosome analysis revealed that I. batatas had 90 chromosomes, Ipomoea pes-tigridis had 28 chromosomes, while the remaining species possessed 30 chromosomes. Detection of rDNA sites in the 13 species showed two distinct 5S rDNA site patterns and six 18S rDNA site patterns in the 12 diploid species. These rDNA sites occurred in pairs, except for the seven 18S rDNA sites observed in Ipomoea digitata. PCR amplification of 5S rDNA identified four distinct patterns, while 18S rDNA showed only a single pattern across the species. Phylogenetic analysis divided the 13 species into two primary clades, with the closest relationships found between I. batatas and Ipomoea trifida, as well as between Ipomoea platensis and I. digitata. Conclusions: These results enhance our understanding of the diversity among Ipomoea species and provide valuable insights for breeders using these species to generate improved varieties.
Collapse
Affiliation(s)
- Jingyu Wu
- Biotechnology and Nuclear Technology Research Institute, Sichuan Academy of Agricultural Sciences, Chengdu 610066, China
| | - Tao Lang
- Biotechnology and Nuclear Technology Research Institute, Sichuan Academy of Agricultural Sciences, Chengdu 610066, China
| | - Cong Zhang
- Biotechnology and Nuclear Technology Research Institute, Sichuan Academy of Agricultural Sciences, Chengdu 610066, China
| | - Fan Yang
- Biotechnology and Nuclear Technology Research Institute, Sichuan Academy of Agricultural Sciences, Chengdu 610066, China
| | - Feiyang Yang
- Biotechnology and Nuclear Technology Research Institute, Sichuan Academy of Agricultural Sciences, Chengdu 610066, China
| | - Huijuan Qu
- Biotechnology and Nuclear Technology Research Institute, Sichuan Academy of Agricultural Sciences, Chengdu 610066, China
| | - Zhigang Pu
- Sichuan Academy of Agricultural Sciences, Chengdu 610066, China
| | - Junyan Feng
- Biotechnology and Nuclear Technology Research Institute, Sichuan Academy of Agricultural Sciences, Chengdu 610066, China
| |
Collapse
|
2
|
Wu Y, Jin X, Wang L, Lei J, Chai S, Wang C, Zhang W, Yang X. Integrated Transcriptional and Metabolomic Analysis of Factors Influencing Root Tuber Enlargement during Early Sweet Potato Development. Genes (Basel) 2024; 15:1319. [PMID: 39457443 PMCID: PMC11507034 DOI: 10.3390/genes15101319] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2024] [Revised: 10/10/2024] [Accepted: 10/12/2024] [Indexed: 10/28/2024] Open
Abstract
BACKGROUND Sweet potato (Ipomoea batatas (L.) Lam.) is widely cultivated as an important food crop. However, the molecular regulatory mechanisms affecting root tuber development are not well understood. METHODS The aim of this study was to systematically reveal the regulatory network of sweet potato root enlargement through transcriptomic and metabolomic analysis in different early stages of sweet potato root development, combined with phenotypic and anatomical observations. RESULTS Using RNA-seq, we found that the differential genes of the S1 vs. S2, S3 vs. S4, and S4 vs. S5 comparison groups were enriched in the phenylpropane biosynthesis pathway during five developmental stages and identified 67 differentially expressed transcription factors, including AP2, NAC, bHLH, MYB, and C2H2 families. Based on the metabolome, K-means cluster analysis showed that lipids, organic acids, organic oxides, and other substances accumulated differentially in different growth stages. Transcriptome, metabolome, and prophetypic data indicate that the S3-S4 stage is the key stage of root development of sweet potato. Weighted gene co-expression network analysis (WGCNA) showed that transcriptome differential genes were mainly enriched in fructose and mannose metabolism, pentose phosphate, selenium compound metabolism, glycolysis/gluconogenesis, carbon metabolism, and other pathways. The metabolites of different metabolites are mainly concentrated in amino sugar and nucleotide sugar metabolism, flavonoid biosynthesis, alkaloid biosynthesis, pantothenic acid, and coenzyme A biosynthesis. Based on WGCNA analysis of gene-metabolite correlation, 44 differential genes and 31 differential metabolites with high correlation were identified. CONCLUSIONS This study revealed key gene and metabolite changes in early development of sweet potato root tuber and pointed out potential regulatory networks, providing new insights into sweet potato root tuber development and valuable reference for future genetic improvement.
Collapse
Affiliation(s)
- Yaqin Wu
- Institute of Food Crops, Hubei Academy of Agricultural Sciences, Wuhan 430064, China; (Y.W.); (X.J.); (L.W.); (J.L.); (S.C.)
- College of Agriculture, Yangtze University, Jingzhou 434025, China
| | - Xiaojie Jin
- Institute of Food Crops, Hubei Academy of Agricultural Sciences, Wuhan 430064, China; (Y.W.); (X.J.); (L.W.); (J.L.); (S.C.)
| | - Lianjun Wang
- Institute of Food Crops, Hubei Academy of Agricultural Sciences, Wuhan 430064, China; (Y.W.); (X.J.); (L.W.); (J.L.); (S.C.)
| | - Jian Lei
- Institute of Food Crops, Hubei Academy of Agricultural Sciences, Wuhan 430064, China; (Y.W.); (X.J.); (L.W.); (J.L.); (S.C.)
| | - Shasha Chai
- Institute of Food Crops, Hubei Academy of Agricultural Sciences, Wuhan 430064, China; (Y.W.); (X.J.); (L.W.); (J.L.); (S.C.)
| | - Chong Wang
- Crop Institute of Jiangxi Academy of Agricultural Sciences, Jiangxi Academy of Agricultural Sciences, Nanchang 330200, China;
| | - Wenying Zhang
- College of Agriculture, Yangtze University, Jingzhou 434025, China
| | - Xinsun Yang
- Institute of Food Crops, Hubei Academy of Agricultural Sciences, Wuhan 430064, China; (Y.W.); (X.J.); (L.W.); (J.L.); (S.C.)
| |
Collapse
|
3
|
Zhou Y, Li A, Du T, Qin Z, Zhang L, Wang Q, Li Z, Hou F. A Small Auxin-Up RNA Gene, IbSAUR36, Regulates Adventitious Root Development in Transgenic Sweet Potato. Genes (Basel) 2024; 15:760. [PMID: 38927696 PMCID: PMC11203243 DOI: 10.3390/genes15060760] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2024] [Revised: 06/05/2024] [Accepted: 06/05/2024] [Indexed: 06/28/2024] Open
Abstract
Small auxin-upregulated RNAs (SAURs), as the largest family of early auxin-responsive genes, play important roles in plant growth and development processes, such as auxin signaling and transport, hypocotyl development, and tolerance to environmental stresses. However, the functions of few SAUR genes are known in the root development of sweet potatoes. In this study, an IbSAUR36 gene was cloned and functionally analyzed. The IbSAUR36 protein was localized to the nucleus and plasma membrane. The transcriptional level of this gene was significantly higher in the pencil root and leaf.This gene was strongly induced by indole-3-acetic acid (IAA), but it was downregulated under methyl-jasmonate(MeJA) treatment. The promoter of IbSAUR36 contained the core cis-elements for phytohormone responsiveness. Promoter β-glucuronidase (GUS) analysis in Arabidopsis showed that IbSAUR36 is highly expressed in the young tissues of plants, such as young leaves, roots, and buds. IbSAUR36-overexpressing sweet potato roots were obtained by an efficient Agrobacterium rhizogenes-mediated root transgenic system. We demonstrated that overexpression of IbSAUR36 promoted the accumulation of IAA, upregulated the genes encoding IAA synthesis and its signaling pathways, and downregulated the genes encoding lignin synthesis and JA signaling pathways. Taken together, these results show that IbSAUR36 plays an important role in adventitious root (AR) development by regulating IAA signaling, lignin synthesis, and JA signaling pathways in transgenic sweet potatoes.
Collapse
Affiliation(s)
- Yuanyuan Zhou
- Crop Research Institute, Shandong Academy of Agricultural Sciences, Jinan 250100, China
| | - Aixian Li
- Crop Research Institute, Shandong Academy of Agricultural Sciences, Jinan 250100, China
| | - Taifeng Du
- Crop Research Institute, Shandong Academy of Agricultural Sciences, Jinan 250100, China
| | - Zhen Qin
- Crop Research Institute, Shandong Academy of Agricultural Sciences, Jinan 250100, China
| | - Liming Zhang
- Crop Research Institute, Shandong Academy of Agricultural Sciences, Jinan 250100, China
| | - Qingmei Wang
- Crop Research Institute, Shandong Academy of Agricultural Sciences, Jinan 250100, China
| | - Zongyun Li
- Key Laboratory of Phylogeny and Comparative Genomics of the Jiangsu Province, School of Life Sciences, Jiangsu Normal University, Xuzhou 221116, China
| | - Fuyun Hou
- Crop Research Institute, Shandong Academy of Agricultural Sciences, Jinan 250100, China
| |
Collapse
|
4
|
Liu BK, Xv BJ, Si CC, Shi WQ, Ding GZ, Tang LX, Xv M, Shi CY, Liu HJ. Effect of potassium fertilization on storage root number, yield, and appearance quality of sweet potato ( Ipomoea batatas L.). FRONTIERS IN PLANT SCIENCE 2024; 14:1298739. [PMID: 38455375 PMCID: PMC10917953 DOI: 10.3389/fpls.2023.1298739] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/22/2023] [Accepted: 12/18/2023] [Indexed: 03/09/2024]
Abstract
Increasing storage root number is a pivotal approach to enhance both storage root (SR) yield and appearance quality of sweet potato. Here, 2-year field experiments were conducted to investigate the effect of 0 (K0), 120 (K1), 240 (K2), and 360 (K3) kg ha-1 potassium fertilizer (K2O) on lignin metabolism, root growth, storage root yield, and uniformity. The results demonstrated that potassium (K) application led to a decrease in the activities of key enzymes involved in lignin biosynthesis, including phenylalanine deaminase (PAL), 4-coumarate coenzyme A ligase (4-CL), cinnamic acid dehydrogenase (CAD), polyphenol oxidase (PPO), and peroxidase (POD). This resulted in a significant reduction in lignin and G-type lignin contents in potential SRs compared to K0 treatment within 10-30 days after planting (DAP). BJ553 exhibited a significant decrease in PAL activity, as well as lignin and G-type contents at 10 DAP, whereas YS25 showed delayed effects until 20 DAP. However, the number and distribution of secondary xylem conduits as well as the mid-column diameter area in roots were increased in K2 treatment. Interestingly, K2 treatment exhibited significantly larger potential SR diameter than other treatments at 15, 20, and 25 DAP. At harvest, K2 treatment increased the SR number, the single SR weight, and overall yield greatly compared with K0 treatment, with an average increase of 19.12%, 16.54%, and 16.92% respectively. The increase of SR number in BJ553 was higher than that of YS25. Furthermore, K2 treatment exhibited the lowest coefficient of variation for both SR length and diameter, indicating a higher yield of middle-sized SRs. In general, appropriate potassium application could effectively suppress lignin biosynthesis, leading to a reduction in the degree of pericycle lignification in potential SRs. This promotes an increase in the number of storage roots and ultimately enhances both yield and appearance quality of sweet potato. The effect of potassium fertilizer on lignin metabolism in BJ553 roots was earlier and resulted in a greater increase in the SR number compared to YS25.
Collapse
Affiliation(s)
- Ben-kui Liu
- College of Agronomy, Shandong Agricultural University, Tai’an, Shandong, China
| | - Bing-jie Xv
- College of Agronomy, Shandong Agricultural University, Tai’an, Shandong, China
| | - Cheng-cheng Si
- School of Breeding and Multiplication (Sanya Institute of Breeding and Multiplication), Hainan University, Sanya, China
| | - Wen-qing Shi
- Shandong Agricultural Technology Extension Center, Jinan, Shandong, China
| | - Guo-zheng Ding
- College of Agronomy, Shandong Agricultural University, Tai’an, Shandong, China
| | - Li-xue Tang
- College of Agronomy, Shandong Agricultural University, Tai’an, Shandong, China
| | - Ming Xv
- Shandong Academy of Agricultural Sciences, Jinan, Shandong, China
| | - Chun-yv Shi
- College of Agronomy, Shandong Agricultural University, Tai’an, Shandong, China
| | - Hong-jvan Liu
- College of Agronomy, Shandong Agricultural University, Tai’an, Shandong, China
| |
Collapse
|
5
|
Divya K, Thangaraj M, Krishna Radhika N. CRISPR/Cas9: an advanced platform for root and tuber crops improvement. Front Genome Ed 2024; 5:1242510. [PMID: 38312197 PMCID: PMC10836405 DOI: 10.3389/fgeed.2023.1242510] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2023] [Accepted: 12/26/2023] [Indexed: 02/06/2024] Open
Abstract
Root and tuber crops (RTCs), which include cassava, potato, sweet potato, and yams, principally function as staple crops for a considerable fraction of the world population, in addition to their diverse applications in nutrition, industry, and bioenergy sectors. Even then, RTCs are an underutilized group considering their potential as industrial raw material. Complexities in conventional RTC improvement programs curb the extensive exploitation of the potentials of this group of crop species for food, energy production, value addition, and sustainable development. Now, with the advent of whole-genome sequencing, sufficient sequence data are available for cassava, sweet potato, and potato. These genomic resources provide enormous scope for the improvement of tuber crops, to make them better suited for agronomic and industrial applications. There has been remarkable progress in RTC improvement through the deployment of new strategies like gene editing over the last decade. This review brings out the major areas where CRISPR/Cas technology has improved tuber crops. Strategies for genetic transformation of RTCs with CRISPR/Cas9 constructs and regeneration of edited lines and the bottlenecks encountered in their establishment are also discussed. Certain attributes of tuber crops requiring focus in future research along with putative editing targets are also indicated. Altogether, this review provides a comprehensive account of developments achieved, future lines of research, bottlenecks, and major experimental concerns regarding the establishment of CRISPR/Cas9-based gene editing in RTCs.
Collapse
Affiliation(s)
- K Divya
- ICAR-Central Tuber Crops Research Institute, Thiruvananthapuram, India
| | | | - N Krishna Radhika
- ICAR-Central Tuber Crops Research Institute, Thiruvananthapuram, India
| |
Collapse
|
6
|
Mathura SR, Sutton F, Bowrin V. Characterization and expression analysis of SnRK2, PYL, and ABF/ AREB/ ABI5 gene families in sweet potato. PLoS One 2023; 18:e0288481. [PMID: 37922280 PMCID: PMC10624305 DOI: 10.1371/journal.pone.0288481] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2023] [Accepted: 06/27/2023] [Indexed: 11/05/2023] Open
Abstract
Abscisic acid (ABA) signaling in plants is essential to several aspects of plant development, such as tolerance to environmental stresses and growth. ABA signaling is also important for storage organ formation in crops, such as sweet potato. However, the repertoire of I. batatas ABA signaling gene families has not yet been fully characterized, so that it is unclear which members of these families are necessary for tuberization. Therefore, genome-wide identification of the sweet potato ABF/ AREB/ ABI5, SnRK2, and PYL gene families was performed, along with phylogenetic, motif, cis-regulatory element (CRE), and expression analyses. Nine ABF, eight SnRK2, and eleven PYL gene family members were identified, and there was high sequence conservation among these proteins that were revealed by phylogenetic and motif analyses. The promoter sequences of these genes had multiple CREs that were involved in hormone responses and stress responses. In silico and qRT-PCR expression analyses revealed that these genes were expressed in various tissues and that IbABF3, IbABF4, IbDPBF3, IbDPBF4, IbPYL4, IbSnRK2.1, and IbSnRK2.2 were significantly expressed during storage root development. These results are an important reference that can be used for functional validation studies to better understand how ABA signaling elicits storage root formation at the molecular level.
Collapse
Affiliation(s)
- Sarah R. Mathura
- Biochemistry Research Laboratory (Rm 216), Department of Life Sciences, The University of the West Indies, St. Augustine, Trinidad and Tobago
| | - Fedora Sutton
- ScienceVisions Inc., Brookings, South Dakota, United States of America
| | - Valerie Bowrin
- Biochemistry Research Laboratory (Rm 216), Department of Life Sciences, The University of the West Indies, St. Augustine, Trinidad and Tobago
| |
Collapse
|
7
|
Mathura SR. Deciphering the hormone regulatory mechanisms of storage root initiation in sweet potato: challenges and future prospects. AOB PLANTS 2023; 15:plad027. [PMID: 37292251 PMCID: PMC10244897 DOI: 10.1093/aobpla/plad027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/31/2022] [Accepted: 05/17/2023] [Indexed: 06/10/2023]
Abstract
Sweet potato (Ipomoea batatas) is an economically important food crop that is grown primarily for its edible storage roots. Several researchers have consequently been conducting studies to increase sweet potato yield, and an important aspect of this research involves understanding how storage root initiation occurs. Although significant progress has been made, several challenges associated with studying this crop have resulted in lagging progress compared to other crops and thus sweet potato storage root initiation is not clearly understood. This article highlights the most important aspects of the hormone signalling processes during storage root initiation that needs to be investigated further and suggests candidate genes that should be prioritized for further study, based on their importance in storage organ formation in other crops. Lastly, ways of overcoming the challenges associated with studying this crop are suggested.
Collapse
Affiliation(s)
- Sarah R Mathura
- The Department of Life Sciences, Faculty of Science and Technology, The University of the West Indies, St. Augustine, Trinidad and Tobago
| |
Collapse
|
8
|
Li N, Zhang Y, Wang X, Ma H, Sun Y, Li G, Zhang S. Integration of Transcriptomic and Proteomic Profiles Reveals Multiple Levels of Genetic Regulation of Taproot Growth in Sugar Beet ( Beta vulgaris L.). FRONTIERS IN PLANT SCIENCE 2022; 13:882753. [PMID: 35909753 PMCID: PMC9326478 DOI: 10.3389/fpls.2022.882753] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/24/2022] [Accepted: 06/17/2022] [Indexed: 06/15/2023]
Abstract
Sugar beet taproot growth and development is a complex biological process involving morphogenesis and dry matter accumulation. However, the molecular regulatory mechanisms underlying taproot growth and development remain elusive. We performed a correlation analysis of the proteome and transcriptome in two cultivars (SD13829 and BS02) at the start and the highest points of the taproot growth rate. The corresponding correlation coefficients were 0.6189, 0.7714, 0.6803, and 0.7056 in four comparison groups. A total of 621 genes were regulated at both transcriptional and translational levels, including 190, 71, 140, and 220 in the BS59-VS-BS82, BS59-VS-SD59, BS82-VS-SD82, and SD59-VS-SD82 groups, respectively. Ten, 32, and 68 correlated-DEGs-DEPs (cor-DEGs-DEPs) were significantly enrdiched in the proteome and transcriptome of the BS59-VS-BS82, SD59-VS-SD82, and BS82-VS-SD82 groups, respectively, which included ribonuclease 1-like protein, DEAD-box ATP-dependent RNA helicase, TolB protein, heat shock protein 83, 20 kDa chaperonin, polygalacturonase, endochitinase, brassinolide and gibberellin receptors (BRI1 and GID1), and xyloglucan endotransglucosylase/hydrolase (XTH). In addition, Beta vulgaris XTH could enhance the growth and development of Arabidopsis primary roots by improving cell growth in the root tip elongation zone. These findings suggested that taproot growth and expansion might be regulated at transcriptional and posttranscriptional levels and also may be attributed to cell wall metabolism to improve cell wall loosening and elongation.
Collapse
|
9
|
Cai Z, Cai Z, Huang J, Wang A, Ntambiyukuri A, Chen B, Zheng G, Li H, Huang Y, Zhan J, Xiao D, He L. Transcriptomic analysis of tuberous root in two sweet potato varieties reveals the important genes and regulatory pathways in tuberous root development. BMC Genomics 2022; 23:473. [PMID: 35761189 PMCID: PMC9235109 DOI: 10.1186/s12864-022-08670-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2022] [Accepted: 05/30/2022] [Indexed: 11/16/2022] Open
Abstract
Background Tuberous root formation and development is a complex process in sweet potato, which is regulated by multiple genes and environmental factors. However, the regulatory mechanism of tuberous root development is unclear. Results In this study, the transcriptome of fibrous roots (R0) and tuberous roots in three developmental stages (Rl, R2, R3) were analyzed in two sweet potato varieties, GJS-8 and XGH. A total of 22,914 and 24,446 differentially expressed genes (DEGs) were identified in GJS-8 and XGH respectively, 15,920 differential genes were shared by GJS-8 and XGH. KEGG pathway enrichment analysis showed that the DEGs shared by GJS-8 and XGH were mainly involved in “plant hormone signal transduction” “starch and sucrose metabolism” and “MAPK signal transduction”. Trihelix transcription factor (Tai6.25300) was found to be closely related to tuberous root enlargement by the comprehensive analysis of these DEGs and weighted gene co-expression network analysis (WGCNA). Conclusion A hypothetical model of genetic regulatory network for tuberous root development of sweet potato is proposed, which emphasizes that some specific signal transduction pathways like “plant hormone signal transduction” “Ca2+signal” “MAPK signal transduction” and metabolic processes including “starch and sucrose metabolism” and “cell cycle and cell wall metabolism” are related to tuberous root development in sweet potato. These results provide new insights into the molecular mechanism of tuberous root development in sweet potato. Supplementary Information The online version contains supplementary material available at 10.1186/s12864-022-08670-x.
Collapse
Affiliation(s)
- Zhaoqin Cai
- National Demonstration Center for Experimental Plant Science Education, College of Agriculture, Guangxi University, Nanning, 530004, People's Republic of China.,Guangxi South Subtropical Agricultural Science Research Institute, Chongzuo, 532406, People's Republic of China
| | - Zhipeng Cai
- National Demonstration Center for Experimental Plant Science Education, College of Agriculture, Guangxi University, Nanning, 530004, People's Republic of China
| | - Jingli Huang
- National Demonstration Center for Experimental Plant Science Education, College of Agriculture, Guangxi University, Nanning, 530004, People's Republic of China
| | - Aiqin Wang
- National Demonstration Center for Experimental Plant Science Education, College of Agriculture, Guangxi University, Nanning, 530004, People's Republic of China.,Guangxi Colleges and Universities Key Laboratory of Crop Cultivation and Tillage, Nanning, 530004, People's Republic of China
| | - Aaron Ntambiyukuri
- National Demonstration Center for Experimental Plant Science Education, College of Agriculture, Guangxi University, Nanning, 530004, People's Republic of China
| | - Bimei Chen
- Hepu Institute of Agricultural Sciences, Beihai, 536101, People's Republic of China
| | - Ganghui Zheng
- Hepu Institute of Agricultural Sciences, Beihai, 536101, People's Republic of China
| | - Huifeng Li
- Maize Research Institute of Guangxi Academy of Agricultural Sciences, Nanning, 530007, People's Republic of China
| | - Yongmei Huang
- Maize Research Institute of Guangxi Academy of Agricultural Sciences, Nanning, 530007, People's Republic of China
| | - Jie Zhan
- National Demonstration Center for Experimental Plant Science Education, College of Agriculture, Guangxi University, Nanning, 530004, People's Republic of China.,Guangxi Colleges and Universities Key Laboratory of Crop Cultivation and Tillage, Nanning, 530004, People's Republic of China
| | - Dong Xiao
- National Demonstration Center for Experimental Plant Science Education, College of Agriculture, Guangxi University, Nanning, 530004, People's Republic of China. .,Guangxi Colleges and Universities Key Laboratory of Crop Cultivation and Tillage, Nanning, 530004, People's Republic of China.
| | - Longfei He
- National Demonstration Center for Experimental Plant Science Education, College of Agriculture, Guangxi University, Nanning, 530004, People's Republic of China. .,Guangxi Colleges and Universities Key Laboratory of Crop Cultivation and Tillage, Nanning, 530004, People's Republic of China.
| |
Collapse
|
10
|
Parada-Rojas CH, Pecota K, Almeyda C, Yencho GC, Quesada-Ocampo LM. Sweetpotato Root Development Influences Susceptibility to Black Rot Caused by the Fungal Pathogen Ceratocystis fimbriata. PHYTOPATHOLOGY 2021; 111:1660-1669. [PMID: 33534610 DOI: 10.1094/phyto-12-20-0541-r] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Black rot of sweetpotato, caused by Ceratocystis fimbriata, is an important reemerging disease threatening sweetpotato production in the United States. This study assessed disease susceptibility of the storage root surface, storage root cambium, and slips (vine cuttings) of 48 sweetpotato cultivars, advanced breeding lines, and wild relative accessions. We also characterized the effect of storage root development on susceptibility to C. fimbriata. None of the cultivars examined at the storage root level were resistant, with most cultivars exhibiting similar levels of susceptibility. In storage roots, Jewel and Covington were the least susceptible and significantly different from White Bonita, the most susceptible cultivar. In the slip, significant differences in disease incidence were observed for above- and below-ground plant structures among cultivars, advanced breeding lines, and wild relative accessions. Burgundy and Ipomoea littoralis displayed less below-ground disease incidence compared with NASPOT 8, Sunnyside, and LSU-417, the most susceptible cultivars. Correlation of black rot susceptibility between storage roots and slips was not significant, suggesting that slip assays are not useful to predict resistance in storage roots. Immature, early-developing storage roots were comparatively more susceptible than older, fully developed storage roots. The high significant correlation between the storage root cross-section area and the cross-sectional lesion ratio suggests the presence of an unfavorable environment for C. fimbriata as the storage root develops. Incorporating applications of effective fungicides at transplanting and during early-storage root development when sweetpotato tissues are most susceptible to black rot infection may improve disease management efforts.
Collapse
Affiliation(s)
- C H Parada-Rojas
- Department of Entomology and Plant Pathology, North Carolina State University, Raleigh, NC
| | - Kenneth Pecota
- Department of Horticulture, North Carolina State University, Raleigh, NC
| | - C Almeyda
- Micropropagation and Repository Unit, North Carolina State University, Raleigh, NC
| | - G Craig Yencho
- Department of Horticulture, North Carolina State University, Raleigh, NC
| | - L M Quesada-Ocampo
- Department of Entomology and Plant Pathology, North Carolina State University, Raleigh, NC
| |
Collapse
|
11
|
Comparative transcriptome analysis implied a ZEP paralog was a key gene involved in carotenoid accumulation in yellow-fleshed sweetpotato. Sci Rep 2020; 10:20607. [PMID: 33244002 PMCID: PMC7693279 DOI: 10.1038/s41598-020-77293-7] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2020] [Accepted: 11/09/2020] [Indexed: 12/29/2022] Open
Abstract
The mechanisms of carotenoid accumulation in yellow-fleshed sweetpotato cultivars are unclear. In this study, we compared the transcriptome profiles of a yellow-fleshed cultivar, Beniharuka (BH) and two of its spontaneous white-fleshed mutants (WH2 and WH3) to reveal the genes involved in yellow flesh. As a result of RNA sequencing, a total of 185 differentially expressed genes (DEGs) were commonly detected in WH2 and WH3 compared to BH. Of these genes, 85 DEGs and 100 DEGs were commonly upregulated and downregulated in WH2 and WH3 compared to BH, respectively. g1103.t1, a paralog of zeaxanthin epoxidase (ZEP), was only DEG common to WH2 and WH3 among 38 genes considered to be involved in carotenoid biosynthesis in storage roots. The expression level of g1103.t1 was also considerably lower in five white-fleshed cultivars than in five yellow-fleshed cultivars. Analysis of carotenoid composition in the storage roots showed that the epoxidised carotenoids were drastically reduced in both WH2 and WH3. Therefore, we propose that the ZEP paralog, g1103.t1, may be involved in carotenoid accumulation through the epoxidation of β-carotene and β-cryptoxanthin in sweetpotato.
Collapse
|
12
|
Hearn DJ, O’Brien P, Poulsen SM. Comparative transcriptomics reveals shared gene expression changes during independent evolutionary origins of stem and hypocotyl/root tubers in Brassica (Brassicaceae). PLoS One 2018; 13:e0197166. [PMID: 29856865 PMCID: PMC5983522 DOI: 10.1371/journal.pone.0197166] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2017] [Accepted: 04/27/2018] [Indexed: 11/18/2022] Open
Abstract
Plant succulence provides a classic example of evolutionary convergence in over 40 plant families. If evolutionary parallelism is in fact responsible for separate evolutionary origins of expanded storage tissues in stems, hypocotyls, and roots, we expect similar gene expression profiles in stem and hypocotyl / root tubers. We analyzed RNA-Seq transcript abundance patterns in stem and hypocotyl / root tubers of the Brassica crops kohlrabi (B. oleracea) and turnip (B. rapa) and compared their transcript expression profiles to those in the conspecific thin-stemmed and thin-rooted crops flowering kale and pak choi, respectively. Across these four cultivars, 38,192 expressed gene loci were identified. Of the 3,709 differentially-expressed genes (DEGs) in the turnip: pak choi comparison and the 6,521 DEGs in the kohlrabi: kale comparison, turnips and kohlrabies share a statistically disproportionate overlap of 841 DEG homologs in their tubers (p value < 1e-10). This overlapping set is statistically enriched in biochemical functions that are also associated with tuber induction in potatoes and sweet potatoes: sucrose metabolism, lipoxygenases, auxin metabolism, and meristem development. These shared expression profiles in tuberous stems and root / hypocotyls in Brassica suggest parallel employment of shared molecular genetic pathways during the evolution of tubers in stems, hypocotyls and roots of Brassica crops and more widely in other tuberous plants as well.
Collapse
Affiliation(s)
- David J. Hearn
- Department of Biological Sciences, Towson University, Towson, Maryland, United States of America
| | - Patrick O’Brien
- Department of Biological Sciences, Towson University, Towson, Maryland, United States of America
| | - Sylvie M. Poulsen
- Department of Biological Sciences, Towson University, Towson, Maryland, United States of America
| |
Collapse
|
13
|
Malhotra N, Sood H, Chauhan RS. Transcriptome-wide mining suggests conglomerate of genes associated with tuberous root growth and development in Aconitum heterophyllum Wall. 3 Biotech 2016; 6:152. [PMID: 28330224 PMCID: PMC4940232 DOI: 10.1007/s13205-016-0466-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2016] [Accepted: 06/28/2016] [Indexed: 10/31/2022] Open
Abstract
Tuberous roots of Aconitum heterophyllum constitute storage organ for secondary metabolites, however, molecular components contributing to their formation are not known. The transcriptomes of A. heterophyllum were analyzed to identify possible genes associated with tuberous root development by taking clues from genes implicated in other plant species. Out of 18 genes, eight genes encoding GDP-mannose pyrophosphorylase (GMPase), SHAGGY, Expansin, RING-box protein 1 (RBX1), SRF receptor kinase (SRF), β-amylase, ADP-glucose pyrophosphorylase (AGPase) and Auxin responsive factor 2 (ARF2) showed higher transcript abundance in roots (13-171 folds) compared to shoots. Comparative expression analysis of those genes between tuberous root developmental stages showed 11-97 folds increase in transcripts in fully developed roots compared to young rootlets, thereby implying their association in biosynthesis, accumulation and storage of primary metabolites towards root biomass. Cluster analysis revealed a positive correlation with the gene expression data for different stages of tuberous root formation in A. heterophyllum. The outcome of this study can be useful in genetic improvement of A. heterophyllum for root biomass yield.
Collapse
|
14
|
Ji CY, Kim YH, Kim HS, Ke Q, Kim GW, Park SC, Lee HS, Jeong JC, Kwak SS. Molecular characterization of tocopherol biosynthetic genes in sweetpotato that respond to stress and activate the tocopherol production in tobacco. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2016; 106:118-28. [PMID: 27156136 DOI: 10.1016/j.plaphy.2016.04.037] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/11/2016] [Revised: 04/19/2016] [Accepted: 04/19/2016] [Indexed: 05/22/2023]
Abstract
Tocopherol (vitamin E) is a chloroplast lipid that is presumed to be involved in the plant response to oxidative stress. In this study, we isolated and characterized five tocopherol biosynthetic genes from sweetpotato (Ipomoea batatas [L.] Lam) plants, including genes encoding 4-hydroxyphenylpyruvate dioxygenase (IbHPPD), homogentisate phytyltransferase (IbHPT), 2-methyl-6-phytylbenzoquinol methyltransferase (IbMPBQ MT), tocopherol cyclase (IbTC) and γ-tocopherol methyltransferase (IbTMT). Fluorescence microscope analysis indicated that four proteins localized into the chloroplast, whereas IbHPPD observed in the nuclear. Quantitative RT-PCR analysis revealed that the expression patterns of the five tocopherol biosynthetic genes varied in different plant tissues and under different stress conditions. All five genes were highly expressed in leaf tissues, whereas IbHPPD and IbHPT were highly expressed in the thick roots. The expression patterns of these five genes significantly differed in response to PEG, NaCl and H2O2-mediated oxidative stress. IbHPPD was strongly induced following PEG and H2O2 treatment and IbHPT was strongly induced following PEG treatment, whereas IbMPBQ MT and IbTC were highly expressed following NaCl treatment. Upon infection of the bacterial pathogen Pectobacterium chrysanthemi, the expression of IbHPPD increased sharply in sweetpotato leaves, whereas the expression of the other genes was reduced or unchanged. Additionally, transient expression of the five tocopherol biosynthetic genes in tobacco (Nicotiana bentamiana) leaves resulted in increased transcript levels of the transgenes expressions and tocopherol production. Therefore, our results suggested that the five tocopherol biosynthetic genes of sweetpotato play roles in the stress defense response as transcriptional regulators of the tocopherol production.
Collapse
Affiliation(s)
- Chang Yoon Ji
- Plant Systems Engineering Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), 125 Gwahak-ro, Daejeon 34141, South Korea; Department of Green Chemistry and Environmental Biotechnology, Korea University of Science and Technology (UST), 217 Gajeong-ro, Daejeon 34113, South Korea
| | - Yun-Hee Kim
- Department of Biology Education, College of Education, IALS, Gyeongsang National University, 501 Jinju-Daero, Jinju 52828, South Korea
| | - Ho Soo Kim
- Plant Systems Engineering Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), 125 Gwahak-ro, Daejeon 34141, South Korea
| | - Qingbo Ke
- Plant Systems Engineering Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), 125 Gwahak-ro, Daejeon 34141, South Korea; Department of Green Chemistry and Environmental Biotechnology, Korea University of Science and Technology (UST), 217 Gajeong-ro, Daejeon 34113, South Korea
| | - Gun-Woo Kim
- College of Pharmacy, Chungnam National University, 99 Daehak-ro, Daejeon 34134, South Korea
| | - Sung-Chul Park
- Plant Systems Engineering Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), 125 Gwahak-ro, Daejeon 34141, South Korea
| | - Haeng-Soon Lee
- Plant Systems Engineering Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), 125 Gwahak-ro, Daejeon 34141, South Korea; Department of Green Chemistry and Environmental Biotechnology, Korea University of Science and Technology (UST), 217 Gajeong-ro, Daejeon 34113, South Korea
| | - Jae Cheol Jeong
- Plant Systems Engineering Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), 125 Gwahak-ro, Daejeon 34141, South Korea
| | - Sang-Soo Kwak
- Plant Systems Engineering Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), 125 Gwahak-ro, Daejeon 34141, South Korea; Department of Green Chemistry and Environmental Biotechnology, Korea University of Science and Technology (UST), 217 Gajeong-ro, Daejeon 34113, South Korea.
| |
Collapse
|
15
|
Yu R, Wang J, Xu L, Wang Y, Wang R, Zhu X, Sun X, Luo X, Xie Y, Everlyne M, Liu L. Transcriptome Profiling of Taproot Reveals Complex Regulatory Networks during Taproot Thickening in Radish (Raphanus sativus L.). FRONTIERS IN PLANT SCIENCE 2016; 7:1210. [PMID: 27597853 PMCID: PMC4992731 DOI: 10.3389/fpls.2016.01210] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/06/2015] [Accepted: 07/29/2016] [Indexed: 05/19/2023]
Abstract
Radish (Raphanus sativus L.) is one of the most important vegetable crops worldwide. Taproot thickening represents a critical developmental period that determines yield and quality in radish life cycle. To isolate differentially expressed genes (DGEs) involved in radish taproot thickening process and explore the molecular mechanism underlying taproot development, three cDNA libraries from radish taproot collected at pre-cortex splitting stage (L1), cortex splitting stage (L2), and expanding stage (L3) were constructed and sequenced by RNA-Seq technology. More than seven million clean reads were obtained from the three libraries, from which 4,717,617 (L1, 65.35%), 4,809,588 (L2, 68.24%) and 4,973,745 (L3, 69.45%) reads were matched to the radish reference genes, respectively. A total of 85,939 transcripts were generated from three libraries, from which 10,450, 12,325, and 7392 differentially expressed transcripts (DETs) were detected in L1 vs. L2, L1 vs. L3, and L2 vs. L3 comparisons, respectively. Gene Ontology and pathway analysis showed that many DEGs, including EXPA9, Cyclin, CaM, Syntaxin, MADS-box, SAUR, and CalS were involved in cell events, cell wall modification, regulation of plant hormone levels, signal transduction and metabolisms, which may relate to taproot thickening. Furthermore, the integrated analysis of mRNA-miRNA revealed that 43 miRNAs and 92 genes formed 114 miRNA-target mRNA pairs were co-expressed, and three miRNA-target regulatory networks of taproot were constructed from different libraries. Finally, the expression patterns of 16 selected genes were confirmed using RT-qPCR analysis. A hypothetical model of genetic regulatory network associated with taproot thickening in radish was put forward. The taproot formation of radish is mainly attributed to cell differentiation, division and expansion, which are regulated and promoted by certain specific signal transduction pathways and metabolism processes. These results could provide new insights into the complex molecular mechanism underlying taproot thickening and facilitate genetic improvement of taproot in radish.
Collapse
Affiliation(s)
- Rugang Yu
- National Key Laboratory of Crop Genetics and Germplasm Enhancement, College of Horticulture, Nanjing Agricultural UniversityNanjing, China
- School of Life Science, Huaibei Normal UniversityHuaibei, China
| | - Jing Wang
- National Key Laboratory of Crop Genetics and Germplasm Enhancement, College of Horticulture, Nanjing Agricultural UniversityNanjing, China
| | - Liang Xu
- National Key Laboratory of Crop Genetics and Germplasm Enhancement, College of Horticulture, Nanjing Agricultural UniversityNanjing, China
| | - Yan Wang
- National Key Laboratory of Crop Genetics and Germplasm Enhancement, College of Horticulture, Nanjing Agricultural UniversityNanjing, China
| | - Ronghua Wang
- National Key Laboratory of Crop Genetics and Germplasm Enhancement, College of Horticulture, Nanjing Agricultural UniversityNanjing, China
| | - Xianwen Zhu
- Department of Plant Sciences, North Dakota State UniversityFargo, ND, USA
| | - Xiaochuan Sun
- National Key Laboratory of Crop Genetics and Germplasm Enhancement, College of Horticulture, Nanjing Agricultural UniversityNanjing, China
| | - Xiaobo Luo
- National Key Laboratory of Crop Genetics and Germplasm Enhancement, College of Horticulture, Nanjing Agricultural UniversityNanjing, China
| | - Yang Xie
- National Key Laboratory of Crop Genetics and Germplasm Enhancement, College of Horticulture, Nanjing Agricultural UniversityNanjing, China
| | - Muleke Everlyne
- National Key Laboratory of Crop Genetics and Germplasm Enhancement, College of Horticulture, Nanjing Agricultural UniversityNanjing, China
| | - Liwang Liu
- National Key Laboratory of Crop Genetics and Germplasm Enhancement, College of Horticulture, Nanjing Agricultural UniversityNanjing, China
| |
Collapse
|
16
|
Altered Phenylpropanoid Metabolism in the Maize Lc-Expressed Sweet Potato (Ipomoea batatas) Affects Storage Root Development. Sci Rep 2016; 6:18645. [PMID: 26727353 PMCID: PMC4698713 DOI: 10.1038/srep18645] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2015] [Accepted: 11/23/2015] [Indexed: 01/05/2023] Open
Abstract
There is no direct evidence of the effect of lignin metabolism on early storage root development in sweet potato. In this study, we found that heterologous expression of the maize leaf color (Lc) gene in sweet potato increased anthocyanin pigment accumulation in the whole plant and resulted in reduced size with an increased length/width ratio, low yield and less starch content in the early storage roots. RT-PCR analysis revealed dramatic up-regulation of the genes involved in the lignin biosynthesis pathway in developing storage roots, leading to greater lignin content in the Lc transgenic lines, compared to the wild type. This was also evidenced by the enhanced lignification of vascular cells in the early storage roots. Furthermore, increased expression of the β-amylase gene in leaves and storage roots also accelerated starch degradation and increased the sugar use efficiency, providing more energy and carbohydrate sources for lignin biosynthesis in the Lc transgenic sweet potato. Lesser starch accumulation was observed in the developing storage roots at the initiation stage in the Lc plants. Our study provides experimental evidence of the basic carbohydrate metabolism underlying the development of storage roots, which is the transformation of lignin biosynthesis to starch biosynthesis.
Collapse
|
17
|
Khan MA, Gemenet DC, Villordon A. Root System Architecture and Abiotic Stress Tolerance: Current Knowledge in Root and Tuber Crops. FRONTIERS IN PLANT SCIENCE 2016; 7:1584. [PMID: 27847508 PMCID: PMC5088196 DOI: 10.3389/fpls.2016.01584] [Citation(s) in RCA: 94] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/10/2016] [Accepted: 10/07/2016] [Indexed: 05/19/2023]
Abstract
The challenge to produce more food for a rising global population on diminishing agricultural land is complicated by the effects of climate change on agricultural productivity. Although great progress has been made in crop improvement, so far most efforts have targeted above-ground traits. Roots are essential for plant adaptation and productivity, but are less studied due to the difficulty of observing them during the plant life cycle. Root system architecture (RSA), made up of structural features like root length, spread, number, and length of lateral roots, among others, exhibits great plasticity in response to environmental changes, and could be critical to developing crops with more efficient roots. Much of the research on root traits has thus far focused on the most common cereal crops and model plants. As cereal yields have reached their yield potential in some regions, understanding their root system may help overcome these plateaus. However, root and tuber crops (RTCs) such as potato, sweetpotato, cassava, and yam may hold more potential for providing food security in the future, and knowledge of their root system additionally focuses directly on the edible portion. Root-trait modeling for multiple stress scenarios, together with high-throughput phenotyping and genotyping techniques, robust databases, and data analytical pipelines, may provide a valuable base for a truly inclusive 'green revolution.' In the current review, we discuss RSA with special reference to RTCs, and how knowledge on genetics of RSA can be manipulated to improve their tolerance to abiotic stresses.
Collapse
Affiliation(s)
- M. A. Khan
- International Potato CenterLima, Peru
- *Correspondence: M. A. Khan,
| | | | | |
Collapse
|
18
|
Li J, Ding Q, Wang F, Zhang Y, Li H, Gao J. Integrative Analysis of mRNA and miRNA Expression Profiles of the Tuberous Root Development at Seedling Stages in Turnips. PLoS One 2015; 10:e0137983. [PMID: 26367742 PMCID: PMC4569476 DOI: 10.1371/journal.pone.0137983] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2015] [Accepted: 08/24/2015] [Indexed: 11/18/2022] Open
Abstract
The tuberous root of Brassica rapa L. (turnip) is an important modified organ for nutrition storage. A better understanding of the molecular mechanisms involved in the process of tuberous root development is of great value in both economic and biological context. In this study, we analyzed the expression profiles of both mRNAs and miRNAs in tuberous roots at an early stage before cortex splitting (ES), cortex splitting stage (CSS), and secondary root thickening stage (RTS) in turnip based on high-throughput sequencing technology. A large number of differentially expressed genes (DEGs) and several differentially expressed miRNAs (DEMs) were identified. Based on the DEG analysis, we propose that metabolism is the dominant pathway in both tuberous root initiation and secondary thickening process. The plant hormone signal transduction pathway may play a predominant role in regulating tuberous root initiation, while the starch and sucrose metabolism may be more important for the secondary thickening process. These hypotheses were partially supported by sequential DEM analyses. Of all DEMs, miR156a, miR157a, and miR172a exhibited relatively high expression levels, and were differentially expressed in both tuberous root initiation and the secondary thickening process with the expression profiles negatively correlated with those of their target genes. Our results suggest that these miRNAs play important roles in tuberous root development in turnips.
Collapse
Affiliation(s)
- Jingjuan Li
- Shandong Key Laboratory of Greenhouse Vegetable Biology, Institute of Vegetables and Flowers, Shandong Academy of Agricultural Sciences, Jinan, Shandong, China
| | - Qian Ding
- Shandong Key Laboratory of Greenhouse Vegetable Biology, Institute of Vegetables and Flowers, Shandong Academy of Agricultural Sciences, Jinan, Shandong, China
| | - Fengde Wang
- Shandong Key Laboratory of Greenhouse Vegetable Biology, Institute of Vegetables and Flowers, Shandong Academy of Agricultural Sciences, Jinan, Shandong, China
| | - Yihui Zhang
- Shandong Key Laboratory of Greenhouse Vegetable Biology, Institute of Vegetables and Flowers, Shandong Academy of Agricultural Sciences, Jinan, Shandong, China
| | - Huayin Li
- Shandong Key Laboratory of Greenhouse Vegetable Biology, Institute of Vegetables and Flowers, Shandong Academy of Agricultural Sciences, Jinan, Shandong, China
| | - Jianwei Gao
- Shandong Key Laboratory of Greenhouse Vegetable Biology, Institute of Vegetables and Flowers, Shandong Academy of Agricultural Sciences, Jinan, Shandong, China
| |
Collapse
|
19
|
Li M, Yang Y, Li X, Gu L, Wang F, Feng F, Tian Y, Wang F, Wang X, Lin W, Chen X, Zhang Z. Analysis of integrated multiple 'omics' datasets reveals the mechanisms of initiation and determination in the formation of tuberous roots in Rehmannia glutinosa. JOURNAL OF EXPERIMENTAL BOTANY 2015; 66:5837-51. [PMID: 26077835 DOI: 10.1093/jxb/erv288] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
All tuberous roots in Rehmannia glutinosa originate from the expansion of fibrous roots (FRs), but not all FRs can successfully transform into tuberous roots. This study identified differentially expressed genes and proteins associated with the expansion of FRs, by comparing the tuberous root at expansion stages (initiated tuberous root, ITRs) and FRs at the seedling stage (initiated FRs, IFRs). The role of miRNAs in the expansion of FRs was also explored using the sRNA transcriptome and degradome to identify miRNAs and their target genes that were differentially expressed between ITRs and FRs at the mature stage (unexpanded FRs, UFRs, which are unable to expand into ITRs). A total of 6032 genes and 450 proteins were differentially expressed between ITRs and IFRs. Integrated analyses of these data revealed several genes and proteins involved in light signalling, hormone response, and signal transduction that might participate in the induction of tuberous root formation. Several genes related to cell division and cell wall metabolism were involved in initiating the expansion of IFRs. Of 135 miRNAs differentially expressed between ITRs and UFRs, there were 27 miRNAs whose targets were specifically identified in the degradome. Analysis of target genes showed that several miRNAs specifically expressed in UFRs were involved in the degradation of key genes required for the formation of tuberous roots. As far as could be ascertained, this is the first time that the miRNAs that control the transition of FRs to tuberous roots in R. glutinosa have been identified. This comprehensive analysis of 'omics' data sheds new light on the mechanisms involved in the regulation of tuberous roots formation.
Collapse
Affiliation(s)
- Mingjie Li
- College of Crop Sciences, Fujian Agriculture and Forestry University, Fuzhou, China, 350002
| | - Yanhui Yang
- College of Bioengineering, Henan University of Technology, Zhengzhou, China, 450001
| | - Xinyu Li
- College of Life Sciences, Henan Agricultural University, Zhengzhou, China, 450002
| | - Li Gu
- College of Crop Sciences, Fujian Agriculture and Forestry University, Fuzhou, China, 350002
| | - Fengji Wang
- College of Crop Sciences, Fujian Agriculture and Forestry University, Fuzhou, China, 350002
| | - Fajie Feng
- College of Crop Sciences, Fujian Agriculture and Forestry University, Fuzhou, China, 350002
| | - Yunhe Tian
- College of Crop Sciences, Fujian Agriculture and Forestry University, Fuzhou, China, 350002
| | - Fengqing Wang
- College of Life Sciences, Henan Agricultural University, Zhengzhou, China, 450002
| | - Xiaoran Wang
- College of Life Sciences, Henan Agricultural University, Zhengzhou, China, 450002
| | - Wenxiong Lin
- College of Crop Sciences, Fujian Agriculture and Forestry University, Fuzhou, China, 350002
| | - Xinjian Chen
- College of Life Sciences, Henan Agricultural University, Zhengzhou, China, 450002
| | - Zhongyi Zhang
- College of Crop Sciences, Fujian Agriculture and Forestry University, Fuzhou, China, 350002
| |
Collapse
|
20
|
Wang Z, Fang B, Chen X, Liao M, Chen J, Zhang X, Huang L, Luo Z, Yao Z, Li Y. Temporal patterns of gene expression associated with tuberous root formation and development in sweetpotato (Ipomoea batatas). BMC PLANT BIOLOGY 2015; 15:180. [PMID: 26174091 PMCID: PMC4502468 DOI: 10.1186/s12870-015-0567-5] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/17/2015] [Accepted: 07/07/2015] [Indexed: 05/04/2023]
Abstract
BACKGROUND The tuberous root of sweetpotato is undisputedly an important organ from agronomic and biological perspectives. Little is known regarding the regulatory networks programming tuberous root formation and development. RESULTS Here, as a first step toward understanding these networks, we analyzed and characterized the genome-wide transcriptional profiling and dynamics of sweetpotato root in seven distinct developmental stages using a customized microarray containing 39,724 genes. Analysis of these genes identified temporal programs of gene expression, including hundreds of transcription factor (TF) genes. We found that most genes active in roots were shared across all developmental stages, although significant quantitative changes in gene abundance were observed for 5,368 (including 435 TFs) genes. Clustering analysis of these differentially expressed genes pointed out six distinct expression patterns during root development. Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analysis revealed that genes involved in different processes were enriched at specific stages of root development. In contrast with the large number of shared expressed genes in root development, each stage or period of root development has only a small number of specific genes. In total, 712 (including 27 TFs) and 1,840 (including 115 TFs) genes were identified as root-stage and root-period specific, respectively at the level of microarray. Several of the specific TF genes are known regulators of root development, including DA1-related protein, SHORT-ROOT and BEL1-like. The remaining TFs with unknown roles would also play critical regulatory roles during sweetpotato tuberous root formation and development. CONCLUSIONS The results generated in this study provided spatiotemporal patterns of root gene expression in support of future efforts for understanding the underlying molecular mechanism that control sweetpotato yield and quality.
Collapse
Affiliation(s)
- Zhangying Wang
- Guangdong Provincial Key Laboratory of Crops Genetics and Improvement, Crops Research Institute, Guangdong Academy of Agricultural Sciences, Guangzhou, 510640, China.
| | - Boping Fang
- Guangdong Provincial Key Laboratory of Crops Genetics and Improvement, Crops Research Institute, Guangdong Academy of Agricultural Sciences, Guangzhou, 510640, China.
| | - Xinliang Chen
- Guangdong Provincial Key Laboratory of Crops Genetics and Improvement, Crops Research Institute, Guangdong Academy of Agricultural Sciences, Guangzhou, 510640, China.
| | - Minghuan Liao
- Guangdong Provincial Key Laboratory of Crops Genetics and Improvement, Crops Research Institute, Guangdong Academy of Agricultural Sciences, Guangzhou, 510640, China.
| | - Jingyi Chen
- Guangdong Provincial Key Laboratory of Crops Genetics and Improvement, Crops Research Institute, Guangdong Academy of Agricultural Sciences, Guangzhou, 510640, China.
| | - Xiongjian Zhang
- Guangdong Provincial Key Laboratory of Crops Genetics and Improvement, Crops Research Institute, Guangdong Academy of Agricultural Sciences, Guangzhou, 510640, China.
| | - Lifei Huang
- Guangdong Provincial Key Laboratory of Crops Genetics and Improvement, Crops Research Institute, Guangdong Academy of Agricultural Sciences, Guangzhou, 510640, China.
| | - Zhongxia Luo
- Guangdong Provincial Key Laboratory of Crops Genetics and Improvement, Crops Research Institute, Guangdong Academy of Agricultural Sciences, Guangzhou, 510640, China.
| | - Zhufang Yao
- Guangdong Provincial Key Laboratory of Crops Genetics and Improvement, Crops Research Institute, Guangdong Academy of Agricultural Sciences, Guangzhou, 510640, China.
| | - Yujun Li
- Guangdong Provincial Key Laboratory of Crops Genetics and Improvement, Crops Research Institute, Guangdong Academy of Agricultural Sciences, Guangzhou, 510640, China.
| |
Collapse
|
21
|
Pal T, Malhotra N, Chanumolu SK, Chauhan RS. Next-generation sequencing (NGS) transcriptomes reveal association of multiple genes and pathways contributing to secondary metabolites accumulation in tuberous roots of Aconitum heterophyllum Wall. PLANTA 2015; 242:239-58. [PMID: 25904478 DOI: 10.1007/s00425-015-2304-6] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/13/2015] [Accepted: 04/10/2015] [Indexed: 05/27/2023]
Abstract
The transcriptomes of Aconitum heterophyllum were assembled and characterized for the first time to decipher molecular components contributing to biosynthesis and accumulation of metabolites in tuberous roots. Aconitum heterophyllum Wall., popularly known as Atis, is a high-value medicinal herb of North-Western Himalayas. No information exists as of today on genetic factors contributing to the biosynthesis of secondary metabolites accumulating in tuberous roots, thereby, limiting genetic interventions towards genetic improvement of A. heterophyllum. Illumina paired-end sequencing followed by de novo assembly yielded 75,548 transcripts for root transcriptome and 39,100 transcripts for shoot transcriptome with minimum length of 200 bp. Biological role analysis of root versus shoot transcriptomes assigned 27,596 and 16,604 root transcripts; 12,340 and 9398 shoot transcripts into gene ontology and clusters of orthologous group, respectively. KEGG pathway mapping assigned 37 and 31 transcripts onto starch-sucrose metabolism while 329 and 341 KEGG orthologies associated with transcripts were found to be involved in biosynthesis of various secondary metabolites for root and shoot transcriptomes, respectively. In silico expression profiling of the mevalonate/2-C-methyl-D-erythritol 4-phosphate (non-mevalonate) pathway genes for aconites biosynthesis revealed 4 genes HMGR (3-hydroxy-3-methylglutaryl-CoA reductase), MVK (mevalonate kinase), MVDD (mevalonate diphosphate decarboxylase) and HDS (1-hydroxy-2-methyl-2-(E)-butenyl 4-diphosphate synthase) with higher expression in root transcriptome compared to shoot transcriptome suggesting their key role in biosynthesis of aconite alkaloids. Five genes, GMPase (geranyl diphosphate mannose pyrophosphorylase), SHAGGY, RBX1 (RING-box protein 1), SRF receptor kinases and β-amylase, implicated in tuberous root formation in other plant species showed higher levels of expression in tuberous roots compared to shoots. A total of 15,487 transcription factors belonging to bHLH, MYB, bZIP families and 399 ABC transporters which regulate biosynthesis and accumulation of bioactive compounds were identified in root and shoot transcriptomes. The expression of 5 ABC transporters involved in tuberous root development was validated by quantitative PCR analysis. Network connectivity diagrams were drawn for starch-sucrose metabolism and isoquinoline alkaloid biosynthesis associated with tuberous root growth and secondary metabolism, respectively, in root transcriptome of A. heterophyllum. The current endeavor will be of practical importance in planning a suitable genetic intervention strategy for the improvement of A. heterophyllum.
Collapse
Affiliation(s)
- Tarun Pal
- Department of Biotechnology and Bioinformatics, Jaypee University of Information Technology, Waknaghat, 173234, Himachal Pradesh, India
| | | | | | | |
Collapse
|
22
|
Lee JJ, Kim YH, Kwak YS, An JY, Kim PJ, Lee BH, Kumar V, Park KW, Chang ES, Jeong JC, Lee HS, Kwak SS. A comparative study of proteomic differences between pencil and storage roots of sweetpotato (Ipomoea batatas (L.) Lam.). PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2015; 87:92-101. [PMID: 25562766 DOI: 10.1016/j.plaphy.2014.12.010] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/18/2014] [Accepted: 12/13/2014] [Indexed: 05/25/2023]
Abstract
Fibrous roots of sweetpotato (Ipomoea batatas (L.) Lam.) usually develop into both pencil and storage roots. To understand protein function in root development, a proteomic analysis was conducted on the pencil and storage roots of the light orange-fleshed sweetpotato cultivar, Yulmi. Two-dimensional gel electrophoresis showed that expression of 30 protein spots differed between pencil and storage roots: 15 proteins were up-regulated or expressed in pencil roots and 15 in storage roots. Differentially expressed proteins spots were investigated using matrix-assisted laser desorption/ionization time of flight mass spectrometry, and 10 proteins from pencil roots were identified as binding protein isoform A, catechol oxidase, peroxidases, ascorbate peroxidase, endochitinase, flavanone 3-hydroxylase and unknown proteins. Of the proteins up-regulated in, or restricted to, storage roots, 13 proteins were identified as protein disulfide isomerase, anionic peroxidase, putative ripening protein, sporamin B, sporamin A and sporamin A precursor. An analysis of enzyme activity revealed that catechol oxidase and peroxidase as the first and last enzymes of the lignin biosynthesis pathway, and ascorbate peroxidase had higher activities in pencil than in storage roots. The total concentration of phenolic compounds was also far higher in pencil than in storage roots, and lignin accumulated only in pencil roots. These results provide important insight into sweetpotato proteomics, and imply that lignin biosynthesis and stress-related proteins are up-regulated or uniquely expressed in pencil roots. The results indicate that the reduction of carbon flow toward phenylpropanoid biosynthesis and its delivery to carbohydrate metabolism is a major event in storage root formation.
Collapse
Affiliation(s)
- Jeung Joo Lee
- Department of Applied Biology, IALS, Gyeongsang National University, Jinju 660-701, Republic of Korea
| | - Yun-Hee Kim
- Department of Biology Education, College of Education, IALS, PMBBRC, Gyeongsang National University, Jinju 660-701, Republic of Korea
| | - Youn-Sig Kwak
- Department of Applied Biology, IALS, Gyeongsang National University, Jinju 660-701, Republic of Korea
| | - Jae Young An
- Department of Applied Biology, IALS, Gyeongsang National University, Jinju 660-701, Republic of Korea
| | - Pil Joo Kim
- Division of Applied Life Science (BK21 Program), IALS, College of Agriculture and Life Sciences, Gyeongsang National University, Jinju 660-701, Republic of Korea
| | - Byung Hyun Lee
- Division of Applied Life Science (BK21 Program), IALS, PMBBRC, College of Agriculture and Life Sciences, Gyeongsang National University, Jinju 660-701, Republic of Korea
| | - Vikranth Kumar
- Division of Applied Life Science (BK21 Program), PMBBRC, Gyeongsang National University, Jinju 660-701, Republic of Korea
| | - Kee Woong Park
- Department of Crop Science, Chungnam National University, Daejeon 305-764, Republic of Korea
| | - Eun Sil Chang
- Gyeongsangnam-do Agricultural Research & Extension Services, Jinju 660-985, Republic of Korea
| | - Jae Cheol Jeong
- Plant Systems Engineering Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon 305-806, Republic of Korea
| | - Haeng-Soon Lee
- Plant Systems Engineering Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon 305-806, Republic of Korea
| | - Sang-Soo Kwak
- Plant Systems Engineering Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon 305-806, Republic of Korea.
| |
Collapse
|
23
|
Villordon AQ, Ginzberg I, Firon N. Root architecture and root and tuber crop productivity. TRENDS IN PLANT SCIENCE 2014; 19:419-25. [PMID: 24630073 DOI: 10.1016/j.tplants.2014.02.002] [Citation(s) in RCA: 66] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/07/2013] [Revised: 01/27/2014] [Accepted: 02/06/2014] [Indexed: 05/03/2023]
Abstract
It is becoming increasingly evident that optimization of root architecture for resource capture is vital for enabling the next green revolution. Although cereals provide half of the calories consumed by humans, root and tuber crops are the second major source of carbohydrates globally. Yet, knowledge of root architecture in root and tuber species is limited. In this opinion article, we highlight what is known about the root system in root and tuber crops, and mark new research directions towards a better understanding of the relation between root architecture and yield. We believe that unraveling the role of root architecture in root and tuber crop productivity will improve global food security, especially in regions with marginal soil fertility and low-input agricultural systems.
Collapse
Affiliation(s)
- Arthur Q Villordon
- Louisiana State University Agricultural Center Sweet Potato Research Station, Chase, LA 71324, USA.
| | - Idit Ginzberg
- Institute of Plant Sciences, The Volcani Center, Agricultural Research Organization, PO Box 6, Bet Dagan, 50250, Israel
| | - Nurit Firon
- Institute of Plant Sciences, The Volcani Center, Agricultural Research Organization, PO Box 6, Bet Dagan, 50250, Israel
| |
Collapse
|
24
|
Shan J, Song W, Zhou J, Wang X, Xie C, Gao X, Xie T, Liu J. Transcriptome analysis reveals novel genes potentially involved in photoperiodic tuberization in potato. Genomics 2013; 102:388-96. [PMID: 23856342 DOI: 10.1016/j.ygeno.2013.07.001] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2013] [Revised: 06/29/2013] [Accepted: 07/02/2013] [Indexed: 01/09/2023]
Abstract
Potato microtuber produced in vitro provides a model system to investigate photoperiod-dependent tuberization. However, the genes associated with potato tuberization remain to be elucidated. The present research involved three potato clones with distinct tuberization response to changes of photoperiod. Digital Gene Expression (DGE) Tag Profiling analysis of the short-day-sensitive clone identified 2218 genes that were regulated by day length. Both GO and KEGG pathway analysis provided insights into predominant biological processes and pathways, and enabled the selection of 56 genes associated with circadian rhythmicity, signal transduction, and development. Quantitative transcriptional analysis in the selected clones revealed 5 genes potentially associated with photoperiodic tuberization, which were predicted to encode a DOF protein, a blue light receptor, a lectin, a syntaxin-like protein, and a protein with unknown function. Our results strongly suggest that potato tuberization may be largely controlled by the homologs of genes shown to regulate flowering time in other plants.
Collapse
Affiliation(s)
- Jianwei Shan
- National Center for Vegetable Improvement (Central China), People's Republic of China; Key Laboratory of Horticultural Plant Biology (Huazhong Agricultural University), Ministry of Education, People's Republic of China; Potato Engineering and Technology Research Center of Hubei Province, People's Republic of China; Huazhong Agricultural University, Wuhan, Hubei 430070, People's Republic of China.
| | | | | | | | | | | | | | | |
Collapse
|
25
|
Firon N, LaBonte D, Villordon A, Kfir Y, Solis J, Lapis E, Perlman TS, Doron-Faigenboim A, Hetzroni A, Althan L, Adani Nadir L. Transcriptional profiling of sweetpotato (Ipomoea batatas) roots indicates down-regulation of lignin biosynthesis and up-regulation of starch biosynthesis at an early stage of storage root formation. BMC Genomics 2013; 14:460. [PMID: 23834507 PMCID: PMC3716973 DOI: 10.1186/1471-2164-14-460] [Citation(s) in RCA: 105] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2013] [Accepted: 06/19/2013] [Indexed: 02/06/2023] Open
Abstract
Background The number of fibrous roots that develop into storage roots determines sweetpotato yield. The aim of the present study was to identify the molecular mechanisms involved in the initiation of storage root formation, by performing a detailed transcriptomic analysis of initiating storage roots using next-generation sequencing platforms. A two-step approach was undertaken: (1) generating a database for the sweetpotato root transcriptome using 454-Roche sequencing of a cDNA library created from pooled samples of two root types: fibrous and initiating storage roots; (2) comparing the expression profiles of initiating storage roots and fibrous roots, using the Illumina Genome Analyzer to sequence cDNA libraries of the two root types and map the data onto the root transcriptome database. Results Use of the 454-Roche platform generated a total of 524,607 reads, 85.6% of which were clustered into 55,296 contigs that matched 40,278 known genes. The reads, generated by the Illumina Genome Analyzer, were found to map to 31,284 contigs out of the 55,296 contigs serving as the database. A total of 8,353 contigs were found to exhibit differential expression between the two root types (at least 2.5-fold change). The Illumina-based differential expression results were validated for nine putative genes using quantitative real-time PCR. The differential expression profiles indicated down-regulation of classical root functions, such as transport, as well as down-regulation of lignin biosynthesis in initiating storage roots, and up-regulation of carbohydrate metabolism and starch biosynthesis. In addition, data indicated delicate control of regulators of meristematic tissue identity and maintenance, associated with the initiation of storage root formation. Conclusions This study adds a valuable resource of sweetpotato root transcript sequences to available data, facilitating the identification of genes of interest. This resource enabled us to identify genes that are involved in the earliest stage of storage root formation, highlighting the reduction in carbon flow toward phenylpropanoid biosynthesis and its delivery into carbohydrate metabolism and starch biosynthesis, as major events involved in storage root initiation. The novel transcripts related to storage root initiation identified in this study provide a starting point for further investigation into the molecular mechanisms underlying this process.
Collapse
Affiliation(s)
- Nurit Firon
- Institute of Plant Sciences, The Volcani Center, Agricultural Research Organization, Bet Dagan 50250, Israel.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
26
|
Noh SA, Lee HS, Kim YS, Paek KH, Shin JS, Bae JM. Down-regulation of the IbEXP1 gene enhanced storage root development in sweetpotato. JOURNAL OF EXPERIMENTAL BOTANY 2013; 64:129-42. [PMID: 22945944 PMCID: PMC3528024 DOI: 10.1093/jxb/ers236] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
The role of an expansin gene (IbEXP1) in the formation of the storage root (SR) was investigated by expression pattern analysis and characterization of IbEXP1-antisense sweetpotato (Ipomoea batatas cv. Yulmi) plants in an attempt to elucidate the molecular mechanism underlying SR development in sweetpotato. The transcript level of IbEXP1 was high in the fibrous root (FR) and petiole at the FR stage, but decreased significantly at the young storage root (YSR) stage. IbEXP1-antisense plants cultured in vitro produced FRs which were both thicker and shorter than those of wild-type (WT) plants. Elongation growth of the epidermal cells was significantly reduced, and metaxylem and cambium cell proliferation was markedly enhanced in the FRs of IbEXP1-antisense plants, resulting in an earlier thickening growth in these plants relative to WT plants. There was a marked reduction in the lignification of the central stele of the FRs of the IbEXP1-antisense plants, suggesting that the FRs of the mutant plants possessed a higher potential than those of WT plants to develop into SRs. IbEXP1-antisense plants cultured in soil produced a larger number of SRs and, consequently, total SR weight per IbEXP1-antisense plant was greater than that per WT plant. These results demonstrate that SR development was accelerated in IbEXP1-antisense plants and suggest that IbEXP1 plays a negative role in the formation of SR by suppressing the proliferation of metaxylem and cambium cells to inhibit the initial thickening growth of SRs. IbEXP1 is the first sweetpotato gene whose role in SR development has been directly identified in soil-grown transgenic sweetpotato plants.
Collapse
Affiliation(s)
- Seol Ah Noh
- School of Life Sciences and Biotechnology, Korea UniversitySeoul 136–701Korea
| | - Haeng-Soon Lee
- Environmental Biotechnology Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB)Daejeon 305–806Korea
| | - Youn-Sung Kim
- Gendocs, Inc., Migun Techno WorldYuseong-gu, Daejon 305–500Korea
| | - Kyung-Hee Paek
- School of Life Sciences and Biotechnology, Korea UniversitySeoul 136–701Korea
| | - Jeong Sheop Shin
- School of Life Sciences and Biotechnology, Korea UniversitySeoul 136–701Korea
| | - Jung Myung Bae
- School of Life Sciences and Biotechnology, Korea UniversitySeoul 136–701Korea
- To whom correspondence should be addressed. E-mail:
| |
Collapse
|
27
|
Wang Z, Fang B, Chen J, Zhang X, Luo Z, Huang L, Chen X, Li Y. De novo assembly and characterization of root transcriptome using Illumina paired-end sequencing and development of cSSR markers in sweet potato (Ipomoea batatas). BMC Genomics 2010; 11:726. [PMID: 21182800 PMCID: PMC3016421 DOI: 10.1186/1471-2164-11-726] [Citation(s) in RCA: 333] [Impact Index Per Article: 23.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2010] [Accepted: 12/24/2010] [Indexed: 12/31/2022] Open
Abstract
Background The tuberous root of sweetpotato is an important agricultural and biological organ. There are not sufficient transcriptomic and genomic data in public databases for understanding of the molecular mechanism underlying the tuberous root formation and development. Thus, high throughput transcriptome sequencing is needed to generate enormous transcript sequences from sweetpotato root for gene discovery and molecular marker development. Results In this study, more than 59 million sequencing reads were generated using Illumina paired-end sequencing technology. De novo assembly yielded 56,516 unigenes with an average length of 581 bp. Based on sequence similarity search with known proteins, a total of 35,051 (62.02%) genes were identified. Out of these annotated unigenes, 5,046 and 11,983 unigenes were assigned to gene ontology and clusters of orthologous group, respectively. Searching against the Kyoto Encyclopedia of Genes and Genomes Pathway database (KEGG) indicated that 17,598 (31.14%) unigenes were mapped to 124 KEGG pathways, and 11,056 were assigned to metabolic pathways, which were well represented by carbohydrate metabolism and biosynthesis of secondary metabolite. In addition, 4,114 cDNA SSRs (cSSRs) were identified as potential molecular markers in our unigenes. One hundred pairs of PCR primers were designed and used for validation of the amplification and assessment of the polymorphism in genomic DNA pools. The result revealed that 92 primer pairs were successfully amplified in initial screening tests. Conclusion This study generated a substantial fraction of sweetpotato transcript sequences, which can be used to discover novel genes associated with tuberous root formation and development and will also make it possible to construct high density microarrays for further characterization of gene expression profiles during these processes. Thousands of cSSR markers identified in the present study can enrich molecular markers and will facilitate marker-assisted selection in sweetpotato breeding. Overall, these sequences and markers will provide valuable resources for the sweetpotato community. Additionally, these results also suggested that transcriptome analysis based on Illumina paired-end sequencing is a powerful tool for gene discovery and molecular marker development for non-model species, especially those with large and complex genome.
Collapse
Affiliation(s)
- Zhangying Wang
- Crops Research Institute, Guangdong Academy of Agricultural Sciences, Guangzhou, 510640 PR China
| | | | | | | | | | | | | | | |
Collapse
|
28
|
Sojikul P, Kongsawadworakul P, Viboonjun U, Thaiprasit J, Intawong B, Narangajavana J, Svasti MRJ. AFLP-based transcript profiling for cassava genome-wide expression analysis in the onset of storage root formation. PHYSIOLOGIA PLANTARUM 2010; 140:189-198. [PMID: 20536786 DOI: 10.1111/j.1399-3054.2010.01389.x] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/29/2023]
Abstract
Cassava (Manihot esculenta Crantz) is a root crop that accumulates large quantities of starch, and it is an important source of carbohydrate. Study on gene expressions during storage root development provides important information on storage root formation and starch accumulation as well as unlock new traits for improving of starch yield. cDNA-Amplified Fragment Length Polymorphism (AFLP) was used to compare gene expression profiles in fibrous and storage roots of cassava cultivar Kasetsart 50. Total of 155 differentially expressed transcript-derived fragments with undetectable or low expression in leaves were characterized and classified into 11 groups regarding to their functions. The four major groups were no similarity (20%), hypothetical or unknown proteins (17%), cellular metabolism and biosynthesis (17%) and cellular communication and signaling (14%). Interestingly, sulfite reductase (MeKD82), calcium-dependent protein kinase (CDPK) (MeKD83), ent-kaurene synthase (KS) (MeKD106) and hexose transporter (HT) (MeKD154) showed root-specific expression patterns. This finding is consistent with previously reported genes involved in the initiation of potato tuber. Semi-quantitative reverse transcription polymerase chain reaction of early-developed root samples confirmed that those four genes exhibited significant expression with similar pattern in the storage root initiation and early developmental stages. We proposed that KS and HT may involve in transient induction of CDPK expression, which may play an important role in the signaling pathway of storage root initiation. Sulfite reductase, on the other hand, may involve in storage root development by facilitating sulfur-containing protein biosynthesis or detoxifying the cyanogenic glucoside content through aspartate biosynthesis.
Collapse
Affiliation(s)
- Punchapat Sojikul
- Center for Cassava Molecular Biotechnology, Faculty of Science, Mahidol University, Bangkok, Thailand.
| | | | | | | | | | | | | |
Collapse
|
29
|
Takahata Y, Tanaka M, Otani M, Katayama K, Kitahara K, Nakayachi O, Nakayama H, Yoshinaga M. Inhibition of the expression of the starch synthase II gene leads to lower pasting temperature in sweetpotato starch. PLANT CELL REPORTS 2010; 29:535-43. [PMID: 20306051 DOI: 10.1007/s00299-010-0842-8] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/13/2009] [Revised: 02/16/2010] [Accepted: 03/02/2010] [Indexed: 05/21/2023]
Abstract
The sweetpotato cultivar Quick Sweet (QS) with a lower pasting temperature of starch is a unique breeding material, but the biochemical background of this property has been unknown. To assess the physiological impact of the reduced isoform II activity of starch synthase (SSII) on the starch properties in sweetpotato storage root, transgenic sweetpotato plants with reduced expressions of the SSII gene were generated and evaluated. All of the starches from transgenic plants showed lower pasting temperatures and breakdown measured by a Rapid Visco Analyzer. The pasting temperatures in transgenic plants were approximately 10-15 degrees C lower than in wild-type plants. Distribution of the amylopectin chain length of the transgenic lines showed marked differences compared to that in wild-type plants: more chains with degree of polymerization (DP) 6-11 and fewer chains with DP 13-25. The starch granules from the storage root of transgenic plants showed cracking on the hilum, while those from wild-type plants appeared to be typical sweetpotato starch. In accordance with these observations, the expression of SSII in the storage roots of the sweetpotato cultivar with low pasting temperature starch (QS) was notably lower than in cultivars with normal starch. Moreover, nucleotide sequence analysis suggested that most of the SSII transcripts in the cultivar with low pasting temperature starch were inactive alleles. These results clearly indicate that the activity of SSII in sweetpotato storage roots, like those in other plants, affects the pasting properties of starch through alteration of the amylopectin structure.
Collapse
Affiliation(s)
- Yasuhiro Takahata
- National Agricultural Research Center for Kyushu Okinawa Region (KONARC), National Agriculture and Food Research Organization (NARO), 6651-2 Yokoichi, Miyakonojo, Miyazaki, 885-0091, Japan.
| | | | | | | | | | | | | | | |
Collapse
|
30
|
Sun P, Guo Y, Qi J, Zhou L, Li X. Isolation and expression analysis of tuberous root development related genes in Rehmannia glutinosa. Mol Biol Rep 2010; 37:1069-79. [PMID: 19774491 DOI: 10.1007/s11033-009-9834-6] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2009] [Accepted: 09/08/2009] [Indexed: 10/20/2022]
Abstract
As one kind of important modified storage organs, tuberous roots are attractive for their economic and biological values. Although considerable progresses have been made in the past, molecular information regarding the tuberous root development is still limited. In this study, we focused on the molecular profiling of the tuberous root development of Rehmannia glutinosa. Suppression subtractive hybridization technology was employed to compare gene expression between adventitious root and developing tuberous root. As a result, a tuberous root subtractive library was constructed and 199 development-related unique expressed sequence tags were identified, which represent different groups of genes involved in metabolism, protein synthesis, protein fate, cell fate, signaling, transcription and development, etc. In order to further validate the obtained result, 18 genes were selected for expression analysis and the genes most likely being involved in tuberous root development were discussed. Our present study provided the first molecular profiling of tuberous root development-related genes in Rehmannia glutinosa, which will establish the basis for future deciphering the tuberous root development mechanism.
Collapse
Affiliation(s)
- Peng Sun
- Institute of Medicinal Plants Development, Peking Union, Medical College, Chinese Academy of Medical Sciences, 100193 Beijing, People's Republic of China
| | | | | | | | | |
Collapse
|
31
|
Noh SA, Lee HS, Huh EJ, Huh GH, Paek KH, Shin JS, Bae JM. SRD1 is involved in the auxin-mediated initial thickening growth of storage root by enhancing proliferation of metaxylem and cambium cells in sweetpotato (Ipomoea batatas). JOURNAL OF EXPERIMENTAL BOTANY 2010; 61:1337-49. [PMID: 20150515 PMCID: PMC2837253 DOI: 10.1093/jxb/erp399] [Citation(s) in RCA: 61] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/18/2009] [Revised: 12/06/2009] [Accepted: 12/24/2009] [Indexed: 05/21/2023]
Abstract
A sweetpotato (Ipomoea batatas cv. 'Jinhongmi') MADS-box protein cDNA (SRD1) has been isolated from an early stage storage root cDNA library. The role of the SRD1 gene in the formation of the storage root in sweetpotato was investigated by an expression pattern analysis and characterization of SRD1-overexpressing (ox) transgenic sweetpotato plants. Transcripts of SRD1 were detected only in root tissues, with the fibrous root having low levels of the transcript and the young storage root showing relatively higher transcript levels. SRD1 mRNA was mainly found in the actively dividing cells, including the vascular and cambium cells of the young storage root. The transcript level of SRD1 in the fibrous roots increased in response to 1000 muM indole-3-acetic acid (IAA) applied exogenously. During the early stage of storage root development, the endogenous IAA content and SRD1 transcript level increased concomitantly, suggesting an involvement of SRD1 during the early stage of the auxin-dependent development of the storage root. SRD1-ox sweetpotato plants cultured in vitro produced thicker and shorter fibrous roots than wild-type plants. The metaxylem and cambium cells of the fibrous roots of SRD1-ox plants showed markedly enhanced proliferation, resulting in the fibrous roots of these plants showing an earlier thickening growth than those of wild-type plants. Taken together, these results demonstrate that SRD1 plays a role in the formation of storage roots by activating the proliferation of cambium and metaxylem cells to induce the initial thickening growth of storage roots in an auxin-dependent manner.
Collapse
Affiliation(s)
- Seol Ah Noh
- School of Life Sciences and Biotechnology, Korea University, Seoul 136-701, Korea
| | - Haeng-Soon Lee
- Environmental Biotechnology Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon 305-806, Korea
| | - Eun Joo Huh
- Floriculture Research Division, National Institute of Horticultural and Herbal Science, Rural Development Administration, Suwon 441-440, Korea
| | - Gyung Hye Huh
- Department of Molecular and Biomedical Technology, UHRC, Inje University, Gimhae, 621-749, Korea
| | - Kyung-Hee Paek
- School of Life Sciences and Biotechnology, Korea University, Seoul 136-701, Korea
| | - Jeong Sheop Shin
- School of Life Sciences and Biotechnology, Korea University, Seoul 136-701, Korea
| | - Jung Myung Bae
- School of Life Sciences and Biotechnology, Korea University, Seoul 136-701, Korea
- To whom correspondence should be addressed. E-mail:
| |
Collapse
|
32
|
Tanaka M, Takahata Y, Nakayama H, Nakatani M, Tahara M. Altered carbohydrate metabolism in the storage roots of sweet potato plants overexpressing the SRF1 gene, which encodes a Dof zinc finger transcription factor. PLANTA 2009; 230:737-46. [PMID: 19618208 DOI: 10.1007/s00425-009-0979-2] [Citation(s) in RCA: 56] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/12/2009] [Accepted: 06/30/2009] [Indexed: 05/03/2023]
Abstract
In order to characterize the functions of the sweetpotato SRF1 gene, which encodes a Dof zinc finger transcriptional factor preferentially expressed in the storage roots, we isolated its full length cDNA and produced transgenic sweetpotato plants with altered SRF1 expression levels. The isolated cDNA of SRF1 encoded a polypeptide of 497 amino acids and was closely related to the cyclic Dof factors of Arabidopsis and the ascorbate oxidase binding protein of pumpkin. SRF1 was most highly expressed in storage roots, although some expression was also observed in other vegetative tissue. Transgenic plants overexpressing SRF1 showed significantly higher storage root dry matter content compared to the original cultivar Kokei No. 14 or control transgenic plants. In these plants, the starch content per fresh weight of the storage roots was also higher than that of the wild-type plants, while the glucose and fructose content drastically decreased. Among the enzymes involved in the sugar metabolism, soluble acid invertase showed a decreased activity in the transgenic plants. Gene expression analysis showed that the expression of Ibbetafruct2, which encodes an isoform of vacuolar invertase, was suppressed in the transgenic plants overexpressing the SRF1 gene. These data suggest that SRF1 modulates the carbohydrate metabolism in the storage roots through negative regulation of a vacuolar invertase gene.
Collapse
Affiliation(s)
- Masaru Tanaka
- National Agricultural Research Center for Kyushu Okinawa Region, Miyakonojo, Miyazaki 885-0091, Japan.
| | | | | | | | | |
Collapse
|
33
|
Kim SH, Song WK, Kim YH, Kwon SY, Lee HS, Lee IC, Kwak SS. Characterization of full-length enriched expressed sequence tags of dehydration-treated white fibrous roots of sweetpotato. BMB Rep 2009; 42:271-6. [PMID: 19470240 DOI: 10.5483/bmbrep.2009.42.5.271] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Sweetpotato (Ipomoea batatas (L). Lam.) is relatively tolerant to unfavorable growth conditions such as drought, yet has not been exploited to provide a better understanding of the molecular basis of drought stress tolerance. We obtained 983 high-quality expressed sequence tags of 100 bp or longer (average length of 700 bp) from cDNA libraries of detached white fibrous root tissues by subjecting them to dehydration for 6 h. The 431 cDNAs were each assigned a function by alignment using the BLASTX algorithm. Among them, three genes associated with various abiotic stresses and nine genes not previously associated with drought stress were selected for expression pattern analysis through detailed reverse transcription-polymerase chain reaction. The direct and indirect relationships of the 12 genes with drought tolerance mechanisms were ascertained at different developmental stages and under various stress conditions.
Collapse
Affiliation(s)
- Sun-Hyung Kim
- Environmental Biotechnology Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon 305-333, Korea
| | | | | | | | | | | | | |
Collapse
|
34
|
Tanaka M, Kato N, Nakayama H, Nakatani M, Takahata Y. Expression of class I knotted1-like homeobox genes in the storage roots of sweetpotato (Ipomoea batatas). JOURNAL OF PLANT PHYSIOLOGY 2008; 165:1726-35. [PMID: 18242774 DOI: 10.1016/j.jplph.2007.11.009] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/12/2007] [Revised: 11/28/2007] [Accepted: 11/29/2007] [Indexed: 05/04/2023]
Abstract
As a first step in clarifying the involvement of class I knotted1-like homeobox (KNOXI) genes in the storage root development of sweetpotato (Ipomoea batatas), we isolated three KNOXI genes, named Ibkn1, Ibkn2 and Ibkn3, expressed in the storage roots. Phylogenetic analysis showed that Ibkn1 was homologous to the SHOOT MERISTEMLESS (STM) gene of Arabidopsis, while Ibkn2 and Ibkn3 were homologous to the BREVIPEDICELLUS (BP) gene. Of these, expression of Ibkn1 and Ibkn2 were upregulated in developing and mature storage roots compared with fibrous roots. Ibkn1 and Ibkn2 showed different expression patterns in the storage roots. Ibkn1 was preferentially expressed at the proximal end and around the primary vascular cambium, while Ibkn2 expression was highest in the thickest part and lower in both the proximal and distal ends. In contrast to Ibkn1 and Ibkn2, expression of Ibkn3 in roots was not consistent among sweetpotato cultivars. The distribution of endogenous trans-zeatin riboside (t-ZR) in sweetpotato roots showed a similarity to the expression pattern of KNOXI genes, supporting the idea that KNOXI genes control cytokinin levels in the storage roots. The physiological functions of these KNOXI genes in storage root development are discussed.
Collapse
Affiliation(s)
- Masaru Tanaka
- Crop Functionality and Utilization Research Team, National Agricultural Research Center for Kyushu Okinawa Region, Miyakonojo, Miyazaki, Japan.
| | | | | | | | | |
Collapse
|
35
|
Ku AT, Huang YS, Wang YS, Ma D, Yeh KW. IbMADS1 (Ipomoea batatas MADS-box 1 gene) is involved in tuberous root initiation in sweet potato (Ipomoea batatas). ANNALS OF BOTANY 2008; 102:57-67. [PMID: 18463111 PMCID: PMC2712425 DOI: 10.1093/aob/mcn067] [Citation(s) in RCA: 52] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/18/2008] [Revised: 02/13/2008] [Accepted: 03/31/2008] [Indexed: 05/18/2023]
Abstract
BACKGROUND AND AIMS The tuberization mechanism of sweet potato (Ipomoea batatas) has long been studied using various approaches. Morphological data have revealed that the tuberizing events result from the activation of the cambium, followed by cell proliferation. However, uncertainties still remain regarding the regulators participating in this signal-transduction pathway. An attempt was made to characterize the role of one MADS-box transcription factor, which was preferentially expressed in sweet potato roots at the early tuberization stage. METHODS A differential expression level of IbMADS1 (Ipomoea batatas MADS-box 1) was detected temporally and spatially in sweet potato tissues. IbMADS1 responses to tuberization-related hormones were assessed. In order to identify the evolutionary significance, the expression pattern of IbMADS1 was surveyed in two tuber-deficient Ipomoea relatives, I. leucantha and I. trifida, and compared with sweet potato. In functional analyses, potato (Solanum tuberosum) was employed as a heterologous model. The resulting tuber morphogenesis was examined anatomically in order to address the physiological function of IbMADS1, which should act similarly in sweet potato. KEY RESULTS IbMADS1 was preferentially expressed as tuberous root development proceeded. Its expression was inducible by tuberization-related hormones, such as jasmonic acid and cytokinins. In situ hybridization data showed that IbMADS1 transcripts were specifically distributed around immature meristematic cells within the stele and lateral root primordia. Inter-species examination indicated that IbMADS1 expression was relatively active in sweet potato roots, but undetectable in tuber-deficient Ipomoea species. IbMADS1-transformed potatoes exhibited tuber morphogenesis in the fibrous roots. The partial swellings along fibrous roots were mainly due to anomalous proliferation and differentiation in the xylem. CONCLUSIONS Based on this study, it is proposed that IbMADS1 is an important integrator at the initiation of tuberization. As a result, the initiation and development of tuberous roots seems to be well regulated by a network involving a MADS-box gene in which such hormones as jasmonic acid and cytokinins may act as trigger factors.
Collapse
Affiliation(s)
- Amy Tsu Ku
- Institute of Plant Biology, National Taiwan University, 10617, Taipei, Taiwan
| | - Yi-Shiuan Huang
- Institute of Plant Biology, National Taiwan University, 10617, Taipei, Taiwan
| | - Yu-Shu Wang
- Institute of Plant Biology, National Taiwan University, 10617, Taipei, Taiwan
| | - Daifu Ma
- Institute of Sweet Potato, Xuzhou, 221121, Jiangsu, China
| | - Kai-Wun Yeh
- Institute of Plant Biology, National Taiwan University, 10617, Taipei, Taiwan
| |
Collapse
|