1
|
Saad RB, Hsouna AB, Saibi W, Hamed KB, Brini F, Ghneim-Herrera T. A stress-associated protein, LmSAP, from the halophyte Lobularia maritima provides tolerance to heavy metals in tobacco through increased ROS scavenging and metal detoxification processes. JOURNAL OF PLANT PHYSIOLOGY 2018; 231:234-243. [PMID: 30312968 DOI: 10.1016/j.jplph.2018.09.019] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/12/2018] [Revised: 09/25/2018] [Accepted: 09/26/2018] [Indexed: 06/08/2023]
Abstract
Agricultural soil pollution by heavy metals is a severe global ecological problem. We recently showed that overexpression of LmSAP, a member of the stress-associated protein (SAP) gene family isolated from Lobularia maritima, in transgenic tobacco led to enhanced tolerance to abiotic stress. In this study, we characterised the response of LmSAP transgenic tobacco plants to metal stresses (cadmium (Cd), copper (Cu), manganese (Mn), and zinc (Zn)). In L. maritima, LmSAP expression increased after 12 h of treatment with these metals, suggesting its involvement in the plant response to heavy metal stress. LmSAP transgenic tobacco plants subjected to these stress conditions were healthy, experienced higher seedling survival rates, and had longer roots than non-transgenic plants (NT). However, they exhibited higher tolerance towards cadmium and manganese than towards copper and zinc. LmSAP-overexpressing tobacco seedlings accumulated more cadmium, copper, and manganese compared with NT plants, but displayed markedly decreased hydrogen peroxide (H2O2) and lipid peroxidation levels after metal treatment. Activities of the antioxidant enzymes superoxide dismutase (SOD), catalase (CAT), and peroxidase (POD) were significantly higher in transgenic plants than in NT plants after exposure to metal stress. LmSAP overexpression also enhanced the transcription of several genes encoding metallothioneins (Met1, Met2, Met3, Met4, and Met5), a copper transport protein CCH, a Cys and His-rich domain-containing protein RAR1 (Rar1), and a ubiquitin-like protein 5 (PUB1), which are involved in metal tolerance in tobacco. Our findings indicate that LmSAP overexpression in tobacco enhanced tolerance to heavy metal stress by protecting the plant cells against oxidative stress, scavenging reactive oxygen species (ROS), and decreasing the intracellular concentration of free heavy metals through its effect on metal-binding proteins in the cytosol.
Collapse
Affiliation(s)
- Rania Ben Saad
- Biotechnology and Plant Improvement Laboratory, Centre of Biotechnology of Sfax, University of Sfax, B.P "1177", 3018, Sfax, Tunisia
| | - Anis Ben Hsouna
- Biotechnology and Plant Improvement Laboratory, Centre of Biotechnology of Sfax, University of Sfax, B.P "1177", 3018, Sfax, Tunisia; Departments of Life Sciences, Faculty of Sciences of Gafsa, Zarroug, 2112, Gafsa, Tunisia
| | - Walid Saibi
- Biotechnology and Plant Improvement Laboratory, Centre of Biotechnology of Sfax, University of Sfax, B.P "1177", 3018, Sfax, Tunisia
| | - Karim Ben Hamed
- Laboratoire des Plantes Extrêmophiles, Centre de Biotechnologie de Borj Cedria, BP 901, Hammam Lif, 2050, Tunisia
| | - Faical Brini
- Biotechnology and Plant Improvement Laboratory, Centre of Biotechnology of Sfax, University of Sfax, B.P "1177", 3018, Sfax, Tunisia
| | | |
Collapse
|
2
|
Fernandez-Tendero E, Day A, Legros S, Habrant A, Hawkins S, Chabbert B. Changes in hemp secondary fiber production related to technical fiber variability revealed by light microscopy and attenuated total reflectance Fourier transform infrared spectroscopy. PLoS One 2017; 12:e0179794. [PMID: 28640922 PMCID: PMC5481002 DOI: 10.1371/journal.pone.0179794] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2017] [Accepted: 06/05/2017] [Indexed: 12/16/2022] Open
Abstract
Interest in hemp (Cannabis sativa L.) is increasing due to the development of a new range of industrial applications based on bast fibers. However the variability of bast fiber yield and quality represents an important barrier to further exploitation. Primary and secondary fiber content was examined in two commercial hemp varieties (Fedora 17, Santhica 27) grown under contrasted sowing density and irrigation conditions. Both growing conditions and hemp varieties impact stem tissue architecture with a large effect on the proportion of secondary fibers but not primary fibers. Attenuated total reflectance infrared spectroscopy allowed the discrimination of manually-isolated native primary fibers and secondary fibers but did not reveal any clustering according to growing conditions and variety. Infrared data were confirmed by wet chemistry analyses that revealed slight but significant differences between primary and secondary fiber cell wall composition. Infrared spectroscopy of technical fibers obtained after mechanical defibering revealed differences with native primary, but not secondary fibers and also discriminated samples obtained from plants grown under different conditions. Altogether the results suggested that the observed variability of hemp technical fibers could be partially explained by i) differences in secondary fiber production and ii) differential behavior during mechanical defibering resulting in unequal separation of primary and secondary fibers.
Collapse
Affiliation(s)
- Eva Fernandez-Tendero
- FARE Laboratory, INRA, Université de Reims Champagne-Ardenne, Reims, France
- Université de Lille, CNRS, UMR 8576 – UGSF - Unité de Glycobiologie Structurale et Fonctionnelle, Lille, France
- Fibres Recherche Développement, Troyes, France
| | - Arnaud Day
- Université de Lille, CNRS, UMR 8576 – UGSF - Unité de Glycobiologie Structurale et Fonctionnelle, Lille, France
- Fibres Recherche Développement, Troyes, France
| | | | - Anouck Habrant
- FARE Laboratory, INRA, Université de Reims Champagne-Ardenne, Reims, France
| | - Simon Hawkins
- Université de Lille, CNRS, UMR 8576 – UGSF - Unité de Glycobiologie Structurale et Fonctionnelle, Lille, France
| | - Brigitte Chabbert
- FARE Laboratory, INRA, Université de Reims Champagne-Ardenne, Reims, France
| |
Collapse
|
3
|
Benyó D, Horváth E, Németh E, Leviczky T, Takács K, Lehotai N, Feigl G, Kolbert Z, Ördög A, Gallé R, Csiszár J, Szabados L, Erdei L, Gallé Á. Physiological and molecular responses to heavy metal stresses suggest different detoxification mechanism of Populus deltoides and P. x canadensis. JOURNAL OF PLANT PHYSIOLOGY 2016; 201:62-70. [PMID: 27448721 DOI: 10.1016/j.jplph.2016.05.025] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/10/2015] [Revised: 05/23/2016] [Accepted: 05/25/2016] [Indexed: 05/28/2023]
Abstract
Plants have divergent defense mechanisms against the harmful effects of heavy metals present in excess in soils and groundwaters. Poplars (Populus spp.) are widely cultivated because of their rapid growth and high biomass production, and members of the genus are increasingly used as experimental model organisms of trees and for phytoremediation purposes. Our aim was to investigate the copper and zinc stress responses of three outstanding biomass producer bred poplar lines to identify such transcripts of genes involved in the detoxification mechanisms, which can play an important role in the protection against heavy metals. Poplar cuttings were grown hydroponically and subjected to short-term (one week) mild and sublethal copper and zinc stresses. We evaluated the effects of the applied heavy metals and the responses of plants by detecting the changes of multiple physiological and biochemical parameters. The most severe cellular oxidative damage was caused by 30μM copper treatment, while zinc was less harmful. Analysis of stress-related transcripts revealed genotype-specific differences that are likely related to alterations in heavy metal tolerance. P. deltoides clones B-229 and PE 19/66 clones were clearly more effective at inducing the expression of various genes implicated in the detoxification process, such as the glutathione transferases, metallothioneins, ABC transporters, (namely PtGSTU51, PxMT1, PdABCC2,3), while the P. canadensis line M-1 accumulated more metal, resulting in greater cellular oxidative damage. Our results show that all three poplar clones are efficient in stress acclimatization, but with different molecular bases.
Collapse
Affiliation(s)
- Dániel Benyó
- Department of Plant Biology, University of Szeged, Közép fasor 52, H-6726 Szeged, Hungary.
| | - Edit Horváth
- Department of Plant Biology, University of Szeged, Közép fasor 52, H-6726 Szeged, Hungary
| | - Edit Németh
- Department of Plant Biology, University of Szeged, Közép fasor 52, H-6726 Szeged, Hungary
| | - Tünde Leviczky
- Department of Plant Biology, University of Szeged, Közép fasor 52, H-6726 Szeged, Hungary
| | - Kinga Takács
- Department of Plant Biology, University of Szeged, Közép fasor 52, H-6726 Szeged, Hungary
| | - Nóra Lehotai
- Department of Plant Biology, University of Szeged, Közép fasor 52, H-6726 Szeged, Hungary
| | - Gábor Feigl
- Department of Plant Biology, University of Szeged, Közép fasor 52, H-6726 Szeged, Hungary
| | - Zsuzsanna Kolbert
- Department of Plant Biology, University of Szeged, Közép fasor 52, H-6726 Szeged, Hungary
| | - Attila Ördög
- Department of Plant Biology, University of Szeged, Közép fasor 52, H-6726 Szeged, Hungary
| | - Róbert Gallé
- Department of Ecology, University of Szeged, Közép fasor 52, H-6726 Szeged, Hungary
| | - Jolán Csiszár
- Department of Plant Biology, University of Szeged, Közép fasor 52, H-6726 Szeged, Hungary
| | - László Szabados
- Laboratory of Arabidopsis Molecular Genetics, Biological Research Centre, Temesvári körút 62, H-6726 Szeged, Hungary
| | - László Erdei
- Department of Plant Biology, University of Szeged, Közép fasor 52, H-6726 Szeged, Hungary
| | - Ágnes Gallé
- Department of Plant Biology, University of Szeged, Közép fasor 52, H-6726 Szeged, Hungary
| |
Collapse
|
4
|
Balducci L, Cuny HE, Rathgeber CBK, Deslauriers A, Giovannelli A, Rossi S. Compensatory mechanisms mitigate the effect of warming and drought on wood formation. PLANT, CELL & ENVIRONMENT 2016; 39:1338-52. [PMID: 26662380 DOI: 10.1111/pce.12689] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/08/2015] [Accepted: 11/27/2015] [Indexed: 05/09/2023]
Abstract
Because of global warming, high-latitude ecosystems are expected to experience increases in temperature and drought events. Wood formation will have to adjust to these new climatic constraints to maintain tree mechanical stability and long-distance water transport. The aim of this study is to understand the dynamic processes involved in wood formation under warming and drought. Xylogenesis, gas exchange, water relations and wood anatomy of black spruce [Picea mariana (Mill.) B.S.P.] saplings were monitored during a greenhouse experiment where temperature was increased during daytime or night-time (+6 °C) combined with a drought period. The kinetics of tracheid development expressed as rate and duration of the xylogenesis sub-processes were quantified using generalized additive models. Drought and warming had a strong influence on cell production, but little effect on wood anatomy. The increase in cell production rate under warmer temperatures, and especially during the night-time warming at the end of the growing season, resulted in wider tree-rings. However, the strong compensation between rates and durations of cell differentiation processes mitigates warming and drought effects on tree-ring structure. Our results allowed quantification of how wood formation kinetics is regulated when water and heat stress increase, allowing trees to adapt to future environmental conditions.
Collapse
Affiliation(s)
- Lorena Balducci
- Département des Sciences Fondamentales, Université du Québec à Chicoutimi, 555 Boulevard de l'Université, Chicoutimi, QC, G7H2B1, Canada
| | - Henri E Cuny
- INRA, UMR 1092 LERFOB, F-54280, Champenoux, France
- AgroParisTech, UMR 1092 LERFOB, F-54000, Nancy, France
- Swiss Federal Research Institute WSL, CH-8903, Birmensdorf, Switzerland
| | - Cyrille B K Rathgeber
- INRA, UMR 1092 LERFOB, F-54280, Champenoux, France
- AgroParisTech, UMR 1092 LERFOB, F-54000, Nancy, France
| | - Annie Deslauriers
- Département des Sciences Fondamentales, Université du Québec à Chicoutimi, 555 Boulevard de l'Université, Chicoutimi, QC, G7H2B1, Canada
| | | | - Sergio Rossi
- Département des Sciences Fondamentales, Université du Québec à Chicoutimi, 555 Boulevard de l'Université, Chicoutimi, QC, G7H2B1, Canada
| |
Collapse
|
5
|
Liu J, Shi X, Qian M, Zheng L, Lian C, Xia Y, Shen Z. Copper-induced hydrogen peroxide upregulation of a metallothionein gene, OsMT2c, from Oryza sativa L. confers copper tolerance in Arabidopsis thaliana. JOURNAL OF HAZARDOUS MATERIALS 2015; 294:99-108. [PMID: 25867584 DOI: 10.1016/j.jhazmat.2015.03.060] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/19/2014] [Revised: 03/20/2015] [Accepted: 03/27/2015] [Indexed: 05/29/2023]
Abstract
Metallothioneins (MTs) are low-molecular-weight, cysteine-rich metal-binding proteins found in numerous genera and species, but their functions in abiotic stress tolerance remain unclear. Here, a MT gene from Oryza sativa, OsMT2c, was isolated and characterized, encoding a type 2 MT, and observed expression in the roots, leaf sheathes, and leaves, but only weak expression in seeds. OsMT2c was upregulated by copper (Cu) and hydrogen peroxide (H2O2) treatments. Excessive Cu elicited a rapid and sustained production and release of H2O2 in rice, and exogenous H2O2 scavengers N,N'-dimethylthiourea (DMTU) and ascorbic acid (Asc) decreased H2O2 production and OsMT2c expression. Furthermore, the expression of OsMT2c increased in the osapx2 mutant in which the H2O2 levels were higher than in wild-type (WT) plants. These results showed that Cu increased MT2c expression through the production and accumulation of Cu-induced H2O2 in O. sativa. In addition, the transgenic OsMT2c-overexpressing Arabidopsis displayed improved tolerance to Cu stress and exhibited increased reactive oxygen species (ROS) scavenging ability compared to WT and empty-vector (Ev) seedlings.
Collapse
Affiliation(s)
- Jia Liu
- College of Life Sciences, Nanjing Agricultural University, Nanjing 210095, People's Republic of China
| | - Xiaoting Shi
- College of Life Sciences, Nanjing Agricultural University, Nanjing 210095, People's Republic of China
| | - Meng Qian
- College of Life Sciences, Nanjing Agricultural University, Nanjing 210095, People's Republic of China
| | - Luqing Zheng
- College of Life Sciences, Nanjing Agricultural University, Nanjing 210095, People's Republic of China
| | - Chunlan Lian
- Asian Natural Environmental Science Center, The University of Tokyo, Tokyo 188-0002, Japan
| | - Yan Xia
- College of Life Sciences, Nanjing Agricultural University, Nanjing 210095, People's Republic of China.
| | - Zhenguo Shen
- College of Life Sciences, Nanjing Agricultural University, Nanjing 210095, People's Republic of China.
| |
Collapse
|
6
|
Li Y, Chen YY, Yang SG, Tian WM. Cloning and characterization of HbMT2a, a metallothionein gene from Hevea brasiliensis Muell. Arg differently responds to abiotic stress and heavy metals. Biochem Biophys Res Commun 2015; 461:95-101. [DOI: 10.1016/j.bbrc.2015.03.175] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2015] [Accepted: 03/30/2015] [Indexed: 10/23/2022]
|
7
|
Nevrtalova E, Baloun J, Hudzieczek V, Cegan R, Vyskot B, Dolezel J, Safar J, Milde D, Hobza R. Expression response of duplicated metallothionein 3 gene to copper stress in Silene vulgaris ecotypes. PROTOPLASMA 2014; 251:1427-1439. [PMID: 24748066 DOI: 10.1007/s00709-014-0644-x] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/06/2013] [Accepted: 04/02/2014] [Indexed: 06/03/2023]
Abstract
Metallothioneins (MTs) were identified as important players in metal metabolism. MT3 gene presents a key metallothionein controlling copper homeostasis in plants. We have selected one cupricolous and one non-cupricolous ecotype to isolate and analyse the MT3 gene in Silene vulgaris. For expression data comparison, we have also included other metal-tolerant ecotypes. Based on a S. vulgaris BAC library screening, we have identified and sequenced a genomic clone containing MT3 gene (SvMT3). We found that SvMT3 gene has been locally duplicated in a tandem arrangement. Expression analysis and complementation studies using yeast mutants showed that both copies of the SvMT3 gene were functional. Moreover, we examined the expression of MT3 gene(s) in selected ecotypes under different copper treatments to show the tissue-specific expression response to copper stress. We demonstrated that higher copper concentrations specifically affected MT3 expression among ecotypes. Our analysis shows that MT3a has similar expression pattern in cupricolous ecotypes while MT3b has common expression features shared by all metallophyte S. vulgaris ecotypes. Our data indicate that down-regulation of MT3b root expression in higher copper concentrations is associated with copper stress. We propose that there might be a specific regulation of SvMT3s transcription depending on the type of heavy metal tolerance.
Collapse
Affiliation(s)
- Eva Nevrtalova
- Department of Plant Developmental Genetics, Institute of Biophysics, Academy of Sciences of the Czech Republic, v.v.i., Kralovopolska 135, 612 65, Brno, Czech Republic,
| | | | | | | | | | | | | | | | | |
Collapse
|
8
|
Cozza R, Bruno L, Bitonti MB. Expression pattern of a type-2 metallothionein gene in a wild population of the psammophyte Silene nicaeensis. PROTOPLASMA 2013; 250:381-389. [PMID: 22688806 DOI: 10.1007/s00709-012-0425-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/28/2012] [Accepted: 05/25/2012] [Indexed: 06/01/2023]
Abstract
Silene nicaeensis is a wild Mediterranean grass often restricted to sandy sea shore and exhibiting an excellent tolerance to drought and salinity. Within Silene genus, several heavy metal-tolerant ecotypes have been identified, but information on molecular basis of such metal tolerance is still limited. Conceivably, salt-tolerant plants may represent a powerful tool for the remediation of heavy metal contaminated sites in saline environment. Here, a gene encoding a metallothionein protein was isolated from S. nicaeensis. Sequence analysis identified the motifs characteristic of type II metallothionein and designated as SnMT2. SnMT2 expression was investigated in plants collected from two sites differing in Metal Pollution Index (MPI). SnMT2 expression by polymerase chain reaction-based semi-quantitative transcript analysis showed a high accumulation in the leaves; in situ hybridization showed a steady localization of SnMT2 mRNA in the vascular bundle and in proliferating tissues. Moreover, an increase of SnMT2 was observed in the root of plants collected from area with higher MPI. The putative role of SnMT2 in metal tolerance is discussed.
Collapse
Affiliation(s)
- Radiana Cozza
- Department of Ecology, University of Calabria, 87030 Arcavacata di Rende (CS), Italy.
| | | | | |
Collapse
|
9
|
Poplar under drought: comparison of leaf and cambial proteomic responses. J Proteomics 2011; 74:1396-410. [PMID: 21439416 DOI: 10.1016/j.jprot.2011.03.013] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2010] [Revised: 02/25/2011] [Accepted: 03/14/2011] [Indexed: 10/18/2022]
Abstract
The forest ecosystem is of particular importance from an economic and ecological perspective. However, the stress physiology of trees, perennial and woody plants, is far from being fully understood. For that purpose, poplar plants were exposed to drought; the plants exhibited commonly reported drought stress traits in the different plant tissues. Leafy rooted cuttings of poplar were investigated through a proteomic approach in order to compare the water constraint response of two plant tissues, namely leaf and cambium. Sampling was realized during the drought period at 2 time points with increased drought intensity and 7 days after rewatering. Our data show that there is a difference in the moment of response to the water constraint between the two tissues, cambium being affected later than leaves. In leaves, drought induced a decrease in rubisco content, and an increase in the abundance of light harvesting complex proteins as well as changes in membrane-related proteins. In the cambial tissue, the salient proteome pattern change was the decrease of multiple proteins identified as bark storage proteins. After rewatering, almost all changes in cambial proteome disappeared whereas a significant number of leaf proteins appeared to be differentially regulated only during the recovery from drought.
Collapse
|
10
|
Hassinen VH, Tervahauta AI, Schat H, Kärenlampi SO. Plant metallothioneins--metal chelators with ROS scavenging activity? PLANT BIOLOGY (STUTTGART, GERMANY) 2011; 13:225-32. [PMID: 21309968 DOI: 10.1111/j.1438-8677.2010.00398.x] [Citation(s) in RCA: 70] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
Metallothioneins (MTs) are ubiquitous cysteine-rich proteins present in plants, animals, fungi and cyanobacteria. In plants, MTs are suggested to be involved in metal tolerance or homeostasis, as they are able to bind metal ions through the thiol groups of their cysteine residues. Recent reports show that MTs are also involved in the scavenging of reactive oxygen species (ROS). The interplay between these roles is not entirely clear. Plants have many MT isoforms with overlapping expression patterns, and no specific role for any of them has been assigned. This review is focused on recent findings on plant MTs.
Collapse
Affiliation(s)
- V H Hassinen
- Department of Biosciences, University of Eastern Finland, Kuopio, Finland
| | | | | | | |
Collapse
|
11
|
Samardzić JT, Nikolić DB, Timotijević GS, Jovanović ZS, Milisavljević MĐ, Maksimović VR. Tissue expression analysis of FeMT3, a drought and oxidative stress related metallothionein gene from buckwheat (Fagopyrum esculentum). JOURNAL OF PLANT PHYSIOLOGY 2010; 167:1407-1411. [PMID: 20637525 DOI: 10.1016/j.jplph.2010.05.016] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/10/2010] [Revised: 05/14/2010] [Accepted: 05/17/2010] [Indexed: 05/28/2023]
Abstract
Metallothionein type 3 (MT3) expression has previously been detected in leaves, fruits, and developing somatic embryos in different plant species. However, specific tissular and cellular localization of MT3 transcripts have remained unidentified. In this study, in situ RNA-RNA analysis revealed buckwheat metallothionein type 3 (FeMT3) transcript localization in vascular elements, mesophyll and guard cells of leaves, vascular tissue of roots and throughout the whole embryo. Changes in FeMT3 mRNA levels in response to drought and oxidative stress, as well as ROS scavenging abilities of the FeMT3 protein in yeast were also detected, indicating possible involvement of FeMT3 in stress defense and ROS related cellular processes.
Collapse
Affiliation(s)
- Jelena T Samardzić
- Department of Plant Molecular Biology, Institute of Molecular Genetics and Genetic Engineering, University of Belgrade, Vojvode Stepe 444a, P.O. Box 23, 11010 Belgrade, Serbia.
| | | | | | | | | | | |
Collapse
|
12
|
Yadav R, Arora P, Kumar S, Chaudhury A. Perspectives for genetic engineering of poplars for enhanced phytoremediation abilities. ECOTOXICOLOGY (LONDON, ENGLAND) 2010; 19:1574-88. [PMID: 20848189 DOI: 10.1007/s10646-010-0543-7] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 09/01/2010] [Indexed: 05/06/2023]
Abstract
Phytoremediation potential has been widely accepted as highly stable and dynamic approach for reducing eco-toxic pollutants. Earlier reports endorse remediation abilities both in herbaceous plants as well as woody trees. Poplars are dominant trees to the ecosystem structure and functioning in riparian forests of North America Rivers and also to other part of the world. Understanding of the fact that how genetic variation in primary producer structures communities, affects species distribution, and alters ecosystem-level processes, attention was paid to investigate the perspectives of genetic modification in poplar. The present review article furnishes documented evidences for genetic engineering of Populus tree for enhanced phytoremediation abilities. The versatility of poplar as a consequence of its distinct traits, rapid growth rates, extensive root system, high perennial biomass production, and immense industrial value, bring it in the forefront of phytoremediation. Furthermore, remediative capabilities of Populus can be significantly increased by introducing cross-kingdom, non-resident genes encoding desirable traits. Available genome sequence database of Populus contribute to the determination of gene functions together with elucidating phytoremediation linked metabolic pathways. Adequate understanding of functional genomics in merger with physiology and genetics of poplar offers distinct advantage in identifying and upgrading phytoremediation potential of this model forest tree species for human welfare.
Collapse
Affiliation(s)
- Rakesh Yadav
- Department of Bio and Nano Technology, Guru Jambheshwar University of Science and Technology, Hisar, 125001 Haryana, India
| | | | | | | |
Collapse
|
13
|
Berta M, Giovannelli A, Sebastiani F, Camussi A, Racchi ML. Transcriptome changes in the cambial region of poplar (Populus alba L.) in response to water deficit. PLANT BIOLOGY (STUTTGART, GERMANY) 2010; 12:341-54. [PMID: 20398240 DOI: 10.1111/j.1438-8677.2009.00320.x] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
A transcriptome analysis of the Populus alba cambial region was performed with the aim of elucidating the gene network underlying the response to water deficit within the cambium and differentiating derivative cambial cells. Water stress was induced in 1-year-old P. alba plants by withholding water for 9 days. At that time, leaf predawn water potential fell to -0.8 MPa, resulting in a significant reduction in stomatal conductance, CO(2) assimilation and a consistent increment of stem shrinkage. These effects were almost fully reversed by re-hydration. The water deficit resulted in changes in gene expression that affected several functional categories, such as protein metabolism, cell wall metabolism, stress response, transporters and transcriptional regulation. The function of up- and down-regulated genes is discussed considering the physiological response of the plants to water deficit.
Collapse
Affiliation(s)
- M Berta
- Department of Agricultural Biotechnology, Genetics section, Florence, Italy
| | | | | | | | | |
Collapse
|