1
|
Yan Y, Zhu X, Qi H, Wang Y, Zhang H, He J. Rice seed storability: From molecular mechanisms to agricultural practices. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2024; 348:112215. [PMID: 39151802 DOI: 10.1016/j.plantsci.2024.112215] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/27/2024] [Revised: 07/24/2024] [Accepted: 08/07/2024] [Indexed: 08/19/2024]
Abstract
The storability of rice seeds is crucial for ensuring flexible planting options, agricultural seed security, and global food safety. With the intensification of global climate change and the constant fluctuations in agricultural production conditions, enhancing the storability of rice seeds has become particularly important. Seed storability is a complex quantitative trait regulated by both genetic and environmental factors. This article reviews the main regulatory mechanisms of rice seed storability, including the accumulation of seed storage proteins, late embryogenesis abundant (LEA) proteins, heat shock proteins, sugar signaling, hormonal regulation by gibberellins and abscisic acid, and the role of the ubiquitination pathway. Additionally, this article explores the improvement of storability using wild rice genes, molecular marker-assisted selection, and gene editing techniques such as CRISPR/Cas9 in rice breeding. By providing a comprehensive scientific foundation and practical guidance, this review aims to promote the development of rice varieties with enhanced storability to meet evolving agricultural demands.
Collapse
Affiliation(s)
- Yuntao Yan
- College of Agronomy, Hunan Agricultural University, Changsha 420128, China
| | - Xiaoya Zhu
- College of Agronomy, Hunan Agricultural University, Changsha 420128, China
| | - Hui Qi
- College of Agronomy, Hunan Agricultural University, Changsha 420128, China; Hunan Institute of Nuclear Agricultural Science and Space Breeding, Hunan Academy of Agricultural Sciences, Changsha 410125, China
| | - Yan Wang
- College of Agronomy, Hunan Agricultural University, Changsha 420128, China
| | - Haiqing Zhang
- College of Agronomy, Hunan Agricultural University, Changsha 420128, China
| | - Jiwai He
- College of Agronomy, Hunan Agricultural University, Changsha 420128, China.
| |
Collapse
|
2
|
Dempsey M, Thavarajah D. Low molecular weight carbohydrates and abiotic stress tolerance in lentil ( Lens culinaris Medikus): a review. FRONTIERS IN PLANT SCIENCE 2024; 15:1408252. [PMID: 39421141 PMCID: PMC11484031 DOI: 10.3389/fpls.2024.1408252] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Accepted: 09/13/2024] [Indexed: 10/19/2024]
Abstract
Lentil (Lens culinaris Medikus) is a nutrient-rich, cool-season food legume that is high in protein, prebiotic carbohydrates, vitamins, and minerals. It is a staple food in many parts of the world, but crop performance is threatened by climate change, where increased temperatures and less predictable precipitation can reduce yield and nutritional quality. One mechanism that many plant species use to mitigate heat and drought stress is the production of disaccharides, oligosaccharides and sugar alcohols, collectively referred to as low molecular weight carbohydrates (LMWCs). Recent evidence indicates that lentil may also employ this mechanism - especially raffinose family oligosaccharides and sugar alcohols - and that these may be suitable targets for genomic-assisted breeding to improve crop tolerance to heat and drought stress. While the genes responsible for LMWC biosynthesis in lentil have not been fully elucidated, single nucleotide polymorphisms and putative genes underlying biosynthesis of LMWCs have been identified. Yet, more work is needed to confirm gene identity, function, and response to abiotic stress. This review i) summarizes the diverse evidence for how LMWCs are utilized to improve abiotic stress tolerance, ii) highlights current knowledge of genes that control LMWC biosynthesis in lentil, and iii) explores how LMWCs can be targeted using diverse genomic resources and markers to accelerate lentil breeding efforts for improved stress tolerance.
Collapse
Affiliation(s)
| | - Dil Thavarajah
- Plant and Environmental Sciences, Pulse Quality and Nutritional Breeding, Biosystems Research Complex, Clemson University, Clemson, SC, United States
| |
Collapse
|
3
|
Gu DE, Han SH, Kang KS. Viability and integrity of Pinus densiflora seeds stored for 20 years at three different temperatures. CONSERVATION PHYSIOLOGY 2024; 12:coae046. [PMID: 38983122 PMCID: PMC11231940 DOI: 10.1093/conphys/coae046] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Revised: 05/06/2024] [Accepted: 07/05/2024] [Indexed: 07/11/2024]
Abstract
Storage temperature is one of the most important factors determining seed longevity in the genebank. This study aimed to investigate the effect of storage temperature on the seed viability and physiological integrity after a 20-year storage period of Pinus densiflora, a tree species of ecological and economic significance in South Korea. To this end, seeds were collected and stored dry for 20 years at -18°C, 4°C and 25°C. Germination tests were conducted to assess seed viability and vigour, electrolyte leakage analysis was performed to assess cell membrane integrity, and carbohydrate analysis was conducted to assess metabolic integrity during germination. The results revealed that over 20 years, seeds stored at -18°C maintained a high germination percentage (GP; 89%), comparable to initial GP (91%), whilst those stored at 4°C exhibited a decline in GP (44%) along with a decrease in vigour. Seeds stored at 25°C lost their viability entirely. Electrical conductivity of the leachate and leakage of inorganic compounds and soluble sugars were higher with elevated storage temperature, indicating increased imbibition damage. Additionally, changes in carbohydrate content during germination revealed that the loss of viability according to storage temperature is associated with reduced storage reserve utilization and altered carbohydrate metabolism during germination. These results enhance our understanding of the effect of seed storage temperature on longevity and physiological changes of aging in the genebank, serving as a reference for establishing conservation strategies for Pinus densiflora.
Collapse
Affiliation(s)
- Da-Eun Gu
- Forest Bioresources Department, National Institute of Forest Science, Onjeong-ro 39, Gwonseon-gu, Suwon 16631, Republic of Korea
- Department of Agriculture, Forestry, and Bioresources, Seoul National University, Kwanak-ro 1, Kwanak-gu, Seoul 08826, Republic of Korea
| | - Sim-Hee Han
- Forest Bioresources Department, National Institute of Forest Science, Onjeong-ro 39, Gwonseon-gu, Suwon 16631, Republic of Korea
| | - Kyu-Suk Kang
- Department of Agriculture, Forestry, and Bioresources, Seoul National University, Kwanak-ro 1, Kwanak-gu, Seoul 08826, Republic of Korea
| |
Collapse
|
4
|
He H, Gao H, Xue X, Ren J, Chen X, Niu B. Variation of sugar compounds in Phoebe chekiangensis seeds during natural desiccation. PLoS One 2024; 19:e0299669. [PMID: 38452127 PMCID: PMC10919866 DOI: 10.1371/journal.pone.0299669] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Accepted: 02/14/2024] [Indexed: 03/09/2024] Open
Abstract
To investigate the role of sugar metabolism in desiccation-sensitive seeds, we performed a natural desiccation treatment on Phoebe chekiangensis seeds in a room and systematically analyzed the changes in seed germination, sugar compounds, malondialdehyde, and relative electrical conductivity during the seed desiccation. The results revealed that the initial moisture content of P. chekiangensis seed was very high (37.06%) and the seed was sensitive to desiccation, the germination percentage of the seed decreased to 5.33% when the seed was desiccated to 22.04% of moisture content, therefore, the seeds were considered recalcitrant. Based on the logistic model, we know that the moisture content of the seeds is 29.05% when the germination percentage drops to 50% and that it is desirable to keep the seed moisture content above 31.74% during ambient transportation. During seed desiccation, sucrose and trehalose contents exhibited increasing trends, and raffinose also increased during the late stage of desiccation, however, low levels of the non-reducing sugar accumulations may not prevent the loss of seed viability caused by desiccation. Glucose and fructose predominated among sugar compounds, and they showed a slight increase followed by a significant decrease. Their depletion may have contributed to the accumulation of sucrose and raffinose family oligosaccharides. Correlation analysis revealed a significant relationship between the accumulation of sucrose, trehalose, and soluble sugars, and the reduction in seed viability. Sucrose showed a significant negative correlation with glucose and fructose. Trehalose also exhibited the same pattern of correlation. These results provided additional data and theoretical support for understanding the mechanism of sugar metabolism in seed desiccation sensitivity.
Collapse
Affiliation(s)
- Huangpan He
- College of Forestry and Grassland, College of Soil and Water Conservation, Nanjing Forestry University, Southern Tree Seed Inspection Center, National Forestry and Grassland Administration, Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing, China
| | - Handong Gao
- College of Forestry and Grassland, College of Soil and Water Conservation, Nanjing Forestry University, Southern Tree Seed Inspection Center, National Forestry and Grassland Administration, Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing, China
| | - Xiaoming Xue
- College of Criminal Science and Technology, Nanjing Police University, Key Laboratory of Wildlife Evidence Technology of National Forestry and Grassland Administration, Nanjing, China
| | - Jiahui Ren
- College of Forestry and Grassland, College of Soil and Water Conservation, Nanjing Forestry University, Southern Tree Seed Inspection Center, National Forestry and Grassland Administration, Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing, China
| | - Xueqi Chen
- College of Forestry and Grassland, College of Soil and Water Conservation, Nanjing Forestry University, Southern Tree Seed Inspection Center, National Forestry and Grassland Administration, Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing, China
| | - Ben Niu
- College of Forestry and Grassland, College of Soil and Water Conservation, Nanjing Forestry University, Southern Tree Seed Inspection Center, National Forestry and Grassland Administration, Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing, China
| |
Collapse
|
5
|
Salvi P, Varshney V, Majee M. Raffinose family oligosaccharides (RFOs): role in seed vigor and longevity. Biosci Rep 2022; 42:BSR20220198. [PMID: 36149314 PMCID: PMC9547172 DOI: 10.1042/bsr20220198] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2022] [Revised: 09/22/2022] [Accepted: 09/23/2022] [Indexed: 11/17/2022] Open
Abstract
Seed vigor and longevity are important agronomic attributes, as they are essentially associated with crop yield and thus the global economy. Seed longevity is a measure of seed viability and the most essential property in gene bank management since it affects regeneration of seed recycling. Reduced seed life or storability is a serious issue in seed storage since germplasm conservation and agricultural enhancement initiatives rely on it. The irreversible and ongoing process of seed deterioration comprises a complex gene regulatory network and altered metabolism that results in membrane damage, DNA integrity loss, mitochondrial dysregulation, protein damage, and disrupted antioxidative machinery. Carbohydrates and/or sugars, primarily raffinose family oligosaccharides (RFOs), have emerged as feasible components for boosting or increasing seed vigor and longevity in recent years. RFOs are known to perform diverse functions in plants, including abiotic and biotic stress tolerance, besides being involved in regulating seed germination, desiccation tolerance, vigor, and longevity. We emphasized and analyzed the potential impact of RFOs on seed vigor and longevity in this review. Here, we comprehensively reviewed the molecular mechanisms involved in seed longevity, RFO metabolism, and how RFO content is critical and linked with seed vigor and longevity. Further molecular basis, biotechnological approaches, and CRISPR/Cas applications have been discussed briefly for the improvement of seed attributes and ultimately crop production. Likewise, we suggest advancements, challenges, and future possibilities in this area.
Collapse
Affiliation(s)
- Prafull Salvi
- National Agri-Food Biotechnology Institute, Punjab 140308, India
| | - Vishal Varshney
- Govt. Shaheed Gend Singh College, Charama, Chhattisgarh 494337, India
| | - Manoj Majee
- National Institute of Plant Genome Research (NIPGR), Aruna Asaf Ali Marg, New Delhi 110067, India
| |
Collapse
|
6
|
Liu N, Wang H, Yang Z, Zhao K, Li S, He N. The role of functional oligosaccharides as prebiotics in ulcerative colitis. Food Funct 2022; 13:6875-6893. [PMID: 35703137 DOI: 10.1039/d2fo00546h] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The incidence rate of ulcerative colitis (UC) has increased significantly over the past decades and it places an increasing burden on health and social systems. The current studies on UC implicate a strong correlation between host gut microbiota immunity and the pathogenesis of UC. Meanwhile, more and more functional oligosaccharides have been reported as prebiotics to alleviate UC, since many of them can be metabolized by gut microbiota to produce short-chain fatty acids (SCFAs). The present review is focused on the structure, sources and specific applications of various functional oligosaccharides related to the prevention and treatment of UC. The available evidence for the usage of functional oligosaccharides in UC treatment are summarized, including fructo-oligosaccharides (FOS), galacto-oligosaccharides (GOS), chito-oligosaccharides (COS), alginate-oligosaccharides (AOS), xylooligosaccharides (XOS), stachyose and inulin.
Collapse
Affiliation(s)
- Nian Liu
- School of Basic Medicine, Qingdao Medical College, Qingdao University, Qingdao, China.
| | - Haoyu Wang
- School of Basic Medicine, Qingdao Medical College, Qingdao University, Qingdao, China.
| | - Zizhen Yang
- School of Basic Medicine, Qingdao Medical College, Qingdao University, Qingdao, China.
| | - Kunyi Zhao
- Qingdao Medical College, Qingdao University, Qingdao, China
| | - Shangyong Li
- School of Basic Medicine, Qingdao Medical College, Qingdao University, Qingdao, China.
| | - Ningning He
- School of Basic Medicine, Qingdao Medical College, Qingdao University, Qingdao, China.
| |
Collapse
|
7
|
Elango D, Rajendran K, Van der Laan L, Sebastiar S, Raigne J, Thaiparambil NA, El Haddad N, Raja B, Wang W, Ferela A, Chiteri KO, Thudi M, Varshney RK, Chopra S, Singh A, Singh AK. Raffinose Family Oligosaccharides: Friend or Foe for Human and Plant Health? FRONTIERS IN PLANT SCIENCE 2022; 13:829118. [PMID: 35251100 PMCID: PMC8891438 DOI: 10.3389/fpls.2022.829118] [Citation(s) in RCA: 53] [Impact Index Per Article: 26.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/04/2021] [Accepted: 01/26/2022] [Indexed: 05/27/2023]
Abstract
Raffinose family oligosaccharides (RFOs) are widespread across the plant kingdom, and their concentrations are related to the environment, genotype, and harvest time. RFOs are known to carry out many functions in plants and humans. In this paper, we provide a comprehensive review of RFOs, including their beneficial and anti-nutritional properties. RFOs are considered anti-nutritional factors since they cause flatulence in humans and animals. Flatulence is the single most important factor that deters consumption and utilization of legumes in human and animal diets. In plants, RFOs have been reported to impart tolerance to heat, drought, cold, salinity, and disease resistance besides regulating seed germination, vigor, and longevity. In humans, RFOs have beneficial effects in the large intestine and have shown prebiotic potential by promoting the growth of beneficial bacteria reducing pathogens and putrefactive bacteria present in the colon. In addition to their prebiotic potential, RFOs have many other biological functions in humans and animals, such as anti-allergic, anti-obesity, anti-diabetic, prevention of non-alcoholic fatty liver disease, and cryoprotection. The wide-ranging applications of RFOs make them useful in food, feed, cosmetics, health, pharmaceuticals, and plant stress tolerance; therefore, we review the composition and diversity of RFOs, describe the metabolism and genetics of RFOs, evaluate their role in plant and human health, with a primary focus in grain legumes.
Collapse
Affiliation(s)
- Dinakaran Elango
- Department of Agronomy, Iowa State University, Ames, IA, United States
| | - Karthika Rajendran
- VIT School of Agricultural Innovations and Advanced Learning, Vellore Institute of Technology, Vellore, India
| | - Liza Van der Laan
- Department of Agronomy, Iowa State University, Ames, IA, United States
| | - Sheelamary Sebastiar
- Division of Crop Improvement, ICAR-Sugarcane Breeding Institute, Coimbatore, India
| | - Joscif Raigne
- Department of Agronomy, Iowa State University, Ames, IA, United States
| | | | - Noureddine El Haddad
- International Center for Agricultural Research in the Dry Areas, Rabat, Morocco
- Faculty of Sciences, Mohammed V University of Rabat, Rabat, Morocco
| | - Bharath Raja
- School of Biosciences and Technology, Vellore Institute of Technology, Vellore, India
| | - Wanyan Wang
- Ecosystem Science and Management, Penn State University, University Park, PA, United States
| | - Antonella Ferela
- Department of Agronomy, Iowa State University, Ames, IA, United States
| | - Kevin O. Chiteri
- Department of Agronomy, Iowa State University, Ames, IA, United States
| | - Mahendar Thudi
- Department of Agricultural Biotechnology and Molecular Biology, Dr. Rajendra Prasad Central Agricultural University, Pusa, India
- Centre for Crop Health, University of Southern Queensland, Toowoomba, QLD, Australia
| | - Rajeev K. Varshney
- International Crops Research Institute for the Semi-Arid Tropics, Patancheru, India
- State Agricultural Biotechnology Centre, Crop Research Innovation Centre, Food Futures Institute, Murdoch University, Murdoch, WA, Australia
| | - Surinder Chopra
- Department of Plant Science, Penn State University, University Park, PA, United States
| | - Arti Singh
- Department of Agronomy, Iowa State University, Ames, IA, United States
| | - Asheesh K. Singh
- Department of Agronomy, Iowa State University, Ames, IA, United States
| |
Collapse
|
8
|
Małecka A, Ciszewska L, Staszak A, Ratajczak E. Relationship between mitochondrial changes and seed aging as a limitation of viability for the storage of beech seed ( Fagus sylvatica L.). PeerJ 2021; 9:e10569. [PMID: 33552713 PMCID: PMC7821764 DOI: 10.7717/peerj.10569] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2020] [Accepted: 11/23/2020] [Indexed: 01/13/2023] Open
Abstract
Aging is one of the most fundamental biological processes occurring in all forms of eukaryotic life. Beech trees (Fagus sylvatica L.) produce seeds in intervals of 5–10 years. Its yearly seed yield is usually very low, so there is a need for long-term seed storage to enable propagation of this species upon demand. Seeds for sowing must be of high quality but they are not easy to store without viability loss. Understanding the mechanism responsible for seed aging is therefore very important. We observed the generation of reactive oxygen species (ROS) in mitochondria of embryonic axes and cotyledons of beech seeds during natural aging. The presence of ROS led to changes in compromised mitochondrial membrane integrity and in mitochondrial metabolism and morphology. In this study, we pointed to the involvement of mitochondria in the natural aging process of beech seeds, but the molecular mechanisms underlying this involvement are still unknown.
Collapse
Affiliation(s)
- Arleta Małecka
- Laboratory of Biotechnology, Institute of Molecular Biology and Biotechnology, Adam Mickiewicz University, Poznan, Poland
| | - Liliana Ciszewska
- Department of Molecular and Cellular Biology, Institute of Molecular Biology and Biotechnology, Adam Mickiewicz University, Poznan, Poland
| | - Aleksandra Staszak
- Laboratory of Plant Physiology, Department of Plant Biology and Ecology, Faculty of Biology, University of Bialystok, Bialystok, Poland
| | | |
Collapse
|
9
|
Kijak H, Ratajczak E. What Do We Know About the Genetic Basis of Seed Desiccation Tolerance and Longevity? Int J Mol Sci 2020; 21:E3612. [PMID: 32443842 PMCID: PMC7279459 DOI: 10.3390/ijms21103612] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2020] [Revised: 05/15/2020] [Accepted: 05/18/2020] [Indexed: 01/02/2023] Open
Abstract
Long-term seed storage is important for protecting both economic interests and biodiversity. The extraordinary properties of seeds allow us to store them in the right conditions for years. However, not all types of seeds are resilient, and some do not tolerate extreme desiccation or low temperature. Seeds can be divided into three categories: (1) orthodox seeds, which tolerate water losses of up to 7% of their water content and can be stored at low temperature; (2) recalcitrant seeds, which require a humidity of 27%; and (3) intermediate seeds, which lose their viability relatively quickly compared to orthodox seeds. In this article, we discuss the genetic bases for desiccation tolerance and longevity in seeds and the differences in gene expression profiles between the mentioned types of seeds.
Collapse
Affiliation(s)
- Hanna Kijak
- Institute of Dendrology, Polish Academy of Sciences, 62-035 Kórnik, Poland;
| | | |
Collapse
|
10
|
Kurek K, Plitta-Michalak B, Ratajczak E. Reactive Oxygen Species as Potential Drivers of the Seed Aging Process. PLANTS (BASEL, SWITZERLAND) 2019; 8:E174. [PMID: 31207940 PMCID: PMC6630744 DOI: 10.3390/plants8060174] [Citation(s) in RCA: 69] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/23/2019] [Revised: 05/24/2019] [Accepted: 05/30/2019] [Indexed: 12/27/2022]
Abstract
Seeds are an important life cycle stage because they guarantee plant survival in unfavorable environmental conditions and the transfer of genetic information from parents to offspring. However, similar to every organ, seeds undergo aging processes that limit their viability and ultimately cause the loss of their basic property, i.e., the ability to germinate. Seed aging is a vital economic and scientific issue that is related to seed resistance to an array of factors, both internal (genetic, structural, and physiological) and external (mainly storage conditions: temperature and humidity). Reactive oxygen species (ROS) are believed to initiate seed aging via the degradation of cell membrane phospholipids and the structural and functional deterioration of proteins and genetic material. Researchers investigating seed aging claim that the effective protection of genetic resources requires an understanding of the reasons for senescence of seeds with variable sensitivity to drying and long-term storage. Genomic integrity considerably affects seed viability and vigor. The deterioration of nucleic acids inhibits transcription and translation and exacerbates reductions in the activity of antioxidant system enzymes. All of these factors significantly limit seed viability.
Collapse
Affiliation(s)
- Katarzyna Kurek
- Institute of Dendrology, Polish Academy of Sciences, Parkowa 5, 62-035 Kórnik, Poland.
| | | | - Ewelina Ratajczak
- Institute of Dendrology, Polish Academy of Sciences, Parkowa 5, 62-035 Kórnik, Poland.
| |
Collapse
|
11
|
Kalemba EM, Ratajczak E. The effect of a doubled glutathione level on parameters affecting the germinability of recalcitrant Acer saccharinum seeds during drying. JOURNAL OF PLANT PHYSIOLOGY 2018; 223:72-83. [PMID: 29550567 DOI: 10.1016/j.jplph.2018.02.010] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/17/2017] [Revised: 01/19/2018] [Accepted: 02/12/2018] [Indexed: 05/28/2023]
Abstract
Approximately 20% of plant species, including silver maple (Acer saccharinum L.), produce seeds that are sensitive to desiccation, which is reflected in their poor storage potential and viability. In the search for a compound that can improve seed recalcitrance, freshly harvested seeds were soaked in either 2.5 mM reduced glutathione (GSH) or water and desiccated to comparable water levels of 55-20%. We examined the impact of a doubled endogenous level of glutathione on the seed germination capacity, the activity of enzymes involved in glutathione metabolism, the cell membrane components and integrity, reactive oxygen species, and ascorbate levels. GSH treatment resulted in slower dehydration and a higher germination capacity. The increased glutathione was mainly consumed by glutathione S-transferase, leading to more efficient detoxification, and by dehydroascorbate reductase (DHAR), accelerating the ascorbate regeneration. As a result, the cellular environment became more reduced, and protection of the membrane structures was enhanced. The ameliorated membrane integrity was manifested via a lower electrolyte leakage and a lower lipid peroxide level despite the higher level of hydrogen peroxide (H2O2) detected in the GSH-treated seeds. The degradation of phospholipids (PLs) was less intense and related to the phosphatidylinositol (PI) level, which is the precursor of the phospholipase D cofactor, whereas in water-soaked seeds, PL degradation was promoted by H2O2. The germination capacity of the dehydrated seeds depended primarily on the level of H2O2, lipid hydroxyperoxides, electrolyte leakage, GSH, the half-cell reduction potential of glutathione, PI, and the activity of DHAR and γ-glutamylcysteine synthetase. Interestingly, H2O2 affected all of the parameters. The germination of GSH-boosted seeds was strongly impacted by the pool of ascorbate, the half-cell reduction potential of ascorbate, and the glutathione peroxidase activity. In general, germination was DHAR activity-dependent. A strong negative correlation was detected in the water-soaked seeds, whereas a strong positive correlation was detected in the GSH-treated seeds. The enhanced level of glutathione likely improved the efficiency of the ascorbate-glutathione cycle, confirming its effect on seed germinability after dehydration.
Collapse
Affiliation(s)
- Ewa M Kalemba
- Institute of Dendrology, Polish Academy of Sciences, Kórnik, 62-035, Poland.
| | - Ewelina Ratajczak
- Institute of Dendrology, Polish Academy of Sciences, Kórnik, 62-035, Poland
| |
Collapse
|
12
|
Liu G, Bei J, Liang L, Yu G, Li L, Li Q. Stachyose Improves Inflammation through Modulating Gut Microbiota of High-Fat Diet/Streptozotocin-Induced Type 2 Diabetes in Rats. Mol Nutr Food Res 2018; 62:e1700954. [PMID: 29341443 DOI: 10.1002/mnfr.201700954] [Citation(s) in RCA: 75] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2017] [Revised: 12/13/2017] [Indexed: 12/11/2022]
Abstract
SCOPE The present study is undertaken to assess the effects of stachyose (STS) on type 2 diabetes in rats and changes in the gut microbiota compared to metformin (MET). METHODS AND RESULTS The type 2 diabetic model is successfully established via a high-fat diet /streptozotocin in Wistar rats, and STS or MET is administered for 4 weeks. Blood is collected to analyze biochemical parameters, pancreas for mRNA expression of related gene, and contents of colon for gut microbiota. STS or MET decreases serum LPS, mRNA expression of IL-6, and tumor necrosis factor-α (TNF-α). In addition, STS and MET show a similar shifting of the structure of the gut microbiota and a selective enrichment of key species. At the genus level, STS shows selective enrichment of Phascolarctobacterium, Bilophila, Oscillospira, Turicibacter, and SMB5, but MET demonstrates a selective effect on Sutterella, Prevotella, 02d06, and rc4. The correlation analysis indicates that STS and MET decrease IL-6 and TNF-α and increase Akt/PI3K expression, which are relative to key species of gut microbiota. CONCLUSION STS decreases pancreatic mRNA expression of IL-6 and TNF-α via key species of gut microbiota. The mechanism of this effect is similar to that of MET.
Collapse
Affiliation(s)
- Guimei Liu
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, China.,National Engineering Research Center for Fruit and Vegetable Processing, Beijing, China.,Beijing Key Laboratory for Food Non-Thermal Processing, Beijing, China
| | - Jia Bei
- National Engineering Research Center for Fruit and Vegetable Processing, Beijing, China.,Beijing Key Laboratory for Food Non-Thermal Processing, Beijing, China
| | - Li Liang
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, China.,National Engineering Research Center for Fruit and Vegetable Processing, Beijing, China.,Beijing Key Laboratory for Food Non-Thermal Processing, Beijing, China
| | - Guoyong Yu
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, China.,National Engineering Research Center for Fruit and Vegetable Processing, Beijing, China.,Beijing Key Laboratory for Food Non-Thermal Processing, Beijing, China
| | - Lu Li
- National Engineering Research Center for Fruit and Vegetable Processing, Beijing, China.,Beijing Key Laboratory for Food Non-Thermal Processing, Beijing, China
| | - Quanhong Li
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, China.,National Engineering Research Center for Fruit and Vegetable Processing, Beijing, China.,Beijing Key Laboratory for Food Non-Thermal Processing, Beijing, China
| |
Collapse
|
13
|
Zhou Y, Xu DS, Liu L, Qiu FR, Chen JL, Xu GL. A LC–MS/MS method for the determination of stachyose in rat plasma and its application to a pharmacokinetic study. J Pharm Biomed Anal 2016; 123:24-30. [DOI: 10.1016/j.jpba.2015.11.041] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2015] [Revised: 11/16/2015] [Accepted: 11/25/2015] [Indexed: 10/22/2022]
|
14
|
Gangola MP, Jaiswal S, Kannan U, Gaur PM, Båga M, Chibbar RN. Galactinol synthase enzyme activity influences raffinose family oligosaccharides (RFO) accumulation in developing chickpea (Cicer arietinum L.) seeds. PHYTOCHEMISTRY 2016; 125:88-98. [PMID: 26953100 DOI: 10.1016/j.phytochem.2016.02.009] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/10/2015] [Revised: 02/10/2016] [Accepted: 02/18/2016] [Indexed: 06/05/2023]
Abstract
To understand raffinose family oligosaccharides (RFO) metabolism in chickpea (Cicer arietinum L.) seeds, RFO accumulation and corresponding biosynthetic enzymes activities were determined during seed development of chickpea genotypes with contrasting RFO concentrations. RFO concentration in mature seeds was found as a facilitator rather than a regulating step of seed germination. In mature seeds, raffinose concentrations ranged from 0.38 to 0.68 and 0.75 to 0.99 g/100 g, whereas stachyose concentrations varied from 0.79 to 1.26 and 1.70 to 1.87 g/100 g indicating significant differences between low and high RFO genotypes, respectively. Chickpea genotypes with high RFO concentration accumulated higher concentrations of myo-inositol and sucrose during early seed developmental stages suggesting that initial substrate concentrations may influence RFO concentration in mature seeds. High RFO genotypes showed about two to three-fold higher activity for all RFO biosynthetic enzymes compared to those with low RFO concentrations. RFO biosynthetic enzymes activities correspond with accumulation of individual RFO during seed development.
Collapse
Affiliation(s)
- Manu P Gangola
- Department of Plant Sciences, College of Agriculture and Bioresources, 51 Campus Drive, University of Saskatchewan, Saskatoon, SK S7N 5A8, Canada
| | - Sarita Jaiswal
- Department of Plant Sciences, College of Agriculture and Bioresources, 51 Campus Drive, University of Saskatchewan, Saskatoon, SK S7N 5A8, Canada
| | - Udhaya Kannan
- Department of Plant Sciences, College of Agriculture and Bioresources, 51 Campus Drive, University of Saskatchewan, Saskatoon, SK S7N 5A8, Canada
| | - Pooran M Gaur
- International Crops Research Institute for the Semi-Arid-Tropics, Patancheru near Hyderabad, Telangana, India
| | - Monica Båga
- Department of Plant Sciences, College of Agriculture and Bioresources, 51 Campus Drive, University of Saskatchewan, Saskatoon, SK S7N 5A8, Canada
| | - Ravindra N Chibbar
- Department of Plant Sciences, College of Agriculture and Bioresources, 51 Campus Drive, University of Saskatchewan, Saskatoon, SK S7N 5A8, Canada.
| |
Collapse
|
15
|
de Souza Vidigal D, Willems L, van Arkel J, Dekkers BJW, Hilhorst HWM, Bentsink L. Galactinol as marker for seed longevity. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2016; 246:112-118. [PMID: 26993241 DOI: 10.1016/j.plantsci.2016.02.015] [Citation(s) in RCA: 44] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/05/2016] [Revised: 02/22/2016] [Accepted: 02/22/2016] [Indexed: 05/16/2023]
Abstract
Reduced seed longevity or storability is a major problem in seed storage and contributes to increased costs in crop production. Here we investigated whether seed galactinol contents could be predictive for seed storability behavior in Arabidopsis, cabbage and tomato. The analyses revealed a positive correlation between galactinol content and seed longevity in the three species tested, which indicates that this correlation is conserved in the Brassicaceae and beyond. Quantitative trait loci (QTL) mapping in tomato revealed a co-locating QTL for galactinol content and seed longevity on chromosome 2. A candidate for this QTL is the GALACTINOL SYNTHASE gene (Solyc02g084980.2.1) that is located in the QTL interval. GALACTINOL SYNTHASE is a key enzyme of the raffinose family oligosaccharide (RFO) pathway. To investigate the role of enzymes in the RFO pathway in more detail, we applied a reverse genetics approach using T-DNA knock-out lines in genes encoding enzymes of this pathway (GALACTINOL SYNTHASE 1, GALACTINOL SYNTHASE 2, RAFFINOSE SYNTHASE, STACHYOSE SYNTHASE and ALPHA-GALACTOSIDASE) and overexpressors of the cucumber GALACTINOL SYNTHASE 2 gene in Arabidopsis. The galactinol synthase 2 mutant and the galactinol synthase 1 galactinol synthase 2 double mutant contained the lowest seed galactinol content which coincided with lower seed longevity. These results show that galactinol content of mature dry seed can be used as a biomarker for seed longevity in Brassicaceae and tomato.
Collapse
Affiliation(s)
- Deborah de Souza Vidigal
- Wageningen Seed Lab, Laboratory of Plant Physiology, Wageningen University, Droevendaalsesteeg 1, 6708 PB Wageningen, The Netherlands.
| | - Leo Willems
- Wageningen Seed Lab, Laboratory of Plant Physiology, Wageningen University, Droevendaalsesteeg 1, 6708 PB Wageningen, The Netherlands.
| | - Jeroen van Arkel
- Plant Research International, Wageningen UR, Droevendaalsesteeg 1, 6708 PD Wageningen, The Netherlands.
| | - Bas J W Dekkers
- Wageningen Seed Lab, Laboratory of Plant Physiology, Wageningen University, Droevendaalsesteeg 1, 6708 PB Wageningen, The Netherlands.
| | - Henk W M Hilhorst
- Wageningen Seed Lab, Laboratory of Plant Physiology, Wageningen University, Droevendaalsesteeg 1, 6708 PB Wageningen, The Netherlands.
| | - Leónie Bentsink
- Wageningen Seed Lab, Laboratory of Plant Physiology, Wageningen University, Droevendaalsesteeg 1, 6708 PB Wageningen, The Netherlands.
| |
Collapse
|
16
|
Gangola MP, Khedikar YP, Gaur PM, Båga M, Chibbar RN. Genotype and growing environment interaction shows a positive correlation between substrates of raffinose family oligosaccharides (RFO) biosynthesis and their accumulation in chickpea ( Cicer arietinum L.) seeds. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2013; 61:4943-4952. [PMID: 23621405 DOI: 10.1021/jf3054033] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/02/2023]
Abstract
To develop genetic improvement strategies to modulate raffinose family oligosaccharides (RFO) concentration in chickpea ( Cicer arietinum L.) seeds, RFO and their precursor concentrations were analyzed in 171 chickpea genotypes from diverse geographical origins. The genotypes were grown in replicated trials over two years in the field (Patancheru, India) and in the greenhouse (Saskatoon, Canada). Analysis of variance revealed a significant impact of genotype, environment, and their interaction on RFO concentration in chickpea seeds. Total RFO concentration ranged from 1.58 to 5.31 mmol/100 g and from 2.11 to 5.83 mmol/100 g in desi and kabuli genotypes, respectively. Sucrose (0.60-3.59 g/100 g) and stachyose (0.18-2.38 g/100 g) were distinguished as the major soluble sugar and RFO, respectively. Correlation analysis revealed a significant positive correlation between substrate and product concentration in RFO biosynthesis. In chickpea seeds, raffinose, stachyose, and verbascose showed a moderate broad sense heritability (0.25-0.56), suggesting the use of a multilocation trials based approach in chickpea seed quality improvement programs.
Collapse
Affiliation(s)
- Manu P Gangola
- Department of Plant Sciences, University of Saskatchewan, 51 Campus Drive Saskatoon, Saskatchewan S7N 5A8, Canada
| | | | | | | | | |
Collapse
|
17
|
Li X, Zhuo J, Jing Y, Liu X, Wang X. Expression of a GALACTINOL SYNTHASE gene is positively associated with desiccation tolerance of Brassica napus seeds during development. JOURNAL OF PLANT PHYSIOLOGY 2011; 168:1761-70. [PMID: 21680054 DOI: 10.1016/j.jplph.2011.04.006] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/06/2011] [Revised: 04/01/2011] [Accepted: 04/02/2011] [Indexed: 05/08/2023]
Abstract
Desiccation tolerance of seeds is positively correlated with raffinose family oligosaccharides (RFOs). However, RFOs' role in desiccation tolerance is still a matter of controversy. The aim of this work was to monitor the accumulation of RFO during acquisition of desiccation tolerance in rapeseed (Brassica napus L.). Rapeseeds become desiccation tolerant at 21-24d after flowering (DAF), and the time was coincident with an accumulation of raffinose and stachyose. A gene encoding galactinol synthase (GolS; EC2.4.1.123), involved in RFO biosynthesis, was cloned and functionally characterized. Enzymatic properties of recombinant galactinol synthase were also determined. Accumulation of BnGOLS-1 mRNA in developing rapeseeds was concomitant with dry weight deposition and the acquisition of desiccation tolerance, and was concurrent with the formation of raffinose and stachyose. The physiological implications of BnGOLS-1 expression patterns in developing seeds are discussed in light of the hypothesized role of RFOs in seed desiccation tolerance.
Collapse
Affiliation(s)
- Xu Li
- National Engineering Laboratory for Tree Breeding, College of Biological Sciences and Biotechnology, Beijing, China
| | | | | | | | | |
Collapse
|
18
|
Optimization of extracting stachyose from Stachys floridana Schuttl. ex Benth by response surface methodology. Journal of Food Science and Technology 2011; 50:942-9. [PMID: 24426001 DOI: 10.1007/s13197-011-0413-1] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Revised: 04/25/2011] [Accepted: 05/03/2011] [Indexed: 10/18/2022]
Abstract
Stachys floridana schuttl. E x benth, also named yinmiao, is a special and traditional Chinese vegetable that is usually used by some diabetes patients as a pharmaceutical plant for its high content of stachyose. Due to the lower cost and higher economic reward, Stachys floridana schuttl. Ex benth is a potentially new source to extract stachyose in the medicine and food industry. Here we optimized the extraction of stachyose from Stachys floridana schuttl. Ex benth by response surface methodology, the yeild can reach as high as up to 47.0% of stachyose at temperature of 60 °C, extraction time of 40 min, ethanol volume of 60% and ratio of solid-liquid at 1:10. Our primary result holds great promising for Stachys floridana schuttl. Ex bent extracting industry as well as diabetic medicine.
Collapse
|
19
|
Angelovici R, Galili G, Fernie AR, Fait A. Seed desiccation: a bridge between maturation and germination. TRENDS IN PLANT SCIENCE 2010; 15:211-8. [PMID: 20138563 DOI: 10.1016/j.tplants.2010.01.003] [Citation(s) in RCA: 140] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/05/2009] [Revised: 01/04/2010] [Accepted: 01/07/2010] [Indexed: 05/22/2023]
Abstract
The development of orthodox seeds concludes by a desiccation phase. The dry seeds then enter a phase of dormancy, also called the after-ripening phase, and become competent for germination. We discuss physiological processes as well as gene expression and metabolic programs occurring during the desiccation phase in respect to their contribution to the desiccation tolerance, dormancy competence and successful germination of the dry seeds. The transition of developing seeds from the phase of reserve accumulation to desiccation is associated with distinct gene expression and metabolic switches. Interestingly, a significant proportion of the gene expression and metabolic signatures of seed desiccation resemble those characterizing seed germination, implying that the preparation of the seeds for germination begins already during seed desiccation.
Collapse
Affiliation(s)
- Ruthie Angelovici
- Department of Plant Science, the Weizmann Institute of Science, Rehovot, Israel
| | | | | | | |
Collapse
|